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HETEROGENEOUS AGGLOMERATION

Giulia Faggio, Olmo Silva, and William C. Strange*

Abstract—Many prior treatments of agglomeration explicitly or implicitly
assume that all industries agglomerate for the same reasons. This paper
uses U.K. establishment-level coagglomeration data to document substan-
tial heterogeneity across industries in the microfoundations of agglomera-
tion economies. It finds robust evidence of organizational and adaptive
agglomeration forces as discussed by Chinitz (1961), Vernon (1960), and
Jacobs (1969). These forces interact with the traditional Marshallian
(1890) factors of input sharing, labor pooling, and knowledge spillovers,
establishing a previously unrecognized complementarity between the
approaches of Marshall and Jacobs, as well as others, to the analysis of
agglomeration.

I. Introduction

THIS paper considers heterogeneity across industries
in the microfoundations of agglomeration economies.

Marshall (1890) notes the existence of three sources of
agglomeration economies: labor pooling, input sharing, and
knowledge spillovers. Many subsequent treatments of
agglomeration either explicitly or implicitly suppose that
all industries agglomerate for the same reasons, with the
three Marshallian forces affecting all industries similarly.
An important instance of this is the extrapolation of indivi-
dual cases to the larger economy, such as the drawing of
very general lessons about agglomeration from the specific
case of the Silicon Valley. Another is the pooling of data to
examine common tendencies in agglomeration even across
industries that theory suggests would agglomerate differ-
ently. This paper documents the existence of significant het-
erogeneity and shows that its pattern has important implica-
tions for our understanding of the nature of agglomeration
economies.

The paper’s empirical analysis focuses on the relation-
ship between the coagglomeration of industry pairs and
Marshallian links between industries. The motivation for
this approach is that the variation in the characteristics of
industries that colocate sheds light on the microfoundations
of agglomeration economies. Ellison, Glaeser, and Kerr

(2010), who developed this approach, show that proxies for
labor pooling, input sharing, and knowledge spillovers
between an industry pair are positively and significantly
related to colocation. Our paper explores how these results
vary across industries, guided by classic non-Marshallian
analyses of agglomeration. Jacobs (1969) stresses the
unplanned nature of the creation of new work in cities,
while Vernon (1960) discusses how cities help manage the
instability involved in certain production processes. Chinitz
(1961) argues for a positive role of small firms in the gen-
eration of agglomeration economies, another example of
this non-Marshallian research. Similarly, Porter’s (1990)
influential analysis of industry clusters identifies a positive
role for competition. The pattern of heterogeneity that we
document is consistent with these non-Marshallian micro-
foundations that focus on adaptive and organizational fac-
tors.1

Our analysis makes use of establishment-level data from
the U.K. Business Structure Database (BSD) covering the
years 1997 to 2008. We initially estimate benchmark mod-
els of the relationship between measures of industry links
and coagglomeration across all manufacturing industries, as
in Ellison et al. (2010). We then consider heterogeneity in
ways suggested by Jacobs’s and Vernon’s notions of adap-
tation and Chinitz’s organizational approach, as well as by
more recent research on the role of human capital in the
agglomeration process (e.g., Rauch, 1993; Glaeser & Saiz,
2004; Moretti, 2004). Using coagglomeration to look at
these aspects of agglomeration is unique in the literature.
Furthermore, we examine the interaction between Marshal-
lian forces and other elements of agglomeration rather than
looking at Marshall as a rival to Jacobs and others, which is
also unique and in contrast with the previous literature. In
this sense, the paper is an attempt to create a détente
between Marshall and Jacobs.

The empirical analysis leaves no doubt that agglomera-
tion works differently for different industries. The key
empirical results are as follows. First, in a great variety of
coagglomeration models, we show the robust predictive
power of Marshall’s agglomeration forces. This confirms
prior work and supports our focus on interactions between
Marshallian and non-Marshallian approaches. Second, a
quantile regression that differentiates pairs by their ten-
dency to coagglomerate provides results that are consistent
with Jacobs’s analysis of unplanned knowledge spillovers
and labor pooling. Third, differencing by entry and industry
age provides robust evidence of an adaptive element to
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agglomeration, consistent with Vernon. This manifests
itself more strongly in labor pooling and knowledge spil-
lovers than in input sharing. Fourth, differentiation by the
sector’s technology orientation and workforce education
shows that agglomeration is not just a high-technology phe-
nomenon. However, high-technology sectors show stronger
evidence of knowledge spillovers, while low-technology
industries show stronger evidence of input sharing and
labor pooling. These findings are broadly consistent with
learning playing an important role in the agglomeration pro-
cess, as suggested by Jacobs and Vernon. Finally, agglom-
eration effects, in particular those related to input sharing,
tend to be stronger when firms are smaller, consistent with
Chinitz.

In addition to building on the classics in the agglomera-
tion literature, the paper also builds on more recent econo-
metric work on agglomeration.2 The line of research closest
to this paper examines the relative importance of Marshal-
lian forces using what might be called ‘‘horse race’’ models.
For example, Audretsch and Feldman (1996) and Rosenthal
and Strange (2001) regress levels of agglomeration on
proxies for the presence of labor pooling, input sharing, and
knowledge spillovers. Another recent approach is Jofre-
Monseny, Marı́n-López, and Viladecans-Marsal (2011),
who estimate count models of new firms as functions of
proxies for Marshallian forces. A related body of work
consists of papers that separately consider Marshall’s
three forces. See, among others, Fallick, Fleischman, and
Rebitzer (2006), Almazan, De Motta, and Titman (2007),
Davis and Dingel (2013), and Serafinelli (2015) on labor
markets; Holmes (1999) on input sharing; and Jaffe, Traj-
tenberg, and Henderson (1993), Arzaghi and Henderson
(2008), and Lin (2012) on patents, networking and learning,
and the creation of new work. This body of work presents
persuasive evidence that the three Marshallian forces are
present. Our paper provides further such evidence and
extends this line of research by incorporating theories of
organization and adaptation.

While the agglomeration literature has much to say about
how agglomeration economies are generated, it has less to
say about heterogeneity in microfoundations. Henderson,
Kuncoro, and Turner (1995) show that agglomeration
economies differ between high- and low-technology indus-
tries in an analysis of urban growth. However, they consider
whether agglomeration economies arise from own-industry
activity or from urban diversity rather than directly consid-
ering Marshall’s three forces. Together with Glaeser et al.
(1992), this paper has spawned a literature that contrasts
Marshall versus Jacobs rather than studying the interactions
between Marshallian and non-Marshallian forces in charac-
terizing heterogeneous agglomeration, as we do. More
recently, Hanlon and Miscio (2014) estimate a dynamic

industry growth model and establish the importance of
input-output linkages and labor pooling. Their results show
that smaller firms both benefit from and produce stronger
agglomeration effects. Glaeser and Kerr (2009) and
Rosenthal and Strange (2010) also consider the idea that
agglomeration economies are stronger when there are many
small firms. In these papers, agglomeration is organiza-
tional. Duranton and Puga (2001), although largely a theo-
retical exercise, present empirical evidence on location
decisions over an industry’s life cycle that is consistent with
a model of cities as nurseries that tend to young industries.
Strange et al. (2006) show a systematic tendency for indus-
tries facing more uncertainty in Marshallian dimensions to
agglomerate. In both of these papers, agglomeration is fun-
damentally adaptive. As a group, this literature suggests
that there is reason to believe that agglomeration economies
are heterogeneous. Our analysis systematically documents
the pattern of this heterogeneity and what this implies for
our understanding of agglomeration economies.

Taken as a whole, our results argue for caution in extra-
polation from individual cases of agglomeration. This is
important because extrapolation from cases is a central part
of the justification for cluster policy.3 Unfortunately, as
satisfying as it is to draw conclusions from interesting and
salient examples of agglomeration such as the Silicon Val-
ley and computers or Detroit and cars, our findings show
clearly that different industries respond differently to
agglomerative forces. Similarly, our results suggest that one
should interpret horse race models on the relative strength
of agglomeration effects with care since these specifications
do not allow for heterogeneous effects across industries. All
of this is consistent with the advice offered by the cluster
policy review paper by Chatterji, Glaeser, and Kerr (2013).
Policymakers should recognize that agglomeration issues
are complex, and there is much to recommend caution in
cluster policies. Careful pilot projects have the potential to
uncover what works and what does not for particular indus-
tries. Policies that are consistent with growth in general are
likely to help clusters emerge. Conversely, policies target-
ing specific industries run the risk of picking losers rather
than winners, given the uncertainties associated with het-
erogeneity in agglomeration economies.

