
                          Pearce, R., Giuggioli, L., & Rands, S. (2017). Bumblebees can discriminate
between scent-marks deposited by conspecifics. Scientific Reports, 7,
[43872]. DOI: 10.1038/srep43872

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1038/srep43872

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Nature at
http://www.nature.com/articles/srep43872. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/79608087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/srep43872
http://research-information.bristol.ac.uk/en/publications/bumblebees-can-discriminate-between-scentmarks-deposited-by-conspecifics(d09fbb3d-c19c-45bd-a269-81c642fc68e8).html
http://research-information.bristol.ac.uk/en/publications/bumblebees-can-discriminate-between-scentmarks-deposited-by-conspecifics(d09fbb3d-c19c-45bd-a269-81c642fc68e8).html


1Scientific Reports | 7:43872 | DOI: 10.1038/srep43872

www.nature.com/scientificreports

Bumblebees can discriminate 
between scent-marks deposited by 
conspecifics
Richard F. Pearce1,2, Luca Giuggioli2,3 & Sean A. Rands1

Bumblebees secrete a substance from their tarsi wherever they land, which can be detected by 
conspecifics. These secretions are referred to as scent-marks, which bumblebees are able to use as social 
cues. Although it has been found that bumblebees can detect and associate scent-marks with rewarding 
or unrewarding flowers, their ability at discriminating between scent-marks from bumblebees of 
differing relatedness is unknown. We performed three separate experiments with bumblebees (Bombus 
terrestris), where they were repeatedly exposed to rewarding and unrewarding artificial flowers 
simultaneously. Each flower type carried scent-marks from conspecifics of differing relatedness or were 
unmarked. We found that bumblebees are able to distinguish between 1. Unmarked flowers and flowers 
that they themselves had scent-marked, 2. Flowers scent-marked by themselves and flowers scent-
marked by others in their nest (nestmates), and 3. Flowers scent-marked by their nestmates and flowers 
scent-marked by non-nestmates. The bumblebees found it more difficult to discriminate between each 
of the flower types when both flower types were scent-marked. Our findings show that bumblebees 
have the ability to discriminate between scent-marks of conspecifics, which are potentially very similar 
in their chemical composition, and they can use this ability to improve their foraging success.

Bumblebees secrete a substance from their tarsus consisting of a mixture of hydrocarbons1,2, which primarily 
helps them adhere to surfaces (such as flowers) and reduces desiccation1,3–5. The secretion of these cuticular 
hydrocarbons (CHCs) is not exclusive to bumblebees, but also occurs in wasps, ants, termites, and honeybees, and 
can play a role in nestmate recognition6–8. In social insects, these CHCs may be different between individuals of a 
different species (heterospecifics), nest (non-nestmates), or between individuals of the same nest (nestmates). The 
composition of each individual’s CHCs can be referred to as their signature mixture which may be used by other 
individuals to aid nestmate recognition9.

There are many ways in which bumblebees are able to use chemical signals and cues in the context of intraspe-
cific and interspecific communication10. Bumblebees (Bombus occidentalis) are able to discriminate between nest 
entrances that are contaminated with their own nest’s odour from nest entrances contaminated with heterospe-
cifics or foreign conspecifics11. More specifically, bumblebees (B. terrestris) have been found to be able to discrim-
inate between the wax scents from a foreign colony and their own colony, suggesting that this may allow workers 
to recognise their own colony12. Bumblebees may also be able to use nestmate recognition via individually-borne 
cues as a way of avoiding inbreeding13,14. Social parasitic cuckoo bumblebees (subgenus Psithyrus) show a prefer-
ence for, and therefore are able to recognise, the volatile signals of their host species15. Furthermore, cuckoo bum-
blebees have the ability to mimic specific CHCs of their bumblebee hosts, enabling them to invade their hosts16. 
CHCs are deposited onto any surface the bumblebee lands on, such as their nest entrance and flowers3,17. These 
deposits can remain for over 24 hours18 and have a scent that can be detected by bumblebees19, and therefore are 
referred to as scent-marks.

Foraging Bumblebees can use scent-marks left behind on flowers visited by themselves, conspecifics and, in 
some cases, heterospecifics as social cues that may indicate the level of reward present in the flower10,20–24. This is 
an example of associative learning. Scent-marks left by bumblebees at food, neutral, or nest sites are indistinguish-
able in terms of their chemical composition17. Bumblebees also respond similarly towards flowers that contain 
scent-marks originally deposited at the nest entrance and scent-marks deposited on recently visited flowers25. 
Furthermore, the chemical composition (hydrocarbons) of bumblebee scent-marks were almost identical to that 
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found on the epicuticular region of their tarsus25. This all indicates that bumblebees are inadvertently depositing 
general chemical footprints wherever they walk that act as cues and not signals.

