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Abstract—Community-based health services have risen as
important online resources for resolving users health concerns.
Despite the value, the gap between what health seekers with
specific health needs and what busy physicians with specific atti-
tudes and expertise can offer is being widened. To bridge this
gap, we present a question routing scheme that is able to connect
health seekers to the right physicians. In this scheme, we first
bridge the expertise matching gap via a probabilistic fusion of
the physician-expertise distribution and the expertise-question
distribution. The distributions are calculated by hypergraph-
based learning and kernel density estimation. We then measure
physicians attitudes toward answering general questions from the
perspectives of activity, responsibility, reputation, and willingness.
At last, we adaptively fuse the expertise modeling and attitude
modeling by considering the personal needs of the health seek-
ers. Extensive experiments have been conducted on a real-world
dataset to validate our proposed scheme.

Index Terms—Adaptive fusion, attitude modeling, community-
based health services (CHSs), expertise modeling, question
routing.

I. INTRODUCTION

THE RISE of digital technologies advances many dis-
ciplines including healthcare. Nowadays, when patients

struggle with health concerns, some of them start to explore
the Internet on their health problems rather than directly
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visit physicians. In particular, 70% of Canadians turned to the
Internet for health-related information in 2009 [1] and 72%
of American Internet users searched for health information
in 2012 [2]. These studies somehow signal the prevalence
of online health seeking behaviors. Thereinto, 92% of the
Canadian online health seekers [1] and 77% of the American
online health seekers [2] gather their health solutions from
the popular and general search engines, such as Google and
Yahoo, instead of specialized health portals. However, the
debate over accuracy and trustworthiness of health informa-
tion returned by general search engines never stops [3]. For
instance, the study in [4] warns health seekers that most of the
sports-related medical information returned by general search
engines is incorrect. Therefore, vertical health services that
can offer health seekers reliable and personalized knowledge
are highly desired.

On the other hand, recent years have witnessed the rev-
olutions in online healthcare systems brought about by the
community-based health services (CHSs). HealthTap1 and
HaoDF2 are the typical examples. They not only allow health
seekers to freely post health-oriented questions, but also
encourage physicians to provide answers of high-quality. With
these services, health seekers can either instantly search similar
cases from the archived question answer (QA) repositories or
obtain personalized health solutions from the real physicians.
Physicians, in turn, can enhance their expertise via interaction
with their peers and diverse health seekers. In such context,
CHSs play a pivotal role in promoting the health knowledge
dissemination and sharing.

In CHSs, the volume of health seekers and their posted ques-
tions usually increases at a faster pace than that of physicians.
Considering HealthTap as an example, as of March 2013, it
had served 7.5 million unique health seekers and received
more than 10 million questions3 monthly. However, it has only
attracted less than 68 thousand physicians since its founda-
tion in 2010. Physicians are thus frequently overwhelmed by
numerous questions that are beyond their expertise or interests.
Meanwhile, health seekers often suffer from a long time wait-
ing for the professional solutions to their specific questions.
The time varies from hours to days according to our obser-
vation. Such problem, in fact, can be well-addressed by the

1https://www.healthtap.com/
2www.haodf.com
3http://techcrunch.com/2013/03/16/
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“right” physician-patient match. As reported in this paper,4 the
right physician-patient match can produce better results. On
the contrary, an ineffective physician-patient matching mech-
anism may lead to an extra cost of patients, interest loss
of physicians, and hence quality deterioration in community
content. Therefore, an effective approach to instantly routing
questions to the right physicians is necessary.

Question routing in CHSs is, however, nontrivial due to the
following reasons. First, medical concepts in CHSs expressed
by the low-literacy laypersons and the highly-technical experts
are, more often than not, variant. For example, “shortness of
breath” and “breathless” may be used by different users to
refer to the same concept “dyspnea.” Conventional term-based
representation approaches are not applicable to capture such
variants or synonyms of medical concepts. Second, different
from the general community-based question answering ser-
vices (cQA), such as Yahoo! Answers, the roles of askers and
answerers in CHSs are not exchangeable. Besides, the askers’
profiles are inaccessible due to the privacy issues. Hence, it
is hard to collect the profiles and past records of the health
seekers and leverage them to train the routing models. Third,
the qualities of answers are usually jointly affected by physi-
cians’ expertise and attitude. Most importantly, health seekers
expect personalized health solutions regarding their specific
question contexts. Question context refers to the health cues
conveyed by the given question, probably including the health
seekers’ demographic information, physical and mental symp-
toms, diseases, and medical histories, through which health
seekers expect to express their health conditions [5]. These fac-
tors together pose tough challenges for health question routing
in CHSs.

It is worth mentioning that question routing approaches have
been initiated and developed in various cQAs. Roughly speak-
ing, they can be divided into two categories: 1) the global
expert discovery [6] and 2) the topic-level expert discovery [7].
The philosophy behind the global expert discovery is to mea-
sure the experts’ authorities using the links acquired from the
past posts, regardless of the given question context [8], [9].
In contrast, topic-level expert discovery approaches solve the
problem of question-aware expertise matching in a finer-
granularity. Even though great success has been achieved
by the existing methods, they will encounter the following
challenges when applied to CHSs.

1) The first category of approaches do not take the ques-
tion context into consideration, which is the key in
healthcare. This is because the health conditions, such
as symptoms and other demographic cues, are usually
conveyed in the question contexts.

2) Those in the second category could find experts accord-
ing to the similarities between the given question context
and the profiles of the candidate experts, but none of
them [7], [10]–[13], as far as we know, have encoded
the experts’ attitudes into their models.

Even worse, the profiles and historical behaviors of health
seekers are unable to be leveraged, as they are invisible to the
public.

