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We construct a scattering matrix formulation for the topological classification of one-dimensional
superconductors with effective time reversal symmetry in the presence of interactions. For a closed
geometry, Fidkowski and Kitaev have shown that such systems have a Z8 topological classification.
We show that in the weak coupling limit, these systems retain a unitary scattering matrix at zero
temperature, with a topological index given by the trace of the Andreev reflection matrix, tr rhe.
With interactions, tr rhe generically takes on the finite set of values 0, ±1, ±2, ±3, and ±4. We
show that the two topologically equivalent phases with tr rhe = ±4 support emergent many-body end
states, which we identify to be a topologically protected Kondo-like resonance. The path in phase
space that connects these equivalent phases crosses a non-fermi liquid fixed point where a multiple
channel Kondo effect develops. Our results connect the topological index to transport properties,
thereby highlighting the experimental signatures of interacting topological phases in one dimension.

PACS numbers:

Introduction Superconducting wires exist in two
topologically distinct classes, which can be distinguished
by the presence or absence of a Majorana bound state
at the wire’s ends [1–4]. Because of their non-Abelian
exchange statistics [5–7] such Majorana states have been
proposed as an element for a fault-tolerant quantum com-
putational scheme [8–11]. The topological phases have
been shown to be robust against the presence of (moder-
ate) disorder [12, 13] or interactions [14–17]. While only
few rather exotic systems are believed to realize the non-
trivial phase [5, 18, 19], such systems can in principle
be engineered in solid state devices [20–22]. Recent ex-
periments on semiconductor wires proximity coupled to
superconductors have been reported to show indications
of the existence of Majorana bound states [23, 24].

Whereas the topological classification of superconduct-
ing wires with or without Majorana states exclusively
rests on the presence of particle-hole symmetry, in many
of the proposals for the actual realization of topological
superconducting wires an additional approximate effec-
tive time-reversal symmetry appears [25]. For the p+ ip
model of a spinless superconductor wire of width W and
Fermi velocity vF, the effective time reversal symmetry
requires the superconducting gap to be much smaller
than the transverse quantization energy ~vF/W [26], a
condition that is easily met in view of the generic small-
ness of the gap in the proposals to engineer topological
superconductors. With effective time reversal symmetry,
Majorana states carry a sign, such that Majorana states
of the same sign coexist at the same end of the super-
conducting wire. As a result, the effective time reversal
symmetry symmetry changes the topological classifica-
tion from Z2 to Z, which counts the number of Majorana
end states, with sign.

Unlike the Z2 classes, the Z effective time reversal sym-
metry classification is not stable against the presence of

interactions, even if the interactions preserve the symme-
try. In a seminal work, Fidkowski and Kitaev [27] showed
that interactions break the free-fermion Z topological in-
dex down to Z8 (see also Refs. 28–31). To understand
this result, one notes that for the seven topological classes
with n = 0,±1,±2, and ±3 there exist realizations with
less than two fermions at each wire’s end (as two Majo-
ranas combine into one fermion). Hence, no local inter-
action term is allowed for the low-energy sector and the
free-fermion classification remains valid. Fidkowski and
Kitaev then showed that the two classes with n = ±4
can be adiabatically connected by a suitable interaction,
so that eight inequivalent classes remain [32].

The experimental observation of Majorana states in-
evitably relies on the coupling of the topological super-
conductor to a normal-metal contact, the simplest detec-
tion scheme being through a measurement of the two-
terminal Andreev conductance [23, 24]. With effective
time reversal symmetry, but without interactions, the
Andreev conductance G at zero bias and zero tempera-
ture takes the quantized value G = 2|n|e2/h, if there are
n Majorana end states [33–35]. Distinguishing positive
and negative n requires a phase-sensitive measurement
of the Andreev reflection matrix, using tr rhe = n [36].

