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Planar growth generates scale free networks.
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In this paper we introduce a model of spatial network growth in which nodes are placed at randomly
selected locations on a unit square in R2, forming new connections to old nodes subject to the constraint
that edges do not cross. The resulting network has a power law degree distribution, high clustering and the
small world property. We argue that these characteristics are a consequence of the two defining features
of the network formation procedure; growth and planarity conservation. We demonstrate that the model
can be understood as a variant of random Apollonian growth and further propose a one parameter family
of models with the Random Apollonian Network and the Deterministic Apollonian Network as extreme
cases and our model as a midpoint between them. We then relax the planarity constraint by allowing
edge crossings with some probability and find a smooth crossover from power law to exponential degree
distributions when this probability is increased.
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1. Introduction

The field of spatial networks is emerging as an important topic within network science [8]. The distin-
guishing feature of this work is that network nodes are assigned a position in Euclidean space, typically
R2, with the distance between them described by the Euclidean metric. A major goal in this area is to
investigate the way in which constraining connectivity in a manner related to node proximity influences
network organisation. Application domains include city science [10, 17, 18, 23, 27, 34, 39, 43, 53, 54,
57], electronic circuits [11, 32, 45, 55], wireless networks [31, 40], leaf venation [22, 35], navigabil-
ity [30, 36, 38] and transportation [26, 41]. Spatial networks vary in the extent to which they respect
planarity: the property of a spatial network having edges that do not cross. While, for example, sexual
contact networks may be embedded in space, they need not respect planarity. By contrast, the layout of
a microchip must be planar since conductor lines may not cross without creating a junction. Transport
networks tend to be nearly planar (a relatively small number of bridges and tunnels allow edges to cross
without creating a junction vertex). Planarity is also a consideration in the construction of infrastructure
such as wireless networks [16]. Despite the relevance of planarity considerations across a wide range of
nework domains, the role of planarity in network formation is an under-represented issue in the spatial
networks literature [47].

Following Barabási & Albert’s demonstration that preferential attachment results in a scale free net-
work [5], the conditions under which the power-law degree distribution obtains within spatial networks
has been a significant area of investigation; for a review see reference [28]. Three principal classes of
mechanism have been identified in this regard [28]; (i) link length penalisation, (ii) embedding a scale
free network within a lattice and (iii) space filling. Two models make up class (i); the modulated BA
model and the geographical threshold graph. The first of these two is an extension of the BA model
where the probability of a new connection is inversely proportional to the euclidean distance between
the nodes under consideration and the degree of the existing node. As such, the modulated BA implic-
itly assumes a power law degree distribution. In the geographical threshold model, nodes are connected
when the product of their respective weights and a function of the distance between them exceeds a
pre-defined constant. In this case a scale free network results only when either the distribution of the
weights or the distance function follows a power law. Furthermore, we note that the canonical model
of link length penalisation, the random geometric graph, only produces a scale free degree distribution
when the nodes are themselves inhomogeneously distributed on the plane [7, 15, 29]. Models in class
(ii) assign an intrinsic degree k to all nodes in a lattice. Members of the lattice are then selected at
random and connected to their k nearest neighbours subject to a distance constraint [12, 52]. The degree
distribution in this case is precisely that which is assigned to the model during its construction. Thus,
models in classes (i) and (ii) only result in a scale free distribution when a power law is assumed as
some aspect of their inputs.

Class (iii) recursively partitions the space by adding new nodes to the plane and then connects them
to the existing graph. Two of these models, the Apollonian network (hereafter DAN, the Deterministic
Apollonian Network) [4, 24] and its stochastic variant the Random Apollonian Network (hereafter RAN)
[61], are of primary interest to this study. Both models choose faces of an existing triangulation of the
plane and split them into three, resulting in a new triangulation. Analytical treatment of their respective
degree distributions reveal them to be power laws of the form P(k)∼ k−α . For the DAN, this exponent
is αDAN = ln 3/ln 2≈ 1.585 and for the RAN it is αRAN = 3.0. Further work in this vein has investigated
the average path length [58], degree spectrum [3] and dynamical properties of the DAN [14, 51] while
a similar body of research exists for the RAN [25, 60]. A unifying framework for Apollonian networks,
the Evolutionary Apollonian Network, is a triangulation model which can be induced to produce either



PLANAR GROWTH GENERATES SCALE FREE NETWORKS. 3 of 20

the DAN or the RAN by variation of a single parameter [37, 59]. However, none of these Apollonian
growth models attribute an explicit point in space to their nodes; in each case it is network topology
that determines the outcome of the process. Furthermore, when interpreted spatially, the nodes of these
models are not distributed uniformly in space.