The remainder of the paper is organized as follows. Sec-
tion II discusses our empirical approaches. Section III pre-
sents the baseline Marshallian analysis. Section IV consid-
ers Jacobs’s unplanned interactions, while section V
considers heterogeneity. Section VI concludes.

II. Coagglomeration and Agglomeration Forces

A. Measuring Coagglomeration

Our analysis of microfoundations is based on the ten-
dency of industries to colocate across metropolitan areas.2 See Hanson (2001), Rosenthal and Strange (2004), Behrens and

Robert-Nicoud (2014), and Combes and Gobillon (2014) for reviews of
the agglomeration literature. 3 See, for instance, Porter (1990) and the critique in Duranton (2011).
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We use the Ellison and Glaeser (1997) measure of coagglo-
meration, which is standard in the field. Let Ni denote total
employment in industry i, and nmi denote employment in
metropolitan area m and industry i. Let smi ¼ nmi/Ni denote
the share of a given industry i’s employment in metropoli-
tan area m, and let xm denote the metropolitan area’s share
of national employment. For two industries i and j, the
Ellison-Glaeser measure of coagglomeration can be written
as (Ellison et al., 2010):

cC
ij ¼

PM
m¼1 smi � xmð Þ smj � xm

� �

1�
PM

m¼1 xmð Þ2
: (1)

This measure is related to the covariance of industries
across metropolitan areas.

We construct measures of coagglomeration of U.K. man-
ufacturing industries using data from the Business Structure
Database (BSD) for the period 1997 to 2008. The data come
from administrative records covering 99% of economic
activity in the United Kingdom. We use BSD data at the
local unit (i.e., plant or establishment) level, including both
single- and multiplant enterprises. For each local unit, infor-
mation is available on employment, industrial activity, year
of birth (start-up date) and death (termination date), and
postal codes. We use this detail to assign each local unit to
a travel-to-work area (TTWA; see below). The raw data
include approximately 3 million local units every year.
After a series of data cleaning procedures, our data set com-
prises more than 2 million plants annually over twelve
years.4

To quantify coagglomeration, we focus on three-digit
industries of the U.K. Standard Industry Classification
(SIC) 1992 and restrict our attention to manufacturing

(SIC151–SIC372). In line with the literature, we do not
consider other sectors (such as services) because measuring
the extent of labor pooling, input sharing, and, especially,
knowledge spillovers in those industries is challenging.
After excluding and recombining sectors that present a lim-
ited or erratic evolution in the number of plants or employ-
ment, or both, we are left with a final sample of 94 manu-
facturing three-digit industries. This gives 4,371 unique
pairs a year over twelve years (1997–2008), for an overall
count of 52,452 observations.

The level of geographical aggregation we use is the
TTWA, geographical entities defined so that at least 75% of
the resident population works in the area and 75% of the
people working in the area reside there. TTWAs were
devised to delineate areas that are self-contained labor mar-
kets and economically relevant aggregates. As of 2007,
there were 243 TTWAs in the United Kingdom. In our ana-
lysis, we focus on 84 urban TTWAs with more than
100,000 residents. In some extensions, we also consider
rural TTWAs and use other levels of aggregation such as
regions.

To measure coagglomeration, we compute Ellison et al.’s
(2010) gC measure based on the total employment shares of
the selected 94 three-digit industries contained in the 84
urban TTWAs. Descriptive statistics are presented in table
1. The mean and median of gC are centered at 0 with a stan-
dard deviation of 0.005, a minimum of �0.028, and a maxi-
mum of 0.107. Relative to Ellison et al. (2010), U.K. coag-
glomeration displays less dispersion, although it is similarly
skewed toward positive values.

In extensions to our core analysis, we use variants of gC.
In particular, we calculate (a) a measure of coagglomeration
constructed using the number of plants rather than their
employment, (b) a version of gC that excludes London, (c) a
measure that includes single-plant companies only (d) a
version that includes both urban and rural areas, and (e) a
measure that excludes publishing (SIC221) and printing

TABLE 1.—DESCRIPTIVE STATISTICS

Mean SD Minimum Maximum

Coagglomeration measures and Marshallian forces
TTWA total employment coagglomeration (gC) 0.000 0.005 �0.028 0.107
Labor pooling (correlation) 0.237 0.188 �0.022 0.968
Input-output sharing (maximum) 0.009 0.033 0.000 0.547
Input sharing (maximum) 0.007 0.029 0.000 0.547
Output sharing (maximum) 0.005 0.021 0.000 0.546
Knowledge spillovers—probabilistic mapping, industry of manufacture

(IOM, maximum of inward/outward citations)
0.016 0.037 0.000 0.413

Knowledge spillovers—probabilistic mapping, sector of use
(SOU, maximum of inward/outward citations)

0.012 0.026 0.000 0.540

Additional controls
Energy dissimilarity index 0.013 0.016 0.000 0.097
Water dissimilarity index 0.001 0.001 0.000 0.006
Transport dissimilarity index 0.014 0.018 0.000 0.084
Natural resources dissimilarity index 0.041 0.076 0.000 0.369
Services dissimilarity index 0.018 0.016 0.000 0.082

Data refer to pairwise combinations of manufacturing SIC1992 three-digit industries. The sample includes 94 three-digit sectors for a total of 4,371 unique pairwise correlations a year for twelve years (1997–
2008). The complete data set contains 52,452 observations. See the online appendix for details of included sectors and the text for details on construction of the other variables.

IOM ¼ industry of manufacture; SOU ¼ sector of use.

4 We use data from England, Scotland, and Wales but drop Northern
Ireland because of poor data coverage. Full details on data construction
are provided in the online appendix.

82 THE REVIEW OF ECONOMICS AND STATISTICS



and reproduction of media (SIC222). Descriptive statistics
of these alternative measures are very similar to those pre-
sented in table 1. Furthermore, their correlation with our
main measure is always high—between 0.76 (when only
including single-plants firms) and 0.99 (when considering
both urban and rural areas).

B. Marshallian Agglomeration Forces

Marshall attributes the spatial concentration of industry
to three forces: labor pooling, input sharing, and knowledge
spillovers. In this section, we discuss the variables we use
in order to measure the flow of goods, people, and ideas
across industrial pairs. Our proxies are deliberately very
similar to those used in Ellison et al. (2010), which we con-
sider to be best practice given available data. Descriptive
statistics are presented in table 1.

To assess the potential for labor pooling, we use the
1995–1999 U.K. Labour Force Survey (LFS) data. The LFS
is a representative survey of households living in the United
Kingdom. The data report a worker’s industry and standard
occupation classification (SOC) 1990. The U.K. SOC cate-
gorizes occupations on the basis of skill level and content.
We use the 331 occupation groups defined by the three-digit
SOC classification in conjunction with the 94 three-digit
manufacturing industries to calculate Shareio and Sharejo.
These measure the shares of employees of occupation o in
industries i and j, respectively. Using this information, we
measure the similarity of employment in industries i and j
by computing the correlation between Shareio and Sharejo.
The mean value is 0.237 with a standard deviation of 0.188.

To assess input sharing, we use the ONS input-output (I-
O) analytical tables for 1995 to 1999.5 We calculate the
shares of inputs that each industry within a pair buys from
the other as fractions of their total intermediate inputs and
the shares of outputs that they sell to each other as fractions
of their total output, excluding direct sales to consumers.
We then construct three different proxies for input-output
linkages. First, we consider the maximum between the
share of inputs that sector i is buying from sector j, and vice
versa. Next, we recover the maximum between the share of
output that sector i is selling to sector j, and vice versa.
These capture upstream and downstream linkages, respec-
tively. Finally, we consider the maximum of these two
proxies as a synthetic measure of the linkages between
pairs. The mean for all three proxies is close to 0, suggest-
ing that most pairs do not share inputs to an important
degree. In fact, 30% of the sector pairs do not share any
input or output, while 75% of the pairs share less than
0.005.