These scent-marks can act as attractants or repellents (or neither) depending on the bumblebee’s experience 
with the level of reward found in the flower and how easily it is obtained26–28. Although naïve (inexperienced) 
bumblebee foragers have no innate avoidance or preference for scent-marked flowers29, there is evidence that 
bumblebees can use scent-marks as an indication that a flower either contains nectar19,30,31 or, as is more com-
monly seen in the wild, that a flower has had its nectar depleted20,32–35. There are no existing studies to show that 
bumblebees can discriminate or have an innate preference between their own scent-mark and the scent-marks of 
nestmates, or between scent-marks of nestmates and scent-marks of non-nestmates.

In the wild it would be beneficial for bumblebees to detect their own scent-mark, as they could use this to 
inform them of depleted flowers they have visited recently or of rewarding flowers they have visited a sufficient 
length of time ago due to changes in the scent-mark’s chemical composition over time32,33, thus selecting more 
rewarding flowers over less rewarding ones. The bee would also not need to rely solely on spatial memory to 
identify where it has already foraged. However, these benefits of scent marking may not always hold true if there 
are greater time or energy costs associated with scent marking or detection than there are benefits. It remains to 
be seen whether bumblebees are able to use just their own personal scent-mark to detect the absence of a floral 
reward.

Past laboratory experiments have used scent-marks from different individuals to the ones being tested (either 
from the same or a different nest), by allowing mark-depositing bees to visit the flowers before the test bee33, or 
by experimentally adding tarsal extracts directly on to the flowers27. Although it has been investigated whether 
bumblebees can use their own scent-mark to gain information about floral nectar in the field20, this study is una-
ble to confirm that bumblebees reject flowers purely because they contain their own scent-mark. This is because 
it cannot be known with certainty that only the test bee had landed on the flower. Furthermore, the flowers may 
have had their appearance altered once they had been visited, given that real flowers were used. Under labora-
tory conditions, it has been shown that bumblebees perform better than expected if foraging at random on an 
array of artificial flowers27, which were moved after each approach to account for spatial learning. This was con-
cluded to be due to the avoidance of visited flowers via scent-mark detection. As part of our study, we intend to 
make this more explicit and also to take it further by assessing the bumblebee’s ability at discriminating between 
scent-marks from bumblebees of varying degrees of relatedness.

Bumblebees are likely to benefit from being able to discriminate between their own scent-mark and 
scent-marks from bumblebees within their nest (nestmates). Being able to do this would allow them to decide 
whether or not to forage on flowers they or their nestmates have visited in the past (personal vs social informa-
tion), which would be particularly useful given that they use social information to complement personal experi-
ence36,37. It may also convey the degree of foraging area overlap the individual has with its nestmates, and possibly 
the size of the area covered by the colony, informing the forager where to forage. For these reasons, being able 
to discriminate between their own scent-mark and scent-marks from nestmates may increase a forager’s rate of 
nectar uptake.

Furthermore, being able to distinguish between scent-marks from nestmates and non-nestmates is also likely 
to be beneficial. It would allow individuals to decide whether or not to forage on flowers their nestmates or 
non-nestmates have visited in the past (social information), which could be useful if these two groups of foragers 
were selecting flowers of different quality. Perhaps more importantly, it would also convey the degree of foraging 
area overlap their nestmates may have with potential competitors’, thus informing them of the level of compe-
tition that they have for resources. High competition may result in a colony foraging elsewhere, possibly due to 
reduced flower constancy at high conspecific densities, which may then go on to affect the efficiency of pollination 
visits38. Conversely, the presence of conspecifics at low densities can initially provide beneficial information38,39.

We performed three different experiments to assess a bumblebee’s ability to distinguish between scent-marks 
deposited by bumblebees of varying degrees of relatedness. First we examined whether foraging bumblebees can 
learn to avoid unrewarding flowers scent-marked by themselves, while having a preference for rewarding flowers 
that are unmarked (Experiment 1). Second we examined whether foraging bumblebees can learn to avoid unre-
warding flowers scent-marked by themselves while having a preference for rewarding flowers scent-marked by 
their nestmates (Experiment 2). Third we examined whether foraging bumblebees can learn to avoid unreward-
ing flowers scent-marked by non-nestmates while having a preference for rewarding flowers scent-marked by 
their nestmates (Experiment 3). Finally we compared the three experiments with each other.

