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Abstract

We consider two cases of solid skeleton of porous materials: fixed skeleton saturated

with fluid in motion and deformed skeleton.

In the first case, we study a problem involving the onset of thermosolutal con-

vection in a fluid saturated porous media when the solute concentration is subject

to a chemical reaction in which the solubility of the dissolved mineral is a function

of temperature, particularly the effect of a reaction rate on the stability of the sys-

tems. We consider the Darcy model, the Brinkman model, and the Darcy model

with anisotropic permeability and thermal diffusivity. Moreover, in all models the

systems are subjected to heat on the lower boundary and salt on the upper or lower

boundary.

In chapter 2 we show that the solutions to the Darcy and the Brinkman ther-

mosolutal convection depend continuously on the reaction term when the chemical

equilibrium is a linear function in temperature by establishing a priori bounds.

While in chapter 3 we show continuous dependence of the solution to the Brinkman

thermosolutal convection on reaction using a priori bounds for the solution when

the chemical equilibrium function is an arbitrary function of temperature.

In chapter 4 we investigate the effect of the reaction terms on the onset of sta-

bility in a Darcy type porous medium using the energy method. We use the D2

Chebyshev Tau technique to solve the associated system of equations and the cor-
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responding boundary conditions. We obtain the energy stability boundaries for

different values of the reaction terms and compare them with the linear instability

boundaries obtained by Pritchard & Richardson [83]. We find that the two bound-

aries do not coincide when there is reaction and a region of potential sub-critical

instability occur.

In chapter 5 we use the energy method to obtain the non-linear stability bound-

aries for thermosolutal convection porous medium of a Brinkman type with reaction.

We implement the compound matrix technique to solve the associated system of

equations with the corresponding boundary conditions. We compare the non-linear

stability boundaries for different values of the reaction terms and the Brinkman coef-

ficient with the relevant linear instability boundaries obtained by Wang & Tan [124].

Our investigation shows that a region of potential sub-critical instability may appear

as we increase the reaction rate.

We study the effect of the mechanical anisotropy parameter and the thermal

anisotropy parameter on the stability of a Darcy reactive thermosolutal porous

medium in chapter 6 using the energy method. Particularly, we restrict consid-

eration to horizontal isotropy in mechanical and thermal properties of the porous

skeleton. We find that the anisotropic permeability has opposite effect to that of

the thermal anisotropy parameter on the stability on the system.

In the second case, deformed solid skeleton, we study wave motion in elastic

materials of double porosity structure.

In chapter 7 we derive the amplitude and describe the behaviour of a one-

dimensional acceleration wave based on an internal strain energy function. The

overall situation is complicated as a wave moves in a three-dimensional body, there-

fore in chapter 8 we investigate the propagation of an acceleration wave in three-

dimensional fully non-linear model.



Declaration

The work in this thesis is based on research carried out at the University of Durham,

the Department of Mathematical Sciences, the Applied Mathematics and Numeri-

cal Analysis Group, England. No part of this thesis has been submitted elsewhere

for any other degree or qualification and it is all my own work with the excep-

tion of chapter 3 which contains work published in collaboration with Prof. Brian

Straughan in [109]. Chapters 4 and 5 contain work published in [1] and [2] respec-

tively. Part of the material in chapter 6 has been selected to be considered for

publication in a special issue of Computational Thermal Sciences: An International

Journal. Chapters 2, 7, and 8 may be submitted for publication in due course.

Copyright c© 2017 Bushra Al-Sulaimi.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v



Acknowledgements

My thanks go to my supervisor Prof. B. Straughan for his support and encourage-

ment.

Thanks to Dr. Anthony Yeates for his help, Imran M. for preparing the LATEX

template used for this thesis, and the Applied Mathematics and Numerical Analysis

Group at the Mathematical Sciences Department, University of Durham.

Many thanks also to Prof. Ibrahim A. Eltayeb and Dr. Mahmood Al-Sulaimi,

my family, Hassan, and my friends Anum, Iman, Khadija, Yesoul, Rafia, and Samia

for their support.

I would like to acknowledge the Ministry of Higher Education, Muscat, Sultanate

of Oman, for the scholarship and the financial support and the Ministry of Manpower

and the Higher College of Technology, Muscat.

vi



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Bénard Problem and Navier-Stokes Equations . . . . . . . . . . . . . 8

1.2.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Bénard Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Perturbations and Non-dimensionalisations . . . . . . . . . . . 10

1.2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Linear Instability . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.6 Exchange of Stabilities . . . . . . . . . . . . . . . . . . . . . . 13

1.2.7 The Nonlinear Stability . . . . . . . . . . . . . . . . . . . . . 15

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Continuous Dependence of Darcy and Brinkman Convection on

Reaction 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 A priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 A priori bounds for ‖T‖2, ‖C‖2,
∫ t

0
‖T‖2ds,

∫ t
0
‖C‖2ds,

∫ t
0
‖∇C‖2ds,∫ t

0
‖∇T‖2ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Contents viii

2.3.2 Bounds for the SupΩ×[0,τ ]|C| and SupΩ×[0,τ ]|T | . . . . . . . . . 32

2.4 Convergence of K(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Continuous Dependence on the Reaction Term . . . . . . . . . . . . . 41

3 Structural Stability for Brinkman Convection With Reaction 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 A priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Continuous Dependence on the Reaction . . . . . . . . . . . . . . . . 53

4 The Energy Stability of Darcy Thermosolutal Convection with Re-

action 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Linear Instability Analysis . . . . . . . . . . . . . . . . . . . . . 58

4.4 The Non-Linear Energy Stability Analysis . . . . . . . . . . . . . . . 61

4.5 The Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Numerical Results and Conclusion . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Heated below and salted above system . . . . . . . . . . . . . 69

4.6.2 Heated and salted below system . . . . . . . . . . . . . . . . . 70

5 The Energy Stability of Brinkman Thermosolutal Convection with

Reaction 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Linear Instability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Nonlinear Energy Stability Theory . . . . . . . . . . . . . . . . . . . 85

5.5 The Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 The D2 Chebyshev Tau method for the linear theory . . . . . 89

5.5.2 The Compound Matrix technique for the energy theory . . . . 91

5.6 Numerical Results and Conclusion . . . . . . . . . . . . . . . . . . . . 92

5.6.1 Heated below salted above system . . . . . . . . . . . . . . . . 93



Contents ix

5.6.2 Heated and Salted Below system . . . . . . . . . . . . . . . . 95

6 Thermosolutal Convection in a Darcy Porous Medium with Anisotropic

Permeability and Thermal Diffusivity 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Linear Instability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Non-Linear Energy Stability Theory . . . . . . . . . . . . . . . . . . . 108

6.5 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Numerical Results and Conclusions . . . . . . . . . . . . . . . . . . . 114

6.6.1 Salted above system . . . . . . . . . . . . . . . . . . . . . . . 114

6.6.2 Salted below system . . . . . . . . . . . . . . . . . . . . . . . 119

7 One-Dimensional Acceleration Waves in Non-Linear Double Poros-

ity Materials 134

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Acceleration Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Amplitude Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5 Special Case: Given Strain Energy Function . . . . . . . . . . . . . . 145

8 Three-Dimensional Acceleration Waves in Non-Linear Double Poros-

ity Materials 149

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2 Acceleration Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 Conclusions and Future Work 157

Appendix 172

A Useful Expressions 172

A.1 The Proof of lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2 The Proof of lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 174



Contents x

B The Chebyshev Tau Method 176

B.1 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 Roots and Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.4 Chebyshev Differential Matrices . . . . . . . . . . . . . . . . . . . . . 179

B.5 Application of Chebyshev Tau Method . . . . . . . . . . . . . . . . . 185

C The Compound Matrix Method 188



List of Figures

4.1 Linear instability and Energy stability boundaries for the salted above

Darcy convection problem for different values of the reaction rates h

and η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Linear instability and Energy stability boundaries for the salted above

Darcy convection problem when the difference between h and η is huge. 75

4.3 Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for different values of h and η. . . . . . . . 77

4.4 Linear instability and Energy stability boundaries for the salted below

Darcy convection problem ε = 3. . . . . . . . . . . . . . . . . . . . . 77

4.5 Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for ε = 2. . . . . . . . . . . . . . . . . . . . 78

4.6 Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for ε = 5. . . . . . . . . . . . . . . . . . . . 79

5.1 Linear instability and energy stability boundaries for the salted above

Brinkman convection problem for different values of the reaction rates

h and η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Linear instability and energy stability boundaries for the salted above

Brinkman convection problem. The difference between the values of

the reaction rates h and η is large. . . . . . . . . . . . . . . . . . . . . 96

5.3 Linear instability and energy stability boundaries for the salted above

Brinkman convection problem when the Brinkman constant γ̃ is 0.5. . 97

5.4 Linear instability and energy stability boundaries for the salted above

Brinkman convection problem when the Brinkman constant γ̃ is 2. . . 98

xi



List of Figures xii

5.5 Linear instability and energy stability boundaries for the salted above

Brinkman convection problem for different values of the Brinkman

constant, γ̃ = 0.5, 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Linear instability and energy stability boundaries for the salted below

Brinkman convection problem for different values of the reaction rates

h and η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Linear instability and energy stability boundaries for the salted below

Brinkman convection problem. The difference between the values of

the reaction rates h and η is large. . . . . . . . . . . . . . . . . . . . . 101

5.8 Linear instability and energy stability boundaries for the salted below

Brinkman convection problem when the Brinkman constant γ̃ is 0.5. . 102

5.9 Linear instability and energy stability boundaries for the salted below

Brinkman convection problem when the Brinkman constant γ̃ is 2. . . 103

6.1 Linear instability and energy stability boundaries for the salted above

Darcy convection problem for different values of the anisotropic pa-

rameters when there is no reaction. . . . . . . . . . . . . . . . . . . . 117

6.2 Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 0.5, χ = 10

and different values of the reaction rates h and η. . . . . . . . . . . . 118

6.3 Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 1. . . . . . . 124

6.4 Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 0.5. . . . . . 125

6.5 Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for χ = 10. . . . . . 126

6.6 The energy stability boundaries for the salted above Darcy convection

problem with anisotropic effect for α = 1, h = 20, η = 0. The figure

shows the effect of increasing the vertical permeability component, Kz.127



List of Figures xiii

6.7 The energy stability boundaries for the salted above Darcy convection

problem with anisotropic effect for χ = 10, h = 20, η = 0. The

figure shows the effect of increasing the vertical thermal diffusivity

component, kTz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.8 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5, χ = 10

and different values of the reaction rates h and η. . . . . . . . . . . . 128

6.9 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5. . . . . . 129

6.10 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for χ = 10. . . . . . 130

6.11 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5, and

χ = 10 for different values of ε. . . . . . . . . . . . . . . . . . . . . . 131

6.12 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5 and ε = 3.132

6.13 Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for χ = 10 and ε = 3.133



List of Tables

4.1 Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their

respective critical wave numbers aL, aE when there is No Reaction

i.e. h = η = 0. λ is the coupling parameter. . . . . . . . . . . . . . . 70

4.2 Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their

respective critical wave numbers aL, aE when h = 5 and η = 3. λ is

the coupling parameter. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their

respective critical wave numbers aL, aE when h = 20 and η = 16. λ

is the coupling parameter. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Some numerical values obtained for the linear boundary RaL and en-

ergy boundary RaE temperature Rayleigh number with correspond-

ing salt Rayleigh number Rs and the the corresponding critical wave

numbers aL and aE when γ̃ = 1, h = 9 and η = 6 in the case of

heated below salted above system. . . . . . . . . . . . . . . . . . . . . 95

6.1 Some numerical values obtained for the linear boundary RaL and the

energy boundary RaE with corresponding salt Rayleigh number Rs

and the the corresponding critical wave numbers aL and aE when

α = 1, h = 20 and η = 0 in the case of heated below salted above

system. For two cases of the mechanical anisotropy parameter χ,

χ = 2 and χ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiv



List of Tables xv

6.2 Some numerical values obtained for the linear boundary RaL and the

energy boundary RaE with corresponding salt Rayleigh number Rs

and the the corresponding critical wave numbers aL and aE when

χ = 10, h = 0 and η = 20 in the case of heated below salted below

system. For two cases of the thermal anisotropy parameter α, α = 0.5

and α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Some numerical values obtained for the linear boundaries RaL with

corresponding salt Rayleigh number Rs and the the corresponding

critical wave numbers aL when α = 0.5, χ = 10, h = 20 and η = 0 in

the case of heated below salted below system. For two cases of the

porosity ε, ε = 3 and ε = 5. . . . . . . . . . . . . . . . . . . . . . . . . 123



Chapter 1

Introduction

Porous media studies are of great interest and well investigated by many researchers

due to their wide range of applications in sciences and engineering, such as mate-

rial science, filtration, petroleum engineering, etc. The Darcy and the Brinkman

equations are often considered to be the equations governing the flow of fluid in

porous media. The Darcy equation describes the proportionality of the velocity and

the pressure gradient in the direction of flow. To describe a porous flow situation

when the porosity is large, the Darcy equation is usually replaced by the Brinkman

equation, cf. Straughan [99].

Normally, a fluid in a horizontal porous medium subjected to a heat on the upper

boundary will remain in a stable state. Alternatively, if a fluid is exposed to heat on

the lower boundary, the fluid in the lower part of the layer will expand and this gives

rise to a buoyancy force which once it exceeds the gravitational force acting down-

ward will give rise to instability. This is the thermal convection problem. Thermal

convection in porous media problems and stability analysis returns back to Horton

& Rogers [40] and Lapwood [52] who examined the change of stability of fluid in a

porous medium subject to a vertical temperature gradient. This problem which is

well known as the Horton-Rogers-Lapwood problem was revisited by Nield & Bar-

letta [70] in which the effects of pressure work and viscous dissipation were included.

However, there is another kind of convection in porous media studies. Ther-

1



Chapter 1. Introduction 2

mosolutal convection or thermochemical convection is the process in which both

temperature and some dissolved mineral contribute to the buoyancy of the fluid, it

is also referred to as double-diffusive convection. If the fluid exposed to heat and salt

on the lower boundary and the salt concentration with the presence of a sufficient

heat lead to a chemical reaction so that the reaction, in the form of a buoyancy

force, overcomes the gravitational force acting downward then the system will be

unstable. While if the fluid exposed to heat on the lower boundary and salt on the

upper boundary, then the system may be stable or unstable according to whether

the salt concentration with the presence of enough heat from the lower boundary

will lead to a strong chemical reaction, in the form of a buoyancy force, to overcome

the gravitational force. The state of instability is translated as convective periodic

cells covering the whole horizontal plane. For example, the Rayleigh-Bénard con-

vection cells take the shape of hexagons.

The problem of thermosolutal convection in a horizontal layer of porous ma-

terial saturated with an incompressible fluid has attracted the attention of many

writers, see e.g. the account in Straughan [100]. An important class of such prob-

lems involving a chemical reaction with the solute has attracted recent attention,

with Pritchard & Richardson [83] tackling the problem in a Darcy porous layer,

Wang & Tan [124] analysing the analogous problem in a Brinkman porous layer,

while Malashetty & Biradar [60] studied the equivalent problem in a Darcy layer

but when the permeability and thermal conductivity are anisotropic. All of these

writers assumed the chemical equilibrium function which arises in the conservation

law for evolution of the solute field is linear in the temperature field.

This thesis consists of three parts related to porous media and stability. To

be clear on what we mean by stability, we observe that asymptotic stability of a

solution to partial differential equation means that the solution decays with time

for all possible disturbances. The system is called unstable if for any perturbation

the solution grows with time and will not return to the normal or original state, cf.

Straughan [99,100,103].
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The first part, chapters 2 - 3, represents the qualitative analyses of stability.

A mathematical model such as these involved in the convection studies mentioned

above, [83], [124], [60], is only reasonable if one can establish respectable properties

of the solutions to the equations governing the model. The question of continu-

ous dependence of the solution on the reaction rate is one which belongs to the

general class of structural stability problems. Structural stability(or continuous de-

pendence on the model itself) is one of major importance and it may be argued that

it is as or more important than the widely accepted notion of stability as contin-

uous dependence upon the initial data, cf. Hirsch & Smale [39]. Within the field

of continuum mechanics Knops & Payne [48] made a major contribution studying

structural stability in elasticity, and the same writers improved their estimates in

Knops & Payne [49]. Further continuous dependence on modelling in continuum

mechanics is due to the work of Payne [74–76], Payne, Song & Straughan [78],

Straughan & Hutter [110], Lin & Payne [53,54], Tu & Lin [118], Liu, Du & Lin [57]

and Straughan [102]. Since then there have been very many articles dealing with

questions of structural stability in continuum mechanics many of these are described

and/or reviewed by Payne & Straughan [79–81], Gentile & Straughan [36] and in the

books of Straughan [100, 103]. The qualitative analysis is needed to assess models

before the numerical work and therefore the first part of this thesis is devoted to

precisely this goal.

The second part, chapters 4 - 6, represents the quantitative stability analyses

of the models. It is an investigation on the onset of double diffusive convection or

thermosolutal convection in the Darcy and the Brinkman porous media. In partic-

ular, we are considering the effect of chemical reaction on the stability of fluid flow

in saturated porous media of Darcy and Brinkman types. Nield [69] carried out the

first linear instability analysis of a double-diffusive system in a porous layer. He

showed that the oscillatory instability may be possible when a strongly stabilizing

solute gradient is opposed by a destabilizing thermal gradient. He used a Fourier

series method to obtain the eigenvalue equation which involves the thermal and so-
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lutal Rayleigh numbers. Then subsequent development of Nield [69] work is carried

out by Rudraiah et al. [92].

Wollkind & Frisch [125] carried out the earliest analysis of reactive effects on con-

vection in a fluid layer. They investigated the stability to infinitesimal disturbances

of a horizontal layer of dissociating fluid heated from below or above. They used a

normal mode linear perturbation analysis. Their result shows that for a nonreactive

fluid layer heated from below there is a slight departure in the onset of convective

instability from the classical Bénard problem. The same authors extended the lin-

ear perturbation problem in Wollkind & Frisch [126] to include a nonlinear stability

analysis of a horizontal layer of dissociating fluid, heated from above or below. Then

Bdzil & Frisch [8] did a complementary work in which they performed a linear sta-

bility analysis where the fluid was catalysed at the lower boundary of the layer. The

same writers developed the previous work in Bdzil & Frisch [9] and simultaneously a

similar work carried by Gutkowicz-Krusin & Ross [38]. See also Nield & Bejan [71],

Ingham & Pop [44, 45], Vafai [121, 122] and Vadasz [120]. Many recent studies in

double and multi-component convection are accomplished by Rionero [85–87,89].

Regarding reactive convection in a porous medium, the first study was due to

Steinberg & Brand [96, 97]. They presented a linear instability analysis of a reac-

tive binary mixture in a rectangular box with fast chemical reaction in a porous

medium heated from below or from above. More studies were carried out by Gat-

ica et al. [33, 34], Viljoen et al. [123] and Malashetty & Gaikwad [59]. Pritchard &

Richardson [83] explored a model similar to that of Steinberg & Brand [96,97]. They

considered the Darcy model to study the onset of thermosolutal convection of a bi-

nary fluid in a horizontal porous layer subject to fixed temperatures and chemical

equilibrium on the bounding surfaces, when the solubility of the dissolved compo-

nent depends on temperature. They used a linear instability analysis to study and

develop understanding on how the dissolution or precipitation of the solute affects

the onset of convection. Wang & Tan [124] extended the previous work of Pritchard

& Richardson [83], in which Wang & Tan [124] considered the Darcy-Brinkman
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model for a sparsely packed porous medium. They discussed how the onset of

double-diffusive convection varies with the Darcy number, the Lewis number and

the reaction term. They derived a non-dimensional model of double-diffusive convec-

tion with thermally controlled equilibrium solubility on the basis of the Brinkman

model. Then, they used the normal mode analysis to carry out a linear instability

analysis.

Recently, many research articles investigated convection in anisotropic porous

materials. A well documented review of research articles on convective flows in

anisotropic porous media can be found in Storesletten [98]. Malashetty et al.

[31, 32, 61] studied the onset of double diffusive convection in anisotropic porous

media with different effects, like rotation, cross-diffusion effects, and soret effect.

Recently, Malashetty & Biradar [60] studied the onset of double diffusive reaction

convection in anisotropic porous layer of Darcy type. Srivastava & Bera [95] consid-

ered the onset of thermosolutal reaction convection in a couple-stress fluid saturated

anisotropic porous medium. Gaikwad & Begum [30] investigated the onset of a rotat-

ing double-diffusive reaction convection in anisotropic Darcy type porous medium.

The authors in the six articles mentioned above used a linear theory and a weak

non-linear theory to study the stability. The linear analysis is based on the normal

mode technique, while the non-linear analysis is based on a truncated Fourier series

representation.

We are studying non-linear stability using an energy stability technique which is

used extensively by, for example, Amendola & Fabrizio [3], Amendola et al. [4, 5],

Capone et al. [15,16,18], Capone & De Luca [17], De Luca [24], De Luca & Rionero

[25], Lombardo & Mulone [58], Rionero et al. [88,90,91], and Straughan [99,100,105].

The aim of our study is to obtain the nonlinear stability boundaries below which

the solution is globally stable using the energy method and to investigate the effect

of the chemical reaction on the onset of stability.

The third part of this thesis, chapters 7 - 8, deals with acceleration waves be-
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haviour in non-linear elastic double porosity materials. This direction of study takes

our attention due to its great importance in real life situations, for example, in civil

engineering and geophysics.

1.1 Notations and Preliminaries

Let Ω be a bounded domain in R3 with boundary Γ smooth enough to allow the

application of the Divergence Theorem. Throughout this thesis we use standard

indicial notations and Einstein summation convention is used for repeated indices,

where Roman indices run from 1 to 3 and subscript , i denoting ∂/∂xi and subscript

, t denoting ∂/∂t. Standard vector and tensor notations also used throughout, for

example, the divergence of a vector field is defined by

div v ≡ vi,i ≡
∂vi
∂xi
≡ Σi=3

i=1

∂vi
∂xi

.

The Laplace operator acting on a general function f is defined by

∆f = f,ii =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Moreover, the horizontal Laplacian is defined by

∆∗ = ∆− ∂2

∂z2
=

∂2

∂x2
+

∂2

∂y2
,

from which we define a new operator D to be

D =
d

dz
.

In addition we denote the inner product on the space L2(Ω) by (·, ·) and we denote

the associated norm by ‖ · ‖. For example, if f and g ∈ L2 (Ω), then

(f, g) =

∫
Ω

fg dV,

and the norm of a function f is defined by

‖f‖ =

√∫
Ω

f 2 dV .
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For later purposes, we recall the following inequalities,

Poincaré inequality is defined as

‖f‖ ≤ C‖∇f‖ , (1.1.1)

for functions f which vanish on at least a part of Γ and C is a constant depending

on Ω. While Cauchy-Schwarz inequality is∫
Ω

fg dx ≤
(∫

Ω

f 2dx

)1/2(∫
Ω

g2dx

)1/2

,

or in terms of L2 norm and inner product notation it may be written in the form

|〈f, g〉| ≤ ‖f‖‖g‖. (1.1.2)

The Arithmetic-Geometric Mean inequality is

ab ≤ 1

2α
a2 +

α

2
b2, for any a, b, α > 0. (1.1.3)

The Young’s Inequality is

ab ≤ ap

p
+
bq

q
, (1.1.4)

where a and b are nonnegative real numbers and p and q are positive real numbers

such that
1

p
+

1

q
= 1.

Moreover, the Sobolev inequality is defined as

‖f‖4 ≤ ξ‖∇f‖ , (1.1.5)

for ξ > 0 depending on Ω, and for functions f which are zero on at least a part of

Γ.

To this end, we recall two lemmas, which are useful in our subsequent analysis.

The first one arises from a Rellich identity, Payne & Weinberger [82], and may be

found in Payne & Straughan [80], inequality(A10).

Lemma 1 Let φ be a harmonic function in Ω with boundary values M ,

i.e.

∆φ = 0 in Ω,

φ = M(x, t) on Γ.
(1.1.6)
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Then one may derive explicit constants c1 and c2 such that

‖∇φ‖2 + c1

∮
Γ

(
∂φ

∂n

)2

dA ≤ c2

∮
Γ

|∇sM |2dA (1.1.7)

where n is the unit normal vector and ∇s denotes the gradient in suitable

orthogonal tangential directions to the unit normal.

The second lemma may be found in Payne & Straughan [80], inequality(A12).

Lemma 2 Let ψ be the torsion function which satisfies the boundary

value problem

∆ψ = −1 , in Ω

ψ = 0 , on Γ.
(1.1.8)

Then by the maximum principle ψ > 0 in Ω, and for a function φ satis-

fying problem (1.1.6) one has

2 (ψ∇φ,∇φ) + ‖φ‖2 ≤ ψ1

∮
Γ

M2dA, (1.1.9)

where

ψ1 = maxΓ|
∂ψ

∂n
|. (1.1.10)

The reader may refer to appendix A for the proofs of the two lemmas.

1.2 Bénard Problem and Navier-Stokes Equations

While we are interested in the effect of a chemical reaction it is useful to introduce

the basic equations for thermal convection in a viscous fluid without such a reaction.

1.2.1 Basic Equations

In general, the equations for evolution of the velocity v and pressure p, have the

following forms of the Navier-Stokes equations

ρ (vi,t + vjvi,j) = −p,i + µ∆vi − gkiρ , (1.2.1)

vi,i = 0, (1.2.2)
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where ρ is the density, g is the gravity, µ is the effective viscosity, and ki = (0, 0, 1).

In general, the density of the fluid changes with temperature. Then we adopt a

linear relation for the density of form

ρ (T ) = ρ0 [1− α [T − T0]] , (1.2.3)

here α is the coefficient of thermal expansion and ρ0 and T0 are constants. Then we

adopt a Boussinesq approximation which roughly states that we cannot ignore the

temperature in the expansion term gkiρ in (1.2.1) but we may ignore the temperature

in the inertia term ρ (vi,t + vjvi,j) . In this case we may replace equation (1.2.1) by

ρ0 (vi,t + vjvi,j) = −p,i + µ∆vi − gkiρ0 (1− α[T − T0]) . (1.2.4)

The transport of heat equation is

T,t + viT,i = k∆T , (1.2.5)

where k is the heat effective diffusivity.

1.2.2 Bénard Problem

The whole system consists of equations (1.2.4), (1.2.2), and (1.2.5) as follows

ρ0 (vi,t + vjvi,j) =− p,i + µ∆vi − gkiρ0 (1− α[T − T0]) ,

vi,i =0 ,

T,t + viT,i =k∆T.

(1.2.6)

Equations (1.2.6) is a system of 5 equations in 5 unknowns, v1, v2, v3, p, and T. We

will use the standard Bénard problem for system (1.2.6) to explain the method used

to find the stability and instability boundaries.

As the temperature gradient acts vertically, we consider T to depend on z only.

In the steady state we are looking for

v̄i ≡ 0 , T̄ = T̄ (z) , p̄ = p̄(z). (1.2.7)

T̄ depends only on z, so equation (1.2.6)3 is k∆T̄ = 0, which reduces to d2T̄ /dz2 = 0,

in which the solution is T̄ = az + b. Using the boundary conditions

vi = 0 on z = 0, 1 ,
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T̄ = TL on z = 0 ,

T̄ = TU on z = d ,

where the parameters TL and TU are constants and TL > TU , imply b = TL and

a = −(TL − TU)/d = −β, here β is the temperature gradient. Then

T̄ = −βz + TL.

Moreover, p̄ depends on z, reduces the momentum equation to

dp̄

dz
= −gρ0αβz − gρ0 (1− α[TL − T0]) ,

which gives a quadratic form of solution for p̄

p̄(z) = −1

2
gρ0αβz

2 − gρ0 (1− α[TL − T0]) z + A ,

where A is an arbitrary constant.

1.2.3 Perturbations and Non-dimensionalisations

To study the stability, we have to introduce perturbations to the steady state in the

form

vi = v̄i + ui , T = T̄ + θ, p = p̄+ π.

Employing these into the system (1.2.6) with the use of the steady solution, gives

the full system of perturbation equations in terms of ui, π, θ, in the form

ui,t + ujui,j =− 1

ρ0

π,i + gαkiθ + ν∆ui ,

ui,i =0 ,

θ,t + uiθ,i =βw + k∆θ ,

(1.2.8)

where ν = µ/ρ0 and w = u3.

