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Compression of topological models and localization using the global
appearance of visual information*

Luis Payá1, Walterio Mayol2, Sergio Cebollada3 Oscar Reinoso4

Abstract— In this work, a clustering approach to obtain
compact topological models of an environment is developed and
evaluated. The usefulness of these models is tested by studying
their utility to solve the robot localization problem subsequently.
Omnidirectional visual information and global appearance
descriptors are used both to create and compress the models
and to estimate the position of the robot. Comparing to the
methods based on the extraction and description of landmarks,
global appearance approaches permit building models that
can be handled and interpreted more intuitively and using
relatively straightforward algorithms to estimate the position
of the robot. The proposed algorithms are tested with a set of
panoramic images captured with a catadioptric vision sensor
in a large environment under real working conditions. The
results show that it is possible to compress substantially the
visual information contained in topological models to arrive to
a balance between the computational cost and the accuracy of
the localization process.

I. INTRODUCTION

Currently, omnidirectional imaging has become a popular
option in the development of mapping and localization tasks,
thanks to the large quantity of information the images offer as
they cover a field of view of 360◦ around the robot. However,
the high dimensionality of the data requires a processing step
to extract relevant information from scenes. This information
must be useful to create a compact model that permits a
robust and computationally efficient localization. The use
of omnidirectional vision would also permit developing
localization algorithms which are invariant to the orientation
of the robot when its movement is contained in the ground
plane, which would increase the scope of these algorithms.

Depending on how the most relevant information from
the images is extracted and represented, visual map building
and localization has been approached using mainly two main
frameworks. The first one is based on the detection, descrip-
tion and tracking of some relevant local features along a set
of scenes [1], [2]. The second method consists in working
with each scene as a whole, building a unique descriptor
per image that contains information on its global appearance
[3], [4], [5]. These methods usually lead to more intuitive
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representations of the environment and relatively straightfor-
ward localization algorithms, based mainly on the pairwise
comparison between descriptors. However, due to their lack
of metric information, they have been used traditionally to
build topological representations of the environment [6],
which are accurate enough for many applications. When
necessary, they can be combined with metric data into a
hybrid map where the information is arranged into several
layers, from a topological high-level layer that permits a
rough but quick localization to some metric or topometric
low-level layers to refine the position, if necessary [7]. Some
authors have proposed data compression strategies to build
efficient maps based on local features [8], [9], [10].

To create a visual model, initially, a set of images captured
from several points of view of the environment to map
are usually available. Among the compressing methods,
clustering algorithms can be used to compact the information
on this model to create a high level map, which would group
this set of images into several clusters containing visually
similar scenes and represent each cluster with a representa-
tive instance. Some research has made use of such algorithms
previously to create visual maps, using local features, such
as Valgren et al. [11] and Stimec et al. [12]. Ideally, using
only visual information, a clustering algorithm should group
images that have been captured in geometrically close points.
However, many indoor environments are prone to visual
aliasing and images that have been captured far away can
be quite similar, which would lead to errors in the model.

The main objective of this work consists in carrying out an
exhaustive comparative evaluation of several image descrip-
tors to create compact models of an unknown environment
and to solve the localization problem using these models.
During the implementation of hybrid mapping algorithms,
the high level maps must be useful to estimate roughly the
position of the robot with a low computational cost. The
results of the present work may be helpful in this field
as they will permit choosing the best description method
and tuning correctly the main parameters in such a way
that a compromise between computational cost and accuracy
are reached. To build and compress the models only visual
information is considered. We will focus on the use of
global appearance descriptors, since local descriptors have
been considered in previous research. It leads to purely
topological models that must be able to cope with the visual
aliasing phenomenon. A challenging set of images captured
in an indoor environment, including regions with similar
appearance and changes in lighting conditions during the
capture process is used to test the algorithms developed.



