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Abstract 

Lignans are biologically active phenolic compounds related to lignin, produced in different 

plants. Arctigenin, a dibenzylbutyrolactone-type lignan, has been used as a neuroprotective 

agent for the treatment of encephalitis. Previous studies of cultured rat cerebral cortical 

neurones raised the possibility that arctigenin inhibits kainate-induced excitotoxicity. The 

aims of the present study were: 1) to analyse the effect of arctigenin on normal synaptic 

activity in ex vivo brain slices, 2) to determine its receptor binding properties and test the 

effect of arctigenin on AMPA/kainate receptor activation and 3) to establish its effects on 

neuronal activity in vivo. Arctigenin inhibited glutamatergic transmission and reduced the 

evoked field responses. The inhibitory effect of arctigenin on the evoked field responses 

proved to be substantially dose dependent. Our results indicate that arctigenin exerts its 

effects under physiological conditions and not only on hyper-excited neurons. Furthermore, 

arctigenin can cross the blood-brain barrier and in the brain it interacts with kainate sensitive 

ionotropic glutamate receptors. These results indicate that arctigenin is a potentially useful 

new pharmacological tool for the inhibition of glutamate-evoked responses in the central 

nervous system in vivo.  
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1. Introduction 

Lignans are important biologically active phenolic compounds related to lignin, produced 

in different plants, for example in tribe Cynareae, such as Arctium, (Boldizsár et al., 2010a), 

Cirsium (Boldizsár et al., 2010b) species, Forsythia (Maiada et al, 1990) or Torreya (Zhao et 

al., 1999) plants. These compounds are present either in free aglycone or in glycosylated form 

in a wide variety of plants in wooden parts, roots, leaves, flowers, fruits or seeds. Due to their 

antibacterial, antiviral, antifungal, antioxidant and insecticidal properties they are likely to 

play an important role in the plants’ defence against a variety of pathogenic agents (Harmatha 

and Dinan 2003; Wink, 2006).  

Among lignans, the dibenzylbutyrolactone-type arctigenin (ATG) has special 

importance. In addition to the neuroprotective activity of arctigenin, it also shows significant 

anti-tumor (Mervai et al., 2015), antiviral (Hayashi et al., 2010; Zhang et al., 2014), anti-

inflammatory (Cho et al., 2004; Zhao et al., 2009; Hyam et al., 2013,) and phytoestrogenic 

(Turner et al., 2007; Landete, 2012) activities, highlighting the importance of this natural 

lignan aglycone.  

As a neuroprotective agent (Jang et al., 20012; Ma et al., 2010), arctigenin has been used 

as a neuroprotective medicine in traditional medication for treatment of encephalitis (Saxena 

and Dhole, 2008; Zhang et al., 2014). Additionally, previous studies of cultured rat cerebral 

cortical neurones suggested that arctigenin inhibits the excitotoxic effect of kainate by binding 

to non-NMDA type glutamate receptors (Jang et al., 2002). However, the direct effects of 

arctigenin on normal neuronal activity have not been established. Arctigenin is a lipophilic 

molecule that likely to penetrate the blood-brain-barrier, but this has not been demonstrated 

experimentally. Therefore, the aims of the present study were: 1) to analyse the effect of 

arctigenin on synaptic activity in ex vivo brain slice experiments, 2) to determine its receptor 

binding properties and effects on AMPA/kainate receptor activation and 3) to establish its 

penetration through the blood-brain barrier and effects on neuronal activity in vivo. 

 

2. Materials and methods 

Male Wistar rats (150-280 g for ex vivo and 360-525 g for in vivo studies, Toxicoop, 

Hungary) were used for all experiments in accordance with the European Communities 

Council Directive (86/609/EEC) and with the guidelines of the Eötvös Loránd University 

Animal Care and Use Committee (p.n.: XIV-I 001/515-4/2012). All possible efforts were 
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made to minimize animal suffering and to reduce the number of animals used. Rats were 

maintained in 12 h light/dark cycle and controlled temperature (22±2 ◦C). Standard pellet food 

and tap water were available ad libitum. 

Arctigenin purchased from Tocris Bioscience (Avonmouth, UK) was dissolved in 3% 

DMSO containing sterile physiological saline and stored as 1 mM stock solution at -20oC. All 

other chemicals were purchased from Sigma-Aldrich (Hungary) if not stated otherwise. 

2.1. Slice preparation and electrophysiological recording 

Electrophysiological recordings were carried out on 64 coronal slices of somatosensory 

cortex prepared from 18 adult rats as previously described (Világi et al., 2009). Rats were 

decapitated in deep chloral-hydrate (350 mg/kg) anaesthesia. Brains were quickly removed 

and 400 m thick coronal slices were cut by a vibratome. After 1 h regeneration period in the 

incubation solution, slices were transferred to a Haas-type recording chamber (Experimetria 

Ltd., Budapest, Hungary) and perfused (2.0 ml/min) with standard artificial cerebrospinal 

solution (ACSF). The solution was saturated with carbogene (5% CO2, 95% O2) at 331C. 

The composition of the ACSF solution was (in mM): 126 NaCl; 26 NaHCO3; 1.8 KCl; 1.25 

KH2PO4; 1.3 MgSO4; 2.4 CaCl2; 10 glucose.  

Glass microelectrodes filled with 1 M NaCl (8-10 M) were positioned as recording 

electrodes into the lower part of layer 3 (L3) of the somatosensory cortex, while bipolar 

tungsten stimulating electrodes were placed directly below the recording electrodes at the 

border of the white and grey matters. Duration of the stimulation square voltage pulses was 

100 µs and the amplitude was gradually varied between threshold and supramaximal values. 

