
Distributed, Multi-Level Network Anomaly
Detection for Datacentre Networks

Mircea Iordache∗, Simon Jouet∗, Angelos K. Marnerides† and Dimitrios P. Pezaros∗
∗School of Computing Science, University of Glasgow, G12 8QQ, UK

†InfoLab21, School of Computing & Communications, Lancaster University, LA1 4WA, UK
Email: m.iordache-sica.1@research.gla.ac.uk, angelos.marnerides@lancaster.ac.uk,

{simon.jouet, dimitrios.pezaros}@glasgow.ac.uk

Abstract—Over the past decade, numerous systems have been
proposed to detect and subsequently prevent or mitigate security
vulnerabilities. However, many existing intrusion or anomaly
detection solutions are limited to a subset of the traffic due to scal-
ability issues, hence failing to operate at line-rate on large, high-
speed datacentre networks. In this paper, we present a two-level
solution for anomaly detection leveraging independent execution
and message passing semantics. We employ these constructs
within a network-wide distributed anomaly detection framework
that allows for greater detection accuracy and bandwidth cost
saving through attack path reconstruction.Experimental results
using real operational traffic traces and known network attacks
generated through the Pytbull IDS evaluation framework, show
that our approach is capable of detecting anomalies in a timely
manner while allowing reconstruction of the attack path, hence
further enabling the composition of advanced mitigation strate-
gies. The resulting system shows high detection accuracy when
compared to similar techniques, at least 20% better at detecting
anomalies, and enables full path reconstruction even at small-
to-moderate attack traffic intensities (as a fraction of the total
traffic), saving up to 75% of bandwidth due to early attack
detection.

I. INTRODUCTION

In recent years, unwarranted network accesses have raised
serious concerns for the Internet. Distributed Denial of Service
(DDoS) attacks pose a great risk to network security, but with
the increased exposure of implementation errors in critical
applications, other attacks are starting to become ever more
prevalent. These new attack vectors are difficult to detect early
and the time to resolve the vulnerabilities is uncertain. In many
environments, patches for these exploits require approval from
service and package maintainers, or interfere with operation
critical components, increasing the time until the issue is fully
mitigated. In order to prevent such attacks from occurring,
it is crucial to properly detect them from within a large
volume of aggregate data. The detection is complex due to
the compute and network requirement to isolate anomalous
from legitimate traffic without degrading the network perfor-
mance. The problem is further amplified by the nature of
general network anomalies which are increasingly difficult
to characterise through a generalised pattern due to their
continuously evolving nature [1]. There has been particular
proliferation of DDoS attacks in recent years since they can
be easily performed, require little technical know-how, can
hinder the infrastructure for a long time, and are hard to
detect and mitigate [2]. This type of attack is characterised
by a large number of flows from many-hosts to a destination
server and service, much like a legitimate flash-crowd event.

Alternatively, another type of attack such as a port-scan,
while not interfering with network operations, can be used for
malicious purposes. Such an attack is characterised by a large
number of short lived unidirectional flows over a large range of
ports. IDS have been proposed to detect these attacks but often
have to trade scalability for accuracy and vice versa. Fine-
grained network monitoring yields better detection results but
can degrade performance and prevent scalability, while coarse-
grained monitoring can be used over large amount of data with
lower confidence on detecting anomalies. Over the last decade,
with the introduction of Software Defined Networking (SDN),
the network management, configuration, and monitoring have
been greatly improved, enabling new ways to tackle anomaly
detection.

In this paper, we propose a two-level approach for network
anomaly detection [2], [3], which combines coarse-grained
monitoring performance with the accuracy of fine-grained
analysis, resulting in improved detection accuracy with min-
imal performance costs. We further enhance the architecture
by enabling execution within a distributed environment. Our
motivation is supported by the fact that network anomalies
present two overarching characteristics, albeit difficult to pa-
rameterise: flows with deviations from typical network traffic,
and asymmetry of interaction between end points. Although
several solutions have been proposed for network anomaly
detection, we propose an enhancement of the two-level de-
tection scheme through use of distributed computing. Thus,
our approach differs from others in the following ways:

a) Accuracy: While other statistical anomaly detection
mechanisms provide suitable accuracy, our approach,
through using a two-level detection and leveraging dis-
tributed mechanisms, gives a higher degree of accuracy.

b) Path Reconstruction: Using modular distributed com-
ponents for anomaly detection, our solution is able to
perform path reconstruction.

c) Memory Consumption: We provide an adequate trade-
off between memory consumption and performance by
using data structures that attempt to provide an accurate
representation of flows for indexing and statistical manip-
ulation.

