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Abstract 

This paper reports the synthesis of continuous nanobelts, whose thickness is less than 

half of its pore diameter, of a material hybrid composing of nanograins of nickel oxide and 

cobalt oxide by electrospinning technique and their capacitive charge storage properties. 

While the constituent binary metal oxides (NiO and Co3O4) formed solid cylindrical 

nanofibers the hybrid and a stoichiometric compound in the Ni-Co-O system, i.e., spinel-type 

NiCo2O4, formed as thin nanobelts due to the magnetic interaction between nickel and cobalt 

ions. The nanobelts showed six-fold larger surface area, wider pores, and impressive charge 

storage capabilities compared to the cylindrical fibres. The hybrid nanobelts showed high 

specific capacitance (CS ~1250 F g
-1

 at 10 A g
-1

 in 6 M KOH) with high capacity retention, 

which is appreciably larger than found for the stoichiometric compound (~970 F g
-1

 at 10 A g
-

1
). It is shown that the hybrid nanobelts have lower internal resistance (1.3 Ω), higher 

diffusion coefficient (4.6×10
-13

 cm
2 

s
-1

) and smaller relaxation time (0.03 s) than the 

benchmark materials studied here.  

Keywords: Nanocomposites; Hybrid metal oxides; Energy storage devices; Renewable energy; 

Electrochemical charge storage 
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Introduction 

Hybrids of functional materials have long been synthesized for achieving enhanced 

physical and chemical properties. In this era of energy intensive electronics and electric 

vehicles, devices utilising hybrid materials are gaining increased importance as they could 

offer improved performance at a lower cost [1-4]. Furthermore, if the hybrid materials are 

synthesized in one-dimensional morphology at nanometer dimensions, electrical properties 

could be tailored [5, 6]. Hybrid properties are achieved through many methods such as 

physical mixing of its components, chemical methods such as core/shell, hierarchical 

structures, nanoparticle-decorated nanowires, and carbon-reinforced porous materials are few 

examples [7-13].  

Considerable efforts have been made on fabricating electrochemical energy storage 

devices, such as batteries and electrochemical capacitors, utilising combined properties of 

hybrids [14-19]. Due to anisotropic electrical properties, nanowires (NWs) are a preferred 

choice as electrodes for energy storage; many nanowire systems are reported with excellent 

charge storage properties [20, 21]. A nanobelt morphology is preferred over nanowires of 

spherical cross-section because the former could offer higher surface-to-volume ratio and 

reduced diffusion path for ions in electrolyte creating better charge discharge rates [22]. 

Although there are few reports on the nanobelts of a single material system [23, 24], a 

nanobelt of a hybrid of two chemically distinct phases has not yet been reported.  

Among the widely explored electrochemical materials as supercapacitor electrodes, 

NiO and Co3O4 received high attention owing to their high theoretical specific capacitance 

(CS ~2570 and ~3560 F g
-1

, respectively). Although Co3O4 based devices provide high CS 

their inferior rate capability due to poor electrical conductivity (~10
-3

 S m
-1

) poses an issue. 

On the other hand, NiO offers an order of magnitude higher conductivity (10
-2

 S m
-1

) despite 
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its relatively lower CS. There have been efforts to enhance electrochemical performance of 

Co3O4 by the addition of NiO [25-38]. Although improved CS have been reported in many of 

these works, poor rate capability and device performance were still observed. As a solution to 

these shortcomings, in the present work, a hybrid of NiO–Co3O4 in the forms of continuous 

nanobelt (hybrid nanobelts, HNBs) has been synthesized by electrospinning technique [39]. 

Interestingly, the single component counterparts, i.e., NiO [40] and Co3O4 [41], formed as 

nanowires while the hybrid was nanobelts under similar electrospinning conditions. A 

stoichiometric compound (NiCo2O4) has also been synthesized as nanobelts; electrochemical 

characterization of the materials show that the HNBs show superior capacitive charge storage 

properties. 

