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Abstract

Background

Patients with comorbidities do not receive optimal treatment for their cancer, leading to

lower cancer survival. Information on individual comorbidities is not straightforward to derive

from population-based administrative health datasets. We described the development of a

reproducible algorithm to extract the individual Charlson index comorbidities from such

data. We illustrated the algorithm with 1,789 laryngeal cancer patients diagnosed in England

in 2013. We aimed to clearly set out and advocate the time-related assumptions specified in

the algorithm by providing empirical evidence for them.

Methods

Comorbidities were assessed from hospital records in the ten years preceding cancer diag-

nosis and internal reliability of the hospital records was checked. Data were right-truncated

6 or 12 months prior to cancer diagnosis to avoid inclusion of potentially cancer-related

comorbidities. We tested for collider bias using Cox regression.

Results

Our administrative data showed weak to moderate internal reliability to identify comorbidities

(ICC ranging between 0.1 and 0.6) but a notably high external validity (86.3%). We showed

a reverse protective effect of non-cancer related Chronic Obstructive Pulmonary Disease

(COPD) when the effect is split into cancer and non-cancer related COPD (Age-adjusted

HR: 0.95, 95% CI:0.7–1.28 for non-cancer related comorbidities). Furthermore, we showed

that a window of 6 years before diagnosis is an optimal period for the assessment of

comorbidities.

Conclusion

To formulate a robust approach for assessing common comorbidities, it is important that

assumptions made are explicitly stated and empirically proven. We provide a transparent
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and consistent approach useful to researchers looking to assess comorbidities for cancer

patients using administrative health data.

Background

When modelling cancer survival in population-based research, it is relevant to account for

potential confounders and effect modifiers, such as comorbid conditions, frequently linked to

clinically relevant outcomes.[1, 2] Most studies found that cancer patients with comorbidity

had poorer survival than those without comorbidity.[1] The presence of comorbidities may

delay or favour a timely cancer diagnosis.[3–5] In addition, it has been hypothesised that

patients with comorbidities do not receive standard cancer treatments such as surgery, chemo-

therapy, and radiation therapy as often as patients without comorbidities.[1] Thus, the use of

individual comorbidities or comorbidity scores such as the Charlson index[6] will enrich our

understanding of differences in cancer survival outcomes in observational population-based

studies.

Comorbidities are defined as the coexistence of disorders, in addition to a primary dis-

ease of interest, which are causally unrelated to the primary disease (e.g. cancer).[7, 8] A

myriad of comorbidity indices have been developed, some more specifically for cancer

patients (simple condition, counts of simple conditions, weighted indices and organ-based

system).[9]

The Charlson comorbidity index (CCI) is the most extensively studied and most widely

used comorbidity index in the medical literature.[10] The widespread use of this index could

be explained by the fact that it is not designed for patients with a particular disease and is rec-

ommended when overall mortality is the outcome of interest.[10] It does not require extensive

information, which makes it appealing to researchers who access administrative data rather

than individual clinical notes.[9] However, no gold standard approach to measure comorbidity

in the context of cancer exists, and the source of data to ascertain comorbidities varies. [9]

Two main sources of data are commonly used to ascertain comorbidities: clinical records and

administrative data. In population-based research, administrative data has been suggested as

the best available option to ascertain comorbidities and predict in-hospital mortality or

6-month mortality for the CCI.[9, 10]

A report regarding the administrative sources of data used for deriving comorbidities

showed a lack of consistency, validity, and replicability of a broad majority of the studies deriv-

ing comorbidities.[9] Furthermore, the studies describing the comorbidity index did not offer

a clear description of the underlying assumptions made to obtain the algorithm nor provide

the code used, thereby limiting the opportunity to assess and replicate the work. Consequently,

researchers can make differing assumptions in their evaluation of comorbidities, leading to

conflicting findings.

We aimed to construct a robust algorithm that is both transparent and replicable to assess

comorbidities using population-based hospital administrative data. First, we described and

evaluated the assumptions underlying the development of an algorithm, using the hospital epi-

sode statistics (HES) in England for the period 2003–2013. We then evaluated the internal and

external validity and quality of these data to extract and use comorbidity information.