By introducing the non-dimensionalisations

x = x∗d, t = t∗
d2

ν
, ui = u∗i

ν

d
, π = π∗

ρ0ν
2

d2
, θ = θ∗

√
ν3β

gkd2α
,
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the system of non-dimensional perturbation equations is, after dropping the ”∗”,

ui,t + ujui,j =− π,i + ∆ui +Rkiθ ,

ui,i =0 ,

P r (θ,t + uiθ,i) =Rw + ∆θ ,

(1.2.9)

where Pr = ν/k is the Prandtl number, and the Rayleigh number Ra is defined by

Ra = R2 = d4gαβ/kν. The corresponding boundary conditions are

w,zz = w = θ = 0 on z = 0, 1. (1.2.10)

1.2.4 Boundary Conditions

We have to introduce the derivation of two kinds of boundary conditions due to the

importance of distinguishing between the use of them in different systems of porous

media. For example, in chapters (4) and (6), we assumed the porous medium has

low porosity structure in which the Darcy model is applicable. While in chapters

(3) and (5), we assumed that the porous medium has a high porosity structure in

which the Brinkman model is relevant. The Darcy model requires just one veloc-

ity boundary condition because it has no velocity derivative terms. On the other

hand, the Brinkman model contains velocity derivatives term of second order which

requires two velocity boundary conditions.

Fixed (No-Slip) Boundary Conditions

To derive the no-slip boundary, we assume that the fluid has zero velocity at the

boundary, i.e. vi = 0. Then we have that

u =0 ,

v =0 ,

w =0 on z = 0, 1 ,

(1.2.11)

and we know that in Ω,
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

therefore by continuity,
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 on Γ. (1.2.12)
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By differentiating (1.2.11)1 w.r.t x and (1.2.11)2 w.r.t y, implies that ∂u/∂x =

∂v/∂y = 0 on z = 0, 1. Using this result in (1.2.12) leads to ∂w/∂z = 0 on z = 0, 1.

It follows that the no-slip boundary conditions for w are

w = 0, w,z = 0, on z = 0, 1.

Stress-Free Boundary Conditions

For a free-surface the stress vector ti = 0 on the boundary, i.e. ti = tijnj = 0 on z =

0, 1, where

tij = 2µdij − πδij , (1.2.13)

is the stress tensor and dij = 1/2(ui,j + uj,i), and again we assume that the fluid

velocity at the boundary is zero, w = 0 on z = 0, 1. Since we need to obtain the

boundary conditions for w, we set j = 3 in (1.2.13), then when i = 1 and i = 2,

(1.2.13) gives

t13 = µ(u1,3 + u3,1) = µ(
∂u

∂z
+
∂w

∂x
) = 0 on Γ , (1.2.14)

and

t23 = µ(u2,3 + u3,2) = µ(
∂v

∂z
+
∂w

∂y
) = 0 on Γ , (1.2.15)

where we have used the fact that δij = 0, if i 6= j.

But w,x = 0 on Γ and w,y = 0 on Γ. Using these in (1.2.14) and (1.2.15) we obtain

u,z = 0 on Γ ,

v,z = 0 on Γ.
(1.2.16)

We know that u,x + v,y + w,z = 0 on Γ, by differentiation w.r.t. z, gives

u,xz + v,yz + w,zz = 0 on Γ. (1.2.17)

Employing (1.2.16) in (1.2.17) gives

u,zx = 0 , v,yz = 0 , on Γ ,

then

w,zz = 0 on Γ.

It follows that the stress-free boundary conditions for w are

w = 0 , w,zz = 0 , on z = 0, 1.
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1.2.5 Linear Instability

To find the linear instability boundaries of the system (1.2.9), we have to drop the

nonlinear terms

ui,t =− π,i + ∆ui +Rkiθ ,

ui,i =0 ,

P rθ,t =Rw + ∆θ.

(1.2.18)

Because system (1.2.18) is linear, using separation of variables, we may write

ui = eσtui(x) , π = eσtπ(x) , θ = eσtθ(x) , (1.2.19)

where σ is the growth rate. The terms in (1.2.19) are called Fourier modes and

the full solution is a combination of modes, i.e. ui(x, t) = Σ∞m=1e
σmtumi (x). We will

consider only (1.2.19) because one term is sufficient for instability.

Employing (1.2.19) in (1.2.18) gives

σui =− π,i + ∆ui +Rkiθ ,

ui,i =0 ,

P r σθ =Rw + ∆θ.

(1.2.20)

1.2.6 Exchange of Stabilities

The idea is that the growth rate σ is complex, σ = σr + iσi with σr , σi ∈ R.

The principle of exchange of stabilities holds if σi 6= 0 ⇒ σr < 0. If σr > 0 then

the system is unstable for all possible perturbations and any instability in this case

is called an overstable oscillation. The instability boundaries therefore occur when

σr = 0. While if σi = 0 always, i.e. σ ∈ R, then exchange of stabilities always holds,

cf. Straughan [100] and Chandrasekhar [19].

When thermal convection commences, the fluid is seen to form regular patterns

known as convection cells and these are periodic in the (x, y) plane. We assume

that u, θ, p have an (x, y)−dependence consistent with one that has a repetitive

shape that tiles the plane, such as two-dimensional rolls or hexagons. The hexagon

solution was originally given by Christopherson [22] namely,

u(x, y) = cos
1

2
a(
√

3x+ y) + cos
1

2
a(
√

3x− y) + cos ay . (1.2.21)
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In particular, the (x, y)−dependence is consistent with a wavenumber, a, for which

u satisfies the relation ∆∗u = −a2u, where ∆∗ is defined in section(1.1). Whatever

shape the cell has in the (x, y)−plane, its Cartesian product with (0, 1) is the period

cell V.

Let V be a period cell for the solution and let system (1.2.20) be complex,

i.e. ui = uri + iuii, with similar expression for θ. Multiply equation (1.2.20)1 by u∗i =

uri−iuii, which is the complex conjugate of ui, and integrate over V. Likewise multiply

equation (1.2.20)3 by θ∗ = θr − iθi and integrate over V, where ‖u‖2 =
∫
V
uiu
∗
i dV

and ‖θ‖2 =
∫
V
θθ∗dV. Considering the periodicity in the x and y directions and

adding the results, we find that

σ
(
‖u‖2 + Pr‖θ‖2

)
=− ‖∇u‖2 − ‖∇θ‖2

+R [(θw∗) + (wθ∗)] ,
(1.2.22)

where θw∗ + wθ∗ = 2 (θrwr + θiwi) ∈ R. Since σ = σr + iσi, by considering the

imaginary part of (1.2.22), i.e. σi (‖u‖2 + Pr‖θ‖2) = 0, because (‖u‖2 + Pr‖θ‖2) 6=

0 implies that σi = 0. Therefore σ ∈ R. We are interested to find the boundary

where σ changes from negative to positive. Therefore, we set σ = 0 in (1.2.20) and

the system reduces to

π,i =∆ui +Rkiθ ,

ui,i =0 ,

0 =Rw + ∆θ.

(1.2.23)

Taking the double curl of (1.2.23)1 reduces system (1.2.23) to

∆2w +R∆∗θ =0 ,

∆θ +Rw =0,
(1.2.24)

where ∆∗ is the horizontal Laplacian. Write w = W (z)f(x, y) and θ = Θ(z)f(x, y),

where f is a plane tiling function of the form f(x, y) = ei(lx+my) and ∆∗f = −(l2 +

m2)f = −a2f ; a is the wave number. Then system (1.2.24) is(
D2 − a2

)2
W −Ra2Θ =0 ,(

D2 − a2
)

Θ +RW =0 ,
(1.2.25)
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which is an eigenvalue problem for eigenvalue R, where D = d/dz and ∆ = D2 −

a2. Considering the boundary conditions, we may write W = Ŵ sinnπz and Θ =

Θ̂ sinnπz. Employing these, system (1.2.25) may be written in a matrix form asΛ2 −Ra2

R −Λ

Ŵ
Θ̂

 = 0 ,

where Λ = n2π2 + a2. Setting the determinant of the matrix to zero gives

R2 =
(n2π2 + a2)3

a2
.

To find the value of R for which the instability first occurs, we have to minimise R2

in n2 to find that the minimum is when n = 1, further minimization in a2 yields

a2
crit = π2/2, and the corresponding minimum R value is R2

crit = 27π4/4.

This linear value of R guarantees instability, i.e. for all R > Rcrit the system is

unstable but we can not determine whether the system is stable or not for R < Rcrit

using the linear method. Therefore, we will use the energy method to obtain the

nonlinear boundary below which the solution is stable.

1.2.7 The Nonlinear Stability

For the problem in hand (1.2.9), Straughan [99] used the energy method to find

the nonlinear stability boundary. Considering a period cell V , multiply equation

(1.2.9)1 by ui and equation (1.2.9)3 by θ and integrate over the domain using the

integration by parts, the divergence theorem and the suitable inequalities. Then,

form the energy identity by adding the obtained equations

dE

dt
= RI −D , (1.2.26)

where

E(t) =
1

2
‖u‖2 +

Pr

2
‖θ‖2 ,

D(t) =‖∇u‖2 + ‖∇θ‖2 ,

I(t) =2 (θ, w) .

Define RE by
1

RE

= max
H

I

D
, (1.2.27)
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where H = {(ui, θ)|ui, θ ∈ H1(V ), ui = 0, θ = 0 on Γ} , and ui, θ are periodic in x

and y. Returning to the energy identity

dE

dt
= R

I

D
D −D

≤ RDmax
H

(
I

D

)
−D

=
R

RE

D −D

= −D
(

1− R

RE

)
.

Now, if R < RE, then 1−(R/RE) > 0, say that 1−(R/RE) = (RE−R)/RE = a1 > 0,

implies
dE

dt
≤ −a1D. (1.2.28)

Using the Poincaré’s inequality, one can find a bound for D, and then from (1.2.28)

we obtain
dE

dt
≤ −a1D ≤ −2a1kπ

2E(t) = µ1E(t) , (1.2.29)

where k = min{ 1
Pr
, 1}. Integrating (1.2.29) yields

E(t) ≤ E(0)e−µ1t. (1.2.30)

Inequality (1.2.30) shows that E(t) → 0 as t → ∞, and then ‖u(t)‖2 → 0, and

‖θ(t)‖2 → 0 as t→∞.

The maximum (1.2.27) requires REδI − δD = 0. Using Calculus of variation, we

obtain the following Euler-Lagrange equations

∆ui +REθki =λi,i ,

ui,i =0 ,

∆θ +REw =0.

(1.2.31)

These are the same as the linear instability equations (1.2.23). Thus in this case, the

linear instability Rayleigh number is equivalent to the nonlinear stability Rayleigh

number, i.e. RL ≡ RE. This means that, for the problem in hand the linear insta-

bility boundary coincide with the nonlinear stability boundary and that there is no

region of potential sub-critical instability. The system is stable for R2 < 27π4/4 and

it is unstable for R2 > 27π4/4. Which is not always the case, in general RL > RE.
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In chapters (4), (5) and (6) we investigate thermosolutal convection models where

the two boundaries do not coincide and a region of potential sub-critical instability

reveals.

1.3 Overview

Our work in chapters 2-6 is an extension of the work done by Pritchard and Richard-

son [83]. Indeed, we are working on the model proposed by them and a generaliza-

tion. We consider the system of basic equations for double diffusive convection in

porous media of Brinkman and Darcy type with a chemical reaction in a domain

Ω× (0, τ) for some τ <∞.

Our models consist of either the Darcy equation with the density in the buoyancy

term as a function of temperature and salt concentration

p,i = − µ
K
vi − ρ0[1− αT (T − T0) + αC(C − C0)]gki , (1.3.1)

or the analogous Brinkman equation

p,i = − µ
K
vi + λ∆vi − ρ0[1− αT (T − T0) + αC(C − C0)]gki , (1.3.2)

the continuity equation

vi,i = 0 , (1.3.3)

the advection-diffusion equation for the transport of heat

1

M
T,t + viT,i = kT∆T , (1.3.4)

and the advection-diffusion equation for the transport of salt with reaction term

φ̂C,t + viC,i = φ̂kC∆C + k̂[Ceq(T )− C] , (1.3.5)

where the quantities p, vi, T, C are pressure, velocity, temperature and salt concen-

tration, K is the matrix permeability, µ is the fluid viscosity, ρ0 is the fluid density.

The coefficients kC , kT are the molecular diffusivity of the solute through the fluid

and the effective diffusivity of the heat through the saturated medium, respectively.

The quantity M is the ratio of the heat capacity of the fluid to the heat capac-

ity of the medium, the matrix porosity φ̂ is the ratio of the volume of the fluid
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to the total volume of the fluid and the solid, k̂ is the reaction coefficient, and

Ceq(T ) = f0 + f1(T − T0) in Pritchard & Richardson [83] and Wang & Tan [124],

where f0, f1 and T0 are constants. Moreover, g is the gravity, k = (0, 0, 1) and αT

and αC are the thermal and solutal expansion coefficients respectively. The term λ

is the effective viscosity (Brinkman coefficient), for Darcy type problem λ = 0 and

for Brinkman type problem λ 6= 0.

We impose the following boundary conditions for the Darcy model

T = TL on z = 0 and T = TU on z = d,

vini = 0 on z = 0 and z = d ,

C = CL on z = 0 and C = CU on z = d ,

(1.3.6)

while the analogous boundary conditions for Brinkman are

T = TL on z = 0 and T = TU on z = d,

vi = 0 on z = 0 and z = d ,

C = CL on z = 0 and C = CU on z = d ,

(1.3.7)

with TL > TU since our systems are heated below, where TL, TU , CL, CU all constants

and n is the unit normal vector to Γ. Moreover, the fluid occupying a horizontal layer

(x, y) ∈ R2, z ∈ (0, d) and the equations are taken in the domainR2×(0, d)×{t > 0}.

The reason for imposing the boundary condition vini = 0 for Darcy and vi = 0

for Brinkman is that, the Darcy model only has the term vi which does not require

specification of each component of the velocity vector only the normal component.

The Brinkman system has the ∆vi term which because of the second derivatives

requires specification of all components of the velocity vector.

For the salted above porous medium CU > CL while CL > CU for the salted below

case. Following Pritchard & Richardson [83], Wang & Tan [124], and [60, 95], it is

assumed that the equilibrium solute concentration is a linear function of tempera-

ture so that Ceq(T ) = f0 + f1(T − T0). The following lines will explain in detail how

the form of C̄(z) is obtained and the key point in which Pritchard & Richardson [83]

and Wang & Tan [124] assume that Ceq(T̄ ) = C̄(z).
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In the steady state, we look for

v̄i = 0,

T̄ = T̄ (z),

C̄ = C̄(z).

(1.3.8)

Equation (1.3.3) is automatically satisfied i.e.,

v̄i,i =
∂v̄1

∂x
+
∂v̄2

∂y
+
∂v̄3

∂z
= 0 ,

since v̄i = (v̄1, v̄2, v̄3) = (0, 0, 0) . Now considering equation (1.3.4), T̄ is a function

of z and so ∂T̄ /∂t = 0, also v̄i = 0 therefore v̄i∂T̄ /∂xi = 0, and so we are left

with ∂2T̄
∂x2

+ ∂2T̄
∂y2

+ ∂2T̄
∂z2

= 0 , therefore d2T̄ /dz2 = 0, which has the form of solution,

T̄ (z) = µ1z + µ2, where µ1 and µ2 are constants of integration and we have to find

them using the boundary conditions (1.3.6), T̄ (0) = TL and T̄ (d) = TU . It follows

that

T̄ (z) = TL −
(
TL − TU

d

)
z ; TL > TU .

Which can be written as

T̄ (z) = −βT z + TL ; βT =
TL − TU

d
. (1.3.9)

Considering equation (1.3.5), we know that C̄ = C̄(z) and v̄i = 0, which implies

that ∂C̄/∂t = 0, v̄i∂C̄/∂xi = 0, and ∆C̄ = d2C̄/dz2, so we have left with

d2C̄

dz2
+

k̂

φ̂kC

[
Ceq
(
T̄
)
− C̄

]
= 0. (1.3.10)

Suppose that Ceq(T̄ ) is a linear function in T̄ , i.e. ∃ µ3 , µ4 such that

Ceq(T̄ ) = µ3T̄ + µ4.

Put A2 = k̂

φ̂kC
, then equation (1.3.10) becomes

C̄ ′′ − A2C̄ = −A2Ceq(T̄ ) = −A2
(
µ3T̄ + µ4

)
= −A2 [µ3 {βT z + TL}+ µ4] .

So, the steady state solution for C̄(z) is found from

C̄ ′′ − A2C̄ = −A2µ3βT z − A2 (µ3TL + µ4)
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which can be written in the following form

C̄ ′′ − A2C̄ = −µ5z − µ6 (1.3.11)

The solution to equation (1.3.11) will be the following

C̄(z) = µ9 sinh(Az) + µ10 cosh(Az) + C̄particular solution. (1.3.12)

Try C̄particular solution = µ7z+µ8, where µ7 and µ8 are constants, substitute in (1.3.11)

and equate the like terms in order to find the values of µ7 and µ8. Therefore the

solution (1.3.12) will be

C̄(z) = µ9 sinh(Az) + µ10 cosh(Az) +
µ5

A2
z +

µ6

A2
.

Employing the boundary conditions (1.3.6), C̄(0) = CL and C̄(d) = CU , the follow-

ing values of µ10 and µ9 are obtained

µ10 = CL −
µ6

A2
,

µ9 =
CU − µ5d

A2 − µ6
A2 −

(
CL − µ6

A2

)
cosh(Ad)

sinh(Ad)
.

Hence

C̄(z) =
CU − µ5d

A2 − µ6
A2 −

(
CL − µ6

A2

)
cosh(Ad)

sinh(Ad)
sinh(Az)

+
[
CL −

µ6

A2

]
cosh(Az) +

µ5

A2
z +

µ6

A2
.

(1.3.13)

The steady state solution for C̄(z), equation (1.3.13), is quite complicated. The

key point is that, for the Darcy model of Pritchard & Richardson [83] and also for

the Brinkman model of Wang & Tan [124] they assumed that Ceq(T̄ (z)) = C̄(z).

So that ∆C̄ = 0, then µ3T̄ + µ4 = C̄(z). Hence, by employing equation (1.3.9),

C̄(z) = −µ3βT z + µ4 + µ3TL, which can be written as

C̄(z) = −µ11z + µ12. (1.3.14)

To find the values of the constants µ11 and µ12, the boundary conditions (1.3.6) have

to be employed, C̄(0) = CL and C̄(d) = CU , to obtain

C̄(z) = −βCz + CL ; βC =
CL − CU

d
. (1.3.15)
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Since in the steady state ∂p̄/∂x = ∂p̄/∂y = 0, the momentum equation (1.3.1),

becomes
∂p̄

∂z
= −gρ0[1− αT (T̄ − T0) + αC(C̄ − C0)]. (1.3.16)

Using the solutions (1.3.9) and (1.3.15), the momentum equation (1.3.16) will be

∂p̄

∂z
= −gρ0[1− αT (TL − βT z − T0) + αC(−βCz + CL − C0)]. (1.3.17)

Integration of (1.3.17) gives p̄ as a quadratic function of z of the form

p̄(z) = µ13z
2 + µ14z + µ15 ,

where µ13 , µ14 , and µ15 are constants of integration.

In chapter 2 we show continuous dependence of the solutions to the Darcy and

the Brinkman thermosolutal convection models on reaction when the chemical equi-

librium is a linear function in temperature. While in chapter 3 we prove continuous

dependence of the solution to the Brinkman thermosolutal convection on reaction

when the chemical equilibrium is an arbitrary function of the temperature.

Chapters (4 - 6) represent quantitative data analysis. In chapter 4 we assume

that the porous medium has low porosity structure and therefore, we use the Darcy

thermosolutal convection system with the presence of reaction to study the onset of

stability and the effect of increasing the reaction rate on the critical Rayleigh num-

ber. When the porosity is high, we replace the Darcy equation with the Brinkman

equation and we study the effect of the reaction rate and the Brinkman coefficient

on the stability of the system. This is the content of chapter 5. Moreover, we assume

that the porous skeletons in chapters 4 and 5 are fully isotropic, which is not always

the case. Therefore, in chapter 6 we study the onset of thermosolutal convection

with reaction in a Darcy porous medium with anisotropic permeability and thermal

diffusivity. Particularly, we investigate the effect of the horizontal isotropy in the

mechanical and the thermal diffusivity tenors on the stability of the system.

In the last two chapters (7-8), we move away from convective fluid motion and we

turn our attention to studying the behaviour of the acceleration waves in nonlinear
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elastic materials. But we are still in the field of porous media studies, particularly

in materials of double porosity structures. In chapter 7 we obtain the amplitude

and the behaviour of a one dimensional acceleration wave, while in chapter 8 we

investigate the behaviour of a three dimensional acceleration wave.



Chapter 2

Continuous Dependence of Darcy

and Brinkman Convection on

Reaction

2.1 Introduction

In the current chapter, we analyse the general structure stability for a problem of

continuous dependence on the reaction term for a model of flow in a porous medium

of a Brinkman and/or a Darcy type for double diffusive convection by establishing

a priori bounds for the solution. In the model we adopt, the chemical equilibrium

is taken to be a linear function in temperature. We consider a saturated porous

medium occupying a bounded three-dimensional domain Ω with boundary Γ smooth

enough to allow the application of the Divergence Theorem.

2.2 Basic Equations

We are investigating systems of equations consisting of either the Darcy equation

or the Brinkman equation with the density in the buoyancy force depending on the

temperature and salt concentration, the conservation of mass, the energy balance

and the conservation of solute equation. For the problem in hand, where x ∈ Ω and

t denote the time, such that 0 < t < T for some T <∞, the Darcy system with the

23
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corresponding boundary and initial conditions may be written as

∂p

∂xi
= RTgi −RsCgi − vi,

∂vi
∂xi

= 0,

∂T

∂t
+ vi

∂T

∂xi
= ∆T,

ε1
∂C

∂t
+ Levi

∂C

∂xi
= ∆C + lT − hC,

(2.2.1)

with boundary conditions

T = TB, C = CB, vini = 0 on Γ× [0, T ) (2.2.2)

and initial conditions

T (x, 0) = T0(x), C(x, 0) = C0(x), x ∈ Ω. (2.2.3)

The analogous Brinkman system is

∂p

∂xi
= RTgi −RsCgi − vi + λ∆vi,

∂vi
∂xi

= 0,

∂T

∂t
+ vi

∂T

∂xi
= ∆T,

ε1
∂C

∂t
+ Levi

∂C

∂xi
= ∆C + lT − hC,

(2.2.4)

and the corresponding boundary conditions are

T = TB, C = CB, vi = 0 on Γ× [0, T ) (2.2.5)

and initial conditions

T (x, 0) = T0(x), C(x, 0) = C0(x), x ∈ Ω. (2.2.6)

Where gi is vector representing the gravity field and we may assume that

|g| ≤ G (2.2.7)

for some constant G, without loss of generality and ε1 is a positive constant. The

quantities p, vi, T, C are pressure, velocity, temperature and salt concentration, R
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and Rs are Rayleigh numbers for temperature and salt respectively, l and h are

the reaction terms, Le is the Lewis number, and λ is the effective viscosity term

(the Brinkman coefficient), for Darcy type problem λ = 0 and for Brinkman type

λ 6= 0. Therefore, I will handle the general case and I will work on system (2.2.4)

and the corresponding boundary and initial data (2.2.5) and (2.2.6). The term lT

represents the chemical equilibrium function, Ceq, in Pritchard & Richardson [83],

Wang & Tan [124] and Malashetty & Biradar [60]. Moreover, TB, CB, T0 and C0 are

prescribed functions and n is the unit normal vector to Γ. Throughout, we let ‖.‖p
denote the norm on Lp(Ω), p > 2. Moreover, let the boundary-initial value problem

comprised of equations (2.2.4)-(2.2.6) be denoted by P .

2.3 A priori Estimates

To show continuous dependence of the solutions to (2.2.1) and (2.2.4) on the reaction

terms h and l, we need estimates for the temperature T and salt concentration C.

2.3.1 A priori bounds for ‖T‖2, ‖C‖2,
∫ t

0 ‖T‖
2ds,

∫ t
0 ‖C‖

2ds,∫ t
0 ‖∇C‖

2ds,
∫ t

0 ‖∇T‖
2ds

To find the estimate for C, we introduce a function Φ (x, t) as a solution to the

boundary value problem

∆Φ = 0 in Ω, (2.3.1)

Φ = CB on Γ, (2.3.2)

and similarly, to find the estimate for T , we have to introduce a function Θ (x, t) as

a solution to the boundary value problem

∆Θ = 0 in Ω, (2.3.3)

Θ = TB on Γ. (2.3.4)

The reason for introducing these functions is, because we know that on the boundary

Γ, the term (C − Φ) = 0. Therefore using integration by parts and with the aid of
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the Divergence Theorem, we show∫
Ω

(C − Φ) ∆Cdx =

∫
Ω

∇ [(C − Φ)∇C] dx−
∫

Ω

∇C.∇ (C − Φ) dx.

Applying the Divergence Theorem to the first term on the right hand side, we obtain∫
Ω

(C − Φ) ∆Cdx =

∮
Γ

∂C

∂n
(C − Φ) dA−

∫
Ω

|∇C|2dx+

∫
Ω

∇C.∇Φdx. (2.3.5)

Since C − Φ = 0 on Γ the boundary term is zero. Then, the last term of (2.3.5) is∫
Ω

∇C.∇Φdx =

∫
Ω

∇ (C∇Φ) dx−
∫

Ω

C∆Φdx. (2.3.6)

Since ∆Φ = 0 in Ω the second term on the right is zero, we see∫
Ω

∇C.∇Φdx =

∮
Γ

C
∂Φ

∂n
dA. (2.3.7)

Thus, putting (2.3.7) into (2.3.5), we find∫
Ω

(C − Φ) ∆Cdx = −
∫

Ω

|∇C|2dx+

∮
Γ

C
∂Φ

∂n
dA.

The same reason applies for introducing the function Θ. Now, we form the combi-

nations ∫ t

0

∫
Ω

(C − Φ) (ε1C,s + LeviC,i −∆C − lT + hC) dxds = 0, (2.3.8)

and ∫ t

0

∫
Ω

(T −Θ) (T,s + viT,i −∆T ) dxds = 0, (2.3.9)

where t is some number such that 0 < t ≤ τ .

Next, integrate by parts in (2.3.8) and employ the boundary condition (2.3.2) to

obtain

1

2
ε1‖C‖2 − 1

2
ε1‖C0‖2 +

∫ t

0

‖∇C‖2ds−
∫ t

0

(C, lT ) ds+

∫ t

0

(C, hC) ds

− ε1 (Φ, C) + ε1 (Φ0, C0) + ε1

∫ t

0

(Φ,s, C) ds− Le
∫ t

0

∫
Ω

ΦviC,idxds

−
∫ t

0

∮
Γ

C
∂Φ

∂n
dAds+

∫ t

0

(Φ, lT ) ds−
∫ t

0

(Φ, hC) ds = 0.

(2.3.10)

We now multiply equation (2.2.4)1 by vi, integrate over Ω and employ the the

Poincaré Inequality and Cauchy-Schwarz Inequality to see

‖v‖2 + λ1λ‖v‖2 ≤ ‖v‖2 + λ‖∇v‖2 ≤ RG‖T‖‖v‖+RsG‖C‖‖v‖,
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which implies

(1 + λ1λ) ‖v‖ ≤ RG‖T‖+RsG‖C‖, (2.3.11)

where λ1 is a constant depends on the geomerty of the domain. Squaring both sides

of (2.3.11) and then applying the Arithmetic-Geometric Mean Inequality gives

(1 + λ1λ)2 ‖v‖2 ≤ R2G2‖T‖2 + 2RRsG
2

(
1

2γ
‖T‖2 +

γ

2
‖C‖2

)
+R2

sG
2‖C‖2,

where γ > 0 is a constant to be selected. If we choose γ = Rs

R
, we obtain

(1 + λ1λ)2 ‖v‖2 ≤ 2R2G2‖T‖2 + 2R2
sG

2‖C‖2. (2.3.12)

Then, we have to bound the cubic term in equation (2.3.10). To do this, let Φm be

the maximum of CB on Γ × [0, τ ] which exists by the maximum principle (Protter

and Weinberger [84]). Then,∫ t

0

∫
Ω

ΦviC,idxds ≤ Φm

√∫ t

0

‖v‖2ds

∫ t

0

‖∇C‖2ds

≤
√

2ΦmG

(1 + λ1λ)

√∫ t

0

(R2‖T‖2 +R2
s‖C‖2) ds

∫ t

0

‖∇C‖2ds,

which implies that∫ t

0

∫
Ω

ΦviC,idxds ≤
ΦmG√

2 (1 + λ1λ) β1

(∫ t

0

R2‖T‖2ds+

∫ t

0

R2
s‖C‖2ds

)
+

β1ΦmG√
2 (1 + λ1λ)

∫ t

0

‖∇C‖2ds

(2.3.13)

where we have used the Cauchy-Schwarz Inequality, the Arithmetic-Geometric Mean

Inequality, inequality (2.3.11) and where β1 > 0 is a constant to be chosen.

