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Abstract— Most existing tracking algorithms do not explicitly 
consider the motion blur contained in video sequences, which 

degrades their performance in real-world applications where 
motion blur often occurs. In this paper, we propose to solve the 
motion blur problem in visual tracking in a unified framework. 

Specifically, a joint blur state estimation and multi-task reverse 
sparse learning framework are presented, where the closed-form 
solution of blur kernel and sparse code matrix is obtained simul- 

taneously. The reverse process considers the blurry candidates as 
dictionary elements, and sparsely represents blurred templates 
with the candidates. By utilizing the information contained  in  

the sparse code matrix, an efficient likelihood model is further 
developed, which quickly excludes irrelevant candidates and 
narrows the particle scale down. Experimental results on the 

challenging benchmarks show that our method performs well 
against the state-of-the-art trackers. 

Index Terms— Motion blur, tracking, sparse  representation. 

 

I. INTRODUCTION 

ISUAL tracking plays a critical role in computer vision 

with numerous applications such as surveillance, robotics 

and behavior analysis [1], [4], [35], [40], [41], [45], [50], [52]. 

Despite decades of studies, it is still a challenging task due to 

several complication factors in real world videos, e.g., back- 

ground clutter, illumination variation, partial occlusions and 

object transformation. Tremendous efforts have been focused 

on establishing robust appearance models to handle these 

difficulties [5]–[12], [46]. However, most existing tracking 

algorithms do not explicitly consider the motion blur contained 

in video sequences, which degrades their performance in  real 
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world applications where motion blur is often unavoidable. 

Many state-of-the-art trackers, which achieve promising per- 

formance on sharp sequences, may easily fail on blurry ones. 

A natural solution for this problem is to first perform 

deblurring on the blurred sequence, and  then apply tracking 

on the deblurred one. However, several problems arise from 

this method. The first issue would be the negative effects of 

the ringing artifacts contained in the deblurred images, which 

are generated by the deconvolution methods due to the Gibbs 

phenomenon. Such noise creates harmful fake features and 

makes tracking difficult. Second, the expensive computational 

cost of most deblurring algorithms [13], [14] makes tracking 

slower. Furthermore, this method always ignores the similarity 

between target images in successive frames. Thus, the algo- 

rithm could not fully exploit the information and the deblurring 

and tracking performance will be both  degraded. 

Different from the traditional deblurring and tracking meth- 

ods, some works try to avoid the noise-causing and inefficient 

deblurring step before tracking. In [15], the authors have 

observed that efficient tracking can be performed by directly 

matching blurred images instead of applying deblurring first. 

The blurred templates are obtained by performing convolutions 

on the clear images using blur kernels sampled under a 

Gaussian distribution. Based on this work, several notable 

studies [16]–[19] have been developed to improve performance 

of tracking under blur. Dai et al. [18] first estimate the 

direction of the target’s motion blur using steerable filters, 

then traverse the blur strength lb with  a  pixel step  and  find 

the best  match  for  each lb  under  the  mean-shift algorithm, 

in which  the blur strength is  chosen with the  highest score.  

In [16], a more standard model called directional blur is used 

to replace the translational Gaussian kernel. The observation   

is that the opening/closing operation of the shutter happens 

instantaneously, hence there  is  no  Gaussian  temporal  blur. 

In [17], motivated by the success of sparse representation 

applied to vision tasks [20]–[24], [43], [47], [49], a unified 

sparse approximation framework is presented for integrating 

the visual tracking with the motion blur problem. The dictio- 

nary for sparse representation contains normal templates, blur 

templates and trivial templates. Blur templates  are obtained 

by convolving the target image in the first frame with 64 blur 

kernels, which are obtained by sampling 8 different directions 

and 8 different speeds. The best candidate is chosen with the 

minimum reconstruction error. 

The above mentioned methods basically approximate the 

target’s blur state by sampling kernels. However, the sampled 

blur kernels could not accurately reflect the  real blur states    

of the target, and they might fail when the degree of blur 
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is beyond their representation  scope.  In  addition,  this  kind 

of methods often generates highly redundant blur templates, 

causing repeatedly useless matching and extra computational 

burden. In this work, we attempt to tackle the above issues. On 

the one hand, we hope that the blur kernel can be explicitly 

estimated according to the target’s real blur state instead of 

being approximated by sampling, so that the blurry candidates 

can be represented by templates more accurately. On  the  

other hand, we want to avoid the noise/artifacts caused by 

deblurring, which will decrease the tracking performance. 