Population-based assessment of comorbidities in cancer patients
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Materials and methods

Study design, data and linkage strategy

We developed a retrospective longitudinal assessment of comorbidities for cancer patients

diagnosed in England during 2013. Information on cancer patients with a malignant invasive

primary tumour was obtained from cancer registrations in England. This contains patient and

tumour variables including relevant dates (birth, diagnosis, last vital status), sex, age at diagno-

sis, deprivation, cancer site and morphology. We used population-based administrative hospi-

tal discharge data for the assessment of comorbid conditions. Namely, we analysed Hospital

Episode Statistics (HES) data,[11] including accident and emergency (A&E), inpatient and

outpatient data streams in England for the period 2003 to 2013. HES contains clinical, admin-

istrative, and demographic information about individual patients. The diagnostic information

uses the International Classification of Diseases (10th revision) (ICD-10) [12] and operations

are coded using the Office of Population Censuses and Surveys Surgical Operations and Proce-

dures (4th edition) (OPCS-4).[13]

HES data had been linked to the cancer registrations from Public Health England using a

deterministic linkage strategy based on an individual ID (NHS number), date of birth, sex and

postcode.

Data management

Overall assumptions. Overall, we assumed that HES is a valid source of data for the

assessment of comorbidities at a population-based level. However, the evaluation of comorbid-

ities depends heavily on both age and probability of attending the hospital (outpatient/inpa-

tient) in the years preceding the cancer diagnosis. Given the chronic aspect of comorbidities,

we also assumed that once a comorbidity is recorded in HES, the patient suffers from that

comorbidity up until the time of cancer diagnosis. To explain and evaluate our algorithm, we

focussed on patients diagnosed with laryngeal cancer.

Algorithm. From HES, we selected all 14 diagnostic variables containing ICD-10 diagno-

sis codes[12] (version 4) for each episode registered. The time scale refers to time pre-cancer

diagnosis, which we split into six-monthly intervals (Fig 1A). We compared the hospital epi-

sode start date to the cancer diagnosis date to confirm its inclusion in the different time

Fig 1. Graphical representation of data management and time-related assumptions.

doi:10.1371/journal.pone.0172814.g001
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intervals. Each interval was examined independently. Each diagnosis field was scanned for the

17 co-morbid conditions that compose the CCI (listed in S1 Table) and morbid obesity.[14] If

a comorbidity (i) was recorded in a given six-month interval (j), we updated the corresponding

binary indicator variable (xij = 1). The assessment of comorbidities for periods longer than six

months were simply the aggregation of the information contained in all binary variables

derived for each six-monthly interval, assuming that once the comorbidity was identified it

was just counted once. We also retained the episode date at which a comorbidity was first

recorded. We consider the patient as the unit of analysis.

Time-related assumptions. Minimising the potential for selection bias when assessing

comorbidities requires the development of an algorithm that will evaluate the same amount of

person-time at risk for any given patient included in the assessment. It allows each patient to

have the same probability of being diagnosed with comorbidities in relation to the time under

assessment. Table 1 shows the minimum number of years, for each cohort of patients, for

which we can assess comorbidities. We used the 2013 cohort as a reference to which we

compared the comorbidity information derived from shorter time windows. Given this data

constraint, we had to consider carefully the optimal time window for the assessment of comor-

bidities based on the trade-off between long HES history and the number of cancer patient

cohorts to evaluate.

Furthermore, considering the definition of comorbidity as the occurrence of disorders

which are causally unrelated to cancer, we defined comorbidities identified shortly before diag-

nosis as cancer-related (Fig 1B). Thus there is a risk of a collider bias given that cancer-related

comorbidities may be a common effect of exposure and outcome, and contradictory associa-

tions may arise between non-cancer related comorbidities and cancer survival. [15] To miti-

gate the possibility of selection bias we created restriction windows of 6, 12 or 24 months

before the cancer diagnosis, during which comorbidities first registered were excluded. How-

ever, cancer-related comorbidities may be of interest in studies aiming to evaluate factors asso-

ciated with the cancer treatment decision. In this particular case, the restriction mentioned

above will not apply.

Validation and statistical analyses

First, to evaluate the optimal time window for the retrospective assessment of comorbidities,

we compared the cumulative incidences of comorbidities for the 2013 cohort of laryngeal can-

cer patients using consecutive time restrictions, and showed the corresponding percentages of

comorbidities lost.

