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Quantum mechanics allows the existence of “virtual states” that have no classical analogue.
Such virtual states defy direct observation through strong measurement, which would destroy the
volatile virtual state. Here we show how a virtual state of an interacting many-body system can be
detected employing a weak measurement protocol with postselection. We employ this protocol for
the measurement of the time it takes an electron to tunnel through a virtual state of a quantum dot
(cotunneling). Contrary to classical intuition, this cotunneling time is independent of the strength
of the dot-lead coupling and may deviate from that predicted by time-energy uncertainty relation.
Our approach, amenable to experimental verification, may elucidate an important facet of quantum
mechanics which hitherto was not accessible by direct measurements.

PACS numbers:

I. INTRODUCTION

An important aspect of quantum mechanics is the exis-
tence of states that have no classical analogue. Such “vir-
tual states” cannot exist in classical physics as they vio-
late energy conservation. It is commonly suggested that
their presence within quantum mechanics as short-lived
states is allowed by the uncertainty principle1 ∆t∆E ∼
~. These states, being volatile, are destroyed by a strong
measurement, and are therefore inaccessible to direct de-
tection. By contrast, weak measurement, along with its
weak backaction, may provide us with a nondestructive
probe into virtual states. In fact, weak measurement
based protocols with postselection [weak values (WV)]2

have been employed with remarkable success in explain-
ing quantum paradoxes 3, detecting and amplifying weak
signals4,5, directly measuring a wave-function6 and devis-
ing protocols for quantum states discrimination7.

The primary goal of this paper is to extend the utility
of WVs to the arena of many-body states, specifically
probing virtual many-body states. This task is accom-
plished here for the first time, by specifically consider-
ing the process of cotunneling8,9. In the latter, electrons
are transported between a source (S) and a drain (D)
through a quantum dot (QD); the QD is tuned such that
the addition of an extra charge to it is classically for-
bidden (the Coulomb blockade regime)10. Nevertheless,
an electron can enter the QD and later exit, forming a
(short-lived) virtual many-body correlated state. This
cotunneling process is qualitatively different from a sin-
gle particle tunneling under the barrier. We design a
weak value protocol, amenable to experimental test, tai-
lored to measure the lifetime of such a many-body virtual
state. We anticipate that our demonstration of feasibility
of such a protocol will pave the road to the study of a
host of many body problems that involve virtual states.

The second goal of our work is the study of the specifics
of cotunneling life-time. The lifetime of a virtual state
associated with the tunneling of a single particle under
a barrier has been studied extensively with a variety of
approaches12–20. There are several time scales involved

in this process: the dwell time, τdwell, marks the lifetime
of the virtual state regardless of whether the electron is
eventually transmitted (to D) or reflected (to S); the
traversal time is the lapse between the disappearance of
an electron from S and its appearance in D. For the
tunneling of a single particle it has been shown14 that
the time is related to the imaginary velocity of the par-
ticle under the barrier. Determining the traversal time
in the many-body cotunneling case poses a more difficult
challenge, elucidated below.

Here we show that naive expectations based on analogy
with a single particle tunneling are unfounded. Strik-
ingly we also find that the cotunneling time, τcot, may
not be related to the time-energy uncertainty relation11

∆E τcot ∼ ~, where ∆E represents the violation of en-
ergy conservation in the virtual state. Finally we note
that, while by classical intuition the transmission time
through a QD should depend on the dot-lead tunneling
matrix element, this turns out not to be the case here.
Our results are summarized in Table 1. We find that
τcot depends parametrically on whether the cotunneling
is dominated by elastic or inelastic processes.

In the following, after defining our model of a detector
weakly coupled to a quantum dot tuned to the cotun-
neling regime, we review the measurement time in the
regime of sequential tunneling, where the transport oc-
curs through classical probability rates of tunneling in
and out of the dot. Employing the same setup, we present
a semi-heuristic procedure through which we define the
cotunneling time. We then show that this definition coin-
cides with the quantity obtained relying on a weak-value
based protocol. We finally compute the cotunneling time
in the various relevant parameter regimes.

II. MODEL AND SETUP

Our setup [cf. Fig. 1(a)], consists of a system (a quan-
tum dot weakly coupled to leads) and a detector [a
quantum point contact (QPC)]. The detector measures
the system through the electrodynamic coupling between
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FIG. 1. A measurement scheme of the cotunneling time. (a) Sketch of a quantum dot coupled to a QPC detector. The
transmission through the QPC is affected by the presence of an extra electron in the QD. The top gates VL and VR control
the tunneling rate to the dot, VQPC the unperturbed transmission through the QPC, and Vg the charging energy in the dot.
Vg allows us to tune the system from the sequential tunneling to the cotunneling regime. The transport through the QPC
and the QD is controlled by the voltage bias ∆µ and eV respectively. The current-current correlation SIJ is sensitive to the
excess number of electrons, N , in the dot. (b) Typical detector signal and current through the dot in the sequential tunneling
regime, performing strong measurement with the QPC. The time an electron spends in the dot can be classified according to
the occurrence of a subsequent positive current pulse in the drain (τ+,i), or the absence thereof —back-reflection (τ−,i). The

average sequential tunneling time can be directly obtain by averaging over the durations, {t(1)+,i}, of the relevant QPC signals.
(c) Typical detector signal and current through the dot in the weak measurement regime. Straightforward classification of
events as in (b) is not possible. The signal of the QPC preceding a pulse of current through the quantum dot, has to be
weighted by an appropriate weight function. The latter should account for the QPC current signal, which precedes and is
directly related to the electron detected at the QD’s drain terminal. In the cotunneling regime, the interval between successive
tunneling events is longer than the cotunneling time, hence one may discard the weighting function.

them. The way this setup is defined it is suitable to dis-
cuss both transport that involves real processes (sequen-
tial tunneling) as well as virtual processes (cotunneling).
The relevance of many-body states is self-evident here.
The corresponding Hamiltonian is given by

H = H0 +HT +Hint +Hdetector, (1)

where H0 represents the isolated (but voltage biased) QD
and the uncoupled source (S) and drain (D) leads; HT

stands for the dot-leads tunnel coupling and Hdetector +
Hint describe the detector dynamics and its interaction
with the QD. Specifically, the part of the Hamiltonian
concerning the system (the QD and the leads) consists of
the following terms:

H0 =
∑

α=S,D

∑

k

εα,kc
†
α,kcα,k +

∑

h

ε0,hd
†
hdh + U. (2)

It describes the isolated QD, and the uncoupled source
and drain leads. The single particle terms for the source
(S) and drain (D) leads and the QD are expressed in
terms of the fermionic field operators, cS,k, cD,k, dh. The
charging energy contribution10

U = EC(NS +ND −Ng)2 − eV

CΣ
(CSNS − CDND), (3)

with N =
∑
α d
†
αdα, characterized by the energy EC , de-

pends on the charge entering the dot from the left (right)
lead, NS(D). N = NS+ND is the extra charge on the dot.
Eq. (3) provides the explicit dependence of the charging
energy U on dot-source, CS , dot-drain CD, and dot-gate
Cg capacitances (CΣ = CS +CD +Cg is the total capac-
itance), as well as on the source-drain voltage bias, eV ,
and on the gate voltage, through Ng = Vg/(eCg).

