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Multivariate Lévy models by linear combination: estimation

Angela Loregian1 Laura Ballotta2 Gianluca Fusai3
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Abstract

In this paper we propose a simple and effective two-step procedure to estimate the multivariate

Lévy model introduced by Ballotta and Bonfiglioli (2014). We assess our estimation approach

via simulations, comparing the results with those obtained through a standard but more com-

putationally intensive one-step maximum likelihood estimation. The proposed method is then

applied to the computation of the intra-horizon Value at Risk for a portfolio of assets following

the model under consideration.

Keywords: Multivariate Lévy models, estimation, maximum likelihood, EM algorithm,

simulation, intra-horizon Value at Risk.

JEL Classification: C13, C15, C61, C65, G11

1 Introduction

The aim of this paper is to propose an efficient estimation procedure for multivariate Lévy processes

obtained by linear transformation, as the ones introduced in Ballotta and Bonfiglioli (2014), in view

of applications in portfolio risk management, like the computation of relevant risk measures such

as Value at Risk and intra-horizon Value at Risk.

The interest in multidimensional asset models based on Lévy processes is motivated by the im-

portance of capturing market shocks using more refined distribution assumptions compared to the

standard Gaussian framework, incorporating skewness and kurtosis. From a risk management per-

spective, in fact, the focus is specifically on the tails of the stock return distribution, and commonly

used risk measure such as Value at Risk and intra-horizon Value at Risk aim at quantifying the

economic impact of rare events. Further, for regulatory purposes these risk measures are usually

obtained for short time horizons (i.e. 10 days), over which the effects of stochastic volatility are

in general negligible (mainly due to the diffusive nature of the processes used for the modelling of

volatility trends). In this respect, Lévy processes offer a natural and robust approach to model

distribution tails compared to the Brownian motion, especially over the short period, as they allow
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e l’Impresa, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy; Email: Gianluca.Fusai.1@city.ac.uk

1



 Electronic copy available at: http://ssrn.com/abstract=2597049 

for extreme outcomes to happen more frequently. However, consistent and efficient estimation pro-

cedures, which are essential part of the calculation of relevant risk measures, can be problematic for

Lévy processes as extensively documented in Cont and Tankov (2004), for example, and references

therein; these issues are exacerbated by increasing the dimension of the parameter space, which

would be necessary in order to accommodate for the multivariate modelling required at portfolio

level.

Linear transformations have been used extensively in the literature to build multivariate Lévy

processes as these processes are invariant under such a transformation, and therefore their charac-

teristic function and characteristic triplet can be obtained in a straightforward manner (see Cont

and Tankov, 2004 for example). Thus, the standard approach is to model each risk driver as a linear

combination of two independent processes representing respectively the systematic factor and the

idiosyncratic shock, so that dependence between assets in a given portfolio is originated by the

common component of the overall risk. Contributions based on linear transformations started with

Vaš́ıček (1987) for the case of Brownian motions; for the extension to Lévy processes we mention,

amongst others, Ballotta and Bonfiglioli (2014) and Luciano and Semeraro (2010). In more details,

Ballotta and Bonfiglioli (2014) apply the factor approach to the asset log-returns process, which

allows to choose any Lévy process as factor processes, and encompasses any class of Lévy processes,

from subordinated Brownian motions to jump-diffusion processes. Linear transformations have also

been used in the literature to build multivariate subordinators and therefore alternative multivari-

ate versions of subordinated Brownian motions; this is the case of Luciano and Semeraro (2010)

who offer a general construction for subordinated Brownian motions, such as the Normal Inverse

Gaussian (NIG) and the Carr-Geman-Madan-Yor (CGMY) processes. Extensions to a factor-based

subordinated Brownian motion are proposed by Luciano et al. (2013) in order to incorporate addi-

tional dependence properties. For a complete literature review, we refer to Ballotta and Bonfiglioli

(2014), Luciano et al. (2013) and references therein.

A common trait to all these contributions is the presence of (either explicit or implicit) con-

volution conditions, which allow to separate the dependence structure from the distribution of

the margin processes. However, as argued by several authors such as Eberlein et al. (2008), this

feature, although intuitive, leads to a biased view of the dependence in place as it reduces the flexi-

bility of the factor model, and fails to recognize the different tail-behaviour shown by any portfolio

component. In this respect, we notice that in the model of Ballotta and Bonfiglioli (2014) these

convolution conditions are not necessary for the model to retain its mathematical tractability, its

relative flexibility in accommodating a wide range of dependence structures, positive and negative

linear correlation and a parsimonious number of parameters.

This article describes an efficient estimation procedure for the multivariate (exponential) Lévy

processes model of Ballotta and Bonfiglioli (2014) with risk management applications type in view,

specifically the computation of Value at Risk and intra-horizon Value at Risk for portfolios of

dependent assets. Thus, we focus on the model estimation under the physical probability measure,

which is in fact non-trivial as the common and the idiosyncratic factors driving the margins are not
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directly observable in the market. In order to simplify this problem, although other approaches are

possible, here we follow standard market practice and assume that the common factor representing

systematic risk can be well-proxied by the returns on a broad-based index.

Based on these assumptions, the first contribution of this paper is a simple and effective two-

step estimation procedure for the multivariate Lévy processes model of Ballotta and Bonfiglioli

(2014). Step one consists in the univariate estimation of the common process parameters on the

time series of index returns; the estimation of the loadings, i.e. the common factor’s weight in

each margin, and the idiosyncratic components parameters is performed in Step two. To assess

this estimation procedure, we also implement a standard one-step maximum likelihood approach

in which all parameters of the multivariate Lévy process are estimated in a single step. The second

contribution of this paper is the computation of the intra-horizon Value at Risk (VaR) for a portfolio

of assets following the considered model, in this way extending the work of Bakshi and Panayotov

(2010) to a multivariate setting which allows to take into account also the impact of dependence

between the components of the portfolio. Traditional risk measures, as Value at Risk or Expected

Shortfall, focus on possible losses at the end of a predetermined time horizon; nevertheless, investors

are also interested in the exposure to loss throughout the horizon, as they often have thresholds

that cannot be breached for the investment to survive. The emphasis on intra-horizon risk was

first placed by Stulz (1996); Kritzman and Rich (2002) and Boudoukh et al. (2004) deal with

intra-horizon risk assuming Gaussian distributed returns and considering a multi-year investment

horizon, while Bakshi and Panayotov (2010) focus on the 10-day horizon relevant for regulatory

purposes and consider univariate Lévy pure jump models for asset or portfolio returns. We note

that intra-horizon risk measures are defined on the distribution of the minimum return; whilst under

the arithmetic Brownian motion assumption this distribution is analytically known, in general it

must be recovered numerically. To this purpose, we adopt the Fourier Space Time-stepping (FST)

algorithm introduced by Jackson et al. (2008).

The outline of the paper is as follows. In Section 2, we review the most relevant features

of the multivariate Lévy model under consideration. In Section 3 we discuss the estimation of

the model, introducing a two-step estimation procedure. In Section 4 we assess the two-step

estimation procedure via simulation for two particular specifications of the model (the NIG and

the Merton jump diffusion process), comparing the results with those obtained via a one-step

maximum likelihood estimation. Section 5 illustrates how to compute the intra-horizon Value at

Risk for a portfolio of assets following the proposed model. Section 6 concludes.

2 The model

A Lévy process on a filtered probability space is a stochastic process characterized by independent

and stationary increments whose distribution is infinitely divisible. Lévy processes have attracted

attention in the financial literature due to the fact that they accommodate distributions with non-

zero higher moments (skewness and kurtosis), therefore allowing a more realistic representation of

3



the stylized features of market quantities such as assets returns. Further, they represent a class

of processes with known characteristic function via the celebrated Lévy-Khintchine representation;

this feature in particular allows the development of efficient numerical schemes for the approxima-

tion of potentially unknown distribution functions and derivatives prices based on Fourier inversion

techniques.

Let us denote by Pt the price of a financial asset. In the class of exponential-Lévy models, the

price Pt is represented as

Pt = P0exp(Lt),

where L is a Lévy process, with characteristic function E(exp(iuLt)) = exp(tϕ(u)), where ϕ denotes

the so-called characteristic exponent. Assuming that we observe the price process on an equally-

spaced time grid t = 1, 2, . . . , T , the log-returns, defined as

Xt = log

(

Pt

Pt−1

)

= Lt − Lt−1,

are i.i.d. infinitely divisible random variables distributed as L1.

A convenient representation of multivariate Lévy processes can be obtained via linear trans-

formation of a vector of independent Lévy processes, each representing the idiosyncratic risk, and

another independent Lévy process modeling the common risk component. The construction of

Ballotta and Bonfiglioli (2014) is based on this principle and is summarized in the following.

Proposition 1 Let Z, Y (j), j = 1, . . . , n be independent Lévy processes, with characteristic func-

tions φZ(u; t) and φY (j)(u; t), for j = 1, . . . , n, respectively. Then, for aj ∈ R, j = 1, . . . , n

Xt = (X
(1)
t , . . . , X

(n)
t )′ = (Y

(1)
t + a1Zt, . . . , Y

(n)
t + anZt)

′ (1)

is a Lévy process on R
n with characteristic function

φX(u; t) = φZ





n
∑

j=1

ajuj ; t





n
∏

j=1

φY (j)(uj ; t),u ∈ R
n.

Further, the joint probability density function of the multivariate Lévy process Xt is

fX(x
(1)
t , . . . , x

(n)
t ) =

∫ ∞

−∞
fY (1)(x

(1)
t − a1z) · . . . · fY (n)(x

(n)
t − anz)fZ(z)dz. (2)

We note that as the given multivariate Lévy model admits computable characteristic function, the

joint distribution is always available (at least numerically), even when the components’ distribu-

tions, fY (1) , · · · , fY (n) , fZ , are not known analytically.