Second, we used two semi-parametric Cox proportional hazard models to estimate the age-

adjusted effect of non-cancer related comorbidities on cancer survival. The first model did not

differentiate cancer- and non-cancer-related comorbidities. Then, the effect of comorbidities

on cancer survival was compared with a second model where cancer and non-cancer related

comorbidities were modelled as independent variables. For both models, we fitted three differ-

ent versions relating to various lengths of the restriction window (6, 12 and 24 months).

Finally, to measure the reliability and consistency of HES to assess comorbidities we com-

puted the intraclass correlation coefficient (ICC) [16] and calculated the percentage of agree-

ment between two independent sources for cancer diagnosis information, namely HES and

the cancer registrations.[17] We defined internal reliability as the extent to which two or more

successive HES episodes for any given patient report identical or additional comorbidities (Fig

1C).[18, 19] We used non-linear generalised random effects models to derive the ICC for each

of the 17 CCI conditions and their respective 95% CI. The external validity of HES was defined

following the Centre for Disease Control (CDC) surveillance strategy for the assessment of

Population-based assessment of comorbidities in cancer patients
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reliability between two different sources of data.[20, 21] Cancer registrations were considered

as the gold standard for cancer diagnosis. The HES diagnostic fields were screened for a laryn-

geal cancer diagnostic code from 1 month before the cancer registry diagnosis date (Fig 1D).

Then we estimated the percentage of agreement for cancer diagnosis between the two sources

and derived 95%CI based on the exact test.[17]

All data management and statistical analyses were performed using STATA version 14.

Results

Fig 2 depicts time-varying proportions of comorbidity according to backward availability of

HES data. The x-axis represents time from 10 years before the diagnosis of laryngeal cancer

(2003) to the diagnosis time in 2013. We considered that, at 10 years of retrospective follow-

up, we have reached the maximum number of comorbidities identifiable from HES, and prev-

alent in the patient population. From the time at diagnosis, the cumulative proportions of all

possible comorbidities converged to 100%. Each comorbidity that composes the CCI is repre-

sented by a curve of the time-varying cumulative proportion. No restriction window was

included in Fig 2A while Fig 2B and 2C illustrate the impact of a six-month and 12-month

restriction window, respectively. The cumulative proportions of any comorbidities reach 80%

and above soon after six years before the diagnosis: six years with no restriction window, six

and a half years with a six-month restriction and seven years with a 12-month restriction: an

overall window of six years already captures the vast majority of comorbidities there are to

report in the ten years preceding the diagnosis.

The proportion of patients with COPD (Chronic Obstructive Pulmonary Disease) is high

immediately before diagnosis and does not increase greatly with additional years, approxi-

mately 15%, reflecting that more than 85% of COPD is identified in the six months before the

Fig 2. Proportions of individual comorbidities recorded for laryngeal cancer patients diagnosed in

2013 for increasing time periods pre-diagnosis, N = 1,789. 1: Myocardial infarction; 2: Congestive heart

failure; 3: Peripheral vascular disease; 4: Cerebrovascular disease; 5: Dementia; 6: COPD; 7: Rheumatic

disease; 8: Peptic ulcer disease; 9: Mild liver disease; 10: Diabetes without chronic complications; 11:

Diabetes with chronic complications; 12: Hemiplegia or paraplegia; 13: Renal disease; 14: Moderate or

severe liver disease; 15: AIDS/HIV; 16: Any malignancy; 17: Metastatic solid tumours; 18: Obesity.

doi:10.1371/journal.pone.0172814.g002
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diagnosis. In Fig 2B and 2C, that proportion is restricted to around 30%. Furthermore, using a

restriction window make all cumulative incidence curves follow the same pattern: between 0

and 40% of the final proportions of comorbidities are detected 6 or 12 months before diagno-

sis. The cumulative proportions of comorbidities increase at an approximate similar rate

reaching 100% at ten years.

We provide absolute and relative measures of the impact of applying restriction windows

on the assessment of comorbidities. Among the 1,789 laryngeal cancer patients diagnosed in

2013, 51% present with at least one comorbid condition. That proportion drops to 34% and

32% if a six- or 12-month restriction window is applied. It highlights that 17% of these comor-

bidities are first reported in the six months preceding the diagnosis (Table 2).