 Experimental details 

The NiO–Co3O4 hybrid was synthesized by electrospinning technique using a similar 

procedure adopted for their single component binary counterparts [40, 41] but with 

modifications. The main difference was in the amount of precursors: the metal precursors 

were used in 1:1 molar ratio for the synthesis of the NiO–Co3O4 hybrid (no other ratios led to 

a hybrid). Starting materials were cobalt acetate tetrahydrate, nickel acetate tetrahydrate and 

polyvinyl alcohol (PVA; Mw 145,000, Merck). For preparing HNBs, the precursors of cobalt 

and nickel taken in a 1:1 molar ratio were dissolved in 7wt.% of PVA solution. With slow 

and continuous stirring for 24 h, a clear solution was obtained. This clear solution was 

electrospun utilising a commercial electrospinning unit (Electroris, nanoLab, Malaysia). 

Electrospinning parameters were set as injection rate of 0.6 mL h
-1

, voltage ~18 kV and 

aluminium foil collector at a distance 15 cm from the spinneret. The relative humidity around 

spinning unit was maintained at ~30%. The as-spun fibres were calcined at 450
o
C for 1 h in 

air for removing the polymer and complete nucleation of nanohybrid. The single component 

binary metal oxide analogues (i.e., NiO and Co3O4) were synthesized as reported before [42]. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 

 

In addition, a ternary stoichiometric compound, NiCo2O4, was also synthesized by 

electrospinning using a similar procedure except that stoichiometric amounts of Ni and Co 

precursors were dispersed in the PVA solution. 

The viscosity of the polymeric solution used for electrospinning was measured using a 

rheometer (LVDV III Ultra, Brookfield Co.,USA). The crystal structures of the material were 

studied by X-ray diffraction (XRD) using a Rigaku Miniflex II X-ray diffractometer 

employing CuKα radiation (λ = 0.15406 nm). XRD analysis was carried out by putting the 

powder sample into the holder followed by pressing it lightly using a glass slide to obtain 

smooth flat surface and was scanned in the range 2θ = 20 to 70° with step size 0.02°and scan 

speed 1°/min. The morphology and microstructure of the materials were studied by scanning 

electron microscopy (7800F, FESEM, JEOL, USA). For this analysis the metal oxide samples 

were coated with gold (Au) using BIO-RAD Polaron Division SEM Coating System 

machine. This coating process was conducted under 0.1 mbar pressure and 30 mA for 75 

seconds. The samples were then placed in the FESEM holder and were evacuated at a 

pressure of 5 bar. Measurements of Energy Dispersive X-ray Spectrometer (EDX) (using 

7800F, FESEM, JEOL, USA) were carried out to determine the atomic and weight 

percentage of Ni and Co in HNBs and NiCo2O4 samples.  Samples for transmission electron 

microscopy (TEM) analysis were prepared by ultrasonically dispersing the metal oxides in 

ethanol for 3 h. A drop of this solution was then allowed to dry on a carbon coated copper 

grid. Morphology of the materials and high resolution lattice images of the samples were 

obtained using TEM operating at 300 kV (FEI, Titan 80–300 kV). X-ray photoelectron 

spectroscopy (XPS) was performed using a PHI Quantera II (Physical Electronics) operating 

with an X-ray source of Al-Kα radiation at 100 W for the chemical analysis of the hybrid 

material. The survey spectra were recorded in the range 0 – 1327 eV at pass energy 120 eV 

with a resolution of 0.5 eV maintaining a low pressure of 10
-10

 Torr; high resolution spectra 
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were recorded with smaller constant pass energy of 20 eV with a resolution of 0.1 eV. Charge 

referencing was carried out against adventitious carbon, assuming its binding energy at 284.8 

eV. The spectra were analysed using Origin 9.0 by fitting the high resolution spectra into 

multiple Gaussian curves; the baseline was modelled by adjacent averaging. Gas adsorption 

behaviour and BET surface area of the materials was determined using Micrometrics (Tristar, 

3000) instrument in nitrogen atmosphere. 

The electrodes for electrochemical studies were fabricated by coating slurry of the 

active material on pre-cleaned nickel foam substrates using acetone, HCl, water and ethanol. 

The slurry, in a typical experiment, was prepared by mixing the NiO–Co3O4 hybrid with 

polyvinylidenefluoride (PVDF) (Sigma Aldrich, USA) and carbon black (Super P conductive, 

Alfa Aesar, UK) in the ratio 75:10:15. N-methyl-2-pyrrolidinone (NMP), which works as a 

homogeniser, was added to the above mixture and stirred well for 24 h. The slurry thus 

obtained was pasted on the pre–cleaned nickel substrate (area ~1 cm
2
) and dried at 60

o
C. The 

dried electrode was subsequently pressed at a pressure of 5 ton using a hydraulic press. The 

active material loading on the electrodes was ~2.5 mg cm
-2

. Electrodes of the binary metal 

oxide (NiO and Co3O4) analogues were also prepared in a similar way. 