Results
For each experiment, an individual foraging bumble was exposed to four artificial flowers (Fig. 1). Two flowers 
were rewarding (sucrose) and contained a given scent-mark, and two flowers were unrewarding (water) and con-
tained a different scent-mark or no scent-mark, depending in the experiment (Table 1), thus creating two different  
flower types. The type and occurrence of the bumblebees’ initial interaction towards each of the four flowers was 
recorded during three testing phases, where all flowers contained water to control for the possibility of remote 
sucrose detection by the bees. Forms of interaction with each flower are defined as follows, with their notation 
in brackets: the bee hovers facing the flower but does not land (Hover), lands on the flower (Land), enters the 
flower but does not touch the well with its proboscis or antennae (Enter), and drinks from the well or extends 
proboscis (Drink). To succeed at this task, a bumblebee must be able to detect and sense a difference between the 
two scent-marks (scent-mark discrimination), but also be able to perform operant learning enabling it to associ-
ate one of the scent-marks with a reward and/or the other scent-mark with the absence of a reward (associative 
learning).
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Experiment 1: Own scent-mark vs No scent-mark.  The bees behaved differently towards the two 
flower types (Fig. 2a), with more hovering occurrences (pairwise Mann-Whitney-Wilcoxon test: n =​ 12, U =​ 55, 
p =​ 0.0055), but fewer landings (n =​ 12, U =​ 0, p =​ 0.0022) and drinking occurrences (n =​ 12, U =​ 0, p =​ 0.0015) 
on scent-marked flowers. There were no occurrences of a bee entering the flower without touching the well with 
its proboscis or antennae (Enter). There was only one instance of a bee not interacting with a flower, which 
occurred for a scent-marked flower.

The bee’s initial behaviour affected its next decision (Fig. 3a). For the scent-marked flowers, bees that hovered 
were less likely to land on the flower (n =​ 12, U =​ 0, p =​ 0.0038), bees that landed were less likely to drink (n =​ 12, 
U =​ 0, p =​ 0.0012), and bees that hovered then landed were less likely to drink (n =​ 12, U =​ 0, p =​ 0.0009), when 
compared to unmarked flowers.

The mean duration of the initial physical interaction with each of the flowers (the time from landing to 
departing) was calculated for the final five bees tested. They spent more time on the unmarked flowers than 
the scent-marked flowers (t4 =​ 5.3318, p =​ 0.0060), with a mean time of 10.70 ±​ 4.40 and 0.72 ±​ 0.54 seconds 
respectively.

Experiment 2: Own scent-mark vs Nestmate’s scent-mark.  The bees behaved differently towards 
the two flower types (Fig. 2b), landing (n =​ 12, U =​ 4, p =​ 0.0308) and drinking (n =​ 12, U =​ 0, p =​ 0.0037) more 
frequently on flowers scent-marked by nestmates. Entering the flower without touching the well with its probos-
cis or antennae (Enter) was much more common for the flowers containing the bee’s own scent-mark (n =​ 12, 
U =​ 42, p =​ 0.0217). There was no difference between the two flower types in terms of hovering (n =​ 12, U =​ 15, 
p =​ 0.3869) and there were no occurrences of bees not interacting with a flower.

For the own-scent-marked flowers, bees that hovered were less likely to land on the flower (n =​ 12, U =​ 7.5, 
p =​ 0.0258), bees that landed were less likely to drink (n =​ 12, U =​ 0, p =​ 0.0038), and bees that hovered then 
landed were less likely to drink (n =​ 11, U =​ 0, p =​ 0.0058), when compared to flowers scent-marked by nestmates 
(Fig. 3b).

Although the amount of data obtained was too small (n =​ 3), we observed that the bees spent more time on 
flowers scent-marked by nestmates than flowers scent-marked by themselves.

Experiment 3: Non-nestmate’s scent-mark vs Nestmate’s scent-mark.  Bees behaved differently  
towards the two flower types (Fig. 2c), landing (n =​ 12, U =​ 2.5, p =​ 0.0330) and drinking (n =​ 12, U =​ 1.5, 
p =​ 0.0055) more frequently on flowers scent-marked by nestmates. Entering the flower without touching the 
well with its proboscis or antennae (Enter) occurred only twice, each time by a bee interacting with a flower 
scent-marked by non-nestmates. There was no apparent difference between the two flower types in terms of hov-
ering (n =​ 12, U =​ 12, p =​ 0.7768) and there were no occurrences of any bee not interacting with a flower.

For the flowers scent-marked by non-nestmates, bees that hovered were less likely to land on the flower 
(n =​ 12, U =​ 4, p =​ 0.0322), bees that landed were less likely to drink (n =​ 12, U =​ 1, p =​ 0.0080), and bees 

Figure 1.  Flower structure and arrangements. (A) Artificial flower design, showing the well for storing 
sucrose or water, the translucent cover attached using transparent tape, and the semi-circle of filter paper at the 
entrance; (B) the two arrangements of four flowers, with rewarding (filled circles) and unrewarding (unfilled 
circles) flowers positioned randomly for each bout. The direction of the nest is indicated by N.

Experiment
Unrewarding flowers: contain 
water

Rewarding flowers: contain 
sucrose solution

1 Own Absent (unmarked)

2 Own Nestmates

3 Non-nestmates Nestmates

Table 1.   The different scent-mark treatments for all learning bouts of each of the three experiments.
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that hovered then landed were less likely to drink (n =​ 12, U =​ 1, p =​ 0.0078), when compared to the flowers 
scent-marked by nestmates (Fig. 3b).