We now employ (2.3.13) in equation (2.3.10) and make repeated use of the Arithmetic-

Geometric Mean Inequality, for positive constants β2, β3, β4, β5, β6, β7, β8, to be se-

lected, to see

A3‖C‖2 + A4

∫ t

0

‖∇C‖2ds ≤ A5‖C0‖2 +
ε1β2

2
‖Φ‖2 ε1β3

2
‖Φ0‖2 +

ε1β4

2

∫ t

0

‖Φ,s‖2ds

+
1

2

∫ t

0

∮
Γ

(
∂Φ

∂n

)2

dAds+
1

2

∫ t

0

∮
Γ

C2
BdAds

+ A6

∫ t

0

‖C‖2ds+ A7

∫ t

0

‖T‖2ds+ A8

∫ t

0

‖Φ‖2ds,
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where

A3 =
ε1
2
− ε1

2β2

,

A4 = 1− β1ΦmGLe√
2 (1 + λ)

,

A5 =
ε1
2
− ε1

2β3

,

A6 =
ε1

2β4

+
ΦmGLeR

2
s√

2 (1 + λ) β1

+
lmβ5

2
+
hmβ6

2
+
hm
2β6

+
hm
2β8

,

A7 =
ΦmGLeR

2

√
2 (1 + λ) β1

+
lm
2β5

+
lm
2β7

,

A8 =
lmβ7

2
+
hmβ8

2
,

and where hm and lm are the maxima of h and l. If we choose β1 = (1+λ)√
2ΦmGLe

, β2 = 2,

and β3 = β4 = β5 = β6 = β7 = β8 = 1, then

ε1
4
‖C‖2 +

1

2

∫ t

0

‖∇C‖2ds ≤ ε1‖C0‖2 + ε1‖Φ‖2 +
ε1
2
‖Φ0‖2

+
ε1
2

∫ t

0

‖Φ,s‖2ds+
1

2

∫ t

0

∮
Γ

(
∂Φ

∂n

)2

dAds

+
1

2

∫ t

0

∮
Γ

C2
BdAds+ A9

∫ t

0

‖C‖2ds

+ A10

∫ t

0

‖T‖2ds+ A11

∫ t

0

‖Φ‖2ds

(2.3.14)

where

A9 =
ε1
2

+
Φ2
mG

2Le2R2
s

(1 + λ)2 +
lm
2

+
3hm

2
,

A10 =
Φ2
mG

2Le2R2

(1 + λ)2 + lm,

A11 =
hm + lm

2
.

Returning to equation (2.3.9) integrating by parts and employing the boundary

conditions (2.3.4), we obtain

1

2
‖T‖2 − 1

2
‖T0‖2 +

∫ t

0

‖∇T‖2ds− (Θ, T ) + (Θ0, T0)

+

∫ t

0

(Θ,s, T ) ds−
∫ t

0

∫
Ω

ΘviT,idxds−
∫ t

0

∮
Γ

T
∂Θ

∂n
dAds = 0.

(2.3.15)
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Next, we have to bound the cubic term in equation (2.3.15) using Cauchy-Schwarz

Inequality and inequality (2.3.11), where Θm is the maximum of TB on Γ× [0, τ ],

∫ t

0

∫
Ω

ΘviT,idxds ≤ Θm

√∫ t

0

‖v‖2ds

∫ t

0

‖∇T‖2ds

≤
√

2GΘm

(1 + λ)

√∫ t

0

(R2‖T‖2 +R2
s‖C‖2) ds

∫ t

0

‖∇T‖2ds,

employing the Arithmetic-Geometric Mean Inequality, to see∫ t

0

∫
Ω

ΘviT,idxds ≤
GΘm√

2 (1 + λ) ζ1

(∫ t

0

R2‖T‖2ds+

∫ t

0

R2
s‖C‖2ds

)
+

GΘmζ1√
2 (1 + λ)

∫ t

0

‖∇T‖2ds,

where ζ1 > 0 is a constant to be chosen. Now, using (2.3.16) in (2.3.15)and make

repeated use of the Arithmetic-Geometric Mean Inequality, we may show that

1

4
‖T‖2 +

1

2

∫ t

0

‖∇T‖2ds ≤ ‖T0‖2 + ‖Θ‖2 +
1

2
‖Θ0‖2 +

1

2

∫ t

0

‖Θ,s‖2ds

+
1

2

∫ t

0

∮
Γ

T 2
BdAds+

1

2

∫ t

0

∮
Γ

(
∂Θ

∂n

)2

dAds

+B3

∫ t

0

‖T‖2ds+B4

∫ t

0

‖C‖2ds,

(2.3.16)

where

B3 =
1

2
+

Θ2
mG

2R2

(1 + λ1λ)2 ,

B4 =
Θ2
mG

2R2
s

(1 + λ1λ)2 ,

and where we have chosen

ζ1 =
(1 + λ1λ)√

2GΘm

.

Then, we add (2.3.14) and (2.3.16), to obtain

ε1
4
‖C‖2 +

1

4
‖T‖2 +

1

2

∫ t

0

‖∇C‖2ds+
1

2

∫ t

0

‖∇T‖2ds

≤ (A9 +B4)

∫ t

0

‖C‖2ds+ (A10 +B3)

∫ t

0

‖T‖2ds+ E(t),

(2.3.17)
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where E(t) is a term we will show that it is bounded by data and is defined by

E(t) =ε1‖C0‖2 + ‖T0‖2 + ε1‖Φ‖2 + ‖Θ‖2 +
ε1
2
‖Φ0‖2 +

1

2
‖Θ0‖2 +

ε1
2

∫ t

0

‖Φ,s‖2ds

+
1

2

∫ t

0

‖Θ,s‖2ds+ A11

∫ t

0

‖Φ‖2ds+
1

2

∫ t

0

∮
Γ

C2
BdAds+

1

2

∫ t

0

∮
Γ

T 2
BdAds

+
1

2

∫ t

0

∮
Γ

(
∂Φ

∂n

)2

dAds+
1

2

∫ t

0

∮
Γ

(
∂Θ

∂n

)2

dAds.

(2.3.18)

In order to find bounds for E(t) in terms of data, we have to employ the Rellich

identity (1.1.7) and identity (1.1.9). To explain it clearly, the following lines will

show the use of these inequalities to bound each term of E(t) separately.

Starting by the third term of E(t) up to the last term respectively,

ε1‖Φ‖2 ≤ ε1ψ1

∮
Γ

C2
BdA,

‖Θ‖2 ≤ ψ1

∮
Γ

T 2
BdA,

ε1
2
‖Φ0‖2 ≤ ε1

2
ψ1

∮
Γ

C2
0BdA,

1

2
‖Θ0‖2 ≤ 1

2
ψ1

∮
Γ

T 2
0BdA,

ε1
2

∫ t

0

‖Φ,s‖2ds ≤ ε1
2
ψ1

∫ t

0

∮
Γ

C2
B,ηdAdη,

1

2

∫ t

0

‖Θ,s‖2ds ≤ 1

2
ψ1

∫ t

0

∮
Γ

T 2
B,ηdAdη,

A11

∫ t

0

‖Φ‖2ds ≤ A11ψ1

∫ t

0

∮
Γ

C2
BdAdη,

1

2

∫ t

0

∮
Γ

C2
BdAds ≤

1

2

∫ t

0

∮
Γ

C2
BdAdη,

1

2

∫ t

0

∮
Γ

T 2
BdAds ≤

1

2

∫ t

0

∮
Γ

T 2
BdAdη,

1

2

∫ t

0

∮
Γ

(
∂Φ

∂n

)2

dAds ≤ c2

2c1

∫ t

0

∮
Γ

|∇sCB|2dAdη,

1

2

∫ t

0

∮
Γ

(
∂Θ

∂n

)2

dAds ≤ c2

2c1

∫ t

0

∮
Γ

|∇sTB|2dAdη.

In fact, we have shown that

E(t) ≤ D(t), (2.3.19)
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where

D(t) =ε1‖C0‖2 + ‖T0‖2 + ε1ψ1

∮
Γ

C2
BdA+ ψ1

∮
Γ

T 2
BdA+

ε1
2
ψ1

∮
Γ

C2
0BdA

+
1

2
ψ1

∮
Γ

T 2
0BdA+

ε1
2
ψ1

∫ t

0

∮
Γ

C2
B,ηdAdη +

1

2
ψ1

∫ t

0

∮
Γ

T 2
B,ηdAdη

+
1

2

∫ t

0

∮
Γ

C2
BdAdη +

1

2

∫ t

0

∮
Γ

T 2
BdAdη +

c2

2c1

∫ t

0

∮
Γ

|∇sCB|2dAdη

+
c2

2c1

∫ t

0

∮
Γ

|∇sTB|2dAdη + A11ψ1

∫ t

0

∮
Γ

C2
BdAdη.

(2.3.20)

Note that D(t) is composed of terms which depend only on the initial and boundary

data of the problem, C0, T0, CB, TB, and their known derivatives.

Then from inequality (2.3.17) we may derive

F ′1 − k5F1 ≤ D, (2.3.21)

where k5 = max {A9 +B4, A10 +B3} and where we have introduced the function

F1(t) defined by

F1(t) =

∫ t

0

(
1

4
‖T‖2 +

ε1
4
‖C‖2

)
ds.

Upon integration of the differential inequality (2.3.21), one may show that

F1 ≤ D1(t), (2.3.22)

where

D1(t) =

∫ t

0

Dek5(t−s)ds.

Furthermore, setting D2(t) = D + k5D1, we may use inequality (2.3.21) to find

F ′1 =
1

4
‖T‖2 +

ε1
4
‖C‖2 ≤ D2,

which implies

‖T‖2 ≤ 4D2, (2.3.23)

‖C‖2 ≤ 4

ε1
D2, (2.3.24)

Moreover, inequality (2.3.22), implies∫ t

0

‖T‖2ds ≤ 4D1, (2.3.25)∫ t

0

‖C‖2ds ≤ 4

ε1
D1. (2.3.26)
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Returning to inequality (2.3.17),we have that

F ′1 +
1

2

∫ t

0

‖∇C‖2ds+
1

2

∫ t

0

‖∇T‖2ds ≤ D2,

which implies ∫ t

0

‖∇C‖2ds ≤ 2D2, (2.3.27)∫ t

0

‖∇T‖2ds ≤ 2D2. (2.3.28)

2.3.2 Bounds for the SupΩ×[0,τ ]|C| and SupΩ×[0,τ ]|T |

The next step is to derive bounds for supΩ×[0,τ ]|C| and supΩ×[0,τ ]|T |. For these, we

have to introduce a function I (x, t) as a solution to the following boundary value

problem

∆I = 0 in Ω, (2.3.29)

I = C2p−1
B on Γ, (2.3.30)

similarly, we introduce a function H (x, t) as a solution to the boundary value prob-

lem

∆H = 0 in Ω, (2.3.31)

H = T 2p−1
B on Γ, (2.3.32)

where p ∈ N . These are different from (2.3.1) − (2.3.4) because the boundary

conditions are different. Then we form the combinations∫ t

0

∫
Ω

(
C2p−1 − I

)
(ε1C,s + LeviC,i −∆C − lT + hC) dxds = 0, (2.3.33)

and ∫ t

0

∫
Ω

(
T 2p−1 −H

)
(T,s + viT,i −∆T ) dxds = 0. (2.3.34)

Next, integrate the terms in equation (2.3.33) by parts and employ the boundary

condition (2.3.30). For clarity, we will integrate each term separately. The first term

is ∫ t

0

∫
Ω

ε1C
2p−1C,sdxds =

ε1
2p

∫
Ω

C2pdx− ε1
2p

∫
Ω

C2p
0 dx. (2.3.35)
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The second term integrated to

Le

∫ t

0

∫
Ω

C2p−1viC,idxds =
Le

2p

∫ t

0

∫
Ω

[
∂

∂xi

(
viC

2p
)
− C2p ∂vi

∂xi

]
dxds,

employing the Divergence Theorem to the first term on the right, we obtain

Le

∫ t

0

∫
Ω

C2p−1viC,idxds =
Le

2p

∫ t

0

∮
Γ

niviC
2pdAds− Le

2p

∫ t

0

∫
Ω

C2pvi,idxds

Using the boundary condition vi = 0 for Brinkman or vini = 0 for Darcy, the first

term on the right is zero and since vi,i = 0 in Ω, the second term is also zero.

Therefore, the second term is

Le

∫ t

0

∫
Ω

C2p−1viC,idxds = 0. (2.3.36)

The third term is integrated through the following steps

−
∫ t

0

∫
Ω

C2p−1∆Cdxds = −
∫ t

0

∫
Ω

∇
(
C2p−1∇C

)
dxds+

∫ t

0

∫
Ω

∂C2p−1

∂xi

∂C

∂xi
dxds,

applying the Divergence Theorem to the first term on the right, we obtain

−
∫ t

0

∫
Ω

C2p−1∆Cdxds = −
∫ t

0

∮
Γ

niC
2p−1∇CdAds+

∫ t

0

∫
Ω

(2p− 1)C2p−2 ∂C

∂xi

∂C

∂xi
dxds,

which can be written as

−
∫ t

0

∫
Ω

C2p−1∆Cdxds

= −
∫ t

0

∮
Γ

niC
2p−1∇CdAds+ (2p− 1)

∫ t

0

∫
Ω

1

p2

∂Cp

∂xi

∂Cp

∂xi
dxds

= −
∫ t

0

∮
Γ

niC
2p−1∇CdAds+

(2p− 1)

p2

∫ t

0

∫
Ω

∇Cp∇Cpdxds.

(2.3.37)

The fifth term is

−ε1
∫ t

0

∫
Ω

IC,sdxds = −ε1
[∫

Ω

(
CI|t0 −

∫ t

0

CI,sds

)
dx

]
= −ε1 (I, C) + ε1 (I0, C0) + ε1

∫ t

0

(I,s, C) ds.

(2.3.38)

The fourth, sixth and eighth terms are integrated in the proceeding lines. Using

integration by parts, the seventh term is∫ t

0

∫
Ω

I∆Cdxds =

∫ t

0

∫
Ω

∇ (I∇C) dxds−
∫ t

0

∫
Ω

∇I∇Cdxds
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Applying the Divergence Theorem to the first term and making repeated use of

integration by parts on the second term, we see∫ t

0

∫
Ω

I∆Cdxds =

∫ t

0

∮
Γ

ni
∂C

∂xi
IdAds−

[∫ t

0

[∫
Ω

∂

∂xi

(
∂I

∂xi
C

)
dx−

∫
Ω

C∆Idx

]
ds

]
again we have to use the Divergence Theorem in the second term. Moreover, the

last term is zero since ∆I = 0 in Ω. Therefore∫ t

0

∫
Ω

I∆Cdxds =

∫ t

0

∮
Γ

ni
∂C

∂xi
IdAds−

∫ t

0

∮
Γ

ni
∂I

∂xi
CdAds. (2.3.39)

Now, we employ (2.3.35), (2.3.36), (2.3.37), (2.3.38) and (2.3.39) in (2.3.33) to see

that

ε1

∫
Ω

C2pdx+
2(2p− 1)

p

∫ t

0

∫
Ω

Cp
,iC

p
,idxds = ε1

∫
Ω

C2p
0 dx+ 2pε1 (I, C)− 2pε1 (I0, C0)

− 2pε1

∫ t

0

(I,s, C) ds+ 2p

∫ t

0

∮
Γ

CB
∂I

∂n
dAds

+ 2p

∫ t

0

∫
Ω

C2p−1 (lT − hC) dxds

− 2p

∫ t

0

∫
Ω

I (lT − hC) dxds

+ 2pLe

∫ t

0

∫
Ω

IviC,idxds.

(2.3.40)

To move on from equation (2.3.40), we proceed as in Payne and Straughan [80]

employing the steps leading to their inequalities (A21)-A(25). But we have to handle

the last three terms on the right of (2.3.40). First, employing Young’s inequality to

see that

2p

∫ t

0

∫
Ω

C2p−1 (lT − hC) dxds

≤ 2plm

[
1

2p

∫ t

0

∫
Ω

T 2pdxds+
2p− 1

2p

∫ t

0

∫
Ω

(
C2p−1

) 2p
2p−1 dxds

]
+ 2phm

[
1

2p

∫ t

0

∫
Ω

C2pdxds+
2p− 1

2p

∫ t

0

∫
Ω

(
C2p−1

) 2p
2p−1 dxds

]
on simplification, we obtain

2p

∫ t

0

∫
Ω

C2p−1 (lT − hC) dxds ≤{(2p− 1) lm + 2phm}
∫ t

0

∫
Ω

C2pdxds

+ lm

∫ t

0

∫
Ω

T 2pdxds.

(2.3.41)
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A further application of Young’s inequality on the penultimate term in (2.3.40) leads

to

2p

∫ t

0

∫
Ω

I (lT − hC) dxds ≤ 2plm

[
1

2p

∫ t

0

∫
Ω

T 2pdxds+
2p− 1

2p

∫ t

0

∫
Ω

I
2p

2p−1dxds

]
+ 2phm

[
1

2p

∫ t

0

∫
Ω

C2pdxds+
2p− 1

2p

∫ t

0

∫
Ω

I
2p

2p−1dxds

]
simplifying and combining the like terms

2p

∫ t

0

∫
Ω

I (lT − hC) dxds ≤ lm

∫ t

0

∫
Ω

T 2pdxds+ hm

∫ t

0

∫
Ω

C2pdxds

+ (2p− 1) (lm + hm)

∫ t

0

∫
Ω

I
2p

2p−1dxds

Applying identity (1.1.9) to last term of the previous inequality and using the bound-

ary condition (2.3.30), we obtain

2p

∫ t

0

∫
Ω

I (lT − hC) dxds ≤lm
∫ t

0

∫
Ω

T 2pdxds+ hm

∫ t

0

∫
Ω

C2pdxds

+ (2p− 1)ψ1 (lm + hm)

∫ t

0

∮
Γ

C2p
B dxds.

(2.3.42)

The last term of (2.3.40) will be

2pLe

∫ t

0

∫
Ω

IviC,idxds ≤ 2pLeIm

√∫ t

0

‖v‖2ds

∫ t

0

‖∇C‖2ds

≤ 2pLeIm

√
2G

(1 + λ1λ)

√∫ t

0

(R2‖T‖2 +R2
s‖C‖2) ds

∫ t

0

‖∇C‖2ds,

where Im denotes the maximum value of I on Γ and Cauchy-Schwarz inequality and

inequality (2.3.11) have been employed. An application of the Arithmetic-Geometric

Mean inequality together with (2.3.25), (2.3.26) and (2.3.27) yields

2pLe

∫ t

0

∫
Ω

IviC,idxds ≤
√

2pLeGIm
(1 + λ1λ)

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
(2.3.43)
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Thus, combining (2.3.41), (2.3.42) and (2.3.43) in (2.3.40), to find with the aid of

Cauchy-Schwarz inequality

ε1

∫
Ω

C2pdx ≤ε1
∫

Ω

C2p
0 dx+ 2pε1 (‖I‖‖C‖+ ‖I0‖‖C0‖) + 2pε1

√∫ t

0

‖I,η‖2dη

∫ t

0

‖C‖2dη

+ 2p

√∫ t

0

∮
Γ

C2
BdAdη

∫ t

0

∮
Γ

(
∂I

∂n

)2

dAdη + 2lm

∫ t

0

∫
Ω

T 2pdxdη

+

√
2pLeGIm

(1 + λ1λ)

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
+ [(2p− 1) lm + (2p+ 1)hm]

∫ t

0

∫
Ω

C2pdxdη

+ (2p− 1)ψ1 (hm + lm)

∫ t

0

∮
Γ

C2p
B dxdη.

(2.3.44)

Next, we have to bound the second, third and fourth terms on the right of the

previous inequality. In order to bound the second term we have to use the prescribed

boundary conditions, identity (1.1.9) and inequality (2.3.24), so that the second term

is

2pε1 (‖I‖‖C‖+ ‖I0‖‖C0‖) ≤ 2pε1ψ

1

2
1

(∮
Γ

C4p−2
B dA

) 1
2

[
2

√
D2

ε1
+ ‖C0‖

]
. (2.3.45)

The third term is bounded by using inequality (2.3.26) together with identity (1.1.9),

to obtain

2pε1

√∫ t

0

‖I,η‖2dη

∫ t

0

‖C‖2dη ≤ 2pε1

√
4D1

ε1

(∫ t

0

ψ1

∮
Γ

[(
C2p−1
B

)
,η

]2

dAdη

) 1
2

(2.3.46)

Finally, we bound the fourth term by using the Rellich identity

2p

√∫ t

0

∮
Γ

C2
BdAdη

∫ t

0

∮
Γ

(
∂I

∂n

)2

dAdη

≤ 2p

√
c2

c1

(∫ t

0

∮
Γ

C2
BdAdη

) 1
2
(∫ t

0

∮
Γ

|∇sC
2p−1
B |2dAdη

) 1
2

.

(2.3.47)
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Substituting (2.3.45), (2.3.46) and (2.3.47) in (2.3.44), we find

ε1

∫
Ω

C2pdx ≤ ε1

∫
Ω

C2p
0 dx+ 2pε1ψ

1
2
1

(∮
Γ

C4p−2
B dA

) 1
2

[
2

√
D2

ε1
+ ‖C0‖

]

+ 2pε1

√
4D1

ε1

(∫ t

0

ψ1

∮
Γ

[(
C2p−1
B

)
,η

]2

dAdη

) 1
2

+ 2p

√
c2

c1

(∫ t

0

∮
Γ

C2
BdAdη

) 1
2
(∫ t

0

∮
Γ

|∇sC
2p−1
B |2dAdη

) 1
2

+ 2lm

∫ t

0

∫
Ω

T 2pdxdη +

√
2pLeGC2p−1

Bm

(1 + λ1λ)

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
+ [(2p− 1) lm + (2p+ 1)hm]

∫ t

0

∫
Ω

C2pdxdη

+ (2p− 1)ψ1 (hm + lm)

∫ t

0

∮
Γ

C2p
B dAdη,

where CBm is the maximum of CB on Γ. To move on, we commence as in Payne and

Straughan [80], going through the steps leading to their inequality A(25), to find

ε1

∫
Ω

C2pdx ≤ [(2p− 1) lm + (2p+ 1)hm]

∫ t

0

∫
Ω

C2pdxdη + ε1

∫
Ω

C2p
0 dx

+

√
2pLeG

(1 + λ1λ)CBm

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
C2p
Bm

+
2pε1ψ

1
2
1 [m(Γ)]

1
2

CBm

(
2

√
D2

ε1
+ ‖C0‖

)
C2p
Bm

+
2pε1ψ

1
2
1 [tm(Γ)]

1
2

C2
Bm

√
4D1

ε1

(∫ t

0

∮
Γ

C2
B,ηdAdη

) 1
2

C2p
Bm

+ 2p

√
c2

c1

(tm(Γ))
1
2

CBm

(∫ t

0

∮
Γ

|∇sCB|2dAdη
) 1

2

C2p
Bm

+ (2p− 1) (hm + lm)ψ1tm(Γ)C2p
Bm + 2lm

∫ t

0

∫
Ω

T 2pdxdη,

(2.3.48)

where m(Γ) is the surface measure of Γ.

Returning to equation (2.3.34) and performing various integration by parts, to see∫
Ω

T 2pdx+
2 (2p− 1)

p

∫ t

0

∫
Ω

T p,iT
p
,idxdη =

∫
Ω

T 2p
0 dx+ 2p (H,T )− 2p (H0, T0)

− 2p

∫ t

0

(H,η, T ) dη + 2p

∫ t

0

∮
Γ

TB
∂H

∂n
dAdη

+ 2p

∫ t

0

∫
Ω

HviT,idxdη.

(2.3.49)
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Now, we have to handle the last term on the right of (2.3.49), where Hm is the

maximum value of H on Γ× [0, τ ],

2p

∫ t

0

∫
Ω

HviT,idxdη ≤ 2pHm

√∫ t

0

‖v‖2dη

∫ t

0

‖∇T‖2dη

≤ 2pT 2p−1
Bm

√
2G

(1 + λ1λ)

√∫ t

0

R2‖T‖2dη +

∫ t

0

R2
s‖C‖2dη

√∫ t

0

‖∇T‖2dη ,

where TBm is the maximum of TB and where we have used the Cauchy-Schawrz

inequality and inequality (2.3.11). We now make use of the Arithmetic-Geometric

Mean inequality and employ (2.3.26), (2.3.25) and (2.3.28) to arrive at

2p

∫ t

0

∫
Ω

HviT,idxdη ≤
√

2pT 2p−1
Bm

G

(1 + λ1λ)

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
. (2.3.50)

Employing (2.3.50) in (2.3.49) and make use of the Cauchy-Schawrz inequality to

obtain∫
Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx+ 2p (‖H‖‖T‖+ ‖H0‖‖T0‖) + 2p

√∫ t

0

‖H,η‖2dη

∫ t

0

‖T‖2dη

+
√

2pT 2p−1
Bm

G

(1 + λ1λ)

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
+ 2p

√∫ t

0

∮
Γ

T 2
BdAdη

∫ t

0

∮
Γ

(
∂H

∂n

)2

dAdη.

Furthermore, using the Rellich identity, inequality (2.3.24) and employing the pro-

cedure leading to inequality A(25) of Payne and Straughan [80], to find∫
Ω

T 2pdx ≤
∫

Ω

T 2p
0 dx+

√
2pG

(1 + λ1λ)TBm

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
T 2p
Bm

+
2pψ

1
2
1 [m(Γ)]

1
2

TBm

[
2
√
D2 + ‖T0‖

]
T 2p
Bm

+ 2p

√
c2

c1

(tm(Γ))
1
2

T
Bm

(∫ t

0

∮
Γ

|∇sTB|2dAdη
) 1

2

T 2p
Bm

+
2pψ

1
2
1 (tm(Γ))

1
2

T 2
Bm

√
4D1

(∫ t

0

∮
Γ

T 2
B,ηdAdη

) 1
2

T 2p
Bm.

(2.3.51)

Next, add (2.3.48) and (2.3.51) to arrive at

ε1

∫
Ω

C2pdx+

∫
Ω

T 2pdx ≤ [(2p− 1) lm + (2p+ 1)hm]

∫ t

0

∫
Ω

C2pdxdη

+ 2lm

∫ t

0

∫
Ω

T 2pdxdη +K(p),

(2.3.52)
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where the value of K(p) is

K(p) =ε1

∫
Ω

C2p
0 dx+

∫
Ω

T 2p
0 dx+

√
2pLeG

(1 + λ1λ)CBm

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
C2p
Bm

+

√
2pG

(1 + λ1λ)TBm

[
4R2D1 +

4

ε1
R2
sD1 + 2D2

]
T 2p
Bm

+
2pε1ψ

1
2
1 [m(Γ)]

1
2

CBm

(
2

√
D2

ε1
+ ‖C0‖

)
C2p
Bm

+
2pψ

1
2
1 [m(Γ)]

1
2

TB

[
2
√
D2 + ‖T0‖

]
T 2p
Bm

+
2pε1ψ

1
2
1 [tm(Γ)]

1
2

C2
Bm

√
4D1

ε1

(∫ t

0

∮
Γ

C2
B,ηdAdη

) 1
2

C2p
Bm

+
2pε1ψ

1
2
1 (tm(Γ))

1
2

T 2
Bm

√
4D1

(∫ t

0

∮
Γ

T 2
B,ηdAdη

) 1
2

T 2p
Bm

+ 2p

√
c2

c1

(tm(Γ))
1
2

C2
Bm

(∫ t

0

∮
Γ

C2
BdAdη

) 1
2
(∫ t

0

∮
Γ

|∇sCB|2dAdη
) 1

2

C2p
Bm

+ 2p

√
c2

c1

(tm(Γ))
1
2

T 2
Bm

(∫ t

0

∮
Γ

T 2
BdAdη

) 1
2
(∫ t

0

∮
Γ

|∇sTB|2dAdη
) 1

2

T 2p
Bm

+ (2p− 1) (hm + lm)ψ1tm(Γ)C2p
Bm.