The remainder of this paper is structured as follows: In
Section II, we describe the design and implementation of
the proposed anomaly detection algorithms and distributed
mechanisms. Section III presents the experimental setup and
results obtained, with emphasis on scalability, accuracy, and
path reconstruction. Section IV discusses related work in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/79608748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

field of anomaly detection, and Section V concludes the paper.

II. DESIGN & IMPLEMENTATION

Internal
Anomaly
Detection

Internet

Vote

Vote Result

Fig. 1. A high-level design of the proposed system architecture

As shown in figure 1, the proposed anomaly detection
solution is structured around the use of different modules
responsible for detecting diverse anomalies but with differ-
ent performance and computational characteristics. They are
distributed across the infrastructure to have a global view of
the network. Ideally, each module would be deployed at every
network node, either directly on or collocated with the switch
platform to analyse data at every layer and at different levels
of aggregation. This is reminiscent of legacy network firewall
boxes, where processing was done as close to the networking
layer as possible. This approach, however, lacked flexibility in
deployment to multiple network locations, which we improve
through software able to run on general purpouse hardware.
Furthermore, we use this approach to maximise data locality
and ensure minimum networking overhead and redirection
when analysing traffic.

In order to improve detection accuracy without hindering
performance, we rely on a two-level approach at anomaly
detection: each module independently computes certain traffic
statistics and it exchanges meta-information with its peers
through a Remote Procedure Call interface we have developed.
Monitoring peers subsequently run a consensus algorithm to
collectively identify whether the traffic is anomalous or not.
Using RPC, we can distribute the network processing across
many devices increasing the computational capabilities as well
as providing path reconstruction of the anomaly source by
analysing the sequence of RPC control messages and the
voting responses from the consensus algorithm.

A. Fine and Coarse-Grained Anomaly Detection

The proposed anomaly detection method is following a
two-level detection scheme. Using this approach, we can have
a trade-off between anomaly detection accuracy and compu-
tational cost. First, a coarse-grain inspection of the traffic is
performed for fast-analysis, minimising processing overhead
for benign traffic. If a potential anomaly is detected, a fine-
grained detection algorithm is used to analyse the collected
metrics of the potentially anomalous subset of traffic in-depth.
In order to enable high performance for a wide variety of
environments, the two algorithms are independent of network
topology and the underlying infrastructure.

For Coarse-Grained Detection (CGD), we employ Shan-
non’s statistical entropy-based method which is independent

of network topology and traffic characteristics, and can be
used for anomaly detection and classification purposes [4].
The Shannon entropy H(X) of a data set X = x1, x2, ...xn is
defined as

H(X) = −
N∑
i=1

pilog2(pi)

where N = |X| and pi is the probability P [X = xi]; it is
used to measure the expected values of information conveyed
through data set. Further improvements for use of anomaly
detection are defined through normalisation of values, thus

H ′(X) = −
N∑
i=1

pilog2(pi)

log2N

ensures that the entropy values are in the range [0, log2N].
Statistical anomaly detection algorithms usually compose a
normal behaviour model in order to establish the ground truth
with respect to the normal behaviour of a given network by
profiling a set of network features over a long period of time.
Hence, with the use of the normal behaviour model, it is
then feasible to identify anomalous patterns if the examined
network features deviate from certain thresholds of the ex-
pected values. There is usually a great debate on the amount
of features to be used within a network anomaly detection
methodology, however, such features are usually extracted
from the network or the transport layer (layer 3–4) [1]. In
our proposed design, we focus on the traditional 5-tuple flow
definition containing the protocol type as well as source and
destination addresses and ports. Hence, in our case any entropy
distribution change outside of a set threshold is an indicator
of a possible anomaly. The accuracy of the detection can be
improved by analysing the variation of multiple iterations of
Shannon’s entropy. Once the entropy variation has passed the
thresholds of normal behaviour which is dependant on network
load and characteristics, a more detailed inspection of the
network traffic can be performed to isolate the true- and false-
positives as well as to identify the type of anomaly.