As a final example in class (iii), we highlight the model of Mukherjee & Manna [46]. Here, new
nodes are connected to a random end of the nearest edge. The model is notable in that it is the only
existing spatial growth process we have identified that results in a scale free distribution when (a) nodes
are distributed uniformly at random on the plane and (b) there are no other inputs to the model that have
a power law form.

In this paper we present two related mechanisms; the first, planar growth (PG), seeks to directly
address the impact of a planarity constraint on a network growth process. Briefly, PG incrementally
builds a network by placing new nodes at random locations in space and connecting them to other nodes
such that planarity is maintained. We introduce it in section 2 alongside two reference cases; one of
which considers a network that grows in time but does not enforce planarity, while the other considers
a network built over a static set of nodes through the addition of planarity-preserving edges. In contrast
to the reference cases, PG results in a power law degree distribution and we present evidence to support
this claim in section 2.2. Further investigation of PG is presented in sections 3 and 4, where we examine
other key network measures and demonstrate the consequences of relaxing planarity, respectively.

The second mechanism is named Apollonian Planar Growth (APG) and is introduced in section 2.3
as a reformulation of PG as an Apollonian growth process. Consideration of APG as an object of study
in its own right leads to further contributions. Firstly, the APG is inherently spatial; in contrast with
the topological character of its precursors, the DAN and the RAN. Secondly, PG can be viewed as a
generalisation of Apollonian growth processes to cases where m, the number of connections made when
a node is added to the network, is less than 3. In section 5, we further develop APG as a single parameter
model, the variation of which tunes the exponent of the network’s degree distribution. The DAN and
the RAN can then be seen as special cases of APG, with PG intermediate between them. Finally, we
conclude this paper in section 6 where we summarise our results.

2. The models and their degree distributions

We begin with a description of the models and an analysis of the degree distributions that they produce.

2.1 Planar Growth, no planarity and no growth

Planar Growth creates spatially embedded networks with N+10 nodes and average degree 2m on a unit
Euclidean square that has rigid boundary conditions. We wish to begin the process with a planar network
that has nodes distributed uniformly on the plane. To do so ten nodes are placed uniformly at random
upon the unit square with m× 10 planar edges between them. As they are added, each node after the
first is connected to an existing node; the edge being chosen so as not to violate planarity. Once all ten
nodes have been placed, unconnected pairs are then chosen at random and an edge is chosen between
them; again subject to the caveat that planarity is always maintained. We continue choosing node pairs
until m× 10 edges are added or until all possible node pairs have been tried. The resulting network is
accepted irrespective of its final number of edges.

Tests of the procedure over 10,000 realisations show that for m = 2 the average degree of the initial
network was kave = 3.99, while for m = 3 it was kave = 4.2. Despite the results for the m = 3 case we
retain this method of initialisation since the number of nodes and edges is statistically insignificant in
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(a) (b) (c) (d) (e)

FIG. 1: A PG network with m = 2 at various stages of its growth. (a) N = 0 (b) N = 50 (c) N = 100 (d)
N = 250 (e) N = 500.

comparison to the finished network and the method reliably produces initial networks with the desired
properties.

The algorithm now enters the growing phase where the following steps are repeated N times:

(1) Place a new node, i, uniformly at random within the square.
(2) Repeat m times:

(2a) Pick a node j where j 6= i.
(2b) If ij does not cross an existing edge then add ij otherwise go to 2a.

If step 2 cannot be completed because m valid nodes do not exist then remove node i and any associated
edges and repeat step 1.

As reference cases for PG we consider two degenerate variants of the mechanism; one with no
planarity constraint, PG-noplanarity, and one with no growth, PG-nogrowth. PG-noplanarity is very
similar to PG except that edge connections are always allowed. This scenario is equivalent to the uni-
form attachment model originally introduced by Barabási & Albert [6] where it was shown to result in
networks with an exponential degree distribution. In PG-nogrowth we create a static population of N
nodes placed uniformly on the unit square. Pairs of nodes are picked at random and an edge is drawn
between them, provided this new edge does not cross an existing one. We continue until N×m edges
have been added.

