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Abstract 

Background: Statistical models that use an individual’s DNA methylation levels to estimate their 

age (known as epigenetic clocks) have recently been developed, with 96% correlation found 

between epigenetic and chronological age. We postulate that differences between estimated and 

actual age (age acceleration, AA), can be used as a measure of developmental age in early life.  

Methods: We obtained DNA methylation measures at three timepoints (birth, age seven and 17) 

in 1018 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). Using 

an online calculator, we estimated epigenetic age, and thus AA, for each child at each timepoint. 

We then investigated whether AA was prospectively associated with repeated measures of 

height, weight, BMI, bone mineral density, bone mass, fat mass, lean mass and Tanner stage.  

Results: Positive AA at birth was associated with higher average fat mass (1321g per year of 

AA, 95% CI 386, 2256g) from birth to adolescence (i.e. from age 0-17) and AA at age 7 was 

associated with higher average height (0.23cm per year of AA, 95% CI 0.04, 0.41cm).  

Conflicting evidence for the role of AA (at birth and in childhood) on changes during 

development was also found, with higher AA being positively associated with changes in weight, 

BMI and Tanner stage but negatively with changes in height and fat mass.  

Conclusions: We found evidence that being ahead of one’s epigenetic age is related to 

developmental characteristics during childhood and adolescence. This demonstrates the potential 

for using AA as a measure of development in future research.  
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Key message 

 Children with a positive epigenetic age are taller and have higher fat mass throughout 

childhood and adolescence on average. 

 Epigenetic age acceleration is associated with longitudinal changes in weight, BMI, 

height and fat mass during childhood and adolescence. 

 We find some evidence that higher epigenetic age is positively associated with 

longitudinal Tanner stage of development in adolescents.  

 We find no association between epigenetic age and age at puberty, estimated as the 

age at peak height velocity. 
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Introduction 

Statistical models that use an individual’s DNA methylation levels to estimate their age (known 

as epigenetic clocks) have been developed(1-5). These methods have proved successful, with up 

to 96% correlation and a mean difference of three years found between estimated and actual 

age(2). A recent review(6) has also highlighted two separate processes when it comes to age 

related changes of DNA methylation levels: one reflecting overall changes in DNA methylation 

across CpG sites over the lifecourse (sometimes referred to as epigenetic drift(7-9)), which may 

be attributed to individual level environmental factors or stochastic processes. The second uses 

specific CpG sites that are affected by age in a similar fashion across individuals, and hence can 

be used to accurately predict age from DNA methylation data. Differences between 

chronological age and epigenetic age are defined as age acceleration (AA), and positive age 

acceleration (i.e. having a higher epigenetic age than chronological age) has been shown to be 

associated with obesity(10), lower physical and cognitive function(11), Alzheimer’s disease(12), 

HIV(13), menopause(14) and all-cause mortality(15-17). Since DNA methylation can be 

influenced by environmental factors(18), and in turn influence phenotypes, it is of interest to 

study both the determinants and consequences of AA. However, there is an absence of literature 

on the associations of AA with physical development in early life. The Avon Longitudinal Study 

of Parents and Children (ALSPAC)(19, 20) is a large UK birth cohort, which has followed 

roughly 14 000 children from birth, collecting many thousands of variables over time. DNA 

methylation data were obtained for 1018 of these children from umbilical cord blood (at birth) 

and venous blood at ages seven and 15 or 17 as part of the Accessible Resource for Integrated 

Epigenomic Studies (ARIES) project(21).  
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Here we use the epigenetic clock method by Horvath for the following reasons: First, it is more 

accurate than other methods when it comes to young subjects(22, 23). Second, it applies to 

virtually all tissues and cell types, which suggests that it might play a role in organismal 

development and aging. Using the Horvath age estimation method, we have calculated the 

epigenetic age for all of the children at each time point, and the resulting AA. In this paper we 

investigate the consequences of AA, by looking at standard measures of development, which 

have been repeatedly measured throughout childhood and adolescence: height, weight, body 

mass index (BMI), bone mineral density (BMD), bone mass, lean mass and fat mass.     
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Methods 

Study Population 

This study used DNA methylation data generated under the auspices of the Avon Longitudinal 

Study of Parents and Children (ALSPAC)(19, 20). ALSPAC recruited 14 541 pregnant women 

with expected delivery dates between April 1991 and December 1992. Of these initial 

pregnancies there were 14 062 live births and 13 988 children who were alive at one year of age. 

