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The role of dopaminergic brain regions in avoidance behaviour is unclear. Active avoidance requires motivation,

and the latter is linked to increased activity in dopaminergic regions. However, avoidance is also often tethered to

the prospect of punishment, a state typically characterized by below baseline levels of dopaminergic function.

Avoidance has been considered from the perspective of two-factor theories where the prospect of safety is con-

sidered to act as a surrogate for reward, leading to dopamine release and enhanced motivational drive. Using

fMRI we investigated predictions from two-factor theory by separating the neural representation of a conven-

tional net expected value, which is negative in the case of avoidance, from an adjusted expected valuewhich fac-

tors in a possibility of punishment and is larger for both big rewards and big (predictably avoidable)

punishments. We show that neural responses in ventral striatum and ventral tegmental area/substantial nigra

(VTA/SN) covaried with net expected value. Activity in VTA/SN also covaried with an adjusted expected value,

as did activity in anterior insula. Consistent with two-factor theory models, the findings indicate that VTA/SN

and insula process an adjusted expected value during avoidance behaviour.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dopaminergic rich brain regions, including ventral striatum

and midbrain ventral tegmental area/substantia nigra (VTA/SN), are

implicated in evaluation and motivation (D'Ardenne et al., 2008; Kable

and Glimcher, 2007; O'Doherty et al., 2004; Seymour et al., 2007;

Tobler et al., 2005; Tom et al., 2007). In appetitive contexts, these

regions show enhanced responses to larger rewards, consistent with

representing expected value (EV) and reinforcement prediction error

(RPE). Several findings link these regionswith energizing effects or mo-

toric vigour, in keeping with a link between EV and motivation

(Berridge and Robinson, 1998; Niv et al., 2007; Salamone and Correa,

2002). However, evidence regarding dopaminergic involvement in

avoidance contexts is scarce, and whether there is an increased activa-

tion in dopaminergic circuitry with punishment remains contentious

(Boureau and Dayan, 2011; Dayan, 2012; Oleson and Cheer, 2013).

Evidence from Pavlovian conditioning paradigms (i.e., where acting

is irrelevant; D'Ardenne et al., 2008) has shown that activity in dopami-

nergic regions is inhibited by larger punishments, suggesting inhibition

in avoidance too (i.e., when acting is required to prevent punishment).

On the other hand, avoidance studies report more vigorous motoric re-

sponses with larger punishments (Oleson and Cheer, 2013) and im-

paired avoidance behaviour with dopamine depletion (Cooper et al.,

1973; Darvas et al., 2011; McCullough et al., 1993). Given an association

between dopamine activity and motivation (Berridge and Robinson,

1998; Niv et al., 2007; Salamone and Correa, 2002), these findings hint

at an increased dopaminergic response with larger punishment.

A recent computational model (Dayan, 2012), inspired by classical

two-factor theory (Mowrer, 1947), suggests a potential resolution. In

avoidance contexts, the model postulates an expected value signal

which is adjusted to the level of punishment that is potentially avoid-

able through action. This adjusted signal is postulated as driving a dopa-

minergic response. In line with this, we designed a paradigmwhere we

could distinguish between a raw EV signal (EVRAW) and an EV signal ad-

justed to the potentially avoidable punishment (EVADJ). Crucially, these

two value representations can be disentangled in the context of an in-

strumental task involving reward and punishment (Fig. 1). Consider a

condition in which an animal has to perform an action to obtain a re-

ward. Here, EVRAW is equivalent to EVADJ since punishment is not in-

volved. However, for performance of an action to avoid punishment,

EVRAW decreases with larger compared to smaller amounts of punish-

ment (i.e., a less negative value is expected with smaller punishment)

while EVADJ increases for larger compared to smaller punishment

amounts because the level of avoidable punishment increases with

larger punishment.
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To investigate neural signatures of EVADJ independent of EVRAW, we

considered instrumental behaviour in relation to gain or loss while ma-

nipulating their respective magnitudes. During functional magnetic

resonance imaging (fMRI) recording, participants performed a task

(Fig. 2A) requiring a right/left button press corresponding to the posi-

tion on a screen of a visual target stimulus, presented together with

distractors. On each trial, correct responses allowed participants either

to gain or avoiding losing money associated with one of two amounts,

as described by a two-by-two factorial design (factors of outcome va-

lence (loss/gain) and monetary amount (£1/£10)). This design allowed

us to test whether brain regions linked with an incentive value repre-

sentation reflect EVRAW, EVADJ, or both. A response in a region that repre-

sents EVRAW would be expected to increase when contrasting reward

with punishment (independent of amount), while a response in a re-

gion representing EVADJ would be expected to increase for large com-

pared to small monetary amount (independent of valence).

