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Abstract. The relative importance of niche-based (e.g., competitive or stress-based) and
stochastic (e.g., random dispersal) processes in structuring ecological communities is
frequently analyzed by studying trait distributions of co-occurring species. While filtering
processes, such as the exclusion of stress-intolerant species from particular habitats, increase
the trait similarity between co-occurring species, other processes, such as resource
competition, can limit the similarity of co-occurring species. Comparing the observed trait
distribution patterns in communities to null expectations from randomized communities (e.g.,
a draw of the same observed richness from the regional pool) therefore gives a first indication
of the dominant process driving community assembly.

However, such comparisons do not inform us about the relative contribution of these
different processes in shaping community compositions in case of their joint operation (a likely
scenario). Using an Approximate Bayesian Computation approach, we develop a new method
that allows inference of the relative importance of dispersal, filtering, and limiting similarity
processes for the assembly of observed communities with known species and trait
composition. We applied this approach to a tree community data set, collected across 20
plots along strong rainfall and fire gradients in a South African savanna.

Based on comparisons with simulations, we find that our new approach is powerful in
identifying which community assembly scenario has the highest probability to generate the
observed trait distribution patterns, while traditional null model comparisons perform poorly
in detecting signs of limiting similarity. For the studied savanna tree communities, our analysis
yields that dispersal processes are most important in shaping the functional trait distribution
patterns. Furthermore, our models indicate that filtering processes were relatively most
important in areas with high fire frequencies, while limiting similarity processes were relatively
most important in areas with low fire frequency and high rainfall. We conclude that our new
method is a promising improvement on current approaches to estimate the relative importance
of community assembly processes across different species groups, ecosystems, and biomes.
Future model modifications (e.g., the inclusion of individual-based processes) could provide
further steps in uncovering the underlying assembly processes behind observed community
patterns.

Key words: abiotic filters; Approximate Bayesian Computation; community assembly; dispersal;
functional traits; Hluhluwe-iMfolozi Park, South Africa; limiting similarity; neutral theory; savanna;
stochasticity; trees.

INTRODUCTION

A central goal in community ecology research is to

understand the principles that govern the assembly of

ecological communities. In order to do so, ecologists

have traditionally focused on the importance of niche-

based community assembly processes, such as the

filtering out of stress-intolerant species under unsuitable

abiotic conditions, and the loss of functionally similar

species through competitive exclusion (Hutchinson

1959, Weiher and Keddy 1995a, McGill et al. 2006).

An alternative view on community assembly has drawn

attention to the importance of stochastic processes in

community assembly, such as random birth, death, and

dispersal events (Caswell 1976, Hubbell 2001). Both

views have led to some contrasting theoretical models, in

which communities are fully shaped by either determin-

istic, niche-based processes (e.g., Tilman 1982, Chase

and Leibold 2003) or by other processes such as random

dispersal (e.g., Hubbell 2001). Current developments in

coexistence theory recognize that such models form two

extremes of one continuum (Adler et al. 2007), with

generally, both stochastic and niche-based processes

acting simultaneously to shape community assembly
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(Vellend 2010, Rosindell et al. 2011, Weiher et al. 2011).

However, the relative contribution of these processes for

different species groups, in different habitats and

biomes, and across different spatial scales remains an

open question.

A commonly used approach to discriminate between

alternative community assembly processes is the analysis

of trait diversity patterns of co-occurring species (e.g.,

Weiher and Keddy 1995b, Cornwell and Ackerly 2009,

van der Plas et al. 2012). If niche-based processes are not

driving community assembly and dispersal is not limited

within a certain region (hereafter called dispersal

assembly, sensu Kembel [2009]), one would expect a

local community to be a random sample from the

regional species pool, with a trait distribution that is a

random sample from the regional trait distribution.

Alternatively, if niche-based processes (such as limiting

similarity or filtering) are important in community

assembly, one could expect that the diversity of

functional traits of co-occurring species deviates from

such a random subset. For example, the exclusion of

stress- or herbivory/predation-intolerant species or of

competitively subordinate species (hereafter collectively

called filtering processes) can reduce trait diversity of co-

occurring species (Weiher and Keddy 1995a, Cornwell

and Ackerly 2009, Mayfield and Levine 2010, Hille-

RisLambers et al. 2012). Instead, competitive exclusion

among species with overlapping niches, and exclusion of

species with shared (specialist) predators (competition or

apparent competition, hereafter collectively called lim-

iting similarity processes) can increase trait or functional

diversity (Hutchinson 1959, MacArthur and Levins

1967, Abrams 1983, Violle et al. 2011).

Previous studies have tried to determine whether

observed trait variability deviates from dispersal assem-

bly expectations. Although these comparisons can

provide a first indication on the dominant process

driving community assembly, they are not able to

discriminate if patterns not deviating from null expec-

tation are the result of either a lack of niche-based

processes, or reflect the net outcome of opposing

filtering and limiting similarity processes. Furthermore,

the relative contribution of these processes remains

uncertain when evaluated using null models, as these are

designed to only discriminate between expected, conver-

gent, or even trait distribution patterns. Despite recent

improvements in the use of null models (e.g., Helmus et

al. 2007, Cornwell and Ackerly 2009, Parmentier et al.

2014), where more information from observed data is

used than in traditional ones, the understanding that one

can gain from them is still limited. This currently

restricts necessary steps toward analyzing and general-

PLATE 1. In most locations in African savannas, tree densities are not extremely high. Photo credit: F. van der Plas.
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izing how different life-history strategies, habitats, and

abiotic conditions determine the relative importance of

community assembly processes.

