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Abstract Trees with labelled leaves and with all other vertices of degree three play
an important role in systematic biology and other areas of classification. A classical
combinatorial result ensures that such trees can be uniquely reconstructed from the
distances between the leaves (when the edges are given any strictly positive lengths).
Moreover, a linear number of these pairwise distance values suffices to determine
both the tree and its edge lengths. A natural set of pairs of leaves is provided by any
‘triplet cover’ of the tree (based on the fact that each non-leaf vertex is the median
vertex of three leaves). In this paper we describe a number of new results concerning
triplet covers of minimum size. In particular, we characterize such covers in terms of
an associated graph being a 2-tree. Also, we show that minimum triplet covers are
‘shellable’ and thereby provide a set of pairs for which the inter-leaf distance values
will uniquely determine the underlying tree and its associated branch lengths.
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K. T. Huber et al.

1 Introduction

Trees play a central role in systematic biology, and other areas of classification, such
as linguistics. It is often assumed that such a tree 7 has a labelled leaf set X, that all
vertices have degree 1 or at least three, and that there is an assignment of a positive
real-valued length to each edge of T'.

A classical and important result from the 1960s and 1970s asserts that any such tree
T with edge lengths is uniquely determined from the induced leaf-to-leaf distances
between each pair of elements of X. This result is the basis of widely-used methods for
inferring trees from distance data, such as the popular ‘Neighbor-Joining’ algorithm
(Saitou and Nei 1987). Moreover, when T is binary (each non-leaf vertex has degree 3)
then we do not require distance values for all of the (’2') pairs from X (where n = | X]),
since just 2n — 3 carefully selected pairs of leaves suffice to determine 7 and its edge
lengths [see Guénoche et al. (2004); more recent results appear in Dress et al. (2012),
motivated by the irregular distribution of genes across species in biological data].

This value of 2n — 3 cannot be made any smaller, since a binary unrooted tree
with n leaves has 2n — 3 edges, and the inter-leaf distances are linear combinations of
the corresponding 2n — 3 edge lengths (so, by linear algebra, these values cannot be
uniquely determined by fewer than 2n — 3 equations).

There is a particularly natural way to select a subset of ()2( ) for T when T is binary.
Since each non-leaf vertex is incident with three subtrees of T, let us (i) select a leaf
from each subtree, (ii) consider the three pairs of leaves we can form from this triple,
and then (iii) take the union of these sets of pairs over all non-leaf vertices of T. This
process produces a ‘triplet cover’ of T (defined more precisely below).

A triplet cover need not be of this minimum size (i.e. of size 2n — 3) but in this
paper we characterize when it is. Also, we show that in that case the resulting triplet
cover is ‘shellable’ which implies that the inter-leaf distances defined on these pairs
uniquely determine the tree and its edge lengths. These, and other results obtained
along the way complement recent work into phylogenetic ‘lasso’ sets (Dress et al.
2012; Huber and Steel 2014), as well as a Hall-type characterization of the median
function on trees in Dress and Steel (2009).

We begin with some definitions.

1.1 Definitions

Let X be a finite set with | X| > 3. We denote elements in ()2( ) and ()3( ) also by ab and

abc, respectively, where a, b, ¢ € X are distinct. We refer to the elements in ()3() as
triples.

A (binary) phylogenetic X-tree is an unrooted tree T = (V, E) which has leaf
set X, and for which each non-leaf vertex is unlabelled and of degree three. We let
B(X) denote the set of binary phylogenetic X-trees (two such trees are regarded as
equivalent if there is a graph isomorphism between them that maps leaf x in one tree
to leaf x in the other tree, for all x € X). In evolutionary biology, the set X usually
corresponds to some collection of species or taxa.
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Fig.1 i Atree T € B(X) for X = {a, b, c, d, e}; ii vertex v is supported by the triple bce (the dashed
lines show the edge-disjoint paths from v to these three leaves); iii the cover graph I'(7") corresponding
to the triplet cover 7 obtained by taking all pairs from the triple bce that supports v and from the triples
abc and cde that support vertices u and w, respectively. This triplet cover is minimal, and since its size is
7 (= 2n — 3 for n = | X]) it is also a minimum triplet cover for the tree (by Proposition 3)

Note that a phylogenetic X-tree T must contain at least one cherry {a, b}, that is,
a and b are adjacent with the same interior vertex of 7. Moreover, if |X| > 3 then
each tree T € B(X) has at least two cherries that are vertex disjoint from each other;
if 7' has exactly two cherries we say it is a caterpillar tree [every tree in B(X) is a
caterpillar when |X| = 4 or |X| = 5]. When |X| = 4, we say that T € B(X) is a
quartet, and if the two cherries of this tree are (say) {a, b} and {c, d} then we denote
T by ab|cd.