It follows from Proposition 1 that for each X(j), j = 1 . . . , n, the process Z captures the

systematic part of the risk originated by sudden changes affecting the whole market, while the

process Y (j) represents the idiosyncratic shocks generated by company specific issues. Due to the
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presence of the common factor Z, the components of X are dependent and may jump together. In

particular, for each t ≥ 0, the components of X(t) are positive associated if the loading factors aj

for j = 1, ..., n are all positive or negative; otherwise the components of X(t) are negative quadrant

dependent. In any case, the dependence between components is correctly described by the pairwise

linear correlation coefficient

ρXj,l = Corr(X
(j)
t , X

(l)
t ) =

ajalVar(Z1)
√

Var(X
(j)
1 )

√

Var(X
(l)
1 )

, (3)

as, for fixed aj , al 6= 0, ρXj,l = 0 if and only if Z is degenerate and the components are independent,

whilst
∣

∣

∣
ρXj,l

∣

∣

∣
= 1 if and only if Y (j) and Y (l) are degenerate, i.e. there is no idiosyncratic factor in the

components X(j) and X(l). Further, sign(ρXj,l) = sign(ajal), therefore both positive and negative

correlations can be accommodated. Finally, we mention that the resulting multivariate model shows

non-zero indices of tail dependence, the sign being controlled by the loading parameters. For fuller

details on the characteristic triplet of the multivariate process and the dependence structure, we

refer to Ballotta and Bonfiglioli (2014) and Ballotta et al. (2015).

We note the following. In first place, this construction is relatively parsimonious in terms of

number of parameters involved as this grows linearly with the number of assets. Further, the

adopted modeling approach is quite flexible as it can be applied to any Lévy process; Proposition 1

allows to specify any univariate Lévy process for Y t and Zt. In this respect, we note that differently

from Ballotta and Bonfiglioli (2014), in this work we do not impose any convolution condition on

the components aimed at recovering a known distribution for the margin processes, hence allowing

for a more realistic portrayal of the asset log-return features and the dependence structure in place.

Finally, the model is particularly tractable as the full description of the multivariate vector Xt only

requires information on the univariate processes Y t and Zt.

For the purpose of the testing of the estimation procedure introduced in the next sections,

we select two alternative classes of Lévy processes commonly used for financial applications: a

subordinated Brownian motion, represented by the NIG process, and a jump diffusion process with

Gaussian severities as in Merton (1976), which we briefly review for completeness.

2.1 The Normal inverse Gaussian process (NIG).

The NIG model, introduced by Barndorff-Nielsen (1997), is a normal tempered stable process

obtained by subordinating a Brownian motion by an (unbiased) independent Inverse Gaussian

process. Its characteristic function reads

φX(u; t) = exp

(

iµt+
t

k
(1−

√

1− 2iuθk + u2σ2k)

)

, u ∈ R. (4)

It follows by differentiation of the (log of the) characteristic function that the first four cumulants
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of Xt are

c1 = (µ+ θ)t, c2 =
(

σ2 + θ2k
)

t,

c3 = 3θk
(

σ2 + θ2k
)

t, c4 = 3k
(

σ4 + 6σ2θ2k + 5θ4k2
)

t.

From the above, we observe that θ controls the sign of the skewness of Xt, σ affects the overall

variability and k controls the kurtosis of the distribution. The drift parameter µ affects the mean

of the distribution, which otherwise would be concordant with the skewness, allowing to model

return distributions with positive mean and negative skewness as well (and vice versa). Finally, the

tails for the distribution are characterized by a power-modified exponential decay, or semi-heavy

tail (see Cont and Tankov, 2004, for example).

As the density function is known in (semi-)closed form (as it is expressed in terms of the modified

Bessel function of the second kind, see Cont and Tankov, 2004 for example), the parameters of the

NIG model can be estimated directly using Maximum Likelihood (ML) estimation, initialized via

the method of moments based on the first four theoretical cumulants derived above.

2.2 The Merton jump-diffusion process (MJD).

A Lévy jump-diffusion process has the form

Xt = µt+ σWt +

Nt
∑

i=1

Ji, (5)

where W is a standard Brownian motion, N is a Poisson process with rate λ > 0 counting the jumps

of X, and {Ji}i∈N are i.i.d. random variables describing the jump sizes. All the random quantities

involved, W , N and Ji (for all i), are assumed to be mutually independent. In the Merton’s jump-

diffusion model (Merton, 1976) jump sizes are all normally distributed, i.e. Ji ∼ N(ν, τ2) for all i.

It follows that the characteristic function is

φXt
(u) = exp

(

iuµt− u2σ2

2
t+ λt

(

eiuν−
τ2u2

2 − 1

))

, u ∈ R. (6)

The first four cumulants of Xt are

c1 = (µ+ λν) t, c2 = (σ2 + λ(ν2 + τ2))t,

c3 = λν(3τ2 + ν2)t, c4 = λ(3τ4 + 6τ2ν2 + ν4)t.

We can observe how the parameters λ, ν and τ control the non-Gaussian part of the process; in

particular, ν controls the sign of skewness (the density function is symmetric when ν = 0), whilst

λ governs the jumps frequency and therefore the level of excess kurtosis. We note that Xt has

an infinite Gaussian mixture distribution with mixing coefficients given by a Poisson distribution

with parameter λ; hence, the probability density function can be expressed as a fast converging

series. Further the tails are heavier than in the pure Gaussian case (see Cont and Tankov, 2004,

for example).
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We note that the estimation of the MJD model is far from trivial as the ML method requires

a careful numerical optimization, as discussed in Honoré (1998). Consequently, in the numerical

study we implement the Expectation Maximization (EM) algorithm in the formulation proposed

by Duncan et al. (2009), which has simple closed form solutions for the M-step (see Appendix A

for fuller details).

3 Model estimation

For the purpose of the approach to the estimation of the given multivariate Lévy model, we dis-

tinguish between whether the common factor is observable or not. The latter case is considered

in Section 3.1, where we show how the computation of the sample likelihood function is possible

once we integrate out the common factor. However, the maximization of the likelihood in this case

turns out to be feasible only if we consider a limited number of assets in our portfolio. A second

possibility would be to consider the unobservable common factor as a latent factor whose dynamic

is assigned, so that the estimation procedure can be reduced to a (in general) non-Gaussian Kalman

filtering problem. However, the application of these techniques is in general not straightforward

and, in any case, they do not solve the dimensionality problem. A significant efficiency gain can be

obtained if the latent factor is made observable by identifying it with a suitably chosen broad-based

index, rather than filtering. In this case, discussed in Section 3.2, the likelihood admits a simple

expression as product of univariate densities simplifying the estimation procedure.

3.1 Unobservable Common Factor: a one-step approach

In the case in which the common factor is unobservable, the joint density of the stock log-returns is

given by equation (2) and therefore the likelihood function of the sample x = (x
(1)
t , . . . , x

(n)
t )t=1...T

is

L(x,θ) =
T
∏

t=1

∫ ∞

−∞
fY (1)(x

(1)
t − a1zt;θY (1)) · . . . · fY (n)(x

(n)
t − anzt;θY (n))fZ(zt;θZ)dzt, (7)

where θ = [θY (1) , . . . ,θY (n) ,θZ ,a] is the parameter set to be estimated.

Thus, all parameters of the chosen multivariate Lévy model can be estimated via a single max-

imization of the likelihood function (7). However, we note that this procedure presents significant

issues in terms of implementation, such as curse of dimensionality originated by a combination of

elements such as the dimension of the parameter space due to a richer model parametrization, the

number of common factors, which increases the dimension of the integral in equation (7), the num-

ber of assets which increases the complexity of the integrand function, and the sample size which

increases the number of integrals to be evaluated. In addition, in the case of non-Gaussian dynam-

ics, the density functions might not be known in closed form, at best they might contain special

functions like the Bessel function, as in the NIG case, which have to be computed numerically. All

these issues only exacerbates the numerical optimization, leading to imprecise parameter estimates

and cases of false convergence. Finally, we note that there is a fundamental indeterminacy in this
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model as discussed in Anderson and Rubin (1956).

Alternative approaches can be based on non-Gaussian Kalman filters, whose application though

is not straighforward, and still exposed to the curse of dimensionality discussed above. As these

filter techniques provide an estimate of the parameters and, at the same time, a way of making the

latent factor Z ‘observable’, in the following we assume that the common factor is indeed observable

because well proxied by a broad-based index. This would also help to solve the indeterminacy noted

above, and is discussed in the next section.

3.2 Observable Common Factor: a two-steps approach

Let us assume, as it is standard market practice, that the common factor is observable through

a broad-based index, such as the S&P500 index. In this case, the joint likelihood function of the

common factor and stock log-returns can be written as

L (x, z;θZ , θY ,a) =
T
∏

t=1

fZ (zt;θZ)
n
∏

j=1

fYj

(

x
(j)
t − ajzt;θY (j)

)

. (8)

We note from the resulting log-likelihood function

lnL (x, z;θZ ,θY ,a) =
T
∑

t=1

ln fZ (zt;θZ) +
n
∑

j=1

T
∑

t=1

ln fYj

(

x
(j)
t − ajzt;θY (j)

)

,

that, due to its additive structure and the independence of the common factor and the idiosyncratic

processes, the maximization procedure for the model estimation can be performed in two steps.