The study website contains details of all the data that are available through a fully searchable 

data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary).  

As part of the Accessible Resource for Integrated Epigenomic Studies (ARIES)(21) project 

(http://www.ariesepigenomics.org.uk), a sub-sample of 1018 ALSPAC mother-child pairs had 

DNA methylation measured using the Infinium HumanMethylation450 BeadChip (Illumina, 

Inc.)(24). Here we use DNA methylation data generated from cord blood and venous blood 

samples at age seven and again at age 15 or 17 years, leading to three measurements of DNA 

methylation per child. All DNA methylation wet-lab and pre-processing analyses were 

performed at the University of Bristol as part of the ARIES project and has been described in 

detail previously(21, 22). 

Epigenetic age 

Using the online epigenetic clock calculator (http://labs.genetics.ucla.edu/horvath/dnamage/), we 

obtained epigenetic age for each child at each time point in ARIES. Along with epigenetic age, 

the online calculator estimates cell-type proportions and calculates raw age acceleration 

differences (estimated-chronological age) and age acceleration residuals (the residuals from a 

linear regression of epigenetic age on chronological age, which we call age acceleration and 

denote AA). These AAs are uncorrelated with chronological age and contain information about 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary
http://www.ariesepigenomics.org.uk/
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the epigenetic age profiles of each sample, i.e. a positive residual corresponds to an individual 

whose epigenetic age is ahead of their chronological age and vice versa. The calculator provides 

estimates of epigenetic age, AA and AA adjusted for imputed blood cell-types. In our analysis 

we use those age acceleration residuals which have been adjusted for estimated cell type ratios. 

Developmental variables 

We obtained longitudinal data on repeatedly measured physical characteristics in ALSPAC to 

investigate the relationship between AA and development. These characteristics were height 

(cm), weight (kg), BMI (kg/m2), bone mineral density (BMD; g/cm2), bone mass (g), fat mass (g) 

and lean mass (g). Height, weight and BMI were measured from birth to age 18, with up to 19 

measurements per child, including nine after age seven; BMD, bone mass, fat mass and lean 

mass were assessed by dual energy X-ray absorptiometry (DXA) scans twice, at ages 9 and 18. 

Age at puberty was estimated by age at peak height velocity (PHV) (25) calculated using the 

SITAR model(26). We included estimated age at puberty in all longitudinal models of 

development and also investigated whether it was related to AA. Tanner(25) staging was 

repeatedly measured at mean ages 8.2, 9.7, 10.8, 11.8, 13.2 and 14.7 years. At each of these six 

ages, participants were asked to mark their development in relation to drawings of breasts 

(female), testes (male) and pubic hair (both male and female) development which were on a 

graphical scale from 1 (no development) to 5 (adult development).   

Statistical analysis 

A single multilevel model was used to investigate the association between chronological and 

epigenetic ages. Using the multilevel model, we can include the measures of epigenetic age (as a 

repeated outcome) and calculate an intra-class correlation coefficient (ICC), a number between 0 

and 1 which suggests the proportion of variation (here in epigenetic age) which is explained by 
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between individual differences. The association between AA and developmental timing was 

assessed using Pearson correlation between AA (at birth, age 7 and age 17) and SITAR estimated 

age at peak height velocity (PHV). Multilevel models of the four ordinal Tanner stage variables, 

corrected for age at Tanner measurement were used to assess the association of AA at birth and 

age 7 on developmental timing. We also combined the pubic hair Tanner stage variables for boys 

and girls, and the breast/testes Tanner stage variables across boys and girls, in order to increase 

the power to detect an association with AA. Each model was adjusted for longitudinal cell 

composition estimated using the Houseman method(27).    