Signals were amplified by an Axoclamp2A amplifier (Axon Instruments Inc., Union City, 

CA), digitalized by an A/D converter (NI-6023E, National Instruments, Austin, Texas) and 

recorded with the SPEL Advanced Intrasys computer program (Experimetria Ltd., Budapest, 

Hungary). Single-shock stimulation evoked a characteristic field response, which consists of 

an early (N1) synaptic component (mean latency: 6.1 ms), which was followed by a positive 

(P1) and a late negative (N2) peaks, while sometimes but not always a previous, non-synaptic, 

antidromic component also appeared (Fig. 1). 

The viability of each slice was tested at the beginning of the recording session. If the 

peak-to-peak amplitude of the maximal evoked response (N1-P1) was smaller than 1.0 mV, 

the slice was excluded from the experiments. Slices were continuously stimulated with 

medium-strength stimuli at a rate of 0.1 Hz. Stimulus threshold (T) was determined 15 min 

after placing the slices into the recording chamber. Subsequently, 0.1 Hz continuous 
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stimulation was applied with 2T for 30 min to record control evoked responses, and at the end 

of this period 10 evoked responses at 2T were stored.  

To test the inhibitory effect of arctigenin at three different concentrations, standard 

perfusion solution was switched to arctigenin containing solution (stock solution was diluted 

to a final concentration of 1, 10 or 20 M in the perfusion solution) for 30 min following the 

first measurement of evoked field potential (EFP) at 2T. At the end of arctigenin application 

the 10 test responses at 2T were also stored. 

Recorded data were analysed using the SPEL (Solution Pack for Experimental 

Laboratories) Advanced Intrasys computer program (Experimetria Ltd., Budapest, Hungary). 

Each experimental group contained 7-8 independent records obtained from different animals. 

The early component was characterized by the peak amplitude of the early monosynaptic N1 

component and by peak-to-peak amplitude of N1-P1 polysynaptic waves (Fig. 1A). The 

amplitude of the second negative (N2), late component was also determined. During the 

statistical analysis interleaved control and treated groups were compared. In each series of 

experiments one-way ANOVA was performed followed by Newman-Keuls post hoc test. 

Homogeneity of variances and normal distribution of data were tested before statistical 

analysis. Results are presented as mean ± S.E.M and changes were considered to be 

significant if p < 0.05. 

2.2. Receptor ligand binding assay  

Human embryonic kidney (HEK) 293 cells transfected with the GluK1 kainate receptor 

subunit were maintained and harvested as described previously (Atlason et al., 2010). 

Membrane fractions were washed three times in binding buffer (50 mM Tris buffered with 

citric acid pH=7.4) by resuspension and centrifugation (40,000g, 20 min, 4oC). Membrane 

proteins (100 μg) were incubated for 1 h on ice with 50 nM [3H]kainate (37 MBq/ml; 

PerkinElmer Life and Analytical Sciences, Waltham, MA) in the absence and in the presence 

of 0.01-1 mM arctigenin. Non-specific radioligand binding was measured in the presence of 

unlabelled kainate (1 mM; Tocris Bioscience, Avonmouth, UK). Receptor-ligand complexes 

were recovered using a filter in a Brandel cell harvester (model M-30; Brandel, Gaithesburg, 

MD, USA) and washed three times using 4 ml of binding buffer. Radioligand binding was 

measured using a scintillation counter (LS6500; Beckman, High Wycombe, UK).  

2.3. Cobalt-uptake assay 

Slices were obtained from six animals to test changes in Co2+ uptake as a consequence of 

arctigenin treatment. Slice preparation was carried out in the same way as described under 
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2.1. The thickness of the slices was, however, 250 m. From each rat 8-10 slices were stained 

and evaluated. The procedure was performed as described previously (Pruss et al., 1991). 

Briefly, slices were incubated in a Ca2+ free incubation solution for 5 min at room temperature 

(~20oC) before placement into an uptake buffer (in mM) (13 sucrose, 57.5 NaCl, 5 KCl, 2 

MgCl2, 1 CaCl2, 12 glucose, 10 HEPES) supplemented with 5 mM CoCl2 and 100 μM 

kainate. Slices incubated in the same solution without kainate served as background controls. 

Half of the brain slices were also exposed to either 10 or 20 μM arctigenin in uptake buffer. 

Incubation lasted for 20 min at 22oC, and then slices were rinsed once in the uptake buffer and 

incubated in the same buffer containing 2 mM EDTA to remove non-specifically bound Co2+. 

Following that, slices were rinsed twice with the uptake buffer, and Co2+ was precipitated by 

incubation in a 0.12% (NH4)2S solution for 5 min. During this procedure, dark CoS precipitate 

was formed in the cells. At the end, slices were fixed in 4% paraformaldehyde for 30 min and 

mounted in glycerin for image analysis. 

Co2+-stained slices were placed on an Olympus CH-2 microscope equipped with an 

Olympus Camedia C4040-Zoom digital camera connected to a PC running AnalySIS 3.2 

Docu (Soft Imaging System) software. Images were captured by the CCD camera under the 

control of AnalySIS 3.2 Docu software. Exposure time was fixed during image acquisition. 

Images were taken at 4-fold magnification and converted to 8-bit grey scale images. 

Subsequent densitometry analysis was made by custom written Mathworks Matlab software 

as follows: perpendicular to the pial surface a rectangular shaped region of interests (ROI) 

was defined in the dimensions of 450x1800 μm spanning all layers of the neocortex. Optical 

density (OD) was measured in arbitrary units using 256 grey levels of images within ROIs, 

followed by an averaging of OD values in each row of pixels in the ROI. OD of a 20x20 pixel 

area out of the slice was determined in each slide as background and data were always 

corrected with this OD value. The distance between the pial surface and the corpus callosum 

was divided into 20 equal divisions for the comparison of corresponding regions in various 

treatment groups. These divisions were correlated to cortical layers on the basis of previous 

studies (Skoglund et al., 1996). Original continuous OD distribution was interpolated to the 

20 divisions and correlated to cortical layers. In all experiments the corrected OD values of 

kainate-stimulated (control) slices were expressed as a percentage of corrected OD values of 

slices without kainate application. The same calculation was performed for arctigenin treated 

brain slices. 