4http://tinyurl.com/zbybmkq

To address the aforementioned problems, in this paper, we
present, a question routing scheme for CHSs. This scheme
is able to route the given question to the appropriate physi-
cians by jointly considering the personal needs of the health
seekers, physicians’ expertise, and physicians’ attitudes. As
illustrated in Fig. 1, our scheme consists of three main com-
ponents. The first one attempts to model the expertise matching
between the given question and candidate physicians. This
is accomplished via fusing hypergraph-based learning and
kernel density estimation, KDE for short. The hypergraph-
based learning calculates the medical expertise distribution
through a fuzzy style partition. The constructed hypergraph
is capable of characterizing the higher-order relations among
physicians, and it is able to seamlessly integrate multifaceted
heterogeneous cues, such as physicians’ social connections,
biographies, and historical experience. On the other hand,
inspired by the soft voting strategy, we employ the KDE to
estimate the expertise-question distribution. The second com-
ponent assumes that physicians’ attitudes significantly affect
their behaviors and thus have key influences on the qualities
of their provided answers. We model the expert attitudes from
multiple angles, namely, activity, responsibility, reputation,
and willingness. Regarding the third component, it adaptively
weighs the effects between expertise modeling and attitude
modeling according to the context of the given question. This
is motivated by the observation that question contexts hold
a bias toward expertise or attitude. It is worth emphasis that
data are represented by topic-level features, which are robust
toward data inconsistency and can capture the data semantics.
Extensive experiments on a real-world dataset have validated
our routing scheme and demonstrated its advantages over
several state-of-the-art baselines.

The main contributions of this paper are threefold.
1) To bridge the expertise matching gap, we propose

a probabilistic model that seamlessly integrates the
physician-expertise distribution and expertise-question
distribution. It is noteworthy that the former distri-
bution was estimated by a hypergraph-based learning
algorithm, which explores the higher-order relations
among physicians and the heterogeneous information of
physicians.

2) To comprehensively model physicians’ attributes toward
answering general questions, we heuristically define
some metrics, including activity, responsibility, reputa-
tion, and willingness. We adaptively adjust the effects
between expertise and attitudes by considering question
contexts.

3) To the best of our knowledge, this is the first work
that targets at routing questions to appropriate physicians
in CHSs.

The remainder of this paper is organized as follows.
Section II reviews the related work. In Section III, we briefly
introduce our question routing scheme. Expertise modeling
and attitude modeling are detailed in Sections IV and V,
respectively. In Section VI, we investigate the relations
between expertise and attitude. Section VII presents the exper-
imental results and analysis, followed by our concluding
remarks and future work in Section VIII.

http://tinyurl.com/zbybmkq
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Fig. 1. Schematic of our proposed question routing scheme, consisting of three component. The first two components estimate the matching score between
the given question and each physician from the perspective of expertise and attitude, respectively. The third component adaptively balances the impact between
these two factors via a supervised regression model.

II. RELATED WORK

A. Question Routing

It is worth mentioning that, to bridge the matching gap
between questions and answers, several research efforts have
been dedicated to the question routing approaches in the past
decades, with well theoretical underpinnings and great practi-
cal success. These efforts can be roughly divided into two
categories: 1) global expert discovery approaches [14] and
2) topic-level expert discovery approaches [10].

The idea behind the approaches of global experts discovery
is to measure question-independent experts’ authorities using
links acquired from posts and replies at specialized forums [8].
Most of the existing efforts represent the environments as
graphs where nodes represent all users and edges represent
the interactions between them. Such representations benefit
several applications of “link analysis” techniques and graph-
based ranking algorithms such as hyperlink-induced topic
search (HITS) [15] and PageRank [16]. The output of these
algorithms is a ranked list of experts based on their expertise
on subjects of interest. Based on the list, the top K experts are
considered as the most reliable ones. For example, to measure
the prestige of an author in the ACM/IEEE research commu-
nity, Liu et al. [17] employed a graph to represent the co-
authorship network, where nodes and edges stand for authors
and their collaboration relationships, respectively. Meanwhile,
they explored various edge representations, spanning from
nonweighted undirected graph, nonweighted directed graph,
to weighted directed graph. Another example was introduced
in [18], which aims to identify experts from cQAs. Similarly,
the data were represented as a graph where nodes correspond
to users and edges represent the interactions between askers
and answerers. In addition, systems developed in [6] and [19]
achieved promising performance for expertise identification
from email and the authors concluded that graph-based algo-
rithms seem more suitable for the purpose of expert identifica-
tion. Bouguessa et al. [9] noticed that a major problem of this
research line: we have to determine how many users can be
chosen as authoritative experts from a ranked list. Toward this

end, they proposed to model the expertise score of each user
as a mixture of Gamma distributions. This method enables
automatic discrimination between experts and nonexperts.

On the other hand, topic-level expert discovery approaches
consider the question-aware expertise matching in a finer-
granularity as compared to those in the first category. These
approaches usually construct expert profiles first by aggre-
gating historical information. For a given question, all the
candidate experts are returned in a ranking list according to
the similarity between the given question and the expert pro-
files. For example, the work in [10] seeks to recommend the
right expert with two steps. Its first step attempts to discover
latent topics in the content of QA pairs as well as latent
interests of users to build user profiles. It then recommends
experts for newly posted questions according to the discov-
ered topics as well as term-level information of questions
and experts. Another example was introduced in [11]. This
paper presents three language model-based approaches to rep-
resent the expertise of users relying on their previous question
answering activities, and it then reranks the user expertise
measured in terms of probability by utilizing the structural
relations among users in a forum system. Experimental results
on the real-world data show that this approach can effectively
find promising experts for new questions. Meanwhile, the rout-
ing system developed in [7] treats the question routing problem
as a classification task, and extracts a rich set of local features
and global features which are able to capture different aspects
of the questions, the users, and the relationships between them.
Extensive experimental results indicate high feasibility of this
approach. Beyond expertise estimation, Li et al. [12], [13] also
incorporated the availabilities of experts and category-sensitive
language models to boost the routing performance.

In summary, the approaches of the first category [6], [8],
[9], [11], [15]–[17], [19], only take experts’ information into
consideration and do not leverage the question contexts to esti-
mate the matching score between questions and physicians.
They are thus not applicable to the health domain, since pre-
cise expert-question matching is the key in the health sectors.
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In addition, none of the aforementioned approaches pay atten-
tion to the experts’ attitudes, which in fact play pivotal roles
in the task of question routing.