Body composition data were modelled using multilevel models(28, 29), with AA (at birth and 

seven) included as a fixed effect along with an interaction of AA (at birth and age seven) with 

age to determine the effect of AA on changes in developmental characteristics. AA at age 17 was 

not considered as an exposure, since it was recorded at the end the follow-up period, with few 

measures of the key traits occurring after it. In each multilevel model we included sex, birth 

weight, gestational age, parity, delivery method, maternal age, maternal smoking, maternal 

alcohol consumption and maternal education level attained to adjust for potential confounding. 

Longitudinal cell counts (estimated using the Houseman method(27)) were also included, to 

adjust for the effect of changes in blood cell composition over the lifecourse. To correct for 

temporality issues, only measures of development taken after AA were included in the multilevel 

models, e.g. AA at age seven could only affect height measures after age seven. Weight was log-

transformed to correct for non-constant variance over age (variance of weight increases over the 

lifecourse). Cubic spline terms were used to account for the nonlinear changes in height, log-

weight and BMI. The placement of knots was based on previous research(30-32). For example 

the multilevel model for height was: 
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heightij = β0i + β1iageij + β2AA0 + β3AA7 + β4 AA0*ageij + β5 AA7*ageij + fi(ageij) + β6sex + 

β7parity + β8birthweight + β9gestationalage + β10caesarean + β11maternalage + 

β12maternalsmoking + β13maternalalcohol + β14maternaleducaiton + β15CD8tCellsProp + 

β16CD4tCellsProp + β17NaturalKillerCellsProp + β18BcellsProp + β19MonocytesProp + 

β20GranulocytesProp 

 

where ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑗 is the 𝑗th height measurement from the 𝑖th individual for 𝑖 = 1,… , 𝑛 individuals 

and 𝑗 = 1,… , 𝑛𝑖 measures. 𝛽0𝑖 and 𝛽1𝑖 represent the 𝑖th individual’s random intercept and slope; 

𝑓𝑖 is a cubic spline which explains the height trajectory of individual 𝑖; 𝛽2 and 𝛽3 explain the 

association of age acceleration (at birth [𝐴𝐴0] and 7 [𝐴𝐴7] respectively) and average 

development; 𝛽4 and 𝛽5 explain the association of AA (at birth [𝐴𝐴0] and 7 [𝐴𝐴7] respectively) 

on changes in development; 𝛽6 to 𝛽14 describe associations between development and 

confounder variables; and 𝛽15 to 𝛽20 control for estimated cell composition(27). 

Sensitivity analyses 

We carry out two sensitivity analyses, modelling longitudinal physical development as above (A) 

with adjustment for age at puberty estimated using SITAR(26) and (B) without adjusting for cell 

type composition estimated using the Houseman method(27). 
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Results 

A summary of the cohort under investigation is given in Table 1. Epigenetic age at birth was 

0.26 years on average; chronological age was lower than epigenetic age at the childhood 

timepoint (mean chronological 7.49, epigenetic 8.25) but similar at the adolescent timepoint 

(mean chronological 17.14, epigenetic 17.20). We find low Pearson correlation coefficients 

between chronological age and estimated age (r=0.058 and 0.245 at childhood and adolescence, 

respectively); this reflects the low standard deviations in chronological age (SD=0.15 in 

childhood SD= 1.01 years in adolescence). High correlations (such as the r=0.96 observed in the 

studies used to develop the measure of epigenetic age) were observed in data sets comprised of a 

wide range of chronological ages(2). Correlations between estimated age and actual age are 

similar to the original Horvath paper when including data from across multiple time points; 

taking one random measure from each person, the correlation between epigenetic and actual age 

was 0.85 (Figure 1). Using a multilevel model including all measures of epigenetic and actual 

age, the coefficient of age was 0.985 (95% CI 0.97, 1.00). This suggests that for each year of life, 

epigenetic age increases by 0.985 years on average. From this model, the intra-class correlation 

coefficient for epigenetic age was 0.12, which suggests that 12% of the variation in epigenetic 

age is between individuals. 