We let V = V(T) C V denote the set of | X| — 2 interior vertices of 7. Given
x € X where |X| > 4, welet T — x denote the phylogenetic (X — {x})-tree which is
obtained by removing the leaf x (and its incident edge) from 7 and suppressing the
resulting degree 2 vertex.

Suppose that 7 is a subset of (5 ), and 7' = (V, E) € B(X). We say that a triple in
()3( ) supports avertex v € V in T (relative to 7) if we can select leaves a, b, ¢ € X, one
from each connected component of the graph obtained by removing v and its incident
edges from T, such that ab, ac, bc € 7. We call a subset 7 C (}2() a triplet cover for
T if for each vertex v € V there is some triple in (f) that supports v (relative to 7).
Note that X = 47 A holds in this case. Given a non-empty subset 7 C ()2(), we
define the cover graph T'(T) = (X, T) (of T) to be the graph with vertex set X and
edge set 7.

We illustrate these concepts in Fig. 1. For the binary phylogenetic X-tree in Fig. 1i
(with X = {a, ..., e}) the vertex v (in Fig. 1ii) is supported by the triple bce (there
are three other triples that support v). If u is supported by, say, abc and w by cde then
we obtain the triplet cover

T = ({b’ < e}) U ({a, b, c}) U <{C’ d e}) = {ab, ac, bc, cd, ce, de, be}.
2 2 2

The corresponding cover graph I'(7) is shown in Fig liii.
Given atree T € B(X), a triplet cover 7 for T is called

— minimal if T — {ab} is not a triplet cover for T, for any ab € T,
— minimum if | 7| < |T’| for every triplet cover 7" for T

These two concepts are different; there exist minimal triplet covers that are not mini-
mum (we describe an example in the final section).
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Note that it can be shown that any minimum triplet cover on X must have cardinality
2|X| — 3 [by applying Theorem 1 and Proposition 1 of Dress et al. (2012)]. Moreover,
there are various ways to construct triplet covers that are minimum [for example,
‘pointed covers’ (Dress et al. 2012, Theorem 7) and ‘stable triplet covers’ (Huber and
Steel 2014, Theorem 1)].

1.2 Outline of main results

In this paper, we prove a structural result concerning minimum triplet covers. Namely,
we prove that a set 7 C ()2( ) is a minimum triplet cover for a tree 7 € B(X) if and
only if the associated cover graph I'(7) = (X, 7) is a 2-tree (see Theorem 1 and
Sect. 5 for the definition of a 2-tree).

Using the concepts that we develop to prove this result, we also give an independent
proof [that does not require the notion of phylogenetic ‘lassos’ from Dress et al. (2012)]
that any minimum triplet cover on X must have cardinality 2| X| — 3 (Proposition 3).
As a corollary of our structural result, we also show that if 7 is a minimum triplet
cover for T then it is shellable for T (Proposition 4).

This corollary has two important implications. First it implies [from results in Dress
et al. (2012)] that if 7 is a minimum triplet cover for T, then T (together with its edge
lengths) can be uniquely reconstructed from the tree metric restricted to the pairs in
T . Note that this can also be deduced from results in Leclerc and Makarenkov (1998)
that relate 2-trees and tree metrics [see also Guénoche et al. (2004)].

Second, the corollary gives an independent proof of Dress et al. (2012), Theorem 7
and Huber and Steel (2014), Theorem 1 which state that pointed triplet covers and
stable triplet covers are shellable, respectively.

2 The support graph

In this section we introduce a graph that can be associated to a triplet cover of a tree.
Properties of this graph will be used to help prove our results later on. We begin with
some further definitions.

Suppose for the following that T = (V, E) € B(X). Given a subset 7 C ()2() and
v e V, we let S,(7) be the subset of (}3( ) which contains precisely those triples in
()3() that support v (relative to 7). We call S, (7)) the support of v (relative to T). In
addition, suppose thata, b, ¢ € V are pairwise distinct. Then we call the unique vertex
of T that simultaneously lies on the shortest path from a to b, from b to ¢, and from a
to ¢ the median of a, b, and ¢, denoted by medr (a, b, c). The following observation
linking medians with supports will be useful.