The leads-QD tunneling operator HT =
∑
α=S,D Tα +

h.c., with Tα =
∑
k,h γ

(α)
k,hd

†
hcα,k, are written in terms of

source and drain tunneling amplitudes γ
(α)
h,k . The current

operator in the QD is

I = ∂t
∑

k

c†D,kcD,k = i(TD − T †D), (4)

Transport via virtual processes is ∝ γ4, and can be classi-
fied into inelastic and elastic cotunneling, corresponding
to the state of the QD being modified or unmodified re-
spectively, following a tunneling event. In any case the
virtual occupation of the dot involves a many-electron
correlated state.

The detection of the excess charge on the dot, eN , is
carried out by a quantum point contact (QPC) capac-
itively coupled to the dot, which is routinely employed
in experiments as a charge sensor21–23. The QPC is
modeled as a scattering potential for impinging electrons
through

Hdetector ≡ HQPC =
∑

i=l,r

∑

k

v k a†i,kai,k, (5)

with ai,k being the annihilation operator for the left-
(i = l) and right- (i = r) moving scattering states; here
v is the magnitude of the electron velocity. The addi-
tion of an extra electron to the QD (〈N〉 = 1) results in
the modification of the QPC scattering potential. The
coupling to the QD is specified by Hint = NX24,26 with

X =
v(δκ+ iu)

L
√
κ(1− κ)

∑

k,h

a†r,kal,h + h.c.. (6)
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It describes a general complex back-scattering amplitude
due to the modification of the scattering potential due
to the occupation of the QD by an extra electron. The
QPC has a chemical potential bias, ∆µ, which defines the
detector’s bandwidth and is assumed to be the largest en-
ergy scale in the problem. The operator associated with
the QPC signal is then the current through the QPC24,25,

J =
ev

L

∑

k,p


∑

i=l,r

κ(−1)ia†i,kai,p

+
√
κ(1− κ)(ie−i(k−p)xa†r,kal,p + h.c.)


 , (7)

Here κ is the transmission probability through the QPC,
L is the QPC length, and x plays the role of a regular-
ization parameter.

Various scales of charging energy. In view of the
calculations of the cotunneling current and cotunneling
time, we conveniently denote by 〈U(TS)〉 the change of
charging energy due to the tunneling of an extra charge

from the source into the dot, and by 〈U(T †S)〉 the corre-
sponding change due to the exit of a charge to the source.
With the equivalent notation of the tunneling to/from
the drain (D), we can generally denote the modification
of the charging energy due to a certain sequence of tun-
neling events as 〈U(Tα, . . . , Tβ)〉 with α, β = S,D. In the
Coulomb blockade regime where the charging energy Ec
is the largest energy scale of the quantum dot’s dynamics,
we consider only the states with N = 0, 1 excess electrons
in the dot. Then we obtain the relevant charging energies
in the cotunneling processes directly from Eq. (3):

〈U(TS)〉 ≡ E+l, 〈U(T †D)〉 ≡ E−r, (8a)

〈U(TD)〉 = E+l + eV, 〈U(T †S)〉 = E−r + eV, (8b)

〈U(TST
†
D)〉 = −eV, 〈U(T †STD)〉 = eV, (8c)

〈U(TSTST
†
D)〉 = −eV + E+l, (8d)

〈U(TDTDT
†
s )〉 = 2eV + E+l, (8e)

〈U(T †ST
†
STD)〉 = 2eV + E−r, (8f)

〈U(T †DT
†
DTS)〉 = −eV + E−r, (8g)

Below we will focus on the limit eV � E−r � E+l, in
which cotunneling is dominated by particle-like processes
rather than hole-like processes; hereafter we simply set
E+l ≡ EC .

III. A HEURISTIC APPROACH

Before addressing the cotunneling regime, let us dis-
cuss how the detection scheme of Fig. 1 works in the
sequential tunneling regime, which is a real (non-virtual)
process. Referring to Fig. 1(b), we note that the entry of
the i-th electron into the QD may result in a successful

(unsuccessful) sojourn, τ
(1)
+,i (τ

(1)
−,i), at the end of which the

electron is transmitted to the drain (is backscattered).
The current through the QPC, J , is a two-valued sig-
nal, where the two values, J (0) and J (1), are associated
with the absence or presence of an extra electron on the
QD. Noting that a peak in the current through the QD,
I, signals a successful tunneling event (we neglect pro-
cesses where the electrons hop from the drain to the dot),
one can easily extract the time of sequential tunneling,
〈τ (1)+〉seq from

〈J+〉 = (J (1) − J (0))〈τ (1)
+ 〉seq〈I〉/e, (9)

which defines the tunneling time in terms of the ex-
cess current in the QPC conditional to the occurrence
of a tunneling event through the QD, 〈J+〉, and the
average tunneling current 〈I〉. A rate equation analy-

sis reveals that < τ
(1)
+ >seq depends on the source and

drain tunneling rates, ΓS and ΓD respectively, yielding

〈τ (1)
+ 〉seq = 1/(ΓS + ΓD).
While Eq. (9) is straightforwardly applicable to exper-

iments with strong QD-detector coupling23, 〈J+〉 cannot
be directly addressed in the weak measurement regime.
The signal J (1) − J (0) is then masked by quantum noise
[cf. Fig. 1(c)] ; it is not possible to uniquely determine

the duration of each interval τ
(1)
+.i. This hurdle can be

overcome by introducing a (Poissonian) probability dis-

tribution, p(t), for the time intervals {τ (1)
+,i}. Evidently

p(t) depends on 〈τ (1)
+ 〉seq. The sequential tunneling time

may be obtained through an average over such a distri-
bution, as

〈τ (1)
+ 〉seq = lim

T→∞

∫ T
0
dt
∫ t

0
dsP (s)[J(t− s)− J (0)]I(t)

T 〈I〉 (J (1) − J (0))
,

(10)

where P (t) = 1−
∫ t

0
ds p(s) is the probability the electron,

entering the dot at t = 0 remains in the dot at time t.

This is a self-consistent equation for 〈τ (1)
+ 〉seq. A direct

calculation shows that Eq. (10) leads to the same results
as Eq. (9) (cf. Appendix A).