2.4. Test of the crossing of blood-brain barrier 
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Rats (n=4) received 20 mg/kg arctigenin intraperitoneally (i.p.). Physiological saline 

solution containing arctigenin was injected at body temperature in a volume of 4 ml. After 20 

min, rats were sacrificed and perfused transcardially with 150 ml ice cold ACSF to wash out 

the blood from the brain. Brain were removed, rinsed, weighed and immediately snap-frozen 

in liquid nitrogen for lyophilisation. Samples were extracted in 2.0 mL methyl alcohol and 

dialysed to obtain a protein free arctigenin containing extract. Microdialysis probes were 

hollow fibres (Travenol, cut-off at 5000 Da, o.d. 0.2 mm, length of the active surface: 3 mm) 

adjusted into 23-Gauge, stainless steel tubing. Methyl alcohol was used for perfusion (2.0 

µL/min for 10 min). The 20 μL of arctigenin containing dialysate was analysed by high-

performance liquid chromatography (HPLC) using UV detection. The HPLC system consisted 

of two Pharmacia LKB pumps and a VWM 2141UV detector (Pharmacia LKB Biochrom, 

Cambridge, UK). Column: GraceSmart RP18 (5_m), 150 x 4.6mm (Grace Davison Discovery 

Sciences Lokeren, Belgium). Gradient elution was carried out at 20-22oC. Eluents: eluent A, 

acetonitrile/0.07M acetic acid 15/85 (v/v), eluent B, acetonitrile/0.07M acetic acid 85/15 

(v/v). Gradient: 15% B → 30% B over 5 min, 30% B → 44% B over 7 min, 44% B → 100% 

B over 5 min. UV detection was carried out at λ = 280 nm. Retention time of arctigenin was 

11.48 min. 

2.5. In vivo recording 

Rats (n=6) were anesthetized with urethane (1.2 g/kg, i.p.) and fixed in a stereotaxic 

frame (David Kopf) with the top of the skull set horizontal to comply with the rat brain atlas 

of Paxinos and Watson (Paxinos and Watson, 1998). A 4 x 3 mm craniotomy centred 1.5 mm 

posterior to Bregma and 1.5 mm lateral to the midline was made to expose the hind limb 

representation area in the right hemisphere. The dura mater was left intact during the whole 

experiment. Rectal temperature was maintained at 37 °C Arctigenin solutions were also 

applied i.p. Arctigenin and respective saline solutions were injected at body temperature in a 

volume of 2 ml in case of the 20 mg/kg dose (n=4) while injection volume was 4 ml in case of 

the 50 mg/kg dose (n=2). To test possible non-specific effect of the injections, recording 

sessions started with the application of control saline solutions followed by 1-hour long 

recording. Then arctigenin was applied and its effect was recorded for 1 h. 

Hind limb (HL) area of the primary somatosensory cortex (SI) was localized as described 

previously (Toth et al., 2008). A 1.1 mm stainless steel reference electrode (Fine Science 

Tools, USA) was placed above the cerebellum. A 16-channel vertical electrode array was 

positioned 1-1.2 mm below the dura (Neuronelektród Ltd., Budapest, Hungary) to record 
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evoked extracellular field potentials (EFPs) from different cortical layers at the same 

recording site. After insertion of the recording array, two stimulating needle electrodes were 

inserted into the HL close to the ankle to enable electrical stimulation of the tibial nerve. 

Stimuli for EFPs recording were square-wave pulses generated by a stimulator (Master8, 

A.M.P.I., Jerusalem, Israel), and delivered through a Master8 ISO-Flex stimulus isolation 

unit. The threshold stimulus voltage was defined as the lowest intensity that elicited minimal 

movement in the hind paw (4.25 V ± 0.28 V). During the whole experiment, stimulus strength 

twice the threshold was used (2T) with 200 μs duration. Stimulus rate was set to 0.1 Hz and a 

total of 360 EFPs were recorded in 1 h. EFPs were recorded in 2000 ms long blocks (1000 ms 

pre-stimulus, 1000 ms post-stimulus periods). 

EFP signals were fed to a 16-channel differential amplifier (Supertech Ltd., Pecs, 

Hungary), conditioned (filter: 0.1 Hz–1000 Hz, gain: 5000x) then digitalized at 3 kHz with 16 

bit resolution (Labview; National Instruments, Austin, TX, USA). All data were stored on 

hard disk for off-line analysis.  

Parameters of the EFPs recorded were calculated from layer 3 and layer 5. Single EFPs 

were averaged in 10 min long blocks where every block contained 60 responses. Amplitude 

and latency values of the characteristic waves were determined in these blocks and expressed 

as mean and standard error of the means (S.E.M). The areas under the curves (AUC) were 

also calculated to take into account the potential changes in the width of the different waves 

of the EFPs. For this, the baseline of the curves was shifted to zero. Numerical integrate 

values were calculated in Microsoft Excel using the trapezoidal rule (Burden and Faires, 

2004). As duration of the P1 wave in EFPs recorded from layer 3 showed large variations, 

numerical integrate was calculated between predefined time points of the P1 wave (4 ms and 

45 ms). Layer 5 EFPs were highly uniform in shape and in this case integrate was calculated 

the start and end points of the N1.  

