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Abstract 

Scanning probe Microscopy (SPM) represents a powerful tool that, in the past thirty 

years, has allowed one to investigate material surfaces in unprecedented ways at the 

nanoscale level. However, SPM has shown very little power of depth penetration, whereas 

several nanotechnology applications would require it. Subsurface imaging has been 

achieved only in a few cases, when subsurface features influence the physical properties 

of the surface, such as the electronic states or the heat transfer. Ultrasonic Force 

Microscopy (UFM), an adaption of the Atomic Force Microscopy (AFM) contact mode, can 

dynamically measure the stiffness of the elastic contact between the probing tip and the 

sample surface. In particular, UFM has proven highly sensitive to the near-surface elastic 

field in non-homogeneous samples. 

In this paper, we present an investigation of two-dimensional (2D) materials, namely 

flakes of graphite and molybdenum disulphide placed on structured polymeric substrates. 

We show that UFM can non-destructively distinguish suspended and supported areas and 

localize defects, such as buckling or delamination of adjacent monolayers, generated by 

residual stress. Specifically, UFM can probe small variations in the local indentation 

induced by the mechanical interaction between tip and sample. Therefore, any change in 

the elastic modulus within the volume perturbed by the applied load or the flexural bending 

of the suspended areas can be detected and imaged. Such a power of investigation is very 

promising in order to investigate the buried interfaces of nanostructured 2D materials such 

as in graphene-based devices. 
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Introduction 

In the past decades Scanning Probe Microscopy (SPM) has represented a major 

breakthrough in surface science, allowing investigations on the nanoscale not even 

thinkable before.1,2 The range of studies is so vast that any attempt to review it would fall 

short.3,4 Nevertheless, the same near-field principles, that allow SPM to achieve high 

spatial resolution, inevitably confine the investigations to the surface or at best to shallow 

regions a few angstroms deep. On the other hand, subsurface detection is more and more 

required due to the ever-growing development of new nanotechnology applications, 

namely, multilayer high integration chips, ultrathin coatings or confined semiconductor 

hetero-structures. For instance, it would be extremely important to characterize buried 

interfaces, such as in graphene-based devices.5  

Examples of subsurface detection with nanoscale resolution are so far very few. The 

literature reports of some operational modes sensitive to the electronic states or thermal 

properties. In Scanning Tunnelling Microscopy (STM), the surface electronic states can be 

affected by the presence of subsurface features.6,7,8 In Electric Force Microscopy (EFM), 

charges located below the surface can similarly influence the electrostatic force or the 

surface displacement sensed by the tip.9,10,11 Finally, in Scanning Thermal Microscopy 

(SThM), the thermal dissipation depends to a great extent on a given volume located 

under the tip and any non-homogeneity can be thus probed.12,13,14 

A chapter on its own deserves subsurface imaging through the detection of the elastic 

properties of materials. Ultrasonic Force Microscopy (UFM) is a technique invented by 

Kolosov and Yamanaka,15 resulting from an adaption of Atomic Force Microscopy (AFM) 

working in Contact Mode (CM). It was initially proposed and developed in order to 

overcome the limits of Force Modulation Microscopy (FMM).16 FMM is indeed limited to 

stiffness values of the order of the cantilever spring constant, which is typically small in 

CM-AFM in order not to damage the sample or the tip while characterizing the 

morphology. A class of operational modes can be associated as stemmed directly from 

UFM or developed in the same period: Scanning Acoustic Force Microscopy (SAFM),17 

Atomic Force Acoustic Microscopy (AFAM),18 Scanning Local Acceleration Microscopy 

(SLAM)19 and Heterodyne Force Microscopy (HFM).20 In AFAM, in particular, one excites 

and detects higher eigenmodes of the cantilever, making it more sensitive to the elastic 

field than FMM. A similar approach is based on a multi-frequency detection but operates in 

Tapping Mode (TM)21 rather than in CM-AFM.22 In particular, Ebeling et al. have been able 
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to image glass nanoparticles (NPs) embedded in a soft Polydimethylsiloxane (PDMS) 

film.23 

UFM has specifically proven a valid tool to localize subsurface defects in stiff materials. 