Furthermore, we expect that the blur kernel estimation and 

visual tracking should be jointly conducted instead of indepen- 

dently performed. In this way, the blur kernel would be more 

precisely estimated due to the consideration of correlations 

between candidates and templates, and in turn, tracking would 

be more robustly performed thanks to the correctly estimated 

blur kernel. 

Motivated by the above ideas, we propose to accomplish 

tracking under motion blur in a joint blur kernel estimation and 

multi-task reverse sparse learning model. The blur kernel k and 

the sparse coding matrix C are obtained simultaneously within 

one optimization procedure. To avoid introducing deblurring 

noise, the estimated kernel k is not used for restoring candi- 

dates but for convolving with the templates to get the blurred 

templates. The reverse process indicates that the algorithm 

considers blurry candidates as dictionary atoms and the blurred 

templates as observations, and blurred templates are sparsely 

represented by blurry candidates. Since the number of tem- 

plates is much smaller than that of candidates, the implemen- 

tation will be more efficient. As all the sharp templates share 

one blur kernel for accurately representing the current target 

image, instead of solving the sparse learning problem for each 

template independently, we propose to solve the joint model  

in a multi-task manner. 

After the blur kernel and sparse representation are com- 

puted, we need to find a  robust and  efficient way  of parti- 

cle selection to locate the target accurately. Different sparse 

representation based methods construct appearance models in 

various ways. Basically, they can be categorized into holistic 

sparse representation based models and local sparse feature 

based models. For example, in [23], [24], and [31], the 

candidates  are  evaluated  by  using  reconstruction  errors  on 

a learned dictionary, whereas in [33], [34], and [36], the 

evaluation is performed directly on the local sparse codes. 

Multi-Task Tracking (MTT) tracker [27] also uses multi-task 

sparse representation for the construction of observation mod- 

els. However, the differences between our method and MTT 

tracker are significant. First, the MTT tracker focuses on the  

l1 tracker [23] with faster and more accurate implementation. 

It is a general tracker which aims at handling challenges in 

normal videos. In contrast, our method is designed to specially 

tackle motion blur in tracking, and it aims at jointly estimating 

the blur kernel and performing tracking with the help of the 

multi-task sparse representation framework. Second, the MTT 

reverse representation, which takes candidates as dictionary to 

represent blurred templates to accelerate the implementation. 

Finally, we do not require trivial templates since our multi- 

task reverse sparse representation model is mainly applied for 

blur kernel estimation instead of noise  suppression. 

In this work, we propose a two-stage scheme for effectively 

and efficiently filtering the candidates. In the first stage,  

where a holistic model is used, we perform a fast rejection 

scheme based on the coding matrix C to quickly narrow the 

particle scope down. We observe that the coefficients of biased 

candidates are either zeros or very small, so an evaluating 

scheme based on the values of sparse codes would quickly 

exclude most candidates. In the second stage, the very few 

survivors are further evaluated with a robust local sparse 

coding model. Candidates are separated  into  several  parts, 

and evaluated block-wisely with the structured reconstruction 

errors. The overview of our tracking framework is illustrated 

in Fig. 1. Our source code will be available   at.1 

Compared to the existing approaches, the proposed visual 

tracking method offers the following contributions: 

• To the best of our knowledge, we are the first to combine 

blur kernel estimation and visual object tracking in a 

unified framework, which jointly optimizes for the blur 

kernel and the sparse  representation. 

• We propose an iterative optimization algorithm for the 

multi-task model, which simultaneously obtains multiple 

sparse coding results and a single blur kernel of the 

candidates. 

• Based on the insight on the sparse code matrix, we 

propose an efficient likelihood model to quickly exclude 

most irrelevant candidates for efficient visual  tracking. 

 
II. JOINT BLUR KERNEL ESTIMATION AND MULTI-TASK 

REVERSE SPARSE LEARNING 

In this section, we present the unified framework which 

combines the multi-task reverse sparse representation and blur 

kernel estimation in detail. We first discuss the original joint 

model and the motivation of this work. Next, we describe the 

proposed Multi-Task Reverse Sparse Representation (MTRSR) 

model. The optimization procedure is then  introduced. 

