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Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a suscep-

tibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus ery-

thematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the

present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting

using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell

lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and

U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those

of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A

antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A

probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue speci-

mens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the

Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients.

Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma

tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic tar-

get for, gliomas and other cancers.
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INTRODUCTION

Glioblastoma multiform (GBM) is the most aggressive

form of glioma that arises from astrocytes (1). Approxi-

mately 15% of all primary brain tumors are GBMs, which

may arise de novo or from low-grade astrocytomas. Genetic

abnormalities are common in GBM patients (2). GBM is

malignant, and patients typically die within 1 year of diag-

nosis (3). GBMs are characterized by the presence of a solid

mass of extremely circuitous large-diameter vessels with

abnormally thickened basement membranes (4). Function-

ally, the tumor vasculature is unusual. Vessel permeability is

increased, triggering vasogenic edema and hemorrhage (5).

As the vessels of the vasculature are highly disorganized,

the efficacies of radio- and chemotherapy may be compro-

mised by the abnormal blood flow (6). Recent preclinical

and clinical studies have discovered new molecular GBM

targets, which may afford opportunities to improve anti-

angiogenic strategies (7).

Presently, the drug most often used to target vascular

endothelial growth factor (VEGF) is bevacizumab (BEV), a

recombinant humanized monoclonal antibody against VEGF-

A (8). However, the initially reported beneficial effects of

BEV may be (at least in part) attributed to imaging limita-

tions caused by reduced neoangiogenesis and vascular per-
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meability. These lead to an apparent (but controversial)

decrease in the contrast-enhanced tumor volume (9). Recent

prospective phase III trials (using avastin and radiation ther-

apy) sought to validate the efficacy of temozolomide (TMZ)-

based radio-chemotherapy, combined with BEV, in GBM

patients (10). The “Avastin in GBM” (AVAglio) study showed

that progression-free survival (PFS) was significantly pro-

longed (by 4.4 months) upon BEV co-treatment. In the “Radia-

tion Therapy Oncology Group (RTOG) 0825” trial, no signi-

ficant benefits were evident in terms of either PFS or overall

survival. However, PFS benefits did not translate into im-

provements in overall survival (11). Therefore, it is neces-

sary to find novel therapeutic targets in GBM patients, since

TMZ and anti-VEGF drugs are not adequately efficacious.

Transmembrane protein 39A (TMEM39A) belongs to the

TMEM39 family, consisting of TMEM39A and TMEM39B.

The two TMEM39 isoforms are produced via alternative

splicing (12). Transmembrane proteins extend from one

side of the plasma membrane to the other. Many transmem-

brane proteins control the transport of materials across bio-

logical membranes (13). The TMEM39A-encoding gene

may be a susceptibility locus for multiple sclerosis (14,15).

Furthermore, TMEM39A is associated with systemic lupus

erythematosus (16-18). However, no study has yet investi-

gated any possible role for TMEM39A in cancer. There-

fore, we sought a putative role for TMEM39A in GBM.

Novel therapeutic markers for this brain cancer are needed

urgently. Here, we provide clear evidence that TMEM39A

is upregulated in GBM cell lines and GBM tissues from

patients. This affords novel insight into the role played by

TMEM39A in GBM. TMEM39A may be a useful new

therapeutic target for brain cancer.

MATERIALS AND METHODS

Antibodies and reagents. Anti-TMEM39A antibody

and Anti-Actin antibodies were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Horseradish peroxidase-con-

jugated anti-mouse IgG or anti-rabbit IgG secondary anti-

bodies were purchased from Komabiotech (Seoul, Korea).

Patient samples. The study was approved by the Hospi-

tal Institutional Review Board (approval number CNUH 2013-

11-006) according to the Declaration of Helsinki at Chungnam

National University Hospital (Daejeon, Korea), and written

informed consent was obtained from each patient by research

team before surgery. Normal brain tissue samples were ob-

tained from cadavers alternatively, from autopsy of surrounding

normal brain of glioblastoma patient who underwent surgery.