Although the amount of data obtained was too small (n =​ 2) for analysis, we observed that the bees spent more 
time on flowers scent-marked by nestmates than flowers scent-marked by non-nestmates.

Learning speed.  For Experiment 1 a median of 13 training bouts were required before moving on to the 
testing phase, with a range of 10 (Fig. 4a). For Experiment 2 the median was 19 with a range of 9, with its discrete 
cumulative distribution shifted to the right of that of Experiment 1 (Fig. 4b), showing that the bees required 
more training bouts before moving onto the testing phase (two-sample Kolmogorov-Smirnov test: D =​ 0.6667, 
p =​ 0.0097). For Experiment 3 the number of training bouts required by each of the twelve bees before moving 
onto the testing phase was highly variable (Fig. 4a), with a median of 16 and a range of 19. Some of the bees 
managed to learn by the sixth training bout, but twenty-four training bouts were required until all the bees had 
progressed to the testing phase (Fig. 4b).

Discussion
Not only can bumblebees detect their own scent-mark, they can also discriminate between that and scent-marks 
of their nestmates, as well as between scent-marks of their nestmates and scent-marks of non-nestmates.

The bees were able to associate their own scent-mark with the absence of reward when these flowers were 
alongside rewarding flowers scent-marked by their nestmates (Experiment 2), but especially when alongside 
rewarding unmarked flowers (Experiment 1). The bees were also able to associate flowers that were scent-marked 
by non-nestmates with the absence of reward when alongside rewarding flowers that were scent-marked by their 
nestmates (Experiment 3). This ability to discriminate between flower types was evident by their avoidance of 
unrewarding flowers and their attraction towards rewarding flowers that emerged after repeat exposure to the 
two flower types simultaneously (Fig. 2).

There was no difference in hovering behaviour between the two flower types for both Experiments 2 and 3, but 
there was for Experiment 1. In Experiment 1 they almost always landed and drank from rewarding flowers, and 
almost always avoided drinking on unrewarding flowers. This was not true for Experiments 2 and 3, where they 
weren’t as likely to land or drink on rewarding flowers, and were more likely to drink from unrewarding flowers, 

Figure 2.  Number of occurrences of hovering (hovers facing the flower but does not land), landing (lands 
on the flower), drinking (attempts to drink), and entering (enters but does not attempt to drink) behaviour 
towards the six flowers of each flower type for the twelve bumblebees tested in each experiment.  
(a) Experiment 1: own scent-mark vs no scent-mark; (b) Experiment 2: own scent-mark vs nestmates’  
scent-mark; (c) Experiment 3: non-nestmates’ scent-mark vs nestmates’ scent-mark.
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when compared to Experiment 1. These behaviours suggest that the bees found it harder to discriminate between 
the two flower types when both were scent-marked. It has been found that it can sometimes be advantageous for 
bumblebees to make quick, inaccurate decisions40, but as this was not observed in Experiment 1 it is unlikely to 
be the reason for what was observed in Experiments 2 and 3.

The dependent behaviours observed in each of the experiments (Fig. 3) showed that hovering around an unre-
warding flower was sometimes not enough to reject it by not landing. By landing on these flowers the bees were 
more likely to reject the flower by not drinking from them. Although bumblebees can detect odours remotely 
using their antennae41, this behaviour suggests that they are able to identify non-rewarding flowers better if they 
land on them instead of just hovering. This could be due to a variety of reasons: for example, they may be able to 
detect scent-marks with their feet (as is the case for flies and butterflies42, it may simply give them more time to 
detect any scent-marks with their antennae, or it may allow them to get closer to the scent-mark. This shows that 
bumblebees can’t always reject unrewarding flowers based on its associated scent-mark without landing. This 
was especially true when both unrewarding and rewarding flowers were scent-marked, in which case it wasn’t 
unusual for the bees to enter or even drink from unrewarding flowers. Furthermore, any hovering, or hovering 
then landing, behaviour was very brief, typically lasting for less than a second. This suggests that the amount of 
time required to discriminate between rewarding and unrewarding flowers using scent-marks is likely negligible.

The bees may also have expected the presence of a reward within the flower by its associated scent-mark. Thus, 
they were attracted to these flowers, rather than simply drinking from them by default, as the scent-mark asso-
ciated with the absence of reward would not have been detected. Given that bumblebees living under laboratory 
conditions may become more attracted to scent-marked flowers due to repeat exposure to rewarding flowers that 
have not had their scent-marks removed3,19,30, and that they do not innately prefer flowers that have or have not 
been scent-marked29, it is likely that they are detecting the presence of a reward within a flower by its associated 
scent-mark.