It has been proposed that learning and performance of an avoidance

response could usefully be differentiated, since the learning might in-

volve two distinct signals, one associated with the possibility of the

aversive outcome; the other with its rescindment (Dayan, 2012;

Mackintosh, 1983; Mowrer, 1947). In order to focus on performance,

we minimized any learning component by instructing participants on

gain/loss contingencies and by allowing them to practise with the task

before entering the scanner.

2. Methods

2.1. Participants

Twenty-two healthy right-handed human participants were

recruited. Three subjects were excluded from analyses because of

technical problems. Thus, the experimental sample included 19 subjects

Fig. 1. Representation of the raw EV (EVRAW; panel A), the EV adjusted to the level of punishment avoidable through action (EVADJ; panel B), and the absolute value of the raw EV,

corresponding to the absolute expected reinforcer (|EVRAW|; panel C). Take a scenario where an agent has to perform an action in different conditions where (i) the action leads to a

large monetary gain (LG; e.g., £10) with a given probability (e.g., 0.95, corresponding to the true participants' task performance) and not performing the action leads to zero outcome,

(ii) performing the action leads to a small monetary gain (SG; e.g., £1) with a given probability (0.95) and not performing the action leads to zero outcome, (iii) performing the action

leads to avoidance of a small monetary loss (SL; e.g. £1) with a given probability (0.95) and not performing the action leads to a small loss for sure, (iv) performing the action leads

to avoidance of a large monetary loss (LL; e.g. £10) with a given probability (0.95) and not performing the action leads to a large loss for sure. EVRAW corresponds to the value of

the reinforcer multiplied by the probability of getting that reinforcer once the instrumental action is performed. This quantity decreases monotonically from LG, SG, SL

to LL, as shown on panel A (e.g., LG: £10 × 0.95 = £9.5; SG: £1 × 0.95 = £0.95; SL: −£1 × 0.05 = −£0.05; LL: −£10 × 0.05 = −£0.5). EVADJ corresponds to the value of the

reinforcer multiplied by the probability of getting that reinforcer minus the level of punishment (with negative sign) avoided by performing the instrumental action (multiplied by the

probability of avoiding the punishment), and this is higher for LG and LL compared to SG and SL, as shown on panel B (e.g., LG: (£10 × 0.95)–£0 = £9.5; SG: (£1 × 0.5)–£0 = £0.95;

SL= (−£1 × 0.05)–(−£1 × 0.95)= £0.9; LL = (−£10 × 0.05)–(−£10 × 0.95) = £9). From these graphs it can be seen that signalling EVRAW or |EVRAW| predicts a main effect of valence

(i.e., (LG + SG)–(SL + LL), while signalling EVADJ predicts a main effect of amount (i.e., (LG + LL)–(SG + SL)). In addition, EVRAW and |EVRAW| predict an interaction effect in which the

difference between a large and a small gain is larger than the difference between a large and a small loss (i.e., (LG − SG)–(LL − SL)). Therefore, here predictions associated with EVADJ
can be dissociated from any influence exerted by EVRAW or |EVRAW|. This type of scenario is exploited in our experimental paradigm.

Fig. 2. A: Experimental paradigm. Participants had to press a left/right button according to the location on the screen of a target presented among distractors. In different blocks, correct

responses led to obtaining a large monetary gain (LG), a small monetary gain (SG), or avoiding a small monetary loss (LS) or a large monetary loss (LL). Before each trial, an information

panel displayed (i) on the top of the screen, a row ofmonetary amounts corresponding to the condition of the current block n (the number of monetary amounts displayed corresponds to

the number of trials remaining in the current blocks); and (ii) on the bottom of the screen, a monetary amount in brackets corresponding to the condition in the subsequent block n+ 1.