 

A. Problem Formulation 

The proposed tracking method is implemented under the 

particle filter framework [25]. Denote y as one of the motion- 

blurred candidates in the current frame, given its estimated 

blur kernel k and white Gaussian noise z, the blurry image y 

can be modeled as: 

y = k ∗ x + z, (1) 

where x is the latent sharp image of y and ∗ denotes the 
convolution operator. Deblurring the candidate y corresponds 
to the estimation of its latent image x  and the blur kernel    k: 

tracker  uses  reconstruction  errors  for  likelihood evaluation, 
while  ours  uses  the  max pooling of sparse  code  matrix  for 

.
x̂ , k̂

. 
= arg min ∗k ∗ x − y∗2

 

 

the initial candidate screening, then we evaluate the rest 

candidates with a structured evaluation scheme. Third, we use 
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Fig. 1.    The overall framework of the proposed visual tracking under motion    blur algorithm. 

 

 

This is an ill-posed inverse problem. We  need to regularize   x 

and k  in (2) to obtain an accurate and stable   solution, 

 

B. The Proposed MTRSR Model 

To address the issues mentioned above, we do the following 
. . 

2
 2 analysis. Note that deblurring the candidates is not an essential 

xˆ , kˆ = arg min ∗k ∗ x − y∗2 + τρ (x) + γ ∗k∗2 , (3) 
part in tracking tasks. To avoid the computationally expensive 

where ρ (x) is a regularization term to make the final solution 

xˆ  smoother. 
In  sparse  representation based  tracking methods,  if candi- 

date y is close to the target, its deblurred image x should be 

well sparsely represented by the target’s sharp template set T : 

α̂ = arg min ∗x − T α  2 + λ∗α∗1, (4) 

where α is the sparse coefficient vector. By combining deblur- 

ring (3) and sparse representation (4) in a unified framework, 

we can get a joint model, which simultaneously deblurs the 

candidate y and computes its sparse representation on T   [26]: 

deblurring step, we can instead represent the blurry candidates 

with blurred templates as previous works do [15]–[17]. The 

blurred templates could be obtained by convolving the sharp 

templates with the estimated blur kernel k. By solving a sparse 

representation problem for each observation  independently, 

the total computational cost is proportional to the number of 

candidates. We observe that the number of templates is far less 

than that of candidates. Therefore, similar to [2], if we consider 

the candidates as dictionary atoms and blurred templates as 

observations in turn, the computational cost of sparse coding 

will be significantly reduced [3]. 

Nonetheless, independently solving each sparse representa- 
. . 

2
 2 tion problem still raises some problems. In particular, the blur 

x̂ , k̂, α̂ = arg min ∗k ∗ x − y∗2 + η ∗x − T α∗2 

+ λ∗α∗1 + τρ (x) + γ ∗k∗2 . (5) 

Using (5) directly for tracking in blurry sequences might be 

attractive, since it jointly deblurs the candidate and computes 

the sparse coefficients with the deblurred image, which seems 

to be more robust. Unfortunately, applying the model directly 

for tracking might actually be both inefficient and  ineffec- 

tive. Firstly, the ringing artifacts contained in the deblurred 

candidate images create deteriorated features and make the 

representation inaccurate and unstable, which further degrades 

the tracking performance. Moreover, the optimization process 

actually computes the sparse coefficients, estimates the blur 

kernel and performs deblurring for every single candidate, 

which makes the computing process very  slow. 

state of the target in one frame is unique, however, the above 

mentioned solving process estimates different blur kernels for 

different templates. This ignores the fact that different sharp 

templates share the same blur kernel for accurately repre- 

senting the target. Furthermore, solving multiple independent 

sparse representation problems is still a time-consuming task. 

According to the above analysis and motivated by the work  

in [27], we propose to build our joint blur kernel estimation 

and sparse representation model in a multi-task manner. We 

propose a MTRSR model, which combines multiple sparse 

representation problems in a joint model and is formulated as: 
.
k̂, Ĉ 

. 
= arg min ∗k ∗ T − Y C∗2
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+ ν ∗k∗2 + λ2∗C∗2,1, (6) 
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where k  is the blur kernel, Y  is the blurry candidate set   used 

for representing blurred template set k ∗ T , ∗ denotes the 
convolution operator and C  is the sparse coefficient  matrix. 