We now consider the case of cotunneling. Here we gen-
eralize Eq. (10) employing quantum mechanical current-
current correlations. We stipulate that these correlations
decay in time faster than the time interval between two
consecutive cotunneling events, hence we may neglect the
cut-off due to the p(s), and replace J (0) by the average
〈J〉. This relates the cotunneling time to the current-
current correlation function SIJ ≡

∫∞
0
ds 〈I(t)[J(t− s)−

〈J〉]〉 through

〈τ (1)
+ 〉cot =

SIJ
〈I〉(J (1) − 〈J〉) . (11)

It is worth noting that the integration in Eq. (11) is only
over positive times.

Evidently, to evaluate the time obtained in the cotun-
neling regime, a microscopic treatment of the problem is
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due. For this we employ the Hamiltonian in Eq. (1)), and
evaluate the averages in the Keldysh formalism27,28. to
this goal a time ordering of operators, TK is introduced
on a time contour consisting of two branches correspond-
ing to forward- or backward-in-time parts of the contour.
The operators are labeled by a subscript +,− depending
on whether they belong to the former or the latter branch
of the contour. To first order in perturbation in Hint, the
correlator SJI reads

SJI =− i
∫ ∞

0

dτ

∫ ∞

−∞
ds [〈TK [I−(t+ τ)N+(s)]〉g++(s− t)

−〈TK [I−(t+ τ)N−(s)]〉g−+(s− t)] , (12)

where g++(t − t′) ≡ 〈TK [J+(t′)X+(t)]〉, g−+(t − t′) ≡
〈TK [J−(t′)X+(t)]〉. In the limit considered here, where
∆µ is the largest energy scale in the problem, one obtains
g−+(t−t′) = g++(t−t′) = (e∆µ)/(2π)(iδκ+u)δ(t−t′+η),
and finally

〈τ (1)
+ 〉cot = Re {τWV } − (u/δκ) Im {τWV } , (13)

where τWV is an intrinsic quantity of the system with the
dimensions of time,

τWV =

∫∞
0
〈I(t) [N(t− s)− 〈N〉]〉

〈I〉 . (14)

In fact τWV is the complex time obtained by a direct
application of a weak value protocol to the cotunneling
time.

IV. COTUNNELING TIME FROM THE WEAK
VALUE FORMALISM

In this section we present the result for the cotunneling
time as obtained through a direct application of the weak
value formalism. In complete analogy with the problem
of single particle tunneling time19, τWV is obtained with
the aid of an ideal detector whose dynamics is trivial
(Hdetector = 0).

The result is obtained employing a simple model in
which the detector is modeled as a pointer coupled via
H = λp̂N , N being the excess charge in quantum dot
(measured in units of the electron charge e; N may as-
sume the values +1 or 0), and q the position of the
detector pointer (initially at 〈q〉 = 0) with [q, p] = i~.
The detector is assumed to have no internal dynam-
ics (Hdet = 0). Measuring q̂ at a time ∆t leads to

〈q〉 = λ
∫∆t

dsN(s). One can interpret this expression
to obtain either (i) the time averaged charge in the dot,
e〈N〉 = e〈q(t)〉/λ∆t, where ∆t is the duration of the mea-
surement, or (ii) the average time the particle spends in
the dot, τ = 〈q〉 /λ. In the latter interpretation it is im-
portant that the charge exists in quantized units of e, and
that during the measurement time ∆t at most a single
cotunneling event takes place. In the case of sequential
tunneling, this procedure results in 〈q〉/λ being exactly

the dwell time (as distinct from the cotunneling time) of
the particle in the QD. We assume this is a valid measure-
ment of the dwell time also in the regime of cotunneling.

In order to address the time the particle spends in the
dot conditional to a later successful cotunneling event
(which takes the particle to the drain), we can make use
of the weak value formalism2. The signal in the detector,
conditional to a successful cotunneling through the QD,
is expressed as τcot = f 〈q(t)〉0/λ = Re{f 〈τWV〉0}, where
f indicates that the average has to be taken conditional
to the postselection of a certain state |f〉 of the system.
In the weak measurement regime, τWV is the weak value
of the measured observable, hence

τWV =

∫ t

f 〈N(s)〉0 =

∫ t
ds 〈Πf (t)N(s)〉
〈Πf (t)〉 , (15)

where Πf is the projection into the postselected state.
In order to specify the postselection of the cotunneling

process we consider a simple picture where an electron,
initially in the source reservoir, can eventually reach the
drain. The correlations between subsequently impinging
electrons are neglected, as well as the virtual occupation
of the dot by processes originating from the drain.

The projector onto the postselected state (i.e., success-
ful cotunneling) at a time ∆t is ND(∆t) (where the ex-
cess particle number, ND, is measured from the refer-
ence value before the cotunneling process started tak-
ing place). The postselection is, in fact, the result of
a continuous measurement over the interval ∆t, which
accounts for all possible arrival times of the electron
in the drain during the time interval [0,∆t]. This can
be properly taken into account by summing the proba-
bility of tunneling at any time and noting that it can
be expressed via the current operator at the drain as

ND(∆t) =
∫∆t

dt I(t). We therefore implement the post-

selection operator as Πf =
∫∆t

dt I(t). In doing so we
note that the detection of an electron in the drain at
time t < ∆t consists of a strong (postselection) measure-
ment. Therefore, in assessing the weak value, we need to
account only for weak measurements that preceded that
strong measurement at time t. This is implemented by
constraining the correlation between I(t) and N(s) for
time intervals such that s < t. Finally, since we are
dealing with a steady state, the correlations 〈N(s)I(t)〉
depend only on the time difference t−s and we can write

τWV =

∫∞
0
ds 〈I(t)N(t− s)〉

〈I〉 . (16)

The resulting complex τWV encodes the information on
the physical times involved in the cotunneling process.
Notably, the measured QPC-QD current correlation pro-
vides access only to a combination of the real and imag-
inary parts of τWV (which depends on non-universal de-
tails of the variation of the QPCs transparency as func-
tion of the QDs occupation). The individual parts can be
obtained through detailed tomography of τWV. To shed
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light on the physical meaning of τWV, it is instructive to
first discuss the analogous complex tunneling time in the
context of a single particle tunneling.

Analysis of a complex τWV for a single particle tun-
neling. Here we review the analysis of the tunneling
time of a single particle (single particle opaque bar-
rier), through a weak value protocol. This serves as a
benchmark for the analysis of the equivalent cotunnel-
ing time. The issue of the time of single particle tun-
neling has been discussed extensively in the literature
in a variety of approaches; both vis-a-vis single parti-
cle tunneling in real space12–15,18, and to Landau-Zener
tunneling in energy space16. A weak measurement ap-
proach to this problem19 gives rise to a tunneling time
and a reflection time, τ̃tun and τ̃ref respectively, both be-
ing complex. The weighted dwell time under the barrier
is then τ̃dwell = T τ̃tun + (1 − T )τ̃ref (T being the trans-
mission probability). Quite remarkably, this last equal-
ity holds for the complex tunneling and reflection times.
The physical times of this problem are the dwell time,
τ̃dwell = Re{τ̃tun}, and the traversal time under the bar-
rier, τ̃T = [τ̃2

dwell + (Im{τ̃tun})2]1/215,19. In the limit of
a high thin barrier τ̃dwell vanishes (most reflected par-
ticles spend a negligible time under the barrier), hence
τ̃T = |Im{τ̃tun}|. This agrees with the result of Ref.15.