Next, the target (é) and three distractors (è) were presented. Participants were required to press a left/right button corresponding to the side of the screen on which the target

was displayed (left or right). B: Behavioural performance (corresponding to the proportion of uncorrect responses) as a function of the experimental conditions. Top: raw scores

(with standard errors); bottom: Z-scores computed across the different conditions for each subject.
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(9 females, mean age 27). All participants had normal or corrected-to-

normal vision. None had history of head injury, a diagnosis of any neu-

rological or psychiatric condition, orwas currently onmedication affect-

ing the central nervous system. All participants provided written

informed consent and were paid for participating. The study was ap-

proved by the University College of London Research Ethics Committee.

2.2. Experimental paradigm and procedure

Inside the MRI scanner, participants performed a computer-based

task lasting approximately 35 min organized across two sessions of

equal length (Fig. 2). On each trial, a target (corresponding to the letter

é) and three distractors (corresponding to the letter è) appeared simul-

taneously on the screen, with the four stimuli shown in a randomized

position with two of them appearing on each side of the screen. For

each trial, participants had to press a right/left button on a keypad cor-

responding to the position of the targetwithin 2 s. In some trials, correct

responses were associated with amonetary gain of either £1 or £10 and

incorrect responses were associated with no reward. In other trials, cor-

rect responses were associated with nomonetary loss and incorrect re-

sponses with a monetary loss of either £1 or £10. Trials with equal

valence (reward or punishment) and equal monetary amount (£1 and

£10) were arranged in 32 blocks (each including 8 trials) ordered

pseudo-randomly. During the intertrial interval, an information panel

was presented for 2 s showing (i) the number of trials remaining in

the current block n, represented as a row of equal outcome displayed

on the top of the screen and (ii) the condition of the subsequent block

n+ 1 represented by an outcome displayed in the bottom of the screen

in brackets. The latter componentwas included becausewewere initial-

ly interested in decorrelating in time the information about reward

(linkedwith information about the subsequent block n+ 1) and the re-

ward itself (linked with the reward condition of the current block n).

However, no effect was found linked to the former component, and

hence we do not discuss it further. After the information panel, the tar-

get and distractors were presented and remained on the screen for 2 s

independently from reaction time, followed either by a new informa-

tion panel or by an error feedback appearing for 1 s when participants

pressed the wrong button or did not press at all.

Participants were tested at theWellcome Trust Centre for Neuroim-

aging, at the University College London (UCL). At the beginning of the

experiment, participants received an endowment of £17 and at the

end of the experiment one outcome was randomly selected among

those received and either added or subtracted from the endowment. Be-

fore scanning, subjects provided informed consent and were fully

instructed on task contingencies and rules about the payment. Next

they familiarizedwith the task outside the scanner for up to 100 unpaid

trials.

Our task has similarities to an incentive delay paradigm (Knutson

et al., 2001), but optimized in terms of participants' performance. In-

deed, based in a pilot study, performance was expected to be at ceiling,

entailing EVADJ was higher for large than small punishment and EVRAW
was higher for small than large punishment. This allowed us to isolate

the two value signals. This optimized performance contrasts with

the incentive delay task where performance is usually around 66%

(Knutson et al., 2001), which means EVADJ and EVRAW are roughly

equivalent for large and small punishment and therefore harder to

disentangle.

2.3. Imaging

The taskwas programmedwith the Cogent toolbox (WellcomeTrust

Centre for Neuroimaging) in Matlab. Blood oxygenation level depen-

dent (BOLD) contrast functional images were acquired with echo-

planar T2*-weighted imaging using a Siemens Trio 3-Tesla MR system

with a 32 channel head coil. To maximize data in our regions of interest

(ROIs), a partial volume of the ventral part of the brain was recorded.

Image volumes consisted of 25 interleaved 3-mm-thick sagittal slices

(inplane resolution = 3 × 3 mm; time to echo = 30 ms; repetition

time = 1.75 s). The first six volumes acquired were discarded to allow

for T1 equilibration effects. T1-weighted structural images were ac-

quired at a 1 × 1× 1mmresolution. Datawere analysed using Statistical

Parametric Mapping (SPM) version 8 (Wellcome Trust Centre for Neu-

roimaging). Preprocessing included spatial realignment, unwarping

using individual field maps, slice timing correction, normalization and

smoothing. Specifically, functional volumes were realigned to the

mean volume, were spatially normalized to the standardMontreal Neu-

rological Institute (MNI) template with a 3 × 3 × 3 voxel size, and were

smoothed with 8 mm Gaussian kernel. High-pass filtering with a cutoff

of 128 s and AR(1)-model were applied.