This work continues the research started in [13], where
a comparative evaluation between some global description
methods is carried out to obtain a high-level model and
some low-level topological maps of an environment. Now,
this evaluation is extended to the compacting and local-
ization problems. The remainder of the paper is structured
as follows. Section II makes a brief outline of the global
appearance approaches that will be tested along the paper.
After that, section III presents the clustering approaches used
to create compact models and section IV tests the validity
of these models to solve the localization problem. At last, a
final discussion is carried out in section V.

II. DESCRIBING THE GLOBAL APPEARANCE OF
A SET OF SCENES

This section outlines some methods to describe the global
appearance of a set of scenes. Three families of methods are
proposed to be evaluated along the paper: methods based
on the Discrete Fourier Transform (subsection II-A), on
histograms of orientation gradients (subsection II-B) and on
the gist of the scenes (subsection II-C). Also, since changing
lighting conditions may have a pronounced effect on the
global appearance of the scenes, the use of homomorphic
filtering [14] will be tested to cope with this problem.

A complete description of these methods can be found in
[13]. In all cases, the starting point is a panoramic scene
im(x, y) ∈ RNx×Ny and after using any of these methods
the result is a global appearance descriptor ~d ∈ Rl×1

A. Fourier Signature

The formulation of the Discrete Fourier Transform (DFT)
we use along the paper is known as Fourier Signature (FS),
and was used initially by Menegatti et al. [15] to create a vi-
sual memory of an unknown environment. It is defined as the
matrix composed of the 1-D DFT of each row in the original
image. The FS of a panoramic image im(x, y) ∈ RNx×Ny

is a new matrix IM(u, y) ∈ CNx×Ny (u is the frequency
variable, measured in cycles/pixel). The main information
is concentrated in the low frequency components and the
high frequency ones tend to be more contaminated by the
eventual presence of noise in the scene, so only the k1 first
columns can be retained, having a compression effect. The
new matrix IM(u, y) ∈ CNx×k1 can be decomposed into
two real matrices, one containing the magnitudes A(u, y) and
the other with the arguments, Φ(u, y), both of them with Nx

rows and k1 columns. A(u, y) is invariant against changes of
the robot orientation on the ground plane and can be arranged
to compose a global appearance descriptor ~d ∈ RNx·k1×1 of
the original panoramic image im(x, y).

B. Histogram of Oriented Gradients

Initially described by Dalal and Triggs [16] to solve people
detection tasks, the Histogram of Oriented Gradients (HOG)
considers the gradient orientation in local areas of a scene to
build a descriptor. The method stands out by its simplicity
and efficiency in object recognition tasks. The use of HOG
in robot mapping and localization is somewhat sparse and

usually limited to small and controlled environments [17].
The version of HOG we consider is described in [18], where
the method is redefined with the goal of obtaining a unique
and rotationally invariant global appearance descriptor per
scene. Basically it consists in dividing the panoramic image
in a set of k2 horizontal cells and compiling a histogram per
cell with b bins each, that reflect the gradient orientation of
the pixels within this cell. This set of histograms compose
the final descriptor ~d ∈ Rb·k2×1.

C. Gist of a scene

Inspired by the human process to recognize scenes, Oliva
et al. [19] developed the gist concept with the idea of creating
a low-dimension global scene descriptor. More recently, it
has been used often together with the prominence concept,
which refers to the properties that make a pixel to stand out
with respect to its neighbours. Siagian et al. [20] tried to
establish a synergy between the two concepts and they de-
signed a unique descriptor that takes both into account. This
descriptor is built using the intensity, orientation and color
information. The experience with this kind of descriptors
in mobile robots applications is quite limited. For example,
Chang et al. [21] present a localization and navigation system
based on gist and prominence and Murillo et al. [22] make
use of gist descriptors in a localization problem. However,
they obtain these descriptors using specific regions in a set of
panoramic images. The implementation of gist used in this
work is described in [18], and offers a rotationally invariant
version of gist when applied to panoramic images. Basically,
the descriptor is built from orientation information, obtained
after applying several Gabor filters with m1 different orien-
tations to the original image in m2 resolution levels. The
information is then reduced by grouping the pixels of every
resulting image into k3 horizontal blocks. The result is a
descriptor ~d ∈ Rm1·m2·k3×1.