For each experiment the bees varied in the speed in which they learnt the associations and were able to dis-
tinguish between the two flower types. This was apparent from the number of training bouts performed before 
testing (Fig. 4), suggesting a difference in the amount of repetition required before making the association. They 
required significantly more training bouts in the Experiment 2 than in Experiment 1, and their learning abil-
ity was also more variable in Experiment 2; again, evidence that they found it harder to discriminate between 
the two flower types when both flowers were scent-marked. Furthermore, two out of the fourteen bees used in 

Figure 3.  Dependent behaviour as a proportion of the initial behaviour for the twelve bumblebees tested 
in each experiment. (a) Experiment 1: own scent-mark vs no scent-mark; (b) Experiment 2: own scent-mark 
vs nestmates’ scent-mark (only eleven bees qualified for the hover, land then drink dependent behaviour); and 
(c) Experiment 3: non-nestmates’ scent-mark vs nestmates’ scent-mark. Behaviours include hovering (hovers 
facing the flower but does not land), landing (lands on the flower), and drinking (attempts to drink).
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Experiment 2 and seven of the nineteen bees used in Experiment 3 failed to progress to the testing phase, whereas 
all of the bees tested in Experiment 1 progressed to the testing phase. The learning speed was highly variable 
for the bees in Experiment 3, with some bees learning almost immediately and some requiring the maximum 
number of training bouts (Fig. 4). This high variability may be because each flower type was scent-marked by 
more than one bee and so discriminating between them was a more difficult task, thus causing many bees to fail. 
Furthermore, none of the bees tested in Experiment 3 would have previously encountered the scent-mark of a 
non-nestmate, and so this could be a reason for the few bees that learned the task relatively quickly.

Although the task itself is likely to be quite difficult, it is possible that the number of learning bouts was 
affected by the level of scent-mark present on the flowers. If the level of scent-mark present on the flowers marked 
by the bees being tested had increased over repeated visits this would have been consistent across individuals in 
Experiments 1 and 2. Conversely, the amount of scent-mark present on the flowers marked by the test bees in 
Experiment 2 should be sufficient to elicit a response due to what was observed in Experiment 1. The amount of 
scent-mark present on the flowers marked by nestmates in Experiment 2 should also be enough for the test bees 
to detect as even a single visit from a bumblebee is enough to elicit a response20. Furthermore, similar learning 
speeds have been observed in experiments involving flower colour discrimination43.

In Experiment 1 the bees spent much more time on the unmarked flowers (rewarding in the training phase) 
compared to the scent-marked flowers (unrewarding in the training phase) they landed on. This suggests that 
they don’t simply unlearn the association between rewarding flowers and the absence of a scent-mark; they stay 
longer on these flowers and repeatedly drink, albeit water, search, and lick around the well expecting to find a 
sucrose reward. Similarly for Experiments 2 and 3, we observed that they spent more time on flowers that were 
originally rewarding. However, they seemed to spend less time on these flowers compared with Experiment 1, 
suggesting that the learned association was stronger for Experiment 1. So not only do they find it easier to dis-
criminate between flower types and learn faster when one of the flower types is unmarked, they also seem more 

Figure 4.  The learning speed of the bumblebees for each experiment. (a) The number of training bouts 
required before progressing to the testing phase; (b) the cumulative distribution of the proportion of bees that 
progressed to the testing phase given the number of training bouts. Experiment 3 is included for comparison, 
but is not directly relatable to Experiments 1 and 2 due to slightly different methods of obtaining scent-marks.
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certain about what they have learnt previously, even when they encounter contradictory information. This is 
likely due to the decreased ambiguity between scent-marked and unmarked flowers.

It is worth noting that frequently the bumblebees were initially repelled by the clean flowers (i.e. when either 
the bees being tested or their nestmates were required to scent-mark clean flowers), apparent by prolonged hov-
ering behaviour without landing, which is consistent with previous experiments3,19,30. This is because bumblebees 
under laboratory conditions are not used to foraging on clean flowers that are rewarding, as flowers are often 
replenished with sucrose solution without having their scent-marks removed through cleaning. There was no 
evidence that any of the bees initially preferred one of the flowers types in Experiments 2 or 3. Although, the 
bees would often fly around the flight arena ignoring the flowers for prolonged periods after drinking from a 
flower that contained water during the testing phase, but had originally contained sucrose in the training phase 
(observed predominantly in Experiment 3). Foraging on unexpectedly unrewarding flowers may persuade the 
bees to seek alternative flower types, which is a possible reason for this observed behaviour.