(2.3.53)

If k6 = max {(2p− 1) lm + (2p+ 1)hm, 2lm}, then inequality (2.3.52) can be written

as

ε1

∫
Ω

C2pdx+

∫
Ω

T 2pdx ≤ k6

[
ε1

∫ t

0

∫
Ω

C2pdxdη +

∫ t

0

∫
Ω

T 2pdxdη

]
+K(p),

which can be integrated. Setting F2(t) = ε1
∫ t

0

∫
Ω
C2pdxdη+

∫ t
0

∫
Ω
T 2pdxdη, the above

differential inequality can be written as

F ′2 − k6F2 ≤ K(p),

upon integration, we obtain

F2(t) ≤
∫ t

0

ek6(t−η)K(p)dη,

which is

ε1

∫ t

0

∫
Ω

C2pdxdη +

∫ t

0

∫
Ω

T 2pdxdη ≤
∫ t

0

ek6(t−η)K(p)dη. (2.3.54)
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Inequality (2.3.54) implies that∫ t

0

∫
Ω

C2pdxdη ≤ 1

ε1

∫ t

0

ek6(t−η)K(p)dη, (2.3.55)

and ∫ t

0

∫
Ω

T 2pdxdη ≤
∫ t

0

ek6(t−η)K(p)dη. (2.3.56)

Then, we take the 1
2p

power of (2.3.55) and (2.3.56), to find

[∫ t

0

∫
Ω

C2pdxdη

] 1
2p

≤
[

1

ε1

∫ t

0

ek6(t−η)K(p)dη

] 1
2p

, (2.3.57)

and [∫ t

0

∫
Ω

T 2pdxdη

] 1
2p

≤
[∫ t

0

ek6(t−η)K(p)dη

] 1
2p

. (2.3.58)

Let now p→∞ and then (2.3.57) and (2.3.58) lead to

supΩ×[0,τ ]|C| ≤ max
{
|T0|m, |C0|m, sup[0,τ ]|CBm|, sup[0,τ ]|TBm|

}
supΩ×[0,τ ]|T | ≤ max

{
|T0|m, |C0|m, sup[0,τ ]|CBm|, sup[0,τ ]|TBm|

}
We henceforth denote the right-hand sides of the above two inequalities by Cm and

Tm respectively, to arrive at

supΩ×[0,τ ]|C| ≤ Cm, (2.3.59)

supΩ×[0,τ ]|T | ≤ Tm. (2.3.60)

Inequalities (2.3.59) and (2.3.60) are the a priori estimates we need for C and T .
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2.4 Convergence of K(p)

In this section, we have to prove the convergence of the term K(p). To do that, we

have to use the fact that if a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · · aN ≥ 0, then

(
a2p

1 + a2p
2 + a2p

3 + · · ·+ aN
) 1

2p = a1

[
1 +

(
a2

a1

)2p

+

(
a3

a1

)2p

+ · · ·+
(
aN
a1

)2p
] 1

2p

≤ N
1
2pa1 = N

1
2pmax {a1, a2, a3, · · · , aN} .

(See Payne and Straughan [80], page 322), in our case N = 11, because K(p) has

11 terms. So [∫ t

0

ek6(t−η)K(p)dη

] 1
2p

≤ 11
1
2pmax {a1, a2, a3, · · · , a11}

As p→∞,

a1 =

[∫ t

0

∫
Ω

ek6(t−η)ε1C
2p
0 dxdη

] 1
2p

→ |C0|m

a2 =

[∫ t

0

∫
Ω

ek6(t−η)T 2p
0 dxdη

] 1
2p

→ |T0|m

a3 + a5 + a7 + a9 =

[∫ t

0

ek6(t−η) {r3 + r5 + r7 + r9}C
1
2p

Bmdη

] 1
2p

→ sup[0,τ ]|CBm|

a4 + a6 + a8 + a10 =

[∫ t

0

ek6(t−η) {r4 + r6 + r8 + r10}T
1
2p

Bmdη

] 1
2p

→ sup[0,τ ]|TBm|

a11 =

[∫ t

0

ek6(t−η) (2p− 1) (hm + lm)ψ1tm(Γ)C2p
Bmdη

] 1
2p

→ sup[0,τ ]|CBm|.

Where a1, a2, a3, · · · , a11 are the terms of K(p) and r3, r4, r5, · · · are the correspond-

ing terms after factoring C2p
Bm or T 2p

Bm respectively.

2.5 Continuous Dependence on the Reaction Term

To investigate continuous dependence on the reaction terms h and l, assume that we

have two solutions {ui, p1, T1, C1} and {vi, p2, T2, C2} which satisfy (2.2.4), (2.2.5)

and (2.2.6) for the same boundary and initial conditions, but for different reaction

terms h1, h2 and l1, l2. Define the difference of the two solutions by,

wi = ui − vi, π = p1 − p2, θ = T1 − T2, φ = C1 − C2,
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and define the difference of the reaction terms by,

h = h1 − h2 and l = l1 − l2.

Then, we find that {wi, π, θ, φ} satisfies the boundary-initail value problem,

π,i = Rgiθ −Rsgiφ− wi + λ∆wi,

wi,i = 0,

θ,t + uiθ,i + wiT2,i = ∆θ,

ε1φ,t + Leuiφ,i + LewiC2,i = ∆φ+ lT1 + l2θ − hC1 − h2φ,

(2.5.1)

on Ω× (0, τ ] , together with

wi = 0, θ = 0, φ = 0, on Γ× (0, τ ] , (2.5.2)

θ (x, 0) = 0 and φ (x, 0) = 0. (2.5.3)

We want to estimate the solution {wi, π, θ, φ} in terms of h and l. Multiply equation

(2.5.1)1 by wi, integrate over Ω and suppose that |gi| ≤ G. Using Cauchy-Schwarz

inequality followed by the Arithmetic-Geometric Mean inequality the following is

obtained,

‖w‖2 + λ‖∇w‖2 ≤ RG

2α
‖θ‖2 +

RGα

2
‖w‖2 +

RsG

2β
‖φ‖2 +

RsGβ

2
‖w‖2 ,

where α,β > 0 are constants to be selected. If we choose α = 1
2RG

and β = 1
2RsG

,

we get

1

2
‖w‖2 + λ‖∇w‖2 ≤ R2G2‖θ‖2 +R2

sG
2‖φ‖2. (2.5.4)

Furthermore, multiply equation (2.5.1)3 by θ, integrate over Ω and employ the

Cauchy-Schwarz inequality and the Arithmetic-Geometric Mean inequality to ob-

tain,

d

dt

1

2
‖θ‖2 ≤ −‖∇θ‖2 + T2m‖w‖‖∇θ‖ ≤ −‖∇θ‖2 +

T2m

2α1

‖w‖2 +
T2mα1

2
‖∇θ‖2 ,

where α1 > 0 is a constant to be chosen and T2m is the maximum of T2. Employing

inequality (2.5.4) and choose α1 = 1
T2m

to obtain,

d

dt

1

2
‖θ‖2 ≤ −1

2
‖∇θ‖2 +

1

2
A1‖θ‖2 +

1

2
B1‖φ‖2 ,
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which implies

d

dt
‖θ‖2 ≤ A1‖θ‖2 +B1‖φ‖2 (2.5.5)

where A1 = 2T 2
2mR

2G2 and B1 = 2T 2
2mR

2
sG

2.

Going through the same procedure, multiply equation (2.5.1)4 by φ and integrate

over Ω, to see

d

dt

ε1
2
‖φ‖2 = − ‖∇φ‖2 − Le

∫
Ω

∂

∂xi
(φwiC2) dx+ Le

∫
Ω

(φwi,i + φ,iwi)C2dx

+ l (T1, φ) + l2 (θ, φ)− h (C1, φ)− h2‖φ‖2

Applying the Divergence Theorem to the second term on the right and since wi,i = 0

in Ω the third term is zero, then

d

dt

ε1
2
‖φ‖2 = − ‖∇φ‖2 − Le

∮
Γ

φwiniC2dA+ Le

∫
Ω

φ,iwiC2dx

+ l (T1, φ) + l2 (θ, φ)− h (C1, φ)− h2‖φ‖2

and since wi = 0 on Γ, the second term is zero. So, we obtain

d

dt

ε1
2
‖φ‖2 = − ‖∇φ‖2 + Le

∫
Ω

φ,iwiC2dx+ l (T1, φ)

+ l2 (θ, φ)− h (C1, φ)− h2‖φ‖2

Making use of Cauchy-Schwarz inequality, we see

d

dt

ε1
2
‖φ‖2 ≤ − ‖∇φ‖2 + LeC2m‖w‖‖∇φ‖+ l‖T1‖‖φ‖

+ l2‖θ‖‖φ‖+ h‖C1‖‖φ‖+ h2‖φ‖2

Using the Arithmetic-Geometric Mean inequality in addition to inequality (2.5.4),

we find

d

dt

ε1
2
‖φ‖2 ≤ − ‖∇φ‖2 +

LeC2mα2

2
‖∇φ‖2 +

LeC2mR
2G2

α2

‖θ‖2 +
LeC2mR

2
sG

2

α2

‖φ‖2

+
lα3

2
‖φ‖2 +

l

2α3

‖T1‖2 +
l2α4

2
‖φ‖2 +

l2
2α4

‖θ‖2

+
hα5

2
‖φ‖2 +

h

2α5

‖C1‖2 + h2‖φ‖2

where α2, α3, α4, α5 > 0 are constants to be chosen and C2m is the maximum of

C2. If we choose α2 = 1
LeC2m

, α3 = 2
l
, α4 = 2

l2
and α5 = 2

h
, then

d

dt

ε1
2
‖φ‖2 ≤ −1

2
‖∇φ‖2 +

h2

4
‖C1‖2 +

l2

4
‖T1‖2 + A2‖θ‖2 +B2‖φ‖2 ,
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where

A2 =
l22
4

+ Le2C2
2mR

2G2

and

B2 = 3 + h2 + Le2C2
2mR

2
sG

2

This implies that,

d

dt
ε1‖φ‖2 ≤ µ1‖θ‖2 + µ2‖φ‖2 + k1h

2 + k2l
2 , (2.5.6)

where µ1 = 2A2 , µ2 = 2B2 , k1 = ‖C1‖2
4

, k2 = ‖T1‖2
4

.

Next, add inequalities (2.5.5) and (2.5.6) to obtain

d

dt

(
‖θ‖2 + ε1‖φ‖2

)
≤ k

(
‖θ‖2 + ε1‖φ‖2

)
+ k3

(
h2 + l2

)
, (2.5.7)

where k3 = max {k1, k2} and k = max {A1 + µ1, B1 + µ2}. Inequality (2.5.7) can

be written as a differential inequality in the form

d

dt
F − kF ≤ k3

(
h2 + l2

)
,

where F (t) = (‖θ‖2 + ε1‖φ‖2). Upon integration, the solution will be

F (t) ≤ k3

k

(
ekt − 1

) (
h2 + l2

)
on [0, τ ] . (2.5.8)

Inequality (2.5.8) shows continuous dependence on the reaction terms, h and l , of θ

and φ. To derive continuous dependence of w, we have to employ inequality (2.5.8)

in inequality (2.5.4) to see

‖w‖2 ≤ k4

(
‖θ‖2 + ε1‖φ‖2

)
≤ k4k3

k

(
ekt − 1

) (
h2 + l2

)
on [0, τ ] , (2.5.9)

where k4 = max {2R2G2, 2R2
sG

2}. Inequality (2.5.9) demonstrates continuous de-

pendence also in the L2 measure of w.



Chapter 3

Structural Stability for Brinkman

Convection With Reaction

3.1 Introduction

In this chapter we address the fundamental question of continuous dependence of

the solution on the reaction rate but we allow the chemical equilibrium function

to depend in an arbitrary way on the temperature field. We allow the saturated

porous medium of a Brinkman type to occupy a bounded three-dimensional domain

Ω, the boundary of which, Γ, is sufficiently smooth to allow application of the Diver-

gence Theorem. This chapter may be considered as an extension or a generalization

of chapter 2 in which we showed continuous dependence of the Darcy and/or the

Brinkman convection on reaction but the chemical equilibrium was a linear function

in temperature. Moreover, here we follow a different route to study the continuous

dependence on reaction for the Brinkman convection problem due to the Brinkman

term and the route is not applicable for the Darcy.

3.2 Basic Equations

The equations we adopt in this chapter are the Brinkman equation with the density

in the buoyancy force depending on the temperature, the conservation of mass, the

energy balance and the conservation of solute equation. Let x ∈ Ω and let t denote

45
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time, where 0 < t < τ for some τ < ∞ and then, without loss of generality for the

problem in hand, these equations may be written as

∂p

∂xi
= giT − hiC − vi + λ∆vi,

∂vi
∂xi

= 0,

∂T

∂t
+ vi

∂T

∂xi
= ∆T,

a
∂C

∂t
+ bvi

∂C

∂xi
= ∆C + Lf(T )−KC,

(3.2.1)

where vi(x, t), p(x, t), T (x, t) and C(x, t) denote the velocity, pressure, temperature

and solute concentration, respectively. In equations(3.2.1) gi and hi represent gravity

functions, λ > 0 is the Brinkman coefficient, a, b are positive constants as are L and

K and f(T ) is a known function of temperature which is bounded and differentiable

for T bounded. The term Lf(T ) is denoted as a chemical equilibrium function, Ceq,

in Pritchard & Richardson [83], Wang & Tan [124], and in Malashetty & Biradar [60].

Equations(3.2.1) are assumed to hold on the domain Ω×(0, τ) while on the boundary

vi(x, t) = 0, T = TB(x, t), C = CB(x, t) (3.2.2)

on Γ × [0, τ), where TB and CB are known functions. Equations (3.2.1) are also

subject to the initial conditions

T (x, 0) = T0(x), C(x, 0) = C0(x), (3.2.3)

x ∈ Ω, where T0 and C0 are given. The boundary-initial value problem comprised

of (3.2.1), (3.2.2) and (3.2.3) will be denoted by P . In addition we suppose, without

loss of generality, that

|g| ≤ 1 , |h| ≤ 1 . (3.2.4)

For a general derivation of equations not dissimilar to (3.2.1), employing contempo-

rary methods of continuum thermodynamics, the reader may wish to consult Morro

& Straughan [68], or the interesting recent papers involving phase changes of Berti

et al. [12], Berti et al. [11], Bonetti et al. [13], and Fabrizio et al. [27–29].

In many cases the reaction rates L and K are closely linked. However, we here treat

the general case and so to study continuous dependence of the solution to (3.2.1),



3.3. A priori Estimates 47

(3.2.2) and (3.2.3) we suppose (ui, p1, T1, C1) and (vi, p2, T2, C2) are solutions to the

boundary-initial value problem P for the same constants gi, hi, λ, a and b and for

the same functions f, TB, CB, T0 and C0, but for different reaction coefficients L1, K1

and L2, K2, respectively. We define the difference variables wi, π, θ and φ by

wi = ui − vi , π = p1 − p2,

θ = T1 − T2 , φ = C1 − C2,

l = L1 − L2 , k = K1 −K2.

(3.2.5)

From equations (3.2.1)-(3.2.3) one determines the equations governing the variables

(wi, π, θ, φ) to be

∂π

∂xi
= giθ − hiφ− wi + λ∆wi,

∂wi
∂xi

= 0,

∂θ

∂t
+ ui

∂θ

∂xi
+ wi

∂T2

∂xi
= ∆θ,

a
∂φ

∂t
+ bui

∂φ

∂xi
+ bwi

∂C2

∂xi
= ∆φ+ L1 [f(T1)− f(T2)] + lf(T2)−K1φ− kC2,

(3.2.6)

on Ω× (0, τ), together with

wi = 0 , θ = 0 , φ = 0, (3.2.7)

on Γ× [0, τ), and

θ = 0 , φ = 0, (3.2.8)

for x ∈ Ω, at t = 0.

We wish to derive estimates which show that a suitable measure of wi, θ and φ is

bounded in a precise sense by a function of l and k, with the coefficients in the

bound being truly a priori in that they depend only on τ and the boundary and

initial data of the problem. Before proceeding to this goal we must derive some a

priori estimates for the solution to equations (3.2.1), (3.2.2) and (3.2.3).

3.3 A priori Estimates

Let ‖ · ‖∞ denote the L∞ (Ω) norm and define

Tm = max
{
‖T0‖∞, sup[0,τ ]‖TB‖∞

}
. (3.3.1)
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then one may employ the function

ψ̃ = [T − Tm]+ = sup (T − Tm, 0) ,

cf. Payne et al. [77] to establish that

supΩ×[0,τ ]|T (x, t)| ≤ Tm, (3.3.2)

where T is the temperature function in equations (3.2.1)-(3.2.3).

Let ‖ · ‖ and (·, ·) denote the norm and inner product in L2(Ω) and let ‖ · ‖4 denote

the norm on L4(Ω). We require a priori bounds for ‖C‖, ‖C‖4 and
∫ t

0
‖∇C‖2ds

and now proceed to derive these. To progress with bounds for the function C in

equations (3.2.1)-(3.2.3) we introduce auxiliary functions H(x, t) and I(x, t) which

satisfy the boundary value problems

∆H = 0 , in Ω,

H = CB(x, t) , on Γ
(3.3.3)

and

∆I = 0 , in Ω,

I = C3
B(x, t) , on Γ.

(3.3.4)

We begin by forming from equation (3.2.1)4 the identity

a

∫ t

0

(C,s, C −H) ds+ b

∫ t

0

(viC,i, C −H) ds

=

∫ t

0

(∆C,C −H) ds+ L

∫ t

0

(f(T ), C −H) ds−K
∫ t

0

(C,C −H) ds.

(3.3.5)

Denote the terms in this expression by I1− I5 and then one may show after integra-

tion by parts

I1 =
a

2

(
‖C‖2 − ‖C0‖2

)
− a (H,C) + a (H0, C0) + a

∫ t

0

(C,H,s) ds, (3.3.6)

where H0 = H(x, 0).

I2 = b

∫ t

0

(viC,i, C)ds+−b
∫ t

0

(viC,i, H) ds, (3.3.7)

using the Divergence Theorem the first term integrated to zero and from the max-

imum principle the maximum of H in Ω × [0, τ ] exists, say Hm, then using the

Cauchy-Schwarz inequality

I2 = −b
∫ t

0

(viC,i, H) ds ≤ Hmb

√∫ t

0

‖v‖2ds

∫ t

0

‖∇C‖2ds. (3.3.8)
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Multiply equation (3.2.1)1 by vi and integrate over Ω to find after use of the

Arithmetic-Geometric Mean inequality,

‖v‖2 + λ‖∇v‖2 ≤ 1

2α
‖T‖2 +

1

2β
‖C‖2 +

(
α

2
+
β

2

)
‖v‖2

for α, β > 0 at our disposal. Pick α = β = 1/2 and then we find

1

2
‖v‖2 + λ‖∇v‖2 ≤ ‖T‖2 + ‖C‖2. (3.3.9)

Use of this in inequality (3.3.8) allows one to show

I2 ≤
√

2bHm

√∫ t

0

(‖T‖2 + ‖C‖2) ds

∫ t

0

‖∇C‖2ds. (3.3.10)

After some integration by parts I3 may be manipulated to derive

I3 =−
∫ t

0

‖∇C‖2ds+

∫ t

0

∮
Γ

C
∂C

∂n
dAds−

∫ t

0

(∆C,H) ds

=−
∫ t

0

‖∇C‖2ds+

∫ t

0

∮
Γ

C
∂C

∂n
dAds

−
∫ t

0

∫
Ω

∂

∂xi

(
∂C

∂xi
H

)
dxds+

∫ t

0

∫
Ω

∂C

∂xi

∂H

∂xi
dxds

=−
∫ t

0

‖∇C‖2ds+

∫ t

0

∮
Γ

CB
∂C

∂n
dAds−

∫ t

0

∮
Γ

∂C

∂n
CBdAds

+

∫ t

0

∫
Ω

∂

∂xi
(CH,i) dxds−

∫ t

0

∫
Ω

CH,iidxds

=−
∫ t

0

‖∇C‖2ds+

∫ t

0

∮
Γ

CB
∂H

∂n
dAds.

(3.3.11)

The term I4 is bounded with the aid of the Cauchy-Schwarz inequality to see that

I4 ≤ L

∫ t

0

‖f(T )‖2ds+
L

2

∫ t

0

‖C‖2ds+
L

2

∫ t

0

‖H‖2ds. (3.3.12)

Finally, for I5 we have

I5 ≤ −K
∫ t

0

‖C‖2ds+
K

2γ

∫ t

0

‖C‖2ds+
Kγ

2

∫ t

0

‖H‖2ds. (3.3.13)

Now f is known and T is bounded as in (3.3.2). Thus,
∫ t

0
‖f(T )‖2ds may be bounded

by data (Tm). The terms in (3.3.6)-(3.3.13) in H, H,s and ∂H/∂n are bounded in

terms of CB by using (1.1.7) and (1.1.9). Thus, combining (3.3.6)-(3.3.13) in (3.3.5)
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we may arrive at an inequality of form

a

2
‖C‖2 +

∫ t

0

‖∇C‖2ds ≤D1(t)

2
+

a

2µ1

‖C‖2 +
a

2µ2

∫ t

0

‖C‖2ds

+
bHm√

2µ3

∫ t

0

‖C‖2ds+
bHmµ3√

2

∫ t

0

‖∇C‖2ds

+
L

2

∫ t

0

‖C‖2ds−K
∫ t

0

‖C‖2ds+
K

2γ

∫ t

0

‖C‖2ds,

(3.3.14)

for µ1, µ2, µ3, γ > 0 at our disposal and where D1(t) is a data term. We pick γ = 1/2,

µ1 = 2, µ3 = 1/
√

2bHm and then from (3.3.14) we obtain

a

2
‖C‖2 +

∫ t

0

‖∇C‖2ds ≤ D1(t) +

(
a

µ2

+ L+ 2b2H2
m

)∫ t

0

‖C‖2ds. (3.3.15)

and

D1 =2a‖C0‖2 + aψ1

∮
γ

C2
0BdA+ 2b2H2

m

∫ t

0

‖T‖2ds

+

∫ t

0

∮
Γ

C2
BdAds+ 2L

∫ t

0

‖f(T )‖2ds+ 2aψ1

∮
Γ

C2
BdA

+ aµ2ψ1

∫ t

0

∮
Γ

C2
B,sdAds+

(
L+

K

2

)
ψ1

∫ t

0

∮
Γ

C2
BdAds

+
c2

c1

∫ t

0

∮
Γ

|∇sCB|2dAds,

we may integrate inequality (3.3.15) to derive∫ t

0

‖C(s)‖2ds ≤
∫ t

0

eζ1(t−s)D2(s)ds, (3.3.16)

where D2 = 2D1/a and ζ1 = 2
µ2

+ 2L
a

+ 4b2H2
m

a
. Then from (3.3.16) and (3.3.15) we

find ∫ t

0

‖∇C‖2ds ≤ D3(t), (3.3.17)

where D3 is the data term

D3 = D1 +

(
a

µ2

+ L+ 2b2H2
m

)∫ t

0

eζ1(t−s)D2(s)ds,

together with

‖C(t)‖2 ≤ D2(t) + ζ1

∫ t

0

eζ1(t−s)D2(s)ds ≡ D4(t). (3.3.18)

Inequalities (3.3.16), (3.3.17) and (3.3.18) furnish data bounds (truly a priori bounds)

for ‖C‖2,
∫ t

0
‖C‖2ds and

∫ t
0
‖∇C‖2ds. It remains to bound ‖C‖4.
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Now commence with equation (3.2.1)4 and form the following identity,

a

∫ t

0

(
C,s , C

3 − I
)
ds+ b

∫ t

0

(
viC,i , C

3 − I
)
ds

=

∫ t

0

(
∆C , C3 − I

)
ds+ L

∫ t

0

(
f(T ) , C3 − I

)
ds

−K
∫ t

0

(
C , C3 − I

)
ds.

(3.3.19)

Recall the definition of I in (3.3.4) and we follow a similar procedure to that leading

to inequality (3.3.14) except we now employ Young’s inequality to the term involving

fC3. Denote the terms in (3.3.19) by r1−r5 and then one may show after integration

by parts

r1 =
a

4
‖C‖4

4 −
a

4
‖C0‖4

4 − a
∫ t

0

(C,s, I) ds

=
a

4
‖C‖4

4 −
a

4
‖C0‖4

4 − a (C, I) + a (C0, I0) + a

∫ t

0

(C, I,s) ds,

(3.3.20)

where I0 = I(x, 0). From the maximum principle the maximum of I in Ω × [0, τ ]

exists, say Im, then using the Cauchy-Schwarz inequality

r2 = −b
∫ t

0

∫
Ω

viC,iIdxds ≤ Imb

√∫ t

0

‖v‖2ds

∫ t

0

‖∇C‖2ds

Use of inequality (3.3.9) allows one to show

r2 ≤
√

2Imb

√∫ t

0

(‖T‖2 + ‖C‖2) ds

∫ t

0

‖∇C‖2ds. (3.3.21)

After some integration by parts r3 may be manipulated to derive

r3 =

∫ t

0

∫
Ω

C3∆Cdxds−
∫ t

0

∫
Ω

I∆Cdxds

=

∫ t

0

∫
Ω

[
∇
(
C3∇C

)
− 3(C∇C)2

]
dxds−

∫ t

0

∫
Ω

I∆Cdxds

=

∫ t

0

∮
Γ

C3∂C

∂n
dAds− 3

4

∫ t

0

‖∇C2‖2ds

−
∫ t

0

∫
Ω

[∇(I∇C)− (∇I∇C)] dxds

=

∫ t

0

∮
Γ

C3∂C

∂n
dAds− 3

4

∫ t

0

‖∇C2‖2ds−
∫ t

0

∮
Γ

I
∂C

∂n
dAds

+

∫ t

0

∫
Ω

∇(C∇I)dxds−
∫ t

0

∫
Ω

C∆Idxds

= −3

4

∫ t

0

‖∇C2‖2ds+

∫ t

0

∮
Γ

CB
∂I

∂n
dAds

(3.3.22)
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The term r4 is bounded with the aid of Young’s inequality, Cauchy-Schwarz inequal-

ity and the Arithmetic-Geometric mean inequality to see that

r4 ≤
L

4ε4

∫ t

0

‖f(T )‖4
4ds+

3Lε4/3

4

∫ t

0

‖C‖4
4ds+

L

2

∫ t

0

‖f(T )‖2ds+
L

2

∫ t

0

‖I‖2ds

(3.3.23)

Finally, for r5 we have

r5 ≤ −K
∫ t

0

‖C‖4
4ds+

K

2

∫ t

0

‖C‖2ds+
K

2

∫ t

0

‖I‖2ds (3.3.24)

Thus, combining (3.3.20)-(3.3.24) in (3.3.19) we may arrive at the inequality

a

4
‖C‖4

4 +

∫ t

0

‖∇C2‖2ds+K

∫ t

0

‖C‖4
4ds

≤a
4
‖C0‖4

4 − a(I0, C0) +
Imb

2λ1

∫ t

0

(
‖T‖2 + ‖C‖2

)
ds

+
Imb

2λ1

∫ t

0

‖∇C‖2ds+

∫ t

0

∮
Γ

CB
∂I

∂n
dAds

+
L

4ε4

∫ t

0

‖f(T )‖4
4ds+

3Lε4/3

4

∫ t

0

‖C‖4
4ds

+
K

2

∫ t

0

‖C‖2ds+

(
K + L

2

)∫ t

0

‖I‖2ds

+
L

2

∫ t

0

‖f(T )‖2ds+ a‖I‖‖C‖

+ a

√∫ t

0

‖I,s‖ds
∫ t

0

‖C‖2ds ,

(3.3.25)

for ε > 0 and λ1 > 0 to be chosen. Since we have data bounds for ‖T‖, ‖C‖,∫ t
0
‖∇C‖2ds, we know C0 and CB, and ‖I‖ and

∫ t
0

∮
Γ

(
∂I
∂n

)
dAds may be estimated

in terms of CB by using lemmas 1 and 2, we may choose ε = (4(K + 1)/3L)3/4

and then inequality (3.3.25) furnishes directly a data bound for ‖C‖4 and also for∫ t
0
‖∇C2‖2ds. Thus, employing lemmas 1 and 2 together with (3.3.16)-(3.3.18) and

(3.3.2) we may derive data functions D5(t), D6(t) and D7(t) such that from inequal-

ity (3.3.25) ∫ t

0

‖C‖4
4ds ≤

∫ t

0

e
4
a

(t−s)D5(t)ds , (3.3.26)

‖C(t)‖4
4 ≤ D5(t) +

4

a

∫ t

0

e
4
a

(t−s)D5(t)ds ≡ D6(t) , (3.3.27)

and ∫ t

0

‖∇C2‖2ds ≤ a

4
D5(t) +

∫ t

0

e
4
a

(t−s)D5(t)ds ≡ D7(t). (3.3.28)
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3.4 Continuous Dependence on the Reaction

We firstly multiply equation (3.2.6)1 by wi and integrate over Ω using the boundary

conditions to see that

‖w‖2 + λ‖∇w‖2 = (giθ, wi)− (hiφ,wi) .

After using the Cauchy-Schwarz and Arithmetic-Geometric Mean inequalities on the

right hand side we may then deduce that

1

2
‖w‖2 + λ‖∇w‖2 ≤ ‖θ‖2 + ‖φ‖2. (3.4.1)

Next, multiply equation (3.2.6)3 by θ and integrate over Ω to find after using the

boundary conditions and (3.2.6)2,

d

dt

1

2
‖θ‖2 = −‖∇θ‖2 +

∫
Ω

T1wiθ,idx

≤ T 2
m

4
‖w‖2

≤ T 2
m

2

(
‖θ‖2 + ‖φ‖2

)
(3.4.2)

where (3.3.2) and (3.4.1) have been employed.

The next step is to form the inner product on L2(Ω) of φ with equation (3.2.6)4.