III. COMPACTING VISUAL MODELS USING A
CLUSTERING APPROACH

This section focuses on the creation of the topological
model and the compression of this model. The starting point
is a set of panoramic images I = {im1, im2, . . . , imn}
captured from several points of view, covering the whole
environment to model. These images may be optionally
filtered with a homomorphic filter and then each image is
globally described using any of the methods described in
section II. As a result, the original model will be com-
posed of a set of descriptors D = {~d1, ~d2, . . . , ~dn}. The
coordinates of the capture points of each images are also
known P = {(x1, y1), (x2, y2), . . . , (xn, yn)}. During the
experiments only visual information will be used to build
the model and estimate the position of the robot, and these
coordinates will only be used as ground truth to assess the
performance of the algorithm.

A. Compacting the model

A functional map should permit carrying out the localiza-
tion process with a reasonable accuracy and computational



cost. In this work, a clustering approach will be used to
compress the information of the original model. The original
data set D = {~d1, ~d2, . . . , ~dn} will be divided into m clusters
{C1, C2, . . . , Cm} such that:

Ci 6= ∅, i = 1, . . . ,m
m⋃
i=1

Ci = D

Ci ∩ Cj = ∅, i 6= j, i, j = 1, . . .m.

(1)

After the clustering process, each cluster will be reduced to
a representative descriptor so the compact model will consist
of a set of representatives R = {~r1, ~r2, . . . , ~rm}.

To compress the initial model, the original set of de-
scriptors D is used as input data to the clustering algo-
rithm creating thus clusters containing images whose visual
appearance is similar. Ideally those images with similar
appearances should correspond to images captured in geo-
metrically near positions. However, often this is not true due
to the phenomenon of visual aliasing, which is frequent in
structured indoor environments. This fact, together with the
high dimensionality of the data, would make it unfeasible
the use of classical clustering algorithms, based on the
optimization of a function, such as k-means or hierarchical
algorithms. Instead, spectral clustering has proved to cluster
successfully such high dimensional data [23], including
visual information [11], [12]. The implementation used in
this paper was developed by Ng et al [24].

The spectral clustering algorithms take into account the
mutual similarity among all the instances. This is why they
have proved to be more effective than traditional methods,
which only consider the similarity between each instance
and the m representatives. The algorithm starts obtaining the
mutual similarity between instances Sij to build the matrix
S (eq. 2). Algorithm 1 shows the complete process.

Sij = e−
| ~di− ~dj |2

2σ2 (2)

Algorithm 1 Spectral Clustering Algorithm
Input: Similarity matrix S, number of clusters m
Output: Set of clusters C1, C2, . . . , Cm

1: Dii =
∑n

j=1 Sij , {D diagonal matrix}
2: L = I−D−1/2SD1/2 {Laplacian matrix}
3: U← m main eigenvectors of L in columns
4: T← normalized rows of U
5: Clusters A1, . . . , Am ← k-means clustering considering

as instances the rows of T,~ti, i = 1, . . . n
6: C1, . . . , Cm such that Ci = ~dj |~tj ∈ Ai

When the number of instances n or their dimension l
is very high, calculating the m main eigenvectors of the
Laplacian matrix can be computationally expensive. One
possible solution to this problem consists in canceling some
of the components of the similarity matrix, to obtain a
sparse matrix, and using sparse matrices methods to obtain

Events room

Library

Corridor

Office 1

Office 2

Office 3

Fig. 1. Bird’s eye view of the capture points of the training set of images.
The size of the grid is 40× 40 cm.

the required eigenvectors [23]. To do that, in the matrix
S only the components Sij such that j is among the t
nearest neighbours of i or vice versa, being t a low number,
are retained in this work. After that, the Lanczos/Arnoldi
factorization is used to obtain the first m eigenvectors of the
Laplacian matrix L.