The first step is represented by the maximization with respect to the parameters of the observable

systematic process Z

max
θZ

lnL (z;θZ) = max
θZ

T
∑

t=1

ln fZ (zt;θZ) . (9)

The second step is given by n independent maximizations, one for each asset, of the likelihood of

the idiosyncratic components with respect to the loading coefficients and the idiosyncratic processes

parameters. Indeed from the very definition of our model (1), we can write each component Y (j)

as

Y (j) = X(j) − ajZ,

and therefore the likelihood functions of the idiosyncratic processes are

max
θ
Y (j) ,aj

lnL
(

x(j) − ajz;θY (j)

)

= max
θ
Y (j) ,aj

T
∑

t=1

ln fYj

(

x
(j)
t − ajzt;θY (j)

)

, j = 1, · · · , n. (10)

We notice that this estimation strategy ‘observe, divide and conquer’ allows us to solve the curse

of dimensionality issues mentioned in Section 3.1 because each maximization procedure involves

only a subsection of the overall parameter space. In addition, increasing the number of factors and
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assets has the minimal additional cost of solving more independent maximization problems.

As mentioned above, the second step consists of n separate likelihood maximization problems as

in (10). An efficient way of initializing each maximization procedure is to calibrate first the loading

coefficients to the sample covariance matrix in a sense to be specified below, and, conditionally on

these estimates, to initialize the parameters of the idiosyncratic components via moment matching

to the sample counterparties. The maximization problems (10) can then be solved iteratively by

maximizing first with respect to the idiosyncratic parameters, and then, given these, again with

respect to the loading parameters, until no further significant improvement in the objective functions

is achieved. In practice, very few iterations are indeed required. In the estimation assessment and

in the empirical application, in fact we stopped the procedure after a single iteration: we constraint

the loadings to fit the covariance matrix to correctly recover the dependence structure as described

below, and then the maximization of the likelihood in (10) is performed only with respect to the

idiiosyncratic parameters.

As discussed in Section 2, the loadings a determine the dependence structure among the compo-

nents of the processX; as observable information on dependence is usually limited to the covariance

(or correlation) matrix of the stock returns, we initialize the vector a fitting the non diagonal en-

tries of the sample covariance matrix to their theoretical counterparts predicted by the multivariate

model (1). This is achieved by solving

min
a

‖Cov(X)− Σ‖F , (11)

where ‖ · ‖F denotes the Frobenius norm,

Cov(X) = aa
′Var(Z1) + diag([Var(Y (1)), . . . ,Var(Y (n))]), (12)

is the model covariance matrix and Σ denotes the sample covariance matrix (we set the diagonal

entries to zero in both of them). In expression (12) we can use either the sample variance of the

stock index returns or the parametric expression for the variance computed with the parameters

estimates recovered through Step 1; in the first case, this step turns out to be independent of the

specification of the Lévy processes involved in the multivariate model construction. For a reasonable

initialization of the algorithm, we suggest to perform a simple linear regression of the stock returns

on the broad-based index returns, as Cov
(

X
(j)
t , Zt

)

= aj
√

Var (Zt) for all j = 1, . . . , n (see Ballotta

and Bonfiglioli, 2014, for further details).

4 Estimation assessment

To assess the effectiveness of the two approaches presented in Section 3, we test them through

simulation studies in two particular specifications of the multivariate model (1): the case in which

all the involved processes are pure jump processes modelled according to Normal inverse Gaussian

processes with drift (‘all-NIG’); and the case in which all the involved processes are jump-diffusion

9



processes of the Merton jump-diffusion kind (‘all-MJD’). All required densities are generated via

numerical inversion of the corresponding characteristic functions, using the Fast Fourier Transform

(FFT) algorithm; alternatively the COS method suggested by Fang and Oosterlee (2008) can be

adopted.

4.1 Two-step estimation procedure: a simulation study

In this section we present the results of a simulation study aimed at assessing the estimation

procedure described in Section 3.2. To this purpose we consider daily log-returns of the S&P500

index and a selection of its constituents stocks; the observation period ranges from September 10,

2007 to May 20, 2013, for a total of 1434 observations per series. These data are extracted from

Bloomberg database and adjusted for dividends.

The analysis is carried out as follows. We first estimate the chosen multivariate model using

the index returns as proxy for Z. Then, we use the estimated parameters to generate series of the

returns of the assets under consideration, to which the estimation procedure is re-applied. This

allows us to recover the distribution of each parameter. We assess the estimation procedure in

several cases, varying the length of the simulated series from one year up to four years of daily

observations (T = [250, 500, 750, 1000] days) and varying the number of components, considering

up to 30 assets in the simulated portfolios (n = [5, 10, 15, 30]). For each of the 16 cases taken

into account we repeat the simulation and estimation S = 10, 000 times, obtaining 10, 000 sets of

parameters, denoted by θ̂s, s = 1, . . . , S.

Given the large number of parameters (if n = 5 the total number of parameters is 29 for the

‘all-NIG’ model, 35 for the ‘all-MJD’ model; if n = 30 there are 154 parameters for the ‘all-NIG’

model, and 185 parameters for the ‘all-MJD’ model) we cannot display detailed results for each

parameter; hence, for illustrative purpose, we show only the assessment results for the estimation of

the common factor Z (Section 4.1.1), the first idiosyncratic factor Y (1) and average results relative

to the loadings aj , j = 1, . . . , n (Section 4.1.2). Complete results are available upon request.

The assessment is made in terms of root mean square error, bias and inefficiency, defined as

RMSE(θ̂) =

√

√

√

√

1

S

S
∑

s=1

(

θ̂s − θ
)2

, (13)

bias(θ̂) =

√

(

E[θ̂]− θ
)2

, (14)

ineff(θ̂) =

√

√

√

√

1

S

S
∑

s=1

{

(

θ̂s − E[θ̂]
)2
}

, (15)

where θ̂ indicates the estimates of the true parameter θ used in the simulation step, and E[θ̂] =
1
S

∑S
s=1 θ̂s.

We stress that the focus of our simulation studies is on investigating the effectiveness of splitting
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the estimation procedure of the multivariate model in the two steps presented in Section 3.2. As

a positive signal in this direction, we expect the errors obtained in the assessment of the final

step, which depend on the loadings estimates and indirectly on the number of components, to

be comparable with those obtained in the assessment of the first step, which consists in a plain

univariate estimation.

4.1.1 Step 1. Systematic component.

Table 1 displays root mean square error, bias and inefficiency of the estimators for the ‘all-NIG’

and ‘all-MJD’ models, as the length of the simulated series varies in T = [250, 500, 750, 1000].

To visualize the results relative to the ‘all-NIG’ model, we plot on the left-hand side of Figure

1 the distributions of the estimators for each parameter when T = 250. The true value of the

parameter, i.e. the parameter used in the simulation, and the mean of the estimator are highlighted

respectively with red and green dots. The plots reveal a low level of bias for all of the estimators, and

all the distributions are peaked around the mean, meaning that the maximum likelihood estimators

for the NIG model are suitable for the first step of our procedure. The errors presented in Table 1

will be used as a term of comparison to evaluate the results of the final step.

The plots on the right-hand side of Figure 1 report the distributions of the estimators for the

‘all-MJD’ model parameters, highlighting the true value of the parameters in red and the mean of

the distributions in green. Even in this case we observe that the estimators obtained by EM are

almost unbiased and we can use the errors and inefficiency levels as benchmarks to evaluate Step

2.

4.1.2 Step 2. Loadings Calibration and Idiosyncratic Component Estimation

We implement Step 2 described in Section 3.2 by solving first the minimization problem (11) with

respect to the loadings a; secondly, we use the estimated loadings to solve the n maximization

problems (10) with respect to θY (j) for all j = 1, . . . , n. The minimization procedure (11) is

performed by fixing the variance of the common factor equal to the sample variance of the simulated

series of the process Z; in this way the assessment of this step turns out to be independent of the

model specification.

Results are presented in Table 2 in which we report the average root mean square error, bias

and inefficiency of the loadings a as the number of assets varies in n = [5, 10, 15, 30] and the length

of the simulated series for the estimation varies in T = [250, 500, 750, 1000]. We observe that the

accuracy of the estimates improves as the sample size T increases, this feature being an indicator

of consistency. Further, the accuracy is independent of the number of assets n as expected: the

proposed ‘observe, divide and conquer’ strategy requires, in fact, n+ 1 independent maximization

procedures; therefore the accuracy of the resulting estimates is not affected by the number of

assets considered. In order to analyze in more depth the behavior of the loadings estimators as

the number of assets varies, we simulate datasets all made of series of fixed length T , and with

number of assets, n, spanning the interval [2, 60]. For each n we simulate a dataset and we estimate

11



Z T=250 T=500 T=750 T=1000

‘All-NIG’ model

µ = 0.0014
RMSE 9.85E-04 6.72E-04 5.42E-04 4.65E-04
Bias 4.33E-05 1.21E-05 1.84E-05 6.73E-06

Inefficiency 9.84E-04 6.71E-04 5.41E-04 4.65E-04

θ = -0.0014
RMSE 1.47E-03 1.02E-03 8.20E-04 7.12E-04
Bias 3.09E-05 2.42E-05 1.87E-05 4.90E-06

Inefficiency 1.47E-03 1.02E-03 8.20E-04 7.12E-04

σ = 0.0168
RMSE 1.76E-03 1.23E-03 1.01E-03 8.77E-04
Bias 1.77E-04 8.60E-05 6.41E-05 4.70E-05

Inefficiency 1.75E-03 1.22E-03 1.01E-03 8.75E-04

k = 3.32
RMSE 1.30E+00 8.97E-01 7.26E-01 6.32E-01
Bias 1.91E-02 8.17E-03 5.85E-04 5.79E-03

Inefficiency 1.30E+00 8.97E-01 7.26E-01 6.32E-01

‘All-MJD’ model

µ = 0.0012
RMSE 8.24E-04 5.83E-04 4.66E-04 4.05E-04
Bias 2.80E-05 1.83E-05 2.49E-05 2.66E-05

Inefficiency 8.23E-04 5.83E-04 4.65E-04 4.04E-04

σ= 0.0075
RMSE 1.17E-03 8.90E-04 7.41E-04 7.41E-04
Bias 7.25E-05 1.31E-04 1.28E-04 1.47E-04