V. MICROSCOPIC CALCULATION

We now turn to calculate the cotunneling time in
Eq. (14).

While the result for the cotunneling current is
known8,9, it is the charge-current correlation function of
the system that encodes information on the cotunnel-
ing time. For simplicity we tune the gate voltage such
that transport through the quantum dot is dominated
by particle-like cotunneling. Our analysis addresses the
limit where the temperature is smaller than the source-
drain voltage. Different contributions to the current are
described by Feynman diagrams and are conveniently
grouped into elastic and inelastic contributions [cf. Fig. 2
(a)]8. Correspondingly, we group the contributions to the
correlator 〈I(t)[N(t−s)−〈N〉]〉 into two sets. The results
for the complex cotunneling time will differ depending on
whether the cotunneling is dominated by elastic or inelas-
tic processes. Examples of diagrams that contribute to
〈I〉 and 〈I(t)[N(t − s) − 〈N〉]〉 are depicted in Fig. 2.
All in all we have 64 different diagrams; when dealing
with particle-dominated cotunneling and considering the
zero-temperature limit, the number of diagrams is re-
duced to 8 (4 elastic processes and 4 inelastic processes),
as shown in Appendix B. The non-vanishing diagrams in
this limit are depicted in Fig. 2(b), and are evaluated in
Appendix B 2. The expressions for 〈I(t)[N(t−s)−〈N〉]〉
and 〈I〉 in Eqs. (B8,B7,B23,B24) in Appendix B are fi-
nally substituted into Eq. (14) to find

τWV = ∓ i
2
∂EC ln I, (17)

t t

(a)

(b)

Iel = Iinel =

t

s3t � s

SIJ in =
t � s t � s t � s

SIJ el =
t � s t � s

t t t

t t

EC�eV s2

s1EC

+ +

+

(c)
=

X

k,h

�
(S)
k,h =

X

k,h

�
(D)
k.h=

X

h

d†
hdh

= hdh(t)d†
h(0)i0 t = hcS,k(t)c†

S,k(0)i0 t = hcD,k(t)c†
D,k(0)i0 t

FIG. 2. Feynman diagrams for 〈I〉 and SIJ . Elastic and
inelastic contributions to the cotunneling current 〈I〉 [panel
(a)], and to the current-current correlator SIJ [panel (b)], in
the zero-temperature-particle-dominated regime. The propa-
gators and vertices constituting the diagrams are defined in
in panel (c). Inset: An example of a diagram neglected in
the zero-temperature-particle-dominated limit. Here we indi-
cate explicitly the time and charging energy labelings along
the time contour, as dictated by the Feynman rules (cf. Ap-
pendix B 3).

with + and − for inelastic and elastic cotunneling respec-
tively. An equivalent expression yielding the traversal
time in terms of the logarithmic derivative of the trans-
mission probability holds for the non-interacting case,
where, for tunneling through a square potential barrier,
it reads τWV = −∂V0

[arg(t)] + i
2∂V0

ln(t∗t)17. Here V0

is the barrier height and t the transmission amplitude.
Our result extends the validity of such an equation to
interacting systems.

Eq. (17) is rather general, and does not depend on
the specifics of the electronic dynamics in the quantum
dot. However, in order to obtain specific expressions
for τWV, we specify the dot to be in the diffusive limit,
L > |xS − xD| � l, where L is the linear size of the
quantum dot, l the elastic mean free path, and xS , xD
the position of the source and drain contacts respectively.
As shown in Appendix B, the cotunneling current can
then be expressed in terms of the diffuson propagator29

between the source and the drain points Dω(xS ,xD) ≡
ν0S2〈ψα(xS)ψ∗α(xD)ψβ(xD)ψ∗β(xS)〉, where ψα(x) is the
wave-function of the α-energy level of the dot with energy
εα, ω = εα − εβ , ν0 and S are respectively the density of
states and the area of the dot, and the average is intended
over the different statistical realizations of disorder.
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In this case the cotunneling current reads8,9,26,29

Iin =
G(S)G(D)

12πe2

(eV )2

E2
C

V, (18)

Iel =
G(S)G(D)

4π2ν0e2
V

∫ ∞

0

dω
Dω(xS ,xD) +D−ω(xS ,xD)

ω

ln

(
1 +

ω

EC

)
. (19)

The elastic cotunneling current depends on the diffu-
son propagator, which is characterized by Thouless en-
ergy, ETh ∼ D/S, proportional to the diffusion constant,
D. The cotunneling current depends on the ratio be-
tween ETh and EC . The cotunneling time in the vari-
ous regimes is finally deduced directly from Eq. (17) and
the corresponding expression for the cotunneling current,
Eqs. (B9,B11,B13,B16). The results are listed in Table 1.

We note here that, while the cotunneling current gener-
ally depends parametrically on the various energy scales
in the different regimes, the cotunneling time is τcot ∼
~/(EC) in all cases except for elastic cotunneling with

very close contacts, ETh � EC � L2ETh

|xS−xD|2 , where it is

given by

τWV = −i 3

2EC
ln−1

(
D

π2|xs − xD|2EC

)
. (20)

This shows explicitly that the cotunneling time can be
parametrically different from the estimation obtained via
the uncertainty principle. In particular, the particle can
spend a time shorter than 1/EC in the dot. This is in
striking contrast with the results for tunneling of a single
particle through a barrier.

VI. DISCUSSION AND SUMMARY

For a single particle tunneling through an opaque bar-
rier, it has been shown15,19 that the traversal time is
given by the imaginary part of the complex weak value
time; The real part turned out to be the dwell time, and
was found to be vanishing. In the present analysis we
consistently find a vanishing dwell time (Re{τWV} = 0),
while τcot = |Im{τWV}| (cf. Table 1). We also note that

Eq. (17) has been established for single particle tunnel-
ing (opaque barrier17). We have shown here that it re-
mains valid for interacting systems. The emerging pic-
ture shows that the cotunneling traversal time is not sim-
ply given by the uncertainty time ~/EC , but it can be
logarithmically smaller in ETh/EC , ETh being the Thou-
less time-of-flight through the QD29 (assuming, for exam-
ple, diffusive dynamics in the dot). The dependence on
the ballistic or diffusive real time-of-flight through the
QD is very different for the single particle tunneling: the
time of the latter is determined by the imaginary velocity
under the barrier14.