For in-depth analysis, we have selected a sketch-based
algorithm for fine-grained detection. For this work, we modify
the Count-Min Sketch [5] algorithm to store the source and
destination IP addresses, as well as the transport layer ports.
Under this approach, we can store the time variant state of the
flow. Any variation present within the flows can be detected
from the stored metrics and used to detect the presence of
an anomaly. As a result, overall network anomalies can be
detected as well as per-flow-specific anomalies, with the added
benefit that we are able to use the resulting information
for anomaly classification purposes. Using this approach to
complement Shannon’s entropy estimation, we are able to
accurately identify anomalies and gather detailed network
characteristics necessary to ensure consensus on the detected
anomaly being reached.

B. Flow Statistics Collection

The Flow Statistics Collection module is responsible for
receiving flow information from the network controller. Since
the anomaly detection modules rely on the 5-tuple, the collec-
tor presents metrics from the network and transport layers, as
well as associated metrics representing the state of each flow.

The additional metrics we are using are the per-flow number
of packets and bytes transmitted since they give an overall
accurate indication of network utilisation and anomalous flows.

Using the OpenFlow protocol as our underlying network
orchestration mechanism, we configure the switches to hold
flow entries at layer 4, effectively mapping each flow entry
to the flow 5-tuple. Using the OpenFlow FlowStats query
message, the system is able to gather per flow entry metrics
including packet and byte counts.

The implementation of the orchestration mechanisms used
to manage the network components is done in the form of
an OpenFlow Controller application, instructing switches to
gather detailed information of the aforementioned metrics.

C. Distributed Behaviour

While the proposed anomaly detection components de-
scribed so far can be used in a standalone fashion, we signifi-
cantly increase the performance and efficiency of our solution
through including distributed behaviour. This enhances the
overall system by allowing attack path reconstruction and
coordinated analysis from multiple network locations. In order
to describe certain aspects of the mechanisms used, we need
to establish certain prerequisites and assumptions about the
distributed behaviour we compose:

• Independence: Anomaly detection instances should per-
form independently from other identical processes
throughout the overall system. This allows for reliability
in results and minimisation of faulty processes within the
distributed environment with respect to data collection,
analysis, and response.

• Ordering: In order to ensure correct behaviour, establish-
ing and maintaining an accurate ordering of operations
performed is critical. This enables path reconstruction
of detected anomalies and victim pinpointing through
reasoning behind the ordering of events and actions
performed by the distributed system.

• Consensus: To enable precise detection of attacks, agree-
ment between members of the distributed environment
must be reached. In the case of our system, this is
achieved through the use of a majority voting scheme
that gathers the results from all instances involved in the
detection process.

The main component that enables distributed behaviour is
the use of a remote procedure call mechanism allowing for
analysis of network data from different devices. Execution of
our system in a distributed environment enhances detection
accuracy, and allows for monitoring of events to perform attack
path reconstruction, facilitating the use of improved mitigation
strategies that minimise network bandwidth usage.

In order to provide a clear explanation regarding remote
invocation, we have to impose some constraints on the be-
haviour of our solution and a discussion on locality. The
behaviour is dictated by events present within the network,
which in the case of the studied problem are network anomalies
that have been detected. Using the Communicating Sequential
Processes (CSP) notation, we define the behaviour of our
solution as a series of processes that all implement the same

functionality, and rely on shared events that model inter-
process communication. The formal definition for our system
under the stated constraints is given by Theorem 1, with
proof provided in Proof 1. The event anom is external to
the distributed system, while events analyse and vote convey
messages that are shared between multiple instances of the
prototype we have developed, abstracting remote invocation
semantics.