In this study, we develop a new data analysis method

that allows (1) the estimation of the relative importance
of dispersal, competition, and filtering processes in a

community, and (2) analysis of the importance of these

different processes along environmental gradients. The

basic modeling procedure is based on the stepwise

removal of species from an observed regional species

pool, until a local community with the observed, actual
richness is created. Each step, a species is removed

through either a dispersal, filtering, or limiting similarity

event, with the relative contribution of these different

events differing between alternative models (Fig. 1). So

we study the process of stepwise community assembly
through the inverse process of stepwise species deletion

with stepwise community assembly models (STEP-

CAMs). Using Approximate Bayesian Computation

(Beaumont et al. 2002, Beaumont 2010, Csillery et al.

2010), we compare the mean trait values and trait
distributions of modeled communities with those of real

communities. Thereby we identify what the most likely

relative importance of dispersal, filtering, or limiting

similarity events has been in shaping a particular

observed community. Using sensitivity analyses, we

determine whether this new method is able to distinguish

different processes of community assembly on the basis

of species traits.

We illustrate our STEPCAM approach by character-

izing African savanna tree communities (see Plate 1)

along steep rainfall and fire gradients, and comparing

their trait distributions with simulated communities to

assess which assembly scenarios have most likely

operated in nature. African savannas in general (Scholes

et al. 2002), and our study site in particular (Whately

and Porter 1983), are known for their high habitat

heterogeneity. This provides a major challenge for our

understanding of local community assembly, since the

communities of different habitats are likely shaped by

different processes (Cornwell and Ackerly 2009). Other

studies emphasized the importance of rainfall (Reed et

al. 2009) and fire (Higgins et al. 2007) in structuring

savanna plant communities. However, how these envi-

ronmental gradients regulate changes in communities is

largely unknown. Possibly, in more ‘‘benign’’ (high

rainfall, low fire frequency) areas, plant communities are

mostly shaped by light competition. Alternatively, it

might be that in benign areas, all species from the larger

regional species pool are also able to cope with the local

(a)biotic conditions, so that only dispersal or stochastic

FIG. 1. A graphical illustration of community assembly and stepwise community assembly (STEPCAM) models. (a) A ternary
plot illustrating how community assembly can be seen as the sum of dispersal assembly (DA), filtering (F), and limiting similarity
(LS) processes. The distance from each corner represents an axis measuring to what extent (%) community assembly is driven by
DA, F, or LS. For any given point in the triangle, corresponding values on each of three axes add up to 100. Letters indicate
different example scenarios of community assembly: a community that is (A) 100% assembled by DA; (B) 40% regulated by DA
and 60% by F; (C) 70% regulated by DA, 20% by F, and 10% by LS, and (D) 20% regulated by DA, 30% by F, and 50% by LS. (b)
An illustration of four different STEPCAMs. These four models differ in their parameter settings, with from left to the right, a
model containing DA steps only, F steps only, LS steps only, and a model consisting of two (i.e., 40%) DA steps, one (i.e., 20%) F
step, and two (i.e., 40%) LS steps. In this simple example, each model starts with the same species pool, containing S¼ 10 species.
Species are represented by circles, with circle size being proportional to frequency in the species pool and horizontal location
reflecting trait value. For simplicity, in this example we focus on a one-dimensional trait space. We set the richness (s) in the local
community to 5 species, so that each model consists of S� s¼ 5 steps. At each step, a species is removed, either through DA, in
which due to a lack of dispersal limitation, species that occur more frequently in the species pool have a lower chance of being
removed, F, in which the species farthest from the trait optimum (arrow) is removed, or LS, in which the species most similar to its
neighboring species is removed.
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events regulate community assembly, such as suggested

for tropical forests (Hubbell 2001).

To test our STEPCAM approach and these ideas, we

characterized tree communities and functionally rele-

vant traits in 20 400-m2 plots, which were distributed

along the rainfall and fire gradients in the study area. We

applied our STEPCAM approach and traditional null

models to these community data in order to address the

following questions: (1) Do trait similarity patterns

respond to different community assembly scenarios? (2)

If so, to what extent are trait similarity patterns from

different community assembly scenarios statistically

distinguishable? (3) Which type of community assembly

process (dispersal assembly, filtering, or limiting simi-

larity) is most important in shaping savanna tree

communities? (4) How do the relative contributions of

different community assembly processes change over

environmental gradients? (5) Does our STEPCAM

approach lead to different conclusions than null models?

(6) Do STEPCAMs also create communities with

species compositions that are similar to real communi-

ties?

METHODS

Calculating functional diversity metrics and trait means

We summarized trait distributions of both observed

(see Tree community, trait data, and environmental

gradients) and simulated communities using four

metrics: three multivariate functional diversity metrics,

and community trait mean (CTM) values. The three

functional diversity metrics we used were developed to

be orthogonal and capture different aspects of the

functional composition of a community (Villéger et al.

2008): functional richness (FR), functional evenness

(FE), and functional divergence (FDiv). FR was

measured as the convex hull volume that can be

drawn around the multidimensional trait space of all

species present in a community (Cornwell et al. 2006).

Therefore, FR represents a multidimensional analogue

to trait range. For presence–absence data, FE mea-

sures the regularity of branch lengths of a minimum

spanning tree in multidimensional trait space (Villéger

et al. 2008), and thus captures the spacing of species

traits, with values bounded between zero (extremely

uneven spacing) and one (perfectly even spacing of

traits). Lastly, FDiv was measured as the dispersion of

measured species in reference to the mean community

trait value and thus captures to which extent most

trait values deviate from community means. Hence,

FDiv is low when most present trait values within FR

are near the CTMs (high clustering), and high when

most trait values within FR are further away (low

clustering) from the CTMs (Villéger et al. 2008). It is

important to note that the functional diversity metrics

we used are only informative when a minimal number

of species are present in communities (Villéger et al.

2008).