B. Hypergraph-Based Learning

Given a collection of data samples, it is a common practice
to represent the similarity relations between its elements using
either a weighted or an unweighted simple graph, whereby
vertices are samples and edge weights indicate the similarity
between two samples [20]. Some machine learning methods
for unsupervised and semi-supervised learning can then be for-
mulated in terms of operations on this simple graph. However,
the learning methods based on simple graph consider only the
pairwise relationship between two samples, and they ignore
the relationship in a higher order. For example, from a graph,
we can easily find two close samples according to the pair-
wise similarities, but it is not easy to predict whether there are
three or more close samples. Essentially, modeling the high-
order relationship among samples will significantly improve
classification performance. Hypergraph addresses this prob-
lem, which is a generalization of a pairwise simple graph,
where an edge can connect any number of vertices [21]. The
expressive power of the hypergraph models places a special
emphasis on the relationship among three or more samples,
which has made hypergraphs better models of choice in a lot
of problems. This is in sharp contrast with the conventional
simple graph representation of samples where only pairwise
connectivity between samples is captured.

Recently, there has been a lot of interest in learning
with hypergraph [22], [23], which has been proven to be a
successful tool to represent and model concepts and struc-
tures in various areas of computer science. For example,
Agarwal et al. [24] first introduced the hypergraph idea to
the field of computer vision, and solved it by transferring
the hypergraph to the simple graph using “clique average.”
Zhou et al. [25] developed a general framework which applies
to classification, clustering, and embedding on hypergraph
data, and has been adopted widely to solve the unsuper-
vised video object segmentation problem in [26]. The work
in [27] cast the image matching problem to a hypergraph-
based convex optimization problem. Tian et al. [28] introduced
a hypergraph-based learning algorithm to classify arrayCGH
data with spatial priors modeled as correlations among vari-
ables for cancer classification and biomarker identification.
Huang et al. [29] formulated the task of image clustering
as a problem of hypergraph partition, where image and its
nearest neighbors form two kinds of hyperedges based on the
descriptors of shape or appearance. The work in [30] lever-
ages a hypergraph to depict the attribute relations in the data,
and successfully transformed the attribute prediction prob-
lem as a regularized hypergraph cut problem. Besides, several
hypergraph-based ranking models have been proposed and val-
idated, such as the hypergraph-based image retrieval in [31]
and hypergraph-based question annotation in [32].

In this paper, we employ hypergraph to characterize the
higher-order relations among physicians, and adopt it to
seamlessly integrate multifaceted heterogeneous cues, such

Fig. 2. Illustration of a QA example selected from HealthTap. Even if it has
multiple answers, we do not list all of them due to the limited space.

as physicians’ social connections, biographies, and historical
experience.

C. Multiview Information Fusion

In this paper, we fuse physicians’ multiview information,
consisting of expertise and attitude, to estimate the “match-
ing score” between the physician candidate and the given
health-oriented question. Frankly speaking, multiview learning
methods have been well-studied, such as the multiview learn-
ing on object classification [33], [34], multiple social network
learning [35]–[38]. They consider the relationships among dis-
tinct views. But it is hard to predefine or discover the relations
between expertise and attitude of physicians. Consequently, the
conventional multiview learning approaches are not applicable
to this paper.

III. QUESTION ROUTING SCHEME

To formulate our problem, we declare some notations in
advance. In particular, we use bold capital letters (e.g., X)
and bold lowercase letters (e.g., x) to denote matrices and
vectors, respectively. We employ nonbold letters (e.g., x) to
represent scalars, and Greek letters (e.g., λ) as parameters. If
not clarified, all vectors are in column form.

Suppose that we are given a collection of n physicians in
the target CHS, and it is denoted as D = {d1, d2, . . . , dn}.
Physicians are represented by their profiles,5 comprising of
their biographies and QA pairs they involved before. A biog-
raphy contains a physician’s education, publications, awards,
endorsements, and other information. Regarding the QA pair, it
is composed of a question, answers, tags associated to answers,
and agree votes to answers. Fig. 2 shows one typical QA
pair example. We view QA pairs involved by a physician as
his/her accumulated experience. di is the vectorized feature
representation of physician di.

5A profile example of a physician is accessible here:
www.healthtap.com/experts/10003568-dr-james-w-ferguson.

www.healthtap.com/experts/10003568-dr-james-w-ferguson
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For a given question q in natural language, we aim to select
a small set of matched physician candidates from D and route
question q to them. The matched score is estimated as

S(di, q) = (1 − λ(q)) · E(di, q) + λ(q) · A(di) (1)

where E(di, q) is an expertise model that captures how well
the physician di can potentially answer the given question q
from a professional perspective. A(di) is an attitude model
that models the physician’s choice of action and the way of
behaving toward general questions. Attitudes are not directly
observable but can be inferred from the historical behaviors.
In addition, λ(q) is an adaptive parameter to balance the
effects between expertise and attitude. It is question-aware and
somehow reflects the personalized healthcare.

IV. EXPERTISE MODELING

In latent Dirichlet allocation (LDA) [39], each document
is viewed as a distribution of various topics. For example, a
document is related to topic 1 with probability 0.7, and topic 2
with probability 0.3. Meanwhile, LDA posits that each topic
is a distribution over words. For example, a cat-related topic
has probabilities of generating the words of milk, meow, and
kitten, while a dog-related topic likewise has high probabilities
of generating the words of puppy, bark, and bone. In practice,
only the words in each document are observable. The topic
mixture of each document and the topic for each word in each
document are latent variables that need to be inferred from the
observations.