Inefficiency 1.17E-03 8.80E-04 7.30E-04 7.27E-04

ν = -0.0025
RMSE 3.14E-03 1.90E-03 1.51E-03 1.28E-03
Bias 1.35E-04 1.72E-04 6.60E-05 6.62E-05

Inefficiency 3.13E-03 1.89E-03 1.51E-03 1.28E-03

τ = 0.0210
RMSE 3.56E-03 2.82E-03 2.39E-03 2.36E-03
Bias 5.31E-04 5.89E-04 5.13E-04 5.59E-04

Inefficiency 3.52E-03 2.76E-03 2.33E-03 2.30E-03

λ=0.47
RMSE 1.50E-01 1.07E-01 8.72E-02 7.88E-02
Bias 1.48E-02 1.94E-02 2.33E-02 2.01E-02

Inefficiency 1.49E-01 1.05E-01 8.40E-02 7.62E-02

Table 1
Two-step procedure assessment: common factor. Estimation errors expressed in absolute terms. RMSE,

Bias, Inefficiency: indices computed according to equations (13)-(15).
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Figure 1
Two-step procedure assessment: common factor. Distributions of the estimators for the parameters of the
common factor Z in the ‘all-NIG’ model (left-hand side plots) and in the ‘all-MJD’ model (right-hand side
plots). Number of simulations: 10000; length of the simulated time series: 250.
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n=5 n=10 n=15 n=30

T=250 RMSE 6.05E-02 5.23E-02 5.28E-02 6.05E-02
Bias 1.83E-03 1.65E-03 1.64E-03 1.90E-03

Inefficiency 6.05E-02 5.23E-02 5.28E-02 6.05E-02

T=500 RMSE 4.21E-02 3.65E-02 3.69E-02 4.23E-02
Bias 9.18E-04 7.85E-04 8.14E-04 1.00E-03

Inefficiency 4.21E-02 3.65E-02 3.68E-02 4.23E-02

T=750 RMSE 3.42E-02 2.96E-02 2.99E-02 3.42E-02
Bias 3.76E-04 5.80E-04 6.67E-04 7.28E-04

Inefficiency 3.42E-02 2.96E-02 2.99E-02 3.42E-02

T=1000 RMSE 2.96E-02 2.57E-02 2.60E-02 2.97E-02
Bias 5.21E-04 3.85E-04 4.31E-04 3.77E-04

Inefficiency 2.96E-02 2.57E-02 2.60E-02 2.97E-02

Table 2
Two-step procedure assessment: average results relative to the loading parameters a. Estimation errors
expressed in absolute terms. RMSE, Bias, Inefficiency: indices computed according to equations (13)-(15).

the loadings, repeating the simulation-estimation procedure 10, 000 times. We then compute the

average error, average bias, average standard error and average interquartile range of the loadings in

correspondence of each n, meaning that, given n, we compute these measures for all aj , j = 1, . . . , n,

and then we take the average. The computations are repeated for simulated series of increasing

length: T = [250, 500, 750, 1000]. Results are plotted in Figure 2. The estimates of the loadings

appear to be consistent, as all the average error measures decrease when estimation is performed

on longer time series.

The results of the estimation of the idiosyncratic process are presented in Table 3 and Figure

3, for the case of the first asset. Results relative to the other assets are available upon request. In

particular, the left-hand side of Table 3 displays root mean square error, bias and inefficiency of the

estimators when the total number of assets is fixed (n = 30) and the length of the simulated series

varies in T = [250, 500, 750, 1000]. On the right-hand side of the same table, we show the assessment

results for a fixed T = 500, varying the number of assets. Although the estimation of each Y (j),

j = 1 . . . , n, is performed in a univariate way, the number of assets plays in principle a key role

in the calibration of the loadings, which affects the estimation of the Y (j) parameters. However,

consistently with the results shown in Section 4.1.2, Table 3 reveals almost uniform estimation

errors for n = [5, 10, 15, 30], showing that the number of assets has only a minimal impact on the

estimation errors of the idiosyncratic terms for both the specifications we tested.

As noted above, in this section we only discussed results relative to the first asset; similar

conclusions hold for all assets considered. An overview of the average performance (for the cases

n = 5 and n = 15) is provided in Table 5, discussed in more details in Section 4.3.

To visualize the results, we plot in Figure 3 the distributions of the estimators for each parameter

when T = 250 and n = 30. Both for the ‘all-NIG’ (on the left) and for the ‘all-MJD’ case (on the

right), the mean of the given estimator (indicated using a green dot) almost overlaps with its true

14



n=30 T=500
Y1 T=250 T=500 T=750 T=1000 n=5 n=10 n=15 n=30

‘All-NIG’ model

µ = 9.92E-04
RMSE 2.17E-03 1.13E-03 9.00E-04 7.69E-04 1.13E-03 1.12E-03 1.14E-03 1.13E-03
Bias 1.09E-05 2.80E-06 2.58E-05 4.71E-06 5.71E-06 1.19E-07 1.18E-05 2.80E-06

Inefficiency 2.17E-03 1.13E-03 9.00E-04 7.69E-04 1.13E-03 1.12E-03 1.14E-03 1.13E-03

θ = 2.15E-04
RMSE 2.45E-03 1.37E-03 1.09E-03 9.40E-04 1.39E-03 1.37E-03 1.40E-03 1.37E-03
Bias 8.74E-06 9.50E-06 3.46E-05 9.08E-06 1.17E-05 8.77E-06 1.81E-05 9.50E-06

Inefficiency 2.45E-03 1.37E-03 1.09E-03 9.40E-04 1.39E-03 1.37E-03 1.40E-03 1.37E-03

σ = 0.0173
RMSE 1.39E-03 9.71E-04 7.97E-04 6.74E-04 9.65E-04 9.60E-04 9.61E-04 9.71E-04
Bias 2.08E-04 1.03E-04 7.91E-05 6.38E-05 1.05E-04 1.05E-04 9.35E-05 1.03E-04

Inefficiency 1.37E-03 9.66E-04 7.93E-04 6.71E-04 9.60E-04 9.54E-04 9.56E-04 9.66E-04

k = 1.483
RMSE 6.19E-01 4.31E-01 3.48E-01 3.02E-01 4.29E-01 4.28E-01 4.28E-01 4.31E-01
Bias 2.04E-02 7.46E-03 1.50E-02 7.11E-03 1.41E-02 1.53E-02 1.11E-02 7.46E-03

Inefficiency 6.19E-01 4.31E-01 3.47E-01 3.02E-01 4.29E-01 4.27E-01 4.28E-01 4.31E-01

‘All-MJD’ model

µ = 0.00133
RMSE 1.10E-03 7.61E-04 6.12E-04 5.33E-04 7.55E-04 7.63E-04 7.57E-04 7.61E-04
Bias 9.29E-06 3.76E-06 7.53E-06 1.45E-07 1.59E-06 1.28E-05 2.36E-06 3.76E-06

Inefficiency 1.10E-03 7.61E-04 6.12E-04 5.33E-04 7.55E-04 7.63E-04 7.57E-04 7.61E-04

σ= 0.01113
RMSE 1.36E-03 1.01E-03 8.76E-04 8.24E-04 1.03E-03 1.02E-03 1.01E-03 1.01E-03
Bias 7.76E-05 6.91E-05 4.95E-05 3.90E-06 4.57E-05 5.51E-05 7.62E-05 6.91E-05

Inefficiency 1.36E-03 1.01E-03 8.74E-04 8.24E-04 1.02E-03 1.02E-03 1.01E-03 1.01E-03

ν = -0.0004
RMSE 7.78E-03 3.26E-03 2.43E-03 2.03E-03 3.25E-03 3.18E-03 3.09E-03 3.26E-03
Bias 1.62E-04 3.30E-05 3.83E-06 5.59E-06 4.24E-05 4.42E-05 1.10E-05 3.30E-05

Inefficiency 7.78E-03 3.26E-03 2.43E-03 2.03E-03 3.25E-03 3.18E-03 3.09E-03 3.26E-03

τ =0.02429
RMSE 6.20E-03 4.40E-03 3.81E-03 3.62E-03 4.46E-03 4.40E-03 4.38E-03 4.40E-03
Bias 1.99E-04 2.26E-04 2.25E-04 3.28E-04 2.78E-04 3.09E-04 2.21E-04 2.26E-04

Inefficiency 6.20E-03 4.39E-03 3.81E-03 3.60E-03 4.45E-03 4.39E-03 4.38E-03 4.39E-03

λ =0.29214
RMSE 1.61E-01 1.21E-01 1.03E-01 9.06E-02 1.21E-01 1.20E-01 1.21E-01 1.21E-01
Bias 1.62E-02 1.56E-02 1.17E-02 5.44E-03 1.54E-02 1.39E-02 1.62E-02 1.56E-02

Inefficiency 1.60E-01 1.20E-01 1.02E-01 9.04E-02 1.20E-01 1.19E-01 1.19E-01 1.20E-01

Table 3
Two-step procedure assessment: first idiosyncratic component. Estimation errors expressed in absolute
terms. RMSE, Bias, Inefficiency: indices computed according to equations (13)-(15).
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Figure 2
Two-step procedure assessment: loadings. Average error, bias, standard error and interquartile range of the
loadings estimates for increasing number of assets (n = 3, . . . , 60) and increasing number of observations
(T = [250, 500, 750, 1000]).

value (indicated by a red dot), revealing very little bias, and the distributions are peaked around

the mean, implying that our estimation procedure performs as expected. Moreover, we observe

estimation errors and inefficiency levels in line with those obtained in Step 1, therefore splitting

the estimation procedure in two steps, ease of implementation aside, proves to be effective1.