The cyclic voltammetry (CV), charge-discharge cycles (CDC), electrochemical 

impedance spectroscopy (EIS) measurements of the electrodes were studied using 

potentiostat-galvanostat (PGSTAT M101, Metrohm Autolab B.V., Netherlands) employing 

NOVA 1.9 software. The EIS measurements were carried out in the frequency range 100 

kHz–0.01 Hz at respective open circuit potential. A platinum rod and a saturated Ag/AgCl 

electrode were used as the counter and the reference electrodes, respectively. Electrolyte used 

was 6M KOH because of its high ionic conductivity (~627 mS cm
-1

).  
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Results and discussion 

The FESEM images of the as-spun fibers of the polymeric solutions containing 

precursors in the 1:1 molar ratio (which developed the NiO–Co3O4 hybrid upon heating, 

hereafter termed as hybrid nanobelts, HNBs) and the one intended to prepare the 

stoichiometric compound, NiCo2O4, are shown in figure 1. The images show a bimodal 

distribution of fibre sizes and morphologies; small cylindrical fibers and large belt-like fibers. 

The belt-like fibers had a thickness up to ~900 nm, whereas the cylindrical ones had much 

smaller diameter (~200 – 300 nm). However, upon annealing they formed into nanobelts of 

thickness ~9 nm and average width of ~250 nm (figure 1 c-f). Interestingly, while the HNB 

and NiCo2O4 were nanobelts, their binary components, i.e., NiO [40] and Co3O4 [41], formed 

as nanowires with an average diameter of ~55 nm (See supplementary information, figure 

S1), under similar electrospinning conditions.  

There are conflicting ideas regarding nanobelt formation during electrospinning [24, 

43-45]. One of the ideas suggests that the thickness of as-prepared fibres could be tailored by 

changing the metal ion concentration of the initial polymeric solution, which upon annealing 

results in different morphologies such as fibres, belts or tubes [24]. Cheng et al. suggest that 

water evaporation rate and PVP burning rate during annealing of the polymeric fiber 

considerably influence the formation of different morphologies including nanobelts [46]. 

Another more general concept suggests tailoring of electrospinning parameters (such as 

viscosity, humidity, flow rate, applied voltage etc.) for obtaining different morphologies [44]. 

Formation of belt morphology has been explained as arising from  a mechanical impact when 

thicker partly solidified gel-like fibres fall on the collector surface [44]. While few thicker as-

spun fibers in figure 1 support this idea, a large fraction of as-spun fibers are cylindrical and 

the origin of belt-formation may be different.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

7 

 

For understanding the reason behind the belt formation in the present study, the 

viscosities of the spinning polymeric solutions were measured (Table 1). The viscosities of 

the nickel and cobalt precursor solutions were similar (~78 cP); surprisingly, the viscosity of 

their mixture is nearly doubled (147 cP). For further confirmation, the viscosity values of 

similar hybrid materials such as CuO–Co3O4 and CuO–NiO were measured; they neither 

showed such a considerable change in viscosity on mixing (Table 1) nor give a belt 

morphology (data not shown). However, increased viscosity alone could not trigger the 

transition into a belt-like morphology, because materials like SnO2 shows wire morphology 

even when the precursor solution has much higher viscosities than the NiO–Co3O4 solution 

(250–350 cP) [47]. We could identify only one possible reason for this result, which is due to 

the magnetic interaction between the solvated Ni
2+

 and Co
3+

 ions [48]. Therefore, the 

magnetic interaction could be responsible for the belt morphology of the NiO–Co3O4 hybrid 

and NiCo2O4. The belt morphology would offer superior surface area than wire morphology. 

For example, assuming a dimension of ~1 m length, the belts of the HNBs have ~6–fold 

larger surface area than wires, which has been confirmed using BET surface area 

measurements to be discussed later.  