Lemmal Let T = (V,E) € B(X) and T  (}). If abc € Sy(T), v € V, then
v = medry (a, b, ¢). Moreover, T is a triplet cover of T if and only if |S,(7T)| > 1 for
allveV.

X

Now, given a non-empty subset 7 C (2) and some x € X, we put

T =T —{xa :aeX—{x}andxa € T}.
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Fig. 2 For triplet cover 7 for
the example from Fig. 1

reproduced in (i), with the triple a
supporting an interior vertex b
shown in parentheses, the
corresponding support graph C v
G(7) is shown in (ii) d >
e

Put differently, 7 —* is the subset of 7 obtained by removing from 7 precisely those
elements in 7 which contain x. We also define a bipartite graph G(7) = (X U
V., E(T)), with edge {x,v} € E(7),x € X,v € V,ifx € Aforall A € S,(7).
We call G(7') the support graph associated to 7. For any vertex p of G(7), we let
deg7(p) = degg7)(p) denote the degree of p in G(7). In Fig. 2ii we illustrate the
support graph for the triplet cover 7 given in Fig. 1.

We now list some properties of G (7).

Proposition 1 Suppose that T and T’ are triplet covers of atree T = (V, E) € B(X),
and that x € X.

(P1) Ifv eV, then0 < degy(v) <3, and 1 < degy(x) < |X| — 2.
(P2) If T' C T, then E(T) C E(T'). In particular, if there exists some x € X with

degr/(x) =1, then degr(x) = 1.

(P3) If T is a minimal triplet cover for T, then for all ab € T, there exists some

v eV such that a, v, b is a path in G(T).

(P4) Suppose that v is the vertex adjacent to x in T. Then {v, x} € E(T). Further-

more degy (x) = 1 if and only if {v, x} is the only edge in G(T) that contains
X

(P5) degr(x) = 1l ifand only if T~ is a triplet cover of T — x.
(P6) Ifdegr(x) =1, then |T| > |T*| +2.

Proof (P1): The inequality deg;(v) < 3 follows immediately from the definition

(P2):

(P3):

of the support S,,(7) of a vertex w € V and the fact that T is binary. The
inequality 1 < degs(x) follows since x € A forall A € S, (7)) for the vertex u
that is adjacent to x in 7. The inequality degs(x) < |X| — 2 follows from the
fact that 7 € B(X) and so has | X| — 2 interior vertices.

Suppose that {v,x} € E(7),x € X,v € V.Then x € A, forall A € Sy(7).
Since S,(7") € S,(7) as 7' C T it follows that x € A for all A € S, (7).
Hence, {v, x} € E(7"). The second statement is a trivial consequence in light
of the inequality 1 < degs(x) from (P1).

Suppose for contradiction that there exists some ab € 7 such that forall v € v,
we have that a, v, b is not a path in G(7'). Then for all v € V there must exist
some A € S,(7) such thatab ¢ A. Hence, 7' = T — {ab} is a triplet cover
of T. Since 7/ C T clearly holds, we obtain a contradiction in view of the
minimality of 7.
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(P4): That {v, x} € E(7) holds is an immediate consequence of the choice of v. If
degs(x) = 1, then since x € A for all A € S,(7), it follows that {x, v} is in
E(T). The rest of the statement follows immediately.

(P5): Suppose that 7 —* is not a triplet cover of T — x. Then, by Lemma 1, there exists
an interior vertex u of T — x such that S, (7 ") = . Let u’ be the vertex in T
that corresponds to u in T — x. Then as S, (7 ~) = @, it follows that x € A
forall A € S,/(7). Hence {x, u’} € E(T) and, so, degz(x) > 1. Moreover, if
v is the vertex adjacent to x in T, then v # u’. By (P4), it follows that {x, v} is
also an edge in E(7). Therefore degs(x) > 1.

Conversely, suppose that 7 ¥ is a triplet cover for T — x, and assume for
contradiction that degs(x) > 2. Then there exist u, v € V distinct such that
x € Aforall A € S,(7) and x € B for all B € S,(7). Without loss of
generality, we may assume that v is the vertex in 7 that is adjacent to x. Let
u’ be the vertex in T — x that corresponds to u in T. Then S,/ (7 %) = @
since x € A forall A € S,(7). Hence 7 —* is not a triplet cover for 7 — x, a

contradiction.
(P6): If v is the vertex in T adjacent to x, then S, (7)) # ¥ by Lemma 1. Hence, there
must be some A € S,(7) with x € A. Butthen |7 — 7 *| > 2. O

We now show that any minimal triplet cover of a tree in B(X) has a size that grows
linear with | X|.