To our knowledge there has been no attempt to assess a bumblebee’s ability at discriminating between these 
different types of scent-marks. Until now all that could be said is that bumblebees can detect and associate 
scent-marks from a given source with rewarding flowers31 or unrewarding flowers33. What we have found is it 
that not only are bumblebees able to distinguish between unmarked flowers and flowers that they themselves 
have scent-marked, but they can also distinguish between flowers scent-marked by themselves and flowers 
scent-marked by their nestmates, and flowers scent-marked by their nestmates and flowers scent-marked by 
non-nestmates. It shows that bumblebees have the ability to distinguish between scent-marks that are poten-
tially very similar in their chemical composition (hydrocarbons) and they can use this ability to improve their 
foraging success. The degree of similarity in the composition of the scent-marks of a bumblebee, its nestmates, 
and its non-nestmates, can be seen in the variance in the amount of six of the main hydrocarbons found within 
the scent-mark of B. terrestris3,4, each varying differently between individuals of this species. Furthermore, the 
hydrocarbon composition of bumblebee scent-marks varies more between species (B. terrestris, B. pascuorum, 
and B. lapidarius) than within species, mainly due to some of the hydrocarbons being absent from one species 
scent-mark but present in another.

Showing that individuals are able to identify scent-marks left by conspecifics who are not themselves, or even 
their nest-mates, contributes towards our understanding of kin and nestmate recognition, which are important 
mechanisms in kin selection44. This is especially true of nestmate recognition, given that the composition of 
hydrocarbons found in bumblebee scent-marks and their epicuticular hydrocarbons are almost identical25 and 
that this hydrocarbon composition varies between bumblebee species4.

Studies like this one could be performed with other important pollinating insects that are also able to detect 
and use scent-marks, which would help to understand and compare the foraging behaviour of the main insect 
pollinators. For example, sweat bees are able to use scent-marks deposited by conspecifics45 and heterospecifics46. 
Stingless bees use scent-marks deposited by conspecifics whilst foraging47 and their behaviour can also depend 
on the species of stingless bee that deposited them, which can be quite aggressive48.

Honeybees are able to use scent-marks as social cues during foraging33,34,49,50. Furthermore, when using 
scent-marks as an indication of depleted flowers and therefore rejecting these flowers, honeybees show a different 
level of response towards flowers containing their own scent-mark than towards flowers containing their nest-
mate’s scent-mark51. Although in this study the bees are rejecting all flowers containing a scent-mark, the findings 
suggest that honeybees may be able to discriminate between their own scent-mark and the scent-mark of their 
nestmate. There is also evidence to suggest that honeybees are able to discriminate between the scent-marks of 
conspecifics and heterospecifics (bumblebees), which influences flower rejection52. In addition, although solitary 
bees have been found to have inferior learning capabilities than social bees43, they can still distinguish between 
visited and unvisited flowers using scent-marks deposited by conspecifics53 or by heterospecifics21. Furthermore, 
solitary bees (Anthophora plumipes) have been found to respond differently towards flowers visited by themselves 
and flowers visited by a conspecific54. It is suggested that this ability may help solitary bees compete with conspe-
cifics for floral resources. To our knowledge, there is no suggestion of this ability in bumblebees, which makes 
our finding that bumblebees are able to discriminate between their own scent-mark and that of their nestmates 
all the more important.

Our findings could help shape future experimental or theoretical studies involving a bumblebee’s foraging 
behaviour, especially when being considered alongside their nestmates or multiple nests. It would be interest-
ing to apply these findings to larger-scale, field-based experiments to discover the effect of varying the number 
of foragers within a nest, or having multiple nests with overlapping foraging ranges, on individual bumblebee 
foraging behaviour. Furthermore, behaviours such as traplining55, where a forager visits resources in a specific 
order, may be affected by the presence of scent-marks56, and this effect may vary depending on the source of the 
scent-mark48. Thus, gathering information on a pollinator’s ability to use and discriminate between scent-marks 
would be beneficial for studies that involve traplining behaviour57, especially when more than one pollinator is 
being considered58.