Overall, the reliability of the recording of comorbidities in HES is moderate for 7 comorbid-

ities with an ICC ranging between 0.3 for rheumatic disease and 0.62 for dementia. All other

comorbidities showed ICCs less than 0.3 for the 2013 laryngeal cancer cohort indicating weak

internal reliability (Table 3). The ICC for the 2013 laryngeal cancer cohort and all the available

data (cohorts from 2005 to 2013, N = 16,112) were similar, which indicated the absence of sec-

ular trends. Dementia, COPD, diabetes without chronic complication and renal disease

showed a moderate ICC (�0.5) while peptic ulcer and myocardial infarction consistently

showed a lower ICC. In evaluating external reliability, we found that the proportion of agree-

ment between ONS and HES was notably high (86.3%).

Table 4 shows the effect of cancer-related and non-cancer-related COPD on cancer mortal-

ity. COPD was defined as related to the cancer if first diagnosed within either 6, 12 or 24

months before the cancer diagnosis. For all three intervals, age-adjusted non-cancer related

comorbidities were associated with higher odds of cancer mortality: hazard ratios were 1.26

(CI: 0.98–1.63), 1.26 (CI: 0.97–1.63) and 1.16 (CI: 0.86–1.56) for comorbidities assessed 6, 12

or 24 months away from the cancer diagnosis, respectively. Likewise, cancer-related comorbid-

ities were consistently associated with a higher cancer mortality risk with all hazard ratios over

1.5. However, in multivariate adjusted Cox models where we included age, cancer- and non-

cancer related comorbidities as independent predictors, the point estimate for the effect of

non-cancer related comorbidities was reversed (HR: 0.98, CI: 0.72–1.32; 0.95, CI: 0.70–1.28;

0.86, CI: 0.62–1.19 for all three intervals assessed). Despite the lack of statistical significance

Table 2. Numbers and proportions of patients with comorbidities detected at selected time points

through the ten years preceding laryngeal cancer diagnosis made in 2013, given three restriction win-

dows, N = 1,789.

No restriction window 6-month restriction

window

12-month restriction

window

Time (years) N. prop. N. prop. N. prop.

1 755 0.42 145 0.08

2 807 0.45 321 0.18 234 0.13

3 839 0.47 415 0.23 345 0.19

4 860 0.48 468 0.26 405 0.23

5 878 0.49 524 0.29 474 0.26

6 892 0.50 541 0.30 493 0.28

7 905 0.51 569 0.32 522 0.29

8 912 0.51 591 0.33 546 0.31

9 918 0.51 609 0.34 566 0.32

10* 918 0.51 614 0.34 572 0.32

*10 years is the maximum number of years we could screen for comorbidities

doi:10.1371/journal.pone.0172814.t002
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the change in the point estimates indicate a possible bias.. S1 Fig illustrates the collider effect

that cancer-related comorbidities (W2) might have on non-cancer related comorbidities

(W1). Cancer related comorbidities (W2) acts as a collider that opens the backdoor path

between unmeasured confounders associated with both non-cancer related comorbidities and

the outcome (Y).

Discussion

This study highlights the importance of explicitly stating and empirically proving the assump-

tions made in the assessment of cancer comorbidities using administrative health data. We

recommend considering time as an important confounder in the assessment of comorbidities

by defining an optimal window and a restriction window. Furthermore, consistency of the

optimal window ensures there is no selection bias associated with time, as all patients included

in the incident cancer data have the same follow-up period to be assessed for comorbidities.

We demonstrate that a 6-year window is an optimal period for identifying comorbidities in

our setting. The purpose of the restriction window is to prevent paradoxical effects when

assessing the impact of comorbidities on cancer survival. With empirical evidence we highlight

the need for a restriction window of at least six months prior to laryngeal cancer diagnosis,

when we consider the effect of COPD. Such exercise would need to be repeated for different

Table 3. Reliability of HES data; Internal reliability: Intra-class correlation coefficient for each comor-

bidity; external reliability: Proportion of agreement for the diagnosis of the index cancer between the

diagnostic fields of HES and the cancer registration data, by cancer and year of diagnosis.