Stepwise community assembly models (STEPCAM)

We developed a new statistical modeling framework
that simulates community assembly through the step-

wise removal of species from a species pool, according to
different removal rules reflecting different types of

ecological processes. We started with all species from a
regional species pool, defined as a collection of S species,

with each species having certain traits and a certain
frequency (number of occurrences at local sites within

the species pool). Then, at each time step, a single species
is removed, until the remaining set of species equals the

predetermined richness value (s) of a local community
under investigation. Therefore, each simulation model

contains n steps, where n equals the species richness of
the species pool (S ) minus the species richness of the

local community (s; Fig. 1). At each step, a species is
removed following one of three different mechanisms:

(1) dispersal assembly, (2) filtering, or (3) limiting
similarity (Fig. 1). For each local community, we
generate a series of competing STEPCAMs, differing

in the proportion of steps in which each of the three
evaluated mechanisms is applied. In each model, first

dispersal assembly steps are run, then filtering steps, and
finally limiting similarity steps. The implemented order

assumes a sequence of community assembly following
Cornwell and Ackerly (2009). As a sensitivity analysis,

we tested whether this order of community assembly
steps highly alters model outcomes, but this was not the

case (Appendix: A5).
During a dispersal assembly step, a species is removed

from the set of species remaining at that point. The
removal chance of each species is inversely proportional

to its relative frequency in the species pool (Fig. 1b).
Dispersal assembly steps thus represent non-niche-based

processes within a region where dispersal is limited, but
individuals from different species do not differ in their

capacity to disperse, as emphasized in neutral (-like)
biodiversity theories (e.g., Caswell 1976, Hubbell 2001).

During a filtering step, the species with trait values with
the largest Euclidean trait distance from the trait optima

(defined as the CTM values of observed communities,
thereby assuming that observed assemblages represent the
best suite of traits under particular environmental

conditions; Keddy 1992) of the community under
investigation is removed from the remaining species set

(Fig. 1b). These filtering steps, which are based on Kraft
et al. (2007), can be seen as niche-based processes where

species without the right traits are unable to occur in a
particular abiotic (Weiher and Keddy 1995a, Cornwell et

al. 2006) or biotic (Mayfield and Levine 2010, Hille-
RisLambers et al. 2012) environment.

Lastly, during a limiting similarity step, we identify
from the remaining species set the species pair closest to

each other in the multidimensional trait space. From this
pair, we remove the species closest to a third species

(Fig. 1b). This step, adapted from Kraft et al. (2007),
reflects the exclusion of species with shared resources

(Hutchinson 1959, MacArthur and Levins 1967,

June 2015 1505INFERRING COMMUNITY ASSEMBLY WITH TRAITS



Abrams 1983, Violle et al. 2011), predators, or

pathogens (Abrams 1983).

Responses of functional diversity metrics to community

assembly scenarios

To explore whether and how FR, FE, and FDiv

values respond to different relative contributions of

dispersal assembly, filtering, and limiting similarity

steps, we applied several STEPCAMs over a range of

parameter settings to one of the plots (Plot 17) evaluated

in this study, which was considered most representative

(see Tree community, trait data, and environmental

gradients for our rationale). Although it would have

been possible to explore responses of FD patterns to

community assembly models for more plots than Plot 17

only, we chose to focus on one (representative) plot only

due to the long computational time (several weeks per

plot) it would have taken to focus on other plots as well.

The regional species pool was defined as all S (105)

species found across the 20 observed plots (see Tree

community, trait data, and environmental gradients), with

the number of plots in which each species was found as

the species frequencies. Plot 17 had s ¼ 15 species, so

each STEPCAM consisted of S � s ¼ 90 steps. In each

different STEPCAM, the relative contributions of

dispersal assembly, filtering, and limiting similarity steps

add up to 1. We explored this parameter space with 0.05

intervals, so we ran models with parameter settings of

1:0:0, 0.95:0.05:0, 0.95:0:0.05, 0.9:0.1:0, 0.9:0.05:0.05,

etc., in which the first number stands for the relative

contribution of dispersal assembly steps, the second

number for the relative contribution of filtering steps,

and the last number for the relative contribution of

limiting similarity steps. Consequently, we ran 231

different generator models (also used for sensitivity

analyses) with 1000 replicates for each.

We summarized FR, FE, and FDiv patterns for each

model as the average across all 1000 replicates. For more

details on this methodology, we refer to Appendix: A4.

STEPCAMs were run with the STEPCAM R package

(Janzen and van der Plas 2014).

STEPCAM fitting: general procedure

To compare the fit of summary statistics of competing

STEPCAMs with the summary statistics from observed

data (i.e., from communities observed in the field; see

STEPCAM fitting: observed communities) or from

communities created by a generator model (see STEP-

CAM fitting: sensitivity analysis), we used Approximate

Bayesian Computation (ABC) within a Sequential

Monte Carlo (SMC) framework (Toni et al. 2009,

Hartig et al. 2011). ABC compares one or more

summary statistics between observed data and candidate

models. Previous to model selection, the four summary

statistics (FR, FE, FDiv, and CTM values, calculated

for 20 communities) were standardized to a mean of 0

and a standard deviation (SD) of 1, by subtracting mean

values from observed values and then dividing by the

SD. This way, each different summary statistic had the

same impact on the fitting procedure. The fit of

candidate STEPCAMs was calculated as: Fittotal¼FitFR
þ FitFE þ FitFDiv þ FitCTM, in which FitFR, FitFE,

FitFDiv, and FitCTM are the absolute (multidimensional)

difference between, respectively, observed FR, FE,

FDiv, and CTM values and those functional diversity

and CTM values generated by the candidate STEP-

CAM. High Fittotal values thus indicate poor fit, while

low values indicate good fit. Using the fit of the models,

importance resampling was performed largely following

the algorithm described in Toni et al. (2009). For more

detailed information on the algorithm we used, refer to

Appendix: Figs A6 and A7.

STEPCAM fitting: sensitivity analysis

As a sensitivity analysis, we investigated whether

generator STEPCAMs with the different community

assembly scenarios generate communities with statisti-

cally distinguishable trait distributions, in addition to

quantitatively different trait distributions as were

described in Responses of functional diversity metrics to

community assembly scenarios. The summary statistics

that resulted from the generator models were fitted with

an ABC-SMC approach (described in STEPCAM

fitting: general procedure) to yield the best-fitting

(STEPCAM) models. Each generator STEPCAM and

the refitting procedure were run 10 times with different

random seeds, as ABC-SMC is inherently stochastic.