Upon using the boundary conditions we find

d

dt

a

2
‖φ‖2 =− ‖∇φ‖2 + L1 (f(T1)− f(T2), φ)

+ l (f(T2), φ)−K1‖φ‖2 − k (C2, φ)

+ b

∫
Ω

wiC2φ,idx .

(3.4.3)

Using Lagrange’s Theorem f(T1) − f(T2) = f ′(ξ)θ for some ξ ∈ (T1, T2) and then

from (3.4.3) we may obtain

d

dt

a

2
‖φ‖2 ≤− ‖∇φ‖2 + L1 (f ′(ξ)θ, φ)

+
‖φ‖2

2
+ l2
‖f(T2)‖2

2
+ k2‖C2‖2

4K1

+
b

2µ
‖∇φ‖2 +

bµ

2
‖w‖2

4‖C2‖2
4 ,

(3.4.4)

for µ > 0 at our disposal. From the Sobolev inequality, see e.g. Gilbarg & Trudinger

[37], there is a constant ξ1 > 0 depending on Ω such that

‖w‖4 ≤ ξ1‖∇w‖ (3.4.5)
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and we employ this on the last term on the right of (3.4.4), so that

bµ

2
‖w‖2

4‖C2‖2
4 ≤

bµ

2
ξ2

1‖∇w‖2‖C2‖2
4 . (3.4.6)

Pick now µ = b/2 and then from (3.4.4) and (3.4.6) we obtain

d

dt

a

2
‖φ‖2 ≤L1 (f ′(ξ)θ, φ) +

‖φ‖2

2

+ l2
‖f(T2)‖2

2
+ k2‖C2‖2

4K1

+
b2ξ2

1

4
‖∇w‖2‖C2‖2

4 .

(3.4.7)

Since T is bounded it follows ξ is bounded and since we know also f ′(ξ) this is likewise

a priori bounded, say by f1, on Γ× [0, τ ] . Likewise from (3.3.18) and (3.3.27), ‖C2‖

and ‖C2‖4 are also a priori bounded on Ω × [0, τ ] . Thus, we may add (3.4.2) and

(3.4.7) and use (3.4.1) to see

d

dt

(
‖θ‖2 + ‖φ‖2

)
≤T 2

m‖θ‖2 + T 2
m‖φ‖2 +

2

a
L1f1‖θ‖2

+
2

a
L1f1‖φ‖2 +

‖φ‖2

a
+
l2

a
‖f(T2)‖2

+
k2

2aK1

‖C2‖2 +
b2ξ2

1

2aλ
‖C2‖2

4

(
‖θ‖2 + ‖φ‖2

)
,

This means that there are functions d1(t) and d2(t) which depend only on the data,

Ω and Γ, such that

d

dt

(
‖θ‖2 + ‖φ‖2

)
≤ δ1‖θ‖2 + δ2‖φ‖2 + d1k

2 + d2l
2 . (3.4.8)

Put δ = max {δ1, δ2} and then we may integrate inequality (3.4.8) to derive

‖θ(t)‖2 + ‖φ(t)‖2 ≤
(∫ t

0

eδ(t−s)d1(s)ds

)
k2

+

(∫ t

0

eδ(t−s)d2(s)ds

)
l2 .

(3.4.9)

Inequality (3.4.9) demonstrate continuous dependence on the reaction rates k and l

and is truly a priori in the sense that d1 and d2 depend only on data. By employing

inequality (3.4.1) one may directly obtain an a priori continuous dependence estimate

in the measure of ‖w(t)‖ or ‖∇w(t)‖,

1

2
‖w‖2 + λ‖∇w‖2 ≤

(∫ t

0

eδ(t−s)d1(s)ds

)
k2 +

(∫ t

0

eδ(t−s)d2(s)ds

)
l2 .



Chapter 4

The Energy Stability of Darcy

Thermosolutal Convection with

Reaction

4.1 Introduction

The work in this chapter may be considered as an extension of the work of Pritchard

& Richardson [83]. We use the energy method to study the nonlinear energy stability

of the Darcy convection model with reaction, where the system is either heated below

and salted above or heated and salted below. The aim of this study is to discuss how

the onset of thermosolutal convection varies with the reaction terms. Considering a

porous medium of Darcy type occupying a bounded three-dimensional domain, we

derive a perturbed dimensionless model of double-diffusive convection with reaction.

Then we carry out a nonlinear stability analysis by using the energy method and

we implement the D2 Chebyshev Tau technique to solve the system. The reason

behind using the energy method is because the linear instability boundary specifies

the space where the solution is unstable, using the energy theory we obtain the

nonlinear stability boundary below which the solution is globally stable. By globally

stable we mean that the solution is stable for all initial perturbations.

55
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4.2 Basic Equations

We consider a layer of porous porous medium saturated by a fluid, bounded by two

parallel planes with distance d between them. We will carry out the analysis of two

cases of the layers of porous media, heated from below, salted from above and heated

and salted from below. Our model consists of Darcy equation with the density in

the buoyancy term depends linearly on the temperature T and salt concentration C,

the continuity equation, the advection-diffusion equation for the transport of heat

and the equation for the transport of solute with reaction terms,

p,i = − µ
K
vi − ρ0[1− αT (T − T0) + αC(C − C0)]gki,

vi,i = 0,

1

M
T,t + viT,i = kT∆T,

φ̂C,t + viC,i = φ̂kC∆C + k̂[f1(T − T0) + f0 − C].

(4.2.1)

Where vi, p, T, C are the velocity, pressure, temperature and salt concentration fields

respectively, K is the matrix permeability, µ is the fluid viscosity, ρ0 is the fluid

density, and kC and kT are the molecular diffusivity of the solute through the fluid

and the effective diffusivity of the heat through the saturated medium. The quantity

M is the ratio of the heat capacity of the fluid to the heat capacity of the medium,

φ̂ is the matrix porosity, k̂ is the reaction coefficient and f0 + f1(T − T0) = Ceq(T )

in Pritchard and Richardson [83] and Wang and Tan [124], where f0, f1 and T0 are

constants. Moreover, g is the gravity, k = (0, 0, 1) and αT and αC are the thermal

and solutal expansion coefficients respectively. The fluid occupying a horizontal

layer (x, y) ∈ R2, z ∈ (0, d) and the equations (4.2.1) are taken in the domain

R2 × (0, d)× {t > 0}. The boundary conditions are

vini = 0 on z = 0, d,

T = TL on z = 0, T = TU on z = d,

C = CL on z = 0, C = CU on z = d,

(4.2.2)

with TL > TU since our system is heated below, where TL, TU , CL, CU all constants.

For the salted above porous medium CU > CL while CL > CU for the salted below

case. The steady solution to (4.2.1) which we are interested in studying its stability
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and which satisfies (4.2.2) is

v̄i = 0,

T̄ (z) = −βT z + TL,

C̄(z) = −βCz + CL,

(4.2.3)

where βT and βC are the temperature and salt gradients given by

βT =
TL − TU

d
, βC =

CL − CU
d

.

To analyse the stability of the solutions(4.2.3) we define perturbations (ui, π, θ, φ)

such that vi = v̄i +ui, p = p̄+π, T = T̄ + θ, C = C̄ +φ. Using these perturbations

in equations (4.2.1) we derive the equations governing (ui, π, θ, φ) as

π,i = − µ
K
ui + ρ0gkiαT θ − ρ0gkiαCφ ,

ui,i = 0 ,

1

M
θ,t + uiθ,i = βTw + kT∆θ ,

φ̂φ,t + uiφ,i = βCw + φ̂kC∆φ+ k̂f1θ − k̂φ,

(4.2.4)

where w = u3. We define the length, time and velocity scales L, τ and U by

L = d, τ = d/MU, U = kT/d, to non-dimensionalize equations (4.2.4). Then we

introduce pressure, temperature and salt scales as

P =
Udµ

K
, T ]

2

=
µβTkT
αTρ0gK

, C]2 =
µβCkTLe

αCρ0gKφ̂
,

where Le = kT/kC is the Lewis number. The temperature Rayleigh number and the

salt Rayleigh number are defined as

R =

√
βTd2KαTρ0g

kTµ
,

Rs =

√
βCd2KαCρ0gLe

φ̂kTµ
when CL > CU or Rs =

√
|βC |d2KαCρ0gLe

φ̂kTµ
when CL < CU .

Then, the fully nonlinear, non-dimensional form of (4.2.4) is

π,i = −ui +Rkiθ −Rskiφ ,

ui,i = 0 ,

θ,t + uiθ,i = Rw + ∆θ ,

εφ,t +
Le

φ̂
uiφ,i = ∓Rsw + ∆φ+ hθ − ηφ ,

(4.2.5)
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where ε = MLe and h and η are the reaction terms

h =
k̂f1d

2T ]

φ̂kCC]
and η =

k̂d2

φ̂kC
.

Moreover, +Rs is taken when CL > CU(i.e. βC > 0), which means that the system

is salted from below, and −Rs is taken when CL < CU(i.e. βC < 0), which means

that the system is salted from above. The boundary conditions becomes

w = θ = φ = 0 on z = 0 and z = 1 . (4.2.6)

4.3 The Linear Instability Analysis

In order to study the linear instability of the system (4.2.5) we neglect the nonlinear

terms of the system and we take the third component of the double curl of equation

(4.2.5)1, so equation (4.2.5)1 will be

0 = −(uj,ij −∆ui) +R(kjθ,ij − ki∆θ)−Rs(kjφ,ij − ki∆φ) , (4.3.1)

using (4.2.5)2 and then taking the third component, i.e. take i = 3, equation (4.3.1)

will be

0 = ∆w −R∆∗θ +Rs∆
∗φ , (4.3.2)

where ∆∗ = ∂2

∂x2
+ ∂2

∂y2
. The linearized system of equations is

∆w−R∆∗θ +Rs∆
∗φ = 0 ,

θ,t = Rw + ∆θ ,

εφ,t =∓Rsw + ∆φ+ hθ − ηφ.

(4.3.3)

Because this is linear, we consider a perturbation to the solution to (4.3.3) of the

form

θ = eσtθ(xi) = eσtΘ(z)f(x, y) = eσtΘ0e
ilx+imysin(nπz) ,

w = eσtw(xi) = eσtW (z)f(x, y) = eσtW0e
ilx+imysin(nπz) ,

φ = eσtφ(xi) = eσtΦ(z)f(x, y) = eσtΦ0e
ilx+imysin(nπz) ,

(4.3.4)

where σ is the growth rate. The terms in (4.3.4) are referred to as a Fourier modes.

The full solution will be a combination of modes. Since it is sufficient for only one
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destabilizing disturbance to cause instability, we will consider only (4.3.4), because

by taking different values of the real numbers l and m we can determine the most

destabilizing term. One can deal with other cell shapes rather than rectangles as

described by (4.3.4), cf. Chandrasekhar [19] and the explanation on page13. For

example the form of the solution for a hexagonal shape was given by Christopherson

[22], cf. equation (1.2.21).

Then using (4.3.4) in our system (4.3.3), we obtain

∆w−R∆∗θ +Rs∆
∗φ = 0 ,

σθ = Rw + ∆θ ,

εσφ =∓Rsw + ∆φ+ hθ − ηφ .

(4.3.5)

This is an eigenvalue problem for σ to be solved subject to the boundary conditions

w = 0 , θ = 0 , φ = 0 on z = 0 , 1

with the periodicity in (x, y), we introduce a plane function f and a wave number

a, such that

∆∗f = −a2f.

With the representations

w = W (z)f(x, y) , θ = Θ(z)f(x, y) , φ = Φ(z)f(x, y)

equations (4.3.5) reduces to solving

(D2 − a2)W +Ra2Θ−Rsa
2Φ = 0 ,

σΘ = RW + (D2 − a2)Θ ,

εσΦ = ∓RsW + (D2 − a2)Φ + hΘ− ηΦ ,

(4.3.6)

on z ∈ (0, 1), where D = d/dz and a2 = l2 +m2. Equations (4.3.6) are to be solved

subject to the boundary conditions

W = 0 , Θ = 0 , Φ = 0 on z = 0 , 1 (4.3.7)

We solve equations (4.3.6) and (4.3.7) exactly by analytical means, but also nu-

merically using a D2-Chebyshev Tau numerical method, cf. Dongarra, Straughan
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& Walker [26] and Straughan [101]. By writing W , Θ, Φ as a series of the form

sin(nπz), one may derive linear instability threshold. The system (4.3.6) can be

written in the following matrix form
−Λ Ra2 −Rsa

2

R −Λ− σ 0

∓Rs h −Λ− η − σε



W0

Θ0

Φ0

 =


0

0

0


where Λ = n2π2 + a2. Setting the determinant of the matrix to zero, a quadratic

equation in R is obtained

b1R
2 + c1R + d1 = 0 , (4.3.8)

in which

b1 = a2Λ + ηa2 + εσa2 ,

c1 = −Rsha
2 ,

d1 = ±R2
sa

2(Λ + σ)− Λ3 − ηΛ2 − εσΛ2 − σΛ2 − ησΛ− εσ2Λ.

(4.3.9)

Two cases will be considered,

case(i) : σ = iω, where ω is a real number, and

case(ii) : σ = 0.

Case(i): σ = iω (Oscillatory Mode)

Substituting σ = iω in the quadratic equation (4.3.8)-(4.3.9) and solving the equa-

tion for the real and imaginary parts of R2, the following are obtained

real part : ±R2
sa

2Λ + (a2Λ + ηa2)R2 −Rsha
2R− Λ3 − ηΛ2 + εω2Λ = 0.

imaginary part : ±R2
sa

2 + εa2R2 − εΛ2 − Λ2 − ηΛ = 0 ,

When there is No Reaction i.e. h = η = 0

real part : R2 = ∓R2
s +

Λ2 − εω2

a2
,

imaginary part : R2 = ∓R
2
s

ε
+

(ε+ 1)Λ2

εa2
,
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minimizing firstly over n, one finds n = 1, and then a further minimization over a2

yields

a2
critical = π2

which implies

R2
critical = ∓R

2
s

ε
+ 4π2(1 +

1

ε
).

Case(ii): σ = 0 (Stationary Mode)

Substituting σ = 0 in the quadratic equation (4.3.8)-(4.3.9) and solving the equation

for R2, we get in the case of a reaction i.e. h 6= 0 and η 6= 0

±R2
sa

2Λ + (a2Λ + ηa2)R2 −Rsha
2R− Λ3 − ηΛ2 = 0.

When there is No Reaction i.e. h = η = 0

R2 = ∓R2
s +

Λ2

a2
,

minimizing firstly over n, one finds n = 1, and then a further minimization over a2

yields

a2
critical = π2 ,

which implies

R2
critical = ∓R2

s + 4π2.

The linear instability results for the Darcy-model with reaction has been discussed

and analysed by Pritchard & Ritchardson [83].

4.4 The Non-Linear Energy Stability Analysis

In order to study the nonlinear stability of the Darcy model for the double diffusive

convection, consider the nonlinear system of equations in the dimensionless form

(4.2.5) and the corresponding boundary conditions (4.2.6). Taking into considera-

tion the periodicity of the system and the smoothness of the boundary to allow the

application of the Divergence Theorem. Multiply equation (4.2.5)1 by ui and inte-

grate over V using integration by parts. Likewise, multiply equation (4.2.5)3 by θ



4.4. The Non-Linear Energy Stability Analysis 62

and equation (4.2.5)4 by φ and integrate. The following system of energy equations

is obtained

0 = −‖u‖2 +R(θ, w)−Rs(φ,w) ,

d

dt

1

2
‖θ‖2 = R(θ, w)− ‖∇θ‖2 ,

d

dt

ε

2
‖φ‖2 = ∓Rs(φ,w)− ‖∇φ‖2 + h(θ, φ)− η‖φ‖2.

(4.4.1)

Now we have to form the combination of the equations in system (4.4.1) as

(4.4.1)1 + (4.4.1)2 + λ(4.4.1)3,

where λ is positive constant we are using as a coupling parameter. This leads to the

energy equation

dE

dt
= I −D =−D(1− I

D
)

≤ −D(1−max
H

I

D
) = −D(1− 1

RE

) ,
(4.4.2)

where H is the space of admissible solutions. In this case

H =
{
ui, θ, φ|ui ∈ L2 (V ) , θ, φ ∈ H1 (V )

}
,

subject to zero boundary conditions on z = 0, 1 and periodicity in the x, y directions.

The nonlinear stability ensues when RE > 1 which implies that 1−1/RE > 0, where

1

RE

= max
H

I

D
, (4.4.3)

and

E =
1

2
‖θ‖2 +

ελ

2
‖φ‖2 ,

I = 2R(θ, w) + λh(θ, φ)− (1± λ)Rs(φ,w) ,

D = ‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2.

(4.4.4)

Inequality (4.4.2) can be written as

dE

dt
≤ −a1D , (4.4.5)

where a1 = 1 − 1/RE > 0. In order to obtain a bound for D, we have to use the

Poincaré inequality

D = ‖u‖2 + λη‖φ‖2 + ‖∇θ‖2 + λ‖∇φ‖2

≥ ‖u‖2 + λη‖φ‖2 + π2‖θ‖2 + π2λ‖φ‖2

≥ π2‖θ‖2 + π2λ‖φ‖2

≥ π2‖θ‖2 + π2λ
MLe

MLe
‖φ‖2.

(4.4.6)
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If MLe < 1, then (4.4.6) implies

π2‖θ‖2 + π2λ
MLe

MLe
‖φ‖2 ≥ π2‖θ‖2 + π2λε‖φ‖2. (4.4.7)

If MLe > 1, then (4.4.6) implies

π2‖θ‖2 + π2λ
MLe

MLe
‖φ‖2 ≤ π2‖θ‖2 + π2λε‖φ‖2. (4.4.8)

From inequalities (4.4.7) and (4.4.8), we conclude that

π2‖θ‖2 + π2λε‖φ‖2 ≥ k[π2(‖θ‖2 + λε‖φ‖2)] , where k = min{ 1

MLe
, 1} (4.4.9)

Now employing inequality (4.4.9) in inequality (4.4.6), we get

D ≥ 2kπ2

(
‖θ‖2 + λε‖φ‖2

2

)
= 2kπ2E ,

So inequality (4.4.5) will be

dE

dt
≤ −a1D ≤ −2a1kπ

2E = −µE ,

from which
d

dt
(eµtE) ≤ 0 ,

and then after integration we obtain

eµtE ≤ E(0).

Therefore,

E(t) ≤ E(0)e−µt. (4.4.10)

Inequality (4.4.10) shows that under the condition RE > 1, E(t) → 0 as t → ∞.

This result according to the defined value of E(t), equation (4.4.4)1, proves that

‖θ‖2 → 0 and ‖φ‖2 → 0 as t→∞.

It remains to show the decay of ‖u‖. So, from the energy equation (4.4.1)1 and by

using the Arithmetic-Geometric Mean inequality, we have

‖u‖2 = R(θ, w)−Rs(φ,w)

≤ R

2α
‖θ‖2 +

Rα

2
‖w‖2 +

Rs

2β
‖φ‖2 +

Rsβ

2
‖w‖2.

(4.4.11)
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Using the fact that ‖w‖2 ≤ ‖u‖2, inequality (4.4.11) will be

‖u‖2 ≤
(
Rα

2
+
Rsβ

2

)
‖u‖2 +

R

2α
‖θ‖2 +

Rs

2β
‖φ‖2 , (4.4.12)

where α and β are constants to be chosen such that Rα + Rsβ = 1, which gives

α = 1/2R and β = 1/2Rs. According to that our inequality (4.4.12) will be,

‖u‖2 ≤ 2R2‖θ‖2 + 2R2
s‖φ‖2. (4.4.13)

Relation (4.4.13) shows that R−1
E guarantees in addition to decay of ‖θ‖ and ‖φ‖,

also decay of ‖u‖.

The nonlinear stability threshold is given by the variational problem (4.4.3). We have

to determine the Euler-Lagrange equations and maximize in the coupling parameter

λ to obtain the best value of R. The maximum problem is

1

RE

= max
H

2R(θ, w) + λh(θ, φ)−Rs(1± λ)(φ,w)

‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2
. (4.4.14)

Rescaling φ by putting φ̃ =
√
λφ. equation (4.4.14) will be

1

RE

= max
H

2R(θ, w) +
√
λh(θ, φ̃)−Rsf(λ)(φ̃, w)

‖u‖2 + ‖∇θ‖2 + ‖∇φ̃‖2 + η‖φ̃‖2
, (4.4.15)

where

f(λ) =
1± λ√
λ
.

Hence, the Euler-Lagrange equations arising from (4.4.3) requires

d

dε

I

D
|ε=0 = δ

I

D
= 0 ,

where δ refers to the ”derivative” evaluated at ε = 0, or, upon calculation,

δI

D
− I

D2
δD =

1

D
(δI − I

D
δD) =

1

D
(δI − 1

RE

δD) = 0 ,

which means that the maximum requires

δD −REδI = 0 (4.4.16)

Let us define ui , θ and φ in terms of arbitrary C2(0, 1) functions, ζi , β and γ, with

ζi(0) = ζi(1) = β(0) = β(1) = γ(0) = γ(1) = 0 and find the derivatives at ε = 0,



4.4. The Non-Linear Energy Stability Analysis 65

where ε is a small parameter,

ui = ui + εζi ,

θ = θ + εβ ,

φ = φ+ εγ.

(4.4.17)

Thus using the defined values of I and D, equations (4.4.4), and incorporating the

constrained ui,i = 0 in I, we find

δD = −2〈β∆θ〉 − 2〈γ∆φ̃〉+ 2〈ζ,iui〉+ 2η〈φ̃γ〉 , (4.4.18)

and

δI =2R〈θζ3〉+ 2R〈wβ〉 −Rsf〈φ̃ζ3〉 −Rsf〈wγ〉

+
√
λh〈θγ〉+

√
λh〈φ̃β〉 − 〈P,iζ,i〉.

(4.4.19)

Using (4.4.18) and (4.4.19) in equation (4.4.16), the following is obtained

〈ζi, 2ui − 2RREkiθ +RsREfkiφ̃+REP,i〉

+〈β,−2∆θ − 2RERw −
√
λREhφ̃〉

+〈γ,−2∆φ̃+ 2ηφ̃+RERsfw −
√
λREhθ〉 = 0.

(4.4.20)

Since ζi , β and γ are arbitrary apart from the continuity and boundary condition

requirements, we must have the following

2ui − 2RREkiθ +RsREfkiφ̃ = −REP,i

−2∆θ − 2RERw −
√
λREhφ̃ = 0

−2∆φ̃+ 2ηφ̃+RERsfw −
√
λREhθ = 0.

(4.4.21)

The system (4.4.21) is the Euler equations that give an eigenvalue problem for R.

Taking the double Curl of equation (4.4.21)1 and retaining only the third component

of the resulting equation, our new system of equations will be

∆w −RRE∆∗θ +

(
1± λ
2
√
λ

)
RsRE∆∗φ̃ = 0 ,

∆θ +RERw +RE

√
λh

2
φ̃ = 0 ,

(∆− η)φ̃−RERs

(
1± λ
2
√
λ

)
w +RE

√
λh

2
θ = 0.

(4.4.22)
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Since φ̃ =
√
λφ, we can write the system (4.4.22) as

∆w −RRE∆∗θ +

(
1± λ

2

)
RsRE∆∗φ = 0 ,

∆θ +RERw +RE
λh

2
φ = 0 ,

(∆− η)φ−RERs

(
1± λ

2λ

)
w +RE

h

2
θ = 0.

(4.4.23)

Because the system of equations (4.4.23) is linear, we may look for solutions of the

form

w = W (z)f(x, y) ,

θ = Θ(z)f(x, y) ,

φ = Φ(z)f(x, y) ,

(4.4.24)

where the function f satisfies ∆∗f = −a2f and a is a wave number, D = d/dz ,

Λ = n2π2 + a2 and

∆ = ∆∗ +
∂2

∂z2
= D2 − a2 = −Λ.

Substituting (4.4.24) in the system of equations (4.4.23), we obtain the following

eigenvalue problem

−ΛfW +RERa
2fΘ−

(
λ± 1

2

)
RsREa

2fΦ = 0 ,

RERfW − ΛfΘ +RE
λ

2
hfΦ = 0 ,

−RERs

(
λ± 1

2λ

)
fW +RE

h

2
fΘ− (Λ + η)fΦ = 0.

(4.4.25)

Our system of equations (4.4.25) can be written in the following matrix form
Λ −a2RER a2RE(1±λ

2
)Rs

−RER Λ −λh
2
RE

RERs

(
1±λ
2λ

)
−h

2
RE Λ + η



W0

Θ0

Φ0

 =


0

0

0


Setting the determinant of the matrix to zero, a quadratic equation in R is obtained

b2R
2 + c2R + d2 = 0 , (4.4.26)

where

b2 = 4R2
Ea

2(Λ + η) ,

c2 = −2(1± λ)R3
ERsa

2h ,

d2 = −4Λ3 − 4ηΛ2 +R2
E

(
λh2 +

(1± λ)2

λ
R2
sa

2

)
Λ.
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We set RE = 1, since this yields the stability threshold and the quadratic equation

(4.4.26) has to be solved for R in terms of the other parameters.

If there is No Reaction i.e. h = η = 0, then

R2 =
Λ2

a2R2
E

− (1± λ)2R2
s

4λ
. (4.4.27)

Minimizing firstly over n, one finds n = 1, then a further minimization over a2 yields

a2
critical = π2

which implies

R2
critical =

4π2

R2
E

− (1± λ)2R2
s

4λ
.

4.5 The Numerical Method

Numerically, we use the D2 Chebyshev tau method, cf. Dongarra et al. [26], to solve

equations (4.4.23) in the form

(D2 − a2)W − (
1± λ

2
)RsREa

2Φ = −RREa
2Θ

(D2 − a2)Θ +RE
hλ

2
Φ = −RREW

−RsRE(
1± λ

2λ
)W +RE

h

2
Θ + (D2 − a2 − η)Φ = 0,

(4.5.1)

subject to the boundary conditions

w = θ = φ = 0 , z = 0, 1. (4.5.2)

The functions W,Θ and Φ are expanded in terms of Chebyshev polynomials

W (z) = ΣN
n=1wnTn(z), Θ(z) = ΣN

n=1θnTn(z), Φ(z) = ΣN
n=1φnTn(z).

Since Tn(±1) = (±1)n , T ′n(±1) = (±1)n−1n2 , implies that the boundary conditions

(4.5.2) become

w2 + w4 + w6 + · · ·+ wN = 0,

w1 + w3 + w5 + · · ·+ wN−1 = 0
(4.5.3)
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with similar representations for θn and φn

θ2 + θ4 + θ6 + · · ·+ θN = 0,

θ1 + θ3 + θ5 + · · ·+ θN−1 = 0
(4.5.4)

φ2 + φ4 + φ6 + · · ·+ φN = 0,

φ1 + φ3 + φ5 + · · ·+ φN−1 = 0.
(4.5.5)

Therefore, the Chebyshev tau method reduces to solving the matrix system Ax =

RBx, where x = (w1, w2, · · · , wN , θ1, · · · , θN , φ1, · · · , φN) and the matrices A and

B are given by

A =



4D2 − a2I 0 −(1±λ
2

)RsREa
2I

BC1 0 · · · 0 0 · · · 0

BC2 0 · · · 0 0 · · · 0

0 4D2 − a2I RE
hλ
2
I

0 · · · 0 BC3 0 · · · 0

0 · · · 0 BC4 0 · · · 0

−RERs(
1±λ
2λ

)I RE
h
2
I 4D2 − (a2 + η)I

0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 BC6



B =



0 −REa
2I 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

−REI 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

0 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0


where in the matrix A the notations BC1, BC2 refer to the boundary conditions

(4.5.3), BC3, BC4 refer to (4.5.4) and BC5, BC6 refer to the boundary conditions

(4.5.5). The matrix system is solved by the QZ algorithm, cf. Dongarra et al. [26].
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4.6 Numerical Results and Conclusion

The critical Rayleigh number of the energy stability theory RaE is obtained by

performing the optimization problem

Ra2
E = max

λ
min
a2

R2
E(a2;λ). (4.6.1)

While the critical Rayleigh number of the linear instability theory RaL has been

calculated by performing the optimization

Ra2
L = min

a2
R2
L(a2). (4.6.2)

We analyse the numerical results of two different systems, heated below and salted

above and heated and salted below, in the following subsections. The analyses

supported by graphical figures.