To construct a proxy for knowledge spillovers, we track
patent citation flows using information on U.K. inventors

contained in the European Patent Office (EPO) data for the
years 1997 to 2009. Approximately 144,000 patents were
filed by U.K. inventors over this period, generating more
than 77,000 citations. Using this information, we measure
the extent to which patents associated with industry i cite
patents associated with industry j and vice versa. The main
difficulty lies with creating a mapping between sectors and
patents, which are categorized using technological classes
rather than a standard industrial classification. Following
the literature, we adopt two approaches and use a probabil-
istic mapping based on the industry of manufacture (IOM)
and an alternative probabilistic mapping based on the sector
of use (SOU). After applying these procedures, we investi-
gate the number of citations that a patent in sector i is
receiving from patents in sector j and the number of patents
in sector j that a patent in sector i is citing. These measures
are analogous to the input sharing proxies described above.
Our two indicators consider the maximum patent-citation
flow between sector i and sector j, normalized by total cita-
tions in that industry, using either the IOM or the SOU
probabilistic mapping. Table 1 shows that average knowl-
edge spillover shares are 0.012 (SOU) and 0.016 (IOM).
Both distributions are highly skewed with median values on
the order of 0.003/0.004 and 75% of the industries having
citation flows below 0.011/0.013.

In addition to Marshallian agglomeration forces, we con-
trol for access to resources and infrastructure that might
affect location choices. Using the I-O tables, we gather
information on industries’ use of primary resources and
other nonmanufactured inputs in order to quantify industry-
pair dissimilarity in these respects.6 We measure dissimilar-
ity of pairs as (one-half of) the absolute value of the differ-
ence in the shares of the various inputs used by the pair.
Specifically, we build a measure of the share of inputs that
an industry is purchasing from the seven I-O primary nat-
ural resource industries (including agriculture, forestry and
fishing, and mining and quarrying). We also control for use
of water and energy by separately considering the share of
inputs bought from water-related service companies and
from energy-related industries (both electricity and gas).
Further, we consider the share of inputs bought from trans-
port-related sectors (including railways, air, water, and
other land transport) to control for the importance of trans-
port costs. Finally, following Overman and Puga’s (2010)
analysis of labor pooling, we create a proxy for access to
business services by considering the share of inputs bought
from this sector.7

5 We refer to this as input sharing in line with prior use even though
there are both upstream and downstream elements to our measure, as in
Krugman (1991).

6 Ellison et al. (2010) use the U.S. spatial distribution of natural
resources, transport costs, and labor inputs to predict coagglomeration.
This approach cannot be replicated in the United Kingdom because the
geographical scale of the country makes the spatial distribution of
resources and natural infrastructure much more homogeneous and
because differences in the cost of resources, such as gas, oil, water, and
electricity, are negligible due to regulatory constraints.

7 This group includes computer services, R&D activities, legal consult-
ing, accounting services, market research, and advertising. Results do not
depend on the inclusion of this variable.
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C. Beyond Marshall: Adaptive and Organizational Aspects
of Agglomeration

As discussed in section I, there has been considerable
empirical research on Marshall’s three forces. The literature
on non-Marshallian aspects of agglomeration is much less
developed. Within this literature, the approach that has
received the most attention is Jacobs (1969), who focuses
on adaptation, specifically on the unplanned nature of ‘‘the
creation of new work.’’ It is common to treat Jacobs as pro-
posing an alternative to Marshall, as in the Glaeser et al.
(1992) and Henderson et al. (1995) papers on urban growth.
There is a natural sense in which this is true. Marshall sees
increasing-returns forces as promoting the spatial concen-
tration of industry. Jacobs, in contrast, focuses primarily on
knowledge spillovers and sees the creation of new work as
being enhanced by local diversity. There is another sense,
however, in which Jacobs and Marshall ought not to be pre-
sented as polar opposites. Jacobs’s analysis of knowledge is
certainly in the spirit of Marshall, and she clearly mentions
the labor and input market aspects of the creation of new
work.

In this spirit, this paper examines complementarities
between Marshall and Jacobs and offers a novel approach
to investigating these issues. Previous work has studied the
Marshall-versus-Jacobs dichotomy by regressing measures
of local productivity, growth, or wages on measures of local
specialization or diversity, typically proxied by a Herfindahl
index of industrial concentration. While the specialization
measure is tightly tied to Marshall’s ideas, the diversity
variable is only loosely linked to Jacobs. Her intuition is
that a diverse city offers opportunities for unplanned, unpre-
dictable, or otherwise unusual interactions among different
industries, leading to increased creation of new work arising
from these unexpected connections.

The idea behind our approach is to focus on differences
between industry pairs that agglomerate frequently and
those that do not. While there are many factors that deter-
mine whether agglomeration is more or less common, the
unplanned, unpredictable, or unusual interactions at the
heart of Jacobs’s analysis are more likely to be found
among industry pairs that are infrequently colocated. Con-
versely, planned or otherwise predictable interactions
that arise from strategic migration decisions and entrepre-
neurial survival are likely to be found among industry pairs
that colocate frequently. Following this logic, we investi-
gate heterogeneity in the response to Marshallian forces
between more and less coagglomerated industry pairs using
quantile regressions to identify Jacobs-type agglomeration
economies.

Jacobs is not Marshall’s only important successor in the
study of agglomeration. In Chinitz (1961), New York dif-
fers from Pittsburgh because its industry is organized in a
less concentrated fashion, making it a friendlier environ-
ment for start-ups and innovation. Porter (1990) similarly
argues that competition is healthy for a business cluster.

Vernon (1960) writes about the importance of ‘‘instability’’
for increasing-returns industries, arguing that newer indus-
tries with more entry are the ones that benefit more from
locating in a large city. Others have emphasized the impor-
tance of human capital (e.g., Rauch, 1993; Glaeser & Saiz,
2004; Moretti, 2004) and creativity (Florida, 2003), both of
which are related to a city’s adaptive capacity. As with
Jacobs, we believe these approaches to agglomeration
should be seen as complements to Marshall rather than as
substitutes or alternative explanations. This intuition
informs our empirical work.

In order to test these non-Marshallian mechanisms, we
examine the pattern of heterogeneity in Marshallian
agglomeration effects using a sectoral breakdown that cap-
tures the various non-Marshallian approaches. To begin, we
use information collected by the OECD in 1997 to classify
sectors as high or low technology. Next, we gather data on
the share of college graduates in each industry using the
LFS and classify sectors as high or low education according
to whether this share is above or below the median (at
0.078). Finally, we use BSD data to split our sample along
the following dimensions:

a. Sectors where the first year of opening of currently
operating plants is above or below the median across
all years and sectors (at 1967). These industries are
labeled new and old, respectively.8

b. Sectors where the share of entrants—the incidence of
new firms at time t in the total number of firms in that
year—is above or below the median across all years
and industries (at 0.10). These are labeled dynamic
and steady sectors.

c. Sectors where the average size of the entrants—firms
operating at time t that did not exist at time t � 1—is
above or below the median size across all years and
sectors (at 8.59). We label these as large entrant and
small entrant sectors.

d. Sectors where the average size of the incumbents—
firms operating both at time t and t � 1—is above or
below the median size across all years and sectors (at
18.95). These are labeled large incumbent and small
incumbent sectors, respectively.

Given that the level of observation in our data set is the
industry pair, we use this information to classify combina-
tions where both sectors belong to one group (e.g., both
high technology or both low technology) and mixed pairs
where the two sectors belong to different groups (e.g., one
high and one low technology). More details about the con-
struction of these groupings, number of observations in
each block, and further descriptive statistics are presented
in table W1 in the online appendix.