Once the clusters have been created, the representatives are
obtained as the average visual descriptor of all the descriptors
included in each cluster. These representatives are the set
{~r1, . . . , ~rm}.

B. Experiments

To carry out the experiments, a complete database captured
by ourselves is used. This database is publily available
[25]. It was captured using a catadioptric vision system
composed of a Eizoh Wide 70 hyperbolic mirror mounted
over an Imaging Source DFK 21BF04 camera with their
axes aligned, and covers the whole floor of a building of
Miguel Hernández University (Spain), including 6 different
rooms. This database includes two sets of images. The
first one (training set) consists of 872 panoramic 64 × 256
images captured on a dense 40 × 40 cm grid of points. It
will be used to build the visual model of the environment.
The second set (test set) consists of 546 images captured
in all the rooms, in some half-way points among the grid
positions and with different orientations, times of day and
changes in the position of some objects. This set will be used
during the localization process, to test the usefulness of the
previously built model. Fig. 1 shows a bird’s eye view of the
environment and the capture points of the training images.

Fig. 2 shows, the results of a sample clustering experiment



Fig. 2. Results of a sample clustering experiment considering m = 18 clusters and gist descriptor with k3 = 16, m1 = 32, m2 = 2 and some sample
panoramic images belonging to the set 1.

applied to this dataset, according to algorithm 1. The figure
presents a bird’s eye view of the capture points of the
set 1, showing with different colors and shapes the images
belonging to each cluster. To obtain this figure we consider
m = 18 clusters and the gist descriptor with k3 = 16 cells,
m1 = 32 Gabor masks and m2 = 2 levels. Since only visual
information is used to create the clusters, some of them tend
to be separated among several rooms or are relatively little
compact, due to the effect of visual aliasing. This effect
is clearly shown through several sample panoramic images
belonging to the set 1 in fig. 2.

To assess the performance of each description method,
some parameters are measured to study (a) the compactness
of the clusters (i.e. if they really group images which have
been captured in geometrically close points) and (b) if the
number of instances is balanced among clusters. First, the
geometrical compactness of each cluster is measured through
its moment of inertia and its silhouette. After a clustering
process, the average moment of inertia is calculated as:

M =

m∑
i=1


∑ni

j=1

[
dist

(
~dij ,~ci

)]2
ni

 (3)

where the cluster Ci is composed of the descriptors
{~di1, ~di2, . . . , ~dini}, ni is the number of images in cluster
Ci and dist

(
~dij ,~ci

)
is the Euclidean distance between the

capture point of the image j of the cluster i and the position
of this cluster representative ~ci. The lower is M the more
compact are the clusters.

The silhouette is a classical way of interpretation and
validation of clusters that gives us an idea of the degree
of similarity between each entity and the other entities of

the same cluster, comparing it with the entities in the other
clusters. The higher is S, the more similar is each entity to
its own cluster and the more different to the entities on the
other clusters. In this work, the silhouette is used to evaluate
the compactness of the clusters. This way, instead of using
the similarity in feature space, world coordinates are used.
The average silhouette is calculated as:

S =

∑n
k=1 sk
n

(4)

where n is the number of instances to cluster and sk is
the silhouette of each instance ~dk, sk = bk−ak

max(ak,bk)
. ak is

the average distance between the capture point of ~dk and
the capture point of the other entities contained in the same
cluster and bk is the minimum average distance between the
capture point of ~dk and the capture points of the entities
contained in the other clusters.

Second, their balance is measured through the standard
deviation of the number of instances per cluster D. The lower
is D, the more balanced is the number of instances of all
the clusters.