Corollary 1 Suppose that T is a minimal triplet cover of some T € B(X). Then
171 <3(1X| = 2).

Proof Put T = (V, E). First we observe that if B = (X LI v, E’) is a bipartite graph
in which every vertex in V has degree at most 3, then the number of length 2 paths in
B of the form x, v, y withx, y € X and v € V is equal to

Z {x,v,y : x,y € X and x, v, y apath in B}|.

veV

Now, by (P3), |7] is less than or equal to the number of length 2 paths in G(7) of
the form x, v, y withx, y € X and v € V. Since |V| = | X| — 2, and each term in the
above sum is at most 3 the corollary follows. O

3 Multiplicities

In this section we derive some bounds for degrees of vertices in the cover graph of a
triplet cover. Suppose that 7 is a triplet cover of T € B(X). For x € X we define the
multiplicity u(x) = w7 (x) of x (relative to T) to be the number of elements in 7 that
contain x [or in other words, the degree of the vertex x in the cover graph I'(7)]. The
multiplicity of T is w(7) = min{u7(x) : x € X}.

The following observation relating multiplicities with degrees will be useful later.

Lemma 2 Suppose that T is a triplet cover for some tree T € B(X) and x € X. If
w(x) =2, then degs(x) = 1.
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Proof 1If u(x) = 2, then x can be contained in at most one element of Uv v Sv (7).

But x must be contained in every element of S,,(7") for u the vertex in V thatis adjacent
tox in 7. Hence |S,(7)| = 1, and the only edge contained in the support graph G (7)
that contains x (which must exist by (P1)) is {x, u}. In particular, degs(x) =1. O

We now derive some bounds for multiplicities of minimal and minimum triplet
covers.

Proposition 2 Suppose that T € B(X).

(M1) If T is a minimal triplet cover for T, then 2 < u(7) < 5.
(M2) If T is a minimum triplet cover for T, then 2 < u(7) < 3.

Proof

(M1): Suppose that x € X. Let v be the vertex in T adjacent to x in 7. Then, as
T is a triplet cover for 7', by Lemma 1 there must exist some axy € S,(7)
where a, y € X — {x} are distinct. Therefore 2 < u(x) for all x € X and
s0 2 < wu(7). To see that the remaining inequality holds, we show that there
is some element of X that is contained in at most 5 elements of 7. We use a
simple counting argument based on pairs (x, ¢) where x € X is an element in
some ¢ € 7. By Corollary 1, |7| < 3(|X| — 2) as 7 is minimal. Since each
element of 7 contains 2 elements of X, the size of the set R of pairs (x, ¢) is at
most 6(|X| — 2). On the other hand )y n(x) = |R|. Hence, since | X| > 3,
there must exist some x € X with pu(x) < 5.

(M2): We again count pairs (x, c) where x € ¢ and c is an element in 7. This is
2|T| =2(2|X| —3) and also equal to ) .y (x). Since 2(2|X| — 3) < 4|X]|
and |X| > 3, there is some x € X with u(x) < 3. That w(7) > 2 holds
follows from (M1). O

4 A lower bound

In this section, we show that a minimum triplet cover of a tree T € B(X) has size
2|X| — 3. As mentioned in the introduction, this result can also be derived by applying
Theorem 1 and Proposition 1 of Dress et al. (2012). However, it is of interest to have
a direct proof that is independent of results concerning tree metrics.

Proposition 3 Suppose that T is a triplet cover for some T € B(X). Then we have
|7 > 2|X| — 3. Moreover this bound is tight.

Proof We use induction on n = | X|. The result clearly holds for n = 3. So, suppose
that the result holds for all triplet covers of trees in B(X) with 3 < |X| <n — 1.

Suppose that 7 is a triplet cover for a tree in B(X) with |X| = n. If there exists
some a € X such that degs(a) = 1, then by (P5) 7 ¢ is a triplet cover for T — a.
Hence, by (P6) and induction, [7| > |7 |+ 2 > 2n — 3.