Due to the long computational time (several weeks), we

did not run more than 10 random seeds, although the

variation among the outcomes using different seeds was

low enough to justify this (Appendix: Fig. A7A). We

then investigated to what extent the average (across 10

random seeds) parameter values (proportion of dispers-

al assembly, filtering, and limiting similarity steps) of the

generator models and the best-fitting models differed, in

order to assess to what extent the ABC-SMC procedure

can successfully distinguish STEPCAMs with different

community assembly scenarios.

STEPCAM fitting: observed communities

After assessing whether STEPCAMs with different

community scenarios generate communities with differ-

ent trait distributions, we used the same ABC-SMC

approach to fit the functional diversity and CTM values

of the communities (plots) observed in the field (see Tree

community, trait data, and environmental gradients).

Thereby, we investigated which community assembly

scenario most likely operated in the field. For each plot,

we ran the algorithm 10 times with different random

seeds (all with uninformative priors). For each plot,

inferred parameters are the mean of 10 replicate ABC-

SMC procedures. Standard deviations of posterior

distributions can be seen in Appendix: Fig. A7A–C.

STEPCAM fitting was done with the STEPCAM R

package (Janzen and van der Plas 2014).

FONS VAN DER PLAS ET AL.1506 Ecology, Vol. 96, No. 6



Tree community, trait data, and environmental gradients

We compared how well traditional null models and

our STEPCAM approach can link trait distributions

with the three alternative community assembly processes

outlined by applying both methods to savanna tree

communities. For this, one needs to collect the following

data: (1) a species–plot presence matrix; in our specific

case, community composition data of trees along main

environmental gradients, and (2) a species trait matrix;

in our case, measurements of several functional traits for

each observed tree species.

The study site was situated in Hluhluwe-iMfolozi Park

(HiP; 288000–288260 S, 318410–328090 E), South Africa.

The ;90 000-ha reserve is characterized by high habitat

heterogeneity (Whateley and Porter 1983), with upland

forests, savanna grassland and thickets, woodlands, and

riverine forests. At larger scales, this vegetation hetero-

geneity arises from environmental gradients in rainfall

and fire regimes (Balfour and Howison 2002, van der Plas

et al. 2012). From November till December 2009, tree

species composition (trees over 0.5 m high) and trait

information were characterized in a total of 20 plots

(measuring 20 3 20 m) along these gradients. The eight

measured eco-morphological traits were specific leaf area,

leaf area, wood density, and leaf carbon, nitrogen,

phosphorus, sulfur, and potassium content. These traits

were selected due to their relation with growth–longevity

trade-offs, drought tolerance, nutritional status, and

attractiveness to herbivores (e.g., Brown and Lawton

1991, Marschner 1995, Weiher et al. 1999, Hacke et al.

2001, Westoby et al. 2002). A detailed description of the

study site and the data collection protocol, as well as

detailed plot information, is presented in Tables 1 and 2

and Appendix: Tables A1–3.

For each species/trait combination, we calculated the

species average trait values (hereafter species trait

values). Missing species trait values (25.9% of values;

values were mostly missing for rare species) were

completed using multiple imputation with chained

TABLE 2. Community descriptions of the 20 plots in the study
area.

Plot
Species
richness Abundance FR FE FDiv

1 27 319 56.69 0.61 0.86
2 16 417 6.02 0.37 0.73
3 23 1640 12.08 0.44 0.85
4 24 906 22.76 0.66 0.64
5 10 375 0.92 0.47 0.57
6 17 1144 14.42 0.61 0.92
7 14 511 2.54 0.65 0.58
8 23 568 6.07 0.47 0.65
9 13 344 4.82 0.74 0.82

10 9 266 2.68 0.28 0.65
11 5 109 0.03 0.41 0.89
12 12 342 18.09 0.58 0.85
13 15 653 21.47 0.54 0.66
14 18 656 16.38 0.55 0.94
15 13 261 6.94 0.53 0.73
16 5 322 0.06 0.35 0.74
17 15 288 9.58 0.58 0.71
18 13 167 5.99 0.64 0.62
19 8 271 0.57 0.67 0.50
20 8 454 3.16 0.39 0.98
Mean 14.4 501 11.01 0.53 0.74

Notes: Traits are given as the unstandardized community-
abundance-weighted mean values in each plot. Abundance is
calculated as number of tree stems .0.5 m height per plot.
Functional diversity values, functional richness (FR), evenness
(FE), and divergence (FDiv), are based on standardized trait
values.

TABLE 1. Descriptions of the 20 study plots in Hluhluwe-iMfolozi Park, South Africa.