The morphology, surface, and lattice structure of the HNBs were further examined by 

TEM. Figure 2 (a&b) show the bright field TEM images of HNBs of different 

magnifications; the TEM images of the binary NWs can be found in figure S2 (See 

supplementary information, figure S2). The belts are made up of small particles, whose size 

determined using the Image J software is ~10–15 nm. Particle packing appears to be tight, 

however, many bright regions composing pores of size <10 nm was observed. The partial 

transparency of the belts also indicates their nanometer sized thickness, which is not normally 

observed in nanowires (figure S2). The particle packing and their morphology is more 

obvious in a high resolution bright field image presented in figure 2b. The high resolution 
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TEM (HRTEM) images in figure 2c&d shows the lattice structure of the HNBs. Well 

crystallized as well as semi-amorphous regions were observed in HRTEM; the crystalline 

regions could be indexed to NiO and Co3O4 nanoparticles. In figure 2c, the lattice planes with 

0.210 and 0.246 nm spacing were observed, which correspond to (200) plane of NiO and 

(311) plane of Co3O4, and in figure 2d, spacing of 0.146 and 0.445 corresponding to (220) 

plane of NiO and (111) plane of Co3O4, respectively. The lattice spacing was determined 

using the Image J software by considering at least 6 parallel planes composing a particle.  

To characterise the crystal and chemical structures of the HNBs, XRD and XPS 

techniques were employed. Figure 3a shows the XRD patterns of HNBs compared with those 

of its individual components. It can be clearly seen that the peak positions of NiO and Co3O4 

exactly match with those of HNBs without any shift, indicating the hybrid formation. All the 

XRD peaks corresponding to Co3O4 in the HNBs are sharper than they are in the single phase 

indicating a highly ordered phase. The XRD peaks of NiO correspond to a face centred cubic 

unit cell (Space group      ) with lattice parameters a = 0.418 nm which is in agreement 

with reported values (ICDD card No: 4-0835) and the Co3O4 peaks corresponds to the space 

group       with lattice parameter a = 0.805 nm (ICDD card No.  65-3103). It can be argued 

that a mixture of NiO and Co3O4 would favour the formation of the spinel-type stoichiometric 

compound, NiCo2O4. To examine this possibility, we have synthesized NiCo2O4 by 

electrospinning and compared their XRD patterns (figure 3b). Clearly a shift in peak position 

(up to ~1
o
) can be observed between NiCo2O4 and HNBs, which rule out the above 

possibility. Besides, a compound formation in the composition meant for HNBs would show 

presence of unreacted NiO or Co3O4 in the XRD pattern. The graphs in figure S3 (a-d) 

compare the XRD patterns of HNBs with some of the reported compounds in the NiO–Co3O4 

system reported literature such as NiCoO2, CoO, CoO2 and CoO3 (See supplementary 
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information, figure S3), these materials could not be detected in the XRD pattern eliminating 

such possibilities. 

To examine the chemical composition, the HNBs were further characterized by XPS. 

The survey spectrum in figure 4a shows that the primary constituents of HNBs are cobalt, 

nickel and oxygen. In figure 4b two peaks corresponding to Co 2p3/2 and Co 2p1/2 can be seen 

at 780.7 eV and 796.3 eV, respectively (full width half maximum (FWHM) values of fitted 

peaks), with a spin-energy separation of 15.6 eV, which corresponds to the earlier reported 

values [49]. The Co 2p3/2 and Co 2p1/2 were each fitted into two peaks as shown in figure 4b, 

which corresponds to Co
3+

 and Co
2+

 oxidation states. Similarly, while observing the peaks of 

Ni 2p XPS spectra as shown in figure 4c, there are two peaks corresponding to Ni 2p3/2 and 

Ni 2p1/2 at 855.3 eV and 872.8 eV, respectively (FWHM values of fitted peaks), with a spin-

energy separation of 17.5 eV also in line with the reported literature [50]. One satellite peak 

each was observed near Ni 2p3/2 and Ni 2p1/2 peaks indicated presence of Ni
2+

 in pure NiO 

phase. The XPS spectrum of oxygen (O 1s) in figure 4d suggests that generally 2
- 
charge is 

associated with the oxygen present in the range of 530.2–532.3 eV, which corresponds to 

Co3O4 and NiO; presence of NiCo2O4 would have resulted in additional satellite peaks in the 

O 1s spectra [51, 52]. EDX analysis was also conducted to confirm the difference in 

percentage of composition of elements in HNBs and NiCo2O4 materials. The results (shown 

in Table 2 and figure S4) verify the findings from XRD and XPS analysis that the atomic 

ratio of HNBs is ~1:1 and that of NiCo2O4 is 2:1.   