Theorem 1: Given two processes:

Background = (anom→ analyse)�(vote→ STOP)

Conditional = analyse→ vote→ STOP

a series of events anom, analyse and vote, and a strict
ordering anom → analyse and analyse → vote, a system
comprised of these processes will behave deterministically.

Background|{analyse}|Conditional|{vote}|Background ≡
anom→ analyse→ vote→ STOP

Proof 1: Using the operational semantics rules for alpha-
betised parallel.

We appeal to the operational semantics rules of alphabe-
tised parallel: two processes P and Q with respective alphabets
AP and AQ and x ∈ AP ∩ AQ, y ∈ AP \ AQ will behave as
follows: if P →y P ′ then P |{x}|Q →y P ′|{x}|Q and if
P →x P ′ and Q→x Q′, then P |{x}|Q→x P ′|{x}|Q′. Thus:

Background|{analyse}|Conditional
≡ (anom→ analyse)

�(vote→ STOP)|{analyse}|(analyse→ vote→ STOP)

≡ (anom→ analyse)|{analyse}|(analyse→ vote→ STOP)

�(vote→ STOP)|{analyse}|(analyse→ vote→ STOP)

≡ (anom→ analyse→ vote)�(vote→ STOP).

The second operand of � implies no synchronization
between the two processes, and is therefore equivalent to
vote→ STOP . Similarly:

Conditional|{vote}|Background
≡ (analyse→ vote→ STOP)�(anom→ analyse).

By abstracting events, and imposing ordering such that we
enforce anom → analyse and analyse → vote, we can
define an improved behaviour of our system:

Background|{analyse}|Conditional \ {vote}
≡ anom→ analyse→ vote

Conditional|{vote}|Background \ {analyse}
≡ analyse→ vote→ STOP

Finally, by combining the two we can deduce the following
order, which can be described as deterministic:

Background|{analyse}|Conditional|{vote}|Background
≡ anom→ analyse→ vote→ STOP

Although the formalised description on behaviour does not
describe the difference between the two processes, we can
control them through an analysis of network topology. In our

solution, we define the Background process as operating
on network end-points, where hosts are directly connected
to switches, and Conditional as locations which are con-
nected only to other switches and routing devices. Thus, by
introducing constraints derived from the network topology, we
are able to predict that detection on non-end-point devices
which are running Conditional processes, only occurs if
the anomaly has been detected by a Background instance.
Furthermore, if we expand this by requiring that a process can
only communicate to another only if they are adjacent in the
network topology, we can easily deduct the path reconstruc-
tion capabilities of our solution, by allowing a Conditional
process to invoke one another through analyse events.

Given the ordered nature of the messages passed they
can be traced back to a detection single instance, as per the
construction we use in Theorem 1. The use of a decentralised
majority voting solution does not yield any benefits; because of
this, our approach uses a centralised version of the proposed
algorithm, with only a single voting phase, as described in
Algorithm 1. This centralised voting process occurs within the
context of all nodes which have received an analyse event
during the occurrence of an anomaly, which we define as a
group; the central node within a group is the one that initiated
the invocation, thus, becoming the last one to receive a vote
event.

Algorithm 1 Single-phase Majority Voting. Notations de-
scribed in Table I

1: Given G(ai) and C(ai)
2: if |C(ai)| > |G(ai)|/2 then
3: Si ←M
4: else
5: Si ← F
6: end if

ai central node in a group
Si state of ai, Si ∈ {M,F}

M=Majority, F=Fewness,
M(ai) set of group members of ai being labelled

with M
F (ai) set of group members of ai being labelled

with F
G(ai) set of group members of ai, where

G(ai) = M(ai) ∪ F (ai) and |G(ai)| = n
C(ai) set of group members of ai belonging

to the same cluster (voted the same) as ai

TABLE I. NOTATIONS FOR THE VOTING METHOD.