4.2 One-step maximum likelihood: a simulation study

In this section we present part of the results of a simulation study relative to the estimation of the

‘all-NIG’ and ‘all-MJD’ models parameters using the one-step ML approach discussed in Section

3.1, which represent a useful term of comparison to evaluate the results obtained from the two-step

procedure presented above. Hence, we use the same dataset as in Section 4.1, but we relax the

assumption that the systematic risk factor Z is observable through the index.

The maximum likelihood estimation consists in maximizing the likelihood function (7); the

quadrature of the integral in (7) is performed via the trapezoidal rule.

Due to the computational cost of the procedure, here we consider a small number of assets

(n = 5, i.e. 24 parameters to be estimated for the ‘all-NIG’ model, 35 for the ‘all-MJD’ model)

repeating the simulation 1000 times; we then perform 100 simulations to evaluate the estimation

for n = 15 assets (i.e. 79 parameters for the ‘all-NIG’ model, 95 for the ‘all-MJD’ model). Results

1Analogous observations hold for the other components.
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Figure 3
Two-step procedure assessment: first idiosyncratic component. Distributions of the estimators for the pa-
rameters of the first stock idiosyncratic factor Y (1) in the ‘all-NIG’ model (left-hand side plots) and in the
‘all-MJD’ model (right-hand side plots). Number of simulations: 10000; length of the simulated time series:
250; number of assets: 30.
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relative to the common factor Z, the first idiosyncratic component Y (1) and the first loading a1, are

displayed in Table 4. Complete results are available upon request. The estimators distributions for

n = 5 are displayed in Figures 4 and 5, where the plots on the left-hand side refer to the ‘all-NIG’

model, while the plots on the right-hand side refer to the ‘all-MJD’ model.
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n=5 n=15 n=5 n=15 n=5 n=15
(1000 sim) (100 sim) (1000 sim) (100 sim) (1000 sim) (100 sim)

‘All-NIG’ model

Z Y1 First Loading
µ = 0.0014 µ = 9.92E-04 a1= 0.8898

RMSE 7.07E-04 5.67E-04 1.19E-03 1.11E-03 4.72E-02 3.85E-02
Bias 5.82E-05 4.18E-05 2.51E-05 1.58E-04 2.36E-04 1.64E-03

Inefficiency 7.04E-04 5.65E-04 1.19E-03 1.10E-03 4.72E-02 3.85E-02

θ = -0.0014 θ = 2.15E-04
RMSE 1.11E-03 8.64E-04 1.47E-03 1.52E-03
Bias 9.64E-05 5.63E-05 1.61E-05 1.43E-04

Inefficiency 1.10E-03 8.62E-04 1.47E-03 1.52E-03

σ = 0.0168 σ = 0.0173
RMSE 1.24E-03 1.25E-03 9.95E-04 1.12E-03
Bias 3.60E-05 7.30E-05 1.04E-04 1.97E-04

Inefficiency 1.24E-03 1.25E-03 9.90E-04 1.10E-03

k = 3.32 k = 1.483
RMSE 1.15E+00 8.35E-01 4.87E-01 4.59E-01
Bias 8.90E-02 1.29E-01 1.22E-02 4.56E-02

Inefficiency 1.14E+00 8.25E-01 4.87E-01 4.57E-01

‘All-MJD’ model

Z Y1 First Loading
µ = 0.0012 µ = 0.00133 a1= 0.8898

RMSE 6.24E-04 6.23E-04 7.85E-04 7.68E-04 5.44E-02 3.98E-02
Bias 9.65E-05 1.06E-04 4.54E-05 6.12E-05 1.08E-02 4.52E-03

Inefficiency 6.16E-04 6.13E-04 7.84E-04 7.65E-04 5.33E-02 3.95E-02

σ= 0.0075 σ= 0.01113
RMSE 1.14E-03 6.80E-04 1.12E-03 9.61E-04
Bias 3.37E-04 2.37E-04 1.02E-04 5.35E-05

Inefficiency 1.09E-03 6.38E-04 1.11E-03 9.59E-04

ν = -0.0025 ν = -0.0004
RMSE 1.69E-03 1.85E-03 3.03E-03 3.19E-03
Bias 8.17E-05 2.73E-04 9.54E-05 7.16E-05

Inefficiency 1.69E-03 1.83E-03 3.03E-03 3.19E-03

τ = 0.0210 τ =0.02429
RMSE 2.72E-03 3.26E-03 4.60E-03 4.27E-03
Bias 7.84E-04 1.67E-03 3.11E-04 8.71E-04

Inefficiency 2.60E-03 2.80E-03 4.59E-03 4.18E-03

λ=0.47 λ =0.29214
RMSE 2.33E-01 1.49E-01 1.36E-01 1.15E-01
Bias 1.63E-01 8.84E-02 2.15E-02 1.20E-02

Inefficiency 1.66E-01 1.20E-01 1.35E-01 1.14E-01

Table 4
One-step approach assessment. Estimation errors expressed in absolute terms. RMSE, Bias, Inefficiency: indices computed according to equations
(13)-(15).
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Bearing in mind the different number of simulations performed2, we can compare the results

of the two-step procedure assessment with those presented in this section. In particular, for both

the ‘all-NIG’ and ‘all-MJD’ models, the results relative to the common factor Z can be compared

to those displayed in the second column of Table 1, corresponding to estimates based on T = 500

observations, while the results relative to the first idiosyncratic factor can be compared with those

in the fifth and seventh columns of Table 3; the errors relative to the first loading estimates can be

compared to those reported in Table 2, for T = 500, n = 5, 15. In particular, we note that in the case

of the ‘all-NIG’ model the errors obtained with the two-step procedure, using ML estimation, are

in line with those obtained with the one-step ML approach, which in principle, aside computational

issues, should be the preferred method, exploiting all at once the whole information contained in

the data. On the other hand, in the case of the ‘all-MJD’ model, we observe instead that the errors

of the two-step procedure, where the univariate estimations are performed via the less efficient EM

algorithm, are just slightly larger than those obtained with the one-step ML approach.

4.3 Two-step vs one-step approach: efficiency gain index and likelihood com-

parison

In order to compare the efficiency of the two approaches, both in terms of estimation errors and

computational time, we modify the efficiency gain index used in Monte Carlo simulation analysis

and defined for example in Glasserman (2004). Given a specification of the model (1), characterized

by K parameters, we compute the efficiency gain, E21, of the two-step procedure to the one-step

maximum likelihood approach as

E21 =
MSE1t1

MSE2t2
, (16)

where MSE1 (2) denotes the average mean square error

MSE =

∑K
i=1MSE(θ̂i)

K
,

of the parameters estimated by the one-step (1) and the two-step (2) approach respectively. MSE(θ̂i)

is the mean square error (i.e. the square of the RMSE defined in equation 13) and t1 (2) is the

average time needed to estimate the model parameters using the 1 (2) approach. In particular, we

compute the efficiency gain index in correspondence of the ‘all-NIG’ and ‘all-MJD’ models with

5 and 15 components. In the n = 5 case, for each of the two approaches, we consider the mean

square errors based on 1000 simulations; for n = 15 we rely on 100 simulations.

Results are reported in Table 5: we observe that the two-step approach is significantly more

efficient in terms of computational time. Moreover, for n = 5 the average mean square errors

attained with the two-step approach are lower than those given by the one-step maximum likelihood

(8.5% vs 14% for the ‘all-NIG’ model, 0.14% vs 0.28% for the ‘all-MJD’ model), whilst they are

2A higher number of simulations leads in general to higher errors, due to higher inefficiency, as the variability of
the estimates tends to increase.
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Figure 4
One-step approach assessment. Distributions of the estimators for the parameters of the common factor Z
in the ‘all-NIG’ model (left-hand side plots) and in the ‘all-MJD’ model (right-hand side plots). Number of
simulations: 1000; length of the simulated time series: 500; number of assets: 5.
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Figure 5
One-step approach assessment. Distributions of the estimators for the parameters of the first idiosyncratic
component Y (1) in the ‘all-NIG’ model (left-hand side plots) and in the ‘all-MJD’ model (right-hand side
plots). Number of simulations: 1000; length of the simulated time series: 500; number of assets: 5.
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Two-step One-step

MSE time MSE time E13

n=5 all NIG 0.0857 0.7 0.1407 3668.5 8139
all MJD 0.0014 1.0 0.0028 3756.8 7295

n=15 all NIG 0.1043 1.9 0.0973 10723.3 5350
all MJD 0.0016 3.4 0.0017 11087.5 3496

Table 5
Average MSE, computation times (measured in seconds) and efficiency gains of the two-step approach to the
one step maximum likelihood. (Processor: Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz 3.10 GHz; RAM:
4.00 GB)

almost the same for n = 15 (about 10% for the all-NIG’ model, 0.16% for ‘all-MJD’). According

to efficiency index (16), in our experiment the two-step procedure performed 3496 times more

efficiently than the one step approach in the worst case (‘all-MJD’, n = 15) and 8139 times more

efficiently in the best one (‘all-NIG’, n = 5).

For a further comparison, we simulate 1,000 samples, each made of 500 observations from the

‘all-NIG’ and the ‘all-MJD’ model with 5 components, and we estimate the parameters with both

methods. For each simulated sample we then compare the maximum log-likelihood achieved using

both approaches; results are presented in Figures 6 and 7 for the ‘all-NIG’ model and the ‘all-MJD’

model respectively. In the top panels of both figures we report the maximum log-likelihood and the

log-likelihood achieved by the two-step procedure for each simulation, sorting the simulations by

increasing values of the maximum likelihood for better clarity; in the bottom panels we display the

histograms of the two log-likelihood distributions. From Figure 6 we note that in the ‘all-NIG’ case,

in every simulation, the estimates obtained by means of the two-step procedure lead to a likelihood

which is very close to the maximum one. Conversely, Figure 7 shows that for the ‘all-MJD’ case

the likelihoods resulting from the two-step routine, where the univariate estimations are performed

by EM algorithm, are less close to the maximum ones.