This can be achieved working at low load values and eliminating the shear stress at 

contact thanks to a superlubricity phenomenon ultrasonically induced.24 Yamanaka et al. 

have firstly reported images showing subsurface features in graphite,25 attributing them to 

dislocations between adjacent graphene layers.26 Afterwards, Checanov et al. have 

imaged cracks in hard disk heads27 and Dinelli et al. have shown other examples, such as 

the detachment of Al coatings grown on polymer films or buried rubber spheres in a 

Poly(methyl methacrylate) (PMMA) matrix.28 Finally, HFM has been employed to detect 

NPs deeply buried in polymeric matrixes.29 While the theoretical explanation of the nature 

of the subsurface contrast, whether it is due to ultrasonic wave scattering or elastic field 

modification, is still under discussion,30 recent investigations have confirmed the 

reproducibility of this experimental observation.31,32 

Based on these premises, we have carried out a study of samples made of 

two-dimensional (2D) materials,33 targeting the exploration of subsurface details by means 

of UFM. In particular, we have deposited thin flakes of graphite and molybdenum 

disulphide (MoS2) on structured polymeric substrates in order to obtain suspended and 

supported areas. UFM data are also compared to data obtained with TM-AFM and Peak 

Force modes, the latter with a Quantitative NanoMechanical (QNM) real-time software 

analysis.34 Our results are then discussed and interpreted according to well established 

models of contact mechanics. 

  

Experimental 

Graphite or MoS2 thin flakes can be transferred to a given substrate exploiting a PDMS 

stamp based technique.35 In our case the substrate chosen is a film of Cyclic Olefin 

Copolymer (COC) polymer patterned via hot embossing in order to produce periodic flat 

mesas with randomly distributed voids in the regular array of grooves on a macroscopic 

scale (around 5x5mm2). The height and the periodicity of the grooves are approximately 

250nm and 1µm, respectively. Given the typical lateral size of the flakes in the range from 

5 to 20 m, they present adjacent regions alternatively supported by the COC mesas and 

suspended over the voids. 

The UFM setup is based on a standard CM-AFM including a vibrating sample stage, 

capable of producing out-of-plane ultrasonic vibrations, with amplitude a, that are 
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transferred to the specimen reversibly bonded to the stage with a low melting point 

crystalline compound, such as phenyl salicylate.36 The AFM tip and the sample surface are 

in contact under a fixed average load FN, equal to the product of the cantilever stiffness 

klever and its deflection dlever.  

At static equilibrium, in order to sustain the pressure exerts by the probe,  the surface 

under the tip deforms by cont that depends on the contact stiffness kcont, defined as cont = 

FN/kcont, (see Figure 1A and B). The equations describing it are those of a simplified 

“two-spring model” (Figure 1C): 

ேܨ ൌ ݇௟௘௩௘௥ ൈ ݀௟௘௩௘௥ ൌ ݇௖௢௡௧ ൈ ௖௢௡௧ߜ  (1) 

In UFM technique the excitation frequency must be much larger than the first cantilever 

resonance (in contact) and should not coincide with the higher resonance modes (again in 

contact). Working in this “inertial” regime, the cantilever cannot follow the vertical 

modulation and the effective cantilever spring constant (݇௟௘௩௘௥
௘௙௙ ) results:37 

݇௟௘௩௘௥
௘௙௙ ൐ ݇௖௢௡௧	݇௟௘௩௘௥ ൈ ሺ௙ೆಷಾ

௙ೃ೐ೞ
ሻଷ/ଶ ≫ ݇௟௘௩௘௥  (2) 

݇௟௘௩௘௥
௘௙௙ ൐ ݇௖௢௡௧  (3) 

where fUFM is the ultrasonic frequency and fRes the first free resonant frequency of the 

cantilever. 

Thus, during an ultrasonic cycle, the local indentation can be modulated. In particular,  

as shown in Figure 1B, there is a critical value at which the contact breaks: i. e. a1 = 1 

corresponding to FN = F1. Beyond that, the non-linearity of the FN versus cont curve 

produces a rectification effect that can be detected as an additional positive deflection of 

the cantilever.38 Modulating the ultrasonic amplitude, one can measure this critical value 

point by point with a lock-in amplifier while simultaneously sampling topography, lateral 

force or any other required signal (see Supporting Information). When the adhesion 

properties of the sample are homogenous, the contrast of an UFM image can be 

interpreted as follows: brighter colours indicate regions where the indentation is lower, 

corresponding to areas with larger Young's modulus.36 

For the UFM and TM-AFM measurements, our experimental setups are hybrid systems 

made of commercial and custom components. One is based on a Multimode-type head 

with a Nanoscope III controller (Bruker), the other on a SMENA-type head (NT-MDT) with 

home-built electronic controller. Both these systems are equipped with a custom 

sample-holder made of a piezo-disc having a typical resonance around 2 or 4MHz (Physik 

Instrumente). For the Peak Force - QNM measurements, presented in the Supporting 
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Information, an Icon-type head AFM system with a Nanoscope V controller (Bruker) has 

been employed. 