AA at birth 

AA was not associated with average length at birth (0.16cm per year of AA, 95% CI -0.08, 

0.39cm; p=0.19) or height growth (0.017cm/year per year of AA, 95% CI -0.067, 0.10cm/yr; 

p=0.69). There was evidence that children with higher AA at birth had faster growth in weight 

(0.25%/year faster growth per year of AA, 95% CI 0.034, 0.459%/year; p=0.023) and BMI 

(0.035kg/m2/year faster growth per year of AA, 95% CI -0.0037, 0.066kg/m2/year; p=0.030) 
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during childhood and adolescence. There was little evidence for an association between AA at 

birth and either average bone mineral density (0.003g/cm3 per year of AA, 95% CI -0.006, 

0.012g/cm3; p=0.478) or bone mass (19.71g per year of AA, 95% CI -30.8, 70.2g; p=0.45). A 1-

year higher AA at birth was associated with 1321g higher fat mass on average across childhood 

(95% CI 386, 2256g; p=0.006), but this difference narrowed over time, with higher AA children 

having a slower growth of fat mass during childhood and adolescence (112.5g/year slower 

growth, 95% CI 31, 194g/year slower; p=0.007). AA at birth was not associated with average 

lean mass (-74.5g per year of AA, 95% CI -1502, 1353g; p=0.918). 

AA in childhood 

Higher AA at age seven was associated with increased height (Table 2). Children with a 1-year 

higher AA at seven were 0.23cm taller on average (95% CI 0.04, 0.41cm; p=0.018) between 

seven and 17 years of age. AA at age seven was also associated with changes in height, with a 1-

year positive AA being associated with slower growth of height (-0.031cm/year, 95% CI -0.005, 

-0.057cm/year; p=0.021) from seven to 17 years. There was no evidence of an association 

between AA at age seven and either average weight (-0.11% per year of AA, 95% CI -0.69, 

0.48%; p=0.72) or BMI (-0.04kg/m2 per year of AA, 95% CI -0.11, 0.03kg/m2; p=0.28). We did 

not identify any associations between AA at age seven and either average BMD (-0.001g/cm3 per 

year of AA, 95% CI -0.0036, 0.0015g/cm3; p=0.418), bone mass (-7.16g per year of AA, 95% CI 

-21.8g, 7.5g; p=0.34), fat mass (67.2g per year of AA, 95% CI -205, 339g; p=0.63) and lean 

mass (-206g per year of AA, 95% CI -605, 192g; p=0.24) 

Role of age at puberty 

AA at birth (Pearson r=0.006, p=0.85), seven (r=0.014, p=0.67) and 17 (r=0.014, p=0.66) were 

not associated with age at PHV estimated by the SITAR model.  The odds ratios from multilevel 
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models of ordinal Tanner stages of development are presented in Table 3. Those boys with a 

positive epigenetic age at birth had higher odds of increasing Tanner stage of testes development 

(OR 1.10, 95% CI 1.01, 1.20; p=0.03). Further, combining across both sexes, there was some 

evidence that those children with positive epigenetic age at birth had higher odds of increasing 

pubic hair development in adolescence (OR 1.05, 95% CI 1.00, 1.11; p=0.06). There was no 

evidence that AA at age 7 was associated with any longitudinal Tanner measure of development. 

Sensitivity analysis 

In Table 4 we provide the results of models that are adjusted for age at puberty, for comparison 

with Table 2. While there is a general pattern of attenuation of the associations of AA with 

physical development after adjustment for age at puberty, there are no changes to the overall 

patterns of association described in the previous sections.  