Surface properties of the materials were studied by nitrogen adsorption-desorption 

measurement. The nitrogen adsorption isotherms of all the samples are shown in figure S5 (a-

d). BET surface area, total pore volume, and average pore diameter of the materials 

determined from the adsorption measurements are listed in Table 3. It can be seen that the 

surface area of the HNBs (~79 m
2
g

-1
) are similar to the NiCo2O4 samples (~70 m

2
g

-1
) and 
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much higher than their binary analogues (~14 m
2
g

-1
). i.e., measured surface are of the 

nanobelts were over 5-fold larger than their binary analogues as predicted from the SEM 

images. This higher surface area of the samples is reflected in the superior electrochemical 

properties, such as capacitive rate capability, which is to be discussed later. The inset of the 

BET curves shows the presence of micro, meso and macropores, suggesting improved 

solvated ion intercalation and larger accessible surface area which results in improved 

electrochemical properties [53]. Comparatively, pore diameter (~21 nm) and specific pore 

volume (0.5 cm
3
g

-1
) were higher in the case of HNBs than the NiCo2O4 nanobelts (pore 

diameter ~17 nm and pore volume ~0.3 cm
3
g

-1
) and binary analogues (pore diameter ~11 nm 

and pore volume ~0.5 cm
3
g

-1
), which is possibly a source of its larger surface area. 

Interestingly, the pore diameter of the HNBs (~ 21 nm) is more than double the thickness of 

the belts (~10 nm), consistent with the observations from TEM studies. The pore size of 

HNBs is larger than the solvated ion size of many electrolytes [43];  and therefore, HNBs 

would offer unique advantages when they are used for electrochemical applications.   

Galvanostatic charge-discharge cycling (CDC) studies were employed to analyze the 

practically achievable CS, internal resistance, and long term cyclability of the electrodes. The 

discharge curves at 10 A g
-1

 of HNBs, NiCo2O4 and component metal oxides can be seen in 

figure 5a. The discharge curves of battery-type electrodes are usually as a result of three 

processes (figure 5b, discharge curves of HNBs at different current densities): (i) an abrupt 

initial potential drop due to the surface contribution of the PC (ii) a slow potential decay 

through deep intercalation, and (iii) relatively faster voltage drop indicating EDLC 

mechanism. It was observed that all the electrodes were showing a maximum potential of 0.4 

V in 6 M KOH electrolyte. The nonlinear shape of discharge curve suggests that faradaic 

reactions are predominant in the electrodes. Evidently, the discharge time increased 

considerably for HNBs when compared to NiCo2O4, Co3O4 and NiO. The variation of 
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specific capacitance with current density of all materials studied can be observed in figure 5c. 

The CS of the electrodes at ~10 A g
-1

 are 416, 611, 1251 and 970 Fg
-1

 for NiO, Co3O4, HNBs 

and NiCo2O4 respectively. Similar CS has been reported for electrospun NiCo2O4 nanobelts 

(~800 F g
-1

) in a previous publication [24]. The HNBs showed the highest CS with fairly high 

rate capability, which could be ascribed to their lower thickness than their pore size. On the 

other hand, the CS of cylindrical fibres of NiO and Co3O4, whose diameters are much higher 

than their pore size, decreased substantially at higher current densities. Evidently, the CS 

decreased only 11% with current density increasing from 1 A g
-1

 to 10 A g
-1

 in the case of 

HNBs, in comparison to 15%, 40% and 36% decrease for NiCo2O4, Co3O4 and NiO 

respectively. The ultra-thin belt morphology with larger pores is expected to facilitate the 

diffusion of OH
-
 ions thereby accessing more active sites which in turn enhance the 

capacitance. Figure 5d shows the charge–discharge cycle of HNBs from which equivalent 

series resistance (ESR) could be reliably calculated [9]. The potential drop (VIR) between the 

charge and discharge curves is a measure of the ESR of the electrodes. The factors 

contributing the ESR are (i) intrinsic resistance of the electro-active material, (ii) electrolyte 

resistance, and (iii) the contact resistance at the active material–current collector interface. 