Larynx (2013)* Larynx**

95% CI 95% CI

Internal reliability ICC low high ICC low high

Myocardial infarction 0.27 0.17 0.37 0.27 0.24 0.30

Congestive heart failure 0.33 0.21 0.44 0.39 0.35 0.44

Peripheral vascular disease 0.26 0.16 0.35 0.34 0.31 0.38

Cerebrovascular disease 0.29 0.20 0.38 0.33 0.30 0.36

Dementia 0.56 0.32 0.80 0.62 0.53 0.72

Chronic pulmonary disease 0.38 0.31 0.45 0.54 0.52 0.56

Rheumatic disease 0.30 0.11 0.50 0.50 0.42 0.57

Peptic ulcer disease 0.09 0.01 0.18 0.19 0.15 0.22

Mild liver disease 0.31 0.20 0.43 0.39 0.34 0.44

Diabetes without chronic complication 0.38 0.28 0.48 0.52 0.48 0.56

Diabetes with chronic complication 0.18 -0.06 0.41 0.42 0.31 0.53

Hemiplegia or paraplegia 0.29 0.12 0.46 0.34 0.27 0.42

Renal disease 0.19 0.07 0.31 0.49 0.44 0.54

Any malignancy, including lymphoma and leukemia, except

malignant neoplasm of skin

0.29 0.01 0.58 0.35 0.27 0.43

Moderate or severe liver disease 0.31 0.10 0.53 0.28 0.20 0.36

Metastatic solid tumor 0.00 0.00 0.00 0.00 0.00 0.00

AIDS/HIV 0.25 -0.88 1.39 0.43 -0.10 0.96

Morbid obesity 0.18 0.06 0.31 0.30 0.24 0.36

External reliability

Proportion agreement HES/ONS 86.31 84.62 87.87 86.26 85.72 86.79

*Larynx 2013-cohort, N = 1,789

** All cohorts, N = 16,112

doi:10.1371/journal.pone.0172814.t003
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combinations of cancer sites and comorbidities. Additionally, the code for the computing algo-

rithm is available as proof of reproducible research (S1 Code).

The number of studies in cancer epidemiology using derived information of comorbidities

from administrative or clinical data has grown in the last five years.[10, 22–26] There is a

wealth of literature on comorbidity scores [23, 27, 28] and on adapting them to different data

sets [29–31], varying numbers of comorbidities included for consideration, and varying sub-

sets of the population [32–34] or diseases of interest.[35, 36] The literature mostly focusses on

how administrative data compares to medical records [22] in terms of identifying relevant

comorbidities, and if a particular score or modified score is a good predictor of mortality. [37,

38] However, there is no clear consensus on how to assess and estimate comorbidities using

administrative or other type of health data. Furthermore, the majority of recent research ana-

lysing comorbidity data do not state major assumptions made to derive information on

comorbidity; criteria such as validity and reliability are not routinely assessed.[20, 22–34] In

epidemiological studies any assumption made during the data generation process and analysis

must be stated. [39] Therefore, the first step to develop a uniform approach to assess and use

comorbidities in future studies is to state the assumptions made to generate the data. We

explicitly document and empirically prove the set of assumptions needed to derive comorbid-

ity information from secondary care health administrative data.

Time is one of the most important confounders in epidemiology. Given patients with larger

follow-up period might show higher probability of identifying comorbidities, we set an opti-

mal window so that the assessment of comorbidities is independent of time (i.e., securing the

same follow-up time for comorbidities for all cancer patients). Furthermore, the optimal win-

dow helps to maximise the equal number of years that all cancer patients included in the analy-

sis were followed up.[40] Following the weak ICC for hospital administrative data presented

Table 4. Hazard Ratios (HR) for the effects of cancer-related* and non-cancer related* comorbidities

on the overall hazard of death, laryngeal cancer patients diagnosed in England in 2013, N = 1,789.