Our prototype, including the IDS, Controller module (de-
veloped for the Ryu OpenFlow Controller), and afferent utility
scripts and applications can be found on GitHub1

III. EVALUATION

A. Experimental Setup

Our performance evaluation experiments were based on
CAIDA’s 2014 Anonymised Internet Traces [6], while the
attack traffic was obtained using Pytbull, a popular IDS testing
software which uses several attack vectors. Regarding the
background traffic used, we split the provided data through
Monte-Carlo sampling to obtain realistic network traces more

1https://github.com/mirceaIordache/DistributedNAD

suitable for a datacentre network environment, as the CAIDA
traces contain Internet traffic which encompasses communi-
cation between multiple sub-networks and does not account
for inter-network communication. Furthermore, by combining
traffic from both directions for the dataset used, we are able
to realistically model intra-network traffic.

Our testbed uses an Intel Core i5-4670k 3.4GHz CPU with
16GB RAM running the Mininet Virtual Machine with 12GB
RAM dedicated to the VM. We chose the Ryu Openflow
controller, mainly due to the simplicity of development and
flexibility regarding deployment and management. In Figure 2,
we present the general network topology used for anomaly
detection. Each of the switches is running our prototype,
with end-point Switches 1-4 continually analysing gathered
statistics for potential anomalies, while Switches 5-7 are only
involved in the detection process if specifically invoked.

Switch 1 Switch 2 Switch 3 Switch 4

Switch 5 Switch 6

Switch 7

Internet

Fig. 2. Tree topology for complex testing and modelling interactions.

From the large range of possible attacks that can be eval-
uated, we decided to use a subset of available anomalies that
represent a wide variety of attacks and allow us to accurately
measure the performance of our proposed solution: Brute Force
access which contain comparable patterns to 0-day attacks,
DDoS attacks which are already being thoroughly investigated
in other approaches [3], and Port Scans. This wide spread set of
vulnerabilities contain features with large variations between
them, therefore allowing us to thoroughly test the applicability
of our prototype to the different styles of anomalies.

B. Detection Accuracy

To properly assess the detection accuracy of the selected
algorithms, in Figure 3 we plot the Receiver Operating Char-
acteristic curves, in terms of true- and false- positive rates
produced by coarse-grained (entropy-based) and fine-grained
detection (Sketch-based). In order to generate this curve, we
benchmarked each implementation to assess the number of true
and false positive alerts produced during multiple attacks with
varying thresholds. Thus, we can confirm a high degree of
accuracy in the detection capabilities of our proposed solution
with minimal false positive events, also allowing for mitigation
strategies that do not impact the services of the underlying
network.

We also evaluated our system’s performance with respect
to false negative rates, which the Receiver Operating Charac-
teristic does not take into account under realistic conditions. In
order to better understand the performance of our system, we
measure detection accuracy against anomaly intensity. In order

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

Entropy
Sketch

Fig. 3. Receiver Operating Characteristic for the entropy-based and Sketch-
based anomaly detection algorithms.

to do so, we define the anomaly intensity I(∆t) = TA(∆t)
TN (∆t) ,

where TA(∆t) is the anomalous traffic that is present during
time interval [0,∆t), and TN (∆t) is the overall amount of
traffic flowing through a switch during the interval [0,∆t).
Similarly, we define the detection accuracy for this case as
A(∆t) = DA(∆t)

NA(∆t) , where DA(∆t) is the number of detected
anomalies in the time interval [0,∆t), and NA(∆t) is the total
number of anomalies occurring during the interval [0,∆t].

Time
(∆t)

Total
Traffic
(TN)

Anomalous
Traffic
(TA)

Total
Inten-
sity
(I)

Total
Anoma-
lies
(NA)

Detected
Anoma-
lies
(DA)

Detection
Accu-
racy
(A)

12 1934 1934 1 6 6 1.00
12 4472 1934 0.432469 6 5 0.83
12 13576 1934 0.142457 6 4 0.66
24 1246 1246 1 4 4 1.00
24 6322 1246 0.19709 4 3 0.75
24 56445 1246 0.022075 4 1 0.25
30 140452 22654 0.161294 11 8 0.72
48 227434 22654 0.099607 11 6 0.54
56 287706 22654 0.07874 11 5 0.45
52 98027 8344 0.085119 3 1 0.33
60 98027 8344 0.085119 3 1 0.33
66 98027 8344 0.085119 3 0 0.00

TABLE II. EXPERIMENTAL SETUP AND OBSERVATIONS REGARDING
ATTACK INTENSITY AND DETECTION ACCURACY.