So, suppose that degs(x) > 2 forall x € X. Note that there must exist some a € X
with deg(a) = 2 (otherwise, degs(x) > 3 forall x € X implies that there is a vertex
v e V with deg7(v) > 4, which contradicts (P1)). Suppose that v, u € V are distinct

@ Springer



K. T. Huber et al.

with {a, v}, {a, u}in E(7). Then there exist distinctelements b, ¢, x, y € X —{a} with
{b, x} # {c, y} such that abx € S,(7) and acy € S,(7). Put C := {b, x} N{c, y}.
Then since {b, x} # {c, y} it follows that |C| < 2 and so we consider the two possible
cases (|C| = 1and |C| = 0).

Case 1: |C| = 1. Without loss of generality we may assume x = c and y # b. Then it
is straight-forward to see that without loss of generality, v is adjacenttoa in T,
u lies on the path in 7 between v and ¢, and T restricted to the set {a, b, ¢, y}
is the quartet ab|cy. Note that by ¢ 7 since otherwise bcy € S, (7) which
contradicts {a, u} € E(7T).
Consider the triplet cover 7/ = 7 U {by} of T. Then acy, bcy € S,(T").
Hence, since E(7') € E(7) by (P2), degy/(a) = 1. Therefore, by (P5),
7'~ is a triplet cover of T — a. But the elements ab, ac, ay of T are not
contained in 7'~% and, so,

1T~ +3<|T'|=|T|+ 1.

The fact that | 7| > 2|X| — 3 holds now follows immediately by induction.

Case 2: |C| = 0. Then x # c and y # b. Without loss of generality, we can assume
that v is adjacent to a in T, and that T restricted to the set {a, b, c, y, x} is a
caterpillar tree with cherry {a, x}. We consider the case where {y, c} is also
a cherry in this caterpillar tree and u is adjacent to both y and ¢ in 7. The
argument for the remaining case (where {b, y} or {b, c} is also a cherry) is
similar.

First note that if bc € 7, then by ¢ 7T, since otherwise byc € S, (7)) which would
contradict {a, u} € E(7). Similarly if cx € 7, then yx ¢ 7. Hence, by symmetry, we
can assume that 7 does not contain at least one element from the set {bc, by} and at
least one element from the set {cx, yx}. Now, let P be a subset of {bc, by, cx, yx}—T
of minimum size such that 7 U P contains precisely one of the sets {bc, by} or {cx, yx},
noting that | P| < 2. Consider the triplet cover 7/ = 7 U P of T. Then it is easily seen
that deg(a) = 1, and so by (P5) 7'~ is a triplet cover of T — a. But the elements
ab, ac, ax,ay of T are not contained in 7'~ and so

T +4 < T =TI+ |P| < |T|+2
The fact that |7| > 2|X| — 3 holds now follows by induction.
The fact that the bound is tight follows since for every T € B(X) there exists some

triplet cover of 7 with cardinality 2| X| — 3 [e.g. a pointed cover Dress et al. (2012)].
O

5 A characterization of minimum triplet covers

In this section, we prove our main result, namely a characterization of minimum
triplet covers in terms of the structure of their cover graphs. First, we recall that a

graph H = (V, E) is called a 2-tree if there exists an ordering vy, va, ..., vy of V
such that {v1, v2} € E and, fori = 3, ..., m, the vertex v; has degree 2 and belongs to
a unique triangle in the subgraph induced by H on the set {vy, vy, ..., v;} (Guénoche
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T T—x T

a YW WVh

(i) (i) (iii)
Fig. 3 Figures for the proof of Theorem 1. i Leaf x and the other two leaves that form the triple in Sy, (7);

ii the tree 7 — x obtained from 7 by restricting this tree to X — {x}; iii the labelling of additional vertices
in the case where (7)) = 3. Squiggly lines denote paths in T

etal. 2004, p. 235). Itis easily seen that a 2-tree has treewidth at most 2, and conversely,
every graph of treewidth at most 2 is a subgraph of a 2-tree.

Theorem 1 Suppose that T is atriplet cover foratree T € B(X). ThenT is minimum
triplet cover if and only if T'(T) is a 2-tree.

Proof PutT = (V, E). Suppose that I"(7) is a 2-tree. Then since 2-trees on n vertices
have 2n — 3 edges (Leclerc and Makarenkov 1998, p. 227) and |X| = n, we have
T =2|X| —3.S0 7 is a minimum triplet cover for T'.