8 We rank industries by the age of the oldest currently operating plant,
not the age of the industry itself. We believe that this captures the degree
to which an industry’s operations are settled.
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We then study the pattern of heterogeneity in the inten-
sity of the Marshallian forces across these groups to shed
light on non-Marshallian approaches to agglomeration. In
particular, we analyze heterogeneity along the new-versus-
old and dynamic-versus-steady dimension to provide
evidence about adaptive aspects of agglomeration, as in
Vernon and Jacobs. We focus on the high technology-
versus-low technology and high education-versus-low edu-
cation spectrum to quantify the importance of related ideas
about human capital and adaptive capacity. Finally, we
study heterogeneity along the dimensions of entrants’ and
incumbents’ size to shed light on the organizational aspects
of agglomeration, as in Chinitz.

III. Coagglomeration and Marshallian

Microfoundations: U.K. Evidence

A. Univariate and Multivariate OLS Regression Analysis

In this section we study the microfoundations of agglom-
eration economies by linking the proxies for the three Mar-
shallian forces discussed above to industry-pair coagglo-
meration. Our results come from regressions of the
following kind:

cC
ijt ¼ aþ bLP LPij þ bIO IOij

þ bKS KSij þ
X5

k¼1
kk Dissk

ij þ eijt; (2)

where cC
ijt is the Ellison et al. (2010) measure of coagglo-

meration between sectors i and j at time t; LPij, IOij, and
KSij are proxies for labor pooling (LP), input sharing (IO),
and knowledge spillovers (KS) between sectors i and j aver-
aged over the relevant years (see section IIB for details);
and Dissk

ij is one of the five measures of dissimilarity
between sectors i and j in terms of use of primary resources
and nonmanufacturing inputs. Finally, eijt is an error term
uncorrelated with all other variables. We allow for an arbi-
trary degree of correlation in the shocks of sector pairs over
the years and cluster standard errors at this level. The data
set consists of 4,371 unique combinations of 94 manufac-
turing sectors over twelve years, giving a total of 52,452
observations.9 Throughout the analysis, we standardize our
variables to have unitary standard deviation.

As Ellison et al. (2010) note, the motivation for this
approach is that the characteristics of industries that fre-
quently colocate can shed light on the microfoundations of
agglomeration economies. For instance, if industries that
frequently buy from and sell to each other coagglomerate to
a large degree, this suggests that input sharing is an impor-

tant agglomeration force. This in turn requires that coagglo-
meration is related to the strength of the agglomeration
economies operating within the industry pair.

In addition to being intuitively appealing, Ellison et al.
(2010, mathematical appendix) prove this property formally
in the context of a specific model of agglomeration with
industries partitioned into groups that must colocate in
order to have a positive profit. With sequential location
choices, in this all-or-nothing agglomeration model, indus-
tries that benefit from coagglomeration will coagglomerate.
They note that it is likely that this result would hold in
weaker form with somewhat weaker agglomeration econo-
mies. It is worth observing, however, that there is a funda-
mental coordination problem in the determination of city
composition (Helsley & Strange, 2014), and it is possible
that coagglomeration fails to occur even when it would be
mutually beneficial or that coagglomeration does occur
when it is not. Nonetheless, there are good reasons to
believe that equilibrium coagglomeration does increase
when the strength of the agglomeration effect is stronger.
First, there is a robust empirical relationship between
proxies for agglomeration forces within an industry pair
and equilibrium coagglomeration. In addition to Ellison
et al. (2010), a number of papers (Kolko, 2010; Jacobs,
Koster, & Van Oort, 2013; Gabe & Abel, 2013) find evi-
dence of this sort. Thus, it seems that the selection among
the multiple equilibria noted by Helsley-Strange is skewed
in favor of a positive relationship between the benefits of
coagglomeration and the coagglomeration that occurs in
equilibrium. Second, O’Sullivan and Strange (2015) use an
agent-based model to select from multiple-equilibrium city
compositions. They also show a positive relationship
between the strength of the spillovers within an industry
pair and equilibrium coagglomeration.

Focusing on coagglomeration rather than on the cross-
sectional pattern of industry clustering (as in Audretsch &
Feldman, 1996, and Rosenthal & Strange, 2001), has addi-
tional advantages. First, this approach looks directly at links
between industry pairs and thus sheds light on the mechan-
isms of agglomeration in a way that looking at the concen-
tration of industries cannot. Second, studying the links
between coagglomeration and pair-wise Marshallian forces
helps dealing with unobservables that could bias the results
when the unit of observation is the industry but are less
likely to be important when the analysis is carried out at the
industry-pair level. We return to this point in section IIIB.
Of course, the emphasis we put on these advantages does
not imply that we consider coagglomeration the only valid
approach to studying agglomeration microfoundations. We
simply argue that it is a valid approach and one we can flex-
ibly use to study heterogeneous patterns by neatly charac-
terizing the nature of industry pairs.

The first set of results is presented in table 2. Columns 1
and 2 tabulate results from univariate regressions where we
consider only one Marshallian force at a time (and include
dissimilarity controls in column 2). The results show that

9 Our proxies for the Marshallian forces are measured at the beginning of
the observation window and have no time variation. If we collapse cC

ijt to its
average across years and run regressions that exploit variation over 4,371
observations only, we find identical results (as expected). We keep the data
set at the year � industry-pair level because in some robustness checks, we
stagger and modify our observation window.
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labor pooling has the largest and most significant associa-
tion with coagglomeration. A 1 standard deviation increase
corresponds to 19% of a standard deviation increase in gC.
For input sharing and knowledge spillovers, the correspond-
ing increases are 14% and 10%, respectively. This pattern
is consistent with Ellison et al. (2010), who also document
weaker agglomerative effects from knowledge spillovers.
Interestingly, controlling for the dissimilarity proxies does
not change in any meaningful way the three Marshallian
coefficients, suggesting that access to natural resources and
nonmanufacturing industries does not bias the results in
simple models without the additional controls.

Columns 3 and 4 present coefficients from the multivari-
ate regressions. We still find labor pooling to have the
strongest relationship with coagglomeration with an esti-
mated effect of approximately 0.16 of a standard deviation.
On the other hand, the coefficients on input sharing and
knowledge spillovers decline to 0.082 and 0.024–0.031,
respectively. All in all, our findings are comparable to Elli-
son et al. (2010), with all three of Marshall’s forces show-
ing a positive relationship with coagglomeration.

We carry out a number of robustness checks. Results are
reported in table W2 in the online appendix. First, we study
whether upstream linkages are more important than down-
stream connections. We find that the effect of input sharing
is twice as large as the effect of output sharing, but this dif-
ference is not significant and does not affect the other coef-
ficients. Second, we investigate whether focusing on a spe-
cific year in our sample changes the picture. To do so, we
run regressions for 1997, 2002, and 2008 separately. We
find a slight attenuation in the effects of LP, IO, and KS as
we move toward more recent years, but the differences are
not substantial. Third, we investigate whether using the
proxy for knowledge spillovers based on the SOU probabil-
istic mapping affects the findings. The conclusions reached
so far still hold: all three Marshallian forces matter, though
the effect of labor pooling seems somewhat weaker. We
also find that the link with knowledge spillovers is stronger
with this proxy, while the effect of input sharing is weaker.
Since the SOU mapping is partly based on the technology
(and the related patents) contained in goods bought and sold
as intermediates across industrial sectors, it incorporates
some of the linkages stemming from input sharing and
attenuates the effect of IO. Given this issue, our preferred

proxy uses the IOM mapping that we use throughout the
rest of the paper.10

Finally, we check that our results are not affected if we
change our measure of coagglomeration to be based on (a)
number of plants as opposed to total employment, (b) local
units belonging to single-plant enterprises only, (c) both
urban and rural areas. We also experiment with excluding
publishing (SIC221) and printing and related activities
(SIC222) since these sectors are classified among services
in the U.S. industrial classification. None of these robust-
ness checks affect our findings.

B. Addressing Endogeneity Concerns

The literature on the microfoundations of agglomeration
economies has put forward two sources of possible bias in
OLS estimation: reverse causation and sorting. In this section,
we discuss these issues and provide a set of robustness checks
and Instrumental Variables (IV) estimates to address them.

