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Highlights 

� We calculate consumption-based black carbon emissions for four Chinese 

megacities. 

� Capital formation is the largest contributor to consumption-based emissions. 

� 44%-66% of consumption-based emissions are embodied in imports. 

� Large net imported emissions are attributable to a relatively lower emission 

intensity. 
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Abstract    

A growing body of literature discusses the CO2 emissions of cities. Still, little is 

known about black carbon (BC), a short-lived warming agent. Identifying the drivers 

of urban BC emissions is crucial for targeting cleanup efforts. A consumption-based 

approach enables all emissions to be allocated along the production chain to the 

product and place of final consumption, whereas a production approach attributes 

emissions to the place where goods and services are produced. In this study, we 

calculate the production-based and consumption-based emissions in 2012 in four 

Chinese megacities: Beijing, Shanghai, Tianjin and Chongqing. The results show that 

capital formation is the largest contributor, accounting for 37%-69% of 

consumption-based emissions. Approximately 44% of BC emissions related to goods 

consumed in Chongqing and more than 60% for Beijing, Shanghai and Tianjin occur 

outside of the city boundary. The large gap between consumption and 

production-based emissions can be attributed to the great difference in embodied 

emission intensities. Therefore, collaborative efforts to reduce emission intensity can 

be effective in mitigating climate change for megacities as either producers or 

consumers.  
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1 Introduction 

Black carbon (BC) is mainly emitted by the incomplete combustion of fossil fuels 

and biofuel (Bond et al., 2013). BC is an efficient absorber of solar radiation and 

contributes to global climate change (Mitchell et al., 1997); its role is second only to 

CO2 as the main driver of climate change (Bond et al., 2013; Ramanathan and 

Carmichael, 2008). Due to its short atmospheric lifetime, reducing BC emissions can 

immediately contribute towards the goal of limiting global warming to 2 °C above 

pre-industrial levels (Ramanathan and Carmichael, 2008; Rypdal et al., 2009; Shindell 

et al., 2012; Wallack and Ramanathan, 2009).  

BC emissions are of concern at a variety of spatial scales ranging from the 

individual city to the globe (Bond et al., 2013; Cao et al., 2006; Jørgensen, 2016; 

Koch et al., 2009; Wang et al., 2012a). Asia contributes more than half of all global 

anthropogenic BC emissions, and China is the largest emitter, due to its rapid 

economic growth and urbanization (Wang et al., 2014a; Zhang et al., 2009). At 

present, more than half of China’s population lives in urban areas (NBSC, 2015), and 

China’s cities contribute more than 80% of the total energy consumption in China (Mi 

et al., 2016). Cities have been identified as having major potential for reducing energy 

consumption and related emissions (Chen and Chen, 2012, 2016a, b; Chen et al., 

2015).  

There are two widely used approaches to measuring urban emissions: 

production-based and consumption-based accounting. Production-based accounting is 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 
 

used to measure emissions caused by local production, without considering where 

goods are used or who ultimately uses them (Meng et al., 2016b; Wang et al., 2014a; 

Wang et al., 2014b; Wang et al., 2012a). These inventories have been extensively used 

to guide the implementation of emission control measures. By contrast, 

consumption-based accounting attributes all emissions occurring along the production 

chain to the final consumers of products (Davis and Caldeira, 2010; Meng et al., 

2016c; Tukker and Dietzenbacher, 2013; Wiedmann, 2009). In this framework, 

emissions embodied in product imports are allocated to the city where they are 

consumed while the emissions embodied in exports are excluded (Peters, 2008). A 

series of studies have demonstrated that consumption-based accounting opens the 

door to new solutions to combating climate change that bring together producers and 

final consumers (Girod et al., 2014; Jakob et al., 2014; Steininger et al., 2015).  

There are numerous studies on consumption-based greenhouse gas emissions for 

cities (Feng et al., 2014; Guo et al., 2012; Mi et al., 2015; Mi et al., 2016; Shao et al., 

2016). Feng et al. (2014) analyzed consumption-based carbon emissions for four 

Chinese megacities and found that urban consumption imposed high emissions on 

surrounding regions via interregional trade. Mi et al. (2016) employed an input-output 

model to calculate consumption-based CO2 emissions for thirteen Chinese cities and 

found that CO2 emissions related to urban consumption are largely outsourced to 

other regions. Shao et al. (2016) also accounted for consumption-based carbon 

emissions from the fossil fuel consumption of Beijing in 2012. These studies all 

provided insights useful for designing climate mitigation policies as important 
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complementary indicators to the production-based emission inventory. Some attention 

has also been paid to consumption-based air pollutant emissions in cities (Jiang et al., 

2016; Li et al., 2016a). 