2.2 Analysis of the degree distribution

Figure 1 is a series of visualisations of a PG network from its initialisation until it reaches 500 nodes.
Qualitatively it seems that some nodes acquire a disproportionately high amount of connections hinting
that the network has a skewed degree distribution. We proceed, in figure 2a, with a plot of the degree
distribution for a planar growth experiment of order N = 104, along with a PG-noplanarity experiment
of order N = 104 and a PG-nogrowth experiment of order N = 2×103. A smaller value of N is reported
for PG-nogrowth due to computational limits. Nonetheless the results show the degree distributions of
both reference cases to be exponential while the PG experiment approximates a power law distribution.

To investigate finite size effects we plot, in figure 2b, how the maximum degree observed during
these experiments varies with the size of the network. Following Newman [49], we also plot the analyt-
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FIG. 2: (a) Cumulative degree distributions for PG networks of order N = 104, APG networks of order
5×105, PG-noplanarity networks of order N = 104 and PG-nogrowth networks of order N = 2×103. All
results averaged over 20 experiments with m = 2. The dashed line is the best fit for the APG experiment,
a power law with exponent, αAPG = 2.77± 0.01. As with all exponents in this paper, αAPG has been
estimated using the method of Maximum Likelihood Estimators outlined in Clauset et al. [19]. (b)
Average maximum degree observed for the PG, PG-noplanarity and PG-nogrowth networks. The dashed
line is the expected value of the maximum degree for a power law with exponent αm=2 = 2.83±0.01,
the estimated value of the exponent in the n = 104,m = 2 case. The dotted line is a plot of the expected
maximum degree for a network with an exponential distribution.
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ically derived relationship between 〈kmax〉, the mean maximum degree for networks with a power law
degree distribution, and N; 〈kmax〉 ∼ N1/(α−1). We find it to be in good agreement with the observations
which provides strong support for the hypothesis of a power law distribution.

The expected value of the ith member of a sequential ordering of the random variables of an expo-
nential distribution with parameter λ is E[Xi] = Hi/λ , where Hi is the ith harmonic number. Barabási &
Albert found the degree distribution for the uniform attachment model to be P(k) = eλ exp(−λk) with
λ = 1/m. We therefore approximate the average maximum degree for a PG-noplanarity network of
order N with 〈kmax〉 ∼mHN . The plot of this curve also matches well with our empirical data supporting
the claim that the degree distributions generated for both types of reference cases are exponential.

Considered as a whole, the evidence in this section suggests that the network produced by the planar
growth process is scale free. The necessary ingredients in order to produce this outcome are growth and
the planarity conservation. When either of these aspects are removed we observe an exponential degree
distribution. However, results discussed in this section are unsatisfactory in that the distribution has only
been shown to hold over one order of magnitude. We will attend to this in the next section.

2.3 Apollonian Planar Growth

Zhou’s original RAN algorithm [61] starts with an equilateral triangle on the plane. Network construc-
tion proceeds by repeatedly choosing a face of the triangulation at random, placing a new node within
it and connecting that node to the vertices of the face. Note that the probability of a node receiving a
new edge is proportional to the number of triangles of which it is a vertex. This count of triangles is, in
turn, equal to the degree. As such, the RAN is a form of linear preferential attachment; furthermore, its
degree distribution can be analytically demonstrated to be a power law with exponent αRAN = 3.0 when
the degrees of the three vertices of the external triangle are ignored.

Apollonian Planar Growth (APG) refines this algorithm by giving the nodes an explicit position
on the face of the triangle. Which face is chosen to receive a new node is still random but now this
probability is in proportion to the area of the face, i.e., face i is chosen with probability πi defined by the
following formula:

πi(t) =
ai

∑
j∈Ft

a j
, (2.1)

where ai is the area of face i and Ft is the set of faces present in the simulation at step t.
The new node is then placed uniformly at random within triangle i and connected to its vertices.

Clearly, this algorithm is equivalent to planar growth on a triangle with m = 3. It has the advantage that
the triangulation can be represented as a ternary tree [1], thereby allowing for more efficient implemen-
tation of the model. Thus, in figure 2a we present a plot of the degree distribution of an APG network
of 5×105 nodes which shows the fit of the power law extending over two orders of magnitude on both
axes with an estimated exponent of αAPG = 2.77±0.01.