q 
.1/q 

Algorithm 1  Optimization Algorithm of the Tracking  Model 

Specifically, ∗C∗ p,q  = 
..N    

.
∗Ci ∗ p

. 
, where ∗Ci ∗ p 

is the L p norm of  Ci ,  the i -th  row of  matrix  C. Note  that 

the regularization term ρ(x) on the deblurred image x is 
dropped since we do not obtain the deblurred image x during 
optimization. In the MTRSR model formulated by (6), the 
sharp templates T are convolved with blur kernel k to get the 

blurred templates k ∗ T , and are then sparsely represented by 
blurry candidates Y . Only one kernel k is estimated instead of 
multiple ks for different templates, which makes the   solution 

more accurate and stable. The blurred templates convolved 

with k could represent the good candidates more precisely,  

and the sparse representation can also optimize the solution 

space of blur kernel k  in  turn. 

 
C. Optimization 

The MTRSR model contains two variables - we separate the 

optimization into two sub-problems and adopt the alternating 

minimization scheme to iteratively optimize the two variables. 

We  first initialize the sparse coding matrix C  by  solving 

Ĉ   = arg min ∗T − YC 2 + λ2∗C∗2,1. (7) 

where (7) is a multi-task sparse learning problem which can  

be solved by the Accelerated Proximal Gradient method  [28]. 

1) Subproblem A (Optimizing k): With a fixed sparse coding 

matrix C, the blur kernel k can be estimated by solving the 

following optimization problem: 

   2 
k̂ = arg min ∗ T − Y Ĉ + ν ∗k∗  , (8) 

 
 

 
 

 

    

 

 

 

 
 

fashion. The algorithm converges in about 6-10 iterations in 

our experiments. 

 
III. LIKELIHOOD MODEL 

The proposed tracking model is based on the particle filter 

framework [25]. The likelihood model in the framework is 

described in this section. 

 

A. Fast Rejection of Irrelevant Candidates 

The distribution of nonzero elements in matrix C indicates 

the similarity between the candidate set  and  the  template  

set. In the reverse  representation manner, templates  tend  to 

be sparsely represented by good candidates, while candidates 

that are too different from the target usually correspond to    

all zero coefficients. Based on the observation, we propose a 

strategy to efficiently exclude irrelevant candidates. Supposing 
n  templates  T   =  T1, T2, ··· , Tn   are  sparsely represented 

k F
 2 

by m  candidates Y  = {Y1, Y2, ··· , Ym }, the sparse    coding 

where kˆ  ∈ RwT ×hT  is the estimated kernel, wT  and hT   are 

the width and height of a template, ∗k 2 is a regularization 
term for suppressing most entries in k to reduce the  boundary 

effects. 

The minimization is a least squares problem with Tikhonov 

regularization. It has a closed-form solution  [26]: 

matrix C = [α1, α2, ···  , αn ]∈  Rm×n , where αi is the sparse 
coefficient vector of template Ti . Candidate Yj   is chosen   for 
further evaluation only if 

max 
. 

, α 
j 
, · ··  ,α  

j 
. 

> 0, (11) 
1 2 

⎛ 

k̂  = F −1 ⎝ 

F̄ (T ) ⊗ F 
.

Y Ĉ 
.

 

F̄   (T ) ⊗ F (T ) + ν I 

⎞ 

⎠ , (9) 

where α 
j 
is the j -th element in α. Candidates that fail to match 

the condition are considered as irrelevant candidates and are 

rejected from further evaluation. After the rejection process, 

the rest of the candidates are narrowed down to a smaller    set 
1 , Y2 , ··· , Yp }, and p     m since C is highly sparse. 

where  F (·)  denotes Fast  Fourier Transform,  F −1 (·)  denotes Y ∗ = {Y ∗ ∗ ∗ 

inverse  Fast  Fourier  Transform,  F̄ (·)  denotes  the  complex 

conjugate of F (·), ⊗ denotes element-wise multiplication, and 
I  is an identity matrix. 

2) Subproblem B (Optimizing C): Given the estimated blur 

kernel k, the objective function can be rewritten   as 

B. Structural Evaluation 

The scope of the candidate set is largely narrowed down, 

which allows us to employ more time-consuming but accurate 
evaluating methods. Considering that, compared to a   holistic 

  Ĉ = arg min 
 

k  2 ∗ T − YC
 
 + λ2∗C∗2,1, (10) model, a local model is more robust in handling local noise, 

C      
ˆ 

F
 

This is a multi-task sparse learning problem and can be readily 

solved by the Accelerated Proximal Gradient method [28].  