Inspired by the principle of LDA, we assume that each
physician can be characterized by a particular set of exper-
tise. For example, a physician has 70% of confidence to solve
questions of breast cancer, and has 30% of confidence in
hernia-related concerns. In addition, we also assume that each
expertise can be interpreted by a group of semantically similar
questions that can be professionally handled by this expertise.
Take the expertise on breast cancer as an example. It is rea-
sonable to use questions like “Can men without breasts get
breast cancer?” to represent the semantics of skills on breast
cancer. Analogous to topics and words in LDA, expertise is an
unobservable variable and questions are observable. Inspired
by this, we formulate the expertise matching score between
each physician and the given question as

E(di, q) = p(q|di) =
∑

j

p
(Ej|di

) × p
(
q|Ej

)
(2)

where p(Ej|di) estimates medical expertise distribution, i.e.,
how skillful the given physician di is with respect to expertise
Ej; and p(q|Ej) calculates the expertise-question distribution,
i.e., to what degree question q can be professionally solved
by expertise Ej.

A. Medical Expertise Distribution

We observed that a physician in CHSs usually holds multi-
ple skills with different confidences.6 For example, a physician

6According to our statistics on the collected data, each physician in
HealthTap on average has 3.4 professional skills.

may be proficient in obstetrics, good at pediatrics, and famil-
iar with breast cancer, simultaneously. To obtain the quantified
score p(Ej|di), we have to solve two problems: 1) estimating
how many fields of expertise are hidden in the physician set
D and 2) inferring the physician confidence at each specific
expertise. We deem them as a “soft” physician partition task
on D. That is, a physician may fall into multiple fields of
expertise with different confidence scores p(Ej|di).

Several clustering techniques can be utilized to calcu-
late p(Ej|di), such as k-means [40], LDA, and graph-based
clustering [41]. These approaches, however, suffer from the
following two intrinsic limitations. First, they, more often than
not, hypothesize pairwise relations among the entities of the
interest. In CHSs, relations among physicians are much more
sophisticated and complex. For example, one question may be
replied by more than two physicians, and they might partially
share one common expertise. Naively squeezing the group-
ing relations into the pairwise ones may lead to a information
loss. Second, even though great success has been achieved
for homogeneous relations, they are unable to handle het-
erogeneous relations. Generally speaking, the relations among
physicians in CHSs can be reflected from multifaceted aspects,
such as similar experiences and co-answering. In the light of
this, we build a hypergraph and perform a probabilistic par-
tition based on this hypergraph. It enables each hyperedge
to connect more than two physicians and hence is capable
of summarizing the local grouping information. In addition,
different hyperedges can represent heterogeneous relations.

A hypergraph G(D,U , W) is composed of a vertex set D, a
hyperedge set U , and a diagonal matrix of hyperedge weights
W [42]. Here, U is a family of hyperedges e that connect arbi-
trary subsets of D, and each hyperedge e is assigned a weight
W(e). In this paper, physicians are treated as vertices. Three
types of hyperedges are constructed. Regarding the first type
of hyperedges, we treat each physician as a centroid and use a
hyperedge to circle around his/her k-nearest neighbors based
on their profile similarities. Whereby, a physician’s profile is
constructed via concatenating his/her biography and historical
QA pairs. Here k is empirically set to 25. For each physician,
the second and third types, respectively, utilize one hyperedge
to group those physicians who have voted his/her answers
before, or have co-answered some questions before.

A probabilistic hypergraph G can be represented by an
incidence matrix H with |D| × |U | entries

h
(
di, ej

) =
{

p
(
di, ej

)
if di is linked by ej

0 otherwise
(3)

where p(di, ej) describes the probability that physician di falls
into one community grouped by the hyperedge ej. Let us
denote dj as the centroid of ej, and define p(di, ej) as

p
(
di, ej

) =
{

K
(
di, dj

)
Biography/Experience

1 Co-answer/Voting-based.
(4)

K(·, ·) is the Gaussian similarity function [20], defined as

K
(
di, dj

) = exp

(
−

∣∣∣∣di − dj
∣∣∣∣2

σ 2

)
(5)
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where the radius parameter, σ , is simply set as the median of
the Euclidean distances among all physician pairs.

Based on H, the vertex degree of di ∈ D is estimated as

d(di) =
∑

ej∈U
W

(
ej

)
h
(
di, ej

)
. (6)

The weight for each hyperedge is computed as

W
(
ej

) =
∑

di∈ej

h
(
di, ej

)
(7)

where di ∈ ej means that vertex di involves in hyperedge ej. If
the hyperedge ej has a higher inner group similarity, it will be
assigned a larger weight [21], which indicates its compact and
dense connections within its group. For a hyperedge ej ∈ U , its
degree, δ(ej), is defined as the number of physicians connected
by this hyperedge.

Several methods thus far have been proposed for hypergraph
partition, and achieved great success [43]. In this paper, we
adopt the framework in [29] to partition the hypergraph due
to its efficiency. Beyond that, our constructed hypergraph is a
probabilistic graph. Inspired by the normalized cost function
of a simple graph [44], [45], we define the regularizer �( f )
on the given hypergraph as

1

2

∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(
f (u)√
d(u)

− f (v)√
d(v)

)2

(8)

where vector f ∈ R
D contains the relevance probabili-

ties between each physician and a specific latent exper-
tise category that we want to learn. By defining � =
D−(1/2)

v HWD−1
e HTD−(1/2)

v , we can further derive that

∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(
f 2(u)

d(u)
− f (u)f (v)√

d(u)d(v)

)

=
∑

u∈V
f 2(u)

∑

e∈E

w(e)h(u, e)

d(u)

∑

v∈V

h(v, e)

δ(e)

−
∑

e∈E

∑

u,v∈e

f (u)h(u, e)w(e)h(v, e)f (v)√
d(u)d(v)δe

= fT(I − �)f (9)

where I is an identity matrix. Let � = I − �, which
is a positive semi-definite matrix, the so-called hypergraph
Laplacian [25], then �(f) can be rewritten as

arg min
f∈�D

�(f) = fT�f. (10)

By minimizing �(f), we can ensure that the relevance proba-
bility function is continuous and smooth in the semantic space.
This implies that the scores of physicians, who have simi-
lar expertise, should be close. The theoretical solution of the
above optimization problem is the eigenvector associated with
the smallest nonzero eigenvalue of �. To make a multiway
clustering of vertices in the given hypergraph, we take T eigen-
vectors corresponding to the T smallest nonzero eigenvalues of
� as our solutions {f(1), f(2), . . . , f(T)}. We set f( j)

i = p(Ej|di)

with (1 ≤ j ≤ T). To adaptively determine the threshold T ,
we first sort all the nonzero eigenvalues in an ascending order,
and then select the cutoff at the point that achieves the largest

increasing gap. Thereinto, T denotes the number of expertise
hidden in a given physician collection D.