Finally, responding to scent-marks is an important, albeit indirect, form of animal interaction and quantifying 
its effects would inform pollinator foraging models59. This sort of interaction is termed stigmergy60,61, whereby 
individuals respond to each other through an indirect modification of the environment, in our case the informa-
tion of past presence of a bumblebee on a flower. There are examples of stigmergic models that have focused on 
studying a population’s spatiotemporal patterns62,63 as well as animal nest architecture64,65. Although there are 
examples of stigmergy to aid colony level foraging, for example in the form of pheromone trails66, we feel that 
there is still an opportunity to further develop stigmergic models in the foraging context. Given our empirical 
findings we hope to stimulate the development of collective foraging models to identify relative efficiencies of 
solitary versus eusocial foragers, such as bumblebees.
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Materials and Methods
Bumblebees and set-up.  Buff-tailed bumblebees Bombus (Bombus) terrestris subsp. audax (Harris, 1776) 
were supplied by Agralan (Swindon, UK), which were used in all experiments, and by Fargro (Arundel, UK), 
which were used only for Experiment 3. They were housed in cardboard nestboxes in a room lit with natural light 
mimicking lightbulbs, at a temperature of around 20 °C, and humidity of around 40%. Each nest box was attached 
to a plywood flight arena (112 ×​ 75 ×​ 30 cm) with a UV-penetrable Plexiglas®​ lid and green tape covering the 
floor. The bees could travel between their nestbox and flight arena via a transparent plastic tube (30 ×​ 1.5 cm ø), 
with their access controlled using removable stoppers along the tube. The bees were allowed to acclimatise for at 
least one week before any experimentation took place. Each bee, identifiable by different coloured paint marks, 
took around six hours to complete the experiment, which was divided into a training phase and a testing phase 
(described below). The bees drank from flowers that were made artificially and were identical in appearance 
(Fig. 1A). The flowers were created using sterile transparent cylindrical plastic pots with a white lid (10 cm ×​ 4 cm 
ø, 60 ml – Sterilin™​, Fisher Scientific UK, Loughborough, UK) and an opaque well for storing a reward or water. 
The well was covered with a translucent cylindrical cover (made using the end of a plastic pipette – see Fig. 1A), 
that forced the bee to walk over a fixed area of the flower before it was able to assess the contents of the well. 
This ensured that each bee entered the flower in the same way; being guided to the same patch of flower before 
landing and drinking increased the likelihood that each bee was exposed to any scent-mark that may have been 
deposited onto the flower. A semi-circular piece of filter paper (No. 1 qualitative circles, 42.5 mm ø – Whatman, 
GE Healthcare, Little Chalfont, UK) was attached to the entrance of the flower (Fig. 1A); the surface of the filter 
paper was more textured and absorbent than the plastic lid and was added to increase the amount of scent-mark 
deposited onto the flower by the bees. Latex gloves were worn at all times and cleaned using ethanol before and 
after touching any of the floral components to minimise the transfer of scents. The flowers were also cleaned with 
ethanol before being used in the experiments.

Experiment 1: Own scent-mark vs No scent-mark.  Twelve bees were tested from three nests (four 
from each). Firstly, each bee was initially exposed to two unmarked flowers each containing two drops of sucrose 
solution (30% v/v). Two drops of water were then added to these two visited flowers after ensuring there was no 
excess sucrose solution. These were then used as the scent-marked flowers for the duration of the experiment with 
that bee, along with two unmarked flowers that contained two drops of sucrose solution (Table 1). Each bee first 
went through a training phase consisting of multiple training bouts, followed by a testing phase – consisting of 
both testing bouts and training bouts – to discount for sucrose detection. The only difference between the training 
phase and the testing phase was that the rewarding flower type in the training phase (see Table 1) contained water 
in the testing phase. A bout was defined as the bee entering the flight arena, interacting with at least one flower, 
and then exiting the flight arena. Forms of interaction with the flower are defined as follows: the bee hovers facing 
the flower but does not land (Hover), lands on the flower (Land), enters the flower but does not touch the well 
with its proboscis or antennae (Enter), and drinks from the well or extends proboscis (Drink).

For the training phase, the four flowers were arranged in either a square or a diamond formation (Fig. 1B), 
which was alternated for each training bout, and the scent-marked and non-scent-marked flowers were posi-
tioned randomly within each arrangement. After each training bout any of the initially unmarked flowers that the 
bee landed on were replaced with new unmarked ones. The initially scent-marked flowers remained in the flight 
arena, and were not cleaned, regardless of whether the bee had visited them or not during the bout. The training 
phase was continued for at least five training bouts (not including the initial exposure to two unmarked flowers) 
and until the bee interacted with, but did not drink from, at least one scent-marked flower and drank from at least 
one non-scent-marked flower for three consecutive training bouts. After this criterion was met the bee progressed 
to the testing phase. All twelve bees progressed to the testing phase.

The testing phase consisted of three testing bouts each separated by two training bouts. During each testing 
bout all four flowers contained water and so were unrewarding. For each testing bout the bee was exposed to 
four flowers: two of these were scent-marked by the bee (those used in the training phase) and two were not. 
Consistent with the training phase, the flowers were distributed in one of the two alternating formations with 
the flower types being randomly positioned. The training bouts involved the same set-up as the training phase: 
two scent-marked flowers containing water and two unmarked flowers containing sucrose solution. We recorded 
the numbers of each type of interaction exhibited by each bee for each initial flower visit during each of the three 
testing bouts, therefore twelve (six from scent-marked flowers and six from non-scent-marked flowers) occur-
rences of behaviour for each bee were obtained. A single interaction with a flower could involve one or more of 
the behaviours mentioned previously. Each testing bout was complete when the bee interacted with each of the 
four flowers or exited the flight arena. Only the bee’s initial interaction with each flower was recorded. If the bee 
did not interact with a flower then this was recorded as no interaction.