The overall optimization  procedure  of  the  tracking  model  

is  summarized  in  Algorithm  1.  The  optimization  is    very 
efficient,  since  k  has  a  closed-form  solution  and   multiple 

partial  occlusions  and  target  transformation,  we  apply  the 

structural reconstruction errors to evaluate the likelihoods of 

candidates.  Each  blurred  template  in  T ∗  is  separated into 

N overlapping patches. In this way, we can get Nn patches, 

and these patches are used for constructing a dictionary D   = 
[d

(1)
, ·· ·  , d

(1)
, · · ·  , d

(i)
, · · ·  , d

(i)
, · · ·  , d

(n)
, ·· ·  , d

(n)
] ∈ 

1 N 1 N 1 N 

sparse codings are  solved within one model in  a     multi-task Rd ×(Nn).  Each   candidate   Yj   is   separated   into   patches 
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{yk|k = 1, ··· , N } the same way as templates do. Each yi is 
encoded by dictionary  D: 

min ∗yk − Dβk  
2 + λ3∗βk ∗ , (12) 

k 

where βk ∈ R(Nn)×1 indicates the sparse coefficients of yk . If 
candidate Yj is close to  the target, its local patch  yk  should  
be   well   represented   by   the   corresponding sub-dictionary 

to 5, ν  is set to 0.01 and δ0  is set to 0.03 in all experiments.  

In order to comprehensively evaluate our approach, we first 

evaluate our tracker on 58 sequences where objects are under 

severe motion blur. Then we present our results on a general 

benchmark [4] to demonstrate that our tracker can also perform 

well on non-blurry sequences. 

Dk  = [d(1), d(2) (n) A. Performance on Blurry Sequences 

k k  , ···  , dk  ] ∈ Rd ×n. The corresponding sub- 
coefficients are β∗ = [βk,β N +k, ··· ,β

(n−1)N +k 
] ∈ Rn×1

 In  this  section,  we  present  the  experimental  results   by 
k k k k 

where  β 
j
 is  the   j -th  element  of  βk .  The   corresponding our method on 58 blurry sequences where objects    are  under 

reconstruction error for patch  yk  is 

εk = ∗yk − Dkβ∗∗. (13) 

After the reconstruction errors of all the patches ε1 − εN are 
computed, the likelihood model of candidate Yj is constructed 
by 

N 

P ∝ 
. 

exp(−ωεk ). (14) 

k=1 

where ω denotes the scaling  factor. 

 
IV. UPDATE SCHEME 

To adapt to the target’s appearance variation,  templates 

need to be  updated overtime. In  tracking under motion blur,  

a common idea of model updating is to deblur the estimated 

candidate and add it into the template  set.  However,  the  

noise contained in the deblurred images could deteriorate the 

templates. As  motion blur is generally temporarily appeared  

in most cases, in our update scheme, we only consider those 

tracking results whose images are relatively  sharp. 

We obtain the convolved template set T ∗ by convolving the 

sharp template set T with the estimated blur kernel k in the 

current frame. The dissimilarity value δ between sets T ∗  and 

T  is calculated as 

1 . 2 

severe  motion  blur.  51  of  the  sequences  are  obtained    by 

convolving the sharp videos in benchmark [4] with ran-  

domly sampled blur kernels, and the rest sequences (i.e., 

BlurBody, BlurCar1, BlurCar2, BlurCar3, BlurCar4, BlurFace 

and BlurOwl) are acquired from the blurry  videos  in OTB-

100 [48]. Our approach is compared with 13 recent state-of-

the-art tracking methods including Multi-Task Track- ing 

(MTT) tracker [27],  Kernelized  Correlation  Filters  (KCF) 

[44], Discriminative Scale Space Tracker (DSST) [51], Struck 

[10], Color-attribute based tracker (CNT) [42], Circulant 

Structure tracker with Kernels (CSK) [38], Sparsity- based 

Collaborative Model (SCM) [32], BLUr-driven Tracker 

(BLUT) [17], Compressive Tracker (CT) [30], Adaptive 

correlation filters based tracking (MOSSE) [37], Least Soft- 

threshold Squared Tracker (LSST) [31], Spatio-Temporal 

Context tracker (STC) [39] and Adaptive Structural Local 

Apperance model (ASLA) [29], where ASLA, MTT and SCM 

are sparse representation based methods and BLUT is a blur- 

driven object tracker. These trackers are evaluated using the 

source codes from the original authors and each is run with 

carefully tuned parameters. Since fast motion of objects are 

common in blurry sequences, we set larger search radius for 

the trackers to cover possible target  locations. 