The reverse causation argument is laid out in Ellison
et al. (2010). Firms in industries with strong Marshallian
links could choose to locate together in order to benefit
from those links. Alternatively, firms that locate together
for other reasons could later forge Marshallian links. In
contrast to Ellison et al. (2010), we see the reverse phenom-
enon of coagglomeration leading to productive links as
being a type of agglomeration economy. For instance, if
two firms realize after choosing locations that they can hire
from the same labor market, then they benefit from labor
pooling. Similarly, if two firms learn from each other ex
post, then the resulting technological improvement is an
instance of knowledge spillovers. These agglomeration
economies are in fact in the spirit of Jacobs (1969), who
gives numerous examples of accidental agglomeration

TABLE 2.—THE RELATIONSHIP BETWEEN COAGGLOMERATION gC
AND MARSHALLIAN FORCES

(1) (2) (3) (4)
Specification Details: OLS—Univariate OLS—Univariate OLS—Multivariate OLS—Multivariate

Labor pooling (LP) 0.191 0.198 0.156 0.165
(0.018)*** (0.018)*** (0.019)*** (0.020)***

Input-output sharing (IO) 0.138 0.137 0.083 0.082
(0.026)*** (0.027)*** (0.025)*** (0.025)***

Knowledge spillovers—IOM (KS) 0.106 0.099 0.031 0.024
(0.015)*** (0.014)*** (0.013)** (0.013)*

Resource use diss. controls No Yes No Yes

See the note to table 1 and the online appendix for details on definitions of variables. Variables are standardized to have zero mean and unit standard deviation. Robust standard errors clustered on industry pairs
are reported in parentheses. All regressions consider the period 1997 to 2008. Significant at ***1%, **5%, and *10%.

10 One related concern is that input-output linkages partly capture
knowledge spillovers because our KS proxy measures the latter impre-
cisely. To investigate this issue, we run specifications with two-way and
three-way interactions of the Marshallian forces. The only significant
interaction is the one between IO and KS, with a negative and significant
coefficient of �0.009. The effects of IO and LP remain very similar,
while the effect of KS rises to around 0.100 (significant). This suggests
that the input-sharing and knowledge proxies do not capture similar
effects. This pattern is consistent with the sectoral heterogeneity pre-
sented later in the paper, where we show many instances in which pairs
that significantly respond to knowledge spillovers are less affected by
input-output links.
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economies. Even so, we describe below a strategy to
address this issue and arrive at estimates that capture the
effect of Marshallian links on agglomeration rather than the
reverse.

As for sorting, the main concern is that agglomeration,
which increases productivity in possibly unobservable
ways, might be correlated with coagglomeration. To clarify
matters, consider two industries, apparel and printing/pub-
lishing, which are agglomerated for historical reasons in
London. Assume that both industries are highly productive
because of some advantages connected to this location.
Further assume that more productive industries are able to
use a wider range of workers because they are better at
spotting the ‘‘right types’’ in a large agglomerated market.
Conversely, think of two other industries, such as wood
laminate and manufacturing of furniture, that operate in a
small city, are low productivity, and are not efficient at
sharing workers. Estimating the effect of labor pooling on
coagglomeration by comparing these pairs would bias the
results by conflating the true effect of LP with a productive
advantage arising because of urbanization economies
enjoyed by firms locating in more agglomerated places.
Although this argument is logically correct, the unobserva-
bles that would give rise to these patterns would need to
have a particular structure and imply that agglomeration is
correlated to both coagglomeration and the strength of the
linkages between sectors measured by our proxies. One of
the advantages of the method that Ellison et al. (2010)
developed is that by studying the relation between coloca-
tion and industry-pair links, the approach deals with a num-
ber of unobservables that are not easily related to pair-
specific linkages. Therefore, we believe that the arguments
brought forward in the literature do not undermine our
findings.

A number of robustness checks, reported in online ap-
pendix table W3 and discussed in the online appendix,
provide further support for this conclusion. These include
approaches that address reverse causation, a possible corre-
lation between agglomeration and coagglomeration, and the

possibility that industrial organization affects coagglomera-
tion. None of these checks substantially changes our
findings.

To conclude this section, we discuss a number of IV
regressions where we instrument the three Marshallian
forces using proxies constructed using U.S. data. This
approach follows Ellison et al. (2010). We instrument LP
using a measure of the correlation between sector pairs in
their use of different types of workers as categorized by
the National Industrial-Occupation Employment Matrix
(NIOEM) published by the U.S. Bureau of Labor Statistics.
We instrument IO with an identical measure obtained using
the 1987 Benchmark Input-Output Accounts published by
the Bureau of Economic Analysis (BEA). Finally, we
instrument the flows of patent citations among U.K. inven-
tors as recorded by the EPO using the flows of citations
among US inventors as tracked by the NBER patent data-
base. More information is provided in the online appendix.
The validity of this approach relies on thoroughly control-
ling for colocation that is driven by natural advantages and
shared use of nonmanufacturing resources. Hence, in all
our IV specifications we include the proxies for sector
dissimilarities.

Results are presented in table 3. Following Ellison et al.
(2010), we exclude pairs where the two three-digit indus-
tries fall in the same two-digit group and a number of sec-
tors that were aggregated in the data construction process.
Columns 1 and 3 show that OLS results do not change as a
result of these exclusions. Column 2 presents IV regressions
where we include and instrument one Marshallian force at
the time. The IV coefficients are very close to their OLS
counterparts in column 1. Column 4 presents multivariate
IV regressions where we enter and instrument all three Mar-
shallian forces simultaneously. We find positive and signifi-
cant effects for LP and IO. The size of the associations is
similar to the OLS counterparts (see column 3). However,
KS loses its significance and turns slightly negative. We
believe this is due to collinearity between measures that
makes instrumented knowledge spillovers hard to disentan-

TABLE 3.—INSTRUMENTAL VARIABLE REGRESSIONS

(1) (2) (3) (4) (5) (6) (7)

OLS—
Univariate

IV—
Univariate

OLS—
Multivariate

IV—
Multivariate

IV—
Multivariate:

LP and IO

IV—
Multivariate:
IO and KS

IV—
Multivariate:
LP and KS

Labor pooling (LP) 0.161 0.113 0.133 0.116 0.100 0.116
(0.017)*** (0.020)*** (0.018)*** (0.032)*** (0.024)*** – (0.030)***

Input-output sharing (IO) 0.105 0.127 0.061 0.083 0.082 0.121 –
(0.017)*** (0.026)*** (0.016)*** (0.024)*** (0.024)*** (0.028)***

Knowledge spillovers—IOM (KS) 0.078 0.088 0.033 �0.021 – 0.031 0.017
(0.013)*** (0.016)*** (0.013)** (0.023) (0.019)* (0.022)

First-stage statistics
t-statistic on LP – 19.93 – 16.91 18.78 – 17.04
t-statistic on IO – 6.39 – 6.22 6.32 5.95 –
t-statistic on KS – 6.83 – 5.94 – 6.45 6.56
Kleinbergen-Paap F-statistic – – – 18.17 33.10 23.26 23.94

Number of observations 43,644 (3,637 industry pairs). Instrumental variable regressions use U.S. instruments. See the online appendix for more details. Significant at ***1%, **5%, and *10%.
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gle from labor pooling and input sharing. A similar argu-
ment is put forward by Ellison et al. (2010), who report in
their appendix weak results when instrumenting KS. To
partly address this issue, in columns 5 to 7, we enter the
proxies for Marshallian forces two at a time. In column 5,
we include LP and IO and confirm that both have a positive
and significant association with gC. In column 6, we con-
sider IO and KS. We find that both measures are positively
and significantly associated with coagglomeration and that
the KS estimate is very similar to the one documented using
OLS (see column 3). Finally, in column 7, we instrument
LP and KS and find that both are positively associated with
coagglomeration. Although only LP is significant at con-
ventional levels, the coefficient on KS points in the right
direction and is reasonably sizable—at about half of its
OLS counterpart. All in all, the evidence in table 3 confirms
our previous findings and supports our claim that endogene-
ity is unlikely to bias OLS results significantly.