Cell culture. The glioblastoma cells (U87-MG, U251-

MG, U343-MG and U373-MG) and non-glioblastoma cell

(HEK-293A) were maintained in medium (RPMI) supple-

mented with 10% FBS, 25 mM HEPES (Thermo Scientific),

1% Antibiotics-Antimycotics (Life Technologies, CA, USA).

Immunoblot analysis. The western blot analysis was

performed as the described previously (19-21). Briefly, cells

were placed on ice and extracted with lysis buffer contain-

ing 50 mM Tris-HCl, pH 7.5, 1% v/v Nonidet P-40, 120

mM NaCl, 25 mM sodium fluoride, 40 mM β-glycerol

phosphate, 0.1 mM sodium orthovanadate, 1 mM phenyl-

methylsulfonyl fluoride, 1 mM benzamidine, and 2 mM

microcystin-LR. Lysates were centrifuged for 15 min at

12,000 g. The cell extracts were resolved by 10~15% SDS-

PAGE, and transferred to Immobilon-P membranes (Milli-

pore, MA, USA). The filters were blocked for 1 hr in 1 X

tri-buffered saline buffer (TBS- 140 mM NaCl, 2.7 mM

KCl, 250 mM Tris- HCl, pH 7.4), containing 5% skimmed

milk and 0.2% Tween-20, followed by an overnight incuba-

tion with the anti-TMEM39A and anti-Actin antibodies

diluted 1000-fold at 4oC. The secondary antibody was

horseradish peroxidase-conjugated anti-mouse IgG or anti-

rabbit IgG (Komabiotech, Seoul, Korea), diluted 5000-fold

in the blocking buffer. The de- tection of protein expression

was visualized by enhanced chemiluminescence, according

to the manufacturer’s instructions (Thermo Fisher Scien-

tific, CA, USA).

Real-time quantitative reverse transcription-polymerase
chain reaction (qRT-PCR). Total RNA was extracted from

frozen tissue samples or from cells using the PureHelix

RNA Extraction Solution (Nanohelix, Seoul, Korea). The

cDNA was synthesized from total RNA with the Super-

Script III First-Strand Synthesis System for qRT-PCR (Invi-

trogen, Grand Island, NY, USA). The qRT-PCR measurement

of individual cDNAs was performed using SYBR green dye

to measure duplex DNA formation with the StepOne Plus

real-time PCR system (Invitrogen) and normalized to the

expression of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) RNA. The following primers were used in the

qRT-PCR (F: Forward, R: Reverse); Human TMEM39A: F-

5'-CCCACCTATCACAGCCTTAATC/R-5'-AAAGAGCA-

ACCAACAGGT AGAT; human GAPDH : F-5'-TCGA-

CAGTCAGCCGCATCTTCTTT/R-5'-TACGACCA AAT-

CCGTTGACTCCGA.

RNA sequencing and RNA-Seq data analysis. Total

RNA of U87-MG, U251-MG and normal brain was extracted

using Trizol reagent (Invitrogen) following the manufac-

turer’s procedures. The total RNA quantity and purity were

analysis of Bioanalyzer 2100 and RNA 6000 Nano Lab-

Chip Kit (Agilent, Santa Clara, CA, USA). Roughly 10 μg

of total RNA was subjected to isolate Poly (A) mRNA with

poly-T oligo attached magnetic beads (Invitrogen). Follow-

ing purification, the mRNA is fragmented into small pieces

using divalent cations under raised temperature. Then the

cleaved RNA fragments were reverse-transcribed to create
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the final cDNA library in accordance with the protocol for

the mRNA-Seq sample preparation kit (Illumina, CA,

USA). The average insert size for the paired-end libraries

was 300 bp (± 50 bp). Next we performed the paired-end

sequencing on an Illumina Hiseq 2000 system at Macrogen

(Seoul, Korea) following the vendor’s recommended proto-

col. For each sample, sequenced reads were aligned to the

UCSC human reference genome (22) using the Tophat pack-

age (23), which initially removes a portion of the reads

based on quality information accompanying each read and

then maps the reads to the reference genome. FPKM (frag-

ments per kilobase of exon per million fragments mapped)

were calculated to compare the expression level of

TMEM39A mRNA variants in each sample.