What is the Andreev-reflection signature of the Z8

topological classification for a superconducting wire in
the effective time reversal symmetry class, and what is
the nature of the emergent end states if the wire is weakly
coupled to a normal contact? In this letter we answer
these questions, showing how the breakdown of the free-
fermion Z classification to Z8 is reflected in the Andreev
reflection matrix rhe. Establishing the scattering prop-
erties of interacting topological phases highlights the ex-
perimental signatures of the emergent end states in con-
ductance measurements or Josephson currents, thereby
providing an important link between recent theoretical
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advances and future experimental work.
Our main results can be summarized as follows: For a

normal lead weakly coupled to the superconducting wire,
we find (i) that generically the scattering matrix is well
defined and unitary at zero temperature, in spite of the
presence of interactions in the superconducting wire, and
(ii) that in the presence of interactions, tr rhe is restricted
to the values 0, ±1, ±2, ±3, and ±4. Exceptions to these
rules do occur, but they form a set of measure zero and
are unstable to perturbations. The topological phases
with −3 ≤ tr rhe ≤ 3 are topologically equivalent to
their free-fermion analogues with |n| ≤ 3 uncoupled Ma-
jorana end states. Conversely, we show that the phases
with tr rhe = ±4 are characterized by emergent many-
body end states, which we identify as topologically pro-
tected Kondo-like resonances. These two configurations,
which are both stable with respect to perturbations, are
topologically equivalent in the presence of interactions.
The path in phase space that connects these equivalent
phases crosses a non-fermi liquid fixed point associated
with a multiple channel Kondo problem, without closing
the bulk excitation gap in the superconductor.

Model. We derive these results in the framework of a
multi-channel Majorana chain [37] with an effective time
reversal symmetry, T 2 = 1, corresponding to class BDI
in the Cartan classification [38]. In the absence of inter-
actions, the Majorana chain is described by the Hamil-
tonian

HS =
∑
α,j

+(∆αd
†
j+1,αd

†
j,α − td

†
j+1,αdj,α+h.c.)

+
∑
α,j

µd†j,αdj,α, (1)

where t > 0 is the hopping parameter, µ the chemical po-
tential, and dj,α is the annihilation operator for a fermion
on site j and channel α. We consider j = 1, 2, . . ., so that
Eq. (1) describes a half-infinite wire beginning at j = 1.
We choose ∆α 6= 0 to be real, so that HS is invariant un-
der an effective antiunitary time-reversal symmetry op-
eration T , T dj,αT −1 = dj,α.

Equation (1) can be conveniently rewritten in terms

of Majorana operators, γj,α = dj,α + d†j,α and γ̃j,α =

−i(dj,α−d†j,α). The model undergoes a topological phase
transition at |µ| = 2|t|. The topological phase is charac-
terized by two zero energy Majorana end states for each
channel, exponentially localized at opposite ends of the
chain and separated by an energy gap from the bulk ex-
citations. Since we consider a half-infinite chain, only
the end state located near j = 1 is of relevance for us.
For positive ∆α the operator for this Majorana end state
commutes with T and we denote it by γα; for negative
∆α the end-state operator anticommutes with T , and
we write γ̃α. The effective time-reversal symmetry per-
mits perturbations that couple Majorana end states of
different type, T iγαγ̃βT −1 = iγαγ̃β , but forbids cou-

pling between Majorana end modes of the same type.
The system is therefore classified by a Z topological in-
dex, which counts the number N of Majorana end states
of “γ” type minus the number Ñ of end states of “γ̃”
type. Without loss of generality, we take the channels
α = 1, 2, . . . , N to be of “γ” type, whereas the remaining
channels α = N + 1, . . . , N + Ñ are of “γ̃” type.

Scattering matrix classification. To study the scatter-
ing properties, we couple the semi-infinite wire to a half-
infinite normal lead. The Hamiltonian is given by

H = HS +Hlead +HT, (2)

where Hlead is the Hamiltonian of the non-interacting
ideal lead, Hlead =

∑
k,α ξkc

†
k,αck,α. Here ck,α is the

annihilation operator for an electron with momentum k
measured with respect to the Fermi point and channel in-
dex α and ξk the corresponding kinetic energy. The term
HT describes tunneling between the lead and the super-
conductor, HT = t̃T

∑
k,α c

†
k,αd1,α + h.c., t̃T being the

tunneling matrix element. Considering that the super-
conducting wire is gapped in the bulk, we can project the
tunneling Hamiltonian onto the low-energy sector con-
sisting of the zero-energy Majorana end-states,

HT =
tT
2

∑
k

 N∑
α=1

c†k,αγα + i

N+Ñ∑
α=N+1

c†k,α̃γ̃α̃

 , (3)

where tT is the effective tunneling coupling of the end-
state Majorana to the lead. As the system is gapped, no
quasiparticle excitations are transmitted through the su-
perconductor, and scattering processes are described by
a unitary reflection matrix. In the BDI class, each Ma-
jorana end mode gives rise to perfect Andreev reflection,
although the sign of the reflection amplitude is opposite
for the two types of Majorana modes. The topological in-
dex is n ≡ N−Ñ = tr rhe [36, 39] , where rhe is evaluated
at zero energy.