IV. Heterogeneous Agglomeration:

Jacobs Meets Marshall

This section begins the presentation of results that allow
for heterogeneity across industries. Specifically, it takes a
new approach toward examining Jacobs’s (1969) analysis
of how new work is created by exploring complementarities
between Jacobs and Marshall. The approach has at its core
a simple idea: the coagglomeration of industries that only
rarely colocate is different from the coagglomeration of

industries that are often found together. It is the former that
captures the sorts of unplanned, unpredictable, or unusual
interactions that Jacobs has in mind. To test this idea, we
estimate the Marshallian models discussed in the previous
section without constraining the Marshallian forces to have
the same effect for all industry pairs. More precisely, we
estimate equation (2) in a way that allows the effects to vary
between the most and least coagglomerated pairs. This esti-
mation is carried out using quantile regressions that simul-
taneously include all three Marshallian forces, as well as
controls for natural advantages. Figure 1 presents the results
for labor pooling, input sharing, and knowledge spillovers.
The confidence intervals come from bootstrapped standard
errors clustered on industry pairs.

It is immediately clear that the pattern of aggregate
results in table 2 conceals considerable variation across
industry pairs. Figure 1.A presents results for labor pooling.
There is clear heterogeneity across pairs according to their
coagglomeration. While labor pooling has a positive and
statistically significant contribution to industry-pair coag-
glomeration across the board, the effect is much larger for
the less coagglomerated pairs. Labor pooling has an asso-
ciation of around 0.22 and 0.16 (both significant) for indus-
try pairs in the two bottom deciles, declining to around 0.06
to 0.08 (significant) in the top half of the coagglomeration
distribution. Figure 1B shows a pattern for input sharing
that is exactly opposite. For this force, the association is lar-
ger for the most coagglomerated pairs. The input-sharing
coefficient increases from approximately 0.03 (insignifi-

FIGURE 1.—THE EFFECT OF MARSHALLIAN FORCES AT DIFFERENCE QUANTILES OF gC

Panel A: Labour Pooling Panel B: Input-output Sharing

Panel C: Knowledge Spillovers
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The figures plot regression coefficients (solid lines) and 95% confidence intervals (dotted lines) from quantile regressions including all three Marshallian forces. Variables are standardized. Confidence intervals
from bootstrapped standard errors clustered on industry pairs.
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cant) for the bottom decile to 0.15 and 0.23 (both signifi-
cant) for the top two deciles. Figure 1C shows yet another
pattern, with the effect of knowledge spillovers positive and
significant up to the 60th percentile. The coefficient
becomes smaller over the range, declining from 0.03 in the
bottom decile to 0.02 at the median, and the estimation
becomes increasingly imprecise for the most coagglomer-
ated industries, for which the effect is no longer signifi-
cantly different from 0.

The pattern of heterogeneity has interesting implications
for Jacobs’s ideas. The input sharing results in figure 1B are
contrary to Jacobs. They suggest that input sharing primar-
ily is associated with the colocation of pairs that coagglo-
merate extensively. There is little to be gained from links
between industries that are not very coagglomerated. In
other words, there is strong evidence that interactions that
are most typical and are likely to be planned have the lar-
gest association with coagglomeration. It is useful to con-
sider an example from Marshall. He writes, ‘‘Many cutlery
firms [in Sheffield] for instance put out grinding and other
parts of their work, at piece-work prices, to working men
who rent the steam power which they require, either from
the firm from whom they take their contract or from some-
one else’’ (Marshall, 1890, p. 172). Our data show that
Sheffield continues to be a center of cutlery production
today (table W4 in the online appendix). Moreover, cutlery
and manufacturing of basic iron and steel is one of the most
highly coagglomerated pairs. It is entirely understandable
that a cutlery maker would deliberately plan its location to
secure its metal input supply.11

The results on labor pooling and knowledge spillovers,
however, are much more in the spirit of Jacobs. Regarding
knowledge spillovers, the effects are not even significant
for highly coagglomerated pairs. As for labor pooling, the
effects diminish drastically as coagglomeration increases.
In other words, both of these sorts of interactions between
industries have a larger effect when the industries colocate
less frequently and interactions are more likely to be the
sort of unexpected connections on which Jacobs focuses.
There is an interesting parallel here to the Duranton and
Puga (2001) nursery city phenomenon: certain interactions
have greater effects with less frequent colocation; others
have greater effects with more frequent colocation.

Three issues are worth considering. First, working at the
TTWA level of aggregation could affect our findings, since
Marshallian forces have different effects at different geo-
graphical scales (Rosenthal & Strange, 2003, 2008). As
noted previously, TTWAs are defined by commuter flows,
which depend on the scale of labor markets. This could
make it more likely to find a relationship between coagglo-
meration and labor pooling than one between coagglomera-
tion and input sharing, since input-output linkages could

take place over greater distances. To address this issue, we
replicate the analysis using eighteen macroregions (as
defined in the BSD data). Our results are presented in figure
W1 in the online appendix and fully confirm our findings.
We also check whether our results change if we maintain
the original TTWA geography but focus only on the 28 big-
gest cities and conurbations out of 84—the top 30%. We
find this is not the case.

Second, the labor pooling proxy is based on the correla-
tion between the two industries’ occupation mixes, while
the input-sharing variable is constructed using maximum
flows in the sector pair. This could imply that our approach
is skewed toward picking up significant input-output lin-
kages only for highly coagglomerated industries, while the
labor pooling measure could be more significant in other
parts of the distribution. We believe this issue does not
affect our conclusion since we find that knowledge spil-
lovers behave very much like labor pooling, despite being
measured in the same way as input sharing (i.e., as the max-
imum flow of patent citations across pairs). This suggests
that the pattern we observe is not mechanically driven by
the way our proxies are constructed.

Third, we do not observe whether coagglomeration has
arisen from unplanned or unpredictable accidents, as in
Jacobs. Instead, we only observe industry pair coagglo-
meration. Although this is likely to be related to whether
coagglomeration is planned or unplanned, other forces also
contribute to whether an industry pair coagglomerates. For
instance, pollution controls could make it more difficult for
heavy industries to colocate. Agglomeration and dispersion
forces such as these introduce noise into the process deter-
mining coagglomeration and create measurement error in
the mapping between the planned or unplanned nature of
agglomeration and colocation frequency. Presumably this
measurement issue would make it more difficult to obtain
the striking pattern in the quantile models—in particular,
the remarkable difference between labor pooling and input
sharing. This suggests that our findings might understate
the heterogeneity of agglomeration forces along the
planned–unplanned dimension.

V. Heterogeneous Agglomeration:

Adaptation and Organization

A. New Industries and Entry

This section presents our empirical results on the adapta-
tional and organizational aspects of agglomeration econo-
mies. We extend the traditional Marshallian approach by
examining how the patterns of coagglomeration depend on
the interaction between Marshallian forces and the nature of
the industry in question. We therefore allow Marshall’s
microfoundations to be complementary to other explanations.

We begin with adaptation and nursery city ideas, which
are considered by estimating models based on two parti-
tions of industry pairs. The first focuses on industry age,

11 See table W4 for other highly coagglomerated industry pairs, such as
spinning of textiles and textile weaving, also discussed by Marshall in a
similar fashion.
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captured by the age of the oldest active plant. The second
focuses on the share of new firm entry in the industry. This
approach generates the partitions of pairs detailed in section
II. For age, the new industries group includes pairs where
both sectors are younger than the median age across indus-
tries. For entry, the dynamic industries group includes pairs
where both industries have an entrant share that is above
the median. In both cases, we include additional controls
for, respectively, age and entry share averaged across the
two sectors in the pair.12

Results are reported in table 4. For industry age, we find
the largest agglomeration effects for new industry pairs.
This is true for all three Marshallian forces. For labor pool-
ing, the effects are smaller for the mixed and old industry
pairs (at 0.153 and 0.081, respectively) than for new pairs
(at 0.310). However, all coefficients are highly significant,
and the extent of variation in these effects is more muted
than for the other two Marshallian forces. The knowledge
spillover results are very much in the nursery city/unstable
industry spirit discussed above. They show knowledge
effects that are five to ten times stronger for young pairs, at
0.236 (significant), than for mixed and old pairs, at 0.040
(significant) and 0.026 (insignificant), respectively. The

same is true for the results on input and sharing. The coeffi-
cients move from 0.270 (significant) for new industry pairs
to 0.049 (insignificant) for the mixed group, and finally to
0.041 (significant) for old pairs. While the pattern of input
sharing effects is not consistent with a nursery city model,
the heterogeneity in the coefficients for knowledge spil-
lovers clearly supports this theory.