Confocal imaging analysis and indirect immunofluo-
rescence. U251-MG cells were grown on glass covers-

lips until they were 50~70% confluent. After 24 hrs, the

cells were fixed in 4% paraformaldehyde at room tempera-

ture for 10 min and permeabilized in 0.2% Triton X100 for

5 min at room temperature. Then cells were incubated in

blocking buffer containing 5% bovine serum albumin (Sigma-

Aldrich) in 1 X TBS for 1 hr at 37oC. The rabbit polyclonal

anti-TMEM39A was diluted 200-fold for primary antibody

and incubated for overnight. The secondary antibody,

FITC-conjugated anti-rabbit antibody (BD Biosciences, NJ,

USA) was used. After appropriate rinsing, cover slips were

mounted with Vectashield (Vector Laboratories, CA, USA)

and visualized using a Zeiss confocal microscope.

Immunohistochemistry. The analysis of Immunohis-

tochemistry was performed as the described previously

(24,25). A human cancer tissue array slide with paraffin

sections was purchased from Bio Max (US Biomax Inc.,

MD, USA). Histostain-Plus kits (Zymed Laboratories Inc.,

CA, USA) were used in accordance with the manufac-

turer’s instructions for the immunohistochemistry of tissue

array. Briefly, paraffin sections were deparaffinized with

xylene and rehydrated in a graded series of ethanol. The

slide was submerged in peroxidase quenching solution

for 10 min. After it was washed twice with PBS for 5 min,

it was added with 2 drops of Reagent A for blocking and

incubated for 30 min. Following two washes with PBS,

the primary antibody, anti-TMEM39A antibody, was ap-

plied at 4oC for overnight. Then biotinylated secondary

antibody, Reagent B, was added after rinsing with PBS. It

was incubated at room temperature for 1 hr. It was rinsed

with PBS and dropped with enzyme conjugated Reagent

C.  After it was washed with PBS, DAB chromogen, and

a mixture of Reagent D1, D2, and D3, it was dropped,

and signals were observed with a florescence microscope

(Zeiss, Oberkochen, Germany). Then the reaction was

stopped with distilled water, and pictures were taken with a

microscope.

Bioinformatics data set. Glioma data sets and corre-

sponding clinical data were downloaded from the publicly

available databases (446 cases from the Repository of

Molecular Brain Neoplasia Data (REMBRANDT; http://

www.betastasis.com/glioma/rembrandt/). Normal; n = 21,

GBM; n = 214, oligodendroglioma; n = 66, Astrocytomas;

n = 145.

Statistical analysis. Data are expressed as the mean ±

S.D. from at least three separate experiments performed

triplicate. The differences between groups were analyzed

using a Student’s t test and p < 0.05 (*) was considered sig-

nificant, and p < 0.01 (**) was highly significant compared

with corresponding control values. Comparison of TMEM39A

expression in various gliomas was carried out by one-way

ANOVA with Dunn’s post-test (one variable). Statistical

analyses were carried out using SPSS software ver. 13.0

(SPSS Inc., NY, USA). For the analysis of Kaplan-Meier

survival curve, p values were obtained from log-rank test,

while hazard ratio (HR) and 95% confidence interval (CI)

were determined by univariate Cox regression model.

RESULTS

Upregulation of TMEM39A expression in glioblastoma
cell lines. To explore a putative role for TMEM39A in

brain cancer, we performed Western blotting using an anti-

TMEM39A antibody. As shown in Fig. 1A, TMEM39A

expression was markedly enhanced in U343-MG and U373-

MG GBM cells compared with other cell type non-GBM

cells, HEK-293A cells. Quantitative real-time PCR (qRT-

PCR) of glioblastoma cell lines also showed that the levels

of mRNA encoding TMEM39A were elevated in U343-

MG and U373-MG cells (Fig. 1B).