Generalization to interacting systems. We now gen-
eralize the above classification scheme to interacting sys-
tems. We consider short-range two-fermion interactions,
so that, after projection to the low-energy sector of the
Majorana end states, the interaction Hamiltonian in-
volves the end-state operators γα and γ̃α only [40–42].
If all Majorana end states are of the “γ” type, the most
general interaction in the low-energy sector has the form

Hint =
∑

α1<α2<α3<α4

Wα1α2α3α4γα1γα2γα3γα4 . (4)

This interaction Hamiltonian commutes with the effec-
tive time-reversal operator T . If there are end states of
both types, additional terms with four operators γ̃ or
mixed terms with two operators of each type are also
allowed by the effective time-reversal symmetry.

We now discuss how the inclusion of the interaction
Hamiltonian affects a Majorana chain with free-fermion
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topological index n. We’ll find that the cases |n| < 4,
|n| = 4, and |n| > 4 are qualitatively different, and dis-
cuss these three cases separately.

The case |n| < 4. Since generic potential perturba-
tions gap out pairs of Majorana states of opposite type,
for weak interactions it is sufficient to limit our discussion
to the “minimal” realizations of the topological phases,
which have Ñ = 0, if the topological index n = N is
positive, and N = 0, if n = −Ñ is negative. Since the
low-energy interaction Hamiltonian Hint = 0 if N < 4
and Ñ = 0, or if Ñ < 4 and N = 0, see Eq. (4), we
immediately conclude that the Andreev-reflection signa-
tures of these phases are unaffected by interactions, so
that the reflection matrix is unitary and tr rhe = n.

The case |n| = 4. The case n = ±4 is nontrivial, since
already in its minimal realization it allows for a nontrivial
interaction Hamiltonian Hint = Wγ1γ2γ3γ4. Introduc-
ing the fermionic operators f↑ = (1/2)(γ1 + iγ2), f↓ =
(1/2)(γ3 + iγ4), the low-energy interaction Hamiltonian

for the case n = 4 takes the form Hint = −W (2f†↑f↑ −
1)(2f†↓f↓−1). The interaction lifts the four-fold degener-
acy of the zero energy level of the free fermion system and
creates two doubly degenerate correlated states at energy
±W . The situation with a degenerate level located at the
end of the superconducting wire closely resembles a lo-
cal impurity problem and much insight can be gained
by performing a mapping to the latter. Hereto, the
tunneling Hamiltonian is rewritten using the operators
gL,↑,k = 2−1/2(ck,1+ick,2), gR,↑,−k = 2−1/2(−c†k,1−ic

†
k,2),

gL,↓,k = 2−1/2(c†k,3+ick,4), gR,↓,−k = 2−1/2(−c†k,3−ic
†
k,4),

so that the resulting Hamiltonian takes the form of the
symmetric Anderson model [43]

H =
∑
β=L,R

∑
k,σ=↑,↓

[
ξkg
†
β,σ,kgβ,σ,k +

tT
2

(
g†β,σ,kfσ + h.c.

)]
−W (2f†↑f↑ − 1)(2f†↓f↓ − 1). (5)

In general, the scattering matrix of this Kondo-like prob-
lem is non-unitary due to inelastic spin flip processes.
However, at zero temperature unitarity is recovered due
to the formation of a Kondo screening cloud, and the
scattering matrix takes the simple form [44]

Sσ,σ′ = δσ,σ′

(
rRR tRL

tLR rLL

)∣∣∣∣
σ

=

(
0 −1
−1 0

)
. (6)