The results have a relatively similar pattern for industry
dynamism. Labor pooling is always significant, with the
coefficients for the three groups fairly constant and ranging
between 0.181 and 0.144. We still find that the largest result
for knowledge spillovers occurs for the dynamic industries
at 0.181 (significant). This shrinks to 0.033 (significant) and
�0.020 (insignificant) for mixed and steady industry pairs.
Input-output linkages are closer to a nursery pattern in these
dynamic-industry models than in the previous age grouping.
Input sharing displays significant coefficients for the mixed
and the steady pairs, at 0.103 and 0.052, respectively, and
has no significant effect for dynamic industries.13

B. High Technology and High Education

We now turn to the related issue of how the relationship
between Marshallian forces and coagglomeration depends
on the technological status of the industry in question. As
noted above, we characterize an industry’s technological
status (high technology or not) according to the OECD
(1997) classification. This generates three types of industry
pairs: both high technology, both low technology, or mixed.
We estimate equation (2) for each type.

Results are reported in table 5. We find that labor pooling
is significant in all three groups, but its association with
coagglomeration is much larger for the low-technology

TABLE 4.—HETEROGENEOUS AGGLOMERATION: ADAPTATION

(1) (2) (3)
New Mixed Old

Labor pooling (LP) 0.310 0.153 0.081
(0.058)*** (0.026)*** (0.021)***

Input-output sharing (IO) 0.270 0.049 0.041
(0.083)*** (0.030) (0.018)**

Knowledge spillovers—IOM (KS) 0.236 0.040 0.026
(0.121)** (0.017)** (0.019)

Number of observations/pairs 12,972/1,081 26,508/2,209 12,972/1,081

Dynamic Mixed Steady

Labor pooling (LP) 0.181 0.144 0.180
(0.059)*** (0.026)*** (0.028)***

Input-output sharing (IO) 0.113 0.103 0.052
(0.095) (0.031)*** (0.021)**

Knowledge spillovers—IOM (KS) 0.181 0.033 �0.020
(0.074)** (0.018)* (0.015)

Nuber of observations/pairs 12,972/1,081 26,508/2,209 12,972/1,081

See the note to table 1 and the online appendix for details on definitions of variables. Specification as in column 4 of table 2 plus one of the following variables averaged across sector pairs: first year of opening
(top panel) or entry share (bottom panel). Pairs refer to unrepeated sector combinations. Significant at ***1%, **5%, and *10%.

12 Our models are at the industry-pair level. Because of this, binning
provides a more straightforward approach to study complementarities
between Marshallian and non-Marshallian theories than interacting Mar-
shallian forces with industry characteristics. Consider, for example, firm
size. We are interested in how Marshallian links between industry pairs
relate to firm size, as in Chinitz. Following the binning approach, we con-
struct three groups of industry pairs. In the first, both industries are char-
acterized by small firms; in the second, the pair is characterized by large
firms. Chinitz makes sharp predictions about what we should expect for
these groups. The third group has mixed pairs, with one characterized by
small firms and the other by large firms. In this case, Chinitz does not
make any predictions. While it would be possible to construct an average
firm size variable and estimate an interactive specification, the presence
of mixed pairs would compromise the interpretation of the results from
such an approach. We discuss this issue further in the online appendix
where we also present additional evidence (table W5).

13 The results in table 4 and elsewhere continue to hold if we focus on
single-plant enterprises to identify the cutoffs used to define groups so
that new entrants are stand-alone ventures.
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industry group (at 0.332) than for the high-technology
group (at 0.046). Input sharing also has the largest coeffi-
cient in the low-technology group, at 0.091. While input
sharing has positive coefficients for all three groups, the
high-technology coefficient is small and insignificant.
Knowledge spillovers display the opposite pattern. The lar-
gest coefficient is found for high-technology (significant at
0.053), while the effect is smaller and insignificant for low-
technology (at 0.039).

These results clearly show that agglomeration economies
are not simply a high-technology phenomenon. Labor pool-
ing has a stronger effect in the low-technology group, while
input sharing is stronger in the mixed- and low-technology
groups of industry pairs. Knowledge spillovers, reassur-
ingly, are different, with the largest effect for high-technol-
ogy industries. This suggests that some of the weaker results
for knowledge spillovers reported above, and also presented
in Ellison et al. (2010), arise because the sample includes
low-technology industries (as well as old and steady indus-
tries) where knowledge spillovers are not important.

Table 5 also presents results of a similar exercise where
industries are partitioned according to workers’ education
levels. In these specifications, we further control for the
average share of college graduates across the pair in order
to control for direct effects of this variable within groups.
The pattern of results is similar to the high-technology ver-
sus low-technology heterogeneity discussed above. Knowl-
edge spillovers have significant effects in high-education
(at 0.048) and mixed-education (at 0.050) industry pairs,
but not in low-education pairs (insignificant at 0.030). Con-
versely, input sharing and labor pooling have the largest
and most significant effects in low-education pairs, at 0.123
and 0.391, respectively. These shrink to 0.007 (insignifi-
cant) and 0.046 (borderline significant) for the high-educa-
tion pairs.

Taken as a group, these findings are broadly consistent
with learning playing an important role in the agglomera-

tion process. Jacobs (1969) calls this phenomenon ‘‘the
creation of new work.’’ Vernon (1960) instead discusses the
process by which new products reach stability. The evi-
dence is also consistent with Duranton and Puga’s (2001)
nursery city phenomenon, where new products are created
in diverse cities and move to specialized cities upon reach-
ing maturity. They provide evidence of firm migration fol-
lowing this pattern in France to support their conclusions.
To the best of our knowledge, our paper is the first to exam-
ine coagglomeration in this light. The observation that only
high-technology/high-education pairs are found to have
their coagglomeration associated with stronger knowledge
links between the industries is consistent with the nursery
city idea. So is the finding that low-technology/low-educa-
tion pairs have coagglomeration associated with the some-
what more routine labor and input links.

C. Industrial Organization

The final set of results deals with industry structure. We
consider both a partition based on the size of entrants and
another one based on the size of incumbents. Both splits
correspond to Chinitz (1961), who argues that the presence
of small firms allows entry by other small firms.14

Results are presented in table 6. As above, the table
reports results for the three Marshallian forces estimated
over three groups of industry pairs. The models include
controls for, respectively, entrant size and incumbent size
averaged across the pair, alongside the usual controls for
natural advantages. The results are consistent with a small-
firm effect, with the largest coefficient found on input shar-
ing for the small entrants’ and small incumbents’ models
(significant at 0.193 and 0.159, respectively). It is worth

TABLE 5.—HETEROGENEOUS AGGLOMERATION: TECHNOLOGY AND EDUCATION

(1) (2) (3)

High Technology Mixed Technology Low Technology

Labor pooling (LP) 0.046 0.110 0.332
(0.017)*** (0.019)*** (0.049)***

Input-output sharing (IO) 0.020 0.064 0.091
(0.012) (0.020)*** (0.045)**

Knowledge spillovers—IOM (KS) 0.053 0.031 0.039
(0.024)** (0.016)* (0.041)

Number of observations/pairs 7,140/595 24,780/2,065 20,532/1,711

High Education Mixed Education Low Education

Labor pooling (LP) 0.046 0.167 0.391
(0.023)* (0.031)*** (0.061)***

Input-output sharing (IO) 0.007 0.066 0.123
(0.013) (0.029)** (0.057)**

Knowledge spillovers—IOM (KS) 0.048 0.050 0.030
(0.020)** (0.021)** (0.040)

Number of observations/pairs 12,972/1,081 26,508/2,209 12,972/1,081

See the notes to table 5 for details. Regressions in the bottom panel further control for the share of college graduates averaged across sector pairs. Significant at ***1%, **5%, and *10%.

