-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

Short Term Power Load Forecasting
Using Deep Neural Networks

Ghulam Mohi Ud Din
Department of Computer Science
Liverpool John Moores University

United Kingdom
g.mohiuddin@2015.1jmu.ac.uk

Abstract—Accurate load forecasting greatly influences the
planning processes undertaken in operation centres of energy
providers that relate to the actual electricity generation, distribu-
tion, system maintenance as well as electricity pricing. This paper
exploits the applicability of and compares the performance of the
Feed-forward Deep Neural Network (FF-DNN) and Recurrent
Deep Neural Network (R-DNN) models on the basis of accuracy
and computational performance in the context of time-wise short
term forecast of electricity load. The herein proposed method is
evaluated over real datasets gathered in a period of 4 years
and provides forecasts on the basis of days and weeks ahead.
The contribution behind this work lies with the utilisation of a
time-frequency (TF) feature selection procedure from the actual
“raw” dataset that aids the regression procedure initiated by
the aforementioned DNNs. We show that the introduced scheme
may adequately learn hidden patterns and accurately determine
the short-term load consumption forecast by utilising a range of
heterogeneous sources of input that relate not necessarily with
the measurement of load itself but also with other parameters
such as the effects of weather, time, holidays, lagged electricity
load and its distribution over the period. Overall, our generated
outcomes reveal that the synergistic use of TF feature analysis
with DNNs enables to obtain higher accuracy by capturing
dominant factors that affect electricity consumption patterns
and can surely contribute significantly in next generation power
systems and the recently introduced SmartGrid.

Index Terms—Short Term Load Forecasting, Feed-forward
Deep Neural Network, Recurrent Deep Neural Network, Time-
Frequency Analysis.

I. INTRODUCTION

Power load forecasting holds a crucial role in the ca-
pacity planning process of power systems scheduling and
maintenance as well as end-consumer awareness regarding
viewing timely their consumption behaviour and bills. The
actual forecasting of the power load distribution is classified
into short, medium and long term forecasting. Short term
load forecasting (STLF) is associated with load prediction
from few hours to few days ahead whereas medium term
load forecasting (MTLF) deals with forecasts targeting few
weeks to few months ahead. On the other hand, long term
load forecasting (LTLF) deals with load prediction from one
year to several years. LTLF assists in planning of new power
systems setup, MTLF aids in system maintenance, purchasing
energy and pricing plans whereas STLF plays a key role in unit
commitment, power distribution and load dispatching. STLF
is a challenging task due to short time duration as it requires
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instant and accurate decisions. The errors in STLF can have
either leptokurtic or the normal distribution. If the normal
distribution is assumed, it represents the tail of distribution
insufficiently and leads to under-committing power systems
which can cause shortage of energy in market and eventually
increases the cost to produce more energy [1].

A number of studies have developed different methods to
accurately forecast electricity load in recent years. Traditional
statistical load forecasting methods are inadequate to fully
model the complex nature of electricity demand and often
result in lower accuracy [2]. Artificial Intelligence (AI) based
techniques are most favourable due to their ability to tackle
non-linear relationships between dependent and independent
variables. Fuzzy logic [3], artificial neural networks [4], sup-
port vector machines [5] and wavelets neural networks [6]
are popular Al techniques for STLF. Due to the state-of-
the-art success of deep neural network methods in image
processing, they are naturally being adapted for general time
series modelling tasks such as those for load forecasting.
Busseti et al. [7] predicted load demands by utilizing only
time and temperature data by performing prediction using deep
neural and recurrent neural networks. In fact, the outcomes
behind the aforementioned study achieved an RMSE error
of 530 KW/h using a three layer recurrent neural network.
Khan et al. [8] proposed a recurrent neural network model
for half an hour ahead load forecasting whereas Agarwal et
al. [6] developed ANN models for hour ahead load and price
forecasts using the load data from ISO New England') that
we also use in this paper.