4.6.1 Heated below and salted above system

The linear instability threshold RaL guarantees instability. Thus, in figure (4.1), any

point in (Rs2, R2) space which is above the solid curve (Ra2
L) represents an unstable

solution. On the other hand, if (Rs2, R2) lies below the dashed curve (Ra2
E) in figure

(4.1) there is nonlinear stability for all initial perturbations. The values of Ra2
L in

equation (4.6.2) and Ra2
E in equation (4.6.1) are obtained numerically using the

D2-Chebyshev Tau method to determine the eigenvalues. Table (4.1) shows that

the linear and energy results are close to each other in the nonreactive case (i.e.

h = η = 0). As can be noticed in figure (4.1)(a), that Ra2
L = Ra2

E when h = η = 0

and so we may conclude that the linear theory has covered the essential content

of convection. Numerical values given in table (4.2) and table (4.3) are presented

graphically in figures (4.1)(d) and (4.1)(f), respectively, and are included to show

the effect of an increasing reaction rate. The linear instability boundary begins

to diverge from the nonlinear stability one as the reaction rate increases. There

is definitely instability if Ra2 > Ra2
L whereas there is definitely global nonlinear

stability when Ra2 < Ra2
E. Figure (4.2) shows the gap between the linear instability

boundary and the energy stability boundary when the difference between the values

of the reaction rates h and η is huge. As it is clear in figure (4.2)(a) that there is a
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larger gap between the linear and energy boundaries when the value of h is bigger

compared to the value of η. On the other hand, the two boundaries coincide when

the value of h is smaller, see figure (4.2)(b). We note that increasing η for fixed

Linear Theory Energy Theory

Rs RaL aL Rs RaE aE λ

0.0826 6.2832 3.1 0 6.283186 3.14 1

0.2 6.28 3.14 0.5 6.263260 3.14 1

0.4 6.27 3.14 1 6.203098 3.14 1

1.865 6 3.14 2 5.956377 3.14 1

3.805 5 3.14 3 5.520727 3.14 1

4.845 4 3.14 4 4.845454 3.14 1

5.521 3 3.14 5 3.805053 3.14 1

5.956 2 3.14 6.12 1.422683 3.14 1

6.263 0.5 3.14 6.282 0.122081 3.14 1

6.2832 0 3.14 6.283 0.048361 3.14 1

Table 4.1: Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their respective

critical wave numbers aL, aE when there is No Reaction i.e. h = η = 0. λ is the

coupling parameter.

h leads to the energy stability boundary being closer to the linear instability one.

This is to be expected from equations (4.5.1) since −ηφ is effectively a stabilizing

term. On the other hand, in equations (4.5.1) the term hθ will generally destabilize

the solution and this effect is borne out in figures (4.1) and (4.2). In particular, in

figure (4.2)(a) we see that when h = 20 and η = 1 the gap between the nonlinear

and linear thresholds is relatively large.

4.6.2 Heated and salted below system

It is instructive to write system (4.2.5) and the boundary conditions (4.2.6) for the

salted below case as an abstract equation of form

Aut = L(u) +N(u),
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Linear Theory Energy Theory

Rs RaL aL Rs RaE aE λ

1.5713 6.283 3.23 1 6.283186 3.14 1.69

1.5800 6.282 3.23 2 6.216381 3.25 3.77

1.5972 6.28 3.23 3 5.946768 3.32 1.82

1.6781 6.27 3.24 4 5.477767 3.38 1.42

1.8202 6.25 3.25 5 4.729768 3.43 1.24

2.4599 6.12 3.29 6 3.466519 3.45 1.12

2.8700 6 3.32 6.12 3.245767 3.45 1.11

4.7211 5 3.44 6.25 2.974599 3.45 1.09

5.6857 4 3.48 6.27 2.929212 3.45 1.09

6.2764 3 3.48 6.28 2.906083 3.45 1.09

6.6183 2 3.46 6.282 2.901421 3.45 1.09

6.7619 1 3.42 6.283 2.899085 3.45 1.09

6.7290 0 3.36 7 0.655904 3.46 1.0029

Table 4.2: Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their respective

critical wave numbers aL, aE when h = 5 and η = 3. λ is the coupling parameter.

where u = (u1, u2, u3, θ, φ), N(u) represents the nonlinear terms in (4.2.5) so

N(u) =



0

0

0

−uiθ,i
−Le

φ̂
uiφ,i


,

and L is the linear operator. In fact, the linear operator for (4.2.5) is

L =



−1 0 0 0 0

0 −1 0 0 0

0 0 −1 R −Rs

0 0 R ∆ 0

0 0 Rs h ∆− η


.
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If the reaction term h were not present, i.e. h = 0, then we may split L into a

symmetric plus skew-symmetric parts as follows

L = Ls + LA ,

where

Ls =



−1 0 0 0 0

0 −1 0 0 0

0 0 −1 R 0

0 0 R ∆ 0

0 0 0 0 ∆− η


,

and

LA =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Rs

0 0 0 0 0

0 0 Rs 0 0


.

For the salted above case, previous subsection, LA would be zero and the analogous

linear operator L would be symmetric.

Even when h = 0 in the salted below case, we expect some problem with non-

linear energy stability theory since

(u, L(u)) 6= (u, Ls(u))

where (·, ·) is the inner product on (L2(V ))3 × (H1(V ))2 with V being a period cell

for the solution. For the problem of this subsection, governed by equations (4.2.5)

and (4.2.6) for the salted below case, we have two sources of anti-symmetry, the Rs

term and the h term.

The results are presented graphically for different values of the reaction rates

h and η in figure (4.3). As the figure shows, increasing the values of the reaction

terms resulted in increasing the distance between the linear instability boundary

RaL and the energy stability one RaE. Moreover, the position of the transition

point where the linear instability boundary switches from stationary convection to

oscillatory convection becomes lower and lower as the the reaction rates increase.
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According to the curves in figure (4.3), the difference between the nonreactive case

(i.e. h = η = 0) and the case h = η = 1 is unnoticeable compared to the case when

h = 15 and η = 9 where the area or the gap between the linear instability boundaries

increased. On the other hand, the energy boundary RaE remains constant for all

the taken values of the reaction rates. If Ra2 < Ra2
E there is globally nonlinear

stability, whereas there is definitely instability if Ra2 > Ra2
L. To investigate the

effect of each of h and η in the stability of the system, a slightly larger difference

between their values is considered for different values of ε. Comparing the two cases

when h = 10 , η = 1 and h = 1 , η = 10, as is shown in figures (4.4), (4.5) and (4.6),

the linear instability boundary for h = 10 always lies above the linear instability

boundary for η = 10 for all the chosen values of ε (ε = 2, 3, 5). But at a certain

point (Rs2, Ra2) the two boundaries intersect each other and the opposite situation

occurs, the linear boundary for η = 10 is above the linear boundary for h = 10

and the gap between them remains at a constant value as is clear in figures (4.6)(b)

and (4.5)(c). This is to be expected from equations (4.5.1) since −ηφ is a stabilizing

term and hθ generally will destabilize the solution and that what is actually noticed

in the figures. But then the term +Rsw will dominate for the fixed values of h and

η which explains what happened after the intersection. While the energy boundary

remains unchanged in all cases.
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(d) h = 5 , η = 3
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(e) h = 15 , η = 9
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(f) h = 20 , η = 16

Figure 4.1: Linear instability and Energy stability boundaries for the salted above

Darcy convection problem for different values of the reaction rates h and η.
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(b) h = 1 , η = 20

Figure 4.2: Linear instability and Energy stability boundaries for the salted above

Darcy convection problem when the difference between h and η is huge.
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Linear Theory Energy Theory

Rs RaL aL Rs RaE aE λ

3.024502 6.7313399 3.53 0.01 6.283186 3.14 0.0016

3.027284 6.731335 3.54 0.02 6.283186 3.14 0.0032

3.029454 6.73133 3.54 0.1 6.283186 3.14 0.016

3.039739 6.7313 3.54 0.5 6.283088 3.14 0.09

3.089217 6.731 3.55 1 6.283162 3.14 0.19

3.163901 6.73 3.56 2 6.283184 3.14 0.46

3.731663 6.7 3.68 3 6.283186 3.14 0.89

4.881631 6.5 3.94 4 6.283186 3.14 1.69

5.495110 6.3 4.08 5 6.270139 3.44 3.13

5.545822 6.28 4.1 5.8 5.972402 3.99 2.59

5.619278 6.25 4.11 6 5.858324 4.02 2.31

5.907456 6.12 4.18 7 5.061064 4.17 1.56

6.139228 6 4.24 7.3 4.712228 4.19 1.43

7.410971 5 4.5 7.5 4.432304 4.21 1.36

8.098929 4 4.57 7.8 3.898452 4.2 1.24

8.466344 3 4.53 7.9 3.670777 4.19 1.21

8.594079 2 4.41 8 3.398999 5.17 0.5

8.235507 0.02 4 8.3 1.578162 5.03 0.7

8.227812 0 4 8.5 1.517708 5.52 0.7

Table 4.3: Critical Rayleigh numbers of linear theory, RaL, and nonlinear energy

theory, RaE for the salted above Darcy convection problem, with their respective

critical wave numbers aL, aE when h = 20 and η = 16. λ is the coupling parameter.
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Figure 4.3: Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for different values of h and η.
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Figure 4.4: Linear instability and Energy stability boundaries for the salted below

Darcy convection problem ε = 3.
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Figure 4.5: Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for ε = 2.
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Figure 4.6: Linear instability and Energy stability boundaries for the salted below

Darcy convection problem for ε = 5.



Chapter 5

The Energy Stability of Brinkman

Thermosolutal Convection with

Reaction

5.1 Introduction

This chapter may be considered as an extension of Wang and Tan [124] and Pritchard

and Richardson [83]. In chapter 4 we used the energy method to carry out a non-

linear stability analysis of the Darcy thermosolutal convection with reaction. In the

current chapter, the energy stability of the Brinkman thermosolutal convection with

reaction is considered. We use the compound matrix numerical technique to solve

the associated system of equations with the corresponding boundary conditions, in

which we investigate two systems separately, the heated below-salted above system

and the heated below-salted below system. We obtain the energy stability bound-

aries for different values of the reaction rates and compare them with the relevant

linear instability boundaries. Some linear instability boundaries are obtained by

Wang and Tan [124], but they do not correspond directly to what we require and

hence we recompute also the linear values using the D2 Chebyshev Tau method.

Our aim is to obtain the nonlinear stability boundaries below which the so-

lution is globally stable by using the energy method and compare the nonlinear

80
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boundaries with the relevant linear instability boundaries obtained by Wang and

Tan [124]. Considering a porous medium of Brinkman type occupying a bounded

three-dimensional domain, we discuss the variation of the onset of thermosolutal

convection with the reaction rate and the Brinkman coefficient.

5.2 Basic Equations

Our model consists of Brinkman equation with the density in the buoyancy term

depends linearly on the temperature T and salt concentration C, the continuity

equation, the advection-diffusion equation for the transport of heat and the equation

for the transport of solute with reaction terms,

p,i = − µ
K
vi − ρ0[1− αT (T − T0) + αC(C − C0)]gki + λ∆vi,

vi,i = 0,

1

M
T,t + viT,i = kT∆T,

φ̂C,t + viC,i = φ̂kC∆C + k̂[f1(T − T0) + f0 − C].

(5.2.1)

Where as in the previous chapters, vi, p, T, C are the velocity, pressure, temperature

and salt concentration, K is the matrix permeability, µ is the fluid viscosity, ρ0 is

the fluid density. The coefficients kC , kT are the molecular diffusivity of the solute

through the fluid and the effective diffusivity of the heat through the saturated

medium. The quantity M is the ratio of the heat capacity of the fluid to the heat

capacity of the medium, φ̂ is the matrix porosity, k̂ is the reaction coefficient and

f0 + f1(T − T0) = Ceq(T ) in Pritchard & Richardson [83], where f0, f1 and T0 are

constants. Moreover, g is the gravity, k = (0, 0, 1), and αT and αC are the thermal

and solutal expansion coefficients respectively. The equations (5.2.1) are taken in

the domain R2 × (0, d)× {t > 0}. The boundary conditions are

vi = 0 on z = 0, d,

T = TL on z = 0, T = TU on z = d,

C = CL on z = 0, C = CU on z = d,

(5.2.2)

where TL, TU , CL, CU all constants, with TL > TU since our systems are heated

below. For the salted above porous medium CU > CL while for the salted below
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case CL > CU . In the steady state, we look for

v̄i = 0,

T̄ = T̄ (z),

C̄ = C̄(z).

(5.2.3)

Equation (5.2.1)2 is automatically satisfied since v̄i = 0. Equation (5.2.1)3 will give

T̄ (z) = µ1z + µ2,

using the boundary conditions (5.2.2)2 implies

T̄ (z) = −βT z + TL ; βT =
TL − TU

d
. (5.2.4)

Considering equation (5.2.1)4 we get

d2C̄

dz2
+

k̂

φ̂kC

[
f1(T̄ − T0) + f0 − C̄

]
= 0,

assuming Ceq(T̄ (z)) = C̄(z) implies that ∆C̄ = 0. Hence employing the boundary

conditions (5.2.2)3 imply

C̄(z) = −βCz + CL ; βC =
CL − CU

d
, (5.2.5)

and the momentum equation (5.2.1)1 becomes

∂p̄

∂z
= −gρ0 [1− αT (TL − βT z − T0) + αC(CL − βCz − C0)] ki. (5.2.6)

Integration of (5.2.6) gives p̄ as a quadratic function of z of the form

p̄(z) = αz2 + βz + γ. (5.2.7)

Therefore, we find the steady solution or the basic state to (5.2.1) which we are

interested in studying its stability and which satisfies (5.2.2) as

v̄i = 0,

T̄ (z) = −βT z + TL,

C̄(z) = −βCz + CL,

(5.2.8)
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where βT and βC are the temperature and salt gradients respectively.

To analyse the stability of the solutions (5.2.8) we define perturbations (ui, π, θ, φ)

such that

vi = v̄i + ui,

p = p̄+ π,

T = T̄ + θ,

C = C̄ + φ

(5.2.9)

Using these perturbations in equations (5.2.1) we derive the equations governing

(ui, π, θ, φ) as

π,i = − µ
K
ui + ρ0gkiαT θ − ρ0gkiαCφ+ λ∆ui ,

ui,i = 0 ,

1

M
θ,t + uiθ,i = βTw + kT∆θ ,

φ̂φ,t + uiφ,i = βCw + φ̂kC∆φ+ k̂f1θ − k̂φ,

(5.2.10)

where w = u3. To non-dimensionalize the system (5.2.10), we define the length, time

and velocity scales, L, τ and U , by L = d, τ = d/MU and U = kT/d. We introduce

pressure, temperature and salt scales as

P =
Udµ

K
, T ]

2

=
µβTkT
αTρ0gK

, C]2 =
µβCkTLe

αCρ0gKφ̂
,

where Le = kT/kC is the Lewis number. The temperature and salt Rayleigh numbers

are defined as

R =

√
βTd2KαTρ0g

kTµ
,

Rs =

√
βCd2KαCρ0gLe

φ̂kTµ
when CL > CU or Rs =

√
|βC |d2KαCρ0gLe

φ̂kTµ
when CL < CU .

Then, the fully nonlinear, perturbed dimensionless form of (5.2.10) is

π,i = −ui +Rkiθ −Rskiφ+ γ̃∆ui ,

ui,i = 0 ,

θ,t + uiθ,i = Rw + ∆θ ,

εφ,t +
Le

φ̂
uiφ,i = ∓Rsw + ∆φ+ hθ − ηφ ,

(5.2.11)
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where ε = MLe, γ̃ = λK/µd2 the Brinkman coefficient and h and η are the reaction

terms

h =
k̂f1d

2T ]

φ̂kCC]
and η =

k̂d2

φ̂kC
.

Moreover, +Rs is taken when CL > CU , which means that the system is salted from

below, and −Rs is taken when CL < CU , which means that the system is salted

from above. The corresponding boundary conditions are

Dw = w = θ = φ = 0 on z = 0 and z = 1. (5.2.12)

5.3 Linear Instability Theory

To study the linear instability, we drop the nonlinear terms of (5.2.11) and take

the double curl of equation (5.2.11)1 and retaining only the third component of the

resulting equation to reduce (5.2.11) to studying the system

∆w −R∆∗θ +Rs∆
∗φ− γ̃∆2w = 0,

θ,t = Rw + ∆θ,

εφ,t = ∓Rsw + ∆φ+ hθ − ηφ,

(5.3.1)

where ∆∗ is the horizontal Laplacian. Assuming a normal mode representation for

w, θ and φ of the form w = W (z)f(x, y) , θ = Θ(z)f(x, y) and φ = Φ(z)f(x, y)

where f(x, y) is a plan tiling function satisfying

∆∗f = −a2f ; (5.3.2)

cf. Straughan [99] and a is a wave number. Using (5.3.2) and applying the normal

mode representations to (5.3.1), we find

(D2 − a2)W +Ra2Θ−Rsa
2Φ− γ̃(D2 − a2)2W = 0,

σΘ = RW + (D2 − a2)Θ,

εσΦ = ∓RsW + (D2 − a2)Φ + hΘ− ηΦ,

(5.3.3)

where D = d/dz. This is an eigenvalue problem for σ to be solved subject to the

boundary conditions

DW = W = Θ = Φ = 0 , on z = 0, 1. (5.3.4)
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We solved system (5.3.3) with the corresponding boundary conditions (5.3.4) using

the D2 Clebyshev Tau method and the Compound Matrix technique. Detailed

numerical results for the heated below-salted above and heated below-salted below

are reported separately in the subsections (5.6.1) and (5.6.2). We determined the

critical Rayleigh number given by Ra2
L = mina2R

2(a2) where for all R2 > Ra2
L the

system is unstable.

5.4 Nonlinear Energy Stability Theory

In order to study the nonlinear stability of the Brinkman model for the double dif-

fusive convection, consider the nonlinear system of equations in the dimensionless

form (5.2.11) and the corresponding boundary conditions (5.2.12). Taking into con-

sideration the periodicity of the system and the smoothness of the boundary to allow

the application of the Divergence Theorem. Multiply equation (5.2.11)1 by ui and

integrate over V using integration by parts. Likewise, multiply equation (5.2.11)3

by θ and equation (5.2.11)4 by φ and integrate. The following energy equations are

obtained

0 = −‖u‖2 +R(θ, w)−Rs(φ,w)− γ̃‖∇u‖2 ,

d

dt

1

2
‖θ‖2 = R(θ, w)− ‖∇θ‖2 ,

d

dt

ε

2
‖φ‖2 = ∓Rs(φ,w)− ‖∇φ‖2 + h(θ, φ)− η‖φ‖2.

(5.4.1)

Then we form the combination of the equations in system (5.4.1) as

(5.4.1)1 + (5.4.1)2 + λ(5.4.1)3,

where λ a coupling parameter. This leads to the energy equation

dE

dt
= I −D =−D(1− I

D
)

≤ −D(1−max
H

I

D
) = −D(1− 1

RE

) ,
(5.4.2)

where H is the space of admissible solutions. Namely

H =
{
ui, θ, φ ∈ H1(V ) : ui = θ = φ = 0 on z = 0, 1

}
,
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and
1

RE

= maxH
I

D
,

E =
1

2
‖θ‖2 +

ελ

2
‖φ‖2 ,

I = 2R(θ, w) + λh(θ, φ)− (1± λ)Rs(φ,w) ,

D = ‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃‖∇u‖2.

(5.4.3)

The nonlinear stability ensues when RE > 1 which implies that 1 − 1/RE > 0.

Inequality (5.4.2) can be written as

dE

dt
≤ −a1D , (5.4.4)

where a1 = 1− 1/RE > 0. Then, using the Poincaré inequality in order to obtain a

bound for D

D = ‖u‖2 + λη‖φ‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + γ̃‖∇u‖2

≥ ‖u‖2 + λη‖φ‖2 + π2‖θ‖2 + π2λ‖φ‖2 + π2γ̃‖u‖2

≥ π2‖θ‖2 + π2λ‖φ‖2

≥ π2‖θ‖2 + π2λ
MLe

MLe
‖φ‖2

≥ 2kπ2

(
‖θ‖2 + λε‖φ‖2

2

)
= 2kπ2E,

(5.4.5)

where k = min
{

1
MLe

, 1
}
. Then inequality (5.4.4) will be

dE

dt
≤ −a1D ≤ −2a1kπ

2E = −µE ,

from which
d

dt
(eµtE) ≤ 0 ,

integration leads to

E(t) ≤ E(0)e−µt (5.4.6)

Inequality (5.4.6) shows that under the condition RE > 1, E(t) → 0 as t → ∞.

This result according to equation (5.4.3)2, proves that ‖θ‖2 → 0 and ‖φ‖2 → 0 as

t → ∞. To show the decay of ‖u‖, we have to use the Poincaré inequality and the

Arithmetic-Geometric Mean inequality in the energy equation (5.4.1)1 to obtain

‖u‖2 = R(θ, w)−Rs(φ,w)− γ̃‖∇u‖2

≤ R(θ, w)−Rs(φ,w)− γ̃π2‖u‖2
(5.4.7)
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which can be written as

(1 + γ̃π2)‖u‖2 ≤ R(θ, w)−Rs(φ,w)

≤ R

2α
‖θ‖2 +

Rα

2
‖w‖2 +

Rs

2β
‖φ‖2 +

Rsβ

2
‖w‖2.

(5.4.8)

Using the fact that ‖w‖2 ≤ ‖u‖2, inequality (5.4.8) is

(1 + γ̃π2)‖u‖2 ≤
(
Rα

2
+
Rsβ

2

)
‖u‖2 +

R

2α
‖θ‖2 +

Rs

2β
‖φ‖2 , (5.4.9)

where α and β are constants to be chosen such that Rα + Rsβ = 1, which gives

α = 1/2R and β = 1/2Rs. According to our choice of α and β, inequality (5.4.9)

will be

(
1

2
+ γ̃π2)‖u‖2 ≤ R2‖θ‖2 +R2

s‖φ‖2, (5.4.10)

which shows that R−1
E guarantees in addition to the decay of ‖θ‖ and ‖φ‖, also decay

of ‖u‖.

Turning our attention to the maximization problem (5.4.3)1, we have to deter-

mine the Euler-Lagrange equations in order to solve it. The maximum problem

is
1

RE

= max
H

2R(θ, w) + λh(θ, φ)−Rs(1± λ)(φ,w)

‖u‖2 + ‖∇θ‖2 + λ‖∇φ‖2 + λη‖φ‖2 + γ̃‖∇u‖2
. (5.4.11)

Rescaling φ by putting φ̃ =
√
λφ. equation (5.4.11) will be

1

RE

= max
H

2R(θ, w) +
√
λh(θ, φ̃)−Rsf(λ)(φ̃, w)

‖u‖2 + ‖∇θ‖2 + ‖∇φ̃‖2 + η‖φ̃‖2 + γ̃‖∇u‖2
, (5.4.12)

where

f(λ) =
1± λ√
λ
.

Hence, the Euler-Lagrange equations arising from (5.4.3)1 requires

d

dε

I

D
|ε=0 = δ

I

D
= 0 ,

where δ refers to the ”derivative” evaluated at ε = 0, or, upon calculation,

δI

D
− I

D2
δD =

1

D
(δI − I

D
δD) =

1

D
(δI − 1

RE

δD) = 0 ,

which means that the maximum requires

δD −REδI = 0, (5.4.13)
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to obtain the Euler equations that give an eigenvalue problem for R. Let ζ, β and γ

be arbitrary fixed C2(V ) functions that satisfy the boundary conditions and define

neighbouring functions ui = ui + εζi , θ = θ + εβ , φ̃ = φ̃+ εγ. Hence

δI =2R(ζ3, θ) + 2R(w, β)−Rsf(λ)(ζ3, φ̃)−Rsf(λ)(w, γ)

+
√
λh(γ, θ) +

√
λh(β, φ̃)− (ζi, P,i)

(5.4.14)

and

δD =− 2γ̃(∆ui, ζi)− 2(∆θ, β)− 2(∆φ̃, γ) + 2(ui, ζi) + 2η(φ̃, γ). (5.4.15)

Thus, the Euler-Lagrange equations arise from the variational problem (5.4.3)1 are

2ui − 2RREkiθ +RsREfkiφ̃− 2γ̃∆ui = −REP,i

−2∆θ − 2RERw −
√
λREhφ̃ = 0

−2∆φ̃+ 2ηφ̃+RERsfw −
√
λREhθ = 0,

(5.4.16)

where P is a Lagrange multiplier. To remove the Lagrange multiplier, we take the

double Curl of equation (5.4.16)1 and retaining only the third component of the

resulting equation to reduce (5.4.16) to studying the system

∆w −RRE∆∗θ +

(
1± λ

2

)
RsRE∆∗φ− γ̃∆2w = 0 ,

∆θ +RERw +RE
λh

2
φ = 0 ,

(∆− η)φ−RERs

(
1± λ

2λ

)
w +RE

h

2
θ = 0,

(5.4.17)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian. Introducing the normal

mode representation as presented in section 5.3, system (5.4.17) becomes

(D2 − a2)W − γ̃(D2 − a2)2W + a2RERΘ− a2RERs

(
1± λ

2

)
Φ = 0,

RERW + (D2 − a2)Θ +

(
hλ

2

)
REΦ = 0,

RERs

(
1± λ

2λ

)
W − h

2
REΘ + ηΦ− (D2 − a2)Φ = 0.

(5.4.18)

The Laplace operator is equivalent to ∆ = D2 − a2, where D = ∂/∂z. The corre-

sponding boundary conditions are

DW = W = Θ = Φ = 0 , on z = 0, 1. (5.4.19)

We can determine the critical Rayleigh number given byRa2
E = maxλ mina2 R

2(a2, λ),

where for all R2 < Ra2
E the system is stable.
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5.5 The Numerical Method

We used the D2 Chebyshev Tau method, cf. Dongarra et al. [26], and the Compound

Matrix technique to find the bound for the linear instability theory, system (5.3.3)

and the corresponding boundary conditions (5.3.4). Both methods give exactly the

same solution. For the energy theory I have used the Compound Matrix technique.

5.5.1 The D2 Chebyshev Tau method for the linear theory

In this subsection, I describe the D2 Chebyshev Tau method and in the next sub-

section I will describe the Compound Matrix method since I used it for the energy

stability theory.

Using the D2 Chebyshev to solve (5.3.3) subject to (5.3.4), we have to introduce a

variable χ such that χ = ∆w. Then, equations (5.3.3) will be

(D2 − a2)W − χ = 0,

γ̃(D2 − a2)χ− χ− a2RΘ + a2RsΦ = 0,

(D2 − a2)Θ +RW = σΘ,

(D2 − a2)Φ− ηΦ + hΘ∓RsW = εσΦ.

(5.5.1)

The functions W,χ,Θ and Φ are expanded in terms of Chebyshev polynomials

W (z) = ΣN
n=1wnTn(z), χ(z) = ΣN

n=1χnTn(z), Θ(z) = ΣN
n=1θnTn(z), Φ(z) = ΣN

n=1φnTn(z).

Since Tn(±1) = (±1)n , T ′n(±1) = (±1)n−1n2 , implies that the boundary conditions

(5.3.4) become

w2 + w4 + w6 + · · ·+ wN = 0,

w1 + w3 + w5 + · · ·+ wN−1 = 0
(5.5.2)

with similar representations for θn and φn

θ2 + θ4 + θ6 + · · ·+ θN = 0,

θ1 + θ3 + θ5 + · · ·+ θN−1 = 0,
(5.5.3)

φ2 + φ4 + φ6 + · · ·+ φN = 0,

φ1 + φ3 + φ5 + · · ·+ φN−1 = 0,
(5.5.4)
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while the boundary condition Dw = 0 becomes

22w2 + 42w4 + 62w6 + · · ·+N2wN = 0,

w1 + 32w3 + 52w5 + · · ·+ (N − 1)2wN−1 = 0
(5.5.5)

Therefore, the Chebyshev Tau method reduces to solving the matrix system Ax =

σBx, where x = (w1, w2, · · · , wN , χ1, χ2, · · · , χN , θ1, · · · , θN , φ1, · · · , φN) and the

matrices A and B are given by

A =



4D2 − a2I −I 0 0

BC1 0 · · · 0 0 · · · 0 0 · · · 0

BC2 0 · · · 0 0 · · · 0 0 · · · 0

0 4D2 − a2I − I
γ̃
−a2R I

γ̃
a2Rs

I
γ̃

BC7 0 · · · 0 0 · · · 0 0 · · · 0

BC8 0 · · · 0 0 · · · 0 0 · · · 0

RI 0 4D2 − a2I 0

0 · · · 0 0 · · · 0 BC3 0 · · · 0

0 · · · 0 0 · · · 0 BC4 0 · · · 0

∓RsI 0 hI 4D2 − (a2 + η)I

0 · · · 0 0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 0 · · · 0 BC6



B =



0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 I 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 0 0 εI

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0
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where in the matrix A the notations BC1, BC2 refer to the boundary conditions

(5.5.2), BC3, BC4 refer to (5.5.3) , BC5, BC6 refer to (5.5.4) and BC7, BC8 refer to

the boundary conditions (5.5.5). We solved the matrix system by the QZ algorithm,

cf. Dongarra et al. [26].