2.4 Robustness to variation of m

We now vary m, the number of connections introduced with each new node, to determine if our obser-
vations are peculiar to the m = 2,3 cases. Three is an upper bound on m, which can be established by
consideration of Euler’s formula for a planar graph, see discussion in reference [8] for details. We there-
fore vary m between one and three. Non-integer values of m are attained by always attaching bmc edges
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to a new node and then attaching a further node with probability m−bmc. The network size in these
experiments was fixed at n = 104 and were observed to exhibit power laws. In table 1 we report the esti-
mated exponents for these networks which decrease from αm=1 = 3.15± 0.03 to αm=3 = 2.69± 0.01.
From this point of view PG can be thought of as a generalisation of APG, which strictly has m = 3, to
any average degree less than three.

2.5 Statistical test of the power law hypothesis

In this section we have estimated several different exponents of assumed power law distributions using
the method of Maximum Likelihood Estimation introduced by Clauset et al. [19]. MLE can be used
as a principled method to estimate the exponent but does not establish if a power law is an appropriate
model to describe the data under consideration. To do so Clauset et al. describe two further steps; firstly,
goodness of fit is quantified by a p-value calculated by bootstrapping from the estimated model and
comparing using the Kolmogorov-Smirnov statistic. Secondly, the power law is compared with other
candidate distributions via log likelihood ratios.

We acknowledge that noise in empirical data can cause it to fail the bootstrapping test, thereby
rendering the first step of Clauset et al.’s method inconclusive. We therefore follow the approach rec-
ommended by Alstott et al. [2] and use the second step as a means to identify the most appropriate
distribution. In table 2, we report the log likelihood ratios, R, and associated p-values for two experi-
ments, the PG network with N = 104,m = 2 and the APG network of order N = 5×105. The alternative
distributions considered were the exponential:

P(k) =Ce−λk (2.2)

the stretched exponential:

P(k) =Ckβ−1e−λkβ

(2.3)

powerlaw with cutoff:

P(k) =Ck−α e−λk (2.4)

and lognormal:

P(k) =Ck−1exp
[
− (ln k−µ)2

2σ2

]
(2.5)

where α , β , λ , σ & µ are the parameters to be estimated for the given distribution, C is a constant that
is dependent on these parameters and k is the degree.

The power law model is favoured with high significance over the exponential and stretched expo-
nential models for both PG and APG networks. The lognormal model is not found to be a significantly
better fit than the power law model for both network models (indicated by the high p-values). The
power law with cutoff model is found to be a significantly better fit than the power law model (and also
a significantly better fit than the log normal model: with R = 3.0, p = 0.02 for the APG network and
R = 5.1, p∼O(10−8) for the PG network). This might be expected given that it employs more param-
eters. Moreover, the estimated parameters for the functional form of the power law with cutoff suggest
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Table 1: Estimated exponents of networks of order n = 104 with varying m.

m 1 1.5 2 2.5 3
α 3.15 2.97 2.83 2.78 2.69
σ 0.03 0.02 0.01 0.02 0.01

Each exponent, α , is calculated from a batch of twenty experiments that grow a network of order n = 104

using m as specified in the first row. Following Clauset et al. [19] we use the standard error, σ , as our estimate of
the uncertainty in power laws presented in this paper. For all other estimates of uncertainty we use the standard
deviation.

that the cutoff is not substantive. We observe that α = 2.76,λ = 7.80×10−5 for the APG network and
α = 2.77,λ = 0.0023 for the PG network. We also note that the maximum degree observed for the APG
network across all 20 experiments was kmax = 5726 while for the PG network it was kmax = 271. Both
of these values are less than λ−1 indicating that while the cutoff may fit the data more appropriately the
magnitude of the cutoff does not significantly impact the power law.

3. Analysis of Planar Growth

Having investigated the degree distribution we now take a look at other key indicators of global structure.
We begin with the small world property and assortativity. Subsequently we examine how the planarity
constraint affects the distribution of angles between edges.

3.1 The small world property and assortativity

We seek to determine if PG networks have the small world property; the defining characteristics of
which are that the network’s clustering coefficient [56], c, is high and the network’s mean characteristic
path length, l, scales with N as l ∼ ln N. Here, l = ∑i, j∈V d(i, j)/N(N−1) with V the set of vertices of
the network and d(i, j) the length of the shortest topological path between i and j. For random scale
free networks with 2 < α < 3 it is known that l scales with N as follows: l ∼ ln lnN [20]. However the
order of the networks, N = 104, does not permit the precision necessary to confirm if this is the case for
PG. Instead, figure 3a, a plot of the observed l for PG networks with varying N and m = 2, indicates that
l grows roughly logarithmically with N.