5 Application: intra-horizon VaR

In this section we present an application relative to the computation of the intra-horizon Value

at Risk for a portfolio of assets with returns following the multivariate Lévy model (1). While

traditional risk measures, as Value at Risk or Expected Shortfall, focus only on losses at the end of

a predetermined time horizon, intra-horizon risk measures take into account the exposure to losses

throughout the investment’s life. The magnitude of losses that can occur before the end of the

horizon is of paramount importance, for example, for monitored asset managers, leveraged investors,

borrowers required to maintain particular level of reserves as a condition of a loan agreement or

securities lenders required to deposit collateral.

Intra-horizon risk measures are defined on the distribution of the minimum return. Thus, let Xt,
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Figure 6
Likelihood comparison (‘all-NIG’ model)

Figure 7
Likelihood comparison (‘all-MJD’ model)
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for t ∈ [0, T ], be the real-valued random process describing possible paths of an asset or portfolio

log-return, with initial value X0 = 0. For practical implementation, let us assume the process is

observed on an equally spaced time grid 0,∆, · · · ,M∆ = T , and define the process of the minimum

mM up to the M -th monitoring date as mM := minj=0,··· ,M Xj∆. The VaR-I at confidence level

(1−α) is defined as the absolute value of the α-quantile of the distribution of the random variable

mM

P (mM ≤ −VaR-I|X0 = x) = α. (17)

The idea is that during the investment life the path of returns can reach high negative values, which

investors may care about. In such cases, the left tail of the minimum return distribution better

represents risk than the left tail of the return distribution itself.

While under the arithmetic Brownian motion assumption the distribution of the minimum

return is analytically known (see Kritzman and Rich, 2002 for the case with continuous monitoring,

and Fusai et al., 2006 instead for the discrete monitoring one), under more general assumptions for

the driving process it must be recovered numerically. To this purpose, we resort to the Fourier Space

Time-stepping (FST) algorithm introduced by Jackson et al. (2008) for option pricing purposes.

Our problem is indeed equivalent to finding the value of a down-and-out binary option, that is

an option paying 1 if the underlying does not hit a certain lower barrier within a given time

period, and zero otherwise. However, due to the nature of the application under consideration, our

computations are performed under the physical probability measure.

Fixed an arbitrary threshold y, the FST algorithm allows us to recover the value function

v(0, x) := E[1{mM>y}|X0 = x] = P (mM > y|X0 = x)

via backward recursion, so that

vM (x) := v(T, x) = 1{x>y}

vm−1(x) = FFT−1[FFT [vm(x)]eϕ∆]1{x>y}, m = 1, · · · ,M, (18)

where ϕ is the Lévy exponent of Xt. For further details on the FST algorithm, refer to Jackson

et al. (2008).

When Xt is the return of a portfolio of assets with weights wj following the multivariate Lévy

model (1) and the time horizon is short, as in the case of the application considered here, the

expression of the characteristic function of Xt, required for implementation of the FST step (18),

can be easily derived relying on the approximation of the portfolio return as linear combination of
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the asset log-returns, and exploiting the independence of Y (j), j = 1, . . . , n and Z, so that

E [exp (iγX)] = E



exp



iγ





n
∑

j=1

wjY
(j) + Z

n
∑

j=1

wjaj













=





n
∏

j=1

φY (j) (γwj)



φZ



γ
n
∑

j=1

wjaj



 ∀γ ∈ R, (19)

where we omitted time subscripts to simplify the notation3. The characteristic functions in equation

(19) are then chosen according to the specified model.

Further, in virtue of the translation invariance property of Lévy processes, it follows that

v(0, x) = P (mM > (y−x)|X0 = 0). Hence, the computation of the (1−α)-VaR-I can be summarized

in the following steps.

Step 1. Choose an arbitrary threshold y.

Step 2. Compute the function v(0, x) by means of the FST algorithm.

Step 3. Find the value x such that v(0, x) = 1− α.

Step 4. Compute the VaR-I as VaR-I= −(y − x).

As an application, we compute the 10 days 99% intra-horizon VaR for an equally weighted

portfolio, under the ‘all-NIG’, ‘all-MJD’ and ‘all-Gaussian’ (henceforth Gaussian) models. We

include in the portfolio 20 of the most capitalized stocks in the S&P500 index4. The estimation

is performed on daily log-returns, from May 24, 2011 to May 20, 2013, applying the two-step

procedure presented in Section 3.2. Estimates and confidence intervals at 95% level for the ‘all-

NIG’ and ‘all-MJD’ models parameters are displayed respectively in Tables 7 and 8.

Figure 8 compares the sample covariance matrix with the covariance matrix estimated according

to the ‘all-NIG’ model, using two color-coded matrices in which each entry is colored according to

its value, and the conversion color-value is provided in the lateral color bar. We notice that the

multivariate NIG model accurately reproduces the sample covariance among the assets in our

dataset. Similar results are obtained for the multivariate MJD model and are available upon

request5.

In order to test the ability of the fitted ‘all-NIG’, ‘all-MJD’ and Gaussian models to describe

the distribution of portfolio returns, we perform a comparison with their sample distribution, as

in Eberlein and Madan (2009) and Luciano et al. (2013) for example. Thus, we consider 1,000

randomly generated long-only portfolios and 1,000 randomly generated long-short portfolios. Long-

3If returns are very volatile or the horizon is longer, it becomes essential to work with linear returns. In this case
(19) no longer holds. For more details, see Meucci (2005).

4Apple, Exxon Mobil Corporation, Wal-Mart Stores, Microsoft Corporation,Google, General Electric, IBM,
Chevron Corporation, Berkshire Hathaway, AT&T, Procter & Gamble, Pfizer, Johnson & Johnson, Wells Fargo
& Co., Coca-Cola, JPMorgan Chase & Co., Oracle, Merck & Co., Verizon Communications, Amazon.com.

5We note that under other specifications of the multivariate model only the diagonal entries change, due to the
different estimation of the variance of the idiosyncratic components.
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Figure 8
Sample and estimated covariance matrices for the 20 assets in our portfolio (‘all NIG’ model). The conversion
color-values is provided in the side color bar.

only weights are generated by drawing an i.i.d. sample from a standard normal distribution, taking

the absolute value and rescaling by the sum. Long-short portfolio weights are generated similarly,

drawing an i.i.d. sample from a standard normal distribution and rescaling it by the sum of the

squares. We perform the Kolmogorov-Smirnov test, deriving the probability density function by

inverting via FFT the portfolio characteristic function (19). The results are displayed in Figure

9, which illustrates the empirical complementary distribution functions of the p-values across the

1,000 portfolios, namely, for each value p ∈ [0, 1] we display the proportion of portfolios with p-

value greater than p. The higher this proportion, the better is the model ability to capture the

distribution of the return of the randomly generated portfolios. We note that both Lévy-based

models significantly outperform the Gaussian one, for which the p-value is systematically smaller.

Further, the ‘all-NIG’ model better fits the sample distribution of returns with respect to the

‘all-MJD’ specification for both long only and long-short portfolios.

Focusing on the equally weighted portfolio, Figure 10 shows, for each of the three models, the

tail of the portfolio daily return distribution projected to a 10 days horizon, compared to the tail

of the distribution of the portfolio minimum return over the same time horizon. The estimated

quantiles which correspond to the sign-changed 99% VaR and VaR-I are highlighted. Table 6 reports

their values, the corresponding confidence intervals at 95% level and the multiples with respect to

the Gaussian model. We observe that the intra-horizon VaR consistently exceeds the traditional

VaR, and that jump risk tends to amplify intra-horizon risk; in particular, the pure-jump ‘all-NIG’

model displays the thickest tails for both the return and the minimum return distributions, and thus

provides the most conservative risk estimates, with a VaR 1.11 times higher than the VaR under

the Gaussian model and a VaR-I 1.13 times higher with respect to the Gaussian one. The VaR

under the jump-diffusion ‘all-MJD’ specification is 1.05 times higher and the VaR-I is 1.06 times

higher with respect to the corresponding measures under the the Gaussian model. These results

reflect the slower decay in the distribution tails of the NIG and the MJD processes compared to
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Figure 9
Portfolios fit. P-values complementary distribution functions for the Kolmogorv-Smirnov test.

VaR VaR-I

Estimate CI(lb) CI(ub) Multiples Estimate CI(lb) CI(ub) Multiples
Gaussian 0.0700 0.0570 0.0833 1.0000 0.0739 0.0613 0.0867 1.0000
‘all-MJD’ 0.0736 0.0589 0.0889 1.0514 0.0784 0.0638 0.0948 1.0609
‘all-NIG’ 0.0778 0.0605 0.0966 1.1114 0.0834 0.0653 0.1022 1.1285

Table 6
10 days horizon 99% VaR and VaR-I of an equally weighted portfolio under the ‘all-NIG’, ‘all-MJD’ and
Gaussian models, with confidence intervals at 95% level. Confidence intervals computed using bootstrap
resampling methods, as illustrated in Appendix B.

the Brownian motion, as discussed in Section 2.

6 Conclusions

We propose an estimation procedure for multivariate asset models based on linear transformation

of Lévy processes as in Ballotta and Bonfiglioli (2014), allowing to extend the use of multivariate

Lévy models for risk and portfolio management applications.