Amplitude, latency and AUC differences seen in control vs. arctigenin responses were 

compared statistically by one-way ANOVA followed by Student-Newman-Keuls post hoc 

test. Assumption that data are sampled from populations that follow Gaussian distributions 

was checked by the test of Kolmogorov and Smirnov. Statistical tests were performed using 

Instat (GraphPad, San Diego, CA, USA). Statistical significance was accepted at the p < 0.05 

level. At the end of the experiment, position of the recording array was marked using direct 

current injections, and confirmed by histological analysis. 
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3. Results 

3.1. Evoked responses in slice experiments  

In control slices, the mean of the peak amplitude of N1 component (Fig. 1A) was -

2.03±0.20 mV (n=8) at the end of the 30 min recording (Fig. 2A). While the application of 1 

μM arctigenin produced no significant change (-1.57±0.13 mV, p=0.081), the 10 μM and 20 

μM arctigenin significantly reduced the amplitude of the N1 component of EFP (-1.27±0.09 

mV, p=0.005**; n=7; and -0.86±0.09 mV, p=0.0003***; n=7) at the end of the 30 min 

incubation period. The peak-to-peak amplitude of the polysynaptic N1-P1 component of the 

evoked field potential was 2.31±17.7 mV (n=8) at the end of the recording (Fig. 2B). While 

the application of 1-10 μM arctigenin produced no significant change (1 μM: 1.92±0.18 mV, 

p=0.243; 10 μM: 1.92±0.18 mV, p=0.066; n=7), 20 μM arctigenin considerably reduced the 

EFP amplitude of N1-P1 (0.92±0.08 mV, p=0.0024**; n=7) at the end of the 30 min 

incubation period. 

The effect of arctigenin on N2 component of EFP was also tested. In control slices after 

30 min -0.65±0.13 mV (n=8) evoked field potential amplitude was measured. Arctigenin 

applied in 1, 10 and 20 μM concentrations had no significant effect on evoked field potential 

amplitude (-0.41±0.15 mV, (p=0.805, n=7), -0.20±0.04 mV, (p=0.486, n=7) and  

-0.12±0.02 mV (p=0.039; n=7), respectively).  

3.2. Receptor binding analysis 

Cell membrane fraction from transfected HEK 293 cells was used to analyse the effect of 

arctigenin on [3H]kainate binding to GluK1 kainate receptor subunit (Fig. 3) (Atlason et al., 

2010). [3H]kainate binding assays performed in the presence of different arctigenin 

concentrations (0.01-1 mM) revealed a significant reduction in [3H]kainate binding activity to 

GluK1 at 1 mM (Fig. 3; n=4, p<0.01; Student’s t-test).  

3.3. Alterations in Co2+
 -uptake 

Following kainate activation, Co2+ crosses the plasma membrane through Ca2+ permeable 

AMPA and kainate receptors (Mayer and Westbrook, 1987). The distribution and relative 

intensity of the signal produced by CoS precipitation with and without kainate treatment (Fig. 

4A) can be compared using densitometry (Fig. 4B). Arctigenin effectively and dose-

dependently reduced the AMPA/kainate receptor activation and subsequent Co2+ uptake 

especially in the supragranular layers of somatosensory cortex (Fig. 4B). Overall, OD 

associated with kainate-induced Co2+ uptake was significantly reduced in most layers of the 
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somatosensory cortex in arctigenin-treated slices (Fig. 4). The most prominent changes of OD 

was identified in layers 2/3 in the control kainate-treated slices (193.2±23.6%, n=6), where 10 

or 20 μM arctigenin application parallel with kainate treatment reduced the changes of OD to 

122.3±21.5% and 85.1±31.6%, respectively. The level of decrease was significant in these 

layers in cases both of 10 and 20 μM arctigenin treatment (n=6-6, p<0.02*). 

3.4. Arctigenin level in the brain following intraperitoneal application 

These measurements were carried out to establish the penetration of arctigenin into the 

brain tissue through the blood-brain barrier. Substantial amount of arctigenin was detectable 

in the brain tissue 20 min after 20 mg/kg intraperitoneal application of the lignan, which 

indicates that it can cross the blood-brain barrier. The average wet brain weight was 

1.47±0.11 g (n=4). The arctigenin content was 3.19±0.5x10-7g/1 g wet brain tissue. 

3.5. Evoked field potentials in vivo 

Tibial nerve stimuli elicited clear EFPs in the cortex both in the control and arctigenin-

treated animals. Short latency responses (up to 50 ms) in layer3 EFPs showed a characteristic 

positive peak (P1), which was highly variable in duration (Fig. 5A, top). EFPs showed slight 

potentiation in response to the consecutive stimulation during the control recordings. By the 

end of the one-hour-long recording in layer 3, P1 amplitude increased to 84.66±11.3 µV from 

the initial 67.22±8.63 µV value seen in the first 10 min long block. Similar increase was seen 

in the N1 amplitude of layer5 responses, but it was smaller (7.5±43.1 % change; data not 

shown). After the injection of arctigenin, P1 amplitude significantly decreased in layer 3 (Fig. 

2) compared to the value of the last 10 min block of the control recording taken as baseline. 

The strongest decrease was seen in the first 10 min period following arctigenin application, 

the mean amplitude was only 59.18 ±12.96 µV which meant 30 % decrease (p=0.623, n=6). 

The decrease persisted for longer time, the amplitude was 75.6 ±18.17 µV (p=0.623, n=6) 30-

min post-injection. In layer5, EFP amplitude did not change significantly after arctigenin 

injections (data not shown). 

There was a tendency to decrease in the AUC values in case of layer3 EFPs after 

arctigenin injections in the first 20 min but these changes were not statistically significant 

(Fig. 5B). 

 

 

4. Discussion 
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A previous study suggested a direct interaction between arctigenin and kainate receptors 

in cultured cerebrocortical neurons (Jang et al., 2002). This study demonstrated the 

neuroprotective effect of arctigenin in an in vitro cell culture system using kainate evoked 

neurodegeneration. As a reduced [3H]kainate binding to neuronal membrane fractions was 

reported in the presence of arctigenin, the investigators proposed a selective kainate receptor 

effect. However, it was stated, that arctigenin produced similar effect as the non-NMDA 

receptor antagonist CNQX (Jang et al., 2002). This finding raised the intriguing possibility 

that arctigenin may inhibit the electrical activity of neuronal networks in vivo in the 

neocortex.  