  

Results 

In Figure 2, we show some data obtained for a graphite flake (around 50nm in 

thickness, excluding folded areas) deposited on a patterned COC film, described above. 

Figures 2A and B show the topography and phase images obtained with standard 

TM-AFM. The topography image is smooth, and it is not possible to identify suspended or 

supported regions within the flake. Another important issue to be underlined is represented 

by the fact that TM-AFM phase signal is almost constant: an indication that the adhesive 

properties of the surface are homogeneous across this flake. The same is valid also for all 

the other flakes we have analysed. This fact has been confirmed through a 

characterization by means of QNM (see Supporting Information).  

Figures 2C and D show the same flake imaged with UFM. On the one hand, the 

topography (C) is identical to the topography acquired by means of TM-AFM. This is an 

indication that no surface damage occurs, also thanks to the superlubricity effect 

ultrasonically induced.24 On the other hand, the UFM contrast (D) clearly identifies the 

supported from the suspended portions, the latter appearing darker. In Figure 2E, the 

profiles of the lines drawn in Figure 2C and D are presented. The topographic profile does 

not show any major variation that can be attributed to the presence of voids. In the UFM 

profile the signal is smaller in correspondence of the voids underneath the flake with a 

minimum at the centre of the suspended areas. This minimum depends on the lateral size 

of the suspended regions. The UFM signal depends also on the flake thickness. 

In Figure 3, we show a second example, represented by a MoS2 flake (from 10 to 50nm 

thick) placed on a COC film, patterned with parallel grooves randomly bridged. In this 

case, the flake is thinner than the graphite flake above reported. The topography signal 

faintly reveals the presence of grooves underneath, as the flake is less rigid and its shape 

is affected by the substrate topography. On the other hand, the UFM contrast is even 

higher than for the case of the graphite flake, whereas it still depends on the flake 

thickness and on the lateral size of the suspended regions. 

In Figure 4, we focus on another specific issue already observable also in some details 

of the flake shown in Figure 2. For the purpose, we present two different graphite flakes 

placed on the same patterned COC film. Strikingly, one can observe that, besides the 

suspended portions, it is possible to visualize other features that can be attributed to the 
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internal structure of the flake itself (see arrows). We suggest that these features are due to 

dislocations or other defects, as reported elsewhere.25 Signatures of this substructure can 

be observed both in the suspended and the supported regions. The fingerprints are 

represented by dark lines, variously long and orientated, or by finer details. A similar 

contrast can be observed on other graphite and MoS2 flakes, even when they are placed 

on the flat COC regions (see Supporting Information). 

  

Discussion 

Standard CM- and TM-AFM techniques are sensitive to the surface properties and it is 

not possible to visualize the suspended portions or any other internal defect. In particular, 

the contrast is dominated by the contact stiffness, typically much larger than the cantilever 

stiffness (Equation 2). In our case, the tip-surface contact can be described by the 

Derjagin-Muller-Toropov (DMT) model:39 

ݎ ൌ ሾଷோሺிಿାி಴ሻ
ସா∗

ሿଵ/ଷ (4) 

ேܨ ൅ ஼ܨ ൌ
ସ

ଷ
ൈ ∗ܧ ൈ ܴଵ/ଶ ൈ ௖௢௡௧ߜ

ଷ/ଶ  (5) 

஼ܨ ൌ 2 ൈ ߛ∆ ൈ ߨ	 ൈ ܴ (6) 

݇௖௢௡௧ ൌ 2 ൈ ∗ܧ ൈ ݎ ൌ ሾ6 ൈ ଶ∗ܧ ൈ ܴ ൈ  ேሿଵ/ଷ (7)ܨ

ଵ

ா∗
ൌ ሺଵିభ

మሻ

ாభ
൅ ሺଵିమ

మሻ

ாమ
 (8) 

where r is the contact radius, ∆ߛ and FC respectively the work of adhesion and the 

adhesion force, Ei and i (i = 1, 2) respectively the Young's moduli and Poisson’s ratios of 

tip and sample, E* the reduced Young's modulus, R the tip radius. The stress field extends 

in a volume that is indicated in Figure 1A and can reach a depth value of around 3r.40  The 

TM-AFM phase and QNM data indicate that, over a single flake, the adhesion can be 

considered homogeneous. 