Figure 3b shows that, for the same network, clustering is high for m = 2. Large values of c in this
case are accounted for by the fact that when a node is added it will form connections with the end nodes
of nearby edges. PG networks with m > 2 will therefore tend to form triangles with nearby edges.
Furthermore, nearby edges deny a significant portion of the network to new nodes, thereby exacerbating
this tendency. On this basis we hypothesise that the planarity constraint induces high clustering in PG
networks where m > 2. Further results, not presented here, confirm that this hypothesis is indeed correct
and also indicate that the logarithmic scaling of the mean characteristic path length with N also holds
when m > 2. On this basis we conclude that this class of networks are small worlds.

Finally for this section we consider the assortativity coefficient, a, which we define, following New-
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Table 2: Log likelihood ratios of estimated power law distributions compared with other candidate
distributions.

exponential stretched exp
R p R p

PG 2.7×103 O(10−100) 34 9×10−4

APG 7.1×104 0 1.0×103 O(10−85)

lognormal powerlaw with cutoff
R p R p

PG -3.4 0.10 -8.5 3.9×10−5

APG -2.3 0.26 -5.3 1.1×10−3

The log likelihood ratio, R, and their associated p-values, p, for fits of four alternative distributions compared
with the fit of the power law distribution. Statistics were gathered for PG, planar growth with m = 2, N = 104, and
APG, Apollonian planar growth with N = 5× 105. Positive values of R indicate that the powerlaw hypothesis is
the preferred model of the data, p is the significance value of the log likelihood ratio.
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bars in each image is one standard deviation.
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man [48], as a correlation coefficient of the degrees at either ends of an edge, i.e.,

a =
N−1

∑i jiki− [N−1
∑i

1
2 ( ji + ki)]

2

N−1 ∑i
1
2 ( j2

i + k2
i )− [N−1 ∑i

1
2 ( ji + ki)]2

(3.1)

where ji, ki are the degrees of the vertices at the end of the ith edge.
Specifically, we investigate how a varies with m. For PG networks of order N = 104, it decreases

from am=1 = −0.029± 0.006 to am=3 = −0.066± 0.002, i.e., the networks are mildly disassortative
and this tendency increases as m increases. Plots (not presented) of this relationship show it to be
roughly linear. These results are in line with the well known fact that random scale-free networks are
disassortative [42, 50]. A partial explanation of this phenomenon that has been offered is that there is a
limited number of possible edges that can lie between high degree hubs [42]. So, in general, a scale-free
network must feature connections between high and low degree nodes.

3.2 Angle distribution

Visualisations of PG, PG-nogrowth and PG-noplanarity networks are shown in figure 4. A notable
qualitative feature of the PG and PG-nogrowth plots are that edges emanating from the same node
often closely bunch together. Combined with the observation of high clustering, this suggests that the
space is predominately characterised by triangles with at least one highly acute angle. By contrast the
PG-noplanarity network looks markedly different to the naked eye with edges crossing each other freely.

Within city science, the distribution of angles between edges has been successfully employed to gain
quantitative insight into road networks [9, 18]. In a similar fashion we here consider those edges incident
to a vertex in clockwise order and calculate the angle ω between subsequent pairs. The probability
density of ω is presented as a series of histograms beneath the corresponding visualisations in figure
4. In the planar growth case three peaks are apparent; at zero, π and 2π radians. The peak at zero is
the largest and indicates the high number of acute angles just described. The peak at 2π is evidence
that in some cases the acute angle will be complemented by a large angle. The difference between the
peaks at zero and 2π indicates that in many cases several acute angles will be recorded at a single node
in a fan like structure. There will also be occasions when these fan like structures are formed next to
pre-existing edges. When this happens the fan will spread towards the edge without crossing it, thereby
resulting in two edges incident at the same node that form an almost straight line. It is this phenomenon
that accounts for the peak at π . It should also be noted that the peaks at π and 2π will be influenced
by the boundary conditions; fans that form near the corners will contribute to the peak around 2π while
those that appear next to the middle of a side will contribute to the peak at π .