Conversely, suppose that 7 is a minimum triplet cover for some tree 7 € B(X).
We shall prove that I'(7") is a 2-tree by inductiononn = | X|. If | X| = 3, 4 itis clearly
true. Suppose the statement holds for all X with3 < |X| <n — 1.

Let 7 be a minimum triplet cover for T on X with n = | X|. Note that, by (M2),
w(7) equals 2 or 3. Also, note that 7 must be a minimal triplet cover for 7.

Suppose that u(7) = 2. Let x € X be such that p(x) = 2. Then there exist
a,b € X — {x} with xa, xb € 7. Consider the vertex v € V(T) adjacent to x in T
(as shown in Fig. 3i). Then as 7 is a triplet cover, and xa, xb are the only elements in
7T containing x, it follows that S,(7") = {xab}.

Hence, ab € 7. It follows that 7/ := 7 — {xa, xb} is a triplet cover for T — x (see
Fig. 3ii) and since |7| = 2|X| — 3, it follows that |7”7| = 2(|X| — 1) — 3 and so 7’
is a minimum triplet cover for 7 — x. Since T — x has one fewer leaf than 7', we can
apply the induction hypothesis and conclude that I'(7”) is a 2-tree. Then, since I'(7)
is obtained from I'(7”) by attaching x to the endpoints of the edge {a, b} in T'(7"), it
follows that I"'(7) is also 2-tree.

Now suppose that (7)) = 3. We shall show that this is not possible, from which
the theorem follows. Let x € X be such that u(x) = 3 and let v € V denote the
vertex adjacent to x in 7. Then since 7 is a minimal triplet cover for 7 there must
exist a,b € X — {x} distinct such that xab € S,(7). Moreover, as p(x) = 3 there
must exist some ¢ € X — {x, a, b} with xc € 7. Since we also have xa, xb € 7, and
since 7 is a minimum triplet cover, it follows that bc € 7.

Without loss of generality, assume T restricted to x, a, b, ¢ is the quartet xa|bc
(notice that we have symmetry involving a and b, and the quartet cannot be xc|ab
because of the assumption that xab € S,(7) where v is the vertex adjacent to x in
T), as shown in Fig. 3iii. Let w € V be such that w = med(x, b, ¢).

We claim that ac ¢ 7. Assume for contradiction that ac € 7. Since 7 is minimal
and xc € 7, there exists some vertex u € V and some A € S, (7) such that xc C A.
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Note that as u(x) = 3, we must have u € {v, w}. If u = v then 7 — {xc} is a smaller
minimum triplet cover for 7' (since v is still supported by abx), and this contradicts
the minimality of 7. Thus we may assume that u = w, in which case there is a set
A € Sy(7T) with xc C A. Since u(x) = 3 and we already have ax, bx,cx € 7T it
follows that A = xbc € S,,(7) which implies that bc € 7. However, as we already
have ab € 7, the additional assumption that ac € 7 means that 7 — {xc} contains
ab, ac, bc which provides an alternative set, namely abc in S,,(T), in which case
T — {xc} remains a triplet cover for 7. But again this contradicts the minimality of
7. Thus, ac ¢ T, as claimed.

Therefore, in summary, xa, xb, xc,ab,bc € T and ac ¢ 7. We claim next that
T' = T — {xb} U {ac} is a triplet cover for T. Indeed, if xb is contained in some
element in S, (7) for some u € V, then since u(x) = 3 we must have u € {v, w}.
Since acx € S,(7") and abc € S, (T") it follows that 7’ must be a triplet cover for
T, as claimed.

To complete the proof, note that since ;77 (x) = 2, Lemma 2 implies degz(x) = 1.
Hence, by (P5), 7" = 7' — {xa, xc} is a triplet cover of T — x. Since T — x has one
fewer leaf than T we can apply the induction hypothesis and conclude that the graph
[(7'%) = (X — {x}, 7'7") is a 2-tree. Since any 2-tree has at least two vertices with
degree 2 (Leclerc and Makarenkov 1998, p. 227), it follows thatin I'(7”~*) at least one
of the two vertices a or ¢ has degree 2 (since there cannotbe a vertex y € X —{x, a, b, c}
such that the degree of y in I'(7'~¥) is equal to 2 as, by assumption, «(7) = 3). But
if, without loss of generality, the degree of a in I'(7'~) is equal to 2, then w7 (a) = 2
must hold too which contradicts (7)) = 3. This completes the proof. O

The next result follows immediately from the last theorem and the fact that any 2-
tree has at least two vertices with degree 2 [see e.g. Leclerc and Makarenkov (1998),
p- 227]. It improves on the bound given in Proposition 2 (M2).