However, few studies have focused on consumption-based BC emissions for 

cities. Li et al. (2016b) and Zhao et al. (2015a) all explored the emissions embodied in 

inter-provincial trade and international trade in 2007 and then derived the 

consumption-based emissions for 30 provinces in China, including Beijing, Tianjin, 

Shanghai and Chongqing. Meng et al. (2015a) assessed the consumption-based 

particulate matter emissions in Beijing and analyzed the impacts of domestic and 

international trade on Beijing’s emissions. Hence, this study fills this gap by building 

consumption-based emission inventories for cities using the most recent data from 

2012. We choose four megacities, Beijing, Tianjin, Shanghai and Chongqing, as our 

case study due to their prominent positions and data availability. The sources of BC 

emissions in this study consist of industrial emission sources (i.e. agriculture, 

industrial activity, power generation, transportation and non-transportation services) 

directly emitted from energy combustion and residential emissions (e.g. cooking and 

heating). To achieve our research targets, we first elaborate our methodology, 

including data collection and the detailed computation process. We then offer a 

detailed description of results and a deep analysis. We finally discuss policy 

implications for reducing BC emissions in our conclusions.  
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2 Methods 

2.1 Estimation of production- and consumption-based BC emissions  

   Extended environmental input-output (EEIO) analysis is a popular tool that allows 

final consumption in one sector to be tracked to all other sectors (Miller and Blair, 

2009). This method is being increasingly applied to analyze a wide-range of 

environmental issues such as greenhouse gas emissions (Guo et al., 2012; Shao et al., 

2016), land use (Chen and Han, 2015; Costello et al., 2011), water consumption (Han 

et al., 2014; Zhao et al., 2015b), energy consumption (Li et al, 2016c; Yuan et al., 

2010), air pollutants (Li et al., 2015; Meng et al., 2015a; Meng et al., 2015b), 

biodiversity loss (Lenzen, 2012), and materials use (Wiedmann et al., 2013).  

In the framework of the original input-output analysis, the monetary balance of 

the urban economy is  

    D F D FX Z Y E E M M= + + + − −                (1) 

where X is the vector of total economic output in each sector; Z represents the direct 

requirement coefficient matrix for each element; zi,j represents the required input from 

sector i to produce output in sector j; Y is a vector of domestic consumption, 

consisting of urban household consumption, rural household consumption, 

government expenditure, capital formation and inventory increase. ED and EF, 

respectively, represent the vectors of exports to other provinces and to other countries. 

MD and MF, respectively, represent the vectors of inflows from other provinces and 

imports from other countries.  
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Inflows MD and Imports MF represent final consumption and intermediate 

consumption.  Due to the lack of an import matrix in the original IO table, we 

followed previous studies (Guan et al., 2009; Guan et al., 2014c; Lin et al., 2014; 

Meng et al., 2015a; Meng et al., 2015b; Weber et al., 2008) and assumed that all 

consumers (industry, government, and households) use inflows/imports in the same 

proportions. Thus, we used the following equations to split intermediate use (Z) and 

final use (F, including Y and E)  

(M / (x M M ))D D D F
ij ij i i i iz z= × + +              (2) 

(M / (x M M ))F F D F
ij ij i i i iz z= × + +              (3) 

                (4) 

(M / (x M M ))F F D F
i i i i i iF F= × + +              (5) 

Thus, equation (1) can be expressed as 

   

    = ( ) ( )

    =

D F D F

L D F L D F D F
ij ij ij i i i i i

L L D D D F F F
ij i ij i i ij i i

L L
ij i

X Z Y E E M M

Z Z Z F F F M M

Z F Z F M Z F M

Z F

= + + + − −
= + + + + + − −

+ + + − + + −

+

   (6) 

Consumption-based emissions of an urban economy (EC) can be accounted
 by 

1(I )D D D F FEC h A Y M Mε ε−= − + +                (7) 