The PG-noplanarity histogram shows a large proportion of small angles in a distribution that smoothly
and rapidly tails off. There is a small bump at higher values of ω which is a consequence of the square’s
boundary, i.e., nodes at the corners will tend to have some ω > 3π/4. Finally, the PG-nogrowth his-
togram is very similar to that of the PG networks, confirming that the angular structure is a consequence
of the planarity constraint.
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(a) (b) (c)

(d) (e) (f)

FIG. 4: (a) Visualisation of a 0.35× 0.35 patch of a N = 104,m = 2 planar growth network. (b) Visu-
alisation of a 0.01× 0.01 patch of a N = 104,m = 2 PG-noplanarity network. (c) Visualisation of a
0.35× 0.35 patch of a N = 2× 103,m = 2 PG-nogrowth network. (d), (e) and (f) the probability mass
for the angle, ω , between successive clockwise edges at a node of the network immediately above.

Table 3: Estimated exponents of crossing probability networks.

χ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α 2.83 2.89 3.00 3.13 3.31 3.55 3.95 4.68 6.21 5.71 6.25
σ 0.01 0.01 0.02 0.01 0.02 0.04 0.03 0.08 0.32 0.07 0.05

Each exponent α is estimated assuming a power law degree distribution for a batch of twenty experiments which
grow an N = 104, m = 2 network with the crossing probability χ that is specified in the first row. Standard error, σ ,
is reported in the third row.
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FIG. 5: The normalised count of crossings, xnorm, observed in experiments with varying χ . Normali-
sation was observed by dividing x, the number of crossings, by 20,020, the number of edges. The true
value of xnorm when χ = 0 cannot be represented on logarithmic axes and has been approximated by the
value for χ = 0.01.

4. Planarity relaxation

The contrast between the PG and the PG-noplanarity degree distributions is dramatic and we would like
to investigate intermediate networks. To do so we introduce a new parameter; χ ∈ [0,1], the crossing
probability. This parameter is applied in step 2b of the PG algorithm where, instead of rejecting cross-
ings outright, we allow them with probability χ . We grow networks with N = 104 and m = 2 while
using a different value of χ in the range 0.0 and 1.0 for each experiment. Our first result, presented
in figure 5, is a plot of the normalised number of crossings which shows that the number of crossings
increases in a roughly exponential fashion between χ = 0.1 and χ = 0.9. Beyond χ = 0.9 the number
of crossings increases significantly in comparison to the previous regime.

The associated degree distributions are shown in figure 6a where we see a smooth transition from
a power law to an exponential curve as χ increases from 0.0 to 1.0. Similarly, in figure 6b we present
the average maximum degree where plots for low χ match the predicted maximum of a power law
while increasing χ leads to curves that more closely match the exponential prediction. Taken together,
this evidence shows a smooth transition from a heavy tailed to an exponential degree distribution as χ

increases. We also estimated exponents, assuming a power law distribution, and report the results in
table 3, finding an increasing trend for the exponent with χ for networks with χ 6 0.8. However, from
an examination of figure 6a, it is clear that networks for which χ > 0.7 have a degree distribution that is
exponential and we can therefore disregard exponents in this region of the parameter space.

Assortativity is plotted in figure 7a and again exhibits a smooth transition, this time from mild
disassortativity to assortativity. As has been discussed in section 3.1, preventing edge crossing results
in nodes being more likely to connect to nodes at the ends of nearby edges. We can calculate, for node
i, the strength, si = ∑ j∈V (i) wi j where V (i) is the set of vertices connected to i and wi j is the Euclidean
distance between i and j. Nodes with high strength, i.e., those whose edges have a high total length, will
be favoured. Such nodes will tend to attract connections from new, low degree nodes thus accounting
for the disassortativity. Clearly this tendency will be relaxed as χ increases leading to more assortative
networks.
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FIG. 6: (a) Cumulative degree distributions for networks created using planar growth with a probability
χ of accepting edge crossings. The dashed line is the power law with exponent αm=2, the best fit for
the χ = 0.0 experiment. (b) Average maximum degree observed in the same experiments. Dotted and
dashed lines are the same references plotted in figure 2 and are fits for the χ = 0.0 cases and χ = 1.0
cases respectively.

We consider the clustering of these networks in figure 7b noting a high cχ=0.0 = 0.49 descending to
a negligible value for cχ=1.0. High clustering occurs for χ = 0.0 for the reasons outlined in section 3.1.
On the other hand a new node connects freely to any existing node in the χ = 1.0 case and, hence, this
model displays no clustering, equivalent to the uniform attachment model.