B. Expertise-Question Distribution

So far, we have obtained f( j)
i , which refers to the confi-

dence of physician di with expertise j. We thus can generate a
physician ranking list for each expertise. To semantically rep-
resent the expertise Ej, we first merge all the QA pairs of the
top 50 physicians from the jth expertise, and denote such a
collection as QAj. We observe that physicians with the same
expertise frequently use common medical concepts to convey
the same skill. We hence select ten concepts with high frequen-
cies from QAj. Afterwards, we use these concepts as queries
to search over QAj to retrieve the top 100 relevant QA pairs
(Apache Lucene indexing and search). These selected 100 QA
pairs are ultimately used to represent the expertise Ej, and are
denoted as Xj.

We employ the KDE approach [46] to estimating the rela-
tions between a question and each given expertise. KDE has
been widely applied in various applications, such as image
ranking [20]. It is formally stated as

p
(
q|Ej

) = 1∣∣Xj
∣∣

∑

qi∈Xj

K(qi, q) (11)

where qi is the ith QA pair from Xj. The above equation can
be intuitively interpreted as follows: Xj and each of its QA pair
can be viewed as a family and a family member, respectively.
Then the closeness of an unknown question to this family is
estimated by averaging the soft voting from all family mem-
bers. As yet, we have derived the expertise matching score
E(q, di) between a given question and each physician.

V. ATTITUDE MODELING

Attitude is defined as a relatively enduring organization of
beliefs, feelings, and behavioral tendencies toward socially
significant objects, groups, events, or symbols.7 Social psy-
chologists have justified that attitudes and actual behaviors are
usually consistent [47]. In view of this, we assume that physi-
cians behave in accordance with their attitudes. Psychologists
frequently describe attitudes with the ABC model8 in terms of
three components: 1) affective component (A); 2) behavioral
component (B); and 3) cognitive component (C). This mode is,
however, difficult to be quantized. Based on the available infor-
mation from CHSs, in this paper, we comprehensively model
physicians’ attitudes from four complementary perspectives:
1) activity; 2) responsibility; 3) reputation; and 4) willingness.
They are estimated based on physicians’ historical data.

Activity estimates how active or fast the physicians’
responses will be once questions are routed to them. It is
defined as

Activity(di) = #first(di) + ε

#answered(di) + 1
(12)

where #first(di) and #answered(di), respectively, denote the
number of questions that physician di has been the first

7http://www.simplypsychology.org/attitudes.html
8http://www.gerardkeegan.co.uk/glossary/gloss_t.htm

http://www.simplypsychology.org/attitudes.html
http://www.gerardkeegan.co.uk/glossary/gloss_t.htm
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to answer and participated to answer before. The larger
Activity(di) is, the shorter time physician di may use to reply
the given question di. In addition, ε is a smoothing factor
which is set to 10−3 in this paper.

Responsibility measures the degree of physicians’ obligation
to satisfactorily solve the given questions. It characterizes the
answer qualities. If a provided answer was selected as the
best answer by peer votes, physician di is deemed as having
been responsible for that answer. Responsibility of di can be
formulated as

Responsibility(di) = #bestAnswer(di) + ε

#answered(di) + 1
(13)

where #bestAnswer(di) denotes how many answers provided
by di have been selected as the best answers.

Activity and responsibility metrics, however, have one lim-
itation. Specifically, a physician, who only answered one
question, and whose answer might be the first or the best
answer, would achieve a higher attitude value. This does not
make sense. Willingness is devised specifically to compensate
for such a problem. It estimates the willingness of a given
physician to take up one routed question from the perspective
of response rate

Willingness(di) = #answered(di) + ε

#maxAnswers
(14)

where #maxAnswers is the maximum number of answers that
have been provided by someone in D.

A physician’s reputation is the general belief or opinion that
their peers and patients have. In CHSs, a physician’ online
reputation is usually recognized via the votes from others.
We utilize the sigmoid function with output ranging between
0 and 1 to denote the reputation

Reputation(di) = 1

1 + e−(ρ×#Peer+#Seeker)
(15)

where #Peer and #Seeker, respectively, denote the number of
total votes from physicians and health seekers for the given
physician. ρ is a parameter emphasizing endorsements from
peers, since they are more professional and reliable. It is set to
the ratio between the average number of votes from physicians
and health seekers in our whole data collection. In particular,
it is set as 1.06 in this paper.

The multiplication results of the aforementioned factors
reflect physicians’ attitudes to general questions. In summary,
our proposed physicians’ attitude modeling is question inde-
pendent. It predicts physicians’ behaviors toward answering
general questions.

VI. ADAPTIVE FUSION

According to our observation, different questions hold dif-
ferent biases in favor of either expertise or attitude. Table I
displays some question examples. From this table, it can be
seen that the first three questions ask for some factoid prob-
lems or basic knowledge in the health domain. It is obvious
that junior physicians can well answer such questions with
high confidences. Meanwhile, the quality in terms of intu-
ition and comprehension is of vital importance. This kind of
quality is strongly dependent on physicians’ attitudes rather

TABLE I
ILLUSTRATION OF THE QUESTION BIAS TOWARD EITHER EXPERTISE OR

ATTITUDE. WE DID NOT LIST THE CORRESPONDING ANSWERS

DUE TO THE LIMITED SPACE

than expertise. On the other hand, the last three questions seek
for reasoning results or very professional knowledge based on
the given manifested symptoms and signals. In such scenarios,
expertise is the key to the answer quality.

The parameter λ in (1) is an adaptive function of the given
question context, which balances the importance between
expertise and attitude. When λ = 1, all the newly posted ques-
tions will be routed to the physicians with optimal attitudes
and their expertise is completely overlooked. On the contrary,
if λ tends to zero, physicians’ attitudes will not be considered.