Neural response was modelled using a canonical hemodynamic re-

sponse function and aGLM including four boxcar function regressors as-

sociated respectively with large reward (+£10), small reward (+£1),

large punishment (−£10) and small punishment (−£1). Four stick

function regressors of no interest associated with the subsequent

block condition were also included at block start (given that this infor-

mation was provided in the panel), plus a stick function regressor indi-

cating when an error response (i.e., a wrong or late button press)

occurred. Note that regressors were uncorrelated due to the temporal

gap between regressors associated with the current and subsequent

block. Participants' respiration, heart rate and motion were included

as nuisance regressors. Contrasts of interest were computed subject-

by-subject and used for second-level one-sample t-tests across subjects.

The reason we used t-tests is because, based on substantial literature

(e.g., Bartra et al., 2013), we had precise hypotheses about the direction

of effect to test in our ROIs. In other words, previous literature allowed

us to test specifically for an increasing activation for positiveminus neg-

ative valence, and for an increasing activation for large minus small

monetary amounts.

We focus our analysis on ROIs within a priori dopaminergic rich re-

gions, namely VTA/SN and ventral striatum, plus anterior insula, a re-

gion implicated in processing stimulus salience and motivation (Bartra

et al., 2013; Critchley et al., 2001). Statistical testing followed small-

volume correction (SVC) with a Family Wise Error (FWE) of p b 0.05.

For VTA/SN, the ROI was manually defined using the software MRIcro

and the mean structural image similar to the approach described in

Guitart-Masip et al. (2011). Other ROIs were defined as spheres centred

on coordinates extracted from a recent metanalysis of brain regions in-

volved in representing EV and RPE (Bartra et al., 2013). For these

spheres, a 8 mm diameter was used (e.g., De Martino et al., 2013), mo-

tivated by the a priori hypotheses about the location of thehypothesised

effects within the ventral striatum and anterior insula.

3. Results

Participants' performance (Fig. 2B)was at ceiling (proportion of trial

errors: mean = 0.044; SD = 0.032; range: 0.01–0.11). Considering the

different conditions separately, the proportion of error trials was: for

large gain, mean = 0.042, SD = 0.034; for small gain, mean = 0.051,

SD = 0.045; for small loss, mean = 0.048, SD = 0.037; for large loss,

mean = 0.035, SD = 0.029. Performance was not affected by outcome

valence (F(1,18) = 0.913, p = 0.352) but was affected by outcome

amount (F(1,18) = 7.005, p = 0.016), without evidence of an interac-

tion effect (F(1,18) = 0.264, p = 0.614). Enhanced performance for

large compared to small monetary amount can be interpreted as a mo-

tivational effect dependent on EVADJ, while the absence of a difference in

performance between reward and punishment conditions provides no

support for a motivational effect of EVRAW.

We investigated a neural representation for different forms of value

signal related to EVRAW, EVADJ, or both. We used a simple general linear

model (GLM) in which each condition was associated with a boxcar-

function regressor with duration equal to block length, providing us
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with four regressors (large reward; small reward; large punishment;

small punishment).

To dissociate encoding of EVRAW and EVADJ (Fig. 1), we tested for a

main effect of valence (consistent with EVRAW), a main effect of magni-

tude (consistent with EVADJ), and an interaction between the two vari-

ables (consistent with EVRAW). Another possibility is that the expected

magnitude of the reinforcer might be encoded in amanner correspond-

ing to the absolute value of EVRAW (|EVRAW |; Fig. 1). This latter possibility

makes predictions similar to the encoding of EVRAW, namely a main ef-

fect of valence and an interaction. Our designwas not suited for dissoci-

ating EVRAW and |EVRAW | since it concentrated on testing for evidence

that EVADJ was signalled, independent of both EVRAW and |EVRAW |.