Table 5 displays results unadjusted for longitudinal cell composition, as estimated by the 

Houseman method(27). Here AA at age 7 appears to be associated with changes in both bone 

mass and lean mass. Associations between AA at 7 and height are similar with and without 

adjustment, as are all associations of AA at birth.  
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Discussion 

Positive epigenetic age acceleration in early life appears to be associated with several 

developmental variables and changes in these variables during childhood. We have identified 

positive associations between AA and average height, average fat mass, and increased weight 

and BMI gain. Conversely, there were negative associations between AA and changes in height 

and fat mass. A systematic difference between epigenetic and actual age at the ARIES childhood 

timepoint was found (mean actual 7.49 years, mean epigenetic 8.25 years). There may be 

population differences between the ARIES population and the cohorts of children used to 

develop the Horvath age estimation method. For example, the Alisch et al dataset(33) has a 

higher proportion with non-European ancestry (>15%) and uses the Illumina 27k rather than 

450k array to estimate epigenetic age. The systematic difference at childhood could further be 

influenced by the spread of the estimated epigenetic ages for the childhood timepoint (standard 

deviation 2.4 years, range 2.5-25 years) when compared to the spread of actual age at childhood 

(standard deviation 0.15 years, range 7.1-9.1 years). 

The findings reported here are independent of sex (sex differences in AA  have been previously 

reported(22)), with all analyses controlled for sex. Those children with higher AA at age seven 

are taller on average with lower lean and bone mass. This suggests that there may be an 

identifiable developmental type, with higher AA in early life. Studies of AA in adults have 

identified a positive association between AA and obesity(10) and all-cause mortality(15). Given 

that BMI and general adiposity are associated with an increased risk of mortality(34, 35), this 

suggests an epigenetic age lower than one’s actual age (i.e. negative AA) is desirable. We have 

found some evidence to suggest that growth of BMI is faster in children whose DNA 

methylation levels at birth lead to a positive AA. This is congruent with several previous 
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findings(10, 22), and suggests the link between AA and BMI manifests from birth. However, it is 

not yet clear whether positive AA is harmful during childhood. Indeed, it could be taken from 

our results that a positive AA suggests above average development (which is not always a health 

positive, e.g. BMI). For example, we have also identified positive associations between AA and 

height and fat mass.  

While our study found at best a suggestive relationship between AA at birth and the role of sex 

hormones (Tanner stage), another study in adults found that the loss of sex hormones (resulting 

from menopause) was associated with increased epigenetic age acceleration in blood(14). 

However, we did not identify any association between AA and age at puberty (estimated by age 

at peak height velocity). One might expect that age at puberty (an obvious marker of 

developmental age) would be associated with epigenetic age but its inclusion in the modelling of 

development failed to influence the effect of AA. Further, a recent study of children who suffer 

from a severe developmental disorder found no evidence for a difference in epigenetic and 

chronological age(23). These null findings temper our conclusions on the relationship between 

AA and physical development. On the other hand, measurement error and tissue specificity may 

play a role. We used age at peak height velocity (i.e. the age at which adolescents grow fastest) 

estimated by the SITAR model(26) as a marker for age at puberty. Obtaining an accurate 

measure of age at puberty is difficult, and our null finding may be to do with poor estimates of 

age at puberty. Another possibility is that blood cells are not the optimal tissue for relating 

epigenetic age and physical development.   

Future longitudinal studies of AA may be able to provide evidence as to the changing role of 

epigenetic age across the lifecourse. Causal inference methods, such as Mendelian 

randomisation(36), should be implemented to investigate the influence of epigenetic age and 
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AA(37) on development, perhaps using genetic variants close to the 353 CpG sites (these are 

described in our Supplementary material) which are used to estimate epigenetic age. Since 

Mendelian randomisation will require a large sample size to be adequately powered, 

collaboration between cohort studies with epigenetic and longitudinal data will be key to this 

endeavour.  

A novel application of the epigenetic clock in physical development should involve the 

comparison of epigenetic age (and AA) between tissue types on the same individuals. 

Comparisons of epigenetic age of bone, blood and adipose tissue for example, could lead to 

novel insights into well-known associates of development and how they interact with changes 

across the lifecourse. Another potential avenue is to use AA as an aggregate measure of 

development. While our analysis has identified several associations, larger studies could identify 

stronger (and possibly causal) links between AA and development. Using AA as a marker for 

development would simplify analyses where difficulty lies in choosing which aspects of 

development to adjust for. 