Corollary 2 If 7T is a minimum triplet cover for some tree T € B(X) then u(7) = 2.

Note that a 2-tree is a 2d-tree, but not necessarily conversely [Guénoche et al.
(2004), Proposition 3.4] (a graph G = (V, E) is called a 2d-tree if there exists an
ordering x1, x2, ..., x, of V such that {x;, xo} € E and, fori = 2, ..., n the vertex
x; has degree 2 in the subgraph of G induced by {x1, x2, ..., x;}). So Theorem 1 can
be used to strengthen Theorem 1 of Huber and Steel (2014).

6 Shellings

Given a triplet cover 7 of atree T € B(X), we say that 7 is T-shellable if there exists
an ordering of the elements in ()2() —T,say ajby, aby, . .., ay,by,, such that for every
1 <i < m, there exists a pair x;, y; of distinct elements in X — {a;, b;} such that the
restriction of T to the set ¥; = {a;, b;, x;, y;} is the quartet x;a; |y; b;, and all elements
in (1;’) except a;b; are contained in 7; = 7T U{a;jb; : 1 < j <i—1}.If T is clear
from the context then we sometimes just say that 7 is shellable, and we refer to the
ordering of (5) — 7 as a shellable ordering.

Although this combinatorial definition of shellability seems somewhat involved,
its motivation rests on it being a sufficient condition for recursively determining the
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distances between all pairs of leaves (when the edges of T are assigned arbitrary
positive edge lengths) starting with just the distance values for the pairs in the triplet
cover. In other words, if a triplet cover 7 of atree T € B(X) is shellable then the pairs
of elements from X that are not already present in 7 can be ordered in a sequence so
that the distance in 7' between the leaves in each pair is uniquely determined from the
distances values on pairs that are either (i) present as an element of 7 or (ii) appear
earlier in the sequence.

For example, for the tree T shown in Fig. 1i, and the triplet cover 7 consisting
of the 7 pairs of elements of X that form the edges of I'(7) in Fig. liii, there are
just three pairs from ()2() that are not present in 7, namely ad, ae, bd. Ordering the
pairs as a by = ae, axby = ad, azbz = bd provides a shellable ordering, since for
ae we can select x;y; = bc € T and observe that xja;|y;b; = ba|ce is the quartet
obtained by restricting T to {a, b, c, e}, the distance between a; = a and b; = ¢ in
T is determined uniquely by the five other distances involving pairs from {a, b, c, e},
and these five pairs are present in 7. Having determined the distance for a;b; one can
now use this (and the distances for pairs in 7°) to compute the distance value for the
pair a; by and, subsequently, for the pair a3bs3.

We now gather together some facts concerning the shellability of triplet covers,
including shellability of minimum triplet covers.

Proposition 4

(S1) Suppose that T € B(X), x € X, and T is a triplet cover of T such that T " is
a triplet cover of T — x. If T " is (T — x)-shellable, then T is T -shellable.

(S2) Suppose that T, T' are triplet covers of some tree T € B(X) and that T' C 7T.
If T' is T-shellable, then so is T.

(S3) If T is a minimum triplet cover for a tree T € B(X), then T is T-shellable.

Proof (§1): PutT = (V, E). Suppose x € X such that 7" is a triplet cover of T — x
which is shellable. Suppose that v € V is the vertex in T that is adjacent to x in 7.
Then there must exist a, b € X — {x} distinct with xab € S,(7). Let 7 (x) = {de €
T : x € {d,e}} and T*(x) = {de € ()2() : x € {d,e}andde ¢ T (x)}, so that
T =7 U7 (x)and

(3)-r=(("3") - )ure

Since 7 * is (T — x)-shellable, there is a shellable ordering of (X}{X}) — 7 7% so that

all of the elements in that set can be added into 7 —* to obtain (X E{x }).