5. Comparison of APG with existing Apollonian growth

In section 2.3 we introduced APG as a refinement to the Random Apollonian Network noting that the
exponent of its degree distribution was αAPG = 2.77± 0.01. We contrast this with the analytically
derived exponents for the original Apollonian network, αDAN = 1.585, and the RAN, αRAN = 3.0. The
APG’s exponent lies between these two values and we contend that this is because APG can be thought
of as a generalisation of the two existing models.

A triangulation created by any of the three Apollonian growth processes can be represented as a
ternary tree where the internal nodes of the tree correspond to nodes of the network and leaves of the
tree to the triangular faces [1], see figure 8. In the case of the RAN, picking faces of the triangulation
uniformly at random is equivalent to picking leaves of the tree uniformly at random. Therefore, the
corresponding tree for the RAN will tend to grow in depth since leaves at the bottom of the tree will
appear in greater abundance.

DAN constructions begins with K4 embedded in R2. Growth is an iterative process where, at each
stage, a new node is placed within each of the graph’s internal faces. Each of these new nodes is then
connected to the vertices of its containing face resulting in three new faces. This recursive splitting of
the triangle is repeated t times and the corresponding ternary tree has depth t + 2 and is both full and
complete. Most importantly, the tree for the DAN is shallower than that of the RAN.
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FIG. 7: (a) Average assortativity observed in PG networks with varying χ . (b) Average clustering
observed in the same experiments. Each data point relates to twenty networks grown using n = 104,
m = 2. Error bars represent one standard deviation.

FIG. 8: A triangulation resulting from an Apollonian growth process represented as a ternary tree. Here
a root node, 1, and one subsequent node, 2, have been added to the triangulation, resulting in five faces.
This triangulation is represented by a ternary tree on the right hand side. The internal nodes of the tree
correspond to the nodes of the triangulation and have been numbered as such. The leaves of the tree
correspond to the faces and the colouring scheme indicates this.
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The consequence for the degree distributions of the triangulations is as follows: at depth t there are
3t potential nodes of which 3× 2t−1 will connect to the triangulation’s root node. The triangulation
associated with the DAN is guaranteed to fill those locations that maximise the degree of the root node.
Furthermore, note that the structure of the ternary tree is self-similar. As such any node within the DAN
receives the maximum number of connections from its descendants on the tree. Meanwhile, degree in
the RAN will be distributed more evenly since the new additions at greater depths will not have the
same tendency to link to those at shallower levels of the tree. We therefore expect the DAN to exhibit a
heavier tail in its degree distribution and this accounts for the fact that αDAN < αRAN .

In the case of APG there will be a tendency to place nodes within those faces with the greatest area.
The intuition here is that the earlier a face is created the larger its area will be and therefore those faces
that are at a shallow depth within the ternary tree will be favoured for selection. On the other hand,
as more nodes are added, a greater proportion of the triangle’s total area is covered by newer triangles
at greater depth and these will come to be favoured over time. Therefore, nodes in the APG’s ternary
tree appear at a depth between those of the DAN and the RAN and this in turn explains why we see an
intermediate exponent for the degree distribution.

5.1 Area weighting and trisection

We test the hypothesis of the previous section by varying the extent to which face area influences its
selection within APG. To this end the equation 2.1 is modified as follows:

πi(t) =
aβ

i

∑
j∈Ft

aβ

j

, (5.1)

where β , the area weighting exponent, is a parameter controlling the influence of a given triangle’s area.
Clearly, as β → 0, faces will be chosen at random and RAN will be recovered. Conversely, when β →∞

larger faces will be favoured and we expect, from the arguments preceding, to recover the DAN instead.
In table 4 we report the exponents for networks created using this variation of the APG and varying

β . For values of β < 1 we see precisely the result predicted, as β → 0, α → 3. On the other hand,
for values of β > 1, a saturation effect has taken hold and the exponent remains around 2.76. This
contradiction with the predicted behaviour occurs because we have assumed that shallow faces in the
ternary tree will always have a greater area than deeper ones. Since nodes are placed randomly upon
their containing triangle, this isn’t necessarily the case in Apollonian Planar Growth. Thus, nodes tend
to appear deeper in the ternary tree than our initial hypothesis assumed.

Table 4: Variation of the degree distribution with area weighting.