When contrasting activity for rewards minus punishments (inde-

pendent of large/small amounts), we observed an increase in bilateral

ventral striatum (Fig. 3A; 2, 11, −5; Z = 2.91, p = 0.049 SVC; left:

−3, 8, −5; Z = 3.21, p = 0.024 SVC; in MNI coordinates space; see

Methods for details on how ROIs were defined) and VTA/SN (Fig. 4A–

D; 2, −25, −23; Z = 2.77, p = 0.040 SVC). When contrasting activity

for large minus small outcome amounts (independent of the gain/loss

condition), we observed increased activity in VTA/SN (Fig. 4B–D; 5,

−27, −15; Z = 3.08, p = 0.020 SVC) but not ventral striatum. We

also found a significant activation in left (but not right) anterior insula

(Fig. 3B; −31, 18, −10; Z = 3.38, p = 0.017 SVC), a region important

in motivation and in evaluating stimulus salience (Bartra et al., 2013;

Critchley et al., 2001). Only at themost liberal threshold (p b 0.05 uncor-

rected) was activation for this contrast seen in left ventral striatum

(−17, 8,−2; T=2.64, p=0.008uncorrected) and right anterior insula

(27, 28,−3; T= 3.06, p= 0.004 uncorrected), though not in right ven-

tral striatum, a result we report solely for completion.

Therewas no interaction in any of the above ROIs between factors of

outcome valence and monetary amount, even at the most liberal

p b 0.05 uncorrected threshold. In support of the conclusion that the

lack of a valence–amount interaction effect is real and is not due to

low statistical power, when comparing the difference between large

and small gain against the difference between large and small loss, the

voxel showing the highest t-value statistic within VTA/SNwas associat-

ed with p N 0.4 uncorrected, and within anterior insula with p N 0.8

uncorrected.

We also investigated voxels showing a significant activation for both

outcome valence and amount. These were tested with a conjunction

analysis using a standard procedure (Nichols et al., 2005; in this meth-

od, an appropriate null hypothesis of a lack of a conjunction effect is im-

plemented). This showed a significant effect in VTA/SN (Fig 4C–D; 5,

−25, −15; Z = 2.64, p = 0.043 SVC).

We next examined whether the effect of outcome amount seen

in the insula and VTA/SN was influenced by interactions among

these regions. In a psychophysiological interaction (PPI) analysis with

large compared to small outcome amount as modulating conditions

and insula as seed region, we found a significant interaction effect in

VTA/SN (−3, −25, −20; Z = 3.22, p = 0.015 SVC as per above), that

reflected an enhanced coupling between insula and VTA/SN with larger

outcome amounts.

4. Discussion

In this study we separated the representation of two different ex-

pected value signals as posited with two-factor theory (Dayan, 2012;

Mowrer, 1947). These comprise EVRAW, which is associated with pure

Fig. 3. (A) Activity in ventral striatum for gains compared to losses (right: 2, 11, −5; Z = 2.91, p = 0.049 SVC; left:−3, 8,−5; Z = 3.21, p = 0.024 SVC, in MNI space) independent of

outcome amounts. On the bottom, beta weights of the different experimental conditions are reported for the peak-activation voxel in ventral striatum relative to the contrast gains minus

losses. (B) Activity in left anterior insula for large compared to small outcome amounts (−31, 18,−10; Z = 3.38, p = 0.017 SVC) independent of outcome valence. On the bottom, beta

weights of the different experimental conditions are reported for the peak-activation voxel in left anterior insula relative to the contrast large minus small outcome amounts.
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outcomevalence, and EVADJ, an EV adjusted to encompass the amount of

punishment that can potentially be avoided through action. We show

neural responses in ventral striatumand anterior insulawere consistent

with representing EVRAW and EVADJ respectively, while VTA/SN activa-

tion reflected both value signals.