Here, I is the identity matrix, AD represents the normalized technology 

coefficients matrix or direct requirement coefficient matrix for each element; aij 

represents the required input from sector i (excluding inflows/imports) to produce unit 

output in sector j; L=(I-AD)-1 is the direct and indirect matrix, in which element Lij 

represents how many products of sector i are locally needed to produce one unit of the 
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product for final use in sector j. Dε and Fε are the embodied emissions intensity 

(direct and indirect emissions induced by unit final demand along the whole supply 

chain) of imported products from other regions domestically and imported products 

internationally, respectively. The embodied BC intensity of imported products can be 

found in Table A1 in supplementary information. Thus, 1(I )Dh A Y−−  represents the 

emissions generated locally due to local final demand. D DMε and F FMε are the 

emissions embodied in domestic inflows and international imports, respectively. 

   Emissions embodied in exports can be expressed as: 

                           (8) 

'DE and 'FE are revised outflows/exports and remove the re-export of 

inflows/imports following equation (4) and (5).  

2.2 Index decomposition analysis of emissions embodied in trade 

The index decomposition of BC emissions embodied in trade is given by  

 i i
i i i

i i ii

Q E
E E Q QS F

Q Q
= = =∑ ∑ ∑                 (9) 

where E describes the BC emissions embodied in exports or imports, Q is the GDP 

value of exports or imports, and Si refers to the share of the GDP value for sector i, 

which reflects the economic structure. Fi is the BC emissions per unit of 

imported/exported finished products of sector i. Thus, the factor contributing to the 

net trade in embodied emissions can be expressed based on the logarithmic mean 

divisia index (LMDI) approach as:  

import export
Q S FE E E E E E∆ = − = ∆ + ∆ + ∆           (10) 
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where E∆ is the difference between the BC emissions embodied in imports ( importE ) 

and the BC emissions embodied in exports (exportE ); QE∆ , SE∆  and FE∆ refer to 

the effect of the trade volume of finished products, the trade structure and trade 

emissions intensity, respectively. QE∆ , SE∆ and FE∆ are expressed as: 

ln( )
t
i

Q i o
i i

Q
E w

Q
∆ =∑                     (11) 

ln( )
t
i

S i o
i i

S
E w

S
∆ =∑                      (12) 

ln( )
t

i
F i o

i i

F
E w

F
∆ =∑                      (13) 

0

0ln ln

t t
i

i t t
i

E E
w

E E

−=
−

                     (14) 

t
iQ , t

iS and t
iF  are the trade volume, trade structure and emission intensity of imports, 

respectively. 0
iQ , 0

iS and 0
iF  are the trade volume, trade structure and emission 

intensity of exports, respectively. 

2.3 Data source 

The energy-related BC emissions (C) was calculated by 

, ,
1 1

m n

i j i j
i j

C E EF
= =

=∑∑                     (15) 

where C is total BC emissions (g); ,i jE  represents the energy consumption of fuel j  

in sector i (kg); ,i jEF  is the emission factor of energy j in sector i which incorporates 

the technology split and removal efficiency (Li et al., 2016b; Meng et al., 2015a; 

Meng et al., 2016b; Wang et al., 2012a; Wang et al., 2012b). The direct BC emission 
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inventory covered all 30 economic sectors (Table A1) to adjust to the input-output 

table. Data regarding direct fossil energy in 2012 were from the China Emission 

Accounts and Datasets (CEADs, http://www.ceads.net/), which are all collected from 

the regional Statistical Yearbooks (Shan et al., 2016). Emission factors used in this 

study were obtained from previous studied (Wang et al., 2014a; Wang et al., 2012a; 

Wang et al., 2012b) , which had conducted an extensive literature reviewed to collect 

emission factor and built an emission factor database. Detailed methods to build the 

database and uncertainty analysis of the emission inventory can be found in previous 

studies (Meng et al., 2015a; Wang et al., 2012a; Wang et al., 2012b). A global BC 

emission inventory has also been compiled and is available online for free 

(http://inventory.pku.edu.cn/). 

3 Results and Discussion 

3.1 Production- and consumption-based BC emissions  

Table 1 shows the socioeconomic information and BC emissions of the four 

megacities in 2012. We can see that Shanghai has the highest population density and 

the highest per capita territory BC emissions compared with the other three cities. 