4.1. Arctigenin significantly decreases the excitability of brain slices 

In our somatosensory cortex slice experiments the recording electrode was positioned in 

the layer 3, as the amplitude of EFPs evoked by electrical stimulation of the border of the 

corpus callosum and the grey matter is the largest in this layer (Abbes et al., 1991). Both 

AMPA, NMDA and kainate types of glutamate receptors play a role in the development of 

these evoked responses (Conti and Weinberg, 1999; Huettner, 2003). AMPA/kainate 

receptors contribute mainly to the development of early component of synaptic responses 

(Bailey et al., 2001; Campbell et al., 2007). Different types of kainate receptor subunits are 

widespread in the brain, which are expressed on neurons both pre- and postsynaptically (Ali et 

al., 2001; West et al., 2007) in hetero-tetrameric subunit assemblies (Chittajallu, 1999). While 

AMPA receptor density is rather high in the supragranular layers of the somatosensory cortex 

(Martin et al., 1993; Van Damme et al., 2003), the presence of kainate receptors is also 

demonstrated both on pyramidal cell dendrites and on interneurons, although, on pyramidal 

cell of layer 5 and layer 6 its concentration is higher (Bahn et al., 1994; Jabłońska et al., 1998; 

Bailey, et al., 2001; Zilles et al., 2002). In hippocampal slice preparations it was demonstrated 

that inhibition of presynaptic kainate receptors on pyramidal cells decrease the glutamate 

release, which reduce the activation of the postsynaptic cells (Lerma, 2006). Inhibition of 

postsynaptic kainate receptors also diminishes the membrane depolarization (Lerma, 2006). 

Our experiments demonstrate that arctigenin directly binds to GluK1 kainate receptor 

subunits. Also, 10 μM arctigenin effectively reduces the amplitude of the early monosynaptic 

components of EFPs. The inhibitory effect of arctigenin on the evoked field responses proved 

to be substantially dose dependent, however, the late component was reduced only by the 

largest dose of arctigenin. Mainly AMPA/kainate receptor activation underlies the first 

synaptic components of evoked field potentials, so the inhibitory effect of arctigenin on 
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synaptic efficacy indicates that it may exerts effect not only at pathophysiological but also at 

normal physiological condition on AMPA/kainate receptor. The smaller effect of arctigenin 

on late component is consistent with previous studies, because primarily the NMDA receptor 

activation is responsible for the development of the late component of EFP, and arctigenin 

does not seem to affect these receptors (Conti and Weinberg, 1999).  

4.2. Arctigenin inhibits AMPA/kainate type ligand-gated ion channel activation 

Co2+ can cross neuronal plasmamembrane through activated AMPA/kainate receptors 

instead of Ca2+, accordingly the alteration of Co2+ staining refer to modified non-NMDA type 

ligand gated ion channel activation (Williams et al., 1992). We detected, that kainate-induced 

Co2+ uptake was not uniform along the column perpendicular to the pial surface in the 

somatosensory area of control slices, in the layer 2/3 is higher than in layer 5 or layer 6. Co2+ 

uptake was effectively reduced in the presence of arctigenin, which was particularly 

noticeable in the supragranular layers. As kainate can bind not only to kainate receptors, but 

also to AMPA receptors, we have to take into consideration that AMPA receptors might also 

be affected by arctigenin (Iino et al, 1990). 

4.3. Arctigenin reduces synaptic activity in vivo through its antagonistic effects on 

glutamate receptors 

We have demonstrated that arctigenin can cross the blood-brain barrier and appears in the 

brain following intraperitoneal administration. The in vivo electrophysiological experiments 

revealed that arctigenin has an antagonistic effect on glutamate-evoked responses, which also 

indicate that arctigenin can get into the cortex. The inhibitory effect proved to be more 

prominent in the outer layers of the cortex, which may be due to the differential distribution of 

different ionotropic glutamate receptors. Our results indicate that glutamatergic transmission 

can be modulated in vivo by arctigenin, which is a new type of glutamate receptor antagonist, 

and could be a lead compound for the development of neuroprotective drugs. On the basis of 

our experiments we can conclude that arctigenin may exerts its effect on neurons in 

physiological conditions not only on neurons overexcited i.e. by kainic acid application. 

Arctigenin and its derivatives, may lead to improved treatment strategies in different neural 

diseases like schizophrenia, autism, bipolar disorders, mental retardation together with 

epileptiform diseases, chronic pain or migraine (Contractor et al., 2011). However, the 

potentially broader effects of arctigenin on other ionotropic and metabotropic glutamate 

receptors also need to be considered and investigated in future studies. 

5. Conclusions 
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Several biologically active compounds possess neuroprotective effects. It was proved that 

arctigenin, a lignan produced by different plants, effectively protects cultured neurons from 

excitotoxicity via the inhibition of kainate sensitive ionotropic glutamate receptors. Here we 

demonstrated that arctigenin can cross the blood-brain barrier, reduces the activity of 

ionotropic glutamate receptors, and inhibits normal electrical responses both in brain slices 

and in living animals. 

 

 

Conflict of interests Statement 

The authors declare that they have no conflict of interests. 

 

Acknowledgements: This work was supported by the Medical Research Council (MRC) UK 

[Grant G0601509, ID: 80049] and Biotechnology and Biological Sciences Research Council, 

UK [grant BB/J015938/1], and by Richter Gedeon Centenarian Foundation [grant 

RGC/2012]. We thank Katalin Kékesi for the dialysis probes.  

 



14 

 

Citations 

 

1. Abbes S, Louvel J, Lamarche M, Pumain R, 1991. Laminar analysis of the origin of the 

various components of evoked potentials in slices of rat sensorimotor cortex. 

Electroencephal. Clin. Neurophysiol., 80(4), 310-20. 

2. Ali AB, Rossier J, Staiger JF, and Audinat E, 2001. Kainate receptors regulate unitary 

IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex. J. Neurosci., 

21(9), 2992–2999. 