To complete the shellable ordering it remains to add the elements of (}2( ) that contain
x to the ordering so far constructed. We consider two cases. First, suppose that neither
{x,a} nor {x, b} form a cherry of 7. Then for all px € 7*(x), without loss of
generality, the quartet induced by T on {x, a, b, p} is ap|xb. Since we have that
xa, xb,ab as xab € S,(7) and also ap and bp as we have all elements in (X_Q{X}),
it follows that we can add in xp as a next element of the shellable ordering. We can
repeat this adding-in process for all remaining elements in 7 *(x) (in any order) to

obtain ()2() So 7 is T -shellable in this case.
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Second, suppose without loss of generality that {x, a} forms a cherry. Then if
px € T*(x), then the quartet induced by T on the set {x, a, b, p} is xa|bp. So, using
similar arguments as in the previous case, we can add in xp as a next element in the
shellable ordering. It follows that we can repeat this process for all remaining elements
in 7*(x) (in any order) to obtain a shellable ordering of ()2( ) So 7 is T-shellable in
this case too.

(S2): This follows immediately from the definition of shellability.
(S3): We proceed using induction on n = | X|. For n = 4 the statement is clearly true.
Suppose the statement is true up to and including n — 1 > 4.

Let 7 be a triplet cover for some binary phylogenetic X-tree with |X| = n. By
Corollary 2, u(7) = 2. Suppose that x € X with u(x) = 2. Then, by Lemma 2,
degs(x) = 1. By (P4) it follows that 7 —* is a triplet cover for T — x. Note that 7 —*
is minimum since |7 *| = |7 | — 2. Thus by induction 7" is (T — x)-shellable.
Therefore, 7 is T-shellable by (S1). O

Corollary 3 For any tree T € B(X), suppose that T is a minimum triplet cover for
T. Consider any assignment of strictly positive lengths to the edges of T, and the
resulting assignment of inter-leaf distances on the pairs from T . This function from T
to R>C uniquely determines T and its edge lengths, since no different tree T' € B(X)
can induce the same inter-leaf distances on pairs from T under any positive weighting
of the edges of T'.

Proof This follows immediately from Part (S3) of Proposition 4, combined with The-
orem 6 of Dress et al. (2012). O

Note that there are examples of sets 7 C ()2() having cardinality 2|X| — 3 that
determine 7" and any set of positive edge lengths from inter-leaf distances, but which
are not 7' -shellable (see Example 1).

Example I Put X = {a,b,c,d, e, f, g} and let T be the caterpillar tree with exactly
two cherries {a, b}, { f, g} and intermediate leaves c, d, e (as shown in Fig. 4ii). Put
T = {ab,ad, bc, be, cd, cf,de, dg, ef, fg,ag}. Then 7 determines T and any set
of positive edge lengths from inter-leaf distances, but it is not 7' -shellable (Dress et al.
2012, Example 6.2).

7 Conclusion and open problems

As mentioned earlier, there are examples of minimal triplet covers 7 that are not
minimum. The following provides a specific example.

Example 2 Let X = {a,b,c,d,e, f, g, h} and T be the phylogenetic X-tree having
cherries {a, b}, {e, f} and leaves, starting with cherry {a, b}, labeled in the order
g, ¢, h,d (see Fig. 4i). Let

T ={ab,ac,bc,cd, bd, ce,de,df, ef,ah,ag, fg, fh, gh}.

Then 7 is a minimal triplet cover for T'. Since |7 | = 14 # 2| X| — 3 it follows that 7~
is not minimum.
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(1)

Fig. 4 i A phylogenetic X-tree with X = {a,...,h}. The set 7 = {ab,ac,bc,cd,bd,ce,de,
df,ef,ah,ag, fg, fh, gh} is a minimal triplet cover but not a minimum one. The set Sy (7) associated
with each interior vertex v of 7 generates the following sequence (from left-most to right-most interior
vertex): abc, fgh, cbd, fgh,dec, edf. (ii) A phylogenetic X-tree with X = {a ..., g} for which the set
T = {ab,ad, bc, be, cd, cf,de,dg, ef, fg,ag} determines T along with an assignment of positive edge
lengths from the induced inter-leaf distances, yet 7 is not shellable

An interesting problem would be to investigate the structure of the cover graph for
minimal triplet covers.
Our results also suggest further questions for future work.

(i) There are formulae for counting the number of labeled 2-trees (Moon 1969). Is
there a formula for counting the number of minimum triplet covers for a given
phylogenetic X-tree?

(i1)) We have shown that minimum triplet covers are shellable. It would be interesting
to see how far this result extends. For example, is every triplet cover shellable?
Understanding the structure of minimal triplet covers might help to shed light on
this question.
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