Tertiary industries in Beijing and Shanghai contribute 76.4% and 60.4% to their GDP, 

respectively. By contrast, secondary industries are the economic engines in Tianjin 

and Chongqing. Tianjin has the highest per capita GDP and, at the same time, the 

highest consumption-based BC emissions per person. Chongqing is less developed 

than the other three cities, and its per capita GDP is less than half of the other three 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 

cities, while its per capita consumption-based emissions are approximately 70% of 

those in Beijing and Shanghai. 

Insert Table 1  

    

Insert Fig.1  

 

The production-based BC emissions cover energy-related emissions from all 

industrial and residential households. The production-based BC emissions in 

Shanghai and Chongqing were 23.6 and 20.1 Gg, respectively, while Beijing’s and 

Tianjin’s production-based emissions were lower, at 11.9 and 13.9 Gg, respectively. 

Table A2 compares the BC emissions in this study with previous studies. The total 

emissions in the four megacities corresponds closely with the previous estimations, 

except that BC emissions in Beijing 2000 doubled the BC emissions in Beijing 2012 

in this study. This can be attributed to the shift of 86-year-old Capital Iron and Steel 

Works, known as Shougang, from Beijing to Hebei since 2007. 

An urban economy has extensive cross-boundary interactions in terms of 

monetary, commodity and resource flows (Jiang et al., 2016; Liu and Müller, 2013; 

Meng et al., 2015a; Shao et al., 2016). Territorial emissions in a city relate to local 

consumption and exports to other provinces or foreign regions, while the city also 

induced BC emissions outside of the city boundary. Figure 1 shows that more than 44% 

of BC emissions related to goods consumed in Chongqing and more than 60% for 

those consumed in Beijing, Shanghai and Tianjin occurred outside of the territorial 

city boundary in 2012. Overall, the consumption-based emissions in these four 
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megacities were much larger than the production-based emissions, especially in 

Beijing and Tianjin, whose consumption-based emissions were almost double their 

production-based emissions. This finding of BC emissions in this study are similar to 

CO2 emissions to some extent (Feng et al., 2014). The similar pattern for CO2 and BC 

confirms that urban consumers in China's megacities are largely relying on goods 

produced elsewhere, thus inducing emissions and influencing the environment in 

other regions.  

From a consumption perspective, these four megacities constitute various 

structures of final demand. More than half of the consumption-based emissions in 

Tianjin and Chongqing were induced by capital formation, e.g., road construction and 

housing development, in the cities. Capital formation requires a huge amount of steel, 

iron, and cement, as well as electricity, to support the production. These input 

materials are all highly emission-intensive products. The shares of emissions caused 

by capital formation in Beijing and Shanghai were slightly smaller (37% and 38%, 

respectively), while those for Tianjin and Chongqing were 69% and 48%, respectively. 

This high contribution of capital investments in the megacities to BC emissions is 

driven by rapid economic growth and urbanization, as well as being driven by 

government policies (Guo et al., 2012; Meng et al., 2015a; Mi et al., 2016; Shao et al., 

2016). For megacities in 2007 (Feng et al., 2014), capital formation accounted for 

more than 50% of the total CO2 consumption-based emissions. For BC emissions in 

2012, Beijing and Shanghai had a relatively lower contribution of capital formation 

and a relatively higher contribution of urban household consumption compared to 
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Tianjin and Chongqing, approaching those of developed western countries. As the 

capital city of China, Beijing has a relatively large contribution from government 

expenditure.  

Urban household consumption was the second greatest contributor. Although the 

ratio of direct emissions from rural residential energy consumption to that from urban 

energy consumption ranged from 31% (Shanghai) up to a factor of 35 times 

(Chongqing), the level of embodied emissions in the commodities consumed by urban 

residents is much larger than that in the commodities consumed by rural residents, 

even amounting to 18 times in Shanghai, while the rural population and urban 

population were comparable. Annually, approximately 20 million people move from 

rural areas to urban areas, which incentivizes new infrastructure and housing 

requirements as well as substantial commodities purchases due to changing lifestyles 

(Feng and Hubacek, 2016). Household consumption is projected to drive growing BC 

emissions. The megacities are facing similar challenges in terms of BC emissions if 

they are to maintain their growth momentum. Therefore, consumer choices urgently 

need to be shifted, for example, energy-efficient dwellings, eating less (red) meat, 

lower fossil fueled mobility, and purchasing higher quality long-lived goods (Girod et 

al., 2013, 2014).  