TMEM39A transcription is enhanced in U87-MG cells
and U251-MG cells. Based on the above observations,

TMEM39A mRNA levels were measured by RNA sequenc-

ing of glioblastoma cell lines. Total RNA were isolated from

two cell lines (U87-MG and U251-MG), which showed the

low expression of TMEM39A in Fig. 1A and 1B. Also, we

isolated total RNA from normal brain cells. The numbers of

“fragments per kilobase of exon per million fragments

mapped” (FPKMs) were calculated to compare the expres-

sion levels of TMEM39A mRNA among the various sam-

ples. As shown in Fig. 2, the FPKMs were markedly higher

in U87-MG cells (17.08) and U251-MG cells (11.12) than

in cerebral cortex cells (1.87), indicating that TMEM39A is

transcriptionally upregulated in GBM cells.

Subcellular localization of TMEM39A in U251-MG cells.
We used immunocytochemistry to determine the subcellu-

lar location of TMEM39A in U251-MG cells. Interestingly

TMEM39A was found located in dot-like structures lying
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close to the nucleus, likely mitochondria and endosomes

(Fig. 3). This suggested that the membrane-bound form of

TMEM39A was functional in GBM cells.

TMEM39A is expressed in GBM tissue. To determine if

the above observations (Fig. 1 and 2) were clinically rele-

vant, we subjected a human cancer tissue array to immuno-

histochemical analysis. As shown in Fig. 4A, the tumor

tissues were stained with an anti-TMEM39A antibody to a

greater extent than were the surrounding normal tissues. In

addition, total cell lysates from normal and cancerous tis-

sues derived from two GBM patients during surgery were

Fig. 1. TMEM39A expression in glioblastoma (GBM) cell lines. (A) Lysates were prepared from four established GBM cell lines (U87-MG,
U251-MG, U373-MG, and U343-MG) and one established non-GBM cell lines (HEK-293A). These samples were subjected to Western
blotting using anti-TMEM39A and anti-actin antibodies. The results are representative of those of three independent experiments (top
panel). Relative densities were obtained by densitometry. Relative differences in TMEM39A expression levels (and the associated statis-
tics) were calculated by normalizing all densitometric values to that of actin (in each lane) and setting the values from HEK-293A cells
to 1 (bottom panel). Results are presented as the means ± SDs of data from three independent experiments. (B) Total RNA extracted
from each GBM cell line was analyzed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using
human TMEM39A-specific primers, as described in Materials and Methods. The results are presented as means ± SDs of data from
three independent experiments. *p < 0.05, **p < 0.01.

Fig. 2. Relative differences in TMEM39A transcript levels in GBM cells. Total RNAs were isolated from two GBM cell lines (U87-MG and
U251-MG) and normal brain tissue. These samples were analyzed by standard RNA deep-sequencing (RNA-seq), as described in Materi-
als and Methods. RNA-seq read densities of TMEM39A transcripts were plotted against relative RNA-seq read coverages (counts). “Frag-
ments per kilobase of exon per million fragments mapped” (FPKMs) were calculated to compare the expression levels of TMEM39A
mRNA variants among various sample.
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subjected to Western blotting using an anti-TMEM39A

antibody. As expected, GBM tissues expressed TMEM39A

more prominently than did the surrounding normal tissues,

indicating that TMEM39A expression is upregulated in

GBM patients.

Differential TMEM39A mRNA expression and valida-
tion of the prognostic value of this observation in the
REMBRANDT cohort. Building upon the above observa-

tions (Fig. 1-3), we assessed TMEM39A expression levels,

and the prognostic significance of any differences, in glio-

mas from patients of the REMBRANDT cohort (http://

www.betastasis.com/glioma/rembrandt/). Consistent with

the above results (derived using a tissue microarray, West-

ern blotting, and RNA sequencing), TMEM39A expression

was markedly increased in various gliomas (GBMs, n =

214; oligodendroglioma, n = 66; and astrocytomas, n = 145)

compared with normal control tissues (n = 21; one way

ANOVA P-value < 0.0001; Fig. 5A). Moreover, high-level

TMEM39A mRNA expression (in 167 patients), compared

with low-level expression (in 31 patients), was significantly

associated with poor survival (log-rank P value = 0.012;

HR = 2.17, 95% confidence interval [CI] 0.80-2.89; Fig.

5B), suggesting that the TMEM39A expression level is cor-

related with the clinical prognosis of glioma patients.