For the case of a n asset portfolio, the two-step estimation procedure proposed in this article

basically reduces to (n + 1) univariate estimations and a distance minimization on the covariance

matrix; therefore it is fast to implement and its complexity does not increase with the number

of components of the multivariate model (n). Our simulation study reveals that this approach

is almost as effective as a more traditional direct maximum likelihood estimation of the whole

set of parameters, as long as proper univariate estimation methods are used; however, the two-

step procedure proves to be significantly more efficient from the computational point of view. The

proposed approach is flexible with respect to the number of assets included in the portfolio and does

not impose any convolution condition on the factors, as it is assumed instead in other multivariate

constructions proposed in the literature. Although in the numerical studies presented in this paper

we make the convenient assumption that all factors are modelled using the same type of process,
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Figure 10
VaR and intra-horizon VaR for an equally weighted portfolio under three specifications of the multivariate
Lévy model (1).
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this assumption can be relaxed as to allow any Lévy process for the idiosyncratic part across all

the names included in the portfolio in order to accommodate different tail behaviours.

As an application, we employ the proposed estimation procedure for the calculation of the

intra-horizon Value at Risk of a portfolio of assets following the model under consideration by

means of the FST algorithm. The numerical study reveals the importance of properly capturing

realistic features of asset log-returns, such as skewness and excess kurtosis, by incorporating jumps

in the risk dynamic. Results from the empirical study, in fact, highlight the more conservative risk

estimates offered by the intra-horizon VaR especially for the case of the NIG, reflecting the different

decay behaviour of the distribution tails. Further applications to portfolio optimization problems

are considered in Loregian (2013).

Extensions to several common factors can also be considered by adopting the Independent

Component Analysis (ICA) approach along the lines considered, for example, in Ghalanos et al.

(2015). This is left to future research.

A EM algorithm for Merton’s JD model

To fit the Merton’s jump-diffusion model (5) we implemented the EM algorithm in the formulation

proposed by Duncan et al. (2009). We report here the main ideas and the formulas needed to

implement the procedure, while referring to the original work for further details. Note that, in

order to simplify the solution of the EM algorithm, we follow Duncan et al. (2009) and adopt an

alternative parametrization of the Merton’s jump-diffusion model (5). Specifically, we set ν = ασ

and τ = βσ (with β > 0). Further, we denote by Dt the first two terms in (5) representing the

diffusion component. Then the independent random vectors

Ct =







(Dt, Nt) (Nt = 0)

(Dt, Nt, Jt,1, . . . , Jt,Nt
) (Nt > 0)

t = 1 . . . , T

completely determine the jump diffusion process Xt in (5). In the EM terminology, Ct are the

complete data, while Xt are the incomplete data. The complete log-likelihood of C1, . . . , CT is

given by

ln(Lc(θ)) =− 1

2
T ln(σ2)− 1

2σ2

T
∑

t=1

(Dt − µ)2 − T ln(
√
2π)

− 1

2
ln(τ2)

T
∑

t=1

Nt −
1

2τ2

T
∑

t=1

Nt
∑

k=1

(Jt,k − ν)2 − ln(
√
2π)

T
∑

t=1

Nt

− Tλ+ ln

(

λ

T
∑

t=1

Nt

)

−
T
∑

t=1

ln(Nt!),

where θ = (µ, σ2, ν, τ2, λ) is the vector of parameters and we interpret
∑Nt

k=1(Jt,k − ν)2 = 0 if

Nt = 0. Starting from an initial guess θ0, in the E-step we compute the best (quadratic loss)
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predictor of ln(Lc(θ)), i.e. its conditional expectation, where we condition on the available data

X. The M-step gives a new estimate θ
(1), which maximizes the conditional expectation computed

in the E-step. Under certain general conditions, the sequence of estimates obtained in this way

yields monotonically increasing values of the likelihood and converges to the ML estimator for the

incomplete data X1, . . . , XT .

The algorithm proposed by Duncan et al. (2009) is particularly efficient due to simple closed

form solutions for the M-step: the optimal values of µ, σ2, ν, τ2 and λ are

µ̂ =
1

T

T
∑

t=1

Eθ0(Dt|Xt), σ̂2 =
1

T

T
∑

t=1

Eθ0

{

(Dt − µ̂)2Xt

}

,

ν̂ =
1

T λ̂

T
∑

t=1

Eθ0(NtJt,k|Xt), τ̂2 =
1

T λ̂

T
∑

t=1

Eθ0

{

Nt(Jt,k − ν̂)2|Xt

}

,

(20)

where

λ̂ =
1

T

T
∑

t=1

Eθ0(Nt|Xt). (21)

The formulas are made operational by evaluating the conditional expectations.

First, λ̂ in (21) and the two functions

at(β) = Eθ0

(

1

1 +Ntβ2

∣

∣

∣

∣

Xt

)

, bt(β) = V arθ0

(

1

1 +Ntβ2

∣

∣

∣

∣

Xt

)

must be evaluated in β0 = σ0/τ0, knowing the conditional probability

Pθ0(Nt = k|Xt) =
ϕ(Xt;µ0 + kν0, σ

2
0 + kτ20 )

∑∞
k=0 ϕ(Xt;µ0 + kν0, σ2

0 + kτ20 )
k = 0, 1, . . .

where ϕ is the normal probability density function. The estimates for µ and σ2 in (20) can then

be computed using

Eθ0(Dt|Xt) = µ0 −
ν0
β2
0

+ at(β0)

(

Xt − µ0 +
ν0
β2
0

)

,

Eθ0

{

(Dt − µ̂)2|Xt

}

= (Eθ0(Dt|Xt)− µ̂)2 + σ2
0(1− at(β0)) + bt(β0)

(

Xt − µ0 +
ν0
β2
0

)2

.
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To find the estimates for ν and τ2 in (20) the following quantities are needed:

ct(β0) = β2
0at(β0)(1− at(β0))− β2

0bt(β0)−
(1− at(β0))

2

Eθ0(Nt|Xt)
,

Eθ0(NtJt,k|Xt) = (1− at(β0))

(

Xt − µ0 +
ν0
β2
0

)

,

Eθ0

{

Nt(Jt,k − ν̂)2|Xt

}

= τ20 (Eθ0(Nt|Xt))− 1 + at(β0)) + ct(β0)

(

Xt − µ0 +
ν0
β2
0

)2

+Eθ0(Nt|Xt)

(

ν̂ − Eθ0(NtJt,k|Xt)

Eθ0(Nt|Xt)

)2

.

To initialize the algorithm, Duncan et al. (2009) suggest to fix the value of ν0 = 0, assuming

symmetric returns, and of λ0 = 0.2 or smaller, and then recover µ0, β0 and σ2
0 exploiting respectively

the moment conditions

E(Xt) = µ, β2 =

√

γ̂

3λ

(

1− λ

√

γ̂

3λ

)−1

,Var(Xt) = σ2(1 + β2λ),

where γ̂ is the sample excess kurtosis of Xt.

B Confidence intervals using bootstrap

The bootstrap method, introduced in Efron (1979), is used to compute the confidence intervals for

the multivariate Lévy model parameters (Tables 7 and 8) and for the risk measures in Table 6. To

preserve the cross sectional dependence in each bootstrap sample, we consider (xt, zt) as a single

observation: the bootstrap samples are built by drawing, out of the given sample of size T , T dates

with replacement each time. Once obtained the distribution of the statistic of interest, we compute

the confidence interval at level α as (QS(α/2);QS(1 − α/2)), where the lower and upper bounds

are respectively the α/2 and 1− α/2 quantiles of the sampling distribution of the statistic S.
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Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub)

µZ 1.24E-03 3.11E-04 2.38E-03
θZ -7.69E-04 -2.23E-03 4.81E-04
σZ 1.19E-02 1.05E-02 1.33E-02
kZ 2.32 1.24 3.73

aY1 0.78 0.67 0.88 aY2 0.92 0.86 0.98 aY3 0.45 0.37 0.52 aY4 0.87 0.81 0.94
µY1 1.88E-04 -2.89E-03 3.09E-03 µY2 1.14E-03 -1.13E-04 3.37E-03 µY3 8.35E-04 -5.49E-04 2.77E-03 µY4 -1.87E-03 -4.63E-03 -2.94E-04
θY1 5.21E-05 -3.05E-03 3.75E-03 θY2 -1.20E-03 -3.55E-03 1.94E-04 θY3 -2.70E-04 -2.34E-03 1.48E-03 θY4 2.32E-03 4.81E-04 5.16E-03
σY1 1.60E-02 1.41E-02 1.78E-02 σY2 6.13E-03 5.59E-03 6.56E-03 σY3 8.66E-03 7.61E-03 9.67E-03 σY4 9.36E-03 8.29E-03 1.04E-02
kY1 1.10 0.42 2.10 kY2 0.62 0.24 1.09 kY3 1.21 0.58 2.02 kY4 0.94 0.37 1.68

aY5 0.86 0.78 0.94 aY6 1.12 1.05 1.20 aY7 0.76 0.68 0.85 aY8 1.03 0.96 1.09
µY5 2.34E-04 -1.63E-03 1.99E-03 µY6 2.54E-04 -7.44E-04 1.37E-03 µY7 3.67E-04 -7.43E-04 1.35E-03 µY8 7.12E-04 -8.60E-04 2.73E-03
θY5 4.83E-04 -1.79E-03 2.93E-03 θY6 -2.53E-04 -1.50E-03 9.55E-04 θY7 -2.37E-04 -1.54E-03 1.21E-03 θY8 -6.50E-04 -2.73E-03 1.05E-03
σY5 1.17E-02 9.95E-03 1.37E-02 σY6 8.16E-03 7.14E-03 9.07E-03 σY7 8.14E-03 6.73E-03 9.75E-03 σY8 7.35E-03 6.68E-03 7.92E-03
kY5 1.74 0.63 3.22 kY6 1.53 0.80 2.45 kY7 2.47 0.97 4.80 kY8 0.64 0.20 1.24