In Table II, we have presented our observations obtained
during several experimental sessions that contained multiple
attacks and varying levels of background traffic. The abun-
dance of low intensity attacks in our data is representative of
actual network conditions, where a port scan or brute force
attempt would consume little bandwidth while still acting as
an anomalous event within the network, while attacks of higher
intensity are akin to DDoS attacks where network bandwidth
usage is significant.

In Figure 4, we also plot the findings obtained through
comparison with a Histogram-based detection scheme which
uses the Kullback-Leibler distance [7]. In order to maintain
real-time online functionality, frequent detection intervals are
required. These are, however, approximately two orders of
magnitude higher than those presented in the original his-
togram implementation, which leads to higher standard devia-
tion σ̂ and thresholds, thus leading to lower overall detection
accuracy.

C. Impact of Distributed Behaviour

Although we did not find statistically significant evidence
of different detection capabilities when utilising distributed

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Intensity

D
et

ec
tio

n
A

cc
ur

ac
y

Our Solution
Histogram Detector
F (x)=0.2318ln(x)+

1.0282

Fig. 4. Detection accuracy against attack intensity for the anomaly detection
algorithms.

behaviour or a centralised instance, as the anomalous data
analysed by multiple instances often coincides, the former ap-
proach is the main component that enables path reconstruction.
When analysing the number of invoked instances for anomaly
detection, we have come to the conclusion that, given an
attack of adequate intensity, we are able to provide full path
reconstruction as evidenced by data shown in Figure 5. In the
case of a lower intensity attack, our solution is still able to
provide partial path reconstruction capabilities, diminishing as
increased volumes of legitimate traffic are making detection
of anomalies increasingly difficult. With moderate intensity,
our approach is capable of accurately determining the attack
path, thus allowing for highly localised mitigation to occur.
Based on this data, our solution is able to offer complete path
reconstruction at the onset of DDoS attacks which generally
have high intensity, and partial path reconstruction for anoma-
lies of lower intensity. This functionality is enabled through
analysis of the instances involved in the detection process. By
providing mechanisms that allow mitigation of an attack close
to its origin, our solution allows for enhanced bandwidth usage
for legitimate activities.

20% 40% 60% 80% 100%
0

0.2

0.4

0.6

Path Reconstruction

A
tta

ck
In

te
ns

ity

Fig. 5. Path Reconstruction capabilities based on attack intensity.

In terms of efficient mitigation, knowing the features of the
anomalous flows [7] does not necessarily imply availability
of such approaches. To achieve such results, given a global
overview of routing tables as found within Software Defined
Networks, requires advanced processing of labeled multigraphs
in a fashion similar to network restoration, thus incurring
additional delay between anomaly detection and mitigation
and decreasing overall service capabilities. Our approach does
not incur these overheads due to path reconstruction, allowing
for timely mitigation. In our experiments, the delay between
anomaly detection and path reconstruction was approximately
4 seconds.

Per-link bandwidth consumed by anomalous traffic during

our experiments was up to 35% (35Mbps out of 100Mbps)
at the core layer and up to 75% at lower layers, as can be
seen from Figure 6. Existing solutions filter detected anomalies
at every network ingress, an approach which is susceptible
to intra-network attacks in the case of large commercial
datacentres. The other technique commonly used is filtering
at the affected host or subregion of the network, which
leads to wasted bandwitdth for legitimate activities, up to
65% of available bandwidth for the targeted host. Through
path reconstruction, we can pinpoint the origin location of
the anomaly, thus enabling the use of mitigation strategies
that maximise the availability of the overall network, thus
increasing performance.

Core Aggregation Host
0%

20%

40%

60%

80%

Topology Layer

A
no

m
al

ou
s

B
an

dw
id

th

Fig. 6. Attack bandwidth at different network layers.

IV. RELATED WORK

There is a large body of work focusing on network in-
trusion detection with multiple approaches, all using different
types of information and processing ranging from statistical
analysis, to Bayesian networks, Markov chains, and neural
networks [8]. Many recent solutions for anomaly detection use
sketches, as evidenced in [9] and [10]. A Sketch [11] is a data
structure used to store a summary of large data in a memory
efficient way. Cormode et al. [5] provided an approach for
using multiple hash tables for scalable data stream summaries,
proving a simplified version of the initial sketch.