We regard the estimation problem of λ as a supervised
regression task [48]. The objective is to predict a weight for
each newly asked question. For each question in the training
data, we first obtain its optimal value of λ, which is derived
by sweeping [0, 1] with a small and fixed step size. These
optimal values are utilized as the ground truth to train the
regression models. Various regression models are examined,
spanning from linear regression [49], isotonic regression [50],
to pace regression [51].

VII. EXPERIMENTS

In this section, we first discuss the experimental settings,
including the data collection and feature extraction. Following
that, we detail the objective and subjective evaluation met-
rics. We then validate the whole scheme and each of its
components.

A. Data Collection and Feature Extraction

To avoid the data sparseness, we manually selected 100
active physicians as seeds from HealthTap, and iteratively
extended the seeds by crawling/adding other physicians who
have co-answering or voting relations with the physicians in
the seed set. We ultimately collected a set of 3123 physician
profiles from HealthTap. Each profile contains a physician’s
biography and a set of involved QA pairs. Table II shows
the statistics of our data. It can be seen that the aver-
age number of votes is high, which tells that physicians in
CHSs are very active to establish and maintain their social
relations. Meanwhile, we can derive that each physician on
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TABLE II
STATISTICS OF OUR DATA COLLECTION. THE SYMBOLS OF # AND #a DENOTE THE

NUMBER AND THE AVERAGE NUMBER OF SOMETHING, RESPECTIVELY

Fig. 3. Curve of perplexity values with respect to the number of topics.
As can be seen, we obtain the optimal perplexity value when the number of
topics is at 110.

average answered more than 75 questions, which implies that
physicians are enthusiastic to contribute their knowledge and
support the health seekers online.

We employed the LDA-based topic-level features for physi-
cian profile representation. In particular, each latent topic
was deemed as one feature. The number of topics was
tuned according to the widely-adopted perplexity metric [39].
Regarding perplexity, a lower value usually indicates a better
LDA model. We divided the physician profiles into two sub-
sets: 1) 80% was used to train the LDA models with various
numbers of latent topics and 2) 20% was used for evaluation
in terms of perplexity. In addition, the LDA model and per-
plexity metric were implemented with the help of the Stanford
topic modeling toolbox.9 As shown in Fig. 3, when the num-
ber of latent topics arrives at 110, the perplexity curve reaches
the trough. Each physician was hence represented as a 110
dimensional semantic feature vector.

As compared to the representation of physician profiles,
topic-level features are unable to be precisely extracted from
each single question or QA pair, since it is relatively short and
lack of contexts. In addition, users with diverse backgrounds
do not necessarily share the same vocabulary in CHSs [52].
Oftentimes, the same medical subjects may be colloquially
expressed with distinct medical concepts. For example, “birth
control” and “family planning” are commonly used by individ-
uals to refer to the same medical terminology “contraception.”
In a sense, the traditional context representations such as
n-grams are unable to capture the variation of medical con-
cepts and may lead to an explosion of feature dimension (i.e.,
the curse of feature dimensionality). To alleviate such prob-
lems, we employed the MetaMap tool [53] to detect medical
attributes that are noun phrases in the health domain, and
then normalized them to standardized terminologies in the
SNOMED CT Metathesaurus.10 The work in [52] detailed

9http://nlp.stanford.edu/downloads/tmt/tmt-0.4/
10http://www.ihtsdo.org/snomed-ct/

this procedure. The semantic types of these terminologies span
from symptom, treatment, medication, body parts, to demo-
graphics. In this paper, we utilized these normalized medical
attributes to represent the question or QA content. In the end,
we obtained 5036 dimensional bag-of-terminologies. Before
feeding such features into our model, we performed prin-
cipal component analysis (PCA)11 and reduced the feature
dimension to 800, which will significantly boost the learning
efficiency.

For the subsequent subjective evaluations, we invited three
volunteers with basic medical backgrounds. The volunteers
were trained with short tutorials and a set of typical exam-
ples before their labeling procedure. A majority voting scheme
among the three volunteers was adopted to partially alleviate
the subjectivity problem. For cases where there were two vol-
unteers having an understanding problem regarding the same
instance, a discussion was carried out among the volunteers
to obtain the final decision.

B. Evaluation Metrics

It is well known that, for the expert recommendation task,
precision is usually more important than recall. We thus
adopted two metrics that are able to capture precisions from
different aspects: objective and subjective evaluations.

Regarding the objective evaluation, we employed the aver-
age H@K [54]. For a given question, H@K is defined as 1, if
there exists at least one physician, who really replied the given
question before, being ranked in one of the top K% positions;
otherwise H@K is defined as 0. The metric benefits from the
real-world data and does not need the construction of ground
truth. In this paper, for all evaluations in terms of average
H@K, we randomly selected 1000 questions from our dataset
as the test set and reported the average H@K over the testing
samples. However, this metric may suffer from this scenario:
physician di did reply the given question q, meanwhile physi-
cian dj has the ability to solve q but he/she did not answer it
due to some unknown reasons. Even though our scheme has
a large probability to rank physician dj in a higher position
than di, H@K overlooks that. Therefore, the only H@K met-
ric cannot evaluate our routing scheme comprehensively and
fairly.