5.5.2 The Compound Matrix technique for the energy the-

ory

To employ the compound matrix method, cf. Lindsay & Straughan [56], we have to

write system (5.4.18) as

D4W = −a4W + 2a2D2W − a2

γ̃
W +

1

γ̃
D2W +RER

a2

γ̃
Θ− a2

γ̃

(
1± λ

2

)
RERsΦ,

D2Θ = a2Θ−RERW −
(
hλ

2

)
REΦ,

D2Φ =
(
a2 + η

)
Φ− h

2
REΘ +

(
1± λ

2λ

)
RERsW.

(5.5.6)

The compound matrix for (5.5.6) works with the 4× 4 minors of the 8× 4 solution

matrix formed from

U1 = (W1,W
′
1,W

′′
1 ,W

′′′
1 ,Θ1,Θ

′
1,Φ1,Φ

′
1) ,

U2 = (W2,W
′
2,W

′′
2 ,W

′′′
2 ,Θ2,Θ

′
2,Φ2,Φ

′
2) ,

U3 = (W3,W
′
3,W

′′
3 ,W

′′′
3 ,Θ3,Θ

′
3,Φ3,Φ

′
3) ,

U4 = (W4,W
′
4,W

′′
4 ,W

′′′
4 ,Θ4,Θ

′
4,Φ4,Φ

′
4) .

(5.5.7)

The solutions Ui for i = 1, 2, 3, 4 are independent solutions to (5.5.6) for different

initial values, Ui’s correspond to solutions for starting values

(0, 0, 1, 0, 0, 0, 0, 0)T , (0, 0, 0, 1, 0, 0, 0, 0)T ,

(0, 0, 0, 0, 0, 1, 0, 0)T , (0, 0, 0, 0, 0, 0, 0, 1)T ,
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respectively. We define C8
4 = 70 new variables y1, · · · , y70 as the 4× 4 minors. For

example

y1 =

∣∣∣∣∣∣∣∣∣∣∣∣

W1 W2 W3 W4

W ′
1 W ′

2 W ′
3 W ′

4

W ′′
1 W ′′

2 W ′′
3 W ′′

4

W ′′′
1 W ′′′

2 W ′′′
3 W ′′′

4

∣∣∣∣∣∣∣∣∣∣∣∣
implies that y1 = W1W

′
2W

′′
3W

′′′
4 + · · · , which gives 24 terms for y1. So, the idea

is to derive y2, · · · , y70 similarly and then obtain differential equations for the yi’s

by differentiation. There is no need to write out the whole determinant each time.

The first term, y1, suffices. The 70 variables are included in Appendix C. By

differentiating each yi and substituting from equations (5.5.6) we obtain differential

equations for the yi’s, see Appendix C. These equations are integrated numerically

from 0 to 1. We keep the boundary conditions (5.4.19) at z = 0 and replace the

ones at z = 1 by

W ′′
1 (0) = W ′′′

2 (0) = Θ′3(0) = Φ′4(0) = 1, (5.5.8)

which using the yi’s yields the initial condition for the y′i’s as

y60(0) = 1. (5.5.9)

Using yi’s, the final condition which satisfies (5.4.19) is seen to be

y11(1) = 0. (5.5.10)

The eigenvalue R is varied until (5.5.10) is satisfied to some pre-assigned tolerance.

For more details on the compound matrix method and it’s application on solving

boundary value problems, the reader may refer to the books of Straughan, chapter

19 of Straughan [99] and chapter 9 of Straughan [100], and the article by Lindsay

& Straughan [56].

5.6 Numerical Results and Conclusion

In this section, analysis of the numerical results of two different systems, heated

below-salted above and heated below-salted below separately is reported in the fol-
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lowing subsections. Numerical data and graphical figures are included to support

the analysis.

5.6.1 Heated below salted above system

The numerical integration is carried out for different values of the reaction rates,

h and η and different values of the Brinkman coefficient γ̃. We found that when the

layer is heated below and salted above in the case of no reaction i.e. h = η = 0 and

when Brinkman coefficient γ̃ = 1 that the numerical methods used give exactly the

same values for RaL and RaE. The graphical representation of these values shows

that the linear instability threshold coincide with the energy stability threshold as

it is clear in figure (5.1)(a) and that there is no region of subcritical instability. As

we increase the values of the reaction rates h and η, the linear instability boundary

starts to diverge from the energy stability boundary. Figure (5.1) shows the effect of

increasing the values of the reaction rates, as we increase the values of h and η, the

gap between the boundaries increases. Any point (Rs2, Ra2) in the space above the

linear instability boundary, the solid line Ra2
L, represents a region where the system

is unstable because the linear instability boundary guarantees instability. On the

other hand, if (Rs2, Ra2) lies below the energy stability boundary, the dashed line

Ra2
E, represents the space where the system is definitely stable. Note that as the

reaction rates increase, the peak of the linear instability curve moves to a higher

position resulting in a wider region of possible subcritical instability between the

energy stability threshold and the linear instability threshold. Moreover, there is a

slight noticeable decrease in the energy stability threshold as the values ofRs → +∞.

Table 5.1 represents some numerical values obtained.

To study the effect of each one of h and η on the stability of the system, a big-

ger difference between their values is considered. It has been noticed that when h

is bigger compared to η, the region of possible subcritical instability is wider and

increasing the value of h implies more divergence of the linear instability boundary

from the energy stability boundary and a movement of the peak value of the linear

instability threshold to a higher position, as figure (5.2)(a) and (c) shows. Com-
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(b) h = η = 1
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(c) h = 5 , η = 3
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(d) h = 9 , η = 6

Figure 5.1: Linear instability and energy stability boundaries for the salted above

Brinkman convection problem for different values of the reaction rates h and η.

pared to the case when η has a bigger value than h, the linear and energy boundaries

coincide, figure (5.2)(b) and (d) and the linear boundary covers the content of sta-

bility. This is expected, as system (5.2.11) shows that hΘ is a destabilizing term

while −ηΦ is a stabilizing term.

Examining the effect of different values of the Brinkman coefficient (effective vis-

cosity term) on the stability boundaries, reveals that increasing the value of γ̃ results

in a wider space of global stability below the energy stability threshold and a wider

region of potential subcritical instability. The effect of different values of γ̃(= 0.5, 2)

are presented graphically in figures (5.3), (5.4) and (5.5).
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R2
s aL Ra2

L aE Ra2
E λ

1 3.13 1766.156 3.12 1752.197 0.055

3 3.13 1775.442 3.12 1752.187 0.099

5 3.14 1781.378 3.12 1752.179 0.132

6 3.14 1783.775 3.12 1752.175 0.146

12 3.15 1794.255 3.12 1752.157 0.220

20 3.15 1803.123 3.12 1752.137 0.304

Table 5.1: Some numerical values obtained for the linear boundary RaL and en-

ergy boundary RaE temperature Rayleigh number with corresponding salt Rayleigh

number Rs and the the corresponding critical wave numbers aL and aE when γ̃ = 1,

h = 9 and η = 6 in the case of heated below salted above system.

5.6.2 Heated and Salted Below system

It is instructive to write system (5.2.11) and the boundary conditions (5.2.12) for

the salted below case as an abstract equation of form

Aut = L(u) +N(u),

where u = (u1, u2, u3, θ, φ), N(u) represents the nonlinear terms in (5.2.11) so

N(u) =



0

0

0

−uiθ,i
−Le

φ̂
uiφ,i


,

and L is the linear operator. In fact, the linear operator for (5.2.11) is

L =



−1 + γ̃∆ 0 0 0 0

0 −1 + γ̃∆ 0 0 0

0 0 −1 + γ̃∆ R −Rs

0 0 R ∆ 0

0 0 Rs h ∆− η


.

We may split L into a symmetric plus skew-symmetric parts as follows

L = Ls + LA ,
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(b) h = 1 , η = 20
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(c) h = 10 , η = 0
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(d) h = 0 , η = 10

Figure 5.2: Linear instability and energy stability boundaries for the salted above

Brinkman convection problem. The difference between the values of the reaction

rates h and η is large.

where

Ls =



−1 + γ̃∆ 0 0 0 0

0 −1 + γ̃∆ 0 0 0

0 0 −1 + γ̃∆ R 0

0 0 R ∆ h
2

0 0 0 h
2

∆− η


,
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(a) h = η = 0
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(b) h = 9 , η = 6
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(c) h = 10 , η = 0
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(d) h = 0 , η = 10

Figure 5.3: Linear instability and energy stability boundaries for the salted above

Brinkman convection problem when the Brinkman constant γ̃ is 0.5.

and

LA =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Rs

0 0 0 0 −h
2

0 0 Rs
h
2

0


.

For the salted above case, see the previous subsection, LA would be zero and the

analogous linear operator L would be symmetric.

Even when h = 0 in the salted below case, we expect some problem with non-

linear energy stability theory since

(u, L(u)) 6= (u, Ls(u))
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(a) h = η = 0
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(b) h = 9 , η = 6
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(c) h = 10 , η = 0
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(d) h = 0 , η = 10

Figure 5.4: Linear instability and energy stability boundaries for the salted above

Brinkman convection problem when the Brinkman constant γ̃ is 2.

where (·, ·) is the inner product on (H1(V ))5 with V being a period cell for the

solution. For the problem of this subsection, governed by equations (5.2.11) and

(5.2.12) for the salted below case, we have two sources of anti-symmetry, the Rs

term and the h term.

The numerical values are presented graphically for different values of the reaction

rates h and η in figure (5.6). It has been noticed that as the reaction rate increases,

the gap between the linear instability and energy stability boundaries increases due

to the divergence of the linear threshold yielding a wider region of potential subcrit-

ical instability. Whereas, the energy stability threshold is approximately constant

or more precisely it is decreasing unnoticeably as shown in figures (5.6) and (5.7).

As expected from system (5.2.11) one sees that hΘ will destabilize the system while
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(b) h = 9 , η = 6
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(c) h = 10 , η = 0
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Figure 5.5: Linear instability and energy stability boundaries for the salted above

Brinkman convection problem for different values of the Brinkman constant, γ̃ =

0.5, 1, 2.

−ηΦ will stabilize the system which is clear and shown in figure (5.7) i.e, when the

value of h is smaller compared to η the space of possible subcritical instability is less

compared to the case when h is larger than η. The effect of changing the value of γ̃

can be noticed in figure (5.8) for γ̃ = 0.5 and figure (5.9) for γ̃ = 2. The gap between

the boundaries increases and the space of global stability is wider as γ̃ increases.

The numerical values and their graphical representations show that the linear insta-

bility theory does not necessarily represent accurately the onset of convection and

we may explain that this is due to the two sources of anti-symmetry the Rs term

and the h term. By this we mean that the linear instability boundary is definitely a

threshold for instability, but in this case, it may be possible for instability to arise
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with a Rayleigh number below the linear instability boundary.
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(d) h = 9 , η = 6

Figure 5.6: Linear instability and energy stability boundaries for the salted below

Brinkman convection problem for different values of the reaction rates h and η.
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(c) h = 10 , η = 0
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Figure 5.7: Linear instability and energy stability boundaries for the salted below

Brinkman convection problem. The difference between the values of the reaction

rates h and η is large.
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(d) h = 0 , η = 10

Figure 5.8: Linear instability and energy stability boundaries for the salted below

Brinkman convection problem when the Brinkman constant γ̃ is 0.5.
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(b) h = 9 , η = 6
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Figure 5.9: Linear instability and energy stability boundaries for the salted below

Brinkman convection problem when the Brinkman constant γ̃ is 2.



Chapter 6

Thermosolutal Convection in a

Darcy Porous Medium with

Anisotropic Permeability and

Thermal Diffusivity

6.1 Introduction

In chapters 4 and 5 we used the energy method to study the non-linear stability of

the Darcy and the Brinkman thermosoultal convection with reaction, respectively,

where the porous media were isotropic. Malashetty and Biradar [60] studied the

onset of the double-diffusive reaction convection in an anisotropic porous medium

of a Darcy type considering a model similar to that of Pritchard and Richardson [83].

They analysed the linear and weak non-linear stability of a reactive binary mixture

in a horizontal porous layer with anisotropic permeability and thermal diffusivity.

The work in this chapter may be considered as an extension of Malashetty and

Biradar [60]. Our concern is to use the energy method to study the nonlinear

stability aspect of the problem. The aim of the study is to obtain the non-linear

stability boundaries below which the solution is globally stable. We analyse and

compare the effects of the reaction terms, the anisotropic permeability, and thermal

diffusivity tensors on the onset of stability with the relevant results obtained by

104
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Malashetty and Biradar [60].

6.2 Basic Equations

We consider an anisotropic porous layer of Darcy model for the momentum equation

with the density ρ being a linear function in temperature T and salt concentration

C. In addition we need the continuity equation, the advection-diffusion equation for

the transport of heat and the advection-diffusion equation for the transport of solute

with reaction. The governing system of equations is

µvi = −Kijp,j −Kijkjgρ0[1− αT (T − T0) + αC(C − C0)],

vi,i = 0,

1

M̃
T,t + viT,i = (kT ijT,j),i,

φ̂C,t + viC,i = φ̂kC∆C + k̂[f1(T − T0) + f0 − C],

(6.2.1)

where as mentioned in the previous chapters, vi, p, T, C, µ, ρ0 are the velocity, pres-

sure, temperature, salt concentration, the fluid viscosity and the fluid density re-

spectively. Moreover, K = Kxii + Kyjj + Kzkk is the permeability tensor, kT =

kTxii+kTyjj+kTzkk is the thermal diffusivity tensor, kC is the molecular diffusivity

of the solute through the fluid and k̂ is the reaction rate. The system is taken in

the domain R2 × (0, d)× {t > 0}, and the corresponding boundary conditions are

vini = 0 on z = 0, d,

T = TL on z = 0, and T = TU on z = d,

C = CL on z = 0, and C = CU on z = d.

(6.2.2)

Where TL > TU since we are considering the heated below case, while CU > CL for

the salted above system and CL > CU for the salted below system. The steady state
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whose stability is under investigation is

v̄i =0,

T̄ (z) =− βT z + TL,

C̄(z) =− βCz + CL,

p̄(z) =− 1

2
gρ0(αTβT − αCβC)z2

− gρ0[1− αT (TL − T0) + αC(CL − C0)]z + p0,

(6.2.3)

where βT = (TL − TU)/d, βC = (CL − CU)/d, and p0 is the pressure at z = 0.

To study the stability, we introduce perturbations (ui, π, θ, φ) to the steady so-

lutions (6.2.3) in such a way that

vi = v̄i + ui,

p = p̄+ π,

T = T̄ + θ,

C = C̄ + φ

(6.2.4)

Substituting (6.2.4) in (6.2.1) and using (6.2.3) we derive the equations governing

(ui, π, θ, φ) as

µui = Kijkjgρ0αT θ −Kijkjgρ0αCφ−Kijπ,j ,

ui,i = 0 ,

1

M̃
θ,t + uiθ,i = βTw + (kT ijθ,j),i ,

φ̂φ,t + uiφ,i = βCw + φ̂kC∆φ+ k̂f1θ − k̂φ,

(6.2.5)

where w = u3. We introduce an inverse permeability tensor Mij which satisfies

MijKjk = δik,

where

Mij =


κ 0 0

0 κ 0

0 0 κ3

 ; κ 6= κ3.
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In terms of the inverse permeability tensor Mij, equations (6.2.5) are equivalent to

Mijµuj = −π,i + kigρ0αT θ − kigρ0αCφ ,

ui,i = 0 ,

1

M̃
θ,t + uiθ,i = βTw + (kT ijθ,j),i ,

φ̂φ,t + uiφ,i = βCw + φ̂kC∆φ+ k̂f1θ − k̂φ.

(6.2.6)

To non-dimensionalize equations (6.2.6), we define the non-dimensional variables

π = Pπ∗, ui = Uu∗i , θ = T ]θ∗,

φ = C]φ∗, xi = dx∗i , t = τt∗.
(6.2.7)

Employing (6.2.7) in (6.2.6), choose the time, velocity, pressure, temperature and

salt scales as

τ =
d

M̃U
, U =

kTz
d

, P = dUµ ,

T ]
2

=
βTµkTz
gρ0αT

, C]2 =
βCµkTz
gρ0αC

,

and define the temperature and salt Rayleigh numbers by

R =

√
gρ0αTβTd2

µkTz
,

Rs =

√
gρ0αC |βC |d2Le

µkTzφ̂
when CL < CU or Rs =

√
gρ0αCβCd2Le

µkTzφ̂
when CL > CU ,

where Le = kTz/kC is the Lewis number.

The non-linear, non-dimensional system of equations, after dropping the stars,

is

Mijuj = −π,i + kiRθ − kiRsφ ,

ui,i = 0 ,

θ,t + uiθ,i = Rw + α∆∗θ +D2θ ,

εφ,t +
Le

φ̂
uiφ,i = ∓Rsw + ∆φ+ hθ − ηφ ,

(6.2.8)

where α = kTx/kTz, ε = M̃Le, D = d/dz, ∆∗ is the horizontal Laplacian and h and

η are the reaction coefficients

h =
k̂f1T

]d2Le

kTzC]φ̂
and η =

k̂d2Le

kTzφ̂
.
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Moreover, −Rs for the salted above system and +Rs for the salted below system.

The corresponding boundary conditions are

uini = 0 , θ = 0 , φ = 0 at z = 0, 1 , (6.2.9)

with {ui, θ, φ} satisfying a plane tiling periodicity in (x, y) direction.

6.3 Linear Instability Theory

In order to study the linear instability, we drop the non-linear terms in system

(6.2.8) and retain the third component of the double curl of equation (6.2.8)1 to

reduce (6.2.8)-(6.2.9) to investigating the system

−κw,zz − κ3∆∗w = −R∆∗θ +Rs∆
∗φ ,

θ,t = Rw + α∆∗θ +D2θ ,

εφ,t = ∓Rsw + ∆φ+ hθ − ηφ .

(6.3.1)

Following the same procedure as in the previous chapters and assuming a normal

mode representation, system (6.3.1) is

(D2 − a2κ3

κ
)W +

a2

κ
RΘ− a2

κ
RsΦ = 0 ,

σΘ = RW + (D2 − a2α)Θ ,

εσΦ = ∓RsW + (D2 − a2 − η)Φ + hΘ .

(6.3.2)

Equations (6.3.2) are to be solved subject to the boundary conditions

W = Θ = Φ = 0 on z = 0, 1 , (6.3.3)

using D2 Chebyshev-Tau method, cf. Dongarra et al. [26]. The numerical method

and the analysis are presented in sections 6.5 and 6.6.

6.4 Non-Linear Energy Stability Theory

Returning to the non-linear, non-dimensional perturbed system of equations (6.2.8)

and the corresponding boundary conditions (6.2.9). Multiplying equation (6.2.8)1 by
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ui, equation (6.2.8)3 by θ and equation (6.2.8)4 by φ and integrate over the domain

using integration by parts to obtain the following system of balance equations

− (Mijuj, ui) +R(θ, w)−Rs(φ,w) = 0 ,

d

dt

1

2
‖θ‖2 = R(θ, w)− α‖∇θ‖2 − (1− α)‖θ,z‖2 ,

d

dt

ε

2
‖φ‖2 = ∓Rs(φ,w)− ‖∇φ‖2 + h(θ, φ)− η‖φ‖2.

(6.4.1)

We form the combination of equations (6.4.1) as

(6.4.1)1 + (6.4.1)2 + λ(6.4.1)3,

where λ is a coupling parameter, to derive the energy identity in the form

dE

dt
= I −D , (6.4.2)

where

E(t) =
1

2
‖θ‖2 +

ελ

2
‖φ‖2 ,

I = 2R(θ, w) + λh(θ, φ)− (1± λ)Rs(φ,w) ,

D = (Mijuj, ui) + α‖∇θ‖2 + (1− α)‖θ,z‖2 + λ‖∇φ‖2 + λη‖φ‖2.

(6.4.3)

Then, provided that RE > 1

dE

dt
≤ −D(1− 1

RE

) (6.4.4)

is an energy inequality which follows from the energy identity (6.4.2).

Where
1

RE

= max
H

I

D
, (6.4.5)

and

H = {ui, θ, φ |ui ∈ L2(V ), θ, φ ∈ H1(V ), ui,i = 0 and ui, θ, φ are periodic in x, y}.

We can show

(Mijuj, ui) ≥ κ0‖u‖2 ; κ0 = min{κ, κ3} ,

and

D ≥ κ0‖u‖2 + απ2‖θ‖2 + (1− α)‖θ,z‖2 + λπ2‖φ‖2 + λη‖φ‖2

≥ απ2‖θ‖2 + π2λ‖φ‖2

≥ απ2‖θ‖2 + π2λ
M̃Le

M̃Le
‖φ‖2

≥ 2kπ2

(
‖θ‖2 + λε‖φ‖2

2

)
= 2kπ2E(t) ,
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where k = min{ 1
αM̃Le

, 1}. Then from (6.4.4) we may derive the inequality

dE

dt
≤ −2a1kπ

2E(t) ,

where the coefficient a1 is defined by

a1 =
RE − 1

RE

.

Upon integration we obtain

E(t) ≤ E(0)e−2a1kπ2t,

which shows that E(t) → 0 as t → ∞. Therefore ‖θ(t)‖ → 0 and ‖φ(t)‖ → 0 as

t→∞ according to (6.4.3)1.

To show the decay of ‖u‖, we have to employ the Arithmetic-Geometric Mean

inequality in (6.4.1)1

κ0‖u‖2 ≤ (Mijuj, ui) ≤
R

2α1

‖θ‖2 +
Rα1

2
‖w‖2 +

Rs

2β1

‖φ‖2 +
Rsβ1

2
‖w‖2, (6.4.6)

using the fact ‖w‖2 ≤ ‖u‖2 in the previous inequality leads to(
κ0 −

Rα1 +Rsβ1

2

)
‖u‖2 ≤ R

2α1

‖θ‖2 +
Rs

2β1

‖φ‖2. (6.4.7)

Inequality (6.4.7) shows the decay of ‖u‖2 under the condition

κ0 −
Rα1 +Rsβ1

2
> 0.

Regarding the maximum equation (6.4.5), the nonlinear stability threshold is

given by the variational problem

1

RE

= max
H

I

D
= max

H

2R(θ, w)− (1± λ)Rs(φ,w) + hλ(θ, φ)

(Mijuj, ui) + α‖∇θ‖2 + (1− α)‖θ,z‖2 + λ‖∇φ‖2 + ηλ‖φ‖2
.

(6.4.8)

We have to determine the Euler-Lagrange equations and maximize in the coupling

parameter λ. Rescaling φ by putting φ̃ =
√
λφ, equation (6.4.8) will be

1

RE

= max
H

2R(θ, w)−Rsf(λ)(φ̃, w) + h
√
λ(θ, φ̃)

(Mijuj, ui) + α‖∇θ‖2 + (1− α)‖θ,z‖2 + ‖∇φ̃‖2 + η‖φ̃‖2
, (6.4.9)

where

f(λ) =
1± λ√
λ
.
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Hence, the Euler-Lagrange equations require

d

dε

I

D
|ε=0 = δ

(
I

D

)
= 0 ,

which means the maximum requires

δD −REδI = 0 . (6.4.10)

Let us define ui, θ, φ̃ in terms of arbitrary C2(0, 1) functions, ζi, β and γ with ζi(0) =

ζi(1) = β(0) = β(1) = γ(0) = γ(1) = 0 and consider solutions of the form

ui = ui + εζi , θ = θ + εβ , φ̃ = φ̃+ εγ.

By standard calculation, the Euler-Lagrange equations which arise from the varia-

tional problem (6.4.5) are

2Mijuj − 2RREkiθ +RsREf(λ)kiφ̃+REP,i = 0 ,

− 2α∆θ − 2(1− α)θ,zz − 2RREw −
√
λhREφ̃ = 0 ,

− 2∆φ̃+ 2ηφ̃−
√
λhREθ +RsREf(λ)w = 0 .

(6.4.11)

Rescaling φ̃ again, system (6.4.11) can be written as(
1± λ

2

)
RsREkiφ−RREkiθ +Mijuj = −RE

2
P,i ,

α∆θ + (1− α)θ,zz +RREw +
λ

2
hREφ = 0 ,

∆φ− ηφ+
h

2
REθ −RsRE

(
1± λ

2λ

)
w = 0 .

(6.4.12)

Taking the double curl of (6.4.12)1 and retaining just the third component, our

system will be

−
(

1± λ
2

)
RsRE∆∗φ+RRE∆∗θ − κw,zz − κ3∆∗w = 0 ,

α∆θ + (1− α)θ,zz +RREw +
λ

2
hREφ = 0 ,

∆φ− ηφ+
h

2
REθ −RsRE

(
1± λ

2λ

)
w = 0 .

(6.4.13)

Assuming normal mode solutions, as in the previous chapters, system (6.4.13) gives

rise to (
D2 − a2κ3

κ

)
W +

a2

κ
RREΘ−

(
1± λ

2

)
a2

κ
RsREΦ = 0 ,

RREW +
(
D2 − a2α

)
Θ +

λh

2
REΦ = 0 ,

−RsRE

(
1± λ

2λ

)
W +

h

2
REΘ +

(
D2 − a2 − η

)
Φ = 0 ,

(6.4.14)
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and the corresponding boundary conditions are

W = Θ = Φ = 0 at z = 0, 1 . (6.4.15)

We solved system (6.4.14)-(6.4.15) numerically using the D2 Chebyshev Tau method

as explained in the next section.

6.5 Numerical Method

Following the procedure of chapters 4 and 5, the functions W,Θ, and Φ and the

boundary conditions are expanded in terms of Chebyshev polynomials, cf. Don-

garra et al. [26]. Therefore, for the linear theory, system (6.3.2)-(6.3.3), the Cheby-

shev Tau method reduces to solving the matrix system A1x = σB1x, where x =

(w1, w2, · · · , wN , θ1, · · · , θN , φ1, · · · , φN) and the matrices A1 and B1 are given by

A1 =



4D2 − a2 κ3
κ
I a2

κ
RI −a2

κ
RsI

BC1 0 · · · 0 0 · · · 0

BC2 0 · · · 0 0 · · · 0

RI 4D2 − a2αI 0

0 · · · 0 BC3 0 · · · 0

0 · · · 0 BC4 0 · · · 0

∓RsI hI 4D2 − (a2 + η)I

0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 BC6



,

B1 =



0 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

0 I 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

0 0 εI

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0



.
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While for the nonlinear theory, system (6.4.14)-(6.4.15), the Chebyshev Tau method

reduces to solving the matrix system A2x = RB2x, where the matrices A2 and B2

are given by

A2 =



4D2 − a2 κ3
κ
I 0 −(1±λ

2
)a

2

κ
RsREI

BC1 0 · · · 0 0 · · · 0

BC2 0 · · · 0 0 · · · 0

0 4D2 − a2αI λh
2
REI

0 · · · 0 BC3 0 · · · 0

0 · · · 0 BC4 0 · · · 0

−RsRE(1±λ
2λ

)I h
2
REI 4D2 − (a2 + η)I

0 · · · 0 0 · · · 0 BC5

0 · · · 0 0 · · · 0 BC6



,

B2 =



0 −a2

κ
REI 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

−REI 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

0 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0



,

where in both systems BC1, BC2, BC3, BC4, BC5 and BC6 represent the bound-

ary conditions in expanded form of Chebychev polynomials, i.e.

BC1 :w2 + w4 + w6 + · · ·+ wN = 0,

BC2 :w1 + w3 + w5 + · · ·+ wN−1 = 0,

BC3 :θ2 + θ4 + θ6 + · · ·+ θN = 0,

BC4 :θ1 + θ3 + θ5 + · · ·+ θN−1 = 0,

BC5 :φ2 + φ4 + φ6 + · · ·+ φN = 0,

BC6 :φ1 + φ3 + φ5 + · · ·+ φN−1 = 0.

(6.5.1)
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We solved the matrix systems by the QZ algorithm, cf. Dongarra et al. [26] and

Straughan [99].

6.6 Numerical Results and Conclusions

6.6.1 Salted above system

Numerically, the results show the coincidence of the linear instability boundary

and the energy stability boundary for different values of the anisotropy parameters

when there is no reaction, h = η = 0. As figure (6.1) shows that there is no region of

potential subcritical instabilities. To investigate the effect of increasing the reaction

rates, different values of h and η are implemented for α = kTx/kTz = 0.5 and

χ = Kz/Kx = 10. Increasing the reaction rates, see figure (6.2), results in a wider

gap between the linear instability and nonlinear energy stability boundaries, and

therefore, a wider space of potential subcritical instability.

To study the effect of each of h and η on the onset of convection, a large difference

between their values is implemented for different values of α and χ as figures (6.3)

and (6.4) show. For all chosen values of α and χ, when η is larger than h the two

boundaries coincide, which is expected from system (6.2.8)4 as −ηφ is a stabilizing

term but the region of stability varies due to the effect of the anisotropy parameters

α and χ. On the other hand, implementing larger values of h than η for different cases

of α and χ, reveals regions of potential subcritical instability which is a result of a

divergence of the energy stability boundaries(dashed lines) and the linear instability

boundaries(continuous lines) from each other, which is also expected from system

(6.2.8)4 as +hθ is a destabilizing term.