COPD

Cancer-related Non-cancer related

Restriction window HR 95% CI HR 95% CI

6 months 0–6 months >6 months

M0 1.26 0.98 1.63

M1 1.50 1.21 1.86

Full model 1.51 1.18 1.95 0.98 0.72 1.32

12 months 0–12 months >12 months

M0 1.26 0.97 1.63

M1 1.55 1.25 1.92

Full model 1.59 1.24 2.03 0.95 0.70 1.28

24 months 0–24 months >24 months

M0 1.16 0.86 1.56

M1 1.56 1.26 1.92

Full model 1.64 1.30 2.07 0.86 0.62 1.19

M0: model including non-cancer related comorbidities, adjusted for age. M1: model including cancer-related

comorbidities, adjusted for age. Full model: model including both variables for comorbidities, adjusted for

age.

* Cancer related comorbidities are those first recorded in the restrictions windows of 6, 12 or 24 months

immediately preceding the cancer diagnosis; non-cancer related comorbidities are those recorded in the ten

years preceding the cancer diagnosis, excluding the restriction window.

doi:10.1371/journal.pone.0172814.t004
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here for many of the comorbidities assessed, there is a rational for using the longest possible

assessment window in order to maximise the detection of existing comorbidities. An audit of

HES codes showed 90.5% accuracy for identifying 8 major comorbidities, indicating that HES

diagnostic fields can confidently predict the actual presence of the comorbidities. Improving

the protocol for documenting comorbidities with clinicians and providing further training to

administrative clerks could enhance the assessment of comorbidities using HES.[41]

We also compared the prevalence of comorbid conditions in our laryngeal cancer popula-

tion with that of the general population: comorbidities sharing the same risk factors as laryn-

geal cancer were much more prevalent in our data, while all other comorbidities were

comparable to published prevalence for the general population (data not shown). These results

are in agreement with the HES clinical audit.[41]

Some studies have used a restriction window to assess the effect of comorbidities on cancer

survival, although the assumptions made to set this window have not been explicitly justified

or documented.[40, 42] To our knowledge, we are the first to empirically show the impact of

neglecting this principle. A paradoxical association between cancer-related comorbidities and

mortality, such as obtaining a protective effect from a risk factor (COPD) known to predict the

outcome (mortality due to laryngeal cancer), occurs if a restriction window is not set. This par-

adoxical association occurs when the probability of the exposure is associated with the out-

come being studied.[15] Likewise, a collider stratification bias may occur when we condition

on a common effect of exposure and outcome, i.e. non-cancer related comorbidities condi-

tioned on cancer-related comorbidities and cancer.[43] Therefore, when the interest of

researchers is to explain the effect of comorbidities on cancer survival, we advise epidemiolo-

gists to think carefully about the particular effect of individual comorbidities on specific cancer

sites to avoid reporting spurious or paradoxical protective effects of comorbidities.[44–46]

We show that there are fewer differences between a 6- and 12-month restriction window

than between no window and a 6-month window, mostly related to cancer-related comorbidi-

ties recorded for the first time in the 6 or 12 months before the cancer diagnosis. This finding

highlights the potential for earlier cancer diagnosis. In particular, the high proportion of

COPD could reflect a mis-diagnosis of laryngeal cancer.

Despite documented differences between administrative data and medical records[47],

both types of data produce comorbidity scores that have similar predictive power.[48, 49] We

found over 86% agreement between the HES data and Cancer Registrations for the registration

of laryngeal cancer. Other limitations include the necessary computing resources for handling

big data, the availability of data for the assessment of comorbidities (2003 to 2015), the rela-

tively small number of comorbidities we focused on, and the external validity of our findings

limited to hospital records in England. However, our approach is general, and it could be valid

in other settings. We recognise we are missing some lifestyle risk factors such as tobacco smok-

ing, alcoholism, drug abuse and other conditions such as asthma, eating disorders and epi-

lepsy, which would undoubtedly impact outcomes.

We encourage researchers to consider our recommendations for the assessment and use

of comorbidities. We have clarified the set of assumptions used to identify cancer patients’

comorbidities using hospital data. Moreover, we have demonstrated our assumptions

through empirical analyses based on current epidemiologic knowledge. Our algorithm for

the assessment of comorbidities could be considered as a state-of-the-art method for the

evaluation of comorbidities using administrative health data in population-based cancer

research epidemiology. Furthermore, we have shown that administrative hospital data is a

valuable and consistent source of information allowing population-based cancer researchers

to update comorbidities information for patients.
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