Limitations implied by theuse of fMRImean thatwe cannotmeasure

either neural activity or dopamine release and inferences that these

effects are dopamine-mediated are necessarily indirect. Under an as-

sumption that VTA/SN responses are reflective of dopaminergic activity,

our findings support a role of this region in avoidance (Boureau and

Dayan, 2011; Dayan, 2012; Oleson and Cheer, 2013). This is in keeping

with data showing that animals fail to acquire, or perform, an avoidance

response following lesions of either VTA/SN or ventral striatum, a deficit

that is reversed following administration of dopaminergic drugs

(Cooper et al., 1973; Darvas et al., 2011; McCullough et al., 1993; Zis

et al., 1974). Along the same lines, microdialysis studies report

enhanced dopamine levels in ventral striatum during learning and

maintenance of avoidance behaviour (Dombrowski et al., 2013;

McCullough et al., 1993). Furthermore, an enhanced response in ventral

striatal neurons in receipt of dopaminergic projections is seen following

presentation of warning signals associated with successful avoidance

behaviour (Oleson et al., 2012).

Previous literature has not completely resolved whether increased

engagement of dopaminergic regions is expected with larger punish-

ments, when avoidance is possible (Boureau and Dayan, 2011; Dayan,

2012; Oleson and Cheer, 2013). This uncertainty arises out from the ap-

parent conflicting idea that responses in these regions correlatewith EV

but also boostmotivation. Herewe clarify this issue, casting the problem

in terms of a distinction between EVRAW and EVADJ signals (Dayan, 2012).

As predicted by a recent two-factor theory inspired model (Dayan,

2012), we show enhanced activity in dopaminergic VTA/SN for large,

compared with small, punishments during an avoidance task,

consistent with representing EVADJ. One possibility is that such neural

signal might be relevant for efficient performance of avoidance behav-

iour, as predicted by the model (Dayan, 2012). However, we stress

that in our task we did not investigate for a direct relationship between

this signal and actual performance of an avoidance response, and hence

the prediction that brain representations of EVADJ affect behaviour re-

mains to be empirically validated.

Participants were instructed about contingencies before the task in

order to focus on the performance rather than the learning of the avoid-

ance response (Mackintosh, 1983). Several theoretical and empirical

considerations suggest that these two facets of avoidancemay be disso-

ciated, and indeed that learning is complicated by the involvement of at

least two factors (Mackintosh, 1983; Mowrer, 1947). Our data leave

open the question of how the value signals that emerged here in rela-

tion to performance are acquired during learning. Altogether, our re-

sults build on previous human and non-human studies that help

clarifying the neural mechanisms underlying avoidance behaviour

(Cooper et al., 1973; McCullough et al., 1993; Delgado et al., 2009;

Dombrowski et al., 2013; Kim et al., 2006; Palminteri et al., 2012;

Rigoli et al., 2012, 2016a, 2016b; Schlund and Cataldo, 2010; Schlund

et al., 2011).

Salience can be conceived as the absolute reinforcer value

(Bromberg-Martin et al., 2010), and a recent proposal has defined sa-

lience in terms of the absolute reinforcer value of all possible outcomes

(multiplied by their probabilities; Esber and Haselgrove, 2011). This

type of signal has been found to be relevant behaviourally and to be as-

sociated with activity in specific brain regions such as the temporo-

parietal junction (Kahnt and Tobler, 2013). This conceptualization of sa-

lience has similarities with EVADJ. However, a critical difference is a reli-

ance on the concept of punishment potentially avoidable through action

as considered in EVADJ. This entails different predictions in our task. For

instance, in the large loss condition, the model of Esber and Haselgrove

Fig. 4. (A) Activity in VTA/SN for gains compared to losses (2,−25,−23; Z= 2.77, p= 0.040 SVC); (B) for large compared to small outcome amounts (5,−27,−15; Z= 3.08, p= 0.020

SVC); (C) for both contrasts according to a conjunction analysis (5,−25, −15; Z = 2.64, p = 0.043 SVC). (D) Beta weights of the different experimental conditions are reported for the

peak-activation voxel in VTA/SN relative to the conjunction analysis.
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(2011) would expect small salience given a small chance of a large loss

due to ceiling performance, predicting the same pattern of activity as

|EVRAW |. This is not consistent with the observed response in VTA/SN

whichfits betterwith signalling an EVADJ. One possibility is that different

forms of salience are processed in the brain, with EVADJ representing a

form of salience processed in dopaminergic midbrain. Notably, the fact

that VTA/SN response might reflect EVADJ might explain why dopamine

appears often to be related to behavioural relevance over and above

its link with learning (Berridge and Robinson, 1998; Boureau and

Dayan, 2011; Dayan, 2012; Niv et al., 2007; Oleson and Cheer, 2013;

Salamone and Correa, 2002).