14 Chinitz focuses on the industrial organization of cities, not sectors.
However, we find that 96% of the variation in entrant size and 99% of the
variation in incumbent size is within TTWAs across sectors. Our focus on
sectoral heterogeneity thus captures the most relevant variation.
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noting that input sharing is significant for all groups in both
models. However, the effects are substantially smaller for
industries characterized by mixed and large entrants and
incumbents, ranging between 0.068 and 0.082. The labor
pooling coefficients are all significant and comparable in
magnitude in the three entrant- and the three incumbent-
size models. Estimates are above 0.10 for all but one group-
ing and mainly in the 0.15 to 0.20 range. Finally, as in all
the regressions so far, knowledge is not a consistent predic-
tor of coagglomeration in the universe of models. In this
case, we find that knowledge flows are significant and siz-
able only in the small-entrant sample (at 0.051) and in the
mixed-entrant group (at 0.028). They are instead insignifi-
cant and small, but always positive and between 0.020 and
0.040, for all three groups of incumbents.

Chinitz focused largely on input sharing among small
firms as a driver of agglomeration. Our results are consistent
with his approach. Conversely, Vernon and Jacobs offer
anecdotes of knowledge spillovers generated by large and
small firms alike. Our results on coagglomeration seem to
suggest, however, that the effect of knowledge flows is more
systematic for small entrants. Regarding labor pooling,
neither Vernon nor Jacobs directly engages with the implica-
tions of firm size for this agglomerative force. While the
coefficients on labor pooling are significant for all sizes of
entrants and incumbents, we find the smallest coefficients
for small entrants and small incumbents. One factor that
could potentially come into play is labor poaching, where
firms hire away each other’s skilled workers (Combes &
Duranton, 2006). If small firms are threatened to a greater
degree by the possibility of poaching, they might be less
likely to colocate with firms hiring from the same labor pool.

D. Robustness

In this section we discuss a number of issues that could
affect the findings set out in tables 4 to 6 and report on a

series of robustness checks to address them. First, we con-
sider again whether the spatial scale used to construct gC

affects our results. Following the approach taken in section
IV, we measure coagglomeration using regions instead of
TTWAs and rerun our analysis. As shown in table W6 in
the online appendix, the patterns discussed above continue
to hold. We also find that our results do not change if we
calculate gC using both urban and rural TTWAs (results not
tabulated). Second, in the regressions presented so far, we
controlled for the attribute used to partition the sample
averaged across the pair—for example, the average entry
share or the average size of incumbents. In some extensions
(not tabulated for space reasons), we check whether control-
ling for the dissimilarity of the sector pair’s characteristics
affects our results. We measure dissimilarity as (half of) the
absolute value of the difference in the shares of the relevant
attribute across the pair. We find that controlling for dissim-
ilarity produces very similar results to controlling for the
average. A third issue is that the pattern documented above
might be related to the extent of localization of the industry
pairs in the different groups. To consider this possibility,
we perform all the regressions as in tables 4 to 6, adding a
control for the average localization index (i.e., g from Elli-
son & Glaeser, 1997) across the pair. This does not affect
the results in any significant way.15 Fourth, we assess the
robustness of our findings relative to the details of the
industrial classification we use. In particular, we consider
whether our results are driven by the presence of two-digit
sectors that are subdivided into many three-digit groupings.
To do so, we exclude all two-digit industries partitioned in
more than five three-digit subgroups. Although this leaves
us with a quarter of the original sample, this exclusion does
not affect our results. Alternatively, we drop all pairs where

TABLE 6.—HETEROGENEOUS AGGLOMERATION: ORGANIZATION

(1) (2) (3)
Small Entrants Mixed Entrants Large Entrants

Labor pooling 0.113 0.181 0.223
(0.027)*** (0.027)*** (0.056)***

Input-output sharing 0.193 0.068 0.082
(0.112)* (0.034)** (0.039)**

Knowledge spillovers—IOM 0.051 0.028 �0.022
(0.030)* (0.016)* (0.030)

Number of observations/pairs 12,972/1,081 26,508/2,209 12,972/1,081

Small Incumbents Mixed Incumbents Large Incumbents

Labor pooling 0.065 0.223 0.149
(0.026)** (0.031)*** (0.047)***

Input-output sharing 0.159 0.071 0.068
(0.076)** (0.035)** (0.039)*

Knowledge spillovers—IOM 0.034 0.020 0.040
(0.024) (0.018) (0.031)

Number of observations/pairs 12,972/1,081 26,508/2,209 12,972/1,081

See the notes to table 5 for details. Regressions further control for the following variables averaged across sector pairs: size of entrants (top panel) and size of incumbents (bottom panel). Significant at ***1%,
**5%, and *10%.

15 The correlation between coagglomeration and localization of indus-
tries is small and negative at �0.028, so localization features of industries
cannot explain the patterns of figure 1.
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the two sectors belong to the same two-digit industry (as
we did in our IV estimation). This also does not affect our
findings.

We also considered potential endogeneity issues. Our
approach here is similar to our approach in section IIIB. To
check whether any correlation between coagglomeration
and agglomeration biases our findings, we estimate the
models reported in tables 4 to 6 excluding London. We also
estimate specifications that control for density measured as
either employment or population per land area. Further-
more, we estimate univariate and multivariate IV models
that deal with both reverse causation and omitted variables.
Our key results continue to hold.

VI. Conclusion

This paper has considered heterogeneity in the micro-
foundations of agglomeration economies using U.K. coag-
glomeration patterns. The analysis shows that there is nota-
ble heterogeneity between industries. Different industries
agglomerate for different reasons. This heterogeneity is
consistent with Jacobs’s (1969) ideas about unplanned
interactions being an important aspect of the agglomeration
process for labor pooling and knowledge spillovers but not
for input sharing. The pattern also provides support for the
idea of nursery cities (Duranton & Puga, 2001) in particu-
lar, and adaptive agglomeration economies more generally
(Vernon, 1960). Finally, the results are consistent with
Chinitz’s (1961) idea that agglomeration effects are stron-
ger in industries dominated by small firms.

Taken together, this suggests that Marshall’s treatment of
the microfoundations should be treated as complementary
to the analysis of Jacobs and others rather than as an alter-
native and competing explanation. Recognizing and inter-
preting the pattern of heterogeneity through a framework
that emphasizes the synergies between Marshallian and
non-Marshallian approaches has important implications
for our understanding of the nature of agglomeration
economies.

A second reason that it is essential to recognize this het-
erogeneity is that there are numerous instances in the
agglomeration literature where the circumstances of indivi-
dual industries and clusters are presented as having broad
relevance across industries. Without doubt, the computer
industry is the most salient industry in the agglomeration
literature. Saxenian (1994) offers an important and often
quoted analysis of the Silicon Valley. The car industry is
also highly salient in the agglomeration literature. In the
United States, this industry’s declining cluster centered
around Detroit is often contrasted to the prosperous compu-
ter cluster in Great San Jose. Glaeser (2011) provides an
informative discussion along these lines.

Our evidence shows clearly that different industries
respond differently to agglomerative forces. Therefore,
while the detailed analysis of individual cases is often infor-
mative, as attested by the influence of this kind of extrapo-

lation, it is important not to simply accept generalizations
without further investigation. This point is all too often lost
in discussions with policymakers who fail to recognize the
uncertainties associated with heterogeneity in agglomera-
tion economies. Given this complexity, cluster policies tar-
geting specific industries are as likely to pick losers as win-
ners. Conversely, policies that are likely to promote growth
in general—such as better transport infrastructures, higher
levels of education, better amenities, and housing to attract
workers and entrepreneurs—are more likely to help the
‘‘right’’ clusters to emerge as a result of the underlying local
strengths and agglomeration forces, even when these are
heterogeneous and therefore difficult to identify ex ante.
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