Returning to the original basis with the lead operators
ck,α, one finds that the normal reflection matrix ree = 0,
whereas rhe = 114×4. We conclude that at zero temper-
ature the topological index follows the non-interacting
formula trreh = n = 4. As a physical consequence, a tun-
neling conductance experiment will show a zero-bias zero-
temperature Andreev conductance G = 8e2/h, which is
the same conductance as without interactions. However,
unlike in the non-interacting case, this quantized conduc-
tance peak is a consequence of a formation of a many-
body Kondo-like resonance at the end of the interacting
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FIG. 1. (color online) (a) Schematic picture of a twelve Ma-
jorana chains that interpolate between effective free-fermion
classes n = 4 and n = −4. The interactions terms coupling
different Majorana end-states are indicated by thick lines.
The“colored” fermions constructed with Majorana fermions
are indicated explicitly. (b) Energy spectrum as a function
of the interpolation parameter θ, showing that the spectrum
remains gapped through the interpolation. The ground state
is two-fold degenerate. (c) Amplitudes α, α′, β, β′, γ, and
γ′ for the ground state wavefunctions, as a function of the
interpolation paramter θ, see Eq. (9).

superconductor, and it no longer signals the presence of
four Majorana states. We can interpret this collective
state, which is pinned to the Fermi energy, as the emer-
gent edge state of the interacting superconductor.

The same analysis can be applied to the n = −4 case.
It gives rhe = −114×4 and trrhe = n = −4. This implies
that trrhe takes different quantized values for n = 4 and
n = −4. How should this result be interpreted in light of
the knowledge that, with interaction, classes with n = 4
and with n = −4 are topologically equivalent [27]?

To find a scenario that resolves this paradox we mon-
itor the Andreev reflection matrix along a path that
connects the two classes n = 4 and n = −4. The
minimum channel number for a continuous interpolation
between n = 4 and n = −4 is twelve. For definite-
ness, we consider eight channels with positive ∆, labeled
α = 1, 2, . . . , 8, and four channels with negative ∆, la-
beled α = 9, 10, 11, 12, so that N = 8 and Ñ = 4, see
Fig. 1. For the interaction Hamiltonian we choose

Hint(θ) = W (H8 sin θ +H ′8 cos θ) (7)

where

H8 = γ1γ2γ3γ4 + γ5γ6γ7γ8 + γ1γ2γ5γ6 + γ3γ4γ7γ8 (8)

− γ2γ3γ6γ7 − γ1γ4γ5γ8 + γ1γ3γ5γ7 + γ3γ4γ5γ6

+ γ1γ2γ7γ8 − γ2γ3γ5γ8 − γ1γ4γ6γ7 + γ2γ4γ6γ8

− γ1γ3γ6γ8 − γ2γ4γ5γ7,
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and H ′8 is obtained from H8 by the substitution γα →
γα+4 for α = 1, 2, 3, 4 and γα → γ̃α+4 for α = 5, 6, 7, 8.
As shown by Fidkowski and Kitaev, the Hamiltonian
H8 drives the eight Majorana end states in the first
eight channels into a nondegenerate topologically trivial
ground state [27]. Similarly, the Hamiltonian H ′8 drives
the eight Majorana states in the last eight channels into a
nondegenerate trivial ground state. (Since the last eight
channels have four Majorana states of each type, a po-
tential term coupling the last eight channels would have
the same effect.) For θ = 0 the system is effectively in
the free-fermion n = 4 class analyzed previously, with
low-energy interaction Hamiltonian Hint = Wγ1γ2γ3γ4,
while for θ = π/2 it is in the opposite case n = −4,
with low-energy interaction Hamiltonian Wγ̃9γ̃10γ̃11γ̃12.
Thus, the family of interaction HamiltoniansHint(θ) with
0 ≤ θ ≤ π/2 smoothly interpolates between the (free-
fermion) classes n = 4 and n = −4.

To continue our analysis, we construct six fermionic op-
erators out of the twelve Majorana operators, which we
group into three “colors” (r,g,b), fr,↑ = (1/2)(γ1 + iγ2),
fr,↓ = (1/2)(γ3 + iγ4), fg,↑ = (1/2)(γ5 + iγ6), fg,↓ =
(1/2)(γ7+iγ8), fb,↑ = (1/2)(γ̃9+iγ̃10), fb,↓ = (1/2)(γ̃11+
iγ̃12), see Fig. 1. Diagonalization of the interaction
Hamiltonian (7) reveals that the many-particle ground
state is two-fold degenerate for all 0 < θ < π/2 and
confirms that the excitation spectrum remains gapped
otherwise, see Fig. 1. The two-fold degenerate ground
state is spanned by the two states of the form