Fig. 3 shows the results of both clustering methods using
FS as descriptor (top row), depending on the configuration
of the parameter k1 and the gist descriptor (bottom row),
depending on the configuration of the parameter k3. The
average silhouette S, moment of inertia M and deviation
D vs. the number of clusters m is depicted in both cases.
For comparative purposes, the same scale is used in the
vertical axis of each pair of graphical representations. The
HOG descriptor has shown to be unable to create clusters that
tend to group images captured from near positions, as fig 4
shows. As far as gist is concerned, high values of k3 produce
a changing behaviour, depending on m. A very low value
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Fig. 3. Results of the clustering process: average silhouette, average moment of inertia and average deviation vs. number of clusters, when using FS (top
row) and (b) gist (bottom row)
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for k3 tends to produce low silhouettes and high moments,
independently on the number of clusters. This way, the best
choice could be an intermediate value for k3. In general,
k3 = [8, 16] produces relatively good results in general,
and the best values of silhouette and moment are achieved
with k3 = 32 and an intermediate number of clusters. If
we compare the results of gist with FS, we can arrive to
the conclusion that gist outperforms FS, in general. The
silhouette of FS tends to be lower and the moment higher. As
far as the dispersion in the number of entities per cluster, in
general FS presents a slightly higher dispersion comparing
to gist except when k3 = [32, 64].

IV. SOLVING THE LOCALIZATION PROBLEM
USING THE COMPACT TOPOLOGICAL MAPS

In the previous section, gist has proved to be an efficient
descriptor to create a compact model. Once built, the utility
of this model to solve the localization problem can be evalu-
ated. In this section, a comparative study of the performance
of the proposed description methods during this localization
step is carried out.

A. Localization process

After the clustering process, the compact topologi-
cal model consists of a set of cluster representatives
{~r1, . . . , ~rm}. The coordinates of the center of each clus-
ter are also known {(x, y)1, . . . , (x, y)m}. However, these

coordinates will only be used to test the accuracy of the
localization method (ground truth), but not to estimate the
position of the robot. A purely visual approach will be used
with this aim.

The localization is addressed in an absolute fashion, as-
suming no information on the previous position of the robot
is known: the robot captures a new test image imt, filters it,
describes it to obtain ~dt and calculates the distance between
it and each representative, obtaining the distances vector
~lt = {lt1, . . . , ltm} where ltj = dist{~dt, ~rj} according to
any distance measure. The node that presents the minimum
distance dnnt |t = arg minj ltj is considered the correspond-
ing position of the robot. To estimate the accuracy of this
correspondence, the geometric distance between the capture
point of the test image and the center of the corresponding
cluster is calculated. Also, the computational time of the
localization process will be evaluated, with the objective of
arriving to a balance between degree or compression and
accuracy in relocalization. The experiments have been carried
out through Matlab programming.

B. Experiments

The starting point of the localization experiment is a
compact model. To create this model, different numbers of
clusters will be considered, from m = 15 to m = 100. Since
the clustering results may change from experiment to exper-
iment (due to the random initialization of the representatives
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Fig. 5. Results of the localization process when FS is used to describe both the test images and the clusters’ representatives, depending on k1, the distance
measure and the use of homomorphic filter.
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Fig. 6. Results of the localization process when HOG is used to describe both the test images and the clusters’ representatives, depending on k2, the
distance measure and the use of homomorphic filter
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Fig. 7. Results of the localization process when gist is used to describe both the test images and the clusters’ representatives, depending on k3, the
distance measure and the use of homomorphic filter.

in the k-means algorithm run in the step 5 of the algorithm 1),
a total of 100 models have been created, for each value of m.
The localization experiments will be carried out with respect
to all these models and the average results will be shown in
the figures. To create the clusters, the gist descriptor with
k3 = 16 has been chosen, as this configuration has offered
relatively good results in the previous section.

To carry out the experiments each image of the set 2
is considered as a test image. These test images were
captured from different positions of those of the map, in
different times of day (including severe changes in lighting
conditions), with the presence of people and changes in the
position of doors and other objects. This way, the experiment
is carried out under real localization conditions.