In this work, Feed-froward Deep Neural Networks (FF-
DNN) and Recurrent Deep Neural Networks (R-DNN) based
models are presented to predict short term electricity load.
Achieving higher accuracy in forecasts requires to include
all the related factors that affect the overall electricity con-
sumption. This is accomplished by initially analysing the
data on the time and frequency domain independently and
subsequently frequency domain components are transformed
back to the time domain. The resulted time-frequency (TF)
features efficiently capture dominant effects i.e. weather, time,

'Iso New England Dataset:
ne.com/isoexpress/web/reports/load-and-demand
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working and non-working days, lagged load and data distri-
bution effects. Due to the constantly changing environment,
electricity consumption patterns of domestic as well as com-
mercial users carry complex characteristics. These characteris-
tics are analyzed in time and frequency domain and prediction
performance of deep networks is compared on the basis of
RMSE, MAE and MAPE error measures. The results obtained
with the developed methodology indicate least MAPE errors
as compared to other existing models (e.g., [9]).

The remaining sections are organized as follows. In section
II, the description and pre-processing of the dataset in time
and frequency domain is given. Section III is dedicated for the
description of the FF-DNN and R-DNN-based models whereas
section IV presents the methodology that covers data pre-
processing as well as the aspects of data training and prediction
models. Section V exhibits the analysis and results obtained
from our experimentation. Finally work is concluded in section
VL

II. DATA DESCRIPTION AND PRE-PROCESSING

The electricity load dataset is collected from ISO New
England (ISO-NE) for the duration 2007 to 2012. The load
consumption values are recorded at the end of each hour in
a day. The whole dataset consists of 52600 records and that
represents the load for 6 states in New England, USA. Table I
depicts the original features in the dataset and their description.

TABLE I
ORIGINAL FEATURES IN DATASET

Feature Description

Date Date (MM/DD/YYY)

Hour Hour of the day (24 Load values in a day)
ElecPrice  Price of the electricity (MW/h)

DryBulb Dry bulb temperature (Fahrenheit)
DewPnt Dew point temperature (Fahrenheit)
SYSLoad  NEPOOL system load = [generation

- pumping load + net interchange]
as determined by metering (MWh)

A. Extracting Features from Original Dataset

The original dataset contains features that do not properly
accentuate the effect of various factors and results to the elec-
tricity consumption profiles of users highly to be statistically
non-linear and complex. Our empirical observations led to
consider factors such as weather, time, holidays, lagged load
and load distribution in different time periods to be the most
influential to electricity consumption on a daily basis.

1) Time Domain Feature Extraction: The original dataset
is analysed in time domain to capture the changing behaviour
of electricity consumption patterns with respect to time. The
following effects are captured using time domain analysis of
data.

Temperature Effects

Fig. 1 highlights that daily consumption of electricity over
the week is affected by temperature. When the temperature is
higher during the day time, more electricity is consumed to

make temperature suitable according to the environment. Dry
bulb and dew points are used to determine the humidity in the
air. Different amount of electricity is consumed to maintain
the humidity in summer and winter seasons. Dry bulb and
Dew point features has been selected to represent temperature
effect on the electricity consumption.
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Fig. 1. Variations in Temperature and Load for 1 Week

Working and Non-Working Days Effects

In fig. 1 from Monday to Friday, electricity consumption is
high while on Saturday and Sunday electricity consumption is
low. Based on these observations the ”’Is Working Day feature”
is selected to express this effect.

Time Effect

Fig. 1 also suggests that the electricity consumption is
highly dependent over time. Electricity consumption values
represent ascending and descending effect before and after the
midday respectively. Two feature are derived to the express the
time dependency as Hour and the Week Day.

Lagged Load Effect

Lagged hourly peak load values contain vital information
about specific patterns of users’ electricity consumption. This
information can be extracted using multiple lagged load values
with the features Prev. Day Same Hour load, Prev. 24 Hours
Average Load and Prev. Week Same Hour Load.

Data Distribution Effect

The data distribution effects are captured over the past 24
hours using skewness, kurtosis, variance and periodicity. These
features uncover hidden patterns in the dataset efficiently
and assist neural networks to provide highest load prediction
accuracy.

2) Frequency Domain Feature Extraction : The analysis
of data in time domain provides potential features which
express changing behaviour of the electricity consumption.
However, features obtained using time domain analysis did not
provide higher accuracy due to the lack of expressing complex
patterns hidden in the dataset. The data is further analysed
in frequency domain to expose these patterns. Frequency
domain analysis allows to decompose time domain signal into
multiple sinusoids of various frequencies. Time domain signals
often show randomness. However, frequency domain analysis
converts random signal into different frequencies which are



stable and easily predictable that considerably improves the
accuracy. Fast Fourier analysis is performed on the electricity
load values to determine dominant frequencies. The following
equation converts load values into unnormalized univariate
discrete Fourier transformed sequence.