Experiment 2: Own scent-mark vs Nestmates’ scent-mark.  Fourteen bees from four nests undertook 
the experiment, with no more than four bees from the same nest. Two of the bees initially trained did not qualify 
for the testing, so test data were collected for twelve bees. In this experiment the bees were being trained to dis-
criminate between flowers scent-marked by themselves and flowers scent-marked by other nestmates (Table 1).

For the training phase, the two flowers scent-marked by the test bee were obtained in the same way as they 
were in Experiment 1. During training, these again contained water. Two other flowers were scent-marked by the 
test bee’s nestmates before each training bout and contained two drops of sucrose solution. To obtain these, two 
bees (not including the test bee) were allowed into the flight arena while the test bee was inside the nest; the flight 
arena contained two unmarked flowers each containing two drops of sucrose solution. Once each bee had landed 
on both flowers, removed the sucrose solution, and returned back to the nest, these two flowers were replenished 
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with two drops of sucrose solution. The rest of the training phase and the criterion for progressing to the testing 
phase was identical to that of Experiment 1.

The testing phase was the same as for Experiment 1 (three testing bouts each separated by two training bouts), 
apart from two of the flowers were now scent-marked by the test bee’s nestmates instead of being unmarked. 
Again, for the testing bouts all four flowers contained two drops of water and the training bouts involved the same 
set-up as the training phase.

Experiment 3: Non-Nestmates’ scent-mark vs Nestmates’ scent-mark.  Nineteen bees from four 
nests were initially trained, of which twelve reached test criteria. No more than six bees from the same nest 
undertook the training and no more than four bees from the same nest were tested. In this experiment the bees 
were being trained to discriminate between flowers scent-marked by non-nestmates and flowers scent-marked by 
nestmates (Table 1). We required two flowers scent-marked by bees within the same nest as the test bee and two 
flowers scent-marked by bees that were members of a different nest. The different nests were obtained from dif-
ferent suppliers (Agralan and Fargro), which were of the same subspecies (audax). Different suppliers were used 
to reduce the relatedness of the two nests, as those from the same supplier may be more closely related. A pair of 
bees were temporarily removed from the test bee’s nest, and another pair were removed from a different nest from 
a different supplier. Each pair were housed separately underneath clean upturned petri dishes. Two semicircles of 
filter paper were placed underneath each of the petri dishes to allow the bees to walk over them. The two pieces of 
filter paper from the petri dish housing the test bee’s nestmates were attached to two clean flowers containing two 
drops of sucrose. The two pieces of filter paper from petri dish housing the non-nestmates were attached to two 
clean flowers containing two drops of water. The rest of the training phase and the criterion for progressing to the 
testing phase was identical to that of Experiment 1.

The testing phase was the same as for Experiment 2 (three testing bouts each separated by two training bouts), 
apart from two of the flowers were now scent-marked by non-nestmates instead of by the test bee. For the testing 
bouts, all four flowers contained two drops of water. The training bouts involved the same set-up as the training 
phase.

Data analysis.  We treated each bee as a single data-point as they are unique individuals; we did not take 
colony into consideration as there are other factors that would influence a bee’s foraging behaviour more than 
the colony it belongs to67. For each experiment, the occurrence of behaviours each individual showed towards 
each flower type were compared using a pairwise Mann-Whitney-Wilcoxon test. We also analysed the difference 
in how the bees behaved towards the two flower types depending on their previous behaviour, again using a 
pairwise Mann-Whitney-Wilcoxon test. For example, the occurrence of landing given that the bee hovered first. 
We only considered hovering and landing as the dependent behaviours here as there were a sufficient number of 
occurrences of these behaviours in each experiment. For a subset (n =​ 5) of bees from Experiment 1 we recorded 
the length of time they each spent on the flowers they landed on (taken to be from when the bee landed on the 
flower to when it departed) during the three separate testing bouts. Due to the small sample size we used a paired 
t-test68 to compare the difference in this mean duration for the two flower types. The number training phase for-
aging bouts required before progressing to the testing phase was compared between Experiments 1 and 2 using 
a Kolmogorov-Smirnov test. In Experiment 3 scent-marks were obtained using a slightly different method, so 
direct comparison with Experiments 1 and 2 was avoided. Any data represented as a boxplot includes the median, 
lower and upper quartile, and outliers; outliers are defined as being more than one interquartile range from the 
box, with the whiskers extending to the most extreme data-point within this.

Ethical note.  Outside of the experimental period the nest had standard ad libitum access to all the resources 
known to be required to maintain standard laboratory behaviour. After experiments had finished the Bumblebees 
were allowed to forage under fully stocked ad libitum conditions until the colony was not producing foragers, after 
which they were euthanised by placing the nest box in the freezer. There is no requirement by the University of 
Bristol to seek ethical approval for experiments with insects, and the sample sizes were designed to minimise the 
number of individuals used in the experiment.
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