Plot Latitude (8S) Longitude (8E) Rainfall Fire freq. SLA LA WD C N P S K

1 28.08 32.04 837.08 11 139 19.3 0.80 47.2 2.31 38.6 67 376
2 28.12 32.03 746.20 15 139 5.6 0.82 45.5 2.21 40.8 86 377
3 28.13 32.04 725.45 18 123 8.3 0.85 47.2 2.52 51.3 101 348
4 28.15 32.01 635.36 8 112 5.8 0.87 45.6 2.02 40.6 117 330
5 28.18 31.98 676.91 19 107 2.3 0.92 47.8 2.60 49.1 126 307
6 28.28 31.97 640.16 18 112 7.6 0.82 45.9 3.03 50.2 101 538
7 28.28 31.88 578.38 10 121 2.5 0.90 46.0 2.48 50.1 138 330
8 28.23 31.83 556.55 10 127 5.3 0.91 45.5 2.47 41.3 88 449
9 28.25 31.81 539.26 11 116 4.3 0.86 46.7 2.41 47.1 104 391
10 28.20 32.00 692.24 24 105 2.9 0.85 47.4 2.55 49.4 93 337
11 28.19 31.90 696.05 23 108 3.8 0.90 46.4 2.39 45.3 101 397
12 28.10 32.12 726.51 8 153 12.5 0.78 45.6 2.48 57.2 96 446
13 28.07 32.12 744.59 22 127 5.6 0.89 46.8 2.66 53.8 109 371
14 28.05 32.05 816.37 10 140 18.4 0.85 46.7 2.18 33.4 62 381
15 28.18 31.98 672.91 10 103 4.1 0.90 47.1 2.39 45.6 130 311
16 28.23 32.02 705.65 21 123 0.1 0.92 47.8 2.85 55.2 128 318
17 28.19 32.00 669.09 12 106 12.0 0.85 47.5 2.33 43.0 70 337
18 28.13 32.04 711.34 15 121 5.8 0.81 47.3 2.20 50.5 84 369
19 28.29 31.75 555.01 16 87 0.9 0.91 47.4 2.70 42.0 150 380
20 28.28 31.74 548.09 15 137 4.4 0.88 44.4 2.71 38.3 69 711
Mean 28.18 31.97 673.66 15 120 6.6 0.86 46.6 2.48 46.1 101 390

Notes: Traits are given as the unstandardized community-abundance-weighted mean values in each plot. Fire frequency is
calculated as number of fires between 1956 and 2004, and rainfall is shown in mm/yr. Other traits include specific leaf area (SLA;
cm2/g), leaf area (LA; cm2), wood density (WD; kg/L), leaf C and N (dry mass percentage), and leaf P, S, and K (mmol/kg). Values
of Plot 17 were used in sensitivity analyses.
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equations (MICE), using the mice function from the

mice package (Van Buuren and Groothuis-Oudshoorn

2011) in R v. 2.13.1 (R Development Core Team 2011).

The MICE imputation process involves specifying a

multivariate distribution for the missing data, and

drawing imputation from their conditional distributions

by Gibbs sampler techniques (a valid approach if a

multivariate distribution is a reasonable description of

the data as in the case of trait values). Prior to other

analyses, all species trait values were globally standard-

ized (mean¼0, SD¼1). As such, we avoided those traits

whose higher mean or variance had a higher impact on

model outcomes. Species trait values were used to

calculate functional diversity metrics (using the dbFD

function from the FD package; Laliberté and Shipley

2011) and CTM values for each plot (see Calculating

functional diversity metrics and trait means), using R

v. 2.13.1 (R Development Core Team 2011). Data on

environmental gradients (long term annual rainfall in

mm/yr and number of fires between 1956 and 2004) were

acquired from the HiP management authorities and are

described in Appendix: Table A1. As Plot 17 was most

representative with its geographical location, intermedi-

ate annual rainfall, fire frequency, species richness,

abundance, and functional diversity values (Tables 1

and 2), we studied this plot in more detail to see how

functional diversity metrics respond to community

assembly processes and whether the ABC-SMC ap-

proach could distinguish between the outcomes of

different STEPCAMs (see Responses of functional

diversity metrics to community assembly scenarios and

STEPCAM fitting: sensitivity analysis).

Relationships between tree community assembly and

environmental gradients

Relative contributions of dispersal assembly, filtering,

and limiting similarity steps of the STEPCAMs best fitting

the observed 20 communities (identified in STEPCAM

fitting: observed communities) were not independent of

each other, and were therefore analyzed simultaneously,

using multivariate analysis of variance (MANOVA). Fire,

rainfall, and their interaction effect were used as predictor

variables. Only relative contributions of filtering and

limiting similarity steps were included in the MANOVA,

because the relative contribution of dispersal assembly and

filtering steps appeared to be tightly correlated among sites

(r ¼ �0.901; a logical consequence when these two

processes dominate but are also constrained to a sum that

cannot exceed 1). The relative contribution of dispersal

assembly steps was therefore separately analyzed using a

general linear model. With general linear models and a

model selection procedure, we additionally explored how

CTM values changed over environmental gradients, to

help interpreting STEPCAM results. Initially, full models

were created, containing annual rainfall, fire frequency,

species richness, and log abundance of individual trees as

predictor variables. We then ran a maximum likelihood

model-selection procedure in order to identify the (nested)

model structure with the lowest Akaike information

criterion (AIC) value. These analyses were performed

using R v. 2.13.1 (R Development Core Team 2011).

Outcomes of this are presented in Appendix: A8.

Comparing species compositions of observed communities

with simulated communities

With our STEPCAM approach, we attempted to gain

insight in community assembly by fitting functional

compositions of observed communities. If best-fitting

STEPCAMs (identified in STEPCAM fitting: observed

communities) truly reflect community assembly in

nature, one might expect that species compositions of

modeled communities should also be similar to observed

ones (but see Fukami et al. 2005). We investigated this

question by quantifying community compositions of

both observed communities and communities created by

best-fitting STEPCAMs into nonmetric multidimension-

al scaling (NMDS) axes. NMDS analyses were based on

the Bray-Curtis dissimilarity index (Bray and Curtis

1957) with three axes. We performed 100 iterations and

achieved a minimal stress level of 0.190 (r2¼ 0.780). We

then explored whether NMDS axes of observed

communities correlated with NMDS axes of associated

best-fitting communities. Using the envfit function in the

vegan package (Oksanen et al. 2013), we assessed to

which extent environmental variables relate to ordina-

tion axes based on Pearson correlation coefficients of

ordination points with the environmental variables.

Null models

We used traditional, permutation-based null models

(Gotelli and Entsminger 2001) to assess whether

functional diversity values observed in each plot were

higher or lower than expected by chance and to

determine how conclusions based on null model

outcomes differ from conclusions based on STEPCAM

results. For each plot, we created 1000 randomized

communities based on a randomized sampling of the

species pool found in our study (i.e., all species

observed), where the chance of a species being selected

was equal to its relative frequency in the region (i.e., the

number of plots in which it was observed). As a

sensitivity analysis, we also performed a pure null model

where the chance of drawing a species is frequency

independent. Each randomized draw was constrained to

have the same richness as the observed community.