Since our solution factors-in distributed behaviour, reach-
ing consensus between the multiple components involved
requires a majority voting scheme. Previous work on this topic
is extensive, with diverse applications having specialised solu-
tions [12]. In our work, we initially reviewed a decentralised
two-phase majority voting scheme as described in [13], which
analyses performance anomalies in networked environments.
Based on data collected through different monitoring mecha-
nisms, the participants use a two-phase majority voting scheme
to decide on the state of all nodes within the group.

V. CONCLUSIONS

In this paper, we have investigated distributed network
anomaly detection as a means to enhance network security in a
scalable manner. Specifically, we exploited a two-level detec-
tion scheme to minimise the search space and time required for
analysis of network data. For anomaly detection, we adopted
an entropy-based approach combined with a Sketch data struc-
ture and algorithm for detailed analysis in order to improve the
accuracy of identified attacks. We have proposed a distributed

architecture that enables path reconstruction capabilities in
a reliable way, and allows for higher degree of confidence
in detected results through a majority voting scheme. The
performed evaluation shows that our solution is resistant to
low-intensity attacks and is capable of path reconstruction by
maintaining the ordering of passed messages.

Future work will focus on enhancing the synchronisation
process of remotely invoked instances through an advanced
majority voting scheme that allows for extended information
that includes the previously mentioned classification process.
Finally, we wish to investigate enhanced deployment and
management techniques for our solution to take into account
data locality, system resource availability, and demand, guaran-
teeing enhanced resilience of overall network infrastructures.

ACKNOWLEDGMENTS

The work has been supported in part by the UK En-
gineering and Physical Sciences Research Council (EPSRC)
projects EP/L026015/1, EP/N033957/1, EP/P004024/1, and
EP/L005255/1, and by the European Cooperation in Science
and Technology (COST) Action CA 15127: RECODIS –
Resilient communication services protecting end-user appli-
cations from disaster-based failures.

REFERENCES

[1] A. Marnerides, A. Schaeffer-Filho, and A. Mauthe, “Traffic anomaly di-
agnosis in internet backbone networks: A survey,” Computer Networks,
vol. 73, pp. 224 – 243, 2014.

[2] H. Liu, Y. Sun, and M. S. Kim, “A scalable ddos detection framework
with victim pinpoint capability,” Journal of Communications, vol. 6,
no. 9, pp. 660–670, 2011.

[3] K. Giotis, G. Androulidakis, and V. Maglaris, “A scalable anomaly de-
tection and mitigation architecture for legacy networks via an openflow
middlebox,” Security and Communication Networks, 2015.

[4] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network
anomaly detection and classification via opportunistic sampling,” Net-
work, IEEE, vol. 23, no. 1, pp. 6–12, 2009.

[5] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[6] U. CAIDA, “Anonymized internet traces 2014 dataset,” 2014.
[7] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,

“Anomaly extraction in backbone networks using association rules,”
IEEE/ACM Transactions on Networking (TON), vol. 20, no. 6, pp.
1788–1799, 2012.

[8] A. Patcha and J.-M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer
networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[9] R. R. Kompella, S. Singh, and G. Varghese, “On scalable attack
detection in the network,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement. ACM, 2004, pp. 187–200.

[10] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda,
M.-Y. Kao, and G. Memik, “Reverse hashing for high-speed network
monitoring: Algorithms, evaluation, and applications,” in INFOCOM
2006. 25th IEEE International Conference on Computer Communica-
tions. Proceedings. IEEE, 2006, pp. 1–12.

[11] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Quick-
sand: Quick summary and analysis of network data,” Technical Report,
Dec. 2001. citeseer. nj. nec. com/gilbert01quicksand. html, Tech. Rep.,
2001.

[12] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” in Foundations of Computation Theory. Springer,
1983, pp. 127–140.

[13] L. Yu and Z. Lan, “A scalable, non-parametric method for detecting
performance anomaly in large scale computing.”