The ratio of potential drop (VIR) to the discharge current (ID) of the electrode gave ESR 

values as: NiO – 1.4 Ω, Co3O4 – 1.7 Ω, HNBs – 1.2 Ω and NiCo2O4 – 1.3 Ω. Thus, the ESR 

of the HNBs is lower than that of its constituents and compound thereby offering improved 

capacitive performance. The reversibility and extended cyclability of the electrode can be 

determined from the CD curves by calculating the coulombic efficiency (), which is defined 

as the ratio of discharging to the charging time. The η of HNBs was 95% which is superior to 

that observed for single components (92%). The operational stability of the HNBs was 

evaluated by galvanostatic charge-discharge testing at a current rating of ~10 A g
-1

. Retention 
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in capacitance and  of ~99 % was shown by HNBs at the end of the 5000 cycle test program 

(figure 6).  

Cyclic voltammetry (CV) was employed to determine the nature of the oxidation 

reduction reactions occurs in the electrodes giving rise to the above discharge capacitance.  

Figure 7a displays the CV curves of HNBs, NiCo2O4, and their constituent binaries, 

respectively, at a scan rate of 5 mVs
-1

. The cathodic and anodic peaks, arising due to 

oxidation and reduction reactions, illustrate the battery-type behaviour of materials which is 

also supported by the non-linear variation of current with scan rate in the charge – discharge 

cycling. The voltammetric current of HNBs is much higher than the benchmark materials 

indicating its superior electrochemical performance. The electrochemical reactions (1 to 3) of 

the electrodes containing NiO and Co3O4 are routinely expressed as [41, 54]: 

                                                                                                       (1) 

                                                                                        (2) 

                                                                                              (3) 

However, these relations alone cannot explain the observed CS because the HNBs and 

NiCo2O4 showed significantly different discharge capacitances. While comparing the 

oxidation peaks of HNBs and NiCo2O4, one would observe that the peak in HNB is shifted to 

more negative potential than NiCo2O4 which in turn lower than their constituents. Usually 

oxidation at lower potential occurs for materials of higher electrical conductivity [40, 41]; a 

lowered internal resistance of HNBs was also observed from the charge – discharge cycling 

curves. However, a scan rate dependent CV analysis shows (See supplementary information, 

figure S6 a) a shift in peak position towards the higher potentials indicating the charge 

polarization at the electrode – electrolyte surface. The variation of CS with scan rate is 
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analysed (See supplementary information, figure S6 b) and HNBs showed highest capacitance 

value, similar to that as observed from CDC. To compare the relative advantage of the HNBs 

on the charge diffusion to the electrode, we compared the extent of faradaic reaction from the 

variation of scan rate (v) with voltammetric current (i). If the current arises from bulk 

intercalation process, it follows diffusion kinetics and the current i varies as v
1/2

 (battery-

type). On the contrary, if the current arises from surface charge storage processes 

(pseudocapacitance), a linear relation with v can be observed. As can be observed from figure 

7b, all the materials show         relationship, suggesting dominance of bulk intercalation 

charge storage processes. Further, the slope of such a line is proportional to the charge 

diffusion according to the Randles-Sevcik equation (5) , 

                                                                                                    (4) 

where n is the number of electron transferred to the electrode surface, A is the surface area of 

the electrode, D is the ion diffusion coefficient, v is the scan rate, and C0 is the initial ion 

concentration. One would observe that the HNBs show the largest slope thereby offering 

superior charge diffusion process through the electrode. The Ds calculated using the slope of 

i vs v
1/2

 graph is in Table 4. Highest value of D (4.6×10
-13

 cm
2
s

-1
)  is observed for HNBs 

which suggests an improved rate of ion transport and, consequently, relatively lower 

electrode polarization during charge–discharge process [55, 56]. On the other hand, the Ds of 

NiO, Co3O4 and NiCo2O4 are 1.9×10
-13

, 5.3×10
-14

 and 3.4×10
-13

 cm
2
s

-1
, respectively. These 

Ds could be directly correlated to their pore sizes – the larger is the pore size the larger is the 

D. Besides pore size, electrical conductivity of the electrodes also influence the D [43]. For 

example, Co3O4 has the lowest D and electrical conductivity (Table 4) but NiO with similar 

pore size has an order of magnitude higher D due to its higher electrical conductivity. 
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Therefore, one could argue from the improved D and CS of the HNBs that a synergistic 

combination has been achieved.  