As a complement to H@K, we adopted one subjective
metric S@K. It measures the probability of finding a matched
physician among the top K recommended physicians. To be
more specific, for each given question, S@K is assigned as 1 if
a matched physician was ranked in one of the top K positions
and 0 otherwise. Distinguished from the objective evalua-
tion, the ground truth here was manually constructed by three
invited volunteers. In particular, they were presented with a

11http://sebastianraschka.com/Articles/2014_pca_step_by_step.html

http://nlp.stanford.edu/downloads/tmt/tmt-0.4/
http://www.ihtsdo.org/snomed-ct/
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
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TABLE III
INTERVOLUNTEER AGREEMENT EVALUATION IN TERMS OF THE KAPPA METRIC. TOP 20 PHYSICIANS FOR

EACH TESTING QUESTION WERE MANUALLY LABELED BY OUR INVITED VOLUNTEERS

ranked list of physicians for each question generated by our
scheme. They were then asked to go through each physi-
cian’s biography and historical behaviors. Meanwhile, they
were encouraged to use the Internet to facilitate specific termi-
nology understanding. They were then suggested to label each
physician in the ranking list as “matched,” if they believed that
the physician is able to and would like to answer that ques-
tion based on their understanding; otherwise, they labeled it
as “not matched.” In this paper, for all evaluations in terms
of S@K, we randomly selected 50 questions from our dataset
to serve as the test set. Here we evaluated the intervolunteer
agreement with the Kappa method [55]. The Kappa metric
is a chance corrected statistic to quantitatively measure the
degree of intervolunteer agreement. A Kappa result ranges
from 0 to 1. The higher the value of Kappa is, the stronger
the agreement will be. A Kappa value more than 0.7 typi-
cally indicates that the agreement is strong. In this paper, we
employed the online Kappa calculator tool.12 Table III shows
the analytical results. It can be seen from Table III that there
are sufficient intervolunteer agreements for our labeling task.

C. Component-Wise Analysis: Expertise Modeling

To justify the effectiveness of our proposed hypergraph-
based expertise modeling, we conducted experiments to com-
pare it against the following state-of-the-art techniques.

1) k-means: The medical expertise relations were estimated
by the fuzzy-k-means [56]. The traditional k-means
approach [40] produces a crisp result: for a given sample
x, it either is or is not a member of a particular cluster.
However, in the health domain, each physician is prob-
ably an expert [56] across multiple specific fields. We
thus employed the fuzzy-k-means procedure that allows
each sample to have a degree of membership in each
cluster.

2) LDA [39]: The medical expertise relations were esti-
mated by the LDA approach. Similar to the topic mod-
eling, here each physician and expertise are, respectively,
viewed as a document and a hidden topic.

3) Ours: It is our proposed expertise modeling with prob-
abilistic hypergraph learning.

Tables IV and V, respectively, illustrate the comparison results
in terms of H@K and S@K. They are the results without con-
sidering the physicians’ attitudes and personal care, since this
section aims to evaluate the expertise modeling only. Jointly
analyzing these two tables, it can be seen that our proposed
hypergraph-based expertise modeling consistently outperforms
others in H@K and S@K across different depths. The possible
reason is that our approach is able to capture the high-order

12http://justusrandolph.net/kappa/

TABLE IV
PERFORMANCE COMPARISON WITHOUT PHYSICIANS’ ATTITUDES

IN TERMS OF H@K (COMPONENT-WISE EVALUATION ON

EXPERTISE MODELING)

TABLE V
PERFORMANCE COMPARISON WITHOUT PHYSICIANS’ ATTITUDES

IN TERMS OF S@K (COMPONENT-WISE EVALUATION ON

EXPERTISE MODELING)

relations among physicians and is able to seamlessly integrate
heterogeneous information. From Table IV, we can see our
approach achieves approximately 30% in terms of H@20. That
means 30% of physicians, who really answered the questions
previously, are ranked in the top 20 positions. On the other
hand, from Table V, we can see that our approach yields the
precision in terms of S@10 as high as 0.9. It reveals that
nine out of top ten recommended physicians on average were
judged as matched physicians by our volunteers.

D. Component-Wise Analysis: Attitude Modeling

To examine the effects of physicians’ attitudes and fairly
compare the performance, we still use k-means, LDA, and
Ours. The results are illustrated in Tables VI and VII, respec-
tively. From Tables IV and VI, and Tables V and VII, it can
be seen that the approaches considering physicians’ attitudes
perform stably better than those without considering physi-
cians’ attitudes. This verifies that physicians’ attitudes really
affect the answering quality and hence play pivotal roles in
the problem of question routing.

It is worth emphasizing that the parameter λ in this section
is not question-aware, but is an optimal and fixed parameter
over all questions, since we aim to validate the effectiveness of
attitude modeling. In particular, we randomly selected a set of
1000 questions from our dataset, which serve as training sam-
ples to learn the fixed and optimal λ. For each λ within [0, 1]
with a fixed step size of 0.05, we calculated the average H@5
over all these questions. The λ corresponding to the optimal
average H@5 was selected to fit in our models. Theoretically,
for different metrics, we should learn different correspond-
ing parameters. Here we learned the optimal parameter only
based on H@5 and applied that to both H@K and P@K.

http://justusrandolph.net/kappa/
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TABLE VI
PERFORMANCE COMPARISON WHEN CONSIDERING PHYSICIANS’

ATTITUDES IN TERMS OF H@K . THE SYMBOLS OF f AND a ,
RESPECTIVELY, DENOTE FIXED AND ADAPTIVE λ

TABLE VII
PERFORMANCE COMPARISON WHEN CONSIDERING PHYSICIANS’

ATTITUDES IN TERMS OF OF S@K . THE SYMBOLS OF f AND a ,
RESPECTIVELY, DENOTE FIXED AND ADAPTIVE λ

This is because H@K does not require labor and time
consuming ground truth labeling.

E. Component-Wise Analysis: Adaptive Fusion

To validate the importance of question-aware adaptive
fusion implemented via the supervised regression models, we
randomly selected 1000 questions from our dataset. These
selected questions were divided into two subsets, 80% for
training, and 20% for testing. For each question, we searched
its optimal routing performance by sweeping λ within [0, 1]
at a fixed step size of 0.05. Different from the fixed parame-
ter learning, where all the questions globally share the same
parameter, here each question adaptively holds its own param-
eter. Four regression models were evaluated based on mean
absolute error

mAE =
∑n

i=1|pi − ai|
n

(16)

where ai and pi denote actual value and predicted value,
respectively. Typically, a lower mean absolute error corre-
sponds to a better regression model.

The adaptive parameter learning performance of the four
models is summarized in Table VIII. It can be seen that the
pace regression model achieves the best performance. For a
newly posted question, we use the pace regression model to
predict its adaptive parameter and use the predicted value to fit
our model for question routing. It reflects personalized health-
care, since the question content somehow conveys the personal
health information about the health seekers.