3. Atlason PT, Scholefield CL, Eaves RJ, Mayo-Martin MB, Jane DE, Molnár E, 2010. 

Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-

selective binding of the antagonist [3H]UBP310. Mol. Pharmacol., 78, 1036-1045. 

4. Bailey A, Kelland EE, Thomas A, Biggs J, Crawford D, Kitchen I, Toms NJ, 2001. 

Regional mapping of low-affinity kainate receptors in mouse brain using [(3)H](2S,4R)-4-

methylglutamate autoradiography. Eur. J Pharmacol., 431(3), 305-10. 

5. Bahn S, Volk B, Wisden W, 1994. Kainate receptor gene expression in the developing rat 

brain. J. Neuroscience, 14(9), 5525-5547. 

6. Boldizsár I, Füzfai Z, Tóth F, Sedlák É, Borsodi L, Molnár-Perl I, 2010a. Mass 

fragmentation study of the trimethylsilyl derivatives of arctiin, matairesinoside, arctigenin, 

phylligenin, matairesinol, pinoresinol and methylarctigenin: Their gas and liquid 

chromatographic analysis in plant extracts. J Chromatogr. A, 1217, 1674–82. 

7. Boldizsár I, Kraszni M, Tóth F, Noszál B, Molnár-Perl I, 2010b. Complementary 

fragmentation pattern analysis by gas chromatography-mass spectrometry and liquid 

chromatography tandem mass spectrometry confirmed the precious lignan content of 

Cirsium weeds. J Chromatogr. A, 1217, 6281–9. 

8. Burden RL and Faires DJ, 2004. Numerical analysis (8th ed.) Thomson Brooks/Cole) 

9. Campbell SL, Mathew SS, Hablitz JJ, 2007. Pre- and postsynaptic effects of kainate on 

layer II/III pyramidal cells in rat neocortex. Neuropharmacol., 53(1), 37-47. 

10. Chittajallu R, Braithwaite SP, Clarke VR, Henley JM, 1999. Kainate receptors: subunits, 

synaptic localization and function. Trends Pharmacol. Sci., 20, 26-35. 

11. Cho MK, Jang YP, Kim YC, Kim SG, 2004. Arctigenin, a phenylpropanoid 

dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK 

inhibition: the role in TNF-α inhibition. Int. Immunopharmacol., 4(10–11), 1419-1429. 

12. Contractor A, Mulle C, Swanson GT 2011. Kainate receptors coming of age: milestones of 

two decades of research. Trends Neurosci., 34(3), 154-163. 

13. Conti F, and Weinberg RJ, 1999. Shaping excitation at glutamatergic synapses. Trends 

Neurosci.,  22(10), 451-458. 

14. Harmatha J. and Dinan L, 2003. Biological activities of lignans and stilbenoids associated 

with plant-insect chemical interactions. Phytochemistry Reviews, 2, 321–330. 

15. Hayashi K, Narutaki K, Nagaoka Y, Hayashi T, Uesato S, 2010. Therapeutic effect of 

arctiin and arctigenin in immunocompetent and immunocompromised mice infected with 

influenza A virus. Biol. Pharm. Bull., 33, 1199–205. 

16. Huettner JE, 2003. Kainate receptors and synaptic transmission. Progress in Neurobiol., 70, 

387–407. 

17. Hyam SR, Lee I-A, Gu W, Kim K-A, Jeong J-J, Jang S-E, Han MJ, Kim D-H, 2013. 

Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT 

http://www.ncbi.nlm.nih.gov/pubmed/11730722
http://www.ncbi.nlm.nih.gov/pubmed/11730722
http://www.ncbi.nlm.nih.gov/pubmed/17543353
http://www.ncbi.nlm.nih.gov/pubmed/17543353
http://www.sciencedirect.com/science/article/pii/S1567576904002103
http://www.sciencedirect.com/science/article/pii/S1567576904002103
http://www.sciencedirect.com/science/article/pii/S1567576904002103
http://www.ncbi.nlm.nih.gov/pubmed/21256604
http://www.ncbi.nlm.nih.gov/pubmed/21256604
http://www.sciencedirect.com/science/article/pii/S0014299913000216


15 

 

pathway and polarizing M1 macrophages to M2-like macrophages. Eur. J Pharmacol., 

708(1–3), 21-29. 

18. Iino M, Ozawa S, Tsuzuki K, 1990. Permeation of calcium through excitatory amino acid 

receptor channels in cultured rat hippocampal neurones. J Physiol., 424, 151-65. 

19. Jabłońska B, Smith AL, Kossut M, Skangiel-Kramska J 1998. Development of laminar 

distributions of kainate receptors in the somatosensory cortex of mice. Brain Res., 791(1–2), 

325-329. 

20. Jang YP, Kim SR, Kim YC, 2001. Neuroprotective dibenzylbutyrolactone lignans of 

Torreya nucifera. Planta Med., 67(5), 470-2. 

21. Jang YP, Kim SR, Choi YH, Kim J, Kim SG, Markelonis GJ, Oh TH, Kim YC, 2002. 

Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by 

binding to kainate receptor. J Neurosci. Res., 68, 233-240. 

22. Jouhanneau J-S, Ball SM, Molnár E, Isaac JTR, 2011. Mechanisms of bi-directional 

modulation of thalamocortical transmission in barrel cortex by presynaptic kainate 

receptors. Neuropharmacol., 60, 832-841. 

23. Landete JM, 2012. Plant and mammalian lignans: A review of source, intake, metabolism, 

intestinal bacteria and health. Food Res. Int., 46(1), 410-424. 

24. Lerma J, 2006. Kainate receptor physiology Curr Opin Pharmacol. 6(1):89-97. 

25. Lerma J, Marques JM, 2013. Kainate receptors in health and disease. Neuron, 80(2), 292-

311. 

26. London ED and  Coyle JT, 1979. Specific Binding Of [3h]Kainic Acid To Receptor Sites In 

Rat Brain. Molecular Pharmacol., 15(3), 492-505. 