1) Overall Performance: The precision plots and success 

plots [4] are applied to evaluate the overall performance of our 

algorithm and compared trackers. The precision plots indicate 
the percentage of frames whose estimated location is within 

δ = 
n

  

i=1 

 T ∗ − Ti   2
, (15) 

the given threshold distance to the ground truth. The success 

plots demonstrate the ratios of successful frames whose  over- 
where T ∗ and Ti  are the i -th templates of T ∗ and T   respec- 
tively. It is obvious that T ∗ is close to  T  if δ  is very    small. 

When δ < δ0 which is  a  predefined dissimilarity threshold, 

we deem the tracking result blur free, and replace the i -th 

template in T with the tracking result. i is chosen by the 

following criterion: 

lap rate is larger than the given threshold. The precision score 

is given by the score on a selected representative threshold 

(e.g., 20 pixels). The success score is evaluated by the area 

under curve (AUC) of each tracker. Fig. 4 shows the precision 

plots and success plots of the trackers on 58 blurry videos. For 

precision plots, we rank the trackers according to the results at 
the error threshold of 20 pixels. For success plots, the trackers 

i  = arg max 
. 

T ∗ − Tk 

 2  
| k = 1, · · · , n

. 
. (16) 

k 2
 

k 

 

V. EXPERIMENTAL RESULTS 

Our method is implemented in MATLAB R2012a and runs 
at 11.7 fps on an Intel Core i5 2.5GHz CPU with 4G memory. 
We maintain 10 templates during tracking and sample 600 can- 

didates in each frame, all of them are normalized to 32 × 32. 
When performing the structured evaluation, 9 overlapped local 

patches (16×16 ) are extracted within each frame with 8 pixel 
as the step length. λ2, λ3 and γ  are fixed to 0.01, π  is set 

are ranked according to the AUC   scores. 

The precision scores and AUC scores for each tracker are 

shown in the legend of Fig. 4. From Fig. 4, we can see that 

KCF, DSST and our tracker perform well on the 58 blurry 

sequences, and our tracker achieves the best performance. Both 

the KCF and the DSST trackers belong  to  the  correlation 

filter based tracking methods. Their stable tracking  results 

may be attributed to the advantage of the correlation filter in 

handling blurry images. The discriminative ability of the HOG 

feature also contributes to the performance of KCF. In the 

precision plots, our algorithm performs 0.9% better than KCF 



 

 
 

 
 

Fig. 2.          Representative results of different trackers on sequences Car1, Owl and Car3. Objects in these sequences are under heavy motion blur. 

 

 

and 5.7% better than DSST. In the success plots, our tracker 

outperforms KCF by 2.3% and DSST by   1.4. 

It is also observed that our tracker significantly outperforms 

the blur-driven tracker BLUT. It is mainly because, compared 

to BLUT, which uses 64 predefined blur kernels obtained 

offline to capture different blur effects, in our method, the blur 

kernel is estimated with the candidates and updated online to 

adaptively reflect the blur state of the target, which is more 

accurate and computationally efficient. Besides, comparison 

between our tracker and the related MTT tracker indicates a 

significant improvement (64.9% versus 36.9%). The results 

suggest the contribution of the blur kernel estimation in 

improving the performance of our  approach. 

Overall, our tracker performs excellently on these blurry 

sequences compared to other trackers.  The  leading  causes 

are summarized as follows. First, the estimated and online 

updated blur kernel in the tracking model truly reflects the  

blur state of the target, which makes the algorithm more  

robust against motion blur. Second, the multi-task reverse 

sparse representation, which considers the correlation among 

templates, greatly improves both computational efficiency and 

tracking performance. Third, the structured representation in 

the likelihood model further improves the robustness of our 

method against local noise and partial  occlusions. 

2) Qualitative Evaluation: A qualitative evaluation of our 

algorithm is presented in this section. For the 58 blurry videos, 

extreme motion blur is the main challenge for visual tracking. 