We have presented our analysis on three levels. First,
we have defined a realistic system-detector setup both
in the sequential and cotunneling regimes, and related
the correlation function of the system-detector currents

to 〈τ (1)
+ 〉seq or the complex 〈τ (1)

+ 〉cot—Eqs. (9,10,11).
These expressions are useful for processing experimental
data, through (i) analysis of current-current correlations
[Eq. (10, 11)] or (ii), for single shot measurements, selec-
tive inclusion of signals of detector current conditional
on the later detection of a current pulse through the QD
[Eq. (9)]. Second, through a weak value analysis, we
have addressed the meaning of the complex time τWV.
This complete τWV contains information about the dwell
and the cotunneling times. Third we have considered
Eqs. 10, 11 as a starting point for a first principles calcu-
lation of τWV, pursued through a diagrammatic Keldysh
perturbation theory. Our protocol is amenable of exper-
imental verification. For a ballistic semiconducting QD
whose linear size is L = 0.15µm, the electrons Fermi ve-
locity vF = 106cm/sec and EC = 20µeV , ETh and EC
are comparable. One may design and tune the relevant
gates to achieve the desired inequality between these two
energies. Within a broader context, the analysis out-
lined here demonstrates the usefulness of such composite
measurements protocols for a systematic, non-destructive
study of many-body systems driven to a virtual state.
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Appendix A: Sequential tunneling time: a classical case

We discuss here the measurement of the sequential tunneling time through a weak measurement scheme. We show
explicitly that the sequential tunneling time obtained through the weak measurement scheme as in Eq. (10) coincides
with the result of a direct strong measurement, Eq. (9).

To this goal we consider a simple model of transport through the QD, where tunneling of subsequent electrons are
uncorrelated events. We assume a constant flux, f0, of electrons emitted from the source. For simplicity we assume
that one electron impinges on the dot in the time T , i.e. f0 = 1/T ; hereafter ΓS , ΓD are the dot-source and dot-drain
tunnel rates respectively.
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Re{τWV} = τdwell Im{τWV} = ±τcot 〈I〉/
(
G(S)G(D)

12πe2
V
)

inelastic 0 ~
EC

(eV )2

E2
C

elastic

EC � ETh 0 − 1
2

~
EC

3δ
Ec

ETh � EC � L2ETh
|xS−xD|2

, 2d 0 − 3~
2EC

ln−1
(

L2ETh
|xS−xD|2EC

)
δ

ETh
ln3

(
L2ETh

|xS−xD|2EC

)
ETh . L2ETh

|xS−xD|2
� EC , 2d 0 − ~

EC

3δETh
4E2
c

TABLE I. Real and imaginary components of the cotunneling time, τWV for the inelastic and elastic cotunneling regimes.
Listed are the respective average cotunneling currents too. The results are written in terms of the dot-leads conductance
Gα = e2ναν0|γα|2/(2π~), with να(0) being the density of state in the lead (dot); the relevant energy scales in the dot are the
level spacing, δ, the Thouless energy, ETh, the charging energy, EC , and the applied voltage bias eV . |xS −xD| is the distance
between the source and drain contacts, L the linear size of the quantum dot. The results in the last two rows are explicitly for
the 2-dimensional case.

To begin, we evaluate the probability of the events describing transport in the dot. Assuming that an electron
enters the dot at t = 0, and that the time for tunneling out is Poissonian distributed, the probability, P (t) that an
electron remains in the dot until time t is

P (t) = e−(ΓS+ΓD)t. (A1)

It follows that the probability, p(t) dt, that an electron remains in the dot till time t and exits it in the time interval
[t, t+ dt] is given by

p(t) dt = e−(ΓS+ΓD)t(ΓD + ΓS) dt. (A2)

We notice also that P (D|t) = ΓD/(ΓS + ΓD), where P (D|t) is the probability that, given that the particle exits the
dot within the time interval [t, t+ dt], it does it through the drain. The analogous equation with ΓD ↔ ΓS holds for
the corresponding probability, p(S|t) dt, in the case of electron exiting toward the source. The probability that the
electron exits the dot in the time interval [t, t+dt], given that this takes place through the drain’s barrier, is determined
through the Bayes theorem, leading to pD(t) dt ≡ p(t|D) dt = p(D|t)p(t)/P (D), where P (D) = ΓD/(ΓS + ΓD) is the
total probability to exit to the drain, integrated over all times. This results in

pD(t)dt = p(t)dt =−(ΓS+ΓD)t (ΓS + ΓD)dt. (A3)

Note that an identical expression is obtained for pS(t). The time the particle spends in the dot, given that it eventually
tunnels to the drain, is then

〈τ (1)
+ 〉 ≡

∫ ∞

0

dt t p(t|D) =
1

ΓD + ΓS
. (A4)

We conclude that the time the electron spends in the dot is independent of the condition of eventually exiting to the
left or to the right.

Assessing the sequential tunneling time, Eq. (A4), by employing strong measurement protocol is straightforward.
One can correlate the entry of an electron to the QD (detected through a clear signal in the QPC23) with the detection
of the electron at the drain —the relevant quantity is p(t|D). This becomes trickier when weak measurement by the
detector is employed. One then needs to resort to Eq.( 10), invoking the correlation function SIJ . We can determine
the time resulting from Eq. (10) assuming, without loss of generality, that the current J (1)(s) = J + ξ(s) when the
electron is in the dot, and J (0)(s) = 0 + ξ(s) otherwise (a constant reference current has been subtracted). ξ(s) is a

stochastic component of the current due to the detector’s intrinsic noise with
∫ t
−∞ ds ξ(s) = 0, and it is uncorrelated

to the QD signal. We also note that the event of having a current peak in the drain at time t happens with probability
P (D|t) and the average in SIJ has to be taken with respect to this probability. Measuring the current through the
QD in units of the electron charge, we can write Eq. (10) as

SIJ = P (t = 0)

∫ ∞

0

dt

∫ t

0

ds [JP (D|t)p(t) + ξ(s)] = (ΓS/f0)J

∫ ∞

0

dt tΓD e
(ΓD+ΓS)t , (A5)

where P (t = 0) = ΓS/f0 is the probability of entering the dot at time t = 0. In the first equality of Eq. (A5) the
term involving ξ(s) is not weighted by any probability since it is not correlated to the dynamics of the dot. In the
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second equality in Eq. (A5) we take into account that the time integral of that same term involving the stochastic
fluctuations vanishes. We may further write I = ΓSΓD/(ΓS + ΓD). With this expression, Eq. (9) leads to

〈τ (1)
+ 〉 = 1/(ΓS + ΓD), (A6)

in full agreement with the result of a strong measurement.