Deviation from the null expectation was determined

using the number of times that observed FR, FE, and

FDiv values were higher or lower than the functional

diversity values from randomly generated null commu-

nities (i.e., two-sided test, a ¼ 0.05; Gotelli and Graves

1996). If observed functional diversity is greater than the

null prediction in 975 or more cases (i.e., a ratio of

0.975), limiting similarity processes are assumed to have

formed the community. Alternatively, if observed is

greater than null in 25 or fewer cases (i.e., a ratio of
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0.025), then filtering is assumed to be the central process

in community assembly.

RESULTS

STEPCAMs: responses of functional diversity metrics to

community assembly scenarios

To investigate how multivariate functional diversity

metrics likely respond to different community assembly

scenarios, we investigated functional diversity patterns

of communities generated by different STEPCAMs. FR

was lowest in species assemblages formed by STEP-

CAMs where filtering steps were relatively important

and highest in species assemblages that were mostly

formed by STEPCAMs with a high relative importance

of limiting similarity processes (Fig. 2). FE and FDiv

were low in communities formed by STEPCAMs only

including filtering or dispersal assembly steps, and

higher in communities mostly formed by limiting

similarity steps (Fig. 2). However, STEPCAM simula-

tions show that FE and FDiv values were even higher in

communities that were partially formed by filtering and

partially by limiting similarity (Fig. 2).

STEPCAMs: sensitivity analyses

Although functional diversity values changed with

parameter settings, another question is whether func-

tional diversity values created with different community

assembly scenarios are also statistically distinguishable.

Fitting of the trait patterns resulting from generator

STEPCAMs showed that the trait distribution patterns

from STEPCAMs with different parameters are indeed

distinguishable with the ABC-SMC fitting procedure.

On average, parameter settings of the best-fitting models

hardly differed from their associated generator models

(Appendix: Fig. A7D): average parameter deviations

were 3.8% for dispersal assembly, 2.2% for filtering, and

2.0% for limiting similarity. This was much lower than

the 27.7% deviation that one would expect for each

parameter value if the ABC-SMC approach was

completely uninformative (Appendix: Fig. A7E). Fur-

thermore, parameter settings of the best-fitting models

highly correlated with those of generator models (all r2

. 0.95; Appendix: Fig. A7F). These checks thus suggest

that observed trait distributions can be accurately linked

with community assembly scenarios. Furthermore,

changing the order of different community assembly

processes (e.g., a random order of dispersal assembly,

filtering, and limiting similarity processes) did not highly

alter functional diversity patterns resulting from modeled

communities (all r2 values of functional diversity metrics

generated by STEPCAMs with different order of

community processes . 0.89; Appendix: Fig. A5),

suggesting that changing the order of different commu-

FIG. 2. Ternary plots with the responses of functional (a)
richness, (b) evenness, and (c) divergence to changes in the
relative contribution of DA, F, and LS steps in STEPCAMs.
Functional diversity values are estimates based on 231
STEPCAMs applied to Plot 17 at our study site (Hluhluwe-
iMfolozi Park, South Africa). Functional diversity values for
other positions in parameter space were estimated using bilinear
interpolation using the interp function of the akima package

 
(Akima et al. 2009) in R (R Development Core Team 2011). All
abbreviations are as in Fig. 1. Axis numbers are percentages.
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nity assembly processes would not highly affect the

outcomes of our fitting procedure (Appendix: Fig. A5A).

STEPCAM application: what structures savanna

tree communities?

When STEPCAMs were fitted to trait distribution

values of the 20 observed savanna tree communities

using the ABC-SMC approach, best-fitting models had a

high relative contribution of dispersal assembly steps

(75.8% average across plots), a lower relative contribu-

tion of filtering steps (18.8% average across plots), and

even fewer limiting similarity steps (5.4% average across

plots; see Fig. 3 for parameter values for each plot).

Posterior distributions of accepted model parameters

generally had narrow ranges and did not differ highly

between replicate models (Appendix: Fig. A7), indicat-

ing that the ABC-SMC approach is adequate in

detecting best-fitting STEPCAMs. A MANOVA

showed that limiting similarity steps had the relatively

highest contribution in best-fitting models in plots with

high rainfall, especially when fire frequency was low

(rain effect, T¼ 3.372; P¼ 0.004; fire effect, T¼ 1.969; P

¼ 0.066; rainfall3fire frequency interaction, T¼�2.191;
P¼ 0.044; model r2¼ 0.401; Fig. 4), while filtering was

most important in plots with high fire frequency and low

rainfall (Fig. 4; rainfall effect, T¼ 2.088; P¼ 0.053; fire

effect, T ¼ 2.705; P ¼ 0.016; rainfall 3 fire frequency

interaction effect, T ¼ �0.503; P ¼ 0.024; model r2 ¼
0.645; Fig. 4). So, we found statistical evidence that

limiting similarity became more important toward high

rainfall (co-occurrence of less similar species), while a

high fire frequency promotes co-occurrence of similar

species. An additional multiple regression model shows

that the relative contribution of dispersal assembly in

best-fitting models decreases with rainfall and fire (T ¼
�3.008, P ¼ 0.008; T ¼�3.136, P ¼ 0.006 respectively),

while an interaction effect between rainfall and fire also

exists (T ¼ 3.019, P ¼ 0.008; r2 ¼ 0.332).

Comparison of observed and modeled

community compositions

NMDS analyses demonstrate that even while our

ABC-SMC approach only fits functional data of

simulated communities to observed ones, species com-

positions of simulated communities are also fairly

similar to observed ones. Species compositions of

simulated and observed communities occupied similar

positions in NMDS space (Fig. 5a). Furthermore,

ordination values of the first two out of three NMDS

axes of observed and associated simulated communities

correlated significantly (NMDS1, r2¼ 0.286, P¼ 0.009;

NMDS2, r2¼ 0.388, P¼ 0.004; NMDS3, r2¼ 0.058; P¼
0.157; Fig. 5b–d).