DISCUSSION

GBM is the most aggressive type of brain tumor. Progno-

sis is poor even when multiple therapies are applied. Molec-

ular targeting may be important when developing efficient

GBM treatment strategies. Genetic abnormalities are com-

mon in GBM patients (2). Therefore, prognostic biomark-

ers and potential molecular targets must be identified

immediately if the disease is to be overcome.

In the present study, we showed that TMEM39A is a

novel GBM prognostic marker. TMEM39A is upregulated

in GBM cell lines and patient tissues. Genome-wide associ-

Fig. 3. Subcellular localization of TMEM39A in U251-MG cells.
(A) U251-MG cells were grown on glass coverslips, fixed, and
permeabilized with 0.2% (v/v) Triton X-100. After immunostain-
ing with anti-TMEM39A antibody, the cover slips were mounted
on Vectashield and examined using a Zeiss confocal micro-
scope. Scale bars: 10μm.

Fig. 4. TMEM39A expression levels in human brain tumors. (A) Human glioma tissue arrays were immunohistochemically analyzed in
terms of TMEM39A staining. Representative images from samples from two patients are shown. Scale bars: 100μm. (B) Total cell
lysates from normal and GBM tissues (tumors no. 1 and 2) from two patients were analyzed in terms of TMEM39A expression (top
panel). Tumor-associated normal tissue served as a control (Tumor Asso.). Relative densities were calculated by densitometry. Relative
differences in TMEM39A expression levels were determined by normalizing all densitometric values to those of actin (in each lane) and
setting the control values to 1 (bottom panel). The results are presented as means ± SDs of data from three independent experiments.
*p < 0.05, **p < 0.01.
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ation studies (GWASs) recently indicated that TMEM39A

is involved in multiple sclerosis (14,15). A GWAS also

revealed the involvement of TMEM39A in systemic lupus

erythematosus (SLE), a chronic heterogeneous autoimmune

disorder characterized by loss of tolerance to self-antigens

and dysregulation of interferon synthesis (16-18,26). How-

ever, TMEM39A has not yet been implicated in any other

disease. Therefore, we investigated whether TMEM39A is

involved in the development of brain tumors including GBM.

Interestingly, TMEM39A was highly expressed in GBM

cell lines, including U343-MG and U373-MG cells (Fig.

1A). qRT-PCR using a TMEM39A-specific primer revealed

that these cells express more TMEM39A mRNA (Fig. 1B)

than do non-GBM cells, HEK-293A cells. In addition, RNA

deep-sequencing of U87-MG and U251-MG cells showed

that the FPKMs of TMEM39A mRNA were higher in these

cells than in normal brain cells (Fig. 2). Many transmem-

brane proteins function as gateways or “loading docks”, per-

mitting or forbidding the transport of specific substances

across biological membranes. Both entry into the cell and

exit from the cell (for example of waste byproducts) are

thus regulated. Depending on the shapes of the molecules to

be transported, “freight-handling” transmembrane proteins

may fold or bend the molecules in specific ways (27). We

therefore identified the subcellular location of TMEM39A

in U251-MG cells. As expected, the protein was present in

dot-like structures (probably mitochondria and endosomes,

Fig. 3) lying close to the nucleus, suggesting that mem-

brane-binding of TMEM39A is important when the protein

plays a role in GBM.

To further evaluate the role played by TMEM39A in GBM

progression, we used a tissue microarray and performed

Western blotting of patient tissue samples. As shown in Fig.

4A, TMEM39A was upregulated in GBM tissues. This was

confirmed by Western blotting of total cell lysates from nor-

mal and cancerous tissues sampled during surgery on two

GBM patients (Fig. 4B). We also found that TMEM39A

was highly expressed in all gliomas (including GBMs) of

patients of the REMBRANDT cohort (Fig. 5A). Furthermore,

high-level TMEM39A mRNA expression was correlated with

poor overall survival (Fig. 5B), clearly indicating that

TMEM39A expression is associated with the clinical prog-

nosis of glioma. Together, the data indicate that TMEM39A

is associated with glioma progression, and this molecule

may serve as a novel prognostic biomarker of GBM.
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