We have not been able to replicate our longitudinal analysis findings in an independent cohort 

due to the unique nature of our data set. Since measured cell type proportions were not available 

in ARIES, we have adjusted for estimated cell type proportions from the online 

calculator (http://labs.genetics.ucla.edu/horvath/dnamage/), which uses the Houseman 

method(27). This raises the possibility that differences observed can be explained by longitudinal 

(possibly developmental) changes in white blood cell profiles not captured by these estimates. 

While adjusting for cell type is good practice, care should be taken when adjusting for cell 

composition in early life, since the Houseman method has not been validated in cord blood 

samples or in very young children and it may lead to biased results. In this manuscript we have 

http://labs.genetics.ucla.edu/horvath/dnamage/
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shown the results both adjusted and unadjusted for Houseman estimated cell counts. We 

observed that the association between epigenetic age and both bone and lean mass appears to be 

explained by changing cell type composition across childhood and adolescence. However, this 

may be due to a bias introduced using the Houseman method on cord blood samples. Recently, 

reference datasets for cell type correction in cord blood have been released(38, 39). 

Unfortunately using these in longitudinal modelling through childhood and adolescence is 

difficult since these methods do not estimate the same cell types as those in venous blood drawn 

from the peripheral circulation. 

Our main findings were obtained across seven multilevel models, each with two parameters of 

interest and should thus be interpreted in light of this multiple testing burden. The association of 

AA with changes in height could be explained by regression to the mean. For instance, we find 

positive AA is associated with being taller on average at age seven, but also that positive AA is 

associated with slower growth from seven to 17 such that, on average, children will end up with 

similar heights at age 17 regardless of AA. 

Epigenetic age acceleration in early life is associated with several developmental characteristics 

throughout childhood and adolescence, but with associations not all in the same direction, and no 

observed association with age at puberty. The consideration of epigenetic age as an index of 

developmental stage is a novel concept that adds to the growing literature around age 

acceleration and its use as a measure of development aging. Further longitudinal and causal 

analyses are needed to investigate the influences and consequences of age acceleration.  
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Table 1: Characteristics of the ARIES sample 

Variable Timepoint Mean SD Min Max N (%) 

Age (Years) 7yr  7.49 0.15 7.10 9.08  

 17yr  17.14 1.01 14.69 19.33  

DNA methylation age (Years) Birth 0.26 0.63 -0.59 16.68  

 7yr   8.25 2.42 2.50 24.80  

 17yr   17.20 4.34 3.77 31.65  

Height (cm) 7yr 126.24 5.29 109.20 141.60  

 17yr 171.93 9.11 152.20 197.50  

Weight (kg) 7yr   26.22 4.73 17.60 51.40  

 17yr 66.99 14.92 44.20 147.40  

BMI (kg/m2) 7yr   16.37 2.22 12.65 29.15  

 17yr 22.61 4.47 16.26 50.06  

BMD (g/cm2) 17yr  1.19 0.10 0.95 1.56  

Bone mass (g) 17yr 2814 547 1683 4666  

Fat mass (g) 17yr 18005 11478 3485 82194  

Lean mass (g) 17yr  46623 10106 27535 76425  

Birth weight (g)  3418 547 645.00 5640  

Gestational age at delivery (Weeks)  39.46 1.86 25.00 47.00  

Parity (# previous pregnancy)  0.7 0.8 0 5  

Maternal age at pregnancy (Years)  29.2 4.4 17 42  

Sex Male     445 (49) 

 Female     469 (51) 

Delivery method Caesarean     83 (9) 

 Natural     795 (91) 

Maternal smoking in pregnancy Never     545 (61) 

 Quit     248 (28) 

 Smoker     101 (11) 
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Table 2: Age acceleration and physical development1  