N—-1

y(k:) — Z ‘,L,(n)e—i2ﬂ'kn/N

n=0
Where x(n) represents time domain signal (n = 0...N — 1),
y(k) depicts transformed signal in frequency domain (k =
0..N — 1) and N is the length of the input signal. Fig. 2
represents Fourier coefficients extracted from the electricity
load values.
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Fig. 2. Fourier coefficients of electricity load

The Fourier coefficients with higher magnitude represent
dominant frequencies. A high pass filter is designed to filter
these dominant frequencies from low frequencies. The filtered
signals are converted back to time domain. Figs. 3-6 highlight
the filtered signals obtained from frequency domain analysis.

III. DEEP NEURAL NETWORKS FOR SHORT TERM LOAD
FORECASTING

Neural networks try to replicate human brain functionality
and possess the capabilities to learn hidden non-linear and
complex structures in the data. Hinton et al. [10] proposed
Deep Belief Network (DBN) and showed that deep archi-
tectures can be trained using greedy layer wise pre training
techniques. In this work, two models based on FF-DNN and
R-DNN, are proposed for day and week ahead short term load
forecasting.

A. Feed-forward Deep Neural Network (FF-DNN)

A neuron is the basic unit of FF-DNN model, structurely
inspired by the human neuron. In FF-DNN model, the input
x is combined with weight w and bias b at the neuron using
following equation.

N-1
¢ = Z WpTy + b
n=0
A nonlinear activation function ¢ is applied on computed ¢
which produces an output and sends as input to other con-
nected neurons. The basic goal of FF-DNN is to approximate
the function o(¢).
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Multi-layer Feed-forward Neural Networks are made up of
many such neurons interconnected in different layers. The
output of the model is fully decided by weights and biases. The
network learns by adjusting weights to minimize loss function
with the large set of training data. The loss function is given
by

Loss(q|W, B)

Where ¢ represents each training example in the data, W is
the matrix of weights and B is the set of biases.

B. Recurrent Deep Neural Network (R-DNN)

The Multi-layer perceptron is the simplest form of R-DNN
in which output of one hidden layer along with the input is
fed back in the network. The following non-linear equations
delineate the functionality of simple structure of R-DNN.

Qt) = fr(X(t) * Wi + Q(t — 1) * Wya)

Y(t) = f2(Q(t) * W;)

Where X (¢) is input at time ¢, Q(¢) is output, Q(t — 1) is
input at time ¢, W; is weight for input layer, W}, represents
weight for time delay input and W, is the weight for output
layer, f; and f, are hidden and output layer transfer functions
respectively. The time delay unit is required to hold the output
and feed back at the next time step.



IV. METHODOLOGY

In the proposed methodology, the first step is to extract
features which comprehensively model all the factors affecting
electricity consumption. To achieve this, the dataset is analysed
in both time and frequency domain. The temperate, time,
holidays, lagged load and data distribution effects are found
to be the dominant factors affecting load. The second step is
the selection of optimal model parameters.

First we show the parameter selection for FF-DNN model.
We employ Rectifier activation function (ReLU) in the model
because it is biologically accurate and shows high performance
in image processing. It is defined as

f(x) =max(0,z) where f(x)€R

ReLU takes less processing time as it works on un-normalized
data. As compared to Sigmoid or Tanh, exponential com-
putation is not required in ReLU. Further, ReLU does not
suffer from vanishing gradient problem. Although standard
stochastic gradient efficiently utilises memory, but it becomes
slow and requires memory locking and synchronization. We
solve this issue by using newly developed lock free technique
called Hogwild. This technique uses shared memory model
and update loss function asynchronously. To include the effects
of all factors in the model, time and frequency domain
analysis suggests to use more features. This improves the
prediction accuracy but at the cost of complexity. This makes
the model complex which causes the problem of over-fitting.
This problem is addressed using regularization techniques. We
employ L, (Lesso) regularization which adds an extra term in
the loss function to minimize error.

Loss'(q|W, B) = Loss(q|W, B) +~(q|W, B)

Where y is a regularized term and it is selected using cross-
validation. Fig. 7 visually describes the methodology of whole
process i.e. data pre-processing, extracted features, training
and prediction using FF-DNN and R-DNN.