27. Lubke J, Feldmeyer D, 2007. Excitatory signal flow and connectivity in a cortical column: 

focus on barrel cortex. Brain Struct. Funct., 212, 3-17. 

28. Ma CJ, Sung SH, Kim YC, 2010. New neuroprotective dibenzylbutane lignans isolated 

from Machilus thunbergii. Nat. Prod. Res., 24(6):562-8. 

29. Maiada MA, Rahman PM, Dewick DE, Jackson Lucas JA, 1990. Biosynthesis of lignans 

in Forsythia intermedia. Phytochemistry, 29(6), 1841-1846. 

30. Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL, 1993. AMPA glutamate 

receptor subunits are differentially distributed in rat brain. Neuroscience, 53(2), 327-

358. 

31. Mervai Z, Sólyomváry A, Tóth G, Noszál B, Molnár-perl I, Baghy K, Kovalszky I, 

Boldizsár I, 2015. Endogenous enzyme-hydrolyzed fruit of Cirsium brachycephalum: 

Optimal source of the antiproliferative lignan trachelogenin regulating the Wnt/β-

Catenin signaling pathway in the SW480 colon adenocarcinoma cell line. Fitoterapia, 

100, 19–26. 

32. Paxinos G, Watson C, 1998. The rat brain in stereotaxic coordinates. London: Academic 

Press 

33. Pruss RM, Akeson RL, Racke MM, Wilburn JL, 1991. Agonist-activated cobalt uptake 

identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron, 7, 

509-518. 

34. Saxena V, Dhole TN, 2008. Preventive strategies for frequent outbreaks of Japanese 

encephalitis in Northern India. J Biosci., 33, 505-514. 

35. Skoglund TS, Pascher R, Berthold CH, 1996. Aspects of the quantitative analysis of 

neurons in the cerebral cortex. J. Neurosci. Methods, 70, 201–210. 

http://www.sciencedirect.com/science/article/pii/S0014299913000216
http://www.ncbi.nlm.nih.gov/pubmed?term=Iino%20M%5BAuthor%5D&cauthor=true&cauthor_uid=1697342
http://www.ncbi.nlm.nih.gov/pubmed?term=Ozawa%20S%5BAuthor%5D&cauthor=true&cauthor_uid=1697342
http://www.ncbi.nlm.nih.gov/pubmed?term=Tsuzuki%20K%5BAuthor%5D&cauthor=true&cauthor_uid=1697342
http://www.ncbi.nlm.nih.gov/pubmed/1697342
http://www.ncbi.nlm.nih.gov/pubmed/1697342
http://www.sciencedirect.com/science/article/pii/S0006899398002005
http://www.sciencedirect.com/science/article/pii/S0006899398002005
http://www.sciencedirect.com/science/article/pii/S0963996912000087
http://www.sciencedirect.com/science/article/pii/S0963996912000087
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lerma%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16361114
http://www.ncbi.nlm.nih.gov/pubmed/16361114
http://www.ncbi.nlm.nih.gov/pubmed/?term=Lerma%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24139035
http://www.ncbi.nlm.nih.gov/pubmed/?term=Marques%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=24139035
http://www.ncbi.nlm.nih.gov/pubmed/24139035
http://molpharm.aspetjournals.org/search?author1=EDYTHE+D.+LONDON&sortspec=date&submit=Submit
http://molpharm.aspetjournals.org/search?author1=JOSEPH+T.+COYLE&sortspec=date&submit=Submit
http://www.ncbi.nlm.nih.gov/pubmed/20397106
http://www.ncbi.nlm.nih.gov/pubmed/20397106
http://www.sciencedirect.com/science/article/pii/003194229085025B
http://www.sciencedirect.com/science/article/pii/003194229085025B
http://www.sciencedirect.com/science/article/pii/030645229390199P
http://www.sciencedirect.com/science/article/pii/030645229390199P


16 

 

36. Toth A, Gyengesi E, Zaborszky L, Detari L, 2008. Interaction of slow cortical rhythm with 

somatosensory information processing in urethane-anesthetized rats. Brain Res., 1226, 99-

110. 

37. Turner JV, Agatonovic-Kustrin S, Glass BD, 2007. Molecular aspects of phytoestrogen 

selective binding at estrogen receptors. J. Pharm. Sci., 96 (8), 1879–1885. 

38. Van Damme K, Massie A, Vandesande F, Arckens L, 2003. Distribution of the AMPA2 

glutamate receptor subunit in adult cat visual cortex. Brain Res., 960(1–2), 1-8. 

39. Világi I, Dobó E, Borbély S, Czégé D, Molnár E, Mihály A, 2009. Repeated 4-

aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in rat 

neocortex. Exp. Neurol., 219, 136-145. 

40. West PJ, Dalpé-Charron A, Wilcox KS, 2007. Differential contribution of kainate receptors 

to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal 

cortex. Neuroscience, 146(3), 1000-1012. 

41. Williams LR, Pregenzer JF, Oostveen JA, 1992. Induction of cobalt accumulation by 

excitatory amino acids within neurons of the hippocampal slice. Brain Res., 581, 181-189. 

42. Wink M, 2006. Importance of plant secondary metabolites for protection against insects and 

microbial infections in Rai and Carpinella (eds.) Naturally Occurring Bioactive Compound, 

Advances in Phytomedicine, 3, 251-268. 

43. Zhang Y, Wang Z, Chen H, Chen Z, Tian Y, 2014. Antioxidants: potential antiviral agents 

for Japanese encephalitis virus infection. J Infect. Dis., 24, 30-36. 

44. Zhao F, Wang L, Liu K, 2009. In vitro anti-inflammatory effects of arctigenin, a lignan 

from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol., 122, 457–

62. 

45. Zhao Y, Nookandeh A, Schneider B, Sun X, Schmitt B, Stöckigt J, 1999. Lignans from 

Torreya jackii identified by stopped-flow high-performance liquid chromatography–nuclear 

magnetic resonance spectroscopy. J. Chromatography A, 837(1–2), 83-91. 