|ψ〉 = α |111111〉+ β |110000〉+ η |000011〉
|ψ′〉 = α′ |000000〉+ β′ |001111〉+ η′ |111100〉 , (9)

where we use the basis of the occupations numbers
|nr↑nr↓ng↑ng↓nb↑nb↓〉. The excitation gap and the real
coefficients α, α′, β, β′, γ, and γ′ as a function of θ are
shown in Fig. 1. For θ → 0+, we have η = η′ = 0,
and a transition between the two ground states is pos-
sible only by the exchange of two “red” fermions with
two lead fermions in the first four channels α = 1, 2, 3, 4.
In this case the system can be mapped to the symmet-
ric Anderson model, as discussed above. Hence, at zero
temperature, the reflection matrix is unitary and satisfies
tr reh = 4. Conversely, for θ → π/2−, we find β = β′ = 0,
and a transition between the two ground states is possi-
ble only by the exchange of two “blue” fermions with lead
channels in the last set of four channels, α = 9, 10, 11, 12.
In this case the system is again mapped to a symmetric
Anderson model, but with tr reh = −4 at zero temper-
ature. For 0 < θ < π/2, generically all six amplitudes
in Eq. (9) are nonzero. In this case transitions between
the two ground states can take place by the exchange of
two fermions of arbitrary but equal colors. Since there
are three colors in total, the model is mapped to a three-
channel Kondo problem. Such a multi-channel Kondo
problem is, however, unstable, and the system flows to

a single-channel Kondo fixed point determined by the
strongest coupling constant, and correspondingly to one
of the two extreme limits discussed above. Upon increas-
ing θ from 0 to π/2 invariably there must be a point
at which the coupling to the “blue” channels and the
“red” or “green” channels is equal. This point is as-
sociated with a sharp phase boundary that exhibits a
non-fermi liquid behavior, due to the formation of a mul-
tiple (generically: two) channel Kondo state at the wire’s
end. It follows that the scattering matrix goes through
a non-unitary point along the path connecting these two
phases. It is at this point that the transition between
the quantized values tr rhe = ±4 can take place. We
note that this observation is consistent with recent stud-
ies that show that the crossover between topologically
distinct non-interacting classes that become equivalent
when interactions are present is associated with zeros of
the Green’s function indicating the formation of a non-
fermi liquid state [31].

The case |n| > 4. Upon including interactions, the
free-fermion cases with |n| = 5, 6, 7, or 8 can be continu-
ously connected to free-fermion classes with |n| = 3, 2, 1,
and 0, respectively. An explicit example of a generic low
energy Hamiltonian that interpolates between the free-
fermion phases of n = 7 and n = −1 is presented in the
supplementary material. An analysis of the transitions
between the two degenerate ground states reveals that
the free-fermion n = 7 configuration is unstable to inter-
actions, and that in the weak-coupling limit |tT| � |t| the
interacting system flows to an effectively non-interacting
configuration with tr rhe = −1. A similar analysis can be
applied to |n| = 5, |n| = 6, and |n| = 8.

Conclusions. We have constructed a scattering ma-
trix formulation for the topological index of interacting
fermions in one dimension with an effective time reversal
symmetry. The scattering matrix of the interacting sys-
tem is unitary at zero temperature and zero energy, and
the topological index can be calculated from the trace
tr rhe. With interactions, the topological index is re-
stricted to nine possible values, tr rhe = 0, ±1, ±2, ±3,
and ±4. Whereas the phases with |tr rhe| < 4 are ef-
fectively single-particle phases, we have shown that the
two topologically equivalent phases with tr rhe = ±4 are
characterized by emergent many-body end states, which
we identify to be a topologically protected Kondo-like
resonance. The path in phase space that connects these
equivalent phases crosses a non-fermi liquid fixed point
where a multiple channel Kondo effect develops.