Additionally, there are some other challenges such as illumina- 

tion variation, partial occlusion and in-/out-of plane rotation. 

We select 12 representative videos from them and discuss the 

tracking performance of different trackers as  follows. 

a) Motion blur: As shown in Fig. 2, the targets in 

sequences Car1, Car4 and Owl are under significant motion 

blur in some frames caused by fast motion of cameras. In 

sequence Car1, the camera shakes throughout the sequence 

and the car in the video is severely blurred in several   frames. 

 

Struck and SCM easily drift away when the target is not sharp, 

and BLUT and LSST also lose the target when the car is 

largely blurred. ASLA, KCF and our tracker achieve the best 

performance and our tracker obtains the most accurate results. 

In sequence Car3, which is similar to Car1 with a shaking 

camera, but the motion blur is less  severe.  Most  trackers 

lock the target well, but Struck and KCF sometimes shift 

several pixels away. Our tracker obtains stable tracking results. 

In sequence Owl, the camera shakes strenuously and  the  

target is under severe motion blur. ASLA, KCF and L1APG 

sometimes mistakenly track the target when fast motion blur 

appears. BLUT, Struck and our tracker perform better in this 

sequence. 

b) Motion blur + illumination variation: Car4 and 
Singer1 in Fig. 3 are two sequences where targets are under 
motion blur as well as illumination variation. In sequence 
Car4,  the  car  drives  through  a  bridge  and  the  light   con- 

dition changes significantly. Motion blur is added manually  

by convolving with a random blur kernel. We can observe 

from Fig. 3 that KCF  and L1APG fail to track the target.  

SCM and Struck drift away when motion blur occurs. The 

ASLA tracker significantly mistakenly estimates the scale. 

Only BLUT, LSST and our tracker successfully lock  the  

target throughout the tracking process. In sequence Singer1, 

besides manually performed motion blur and illumination 

variation, the scale of the target is also gradually changed. 

Most trackers (e.g., ASLA, KCF, LSST) mistakenly estimate 

the scale or drift away from the location of the singer. BLUT, 

SCM and our tracker achieve the best performance. The blur- 

driven tracking model in BLUT makes it robust in predicting 

the location of the blurred target, and the normalized local 

intensity features make SCM less vulnerable to illumination 

changes. The accuracy of our method could be  attributed to 

the structured sparse representation in handling local noise and 

light condition change and the estimated blur kernel to deal 

with blurred targets. 



 

 
 

 
 

Fig. 3. Representative results of different trackers on sequences Car4, Singer1 and Walking2. Objects in these sequences are under heavy motion blur. Besides, 
in sequences Car4 and Singer1, targets are under significant illumination variation, and in sequence Walking2, the object suffers from partial occlusions. 

 

 

Fig. 4. Precision plots and success plots over 58 blurry video sequences. The legends in the left sub-figure and the right sub-figure show the precision scores  
and AUC scores for each tracker,   respectively. 

 

c) Motion blur + partial occlusion: Sequence Walking2 
is selected for testing trackers’ robustness against occlusions 
under motion blur. A woman walks through a corridor and is 
occluded by a man in some frames. Motion blur is  performed 

manually with random blur kernels. KCF and ASLA lose the 

target as occlusion appears (e.g., #216, #269). L1APG and 

LSST drift several pixels away in the blurry frames. BLUT and 

our method achieve the most accurate results. The robustness 

of our tracker against occlusion could be attributed to the 

structured representation that applies a blocking scheme to 

separate the target into several overlapped blocks -  in  this 

way, the adverse effect of partial noise would be alleviated. 

The estimated and online updated blur kernel also helps our 

method handle the motion blur problem in distinguishing the 

occluded target. 

d) Motion blur + fast moving: Fig. 5 demonstrates the 
tracking  results  in  three  sequences  (i.e.,  Deer,  Face      and 

Jumping) with fast motion. In sequence Deer, the deer runs fast 

and the target is tarnished when severe motion blur appears in 

some frames. L1APG, Struck, ASLA and BLUT fail to locate 

the target at frames with blurry object images. Our tracker 

locks the head of the deer  throughout the  sequence. BLUT 

also performs relatively well in this sequence. In sequence 

Face the camera moves fast and the object’s motion blur is 

severe. Also, the target slightly rotates in some frames. Struck, 

KCF and ASLA sometimes drift away when the target is not so 

sharp, as these methods do not explicitly consider motion blur 

in tracking sequences. In the Jumping sequence, the  motion  

of the tracking target is so drastic that ASLA and L1APG fail 

before frame #41. LSST, BLUT and our method can keep track 

of the target to the end, but our method achieves more accurate 

tracking results. The estimated blur kernel and effectiveness of 

multi-task sparse representation make our method sail through 

the fast motion sequences. 