Each test image is compared with the representatives of
the compact map and the most similar cluster is retained. In
the experiments, 4 distance measures are considered to carry
out this comparison: dist1 is the Manhattan distance, dist2
is the Euclidean distance, dist3 is the correlation distance
and dist4 is the cosine distance. Fig. 5 shows the results
obtained when FS is used as description method, fig. 6 with
HOG and, finally, the results of gist are shown in fig. 7. In
all these figures both the average localization error (cm) and
the computational time (sec) vs. the number of clusters m
are shown, and the influence of the type of distance is also
assessed. Finally, the effect of using optionally homomorphic
filtering is also shown in the localization error figures. In
the case of the computational time, the use of filter adds a
constant average time equal to 0.02 sec per test image.

In general, when the number of clusters increases, the
computational time also increases and the localization error
decreases. This is an expected result since when the number
of clusters is low, the distance between cluster representatives
is larger and thus, the localization error with respect to
these representatives tends to be higher. This way, for each
description method, the number of clusters may be tuned to
reach a compromise between error and time. We must take it
into account that some association errors may happen during
the localization process, and this effect will also be reflected
in the figures. The lower is m, the more association errors
are expected to happen.

Making an individual analysis of the relation between the
type of descriptor and the localization error, the following
conclusions can be reached. First, FS presents a relatively
high localization error and the use of homomorphic filter
does not improve the situation. The minimum localization
error is obtained with dist3 (correlation) and without filter.
This error takes values between 5.7 m and 7 m depending
on the size of the descriptor and the number of clusters.
Second, in the case of HOG the use of filter clearly improves
the results when using dist3 and dist4. In this case, the
localization error takes values between 1.8 m and 5.8 m
depending on the number of clusters, when the dimension
of the descriptor takes intermediate or high values. Third,
gist does not improve the results provided by HOG. In the
case of gist, the use of filter worsens the localization results,
and the best results are obtained with dist3 and dist4 and
a high number of components in the descriptor. About the



computational cost, the FS tends to need less time to solve
the localization problem, followed by HOG and gist, whose
computational cost is, in general, one order higher than the
cost of HOG.

As a final conclusion, as far as the localization error is
concerned, the optimal values are obtained with HOG with
homomorphic filter, considering high values of k2. This error
falls under 2 m when the number of clusters is m > 50,
which is a relatively low value taking into account the total
area of the mapped environment.

V. CONCLUSION AND FUTURE WORKS

In this work, the problem of creating compact topological
maps has been addressed. A set of 872 panoramic images
has been used to model a large indoor environment, and a
clustering approach has been implemented to compress the
information in this model and reduce it to a lower number of
instances. We have considered between 15 and 100 instances
in the compact model, what supposes having reduced the
number of instances to between 1.7% and 11.5% of the
complete initial model. Once created the compact models,
their utility to solve the robot relocalization task has been
tested.

The problem has been approached using the global ap-
pearance of panoramic scenes both to compact the model
and to solve the localization problem. A comparative evalu-
ation between three global appearance descriptors has been
carried out and their performance has been tested depending,
basically, on the size of the descriptor.

The work has shown how it is possible to compress sub-
stantially the visual information in the original model (thus
reducing the computational cost of the localization process)
while keeping a relatively good localization error. On the one
hand, the gist descriptor has proved to be the best choice
to compress the model, through the clustering approach
implemented, since it has produced the most compact and
balanced clusters. It has an ability to group images that have
been captured in close points despite the visual aliasing. On
the other hand, once the clusters have been created, the use of
HOG to describe both the cluster representatives and the test
image is the choice that has presented the best localization
results, used jointly with the homomorphic filter and the
correlation distance.

Future works will include, on the one hand, the study of
other methods to compress the models and a comparative
evaluation with methods based on local features or landmarks
and, on the other hand, the adaptation of the method to
be used in lifelong map updating, exploring the use of an
incremental clustering algorithm with this aim, to be used in
long term operation.
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