Comparison to null models

In three plots, FR was lower than expected by chance

(i.e., lower than in 97.5% of the random draws), while

lower FE and FDiv values than expected by chance were

FIG. 3. Ternary plot with the dots representing the best-fitting STEPCAM for each of the 20 plots in Hluhluwe-iMfolozi Park.
All abbreviations are as in Fig. 1. Axis numbers are percentages.
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found in two plots. When null models were not

frequency weighted, FR was lower than expected by

chance in six plots, while results for FE and FDiv did

not change qualitatively. Functional diversity values

significantly higher than expected by chance (suggesting

limiting similarity) were never found, so all other plots

had functional diversity values not deviating from

random. Null model deviations (proportion of permu-

tations were a functional diversity metric that was higher

than expected) generally correlated weakly with STEP-

CAM outcomes: all functional diversity measure devi-

ations correlated negatively with the proportion of

filtering steps of best-fitting STEPCAMs (r ¼ �0.086,
�0.535, and�0.306 for FR, FE, and FDiv respectively)

and positively with the proportion of limiting similarity

steps (r¼ 0.650, 0.195, and 0.165 for FR, FE, and FDiv

respectively).

DISCUSSION

To estimate the relative contribution of dispersal

assembly, filtering, and limiting similarity processes in

community assembly, we used our novel STEPCAMs

and the ABC-SMC model selection approach for each

of the 20 savanna tree communities investigated.

Several authors have suggested that community assem-

bly processes are very difficult to separate when

operating simultaneously, because effects of filtering

and limiting similarity on trait distribution patterns can

cancel each other out (Kraft et al. 2007, Weiher et al.

2011). However, the fitting of trait distribution patterns

generated with known parameter settings showed that

it is possible to distinguish between different commu-

nity assembly scenarios with varying importance of

different processes. This indicates that the use of

STEPCAMs as expectation generators, combined with

the use of an ABC approach for discrimination

between alternative STEPCAMs for the same observed

data set, allows us to statistically disentangle the

relative importance of different community assembly

processes. Additionally, when repeatedly fitting STEP-

CAMs to the same data, the ABC-SMC consistently

selected best-fitting models with approximately the

same community assembly scenarios. This demon-

strates that our STEPCAMs generate repeatable trait

distribution patterns. Moreover, we found that species

compositions of simulated communities were fairly

similar to observed ones. It is certainly not trivial that

species-based community assembly should be possible

to predict from functionally based community assem-

bly (Fukami et al. 2005), and it is therefore very

promising that simulated communities nevertheless

have species compositions similar to observed ones.

We suggest that the main reason for this success is the

fact that we simultaneously fitted multiple independent

summary statistics (FR, FE, FDiv, and CTM values) so

that we used more information of observed data sets

than traditional analyses do. While different commu-

nity assembly scenarios might lead to communities with

similar FR, FE, FDiv, or CTM values alone (Fig. 2),

these are unlikely to shape communities in which all

aspects of the trait distribution are the same.

Although other approaches of estimating the relative

contribution of different processes in shaping commu-

nities have recently been developed (e.g., Laughlin et al.

FIG. 4. Contour plot with the contours showing expected (based on MANOVA outcomes) relative contribution of (a) F and (b)
LS steps of best-fitting STEPCAMs, as a function of rainfall and fire frequency (number of fires between 1956 and 2004). Best-
fitting model parameters, used as input for the MANOVA, are plotted as points. Colors range from blue (focal process is
unimportant) to brown (given process explains 100%, or 50% in case of limiting similarity, of community assembly). High similarity
between colors of points and their background indicates high model fit, while low similarity indicates low model fit; r2 values are
0.40 (F) and 0.65 (LS).
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2012, Shipley et al. 2012, Martorell and Freckleton

2014), our STEPCAM approach has two main advan-

tages. Firstly, while other approaches are biased toward

the detection of filtering processes (Laughlin and

Laughlin 2013), our approach explicitly incorporates

limiting similarity processes, and as demonstrated, it is

able to distinguish between these processes. Another

merit of our new approach is that it builds upon the

already existing and popular approach of null model

comparisons of trait distributions. In fact, null models,

which simulate community assembly by randomly

drawing species from a species pool, reflect a specific

parameter setting (100% dispersal assembly) of our more

general STEPCAM approach. This makes outcomes of

our STEPCAM approach easy to compare with

traditional approaches, while also allowing more specific

insights into community assembly by estimating the

relative contribution, rather than just the presence, of

different community assembly processes.

Nevertheless, we recognize that future modifications

could substantially improve our approach. While

ecological processes primarily act at the level of the

individual, our models are species-based. In future

implementations, STEPCAMs could become individu-

al-based and take species abundances and intraspecific

trait variation into account, thereby also allowing for

intraspecific interactions. Future studies could also alter

the weightings by which traits affect functional diversity

metrics, thus recognizing that, depending on the context,

some traits are functionally more important than others.

We chose not to do this, since we had no strong a priori

expectations of which traits are most important for

community assembly of this savanna system. While we

assumed that different processes act additively upon

community assembly, in real life, different processes

might interact (e.g., through priority effects), which

merits further study. Also, using additional characteris-

tics of communities or species pools (e.g., community

FIG. 5. Species compositions of both observed and simulated communities. (a) The first two nonmetric multidimensional
scaling (NMDS) axes, with observed communities shown in dark gray and simulated communities shown in light gray. (b–d)
NMDS values of simulated communities against NMDS values of observed communities, including significant (a¼0.05) regression
lines. Correlations between NMDS values of observed and simulated communities were r2 ¼ 0.286, P ¼ 0.00885 (NMDS1); r2 ¼
0.338, P¼ 0.00427 (NMDS2); r2¼ 0.058, P ¼ 0.157 (NMDS3).
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turnover; phylogenetic data), orthogonal or alternative

to the metrics we already used, might lead to additional

insights in community assembly. Although these de-

manding (in terms of both data and computational

power) modifications were not feasible for this study, we

highly welcome future studies incorporating these.