To further correlate surface properties and CS,  the quantity of electrochemically 

active sites in the electrodes accessed by the solvated ions (n) in the electrolyte, which varies 

with scan rates, was calculated following the equation (6), 

                                                                        SC m V
n   

F Z

 



                            (5) 

where ‘m’ is the molecular weight, V is the redox potential, F is the Faraday’s constant and 

Z is the oxidation state of the electrode material. The n for NiCo2O4 and HNBs at 2 mV s
-1

 

were ~29 and ~34%, respectively. i.e., the hybrid contributed more electrochemically active 

surface. This explains the higher CS values attained by HNBs. Electrochemical reversibility 

of the material, i.e., the coulombic efficiency (η), was calculated from the ratio of the area of 

the anodic to the cathodic peaks of CV curves. The η measured from scan rate (2 mV s
-1

) of 

HNB electrodes show the highest value (97%) compared to the other electrodes indicating 

improved electrochemical reversibility and better capacity retention for long cycle of 

operation. The CV measurements, thereby, show that the HNBs could offer improved 

capacitance, electrochemical active sites and coulombic efficiency than the benchmark 

materials studied here.   

Electrochemical impedance spectroscopy (EIS) provides a powerful technique to 

study the charge kinetics at an electrode – electrolyte interface. Figure 8a compares the 

Nyquist plots of the electrodes fitted using a standard Randles circuit routinely used for 

evaluation of the supercapacitor electrodes. The equivalent circuit (inset figure 8a) is a series 

and parallel combination of device bulk resistance (RS), charge transfer resistance (RCT), 

electric double layer capacitance (Cd), Warburg impedance (ZW),  and a constant phase 
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element (CPEPC) representing the supercapacitance dispersion on the nickel foam owing to 

the surface irregularities [57, 58]. The charge kinetic parameters thus determined for HNBs 

are RS = 1.2 Ω, RCT = 1.1 Ω, Cd = 1.5 mF, ZW = 220 mMho and ZCPE = 39.5 (mFs)
1/n

 (n = 

0.92). The HNBs showed lowest RCT value (1.1 Ω) followed by NiCo2O4 (1.2 Ω), NiO (1.3 

Ω) and Co3O4 (1.5 Ω) respectively. A low RCT of HNBs sample indicates enhanced ionic 

conductivity and electrolyte diffusion through the pores of the electrode and would lead to 

improved rate capability [59]. The measured kinetic parameters corroborate the results 

obtained from CV and CDC analysis that HNBs have superior electrochemical properties 

than the other materials under study (Table 4). The responsiveness of the supercapacitors are 

measured in terms of the charge relaxation time (τ) or RC time constant, which is defined as 

the time required dissipating half of the energy stored. To determine value of τ, plot of 

frequency vs phase difference was drawn (figure 8b) from which the characteristic frequency 

(   
 

 
) (the point at which the circuit is equally capacitive and resistive) is calculated [60]. 

The phase angle is 90
o
 for an ideal capacitor and 45

o
 when the capacitive and resistive 

impedances are equal. A phase angle of 90
o
 is typically observed only in EDLCs using 

carbon materials whereas deviations from 90
o
 are commonly observed in pseudocapacitors. 

The phase angles of all the four materials are compared in figure 8b. The fo is 25.86 Hz in 

HNBs, which is much higher than the conventional activated carbon (~0.05 Hz) [61], 

whereas that of NiCo2O4, NiO and Co3O4 is 10.29, 2.09 and 0.22 Hz, respectively. As 

observed from figure 8b HNBs show highest fo, which means that the HNB electrode remains 

capacitive for a wider frequency range. The value, which measures how fast a 

supercapacitor is discharged and is related to power density of supercapacitors, are much 

lower for HNBs (0.03 s) when compared to the other three electrodes. This rapid frequency 

response of the HNBs electrode would provide superior rate capability and cycling stability 
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in practical devices. Comparison of these charge kinetic parameters of component and hybrid 

electrodes indicates the superiority of HNBs electrodes.  