Insert Fig.2  

3.2 Embodied BC emissions in trade 

Emission inventories from a consumption perspective, rather than a production 

perspective, imply the need for policy instruments that allow the emissions of such 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 
 

key traded productions or services to be addressed. BC emissions embodied in 

imports and exports vary greatly in the four megacities (see Figure 3), but all four 

tend to import resources (e.g., coal, oil and gas) and materials produced by secondary 

industries. The sector of mineral products was the main contributor in all four 

megacities, ranging from 18% in Beijing to 23% in Chongqing. The sector of coal, oil 

and gas was the biggest contributor to Shanghai and Beijing’s emissions embodied in 

imports, accounting for 19% and 37%, respectively. By contrast, emissions embodied 

in the construction sector were responsible for 49% of the total imported emissions in 

Tianjin. The monetary inflow in the construction sector has increased from 58 trillion 

in 2007 to 368 trillion in 2012 for Tianjin, at a growth rate of 44.7% annually (NBSC, 

2014). The emissions embodied in exports in the four megacities are mainly related to 

the transport and storage sector, especially in Shanghai, which has 53% of emissions 

embodied in exports attributed to this sector. For all four cities, BC emissions 

embodied in imports were much greater than those embodied in exports. For example, 

the emissions embodied in Beijing’s imports were four times the amount embodied in 

its exports. 

Insert Fig.3  

3.3 Socioeconomic driving forces of emissions imbalance 

It can be seen that all four megacities were net importers of BC emissions and 

that imported and exported products differ greatly. These cities can be net importers of 

BC emissions for a number of reasons: (a) a relatively low emission intensity of GDP 

(i.e., the amount of direct and indirect BC emissions to produce a unit of GDP), (b) 
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import specialization in carbon-intensive products, and (c) a trade deficit. The 

determinants are important research and policy issues. Because the international 

imports of these four cities were too small (less than 1%) compared to their domestic 

trade, we decomposed the net emissions embodied in domestic trade into the 

abovementioned three factors.   

 

Insert Fig.4  

 

Fig. 4 presents the contribution of each factor to the major difference in the net 

emissions transfer. Trade structure here reflects the percentage of emissions-intensive 

products within the traded products. The trade structure of Tianjin and Chongqing 

were responsible for approximately half of the net BC imports. What ultimately 

matters for Beijing and Shanghai is the difference in the intensity of inflows compared 

to outflows; emission intensity difference contributed 11.5 Gg and 7.6 Gg of the net 

BC emissions embodied in imports, which were partly offset by the trade deficit.  

BC is an important component of fine particulate matter (PM2.5) and has an 

adverse impact on human health and the environment (Bond et al., 2013). As part of 

the efforts to improve air quality, the Chinese government has imposed strict 

regulations on pollutant emissions in megacities (Meng et al., 2016a). One of these 

measures is to shift industry out of these regions without changing consumption 

patterns, which may result in an increase in total pollutant emissions. This increase 

would be due to generally inefficient production in less-regulated areas and 
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geographically extended supply chains. A series of studies has highlighted that the 

emission intensity of developing country exports is much greater than that of 

developed country exports (Davis and Caldeira, 2010; Liu et al., 2016; Meng et al., 

2016c); the same holds true for developing and developed cities within one country. 

Despite some policies such as installing scrubber, improving energy mix to reduce 

fossil fuel consumption (Hossain and Fara; Rosen and Koohi-Fayegh, 2016), 

cost-effective mitigation of BC emissions may require policies that cover the entire 

supply chain, which in turn will depend upon a quantitative understanding of 

emissions transport between producers and consumers. Consumption-based 

accounting has clear benefits in terms of facilitating the diffusion of cleaner 

production practices and technologies to less developed regions (Guan et al., 2014a). 

For instance, the Clean Development Mechanism (CDM) concept is completely 

compatible with the consumption-based accounting of BC emissions. Peters (2008) 

posited that a consumption-based approach would allow project sponsors to enact 

mitigation projects in areas where they import products. 

4 Conclusions  

Consumption-based accounting has been widely used to open the door to new 

solutions to combating climate change. Compared to a production-based approach, a 

consumption-based method provides insight into the BC emissions in the production 

of products to support consumption. The aim of the consumption-based approach has 

not been to replace the production-based approach but rather to serve as a supplement. 
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The policy implications include not only portions directed at reducing BC emissions 

in some specific industries, for instance, improving production technologies, but also 

options to alter consumption patterns. 