V. ANALYSIS AND RESULTS

In this section, we evaluate our proposed FF-DNN and R-
DNN models for different seasons in 2012 and we use training
data covering the years 2007 up to 2011. The Training dataset
contains 43824 records while test dataset contains 24 and 168
records for day and week ahead forecasting respectively. The
new features extracted from the original 5 features increase
the accuracy of the models. For the evaluation of the models,
RMSE, MAE and MAPE have been calculated for each
forecasting type in four seasons of 2012 which are summarized
in table 2. As we explain next, the predictions are made on
the basis of two case studies.

Case Study 1

In case study I, we use only time domain features and make
predictions for day and week ahead using both FF-DNN and
R-DNN models. Due to temperature variations in different
seasons, electricity consumption varies considerably and we
forecast load in winter, spring, summer and autumn separately.
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Fig. 7. Visual Description of Load Prediction Methodology

The time domain MAPE, RMSE and MAE errors are shown
in table 2 for FF-DNN and R-DNN. The proposed models are
able to get least MAPE, RMSE and MAE errors in spring
season while highest errors are found in summer season as
depicted in fig. 8. This is due to the unexpected variations
in electricity consumption because of high temperature and
social events in summer season.

A. Case Study 11

In case study II, we use composite features from time and
frequency domain analysis and forecast day and week ahead
electricity load using FF-DNN and R-DNN. The errors are
listed under frequency domain column in table 2 for both
models. The accuracy is improved and the errors are much
lower as compared to the errors found in case study I.

VI. CONCLUSION

This paper introduces the applicability of two models based
on the FF-DNN and R-DNN algorithms for short term bulk
power load forecasting. A new method is presented that
enables the extraction of features from the original “raw”
power measurements by exploiting the joint time-frequency
(TF) representation of the load signals. Consequently, and as
shown in the experimental outcomes of this work, the proposed
method allows to model the most dominant factors that affect
the power consumption patterns. Based on two case studies
presented herein, we show that the weather, time, holidays,
lagged load and data distribution over the consumption period
are found to be the most dominant factors.



TABLE II
SUMMARY OF THE PREDICTION ERRORS USING TIME AND FREQUENCY DOMAIN FEATURES WITH FF-DNN AND R-DNN MODELS

Forecast

Season Type MAPE(%) RMSEMW/h) MAEMW/h)
Time Domain Frequency Domain Time Domain Frequency Domain Time Domain Frequency Domain
FF- R- FF- R- Other FF- R- FF- R- FF- R- FF- R-
DNN DNN DNN  DNN Model DNN DNN DNN  DNN DNN DNN DNN DNN
Winter Day 1.00 0.97 0.019 0.016 2.47 202 194 3.84 3.55 152 141 2.81 2.63
Week 1.01 0.98 0.035 0.029 1.21 188 178 6.19 5.73 149 138 4.98 4.54
Spring Day 0.94 0.82 0.030 0.023 0.36 159 144 4.78 4.35 139 124 4.40 4.21
Week 0.80 0.76 0.026 0.020 0.54 135 126 4.27 4.02 104 95 3.35 3.10
Summer Day 1.26 1.16 0.060 0.045 209 202 11.86 9.06 103 98 10.67 9.60
Week 1.03 1.01 0.078 0.056 284 366 16.52 15.33 292 277 13.47 11.97
Autumn  Day 0.91 0.82 0.036 0.026 190 175 6.36 5.86 133 116 5.00 442
Week 0.97 0.83 0.039 0.029 179 162 7.28 6.33 131 118 5.14 4.81
WOl Year 142 130 0067 0057 120 306 287 131 119 200 197 699 596
In parallel, we exhibit the superiority of utilising TF features 0.09
by comparison over a scenario where strictly time domain 0.08
features are used with respect to forecasting statistical errors 0-07
using three distinct error measures. Thus, we show the impor- ) EE:
tance of the initial employment of TF-based feature selection £ 0.0a
over bulk power measurements in order to improve the level Z 0.03
of statistical forecasting accuracy. Overall, we argue the the 0.02
approach proposed in this work may significantly contribute 0.01 II II |I II
towards the accurate forecasting that is considered as a critical 0 Winter Spring Summer Aurumn

necessity in today’s power distribution operation centres.
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Fig. 8. MAPE error comparison using Time domain features
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