Outcome2 Exposure Mean 

difference in 

outcome per 

1-year 

greater AA 

95% CI p-value Mean 

difference in 

change in 

outcome per 

year per 1-

year greater 

AA 

95% CI p-value 

Height (cm) AA at 0 0.16 -0.08,0.39 0.184 0.012 -0.071,0.094 0.783 

 AA at 7 0.23 0.04,0.41 0.018 -0.031 -0.057,-0.005 0.021 

Weight (%)3 AA at 0 -1.16 -2.86,0.57 0.189 0.246 0.034,0.459 0.023 

 AA at 7 -0.11 -0.69,0.48 0.719 -0.001 -0.072,0.071 0.981 

BMI (kg/m2) AA at 0 -0.07 -0.18,0.04 0.227 0.035 0.003,0.066 0.030 

 AA at 7 -0.04 -0.11,0.03 0.282 0.004 -0.01,0.01 0.423 

BMD (g/cm2) AA at 0 0.0032 -0.0056,0.0119 0.478 -0.0002 -0.0010,0.0006 0.600 

 AA at 7 -0.0010 -0.0036,0.0015 0.418 0.0001 -0.0001,0.0003 0.298 

Bone mass (g) AA at 0 19.71 -30.83,70.24 0.445 -0.66 -4.98,3.66 0.765 

 AA at 7 -7.16 -21.84,7.51 0.339 1.07 -0.16,2.31 0.089 

Fat mass (g) AA at 0 1320.8 385.85,2255.7 0.006 -112.58 -194.39,-30.77 0.007 

 AA at 7 67.26 -204.73,339.24 0.628 -3.92 -27.30,19.46 0.742 

Lean mass (g) AA at 0 -74.51 -1501.6,1352.5 0.918 20.72 -80.98,122.43 0.690 

 AA at 7 -206.22 -605.36,192.92 0.311 20.45 -7.77,48.67 0.155 

   

                                                 
1 all models adjusted for estimated cell counts, sex, birth weight, gestational age, parity, delivery method, maternal 

age, maternal smoking, maternal alcohol consumption and maternal education level attained 
2 all outcome measurements come either concurrently or after the age at which AA is estimated 
3 weight was log-transformed such that back-transformed coefficients represent % change in weight 
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Table 3: Results from multilevel ordinal models of Tanner stage variables against age acceleration 

at birth and age 7, controlling for age at measurement of Tanner stage 

Outcome Exposure Odds ratio (per year of AA) 95% CI p-value n 

Tanner girls genitals AA at 0 1.11 0.87,1.42 0.39 459 

 AA at 7 0.99 0.73,1.34 0.94 458 

Tanner girls pubic hair AA at 0 1.11 0.65,1.88 0.70 410 

 AA at 7 1.11 0.60,2.07 0.74 415 

Tanner boys genitals AA at 0 1.10 1.01,1.20 0.03 477 

 AA at 7 1.04 0.94,1.15 0.44 475 

Tanner boys pubic hair AA at 0 1.00 0.92,1.07 0.90 448 

 AA at 7 0.96 0.88,1.05 0.37 453 

Tanner genitals AA at 0 1.00 0.92,1.07 0.90 448 

 AA at 7 0.96 0.88,1.05 0.37 453 

Tanner pubic hair AA at 0 1.05 1.00,1.11 0.06 925 

 AA at 7 0.99 0.93,1.06 0.79 928 
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Table 4: Age acceleration and physical development with adjustment for age at puberty4  