The ultrasonic wavelength applied to the sample is of about a few millimetres and 

therefore the whole surface always moves with the same amplitude (see Figure 5A).36 

Therefore local variations in the ultrasonic amplitude cannot be responsible for the effects 

observed. The origin of the UFM subsurface imaging must be found elsewhere and 

specifically in its sensitivity to the indentation. Specifically, a surface in contact with a tip is 

not only locally indented but, if the underlying area is not supported and therefore 

suspended, must bend in order to sustain the external pressure. The whole system can be 

described by a simplified “three-spring model” (Figure 5B). At the static equilibrium we can 

thus write: 
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ேܨ ൌ ݇௧௢௧ ൈ ௧௢௧ߜ ൌ ݇௟௘௩௘௥ ൈ ݀௟௘௩௘௥ ൌ 	݇௖௢௡௧ ൈ ௖௢௡௧ߜ ൌ 	݇௙௟௘௫ ൈ  ௙௟௘௫  (9)ߜ

௖௢௡௧ߜ ൌ ݀௟௘௩௘௥ ൅
௞೗೐ೡ೐ೝ
௞೎೚೙೟

 (10) 

௙௟௘௫ߜ ൌ ݀௟௘௩௘௥ ൅
௞೗೐ೡ೐ೝ
௞೑೗೐ೣ

 (11) 

௧௢௧ߜ ൌ ௖௢௡௧ߜ ൅ ௙௟௘௫ߜ ൐  ௖௢௡௧ (12)ߜ

ଵ

௞೟೚೟
ൌ ଵ

௞೎೚೙೟
൅ ଵ

௞೑೗೐ೣ
 (13) 

where kflex is the flexural stiffness elastic constant, flex the flexural bending, tot the total 

indentation, and ktot  the total stiffness 

Thus suspended areas present larger tot and larger ultrasonic amplitude values are 

needed to break the contact. The profile in Figure 2E shows that, in the suspended areas, 

the UFM signal is not constant but varies as the contribution from the flexural bending to 

tot is lower in correspondence of the borders and maximum in the middle, depending also 

on the lateral size of the suspended regions. 

In our case, the suspended regions have a rectangular shape of various dimensions: 

perpendicular (b) and parallel (c) to the flat mesas, respectively. However, we can 

estimate that: 

ఋ೑೗೐ೣ
௛

≪ 1                                                                                  (14) 

2 ൏ ௕

௛
൏ 25 (15) 

where h is the flake’s thickness.  

Moreover, the c/h ratio can be up to 100. Given these boundary conditions, we can 

assume that the suspended regions behave like 'plates', stiff objects that undergo pure 

bending. Therefore, we can employ the formulae obtained from the theory of plates. 

However, simple equations for our experimental case, where the load is applied by the tip 

during scanning in different positions of the plate, are not available. 

If one considers the simplest case with a point load at the centre, one can obtain 

analytic formulas that provide the flexural bending versus the lateral size, the thickness of 

the plates themselves and other parameters:41

,ሺx	௙௟௘௫ߜ  yሻ 	ൌ
ସிಿ
஠ర஽௕௖

ൈ ∑ ∑
ୱ୧୬೘ಘ

మ
ୱ୧୬೙ಘ

మ

ሾ൫௠ ௕ൗ ൯
మ
ାሺ௡ ௖⁄ ሻమሿ

ஶ
௡ୀଵ,ଷ,…

ஶ
௠ୀଵ,ଷ,.. ൈ sin௠஠୶

௕
ൈ sin ௡஠୷

௖
          (16) 

ܦ  ൌ ܧ ൈ ௛య

ଵଶሺଵିమሻ
 (17) 

where E and  are graphite Young’s modulus and Poisson’s ratio, respectively. The 

maximum bending for a square plate (b = c) is always at the centre and is given by: 
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௙௟௘௫ߜ
௠௔௫ ൌ 0,01159 ൈ ேܨ ൈ

௕మ

஽
 (18) 

Taking the dimensions obtained for the sample shown in Figure 2 (b = c = 1m, h = 

50nm, FN = 10nN) and assuming for the elastic parameters typical values obtained from 

the literature (E = 10GPa,  = 0.165),42 we obtain flex
max ≈ 1.1nm. For a DMT contact the 

corresponding cont is ≈ 0.5nm, under the assumption of R = 20nm and FC = 5nN. 