Appendix B: Calculation of the QD correlation function

In this section we discuss the calculation of 〈I〉 and 〈I(t)[N(t − s) − 〈N〉]〉 in the electron cotunneling regime.
We address first the calculation of the average current, and then its generalization to the charge-current correlation
function.

1. Average current

The Hamiltonian is presented in Section II. The calculations are done perturbatively in the tunneling Hamiltonian,
HT , hence we work in the interaction picture with respect to H0 +Hint +HQPC, and denote by ·̄ the operators in the
interaction picture. The leading order term in the perturbative calculation of the current is obtained to third order
in HT . The cotunneling current8 in Eq. (4) is in turn proportional to γ4:

〈I〉 =eRe

〈∫ t

−∞
ds1

∫ s1

−∞
ds2

∫ s2

−∞
ds3

[
T̄D(t)H̄T (s1)H̄T (s2)H̄T (s3) + H̄T (s3)H̄T (s2)H̄T (s1)T̄D(t)

]

−
∫ t

−∞
ds1

∫ t

−∞
ds2

∫ s2

−∞
ds3

[
H̄T (s1)T̄D(t)H̄T (s2)H̄T (s3) + H̄T (s3)H̄T (s2)T̄D(t)H̄T (s1)

]〉
, (B1)

where the average is intended on an unperturbed state, (possibly a mixed one), described by a density matrix
ρ(t = −∞).

Each of the HT terms in Eq. (B1) consists in fact of a sum of terms involving products of TS , TD. The system’s
state is initially (at t = −∞) an eigenstate of N , NS , ND. It remains an eigenstate of the same operators after the

application of each HT (note that [N,TS ] = TS , [N,T †S ] = −T †s , [N,TD] = TD, [N,T †D] = −T †D). In fact HT changes
the system’s state to a configuration with ±1 extra charge on the QD. The time dependence in the operators in
Eq. (B1) can then be made explicit in terms of the time evolution operator and computed employing Eq. (8). To be
specific, let us address one of the terms appearing in Eq. (B1), namely

〈I〉1 ≡ eRe〈
∫ t

−∞
ds1

∫ s1

−∞
ds2

∫ s2

−∞
ds3 T̄D(t)T̄ †S(s1)T̄ †D(s2)T̄S(s3)〉 . (B2)

The explicit time dependence of operators results then in

〈I〉1 = eReTr

{∫ t

−∞
ds1

∫ s1

−∞
ds2

∫ s2

−∞
ds3 TD(t) e−i(E+l+eV )(t−s1)T †S(s1)

e+ieV (s1−s2) T †D(s2) e−iE+l(s2−s3) TS(s3)ρ(−∞)
}
, (B3)

where the operators evolve in time through

U(t, t′) = T − exp{−iH0(t− t′)}, (B4)

where T is the time ordering operator, and H0 is the Hamiltonian of the dot-leads part, which includes neither the
charging energy, nor the detector Hamiltonian. The fact that the detector Hamiltonian is neglected in Eq. (B4) is
a consequence of the perturbative calculation in the strength of the measurement. More precisely, since Eq. (13)
is obtained by already computing SIJ to first order in Hint, the SIJ can be safely neglected in the calculation of
〈I(t)[N(t − s) − 〈N〉]〉. A proper treatment of Hint in the calculation of 〈I〉 reveals that it makes contributions in
second order, and is therefore consistently neglected here30.

The quantum average in Eq. (B2) can now be easily obtained via Wick’s theorem. This is conveniently done in
terms of Feynman diagrams on Keldysh contour, resulting in the rules specified in Appendix B 3. All possible diagrams
correspond to all possible sequences of Tα(sj) obtained from the HT in Eq. (B1), and are presented in Fig. 3.
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FIG. 3. Feynman diagrams contributing to the cotunneling current. Each contribution to the probability consists of a coherent
superposition of electron-like (e) and hole-like (h) amplitudes. Upon squaring these amplitudes one obtains contributions of
the type e-e, e-h, etc., which are represented by the various diagrams. The diagrams are grouped into elastic (A) and inelastic
(B) contributions. Each group consists of “’forward” and “backward” diagrams, depending on whether the associated charge
transfer is from source to drain or viceversa, respectively. The contribution of the latter set of diagrams is vanishing at T = 0.
The relative weight of the electron and hole contributions is controlled by the gate voltage.

Each diagram corresponds to a well defined process which contributes to the probability of charge transfer between
the two leads. The amplitude for a charge transfer is a superposition of electron-like (e) and hole-like (h) processes.
The various contributions to the probability are labeled accordingly (e.g., e− e, e− h, . . . ). Moreover the diagrams
are classified as forward (backward) when a charge is transferred from the source (drain) to the drain (source). For
instance, the diagrams obtained by averaging the expression for 〈I〉1 in Eq. (B2) are the “e-h forward” both elastic
and inelastic, according to the labeling in Fig. 3 .

The analytical expression for each diagram is obtained by the rules R7-R10 in Appendix B 3. The backward diagrams
are vanishing in the T = 0 limit due to the vanishing of the corresponding phase space. Moreover, by controlling
the gate voltage, one can tune the ratio E−r/E+l in the regime E−r/E+l � 1, where the hole-like processes are
parametrically suppressed by a factor O(E−r/E+l). In this zero-temperature particle-dominated limit, the elastic and
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inelastic contributions to the current are given by

Iel =

�1

�1

1

1
t + h.c. =− 2eRe





∫

R3
+

dxdydz
∑

α,β,j,k

(1− nα)(1− nj)(1− nβ)nk γ
(S)
α,kγ

(D)
α,j

∗
γ

(D)
β,j γ

(S)
β,k

∗

e−i(E+,l+εα−εk)xe−i(−eV+εj−εk)yei(E+,l+εβ−εk)z

}
, (B5)

Iin =

�1

�1

1

1
t + h.c. =− 2eRe





∫

R3
+

dxdydz
∑

α,β,j,k

(1− nα)(1− nj)nβ nk |γ(S)
α,k|2|γ

(D)
β,j |2

e−i(E+l+εα−εk)xe−i(−eV+εα−εβ+εj−εk)yei(E+l+εα−εk)z

}
, (B6)

with nη the distribution function of the occupation of the η-th energy level.
To proceed further one notes that the tunneling matrix elements can be written in terms of the dot’s and leads’ wave

functions, ψ(x) and φ(x) respectively, as γ
(S)
α,k =

√
VSγψα(xS)φk(xS), where xS is the coordinate of the tunneling

point between the source and the dot, V the volume of each lead, and S that of the dot. An equivalent expression holds
for the drain. These are realization dependent quantities, and we consider their statistical average. Independently of

the QD dynamics, V〈φ(S)
k

∗
(xS)φ

(S)
k (xS)〉 = 1. Introducing the density of states in the leads,

∑
k →

∫
R dεk ν, and in

the dot,
∑
α →

∫
R dεα ν0, the integrals in Eqs. (B5,B6) are finally performed to obtain

Iin =e
G(S)G(D)