Outcome5 Exposure Mean 

difference in  

outcome per 

1-year 

greater AA 

95% CI p-value Difference in 

average 

change in 

outcome per 

1-year 

positive AA 

95% CI p-value 

Height (cm) AA at 0 0.17 -0.07,0.40 0.167 0.009 -0.074,0.092 0.828 

 AA at 7 0.22 0.04,0.41 0.019 -0.031 -0.058,-0.005 0.022 

Weight (%)6 AA at 0 -0.95 -2.60,0.72 0.262 0.198 0.001,0.396 0.049 

 AA at 7 -0.13 -0.69,0.44 0.653 0.002 -0.064,0.069 0.949 

BMI (kg/m2) AA at 0 -0.06 -0.18,0.05 0.271 0.032 0.001,0.063 0.042 

 AA at 7 -0.04 -0.11,0.03 0.245 0.005 -0.01,0.01 0.356 

BMD (g/cm2) AA at 0 0.0026 -0.0063,0.0115 0.565 -0.0002 -0.0010,0.0006 0.617 

 AA at 7 -0.0012 -0.0037,0.0014 0.379 0.0001 -0.0001,0.0003 0.268 

Bone mass (g) AA at 0 17.21 -34.08,68.50 0.511 -0.68 -4.99,3.63 0.756 

 AA at 7 -7.93 -22.80,6.93 0.295 1.03 -0.20,2.27 0.101 

Fat mass (g) AA at 0 1253.7 325.44,2182.0 0.008 -111.41 -191.95,-30.88 0.007 

 AA at 7 40.43 -229.68,310.54 0.769 -3.79 -26.88,19.30 0.748 

Lean mass (g) AA at 0 -93.80 -1513.8,1326.2 0.897 19.67 -81.48,120.83 0.703 

 AA at 7 -239.08 -636.16,157.99 0.238 21.93 -6.13,49.98 0.126 

 

  

                                                 
4 all models adjusted for age at puberty, estimated cell counts, sex, birth weight, gestational age, parity, delivery 

method, maternal age, maternal smoking, maternal alcohol consumption and maternal education level attained 
5 all outcome measurements come either concurrently or after the age at which AA is estimated 
6 weight was log-transformed such that back-transformed coefficients represent % change in weight 
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Table 5: Age acceleration and physical development without adjusting for cell type proportions7  

Outcome8 Exposure Mean 

difference in 

outcome per 

1-year 

greater AA 

95% CI p-value Mean 

difference in 

change in 

outcome per 

year per 1-

year greater 

AA 

95% CI p-value 

Height (cm) AA at 0 0.17 -0.06,0.40 0.142 0.011 -0.072,0.093 0.802 

 AA at 7 0.21 0.03,0.40 0.025 -0.033 -0.059,-0.007 0.014 

Weight (%)9 AA at 0 -0.99 -2.68,0.74 0.260 0.233 0.018,0.448 0.034 

 AA at 7 -0.09 -0.67,0.49 0.751 -0.002 -0.074,0.071 0.966 

BMI (kg/m2) AA at 0 -0.08 -0.19,0.03 0.151 0.035 0.004,0.066 0.028 

 AA at 7 -0.04 -0.10,0.03 0.304 0.004 -0.01,0.01 0.413 

BMD (g/cm2) AA at 0 0.0026 -0.0061,0.0114 0.556 -0.0002 -0.0010,0.0006 0.596 

 AA at 7 -0.0015 -0.0040,0.0010 0.235 0.0001 -0.0001,0.0004 0.218 

Bone mass (g) AA at 0 14.79 -36.80,66.38 0.574 -0.58 -4.97,3.80 0.794 

 AA at 7 -11.99 -26.50,2.52 0.105 1.29 0.05,2.54 0.042 

Fat mass (g) AA at 0 1289.8 355.91,2223.7 0.007 -108.21 -190.09,-26.34 0.010 

 AA at 7 81.73 -181.36,344.83 0.543 -5.03 -28.25,18.18 0.671 

Lean mass (g) AA at 0 -140.32 -1605.1,1324.4 0.851 21.15 -82.88,125.18 0.690 

 AA at 7 -306.20 -708.80,96.41 0.136 25.33 -3.32,53.97 0.083 

  

                                                 
7 all models adjusted for sex, birth weight, gestational age, parity, delivery method, maternal age, maternal smoking, 

maternal alcohol consumption and maternal education level attained 
8 all outcome measurements come either concurrently or after the age at which AA is estimated 
9 weight was log-transformed such that back-transformed coefficients represent % change in weight 
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Figure 1: Epigenetic age against actual age for a random sample of 1000 ARIES offspring taken 

from across the three timepoints. 

 