e) Motion  blur + in-/out-of-plane  rotation:  To evaluate 
our method in more general cases, we selected some sequences 



 

 
 

 
 

Fig. 5.         Representative  results of different trackers on sequences Deer, Jumping and Face. Fast moving of objects is the main challenge in these videos. 

 

 

Fig. 6. Representative results of different trackers on sequences Body, Dudek and Doll. Besides motion blur, in-plane/out-of-plane rotation is the additional 
challenge throughout these sequences. 

 

(i.e., Body, Dudek and Doll) where in-plane or/and out-of- 

plane rotations are additional challenges along with motion 

blur. It can be observed from Fig. 6 that  rotation  of  the  

target makes it much more indistinguishable in a new frame 

and casts a more difficult problem in tracking. In sequence 

Body, L1APG, ASLA, BLUT and Struck drift several pixels 

away or fail to estimate the correct scale. SCM and our 

method lock the target with  accurate scale  estimation, and  

our method achieves more stable results. In sequence Dudek, 

the person rotates his head for about 360 degrees. L1APG, 

LSST, BLUT and KCF  sometimes  drift  away  when  dras-  

tic motion blur occurs (e.g., #613, #668, #962). Only our 

method locks the target till the end with  the correct scale.      

In sequence Doll, BLUT, ASLA, SCM,  KCF  and  L1APG 

lose  the  target (e.g., in  frames  #198, #323 and  #425).  Only 

LSST and our tracker successfully track the doll in the whole 

sequence. 
 

B. Performance on Benchmark 

To  evaluate  the  overall  performance  that   our   tracker 

can also perform well on  non-blurry  sequences,  we  car-  

ried out  experiments  on  the  complete  benchmark  [4], 

which contains 51 sequences with various challenging fac- 

tors such as partial occlusions, object deformation,  fast 

motion, illumination change and scale variation.  We  com- 

pare our results  with  all  others  recommended  in  [4],  such 

as Struck [10], Sparsity-based Collaborative Model [32], 

Tracking Learning Detection (TLD) [11], Adaptive Structural 

Local Appearance tracker (ASLA) [29], Compressive Tracker 

(CT)  [30], L1  tracker using  Accelerated Proximal   Gradient 



 

 
 

 
 

Fig. 7.           Overall performance of our tracker against all others in the complete benchmark [4]. Only top 12 trackers and the MTT tracker are displayed. 

 

approach (L1APG) [24], Least Soft-threshold Squares Tracker 

(LSST) [31] and Visual Tracking Detection  (VTD)  [12].  

Most parameter settings remain the same as before. The only 

exception is that the ν, which is used for regularizing the blur 

kernel k, is set to 0.1 instead of 0.01, since the motion blur for 

most sequences are less serious than the 58 extremely blurry 

videos. 

As shown in Fig. 7, our tracker achieves the best perfor- 

mance in terms of both the precision score and the success 

score. The competitive performance on the general benchmark 

indicates the overall robustness of our method. Though our 

approach is designed for tracking objects under severe motion 

blur, it can also be used on blur-free videos where general 

challenges such as occlusions, object transformation and back- 

ground clutter exist. The fast rejection scheme and the block- 

wise evaluation in the likelihood model are effective for both 

types of sequences. 

 
VI. CONCLUSION 

To handle the motion blur during tracking, we have pro- 

posed a tracking model which integrates the blur kernel 

estimation and the sparse coding matrix calculation in a unified 

framework based on multi-task reverse sparse representation. 

The estimated blur kernel is applied to the normal templates to 

get the convolved templates which reflect the real blur situation 

of the target. The sparse coding matrix containing some useful 

information for distinguishing the target is used to  select  

some better candidates. Then, we have constructed an effective 

likelihood model based on the structural reconstruction error 

to determine the best candidate. Comprehensive experimental 

comparisons with the state-of-the-art algorithms demonstrate 

the effectiveness of the proposed tracking method in dealing 

with motion blur. 
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