β 10−3 10−2 10−1 100 101 102 ∞

α 2.92 2.93 2.82 2.76 2.77 2.76 2.77

Estimated values of the exponent of the degree distribution, α , observed for APG networks of order
105 with varying area weighting exponent, β . The standard error, σ , in each case is 0.01.

In light of this reasoning we further modify the algorithm by placing each new node so that it
exactly trisects its containing face; thereby guaranteeing a hierarchy of face sizes by depth within the
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FIG. 9: Black dots are the degree distribution of a network of order n = 105 grown using Apollonian
Planar Growth with β = 100. Faces were divided by trisecting in to three equal areas in this version
of the model. Empty circles are the degree distribution of an Apollonian network of the same order.
Dashed line is a plot the best fit of the exponent, αβ=100 = 2.85±0.01.

tree. For β < 1 behaviour was again as expected; exponents were observed to increase from 2.93±0.01
to 2.68±0.01 as β increased from 10−2 to 10−0.5. A further experiment with β = 102 gave an exponent
of 2.85±0.01 which, prima facie, suggests that the hypothesis is incorrect. However, it is apparent from
figure 9 that the fit is not indicative of the degree distribution of the area weighted APG with trisection.
This is because the Clauset et al. method is inappropriate for quantifying the exponent of power laws
that exhibit the sort of discretisation we see in the plot.

To better understand the distribution as β → ∞ we instead follow the formula for the degree distri-
bution of a DAN presented in Andrade et al’s original paper [4] and plot it on figure 9 alongside our
own data. It is clear that the discretisation of the experiment closely matches that of the analytical cal-
culation. In a further experiment we set β = ∞, i.e. the largest triangle was always chosen, and grew a
network of 265,720 nodes, the order of an Apollonian network that has been iterated 11 times. In this
case the analytical calculation exactly matches the experimental data, confirming that the area weighted
APG with trisection approximates the DAN as β increases.

To complete the analysis we considered networks with β < 0, results obtained indicate that an
exponential distribution takes hold in this regime. In this regime, new nodes tend to appear within the
model’s smallest triangle, thereby creating new smallest face from the resulting trisection. Thus, new
nodes will tend to congregate in the same region of the model. This contrasts with the β > 0 case where
division of the largest face effectively lessens the probability of that region being selected in the next
iteration of the process. Thus, the potential for nodes to be distributed over the entire face is a key
feature in the onset of the power law degree distribution.
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6. Summary

We have introduced planar growth as a model of spatial network formation in which a network is grown
over time such that planarity is maintained. Resulting networks have been found to be scale free, have
the small world property and are mildly disassortative. It should be noted that PG attains the power law
degree distribution with a uniform distribution of nodes in space. As far as we are aware this is only
the second example, Mukherjee & Manna [46] being the first, of a spatial growth process that attains
this outcome under this constraint. The scale free property is dependent on two aspects of the process;
sequential growth and maintenance of planarity. Removal of either aspect results in a network with an
exponential degree distribution.

To the extent that the planarity constraint is relaxed the degree distribution degrades from a power
law to the exponential case. Similarly, smooth crossover was noted for the clustering and assortativity
of these networks. We have discussed those spatial networks that are nearly planar and further note
that Newman has articulated a desire for a quantification of the degree of planarity [47]. We offer these
results as an intial step towards resolving this question.

A refinement of the model, Apollonian Planar Growth, demonstrated a connection between planar
growth and Apollonian networks. Weighting the area selection of triangles during Apollonian Planar
Growth allowed us to easily recover the Random Apollonian Network while a further variation, tri-
section, was required in order to produce the Deterministic Apollonian Network. As such, weighted
Apollonian Planar Growth with trisection acts as a framework that generalises the two existing Apollo-
nian models.

This paper also opens up various interesting questions for future research. In the research pre-
sented here we have analysed the effects of a planarity constraint on the structure of a growing network.
It appears of interest to investigate planarity constraints in conjunction with other network formation
mechanisms. For instance, an area in network research that has found much attention in the literature
are questions of optimal design of network structures [13, 21, 26, 33, 44]. It would be of interest to
further investigate to what extent planarity restrictions can constrain such optimal network topologies.
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33. i Cancho, R. F. & Solé, R. V. (2003) Optimization in complex networks. In Statistical mechanics of complex
networks, pages 114–126. Springer.

34. Jiang, B. (2007) A topological pattern of urban street networks: universality and peculiarity. Physica A:
Statistical Mechanics and its Applications, 384(2), 647–655.
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