The VTA/SN showed greater activity for reward compared to punish-

ment, an effect that appears to be unrelated to overt behaviour in our

task, since there was no difference in performance with reward and

punishment conditions. One possibility is that different value signals as-

sociated with specific reference points overlap in VTA/SN as this region

would represent both EVADJ and EVRAW, resulting in a greater response

for the large reward amount condition compared to the large punish-

ment amount condition. Whether the interpolation of the two signals

happens in single units or is segregated across the region remains a

question for future research, though our observation of voxels recruited

by both value signals hints at least a partial overlap.

There is debate as to whether VTA/SN activity reflects the expected

absolute reinforce magnitude, corresponding to |EVRAW |. In the context

of our task, |EVRAW | can be dissociated from EVADJ but not from EVRAW.

Therefore, while our design allows us to reveal independent neural sig-

natures of EVADJ, it is not suitable to distinguish whether EVRAW or

|EVRAW | is signalled in VTA/SN. Encoding |EVRAW | requires a response

correlated with outcome amount in instrumental paradigms (as used

here) but also in Pavlovian paradigms, i.e., when acting has no conse-

quences. In linewith an influence of |EVRAW |, single-cell recording stud-

ies have reported increased firing rates with both unexpected

punishments and rewards in a sub-set of VTA/SN neurons during Pav-

lovian conditioning (Bromberg-Martin et al., 2010; Matsumoto and

Hikosaka, 2009). However, fMRI data (representing a more global pop-

ulation response compared to single-cell studies) on this question are

mixed. Studies using monetary incentives show decreased VTA/SN ac-

tivity for large compared to small (unexpected) punishment in the con-

text of a Pavlovian paradigm (D'Ardenne et al., 2008; Seymour et al.,

2007), while studies using painful stimuli report increased activity in

dopaminergic regions for larger painful stimuli (Seymour et al., 2007).

Our findings indicate that ventral striatal activity correlatedwith the

outcome valence associated with EVRAW. However, since avoidance was

overwhelmingly successful (with an average performance of 95%), the

numerical value of EVRAW would actually have been close to zero for

losses. This could suggest that the representation of EVRAW was non-

linear, although there was no direct evidence of this in the observed

striatal responses. Note that, as for VTAS/SN, our design is not suitable

to clarify whether the response in striatum depended on EVRAW or

|EVRAW |. We also failed to detect any significant effect linked with out-

come amount connected with EVADJ, in the ventral striatum. However,

these data should be treated with caution because an effect in ventral

striatum of outcome amount emerged using the most liberal signifi-

cance threshold, raising the possibility that our null findingmight be ex-

plained by lack of power. It should also be noted that a previous study

has reported increased ventral striatal responses following presentation

of warning signals associated with successful avoidance behaviour

(Oleson et al., 2012). Moreover, it has been shown that response in ven-

tral striatum depends more on the instrumental action required (i.e., go

vs no-go) than on valence (Guitart-Masip et al., 2011).

It is well-established that activity in anterior insula is influenced by

EV (Bartra et al., 2013; Critchley et al., 2001). Our findings fit with pre-

vious evidence indicating a response in this region both for large com-

pared to small reward, and for large compared to small punishment.

This has been interpreted as anterior insula encoding |EVRAW |, namely

the expected absolute reinforcement (Bartra et al., 2013). However,

our data suggest that response in insula might reflect also EVADJ. This

finding is also linkedwith the idea that insula activity is linked to behav-

ioural salience, as EVADJ incorporates action-relevant information in

terms of punishment potentially avoidable (Critchley et al., 2001).

Note also that we observed a change in coupling between insula and

VTA/SN as a function of outcome amount. One plausible hypothesis is

that insula integrates information about task salience, and through pro-

jections to dopaminergic neurons in VTA/SN, regulates their excitability

in response to representations of EVADJ.

In sum, we investigated value signalling in the context of avoidance

behaviour and highlight a central role of VTA/SN and anterior insula in

representing an EV representation adjusted to the level of punishment

potentially avoidable through action.
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