In this study, we use the latest data to calculate the consumption-based BC 

emissions for four megacities in China and identify the forces driving the difference 

between consumption and production-based emissions. We find that consumption in 

these cities induces emissions not only locally but also beyond the boundary via 

interregional trade. For example, more than 60% of consumption-based BC emissions 

in Beijing and Shanghai were embodied in imports from other regions. However, the 

big gap in net emissions embodied in trade was not due to trade imbalances but 

instead stems from the large difference between the embodied emission intensity of 

exports from these megacities and imports from other regions. Indeed, this has already 

been demonstrated for CO2 emissions (Feng et al., 2014; Mi et al., 2016). High levels 

of consumption in China’s developed regions are driving emissions in less developed 

provinces, where CO2 emission intensity is much greater. This finding highlights the 

magnitude and importance of interregional trade in transferring embodied emissions 

between regions. Improving technology and reducing carbon intensity are critical for 

mitigating climate change for megacities as either producers or consumers. The 

national government should coordinate design and implement effective mechanisms 

and channels to encourage technology transfer between the more and less developed 

regions of China (Guan et al., 2014b).  
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Capital formation was the largest contributor to consumption-based BC 

emissions in the four cities, particularly in Tianjin and Chongqing. Beijing and 

Shanghai were more like a mature economy, with a relatively lower contribution from 

capital formation and a relatively higher contribution from urban household 

consumption compared to Tianjin and Chongqing. For growing cities such as Tianjin 

and Chongqing, which are expanding their infrastructures, more sustainable urban 

forms and spatial planning are urgently needed as important long-term factors towards 

sustainable lifestyles (Creutzig et al., 2015; Feng and Hubacek, 2016; Ramaswami et 

al., 2016). Household consumption is the second largest driver, while the per capita 

BC footprint in urban areas was much larger than that in rural areas. In the future, 

more residents will transition from rural to urban lifestyles as China continues its 

rapid urbanization, leading to increased BC emissions related to household 

consumption. Clearly, improving emission intensity via production-focused efficiency 

measures and end-of-pipe control is essential. However, developing lifestyles that 

decouple economic growth and emissions will require substantial debates on the 

limits of green consumerism and the potential of sustainable consumption. 
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Table 1  

Socioeconomic information and BC emissions for the four megacities in 2012 

 Beijing Shanghai Tianjin Chongqing 

Population (million) 20.69 23.80 14.13 29.45 

Area (km2) 16,411 6219 11,920 82,400 

Population density(person/km2) 1261 3827 1185 357 

GDP/capita (RMB) 86037 84459 91252 38742 

Primary industry proportion 0.8% 0.6% 1.3% 8.2% 

Secondary industry proportion 22.8% 38.9% 51.7% 52.4% 

Tertiary Industry proportion 76.4% 60.4% 47% 39.4% 

Production-based BC emissions (Gg) 11.9 23.6 13.9 20.1 

Production-based BC emissions per person (kg) 0.58 0.99 0.98 0.68 

Consumption-based BC emissions (Gg) 19.5 21.7 18.7 20.9 

Consumption-based BC emissions per person (kg) 0.94 0.91 1.32 0.71 
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Figure caption 

Fig. 1. Production-based BC emissions (prod.) and consumption-based BC emissions (including 

local emissions (cons.) 

Fig. 2. Composition of embodied emissions in major final demand categories (in percentage). 

Fig. 3. Embodied BC emissions in trade at the sectoral level (Gg) 

Fig. 4. Contribution of factors to net importers of embodied BC emissions for the four megacities 
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Fig. 1. Production-based BC emissions (prod.) and consumption-based BC emissions (including 

local emissions (cons.) and emissions embodied in inflows/imports) for Beijing, Shanghai, Tianjin 

and Chongqing. The percentage on the top of each bar indicates the share of the emissions 

embodied in inflows/imports within total consumption-based emissions.  
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Fig. 2. Composition of embodied emissions in major final demand categories (in percentage). The 

size of the pie denotes the value of consumption-based emissions. 
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Fig. 3. Embodied BC emissions in trade at the sectoral level (Gg). 
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Fig. 4. Contribution of factors to net importers of embodied BC emissions for the four megacities 

 