46. Zhu Z, Yan J, Jiang W, Yao X, Chen J, Chen l, Li Ch, Hu L, Jiang H, Shen X, 2013. 

Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice 

targeting both β-amyloid production and clearance. The Journal of Neuroscience, 33(32), 

13138-13149. 

47. Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher 

A, 2002. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: 

reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol., 

12(6), 587-99. 

 

http://www.sciencedirect.com/science/article/pii/S0006899302036727
http://www.sciencedirect.com/science/article/pii/S0006899302036727
http://www.ncbi.nlm.nih.gov/pubmed/17395391
http://www.ncbi.nlm.nih.gov/pubmed/17395391
http://www.ncbi.nlm.nih.gov/pubmed/17395391
http://www.sciencedirect.com/science/article/pii/000689939290707G
http://www.sciencedirect.com/science/article/pii/000689939290707G
http://www.sciencedirect.com/science/article/pii/S1572557X0603011X
http://www.sciencedirect.com/science/article/pii/S1572557X0603011X
http://www.ncbi.nlm.nih.gov/pubmed/24780919
http://www.ncbi.nlm.nih.gov/pubmed/24780919
http://www.sciencedirect.com/science/article/pii/S0021967399000503
http://www.sciencedirect.com/science/article/pii/S0021967399000503
http://www.sciencedirect.com/science/article/pii/S0021967399000503
http://www.jneurosci.org/content/33/32/13138.short
http://www.jneurosci.org/content/33/32/13138.short


17 

 

Figure legends:  

 

Fig. 1. Original records of evoked field potentials (EFPs) in ex vivo cortical slice evoked 

by electrical simulation of the border of the white and grey matter (A) and in vivo by electrical 

stimulation of tibial nerve (B). Panel A: The first, early synaptic component was 

characterized by the monosynaptic N1 component amplitude and by the polysynaptic N1-P1 

peak-to-peak amplitude. Panel B: The response evoked in cortical layer 3 was characterised 

by the positive wave (P1) amplitude. 

 

Fig. 2. Arctigenin (ATG) reduced the amplitude both the monosynaptic and polysynaptic 

part of the early component of the evoked field potentials. The effect of arctigenin on 

extracellularly recorded evoked potentials was tested in ex vivo slice preparations. Insert 

shows original record of a control evoked response (black line) and the effect of application of 

20 μM arctigenin on it (gray line). Panel A: dose dependent suppression of the early 

monosynaptic component (N1) of field potentials by ATG at 2T stimulus intensity. ATG was 

able to reduce significantly the amplitude of N1 component of the evoked response applying 

in 10 μM and 20 μM concentration (data are presented in absolute value). Panel B: 

suppression of the early, polysynaptic component (N1-P1) of field potentials by ATG was 

also dose dependent at 2T stimulus intensity. ATG was able to reduce the (N1-P1) component 

in 20 μM concentration (n=8 in each groups).  

**p< 0.005, ***p< 0.0003. Statistical significance was checked by one-way ANOVA, 

followed by Newman-Keuls post hoc test.  

 

Fig. 3. Arctigenin (ATG) inhibits [3H]kainate binding to GluK1 kainate receptor subunit 

at 1 mM.  Membranes from HEK 293 cells stably transfected with GluK1 were incubated 

with 50 nM [3H]kainate and varying concentrations of arctigenin, with unlabelled kainate 

(KA) as positive control. Unlabelled kainate and 1 mM arctigenin significantly inhibited 

[3H]kainate binding to GluK1. n=3, *p<0.05, **p<0.01; Student’s t-test. 

 

Fig. 4. Arctigenin (ATG) suppresses Co2+ uptake in supragranular layers of 

somatosensory cortex. Panel A shows representative images of Co2+ uptake patterns in 

treatment groups: first and second columns represent sections without and with kainate 

(KAIN) application, respectively. Images ATG 10 μM and ATG 20 μM represent arctigenin-
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treated sections with together with kainate application. The optical density changes (ΔOD) are 

shown on Panel B. Both concentration of arctigenin reduced the Co2+ permeability of cells in 

supragranular layers, especially in layer 3. L1-6 represent cortical layers. n=6 in each groups, 

*p<0.05; Student’s t-test.  

 

Fig. 5. Characteristics of EFP waves evoked by electrical stimulation of the HL (panel A) and 

illustration of the AUC calculated in this work (panel B). Insert illustrates the evoked 

response showed a characteristic positive wave (P1) in layer 3. Amplitude of P1 was 

calculated as a deviation from the pre-stimulus baseline. Black curve shows averaged EFP 

from the baseline period while grey curve represents averaged EFP after 10 min arctigenin 

application. Stimulus onsets are marked by arrow. Note that stimulus artefacts were removed 

from the averaged EFP curves. Panel A: changes of P1 wave amplitude after arctigenin 

application compared to baseline in layer 3 (n=6). Averaged values of the last control block 

(between 50 and 60 min from the time point of the control injection) were taken as baseline 

(100 %). Each block plotted represents the average of 60 individual EFPs per rat. Statistical 

significance was checked by one-way ANOVA followed by Student-Newman-Keuls post hoc 

test. Significance level: * - p < 0.05. Data are expressed as mean and S.E.M. Panel B: AUC 

changes of the EFP in layer 3. For the calculation of AUC values, the baseline of the curves 

was shifted to zero then the numerical integrate of the ruled area was determined in case of 

layer3 EFPs. Averaged EFP curves were calculated from single EFPs recorded in the last 

control block (between 50 and 60 min from the time point of the control injection, n=60 

EFPs) then AUC of the averaged EFP was determined. Then the same procedure was applied 

for the EFPs recorded after the arctigenin injections. Statistical significance was checked by 

one-way ANOVA followed by Student-Newman-Keuls post hoc test. Data are expressed as 

mean and S.E.M. 

 

 