Ultimately, however, approaches like these should be

combined with experiments (as outlined in, e.g., Adler et

al. [2013]) to verify conclusions based on observational

data.

When we applied our method to fit trait distributions

of 20 observed savanna tree communities, we found that

the best-fitting models consisted mostly of dispersal

assembly steps (on average 75.8%), less of filtering steps

(18.8%), and least of limiting similarity steps (5.4%).

Therefore, niche-based processes might be less impor-

tant for the assembly of savanna tree communities than

we anticipated. During a dispersal assembly step, the

chance of a species being removed was inversely

proportional to its frequency in the species pool. Hence,

we assumed a lack of species differences in dispersal

capability. Both the fact that the surveyed area of our

study is relatively small (30 3 30 km) and the fact most

species have similar seed dispersal strategies (Pooley

1997) may explain why our results were largely in line

with this assumption. Many purely neutral models (e.g.,

Hubbell 2001) also assume that (1) niche-based process-

es are not important for community assembly and (2)

the chance of successful dispersal of a species is

proportional to its abundance in the metacommunity

(thus assuming that all individuals are equally likely to

successfully disperse). However, it should be emphasized

that dispersal assembly was not the only process shaping

communities; rather, we found statistical evidence that it

was the dominant one when compared to the influence

of (two types of ) niche-based processes.

An interesting question is why in a system with some

very clear constraints on tree recruitment and growth

(e.g., due to drought, fires, and herbivory), community

assembly nevertheless appears very stochastic, with on

average 75.8% of the steps of best-fitting STEPCAMs

being non-niche based. Part of the answer lies in our

definition of the species pool, which only included

species found in our set of 20 plots. Therefore, larger-

scale filtering processes that determine which species

can or cannot occupy any of our research area are

ignored in this study, which might partially affect

outcomes (Garzon-Lopez et al. 2014). Also, the

inclusion of other important traits, such as seed size

(related to reproductive strategy) or rooting depth

(related to nutrient uptake) might have led to a higher

detection of niche-based processes than the current set

of traits. Nonetheless, within our study design, there

are steep rainfall and fire gradients (see Appendix: Fig.

A1A, B) and average trait values do respond to these

(Appendix: Table A8.1). So the question remains why

tree communities sampled over these gradients ap-

peared relatively randomly (75.8% of the steps of best-

fitting STEPCAMs were non-niche based) assembled

with respect to the traits we measured. One reason

might be that species have different strategies to cope

with the same kinds of conditions, as has been shown in

studies related to herbivory (Bryant et al. 1989). This

can result in contrasting phenotypes with similar fitness

(Marks and Lechowicz 2006). In addition, it might be

that intraspecific variation is large when compared to

interspecific trait variation. Taken together, organisms

of different species could be functionally equivalent

(Hubbell 2001, 2006) despite differences in traits,

leading to the emergence of neutral-like trait distribu-

tions.

Although less so than dispersal assembly processes,

filtering and limiting similarity still explained part of the

observed trait distribution patterns of tree communities.

Filtering was especially important in areas with high fire

frequency. Fire is a commonly recognized stress factor

for savanna trees (e.g., Bond and Wilgen 1996) and may

thus have been responsible for the imprints of filtering

on trait distribution patterns. Additionally, filtering

patterns might have been caused by the exclusion of

competitively inferior tree species (Mayfield and Levine

2010). Limiting similarity is usually interpreted as an

indicator of interspecific competition (Hutchinson 1959,

MacArthur and Levins 1967, Abrams 1983, Cornwell

and Ackerly 2009). In savannas, where tree growth is

limited by water availability, fires, or grasses (e.g., Bond

and Wilgen 1996, Scholes et al. 2002, Cramer et al. 2010)

and canopies are quite open, light competition among

trees is in most cases likely to be modest (van der Plas et

al. 2013). Sites with low fire frequency and high rainfall

(a rare combination, as rainfall promotes fuel load) may

be among the few locations where light competition

among trees is strong enough to detect high impacts of

limiting similarity. Interestingly, these were also the sites

with the highest species richness (Appendix: Table A8),

suggesting a possible relationship between species

richness and the presence of limiting similarity process-

es, which merits further study.

When comparing the outcomes of our STEPCAM

approach with traditional null model outcomes, one

main observation is that while classic null models never

detected any sign of limiting similarity in our data set,

our novel STEPCAM approach did. Limiting similarity

and filtering are expected to have more or less opposite

effects on the trait distributions of co-occurring species

(Weiher et al. 2011). Therefore, the impact of one of

these processes can potentially mask the effect of the

other. Although other studies have suggested solutions

for these problems (e.g., Helmus et al. 2007, Cornwell

and Ackerly 2009, Parmentier et al. 2014), these

solutions are unlikely to work under all circumstances

and do not quantify the relative importance of co-

occurring processes. We have shown that the tradi-

tional assumption that filtering decreases trait diversity,

while limiting similarity increases it, is a highly

simplified one, as the combination of these processes
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causes nonlinear patterns in parameter space (Fig. 2).

Therefore, when limiting similarity processes and

filtering processes operate simultaneously, at similar

spatial scales, it may be very hard to statistically detect
both these processes using null models and even

impossible to quantify the relative contributions of

these different processes to community assembly. With

our STEPCAM approach, we made progress in
overcoming these problems, which explains why we

could detect imprints of limiting similarity. We

therefore suggest that our approach is promising to

unravel the relative importance of different community
assembly processes across different types of ecosys-

tems, types of communities, trophic levels, and global

environmental gradients.
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