2πe4

∫

R+4

dεαdεβdεjdεk
δ(εα + εβ + εj + εk − eV )S2〈ψα(xS)ψ∗α(xS)ψβ(xD)ψ∗β(xD)〉

(EC + εα + εk)2
, (B7)

Iel =e
G(S)G(D)

2πe4
eV

∫ ∞

0

dεα

∫ ∞

0

dεβ
S2〈ψα(xS)ψ∗α(xD)ψβ(xD)ψ∗β(xS)〉

(EC + εα)(EC + εβ)
+O((eV )2), (B8)

where G(a) ≡ e2νν0|γ(a)|2/(2π~) is the conductance of the a = S,D contact
The averages over the statistical realizations in Eqs. (B8,B7) are well-known in the literature29. In the diffu-

sive limit L > |xS − xD| � l, S2〈ψα∗(xS)ψα(xS)ψβ
∗(xD)ψβ(xD)〉 ≈ 1 , and S2〈ψα(xS)ψ∗α(xD)ψβ(xD)ψ∗β(xS)〉 ≡

Dω(xS ,xD)/ν0, where Dω(xS ,xD) is the diffuson propagator29 between the source and the drain points, and
ω = εα − εβ . The cotunneling current then reads8,9,26,29

Iin =
G(S)G(D)

12πe2

(eV )2

E2
C

V, (B9)

Iel =
G(S)G(D)

4π2ν0e2
V

∫ ∞

0

dω
Dω(xS ,xD) +D−ω(xS ,xD)

ω
ln

(
1 +

ω

EC

)
. (B10)

The elastic cotunneling current depends on the diffuson propagator, which is characterized by Thouless energy,
ETh ∼ D/S, proportional to the diffusion constant, D. The cotunneling current depends on the ratio between ETh
and EC . In the limit ETh � EC the elastic cotunneling current acquires the universal form

Iel,0D =
G(S)G(D)

4πe2

δ

EC
V. (B11)

The expression is independent on the dot parameters and dynamics, and can be regarded as the expression for a
“zero-dimensional” dot. In the opposite limit, ETh � EC , the result depends on the dot’s shape and the electron’s
dynamics therein.

Addressing now the cotunneling time in the latter regime we consider the cotunneling current in the specific case of
a square dot of linear size L. We expect our result to be parametrically correct for other dot’s shapes. The Thouless
energy is then ETh = D/(π2L2) and the diffuson is expressed by

Dω(xS ,xD) =
∑

n∈N+d

S−1Φ(xS ,xD)

−iω + ETh|n|2
, (B12)

where nT = (n1, ..., nd) in d spatial dimensions, and Φ(xS ,xD) = (1/Ld)
∏d
j=1 cos(

njxS,j
πL ) cos(

njxD,j
πL ). We focus here

on the case of a two dimensional dot, though the calculation can be performed in general in any spatial dimensions30;
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FIG. 4. Example of Feynman diagrams for the correlation function 〈I+(t)[N−(t− s)− 〈N〉]〉 obtained from the corresponding
diagrams for the cotunneling current. The presented diagrams are all those contributing the correlation function in the limit of
zero-temperature and particle-dominated processes in the elastic (A) and inelastic (B) cotunneling regimes. For each diagram
contributing the cotunneling current there are four diagrams contributing the correlation function.

we assume for simplicity xs = 0. The parameter η ≡ π|xS − xd|
√
EC/D discriminates between the two regimes

l/L� η � 1 and l/L� 1� η. In the latter case the cotunneling current is known to be8

Iel,long =
G(S)G(D)

16e2
V
δETh

E2
C

. (B13)

This limit corresponds to the case of the source and drain contact at the opposite sides of the dot. In the opposite
regime of source and drain close to each other we estimate the cotunneling current as

Iel,short ≈
G(S)G(D)

8πe2
V

δ

ETh

∫ ∞

0

dx

x
J0(ηx)f(x). (B14)

Here J0(x) is the 0-th Bessel function,

f(x) = Li2

(
1

1− ix

)
+ Li2

(
1

1− ix

)
+ 2π arctan(x)− arctan2(x)− π2

3
, (B15)

and −Li2(−x) =
∫ x

0
dy ln(1 + y)/y is the dilogarithmic function. We are interested in the limit η � 1 where

Iel,short ≈
G(S)G(D)

12πe2
V

δ

ETh
ln3

(
D

π2|xs − xD|2EC

)
. (B16)

2. Charge-current correlation function 〈I(t)N(t− s)〉

The calculation presented above for the cotunneling current can be easily generalized to the correlation function∫∞
0
ds 〈I(t)(N(t − s) − 〈N〉)〉. Given the specific time order between the operators, we focus on the calculation of

F(s) = 〈TK [I−(t)(N+(t−s)−〈N〉)]〉 written in terms of Keldysh time-ordered operators, and address the time integral
later.

The calculation is done perturbatively in γ, in complete analogy with the case of the current. This leads to Feynman
diagrams constructed according to the same rules R1-R6 discussed above. In fact, the diagrams obtained for the
correlator can be easily deduced from the diagrams of the current. Each diagram contributing to the cotunneling
current has its analog for the correlator at hand; the only difference between the two is the insertion of the vertex
N+(t − s) in the upper branch. As presented in Fig. 4, this has two consequences: (i) the new N vertex added to
a certain current diagram can be connected in two different ways, leading correspondingly to two distinct diagrams
for the correlation function; (ii) two diagrams of I related by complex conjugation, become no longer the complex
conjugate of each other when inserting the new N vertex, so they have to be computed separately.

All the non-vanishing diagrams in the limit of zero-temperature and particle dominated cotunneling are depicted

in Fig. 4 . Technically, the new propagator including an N vertex, namely 〈TK [cα±(s1)(N+(t − s) − 〈N〉)c†β,±(s2)]〉,
can be directly evaluated. In the Schrödinger picture

〈cα(N − 〈N〉)c†β〉 = δα,β(1− nα)2 = δα,β(1− nα), (B17)

〈c†α(N − 〈N〉)cβ〉 = −δα,βn2
α = −δα,βn2

α, (B18)

〈c†α(N − 〈N〉)c†β〉 = 〈cα(N − 〈N〉)cβ〉 = 0, (B19)
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where the last equalities in Eqs. (B17,B18) are valid at T = 0. In fact, the above equations can be effectively
implemented in the Feynman diagrams as expressed in the rule R10. It immediately follows that, among all the
contributing diagrams in Fig. 4 , Fel,2 = Fel,4 = Fin,4 = 0. As an example, the non-vanishing diagram Fin,1(s)
in Fig. 4 reads:

�1

�1

time

time

1

1
t

t � s

= e

∫ ∞

0

dx

∫ ∞

0

dy

∫ ∞

0

dz
∑

α,β,j,k

(1− nα)(1− nj)n2
β nk |γ(S)

α,k|2|γ
(D)
α,j |2

e−i(E+,l+εα+εk)xe−i(−eV+εα+εk+εβ+εj)yei(E+,l+εα+εk)ze−i(−eV+εα+εk+εβ+εj)s. (B20)

A direct evaluation of all the diagrams in the inelastic and elastic regime, done in complete analogy with the
calculation of the current, leads to

Fin(s) =Fin,1(s) + Fin,2(s) + Fin,3(s) = −ie G
(S)G(D)

2πe4

∫

R4
+

dεαdεβdεjdεk L
2〈ψα(xS)ψ∗α(xS)ψβ(xD)ψ∗β(xD)〉

e−i(EC+εα+εk)s

(EC + εα + εk)2

[
1

εα + εβ + εj + εk − eV + iζ
− 1− e−i(εβ+εj−EC−eV )s

εβ + εj − EC − eV

]
, (B21)

Fel(s) =Fel,1(s) + Fel,3(s) = ie
G(S)G(D)

2πe4

∫

R4
+

dεαdεβdεjdεk L
2〈ψα(xS)ψ∗α(xD)ψβ(xD)ψ∗β(xS)〉

e−i(EC+εα+εk)s

(EC + εβ + εk)(EC + εα + εk)

[
1

εj + εk − eV + iζ
+

1− e−i(εα+εj−EC−eV )s

εj − εα − EC − eV

]
. (B22)

with an infinitesimal regularization parameter ζ. After integrating over s (eventually including a convergence factor
e−ζs), we obtain

∫ ∞

0

dsFin(s) =ie
G(S)G(D)

2πe4

∫

R+4

dεαdεβdεjdεk
δ(εα + εβ + εj + εk − eV )L2〈ψα(xS)ψ∗α(xS)ψβ(xD)ψ∗β(xD)〉

(EC + εα + εk)3
(B23)

∫ ∞

0

dsFel(s) =− ie G
(S)G(D)

4πe4
eV

∫

R2
+

dεαdεβ
L2〈ψα(xS)ψ∗α(xD)ψβ(xD)ψ∗β(xS)〉

(EC + εβ)(EC + εα)2
. (B24)

Indeed Eqs. (B23,B24) show that
∫∞

0
dsFin(el) = −(+)∂EC Iin(el). This directly gives the relation between the cotun-

neling time and the cotunneling current in Eq. (14).

3. Rules for Feynman diagrams

As discussed in this appendix the correlation function 〈I(t)N(t− s)〉 and the cotunneling current 〈I〉 are calculated
perturbatively in HT . They are obtained to fourth order in perturbation theory. The various contributions are
expressed in terms of Feynman diagrams. We present here the rules to obtain all the diagrams for the correlation
function and their corresponding analytical expression. The diagrams (Fig. 2, Fig. 3 , Fig. 4 ) are drawn on the
Keldysh contour (cf. Fig. 5(a) ). The Feynman rules are: R1. Each operator is drawn as a vertex on the Keldysh

�1

�1

1

1
time

N = TS = TD =

t t0

h0h

= �h,h0e�i�0,h(t0�t)n(h)

= �h,h0e�i�0,h(t�t0)[1 � n(h)]

t t0

h0h

(a)

(b)

(c)

FIG. 5. (A) Time contour for the Keldysh formalism. (B) Rules for drawing vertices in the diagrams for 〈I〉 and 〈I(t)N(t−s)〉,
required by the rule R2. (C) Explicit expressions of propagators stipulated by the rule R8.
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contour according to the expressions given in Fig. 5(b) ; the vertices for T †S , T †D are obtained by reversing the arrows
in TS and TD. R2. Each operator (vertex) is labeled by a time, and a subscript (+ or −) indicating whether the
operator appears in forward- or backward-in-time branch of the Keldysh contour. R3. To begin, the diagrams for

the current 〈I〉 are drawn by inserting the operator TD−(t) or TD
†
−(t); the diagrams for the correlator 〈I(t)N(t− s)〉

require instead TD−(t) (or TD
†
−(t)) and N+(t − s). R4. All possible combinations of TS

†
±(s2), TD

†
±(s3) should be

inserted, such that the inequality s3 > s2 > s1 is satisfied by the operators appearing in the same branch. R5. Vertices
should be connected in all possible ways through the appropriate propagators. R6. Each time interval between two
subsequent vertices is labeled by the corresponding charging energy, 〈U〉 (cf. Section II). This charging energy is set
to 0 at t = −∞. Following the time contour, each vertex changes the value of this energy in a well defined definite
way. We label the charging energy at a certain time in terms of the vertices that precede that time on the contour.

We thus introduce 〈U(TS)〉 = EC and 〈U(T †D)〉 = E′C (cf. Fig. 5 ). All the other charging energies are determined in

terms of these two values. In particular 〈U(T †DTS)〉 = −eV and 〈U(T †STD)〉 = eV . An example of energy labeling is
shown in the diagram in the inset of Fig. 2..

So far we have listed the rules for drawing and labeling the diagrams. We complement this list by the rules for
calculating these diagrams.

R7. Each vertex corresponds to TD →
∑
kh T

(r)
k,h, TS →

∑
kh T

(l)
k,h, and the respective complex conjugate expressions

for T †S , T †D. R8. The propagators associated with the dot’s dynamics are given by the expressions in Fig. 5(c) ;
analogous expressions hold for the leads’ propagators, where the energy ε0 is replaced by the energy of the modes in

the lead, ε
(α)
k . R9. A factor e−iU(t−t′) should be included for the corresponding charging energy 〈U〉 between times t

and t′. R10. Integration over times should be executed, accounting for the inequalities of R4.
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25 Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
26 I. L. Aleiner, N. S. Wingreen, and Y. Meir, Phys. Rev.

Lett. 79, 3740 (1997).
27 A. Kamenev, in Nanopysics: coherence and transport, Lec-

ture Notes of the Les Houches Summer School 2004 (Else-
vier, Amsterdam, 2005).

28 L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47: 1515 [(1965) Sov.
Phys. JETP 20: 1018].

29 A. Mirlin, Phys. Rep. 326, 259 (2000).
30 A. Romito and Y. Gefen, in preparation.


	Weak measurement of cotunneling time
	Abstract
	I Introduction
	II Model and setup
	III A heuristic approach
	IV Cotunneling time from the weak value formalism
	V Microscopic calculation
	VI Discussion and summary
	 Acknowledgments
	A Sequential tunneling time: a classical case
	B Calculation of the QD correlation function
	1 Average current
	2 Charge-current correlation function "426830A I(t) N(t-s)"526930B 
	3 Rules for Feynman diagrams

	 References