As shown in Tables VI and VII, three approaches with
adaptive λs to balance the effects between expertise and atti-
tude show superiority over those with fixed λs. This further
demonstrates the correctness of our observation: question con-
text holds a bias toward either physician expertise or attitude.
Meanwhile, it underscores the importance of personalized
question routing.

TABLE VIII
PERFORMANCE COMPARISON BETWEEN VARIOUS REGRESSION

MODELS IN TERMS OF MEAN ABSOLUTE ERROR

F. Overall Scheme Evaluation

As aforementioned, most of the global expert discovery
approaches rely on graph-based analysis. Representative algo-
rithms include HITS [8] and PageRank [57]. The former one
assumes that there exist two types of graph nodes: 1) hubs
which group edges to authoritative nodes and 2) authorities
which are sources of information on a given topic. HITS
is applicable to the traditional general cQA services, since
the askers’ IDs are trackable and some askers might also
be the answerers, where askers and answerers are, respec-
tively, regarded as “hubs” and “authorities.” On the other hand,
PageRank-like algorithms not only consider how many other
people one helped, but also whom he/she helped. The phi-
losophy behind is that if B is able to answer A’s question,
and C is able to answer B’s question, the rank of C’s exper-
tise should be boosted not just because C is able to answer
a question, but because C can answer a question of B who
had some expertise. In a sense, it propagates expertise scores
through the QA network. However, in CHSs, the health seek-
ers’ profiles are invisible due to privacy reasons, and they are
prohibited to provide answers since they are patients instead
of physicians. Therefore, it is hard to apply global experts
discovery approaches to CHSs.

We thereby compare our approach against the following
state-of-the-art topic-level expert discovery approaches.

1) Classification-Based: Zhou et al. [7] applied the classifi-
cation techniques to solve the question routing problem.
To be more specific, given a question and an expert,
they explored whether the expert has the capability to
contribute his/her knowledge to the question with global
and local features.

2) Profile-Based: The work in [11] first created profiles for
experts based on historical contents. It then proposed
a probabilistic model to estimate matching relation
between each expert profile and the given question.

3) Expertise-Availability: This approach in [12] attempted
to route newly posted questions to experts who are most
likely to reply within a short period. The authors mod-
eled this problem as a typical trend analysis task and
utilized an autoregressive model for forecasting.

4) Ours-Without-Attitude: Our expertise modeling only.
5) Our Approachf : Our proposed scheme but the fusion

parameter is optimally fixed for all the questions.
6) Our Approacha: Our proposed scheme with adaptive

fusion by considering the given question context.
The experimental results of several question routing

approaches are comparatively reported in Table IX. From this
table, the following observations can be made.

1) The approaches considering physicians’ attitudes per-
form stably better than those without considering
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TABLE IX
PERFORMANCE COMPARISON AMONG DIFFERENT QUESTION ROUTING APPROACHES IN TERMS OF H@K AND S@K .

THE SYMBOLS OF f AND a , RESPECTIVELY, DENOTE FIXED AND ADAPTIVE λ

physicians’ attitudes. This verifies that physicians’ atti-
tudes really affect the answering quality and hence the
question routing performance.

2) Our approach with an adaptive λ to balance the effects
between expertise and attitude shows superiority over
that with a fixed λ. This further justifies the correctness
of our observation: question context holds a bias toward
physician expertise or attitude.

3) Our proposed approach with adaptive fusion consistently
achieves better performance as compared to the first
three baselines.

One possible reason is that none of them explicitly take the
physicians’ attitude into consideration. The other reason is
that our approach is able to capture the high-order relations
among physicians and is able to seamlessly integrate hetero-
geneous information cues via the hypergraph-based structure,
while the first three baselines are unable to characterize such
sophisticated relations in CHSs.

From Table IX, we can see our approach obtains 0.347 at
H@20. This means around 35% of physicians, who really
answered the questions previously, are placed in the top 20%
positions by our scheme. On the other hand, we can see that
our approach yields a precision as high as 100% in terms of
S@15. This implies that at least one physician in the top 15
ones recommended by our routing scheme was judged as the
matched expert by our volunteers, on average.

We also performed a pairwise significance test. It was con-
ducted over average H@K (1 ≤ K ≤ 20) between Our
approacha and each of the baselines. We noticed that all the
p values are much smaller than 0.05, which indicates that the
improvements are statistically significant.

G. Discussion

Regarding the computational complexity of our model, it is
in the scale of (E3 + V3 + dV2), where d denotes the feature
dimension, N and E, respectively, represent the number of
physicians and relations among them. In this paper, the routing
process can be completed in less than 5 s if we do not take the
feature extraction part into account on a system with (3.4 GHz
and 16 GB memory). It is worth noting that, our work is
extendable to large-scale datasets by preclustering, whereby
the routing will be performed on a small scale only.

On the other hand, physicians are human beings and hence
their interests, expertise and attitudes naturally evolve over
time. In this paper, we did not consider such evolution due to
two reasons. First, the changes are usually with a slow progres-
sion. This paper was conducted on the data posted in recent

two years. It is thus reasonable to assume that the changes can
be negligible. Second, it is expensive and nearly impractical
to label the evolution progress. The evaluation thus faces a
tough challenge.

VIII. CONCLUSION

This paper has presented a question routing scheme for
CHSs, which is capable of bridging the matching gap between
physicians and health seekers. It comprises of three com-
ponents. The first component models the matching relations
between a given question and each physician from the perspec-
tive of expertise. The second one analyzes physicians’ attitudes
from multifaceted aspects. The last one adaptively balances the
effects between expertise matching and physicians’ attitudes
by considering the given question context. Extensive exper-
iments on a real-world dataset have shown the effectiveness
of our proposed scheme. In addition, we have released our
dataset to facilitate other researchers to repeat our experiments
and validate their own ideas.

In the future, we are planing to study the physicians’ atti-
tude bias toward specific questions. Besides, we will construct
large-scale data to validate the scalability our scheme, and
apply it to other domains to justify its generalization.
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