Although the main motivation for our work is funda-
mental, a theory of implications of the topological classi-
fication for scattering properties is essential for a theoret-
ical description of experimental geometries, where topo-
logical superconductors necessarily need to be connected
to normal-metal probes. The effective time-reversal sym-
metry that is behind the Z8 topological classification is
relevant for some of the recent proposals to realize topo-
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logical superconductors in one dimension. Whereas in-
teractions are believed to be of minor importance if the
topological superconductivity derives from the proximity
of a bulk superconductor, experimental efforts to mini-
mizing the electric screening of nearby superconductors
in order to allow for local gating of the device inevitably
lead to a larger role of interactions in the topological su-
perconductor.
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SUPPLEMENTARY MATERIAL

Scattering matrix of a Majorana chain with
topological index |n| > 4

Upon including interactions, the free-fermion cases
with |n| = 5, 6, 7, or 8 can be continuously connected
to free-fermion classes with |n| = 3, 2, 1, and 0, respec-
tively. For the cases n = ±5, ±6, or ±7 this requires
the addition of extra channels (at least, locally, near the
end of the Majorana chain), similarly to the transition
from n = 4 to n = −4 discussed in the main text. For
presentation purposes we focus on the case n = 7; the
other seven cases have similar phenomenology.

Consider the nine-channel setup depicted in Fig. 2.
The channels α = 1, 2, . . . , 8 have positive ∆, whereas
channel α = 9 has negative ∆. Without interactions, the
topological index n = N−Ñ = 7. To the non-interacting
Hamiltonian H of Eq. 2 in the main text we add the per-
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FIG. 2. (a) Schematic picture a nine channel setup that al-
lows for an interpolation between the topologically equivalent
effective free-fermion phases with n = 7 and n = −1. (b)
Energy spectrum of the low energy excitations as a function
of the interpolation parameter θ, showing that the system re-
mains gapped throughout the transition. (c) Modulus square
of single-particle tunneling matrix elements between the two
degenerate ground states, as a function of θ.

turbation:

H ′(θ) = W (i cos θγ̃9γ8 +H8 sin θ) (10)

where the interaction H8 is given by Eq. 8 in the main
text. For 0 < θ ≤ π/2 the ground state is twofold de-
generate. For θ = 0 the two Majorana end states γ8
and γ̃9 gap out, and the system is effectively in the free-
fermion n = 7 configuration. At this special point one
expects tr rhe = 7. Conversely, when θ = π/2, the in-
teraction term H8 renders the eight first channels trivial,
leaving a single Majorana state γ̃9, corresponding to the
free-fermion n = −1 configuration with tr rhe = −1. An
explicit diagonalization of Eq. (10) shows that the gap re-
mains open throughout the interpolation between these
two extremes, see Fig. 2, indicating that the two are in-
deed in the same topological phase.

We now consider how rhe goes between its two extreme
values if θ is taken from 0 to π/2. For θ small but posi-
tive the interaction H8 lifts the ground state degeneracy
of the free-fermion n = 7 configuration, up to a twofold
degeneracy involving two states with opposite fermion
parity, which are simultaneously located at both ends of
the superconducting wire. An explicit calculation shows
that single-particle tunneling events do not couple the
two ground states in the limit θ → 0+, see Fig. 2(c), indi-
cating that the end states are not of single particle nature
in this limit. Instead, in the limit θ → 0+ transitions
between the two ground states require the exchange of
multiple fermions with the leads. In contrast, for generic
0 < θ ≤ π/2 the end spectrum is essentially of single par-
ticle nature, and the exchange of a single fermion with the
leads is sufficient for a transition between the two degen-
erate ground states. The degeneracy, fermion parity, and
transition matrix elements between the states at generic
0 < θ ≤ π/2 evolve continuously into the free-fermion

state at θ = π/2, which has a single Majorana state of
“γ̃” type at the end of the Majorana chain. In the weak
coupling limit |tT| � |t| such single particle tunneling
events dominate over the higher order processes which
derive from the limit θ → 0, so that for weak coupling the
system behaves as a n = −1 free fermion configuration
along the entire path 0 < θ ≤ π/2, with the exception of
the special point θ = 0. We conclude that in a generic
setting the free-fermion n = 7 configuration is unstable
to interactions, and that in the weak-coupling limit the
interacting system flows to an effectively non-interacting
configuration with tr rhe = −1.

A similar analysis can be applied to the remaining
cases |n| = 5, |n| = 6, and |n| = 8, and shows that
upon inclusion of interactions these configurations are
dominated by effectively free-fermion configurations with
|n| = 3, |n| = 2, and |n| = 0, respectively.
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