With regards to the finer contrast observed in Figure 4B, we can state that similar  

features have been previously observed in graphite by means of UFM25,26 and very 

recently also by means of AFAM.43 They have been attributed to the presence of defects 

such as delamination located between adjacent graphene layers inside the flake itself 

(upper white arrow). These defects can modify the contact stiffness, if they are located 

within the volume where the elastic field applied by the tip extends to (see Figure 1A), or if 

the overall flexural stiffness is modified. Their presence, both in the suspended and the 

supported regions, suggest that they might have formed during the preparation or transfer 

processes. The same applies when similar features are present in flakes deposited on flat 

COC (see Supporting Information). We can also argue that their presence might be due to 

the stress induced by the PDMS-based transferring technique35,44 and therefore to the van 

der Waals attraction exerted from the substrate once the flake lies onto the COC 

structured film. The local strain is created in order to release this stress, determining the 

formation of defects imaged by means of UFM. Other finer features in Figure 4B are 

probably due to some surface damage or weakly bonded layers (lower white arrow).  

In Figure 4D, another kind of nanometre scale texture appears, dark non-parallel lines 

(black arrow), only visible in the suspended regions of the flake. The graphite is indeed 

very rigid for in-plane stresses. These non-parallel lines observed in the UFM images may 

represent internal regions where bending stiffness rapidly drops. We may attribute this kind 

of features to buckling45,46 induced, while imaging, by the pressure exerted through the tip 

on the suspended zone of the graphite flake. 

  

Conclusions 

In this paper we have shown how Ultrasonic Force Microscopy (UFM) can detect and 

image subsurface features on the nanoscale in the case of two-dimensional materials, 

namely graphite and molybdenum disulphide. In particular, we have investigated flakes of 

a few tens of nanometres in thickness placed on structured polymeric substrates with 

suspended and supported areas. We have demonstrated that UFM can identify the 

different regions in a non-destructive way as is it highly sensitive to flexural bending 
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induced by the elastic field applied between tip and surface. Subsurface imaging can be 

also achieved through revealing changes in the elastic modulus due to defects located 

within the volume perturbed by the elastic field. Thus UFM can localize, inside the flakes 

themselves, delamination and buckling defects induced by the residual stress, due to the 

preparation and transfer processes, or by the pressure exerted through the tip. For all 

these reasons, we suggest that this SPM technique is a very promising candidate for the 

mechanical characterization and testing of nano-devices based on two-dimensional 

materials where high spatial resolution may be requested. 
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Figure 1: Schematic drawings of: (A) the strain field induced by a tip in contact with a 

surface under a load FN; (B) a load FN versus indentation  curve; (C) a two spring model 

for an elastic contact, where kcont represents the contact stiffness and klever the cantilever 

elastic constant. For a given load applied F1, a1 represents the minimum ultrasonic 

amplitude, equal to the local indentation 1, at which the contact breaks.  
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Figure 2: A graphite flake (around 50 nm thick, excluding folded areas) transferred onto a 

structured COC film. In TM, topography and phase images (A and B, respectively) have no 

hint of where the voids are. On the other hand, the UFM image (D) clearly shows the 

regions suspended and not visible in topography (C). The darker the UFM contrast, the 

larger the indentation. (E) The topography and UFM profiles of the lines indicated in (C) 

and (D). 
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Figure 3: (A) The topography image of a MoS2 flake (around 15nm thick, excluding folded 

areas) placed on a ridge-structured COC film. (B) The UFM image shows the areas 

suspended in dark. (C) The topography and UFM profiles of the lines indicated in (A) and 

(B).  
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Figure 4: (A) Topography image of a graphite flake (around 50nm thick, excluding folded 

areas) on a randomly structured COC film. (B) In addition to the suspended regions, the 

UFM image clearly show that the internal contrast is quite rich. There are parallel lines 

probably due to delamination between adjacent graphene layers (upper white arrow) and 

irregular features probably due to surface damage (lower white arrow). (C) Topography 

image of another graphite flake (around 30nm thick, excluding folded areas) on the 

patterned COC substrate. (D) The UFM image shows, in addition to the suspended areas, 

some dark non-parallel lines only in correspondence of the suspended parts that might be 

due to some buckling induced by the pressure exerted through the tip (black arrow). 
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Figure 5: (A) A schematic drawing of a tip in contact with a suspended region of the 

platelet (in gray) where bending can occur. The indentation can be larger than on areas 

supported by the COC substrate (in blue), thus it needs a higher ultrasonic amplitude in 

order to break the contact and observe the non-linearity of the FN versus  curves. (B) The 

two-spring model in Figure 1C can be extended to three with the introduction of the platelet 

bending flex. In principle, the model can be further extended to four or more springs, to 

take into account internal defects such as a delamination or else. 
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