aY9 1.04 0.94 1.13 aY10 0.61 0.56 0.67 aY11 0.49 0.44 0.55 aY12 0.76 0.70 0.83
µY9 -9.67E-04 -2.45E-03 9.74E-05 µY10 1.93E-03 2.87E-04 3.87E-03 µY11 2.59E-04 -7.61E-04 1.14E-03 µY12 -3.97E-05 -1.48E-03 1.17E-03
θY9 1.22E-03 6.22E-05 2.81E-03 θY10 -1.65E-03 -3.69E-03 1.54E-04 θY11 -2.91E-05 -1.14E-03 1.20E-03 θY12 4.99E-04 -8.76E-04 2.26E-03
σY9 6.84E-03 6.02E-03 7.63E-03 σY10 7.04E-03 6.27E-03 7.79E-03 σY11 7.18E-03 6.17E-03 8.23E-03 σY12 8.24E-03 7.37E-03 9.03E-03
kY9 1.08 0.45 1.85 kY10 0.77 0.30 1.37 kY11 1.83 0.77 3.29 kY12 1.17 0.52 1.99

aY13 0.57 0.52 0.62 aY14 1.39 1.29 1.49 aY15 0.62 0.56 0.70 aY16 1.47 1.35 1.59
µY13 -4.65E-04 -1.53E-03 3.83E-04 µY14 -1.18E-03 -4.30E-03 9.38E-04 µY15 -3.74E-04 -3.37E-03 1.82E-03 µY16 -2.98E-04 -2.73E-03 1.57E-03
θY13 9.28E-04 -6.68E-05 2.13E-03 θY14 1.38E-03 -9.31E-04 4.79E-03 θY15 6.50E-04 -1.73E-03 3.58E-03 θY16 1.31E-04 -2.05E-03 2.85E-03
σY13 5.26E-03 4.75E-03 5.75E-03 σY14 1.00E-02 8.93E-03 1.09E-02 σY15 7.18E-03 6.46E-03 7.85E-03 σY16 1.30E-02 1.14E-02 1.44E-02
kY13 0.94 0.41 1.64 kY14 0.70 0.26 1.24 kY15 0.55 0.09 1.10 kY16 1.21 0.43 2.10

aY17 1.17 1.07 1.27 aY18 0.72 0.64 0.78 aY19 0.57 0.51 0.63 aY20 0.95 0.81 1.11
µY17 2.43E-03 3.95E-04 6.70E-03 µY18 8.53E-05 -2.25E-03 1.84E-03 µY19 1.37E-03 -2.09E-03 4.13E-03 µY20 -6.05E-04 -2.28E-03 1.26E-03
θY17 -2.85E-03 -7.19E-03 -2.30E-04 θY18 1.54E-04 -1.75E-03 2.50E-03 θY19 -7.23E-04 -3.75E-03 2.73E-03 θY20 7.78E-04 -1.98E-03 3.21E-03
σY17 1.05E-02 8.74E-03 1.23E-02 σY18 8.75E-03 7.79E-03 9.52E-03 σY19 8.05E-03 7.28E-03 8.59E-03 σY20 1.79E-02 1.54E-02 2.08E-02
kY17 1.23 0.28 2.66 kY18 0.82 0.31 1.43 kY19 0.42 0.10 0.84 kY20 2.34 1.13 4.08

Table 7
Estimates and confidence intervals at 95% level for the ‘all-NIG’ model parameters.



Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub) Par. Estimate CI (lb) CI (ub)

µZ 1.25E-03 2.86E-04 2.25E-03
σZ 5.98E-03 3.23E-03 7.82E-03
νZ -1.67E-03 -5.83E-03 8.03E-04
τZ 1.46E-02 1.06E-02 2.11E-02
λZ 0.47 0.19 1.04

aY1 0.78 0.67 0.88 aY2 0.92 0.86 0.98 aY3 0.45 0.37 0.52 aY4 0.87 0.81 0.94
µY1 5.22E-04 -1.10E-03 8.44E-01 µY2 6.72E-04 -5.55E-06 1.18E+00 µY3 8.75E-04 2.79E-04 5.39E-01 µY4 -1.77E-04 -1.89E-03 1.56E+00
σY1 1.31E-02 9.34E-03 9.84E-01 σY2 5.27E-03 2.71E-03 9.09E-01 σY3 6.34E-03 5.78E-03 8.99E-01 σY4 7.70E-03 5.72E-03 1.12E+00
νY1 -4.03E-03 -4.48E-02 5.02E-01 νY2 -6.09E-03 -1.66E-02 1.08E+00 νY3 -2.89E-03 -9.83E-03 6.08E-01 νY4 6.33E-03 -9.06E-05 7.64E-01
τY1 3.66E-02 1.36E-02 9.61E-01 τY2 7.13E-03 5.29E-04 1.05E+00 τY3 1.90E-02 1.34E-02 1.21E+00 τY4 1.75E-02 2.19E-03 7.86E-01
λY1 0.07 0.01 0.93 λY2 0.12 0.03 1.14 λY3 0.11 0.05 0.67 λY4 0.10 0.02 1.06

aY5 0.86 0.78 0.95 aY6 1.12 1.05 1.20 aY7 0.76 0.68 0.85 aY8 1.03 0.97 1.09
µY5 7.90E-04 -2.43E-05 1.55E-03 µY6 1.29E-04 -4.20E-04 7.60E-04 µY7 4.58E-04 -5.05E-05 9.43E-04 µY8 5.20E-04 -4.26E-04 1.10E-03
σY5 8.53E-03 0 9.23E-03 σY6 5.36E-03 0 6.12E-03 σY7 5.64E-03 0 6.00E-03 σY8 6.36E-03 0 7.02E-03
νY5 -1.18E-03 -1.50E-02 1.50E-02 νY6 -5.83E-04 -3.66E-03 2.07E-03 νY7 -7.66E-03 -2.46E-02 5.47E-03 νY8 -5.36E-03 -3.24E-02 5.89E-04
τY5 3.79E-02 0 5.63E-02 τY6 1.34E-02 0 1.90E-02 τY7 3.42E-02 0 4.33E-02 τY8 1.17E-02 0 1.41E-02
λY5 0.06 0 0.16 λY6 0.22 0 0.47 λY7 4.28E-02 0 7.47E-02 λY8 0.09 0 0.60

aY9 1.04 0.94 1.13 aY10 0.61 0.56 0.67 aY11 0.49 0.43 0.55 aY12 0.76 0.69 0.83
µY9 -4.24E-04 -1.03E-03 3.00E-04 µY10 6.66E-04 0 1.30E-03 µY11 2.48E-04 -2.92E-04 6.98E-04 µY12 -3.51E-05 -8.06E-04 1.11E-03
σY9 5.02E-03 0 6.37E-03 σY10 5.83E-03 0 6.40E-03 σY11 5.35E-03 0 5.79E-03 σY12 4.83E-03 0 7.20E-03
νY9 3.33E-03 0 3.49E-02 νY10 -5.38E-03 -2.06E-02 2.29E-04 νY11 -2.56E-04 -8.48E-03 5.95E-03 νY12 9.53E-04 -1.04E-02 2.60E-03
τY9 1.02E-02 0 2.64E-02 τY10 1.62E-02 0 2.38E-02 τY11 1.95E-02 0 2.70E-02 τY12 9.15E-03 0 1.74E-02
λY9 0.20 0 0.56 λY10 0.07 0 0.29 λY11 0.07 0 0.42 λY12 0.52 0 0.72

aY13 0.57 0.51 0.63 aY14 1.39 1.30 1.49 aY15 0.62 0.56 0.69 aY16 1.47 1.36 1.60
µY13 8.15E-05 -4.97E-04 6.11E-04 µY14 -5.38E-04 -1.69E-03 7.33E-04 µY15 1.39E-04 -8.95E-04 7.50E-04 µY16 -2.61E-04 -1.45E-03 8.76E-04
σY13 3.85E-03 0 4.65E-03 σY14 6.55E-03 0 9.44E-03 σY15 6.61E-03 0 7.07E-03 σY16 8.69E-03 0 1.13E-02
νY13 1.52E-03 -3.70E-04 6.70E-03 νY14 1.34E-03 -2.35E-02 1.08E-02 νY15 4.42E-03 -3.73E-03 4.66E-02 νY16 3.14E-04 -1.93E-02 4.34E-03
τY13 7.18E-03 0 1.09E-02 τY14 1.02E-02 0 2.70E-02 τY15 1.65E-02 0 2.40E-02 τY16 1.76E-02 0 4.02E-02
λY13 0.25 0 0.57 λY14 0.55 0 0.71 λY15 0.03 0 0.65 λY16 0.30 0.00 0.60

aY17 1.17 1.06 1.27 aY18 0.72 0.64 0.78 aY19 0.57 0.51 0.63 aY20 0.95 0.81 1.10
µY17 -7.49E-05 -7.97E-04 1.60E-03 µY18 -4.48E-05 -8.33E-04 8.29E-04 µY19 7.82E-04 -9.07E-06 1.73E-03 µY20 -1.55E-05 -1.23E-03 1.23E-03
σY17 8.99E-03 0 9.56E-03 σY18 6.92E-03 0 7.73E-03 σY19 6.12E-03 0 7.69E-03 σY20 1.11E-02 0 1.37E-02
νY17 -1.86E-02 -1.08E-01 1.85E-02 νY18 1.91E-03 -2.76E-03 9.02E-03 νY19 -3.27E-04 -7.11E-03 5.41E-03 νY20 9.73E-04 -1.32E-02 1.66E-02
τY17 5.83E-02 0 7.31E-02 τY18 1.40E-02 0 2.01E-02 τY19 8.01E-03 0 1.30E-02 τY20 3.24E-02 0 6.76E-02
λY17 0.02 0 0.22 λY18 0.15 0 0.58 λY19 0.43 0 0.65 λY20 0.19 0 0.50

Table 8
Estimates and confidence intervals at 95% level for the ‘all-MJD’ model parameters.
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