Conclusions 

In conclusion, we have electrospun continuous nanobelts of a hybrid material, in 

which NiO and Co3O4 remain chemically intact. Thickness of the NiO–Co3O4 hybrid is less 

than half of its porosity. The hybrid and a stoichiometric compound in the Ni-Co-O system, 

i.e., spinal-type NiCo2O4 crystallized as belts whereas their constituent binary metal oxides 

(NiO and Co3O4) formed as solid cylindrical nanofibers. Formation of belts is thought to 

originate from the magnetic interaction between nickel and cobalt ions. Then hybrid 

nanobelts show superior charge storage properties primarily owing to its superior surface area 

and porosity as well as improved electrical conductivity. Besides, the porosity of the hybrid 

nanofibers, which is two times higher than the thickness of the belt, was helpful in achieving 

large ion diffusion coefficient and consequently large fraction of its electrochemically active 

surface. The hybrid nanofibers have a specific capacitance much higher than that of the 

stoichiometric NiCo2O4 and constituent binary metal oxides.  
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Table 1 

Viscosities of the electrospinning polymeric solutions 

 

 

 

 

 

Table 2 

Atomic and weight percentage data from EDX analysis 

 NiO–Co3O4   NiCo2O4  

Element Weight% Atomic% Element Weight% Atomic% 

O K 23.9 53.6 O K 22.2 51.2 

Co L 37.1 22.5 Co L 52.4 32.8 

Ni L 38.9 23.8 Ni L 25.3 15.9 

Total 100  Total 100  

 

Table 3 

Surface properties of materials from BET analysis 

Materials Surface area 

(m
2
g

-1
) 

Pore volume 

(cm
3
g

-1
) 

Mean pore size 

(nm) 

NiO 13.7 0.54 10.6 

Co3O4 13.5 0.49 11.2 

NiCo2O4 70.1 0.33 17.2 

NiO–Co3O4 78.7 0.46 21.1 

Material Morphology Solution viscosity (cP) 

Co3O4 nanowire 77.6 

NiO nanowire 77.8 

NiO–Co3O4  nanobelts 146.5 

NiO–CuO nanowire 78.1 

Co3O4–CuO nanowire 78.4 
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Table 4 

Kinetic parameters of the electrodes obtained from CDC, CV and EIS analysis 

 

 ESR (Ω) D (cm
2 
s

-1
) RCT (Ω) f0 (Hz) τ (s) 

NiO 1.4 1.9×10
-13 1.3 2.1 0.48 

Co3O4 1.7 5.3×10
-14 1.5 0.2 4.54 

NiCo2O4 1.3 3.4×10
-13 1.2 10.3 0.09 

NiO–Co3O4 1.2 4.6×10
-13 1.1 25.9 0.03 
 

 

Figure 1. FESEM images of (a,b) as-spun fibers; (c,d) NiO–Co3O4  nanobelts; (e,f) NiCo2O4 

nanobelts. 
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Figure 2. (a,b) TEM images of NiO–Co3O4 nanobelts; (c,d) HRTEM images of NiO–Co3O4 

nanobelts with lattice planes indexed to their constituent metal oxides 

 

 

Figure 3. XRD pattern of NiO–Co3O4 (a) compared with its individual components; (b) 

compared with NiCo2O4 
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Figure 4.  (a) XPS full survey scan spectrum of the NiO–Co3O4 nanobelts; (b)(c) (d) XPS 

spectra of Co 2p, Ni 2p and O 1s      

 

 

Figure 5. (a) Discharge curves of NiO, Co3O4, NiO–Co3O4 and NiCo2O4 at 10 A g
-1

; (b) 

discharge profile of NiO–Co3O4 at different current densities; (c) variation of capacitance 

with current density of all the four materials; (d) CDC curves of NiO–Co3O4 at 1 A g
-1 
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Figure 6.  The cyclic stability of the NiO–Co3O4 nanobelts evaluated by galvanostatic charge-

discharge testing at a current rating of 10 A g
-1 

 

 

Figure 7. (a) Comparative CV curves of NiO, Co3O4, NiO–Co3O4 and NiCo2O4 at 5 mV s
-1

; 

(b) linear variation of square root of scan rate (v
1/2

) with voltammetric current (i) for all the 

materials under study 
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Figure 8. (a) EIS Nyquist spectra of NiO, Co3O4, NiO–Co3O4 and NiCo2O4 (inset– equivalent 

circuit for NiO–Co3O4); (b) variation of phase difference with frequency curve of all the 

materials under study 
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Graphical abstract 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

27 

 

Highlights 

 Continuous nanobelts of a material hybrid (HNBs) are prepared.  

 Thickness of the HNBs is less than half of its pore diameter. 

 Electrochemical properties of the HNBs are benchmarked with three other materials.  

 HNBs showed superior charge storage properties. 
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