The effect of the thermal anisotropic parameter α = kTx/kTz and the mechanical

anisotropic parameter χ = Kz/Kx may be interpreted as follows: When χ < 1,

keeping the vertical permeability constant Kz = 1 and decreasing the horizontal

permeability Kx, lowers the the energy stability boundary and the linear instability

boundary indicating that the effect is destabilizing as figure (6.3)(a, c), (b, d) shows.

When χ > 1, keeping the horizontal permeability constant Kx = 1 and increasing

the vertical permeability Kz, shifts the two boundaries to higher positions indicating
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that the effect is stabilizing, as is clear in figure (6.3)(e, g), (f, h). Figure (6.4) is

included as a support of the above interpretation when α = 0.5 while figure (6.3)

is when α = 1. Moreover, the numerical values obtained reveal that increasing

the mechanical anisotropy parameter, shifts the minimum of the Rayleigh number

towards smaller values of the wave number. For example, from table (6.1) we observe

that when R2
s = 14, χ = 2, aL = 3.5 whereas for the same value of Rs but χ = 10,

we have aL = 2.16. This indicates that the cell width increases with increasing

mechanical anisotropy parameter.

Figure (6.5) indicates the effect of the thermal anisotropy parameter α = kTx/kTz ≤

1 for fixed values of the mechanical anisotropy parameter χ and reaction rates h and

η which can be interpreted as follows.

Keeping the horizontal thermal diffusivity constant, kTx = 1, and increasing the ver-

tical thermal diffusivity, kTz, lowering the two boundaries which results in smaller

definite stable space below the energy stability boundary(dashed lines), see figure

(6.5)(a, c), (b, d), as an indication of a destabilization effect. Note that the effect of

the thermal anisotropy parameter α is opposite to that of the mechanical anisotropy

parameter χ when χ > 1. This result agrees with the finding of Malashetty and Bi-

radar [60].

We conclude that the reaction rates may stabilize or destabilize according to

the values of each of the reaction terms h and η. h plays the role of destabilizing

while η plays the role of stabilizing. When the vertical permeability is high (χ > 1),

the system is more stable. While decreasing the horizontal permeability for fixed

vertical permeability such that (χ < 1), the system will be more unstable. When

the vertical component of the thermal diffusivity is high (α < 1), the system is more

unstable. While increasing the horizontal component of the thermal diffusivity for

fixed vertical component of the themal diffusivity such that (α < 1), the system will

be more stable. The results reveal the opposite effect of the anisotropic parameters

when the vertical components are higher, as fig.(6.6) and fig.(6.7) show. This finding

agrees with the conclusions of [60], [31], and [62].
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χ = 2 χ = 10

R2
s aL Ra2

L aE Ra2
E R2

s aL Ra2
L aE Ra2

E

0 2.64 57.524295 2.64 57.524296 0 1.77 170.98696 1.77 170.98694

1 2.84 65.867328 2.47 47.728294 1 1.84 191.04848 1.7 150.33782

2 2.93 68.841697 2.42 43.309404 2 1.88 199.25623 1.68 141.54712

5 3.13 73.662351 2.31 34.178499 5 1.97 215.18329 1.63 123.86981

7 3.24 75.450431 2.27 29.564022 7 2.01 222.86906 1.62 115.00238

10 3.36 77.054094 2.22 23.809327 10 2.08 232.23865 1.59 103.86712

12 3.43 77.634638 2.19 20.527959 12 2.12 237.51810 1.58 97.388428

14 3.5 77.925078 2.17 17.593690 14 2.16 242.22792 1.57 91.478747

18 3.61 77.835481 2.14 12.584275 18 2.23 250.33498 1.55 80.961612

20 3.66 77.520858 2.13 10.447675 20 2.27 253.86249 1.54 76.217504

25 3.76 76.114746 2.11 6.0404112 25 2.35 261.48666 1.52 65.521436

30 3.84 73.984800 2.1 2.8499080 30 2.43 267.74073 1.5 56.177642

35 3.91 71.258474 2.11 0.8246665 35 2.5 272.91206 1.5 47.932140

Table 6.1: Some numerical values obtained for the linear boundary RaL and the

energy boundary RaE with corresponding salt Rayleigh number Rs and the the

corresponding critical wave numbers aL and aE when α = 1, h = 20 and η = 0

in the case of heated below salted above system. For two cases of the mechanical

anisotropy parameter χ, χ = 2 and χ = 10.
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(a) α = 1 , χ = 2
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(b) α = 0.5 , χ = 2
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(c) α = 1 , χ = 10
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(d) α = 0.5 , χ = 10
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(e) α = 1 , χ = 0.1

0 50 100 150

2
0

4
0

6
0

8
0

1
0
0

Rs
2

R
^
2

R
L

2

R
E

2

(f) α = 0.5 , χ = 0.1

Figure 6.1: Linear instability and energy stability boundaries for the salted above

Darcy convection problem for different values of the anisotropic parameters when

there is no reaction.
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(a) h = 0 and η = 0
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(b) h = 5 and η = 3
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(c) h = 6 and η = 9

Figure 6.2: Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 0.5, χ = 10 and different

values of the reaction rates h and η.
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6.6.2 Salted below system

It is instructive to write system (6.2.8) for the salted below case as an abstract

equation of the form

Aut = L(u) +N(u),

where, as in the previous chapters, u = (u1, u2, u3, θ, φ), N(u) represents the non-

linear terms and L(u) represents the linear terms as

N(u) =



0

0

0

−uiθ,i
−Le

φ̂
uiφ,i


,

and

L =



−M11 0 0 0 0

0 −M22 0 0 0

0 0 −M33 R −Rs

0 0 R α∆∗ +D2 0

0 0 Rs h ∆− η


.

If h = 0, then we may write L as a symmetric plus skew-symmetric parts as

L = Ls + LA,

where

Ls =



−M11 0 0 0 0

0 −M22 0 0 0

0 0 −M33 R 0

0 0 R α∆∗ +D2 0

0 0 0 0 ∆− η


,

and

LA =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 −Rs

0 0 0 0 0

0 0 Rs 0 0


.
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For the salted above case LA would be zero and the linear operator would be sym-

metric. For the salted below case, the problem of this subsection, even when h = 0,

(u, L(u)) 6= (u, Ls(u)). So for the problem in hand we have two sources of anti-

symmetry, the Rs term and the h term.

The numerical results are presented graphically in which the effect of the reaction

rates, the mechanical anisotropy parameter and the thermal anisotropy parameter

in the stability of the system is investigated. The effect of reaction is shown in

figure (6.8). In contrast to the salted above case, the linear instability boundary

and the energy stability boundary do not coincide even when the reaction does not

present, h = η = 0, i.e. there is always a region of potential subcritical instability.

As the value of the reaction rate increases the space below the energy stability

boundary(dashed line) decreases whenever the value of h is greater than η value

which explains that h is a destabilizing term while η has a stabilizing effect.

The effect of the anisotropic permeability parameter χ = Kz/Kx can be ex-

plained as follows. When χ < 1, keeping the vertical permeability constant Kz = 1

and decreasing the horizontal permeability Kx, lowers the energy stability boundary

as well as the linear instability boundary, which results in a smaller definite stable

space below the energy stability boundary as figure (6.9)(a, c), (b, d) shows, indicat-

ing that the effect, according to the energy stability theory, is destabilizing. When

χ > 1, increasing the vertical permeability Kz and keeping the horizontal permeabil-

ity constant Kx = 1, shifts the two boundaries to a higher position, resulting in a

wider definite stable space below the energy stability boundary, indicating that the

effect is stabilizing as is clear in figure (6.9)(e, g), (f, h). Furthermore, we notice that

increasing the mechanical anisotropy parameter, shifts the minimum of the Rayleigh

number towards smaller values of the wave number, indicating that the cell width

increases with increasing mechanical anisotropy parameter.

Figure (6.10) indicates the effect of the thermal anisotropy parameter α =

kTx/kTz ≤ 1 for fixed values of χ = 10, h and η. Similar to the salted above

case, it is noticed that the thermal anisotropy parameter has opposite effect to that

of the mechanical anisotropy parameter when the mechanical anisotropy parame-

ter is greater than 1. Keeping the horizontal thermal diffusivity constant kTx = 1
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and increasing the vertical thermal diffusivity kTz, shifts the two boundaries to a

lower position indicating that the effect is destabilizing which is presented in figure

(6.10)(a, c), (b, d). Moreover, we find that increasing the thermal anisotropy param-

eter shifts the minimum of the Rayleigh number towards smaller values of the wave

number. For example, from table (6.2) we observe that when R2
s = 5, α = 0.5,

aL = 2.1 whereas for the same Rs value but α = 1 one has aL = 1.76. This indicates

that the cell width increases with increasing thermal anisotropy parameter. It is

noticed that the effects of the mechanical and thermal anisotropy parameters on

the onset of double-diffusive convection discussed above are in agreement with the

results obtained by Malashetty and Biradar [60], Gaikwad et al. [31] and Malashetty

and Swamy [62].

Over-stability may be obtained due to the strong effect of the porosity ε on the

oscillatory behaviour of the flow as demonstrated by Mamou [63]. Hence, its effect

is investigated in figure (6.11). Increasing the porosity precipitates the transition

to oscillatory convection, shifting the minimum of the Rayleigh number towards

a bigger value of the wave number indicating that the cell width decreases with

increasing porosity. For example, from table (6.3) we observe that when R2
s = 10,

ε = 3, aL = 1.99 whereas for the same Rs value but ε = 5 one has aL = 2.02.

Figure (6.12) shows the effect of the mechanical anisotropy parameter χ and

figure (6.13) presents the effect of the thermal anisotropy parameter α for fixed

values of the reaction rates h = 20 and η = 0 when the porosity ε = 3. The effects

are exactly the same as for the case when ε = 1 discussed above and presented

graphically in figures (6.8), (6.9) and (6.10) and in agreement with Malashetty et

al. [60].
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α = 0.5 α = 1

R2
s aL Ra2

L aE Ra2
E R2

s aL Ra2
L aE Ra2

E

0 2.1 147.76908 2.1 147.76908 0 1.77 170.98696 1.77 170.98696

1 2.1 148.12131 2.1 147.76908 1 1.77 171.38094 1.77 170.98696

2 2.1 148.47355 2.1 147.76908 2 1.77 171.77493 1.77 170.98696

5 2.1 149.53027 2.1 147.76908 5 1.76 172.95496 1.77 170.98696

7 2.1 150.23475 2.1 147.76908 7 1.76 173.74164 1.77 170.98696

10 2.1 151.29146 2.1 147.76908 10 1.76 174.92165 1.77 170.98696

12 2.1 151.99594 2.1 147.76908 12 1.76 175.70832 1.77 170.98696

14 2.09 152.70026 2.1 147.76908 14 1.76 176.49499 1.77 170.98696

18 2.09 154.10849 2.1 147.76908 18 1.75 178.06612 1.77 170.98696

20 2.09 154.81261 2.1 147.76908 20 1.75 178.85149 1.77 170.98696

25 2.09 156.57289 2.1 147.76908 25 1.75 180.81494 1.77 170.98696

30 2.09 158.33319 2.1 147.76908 30 1.74 182.77671 1.77 170.98696

35 2.09 160.09348 2.1 147.76908 35 1.74 184.73694 1.77 170.98696

40 2.08 161.85299 2.1 147.76908 40 1.74 186.69717 1.77 170.98696

50 2.08 165.37177 2.1 147.76908 50 1.73 190.61156 1.77 170.98696

60 2.07 168.89030 2.1 147.76908 60 1.72 194.52177 1.77 170.98696

70 2.07 172.40728 2.1 147.76908 70 1.71 198.42803 1.77 170.98696

80 2.07 175.92425 2.1 147.76908 80 1.71 202.32929 1.77 170.98696

90 2.06 179.43982 2.1 147.76908 90 1.70 206.22549 1.77 170.98696

120 2.05 189.98285 2.1 147.76908 120 1.68 217.89006 1.77 170.98696

150 2.04 200.51952 2.1 147.76908 150 1.66 229.51770 1.77 170.98696

Table 6.2: Some numerical values obtained for the linear boundary RaL and the

energy boundary RaE with corresponding salt Rayleigh number Rs and the the

corresponding critical wave numbers aL and aE when χ = 10, h = 0 and η = 20

in the case of heated below salted below system. For two cases of the thermal

anisotropy parameter α, α = 0.5 and α = 1.
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ε = 3 ε = 5

R2
s aL Ra2

L R2
s aL Ra2

L

0 2.1 147.7690755 0 2.1 147.7690755

1 2.25 166.2869491 1 2.25 166.2869491

2 2.32 174.8063078 2 2.32 174.8063078

5 2.5 193.0438038 5 2.02 183.5537000

7 1.99 207.9504079 7 2.02 183.9537000

10 1.99 208.9504079 10 2.02 184.5537000

12 1.99 209.6170746 12 2.02 184.9537000

14 1.99 210.2837412 14 2.02 185.3537000

18 1.99 211.6170746 18 2.02 186.1537000

20 1.99 212.2837412 20 2.02 186.5537000

25 1.99 213.9504079 25 2.02 187.5537000

30 1.99 215.6170746 30 2.02 188.5537000

35 1.99 217.2837412 35 2.02 189.5537000

40 1.99 218.9504079 40 2.02 190.5537000

50 1.99 222.2837412 50 2.02 192.5537000

60 1.99 225.6170746 60 2.02 194.5537000

70 1.99 228.9504079 70 2.02 196.5537000

80 1.99 232.2837412 80 2.02 198.5537000

90 1.99 235.6170746 90 2.02 200.5537000

120 1.99 245.6170746 120 2.02 206.5537000

150 1.99 255.6170746 150 2.02 212.5537000

Table 6.3: Some numerical values obtained for the linear boundaries RaL with corre-

sponding salt Rayleigh number Rs and the the corresponding critical wave numbers

aL when α = 0.5, χ = 10, h = 20 and η = 0 in the case of heated below salted below

system. For two cases of the porosity ε, ε = 3 and ε = 5.
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(a) h = 0 and η = 20 , χ = 0.1
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(b) h = 20 and η = 0 , χ = 0.1
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(c) h = 0 and η = 20 , χ = 0.5
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(d) h = 20 and η = 0 , χ = 0.5
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(e) h = 0 and η = 20 , χ = 2
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(f) h = 20 and η = 0 , χ = 2
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(g) h = 0 and η = 20 , χ = 10
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(h) h = 20 and η = 0 , χ = 10

Figure 6.3: Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 1.
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(a) h = 0 and η = 20 , χ = 2

0 5 10 15 20 25 30 35

0
2
0

4
0

6
0

8
0

Rs
2

R
^
2

R
L

2

R
E

2

(b) h = 20 and η = 0 , χ = 2
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(c) h = 0 and η = 20 , χ = 10
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(d) h = 20 and η = 0 , χ = 10
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(e) h = 0 and η = 20 , χ = 0.1
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(f) h = 20 and η = 0 , χ = 0.1

Figure 6.4: Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for α = 0.5.
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(a) h = 0 and η = 20 , α = 1
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(b) h = 20 and η = 0 , α = 1
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(c) h = 0 and η = 20 , α = 0.5
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(d) h = 20 and η = 0 , α = 0.5

Figure 6.5: Linear instability and energy stability boundaries for the salted above

Darcy convection problem with anisotropic effect for χ = 10.
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Figure 6.6: The energy stability boundaries for the salted above Darcy convection

problem with anisotropic effect for α = 1, h = 20, η = 0. The figure shows the effect

of increasing the vertical permeability component, Kz.
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Figure 6.7: The energy stability boundaries for the salted above Darcy convection

problem with anisotropic effect for χ = 10, h = 20, η = 0. The figure shows the

effect of increasing the vertical thermal diffusivity component, kTz.
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(a) h = 0 and η = 0
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(b) h = 5 and η = 3
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(c) h = 6 and η = 9

Figure 6.8: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5, χ = 10 and different

values of the reaction rates h and η.
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(a) h = 0 and η = 20 , χ = 0.1
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(b) h = 20 and η = 0 , χ = 0.1
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(c) h = 0 and η = 20 , χ = 0.5
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(d) h = 20 and η = 0 , χ = 0.5
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(e) h = 0 and η = 20 , χ = 2
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(f) h = 20 and η = 0 , χ = 2

0 50 100 150

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Rs
2

R
^
2

R
L

2

R
E

2

(g) h = 0 and η = 20 , χ = 10
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(h) h = 20 and η = 0 , χ = 10

Figure 6.9: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5.
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(a) h = 0 and η = 20 , α = 1
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(b) h = 20 and η = 0 , α = 1
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(c) h = 0 and η = 20 , α = 0.5
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(d) h = 20 and η = 0 , α = 0.5

Figure 6.10: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for χ = 10.
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(b) h = 20 and η = 0

Figure 6.11: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5, and χ = 10 for

different values of ε.
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(a) h = 20 and η = 0 , χ = 0.1
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0 50 100 150

4
0

6
0

8
0

1
0
0

Rs
2

R
^
2

R
L

2

R
E

2

(c) h = 20 and η = 0 , χ = 0.5
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(d) h = 20 and η = 0 , χ = 10

Figure 6.12: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for α = 0.5 and ε = 3.
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(a) h = 20 and η = 0 , α = 1
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(b) h = 20 and η = 0 , α = 0.5

Figure 6.13: Linear instability and energy stability boundaries for the salted below

Darcy convection problem with anisotropic effect for χ = 10 and ε = 3.



Chapter 7

One-Dimensional Acceleration

Waves in Non-Linear Double

Porosity Materials

7.1 Introduction

In this chapter we move away from the content of the previous five chapters although

we still remain in the remit of porous media. In the previous cases the solid skeleton

of the porous material remains fixed while the fluid moves. However, when one is

dealing with waves it is arguable that one should consider deformation of the elastic

skeleton itself. Therefore, we now change direction and study wave motion in an

elastic body but we allow the body to have a double porosity structure.

Elastic double porosity materials play a considerable interest recently and are

available in abundance in nature. There are relatively large pores called macro pores,

but additionally fissures or cracks, which are pores on a much small scale, and these

are known as micro pores. To the macro pores there is an associated pressure

field and another pressure field is associated to the micro pores. An example of such

double porosity, macro and micro, structure is presented in the photographs of Masin

et al. [65]. Double porosity materials are of great importance in civil engineering,

in geophysics, in petroleum recovery, and the subject of attention in modelling gas

production via the technique of fracking, cf. Kim and Moridis [47] and Sarma and

134
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Aziz [93].

Modelling double porosity elastic materials begins with Barenblatt et al. [7], in

which they presented the basic concepts of the motion of liquids. Under certain as-

sumptions, Barenblatt et al. [7] obtained an expression for the intensity of the trans-

fer of liquid between the fissures and the pores. Recently, the work of Barenblatt et

al. [7] has been employed and generalised by many researchers, cf. Berryman and

Wang [10], Masters et al. [66], Zhao and Chen [127], Gentile and Straughan [35],

Jeong et al. [46], Straughan [104, 106], Ciarletta et al. [23], Svanadze [112, 113],

Iesan [41], Kumar et al. [50], Marin et al. [64], Scarpetta and Svanadze [94], and

Tsagareli and Bitsadze [117].

Berryman and Wang [10] generalised the quasi-static results to incorporate wave

propagation effect and conclude that the double porosity dual-permeability analy-

sis has the capability to explain both wave propagation and attenuation in earth

materials. Ciarletta et al. [23] considered the coupled linear theory of flow and

deformation processes of the double porosity media. They established the basic

properties of linear harmonic plane waves and they proved the uniqueness theorems

for classical solutions of the boundary value problems of steady vibrations. Gentile

and Straughan [35] proposed a model for a nonlinear elastic body with a double

porosity structure. They allow the strain energy function and the macro and micro

porosity structures’ effective permeabilities to be general nonlinear functions of the

deformation gradient, macro and micro pressure gradients and of the macro and

micro pressures themselves. They developed the analysis of a fully nonlinear accel-

eration wave and derived and completely analysed the amplitude equation for an

acceleration wave in the one-dimensional case for a wave moving into a constant

strain and constant macro and micro pressures state. Iesan [41] investigated a lin-

ear theory of elastic solids with a double porosity structure using the method of

potentials to study the basic boundary-value problems. Then he established some

existence and uniqueness results.

Recently, many investigations are carried out in thermoelastic materials with

double porosity structure, see e.g. Svanadze [113], Scarpetta and Svanadze [94],

Iesan and Quintanilla [42], Iesan [43], chapter 7 of Straughan [100], see also Straughan
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[108] and the references therein. Svanadze [113] considered the linear theory of ther-

moelasticity for solids with isotropic double porosity. He formulated a wide class of

boundary value problems of steady vibrations and proved the uniqueness theorems

for classical solutions of these problems. Scarpetta and Svanadze [94] investigated

the linear quasi-static theory of thermoelasticity. They obtained the Green’s formu-

las and established the formulas of integral representations of classical solutions and

they proved the uniqueness theorems. Iesan and Quintanilla [42] generalised the

idea of Nunziato and Cowin theory [72] of materials with voids to derive theory of

thermoelastic solids with double porosity structure. They proved the uniqueness of

solutions by using the logarithmic convexity arguments, cf. Ames and Straughan [6]

page.17, and they investigated the deformation of an elastic space with a spherical

cavity.

Gentile and Straughan [35] described acceleration wave behaviour in a non-linear

elastic body with a double porosity structure by employing a non-linear elasticity

theory with double porosity based on an internal strain energy function which is

a general function of the constitutive variables. Here, we are analysing a more

general acceleration wave than Gentile and Straughan [35] in which the fluxes satisfy

the same constitutive theory as the internal strain energy function. Gentile and

Straughan [35] chose a special form for the fluxes.

7.2 Basic Equations

Let $ be a body deformed from a reference configuration at time t = 0 into a new

configuration at time t. Denote the points in the reference configuration by X. The

mapping to the new configuration denoted by

x = x(X, t). (7.2.1)

By referring to the reference configuration, the displacement u of a typical particle

moving from X in the reference configuration to x at time t is

u(X, t) = x(X, t)−X . (7.2.2)
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The deformation gradient tensor is

FX =
∂x

∂X
, (7.2.3)

which leads to the displacement gradient

uX =
∂u

∂X
=

∂x

∂X
− ∂X

∂X
= FX − 1 . (7.2.4)

We consider the theory of double porosity elastic materials based on an internal

strain energy function W. The basic equations for double porosity elastic materials

involve the elastic displacement, u(X, t), a fluid pressure associated with the macro

pores, p(X, t), and a fluid pressure associated with the fissures, q(X, t). The govern-

ing equations in 1-Dimension are the momentum equation, an equation which arises

from a Darcy law connected to the macro pores and an equation which comes from

a Darcy law connected to the micro pores. The basic system of equations is

ρü =
∂

∂X

(
∂W

∂uX

)
− ∂

∂X
(βp)− ∂

∂X
(γq) ,

αṗ =
∂J

∂X
− λ(p− q)− β ∂u̇

∂X
,

β1q̇ =
∂M

∂X
+ λ(p− q)− γ ∂u̇

∂X
,

(7.2.5)

where ρ is the density, β and γ are constitutive functions of p and q which couple

equations (7.2.5), λ > 0 is the interaction coefficient, the inertia coefficients α > 0

and β1 > 0 are constants. Throughout we employ standard notation, subscript , X

denotes ∂/∂X with X fixed and a superposed dot denotes ∂/∂t, namely, partial

differentiation with respect to time. The terms J and M are the fluxes associated

to the pressures p and q, which satisfy the same constitutive theory as W.

For constitutive theory we use the list of variables

χ = uX , pX , qX , p, q ,

and suppose that

W = W (χ), J = J(χ) and M = M(χ). (7.2.6)
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7.3 Acceleration Waves

We need the compatibility relations to study and analyse the acceleration waves. The

compatibility relations may be found in Truesdell and Toupin [116] and Chen [21].

We define an acceleration wave for the system (7.2.5) as a surface S such that u(X, t),

p(X, t), q(X, t) and their first derivatives are continuously differentiable everywhere

but the functions ü, u̇,X , u,XX , p̈, ṗ,X , pXX , q̈, q̇,X and q,XX and their higher deriva-

tives suffer a finite discontinuities. The jump of a function across the wave,[f ], is

defined as

[f ] = f+ − f−, (7.3.1)

where

f+ = lim
X→S+

,

and

f− = lim
X→S−

.

The amplitudes a(t), P (t), Q(t) of the acceleration wave are defined by

a(t) = [ü], P (t) = [p̈(t)], Q(t) = [q̈(t)]. (7.3.2)

To find the wave speeds of an acceleration wave we begin with equations (7.2.5).

By the chain rule, employing the relations (7.2.6), system (7.2.5) may be rewrit-

ten as

ρü =
∂2W

∂uX∂uX
uXX +

∂2W

∂pX∂uX
pXX +

∂2W

∂qX∂uX
qXX

+
∂2W

∂p∂uX
pX +

∂2W

∂q∂uX
qX − βpX − βppXp

− βqqXp− γqX − γppXq − γqqXq ,

αṗ =
∂J

∂uX
uXX +

∂J

∂pX
pXX +

∂J

∂qX
qXX +

∂J

∂p
pX +

∂J

∂q
qX

− λ(p− q)− β ∂u̇
∂X

,

β1q̇ =
∂M

∂uX
uXX +

∂M

∂pX
pXX +

∂M

∂qX
qXX +

∂M

∂p
pX +

∂M

∂q
qX

+ λ(p− q)− γ ∂u̇
∂X

.

(7.3.3)



7.3. Acceleration Waves 139

To proceed we evaluate equations (7.3.3) on either side of S and in this way we take

the jumps of equations (7.3.3), employing the definition of the acceleration wave S

and the constitutive theory (7.2.6) to obtain

ρ[utt] = W,uXuX [uXX ] +W,pXuX [pXX ] +W,qXuX [qXX ] ,

0 =
∂J

∂uX
[uXX ] +

∂J

∂pX
[pXX ] +

∂J

∂qX
[qXX ]− β[utX ] ,

0 =
∂M

∂uX
[uXX ] +

∂M

∂pX
[pXX ] +

∂M

∂qX
[qXX ]− γ[utX ].

(7.3.4)

Next, we employ the Hadamard relation, sometimes known as the kinematic condi-

tion of compatibility, cf. Truesdell and Toupin [116] and Chen [21],

δ

δt
[f ] =

[
∂f

∂t

]
+ V

[
∂f

∂X

]
, (7.3.5)

where δ/δt denotes the time derivative at the wave and V is the speed of the wave.

Since u, p, q ∈ C1(R), [ut] = 0, [uX ] = 0, [pt] = 0, [pX ] = 0, [qt] = 0, [qX ] = 0, so

by using the Hadamard relation (7.3.5),

0 =
δ

δt
[ut] = [utt] + V [utX ] , 0 =

δ

δt
[uX ] = [uXt] + V [uXX ] ,

0 =
δ

δt
[pt] = [ptt] + V [ptX ] , 0 =

δ

δt
[pX ] = [pXt] + V [pXX ] ,

0 =
δ

δt
[qt] = [qtt] + V [qtX ] , 0 =

δ

δt
[qX ] = [qXt] + V [qXX ] .

(7.3.6)

Thus,

[utt] = −V [utX ] = V 2[uXX ] ,

[ptt] = −V [ptX ] = V 2[pXX ] ,

[qtt] = −V [qtX ] = V 2[qXX ].

(7.3.7)

Employ relations (7.3.7) in equations (7.3.4) to derive the three jump equations(
ρV 2 −WuXuX

)
a(t) = WpXuXP (t) +WqXuXQ(t) ,

(JuX + βV ) a(t) = −JpXP (t)− JqXQ(t) ,

(MuX + γV ) a(t) = −MpXP (t)−MqXQ(t).

(7.3.8)

Solving for P (t) and Q(t) in terms of a(t) only, from equations (7.3.8)2 and (7.3.8)3

yields

P (t) =
JqX (MuX + γV )−MqX (JuX + βV )

MqXJpX − JqXMpX

a(t) , (7.3.9)
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and

Q(t) =
JpX (MuX + γV )−MpX (JuX + βV )

MpXJqX − JpXMqX

a(t) . (7.3.10)

Substitute the expressions (7.3.9) and (7.3.10) into equation (7.3.8)1 to obtain the

1-Dimensional wave speed equation(
ρV 2 −WuXuX

)
a(t) =WpXuX

JqX (MuX + γV )−MqX (JuX + βV )

MqXJpX − JqXMpX

a(t)

+WqXuX

JpX (MuX + γV )−MpX (JuX + βV )

MpXJqX − JpXMqX

a(t).

(7.3.11)

For a non-zero amplitude a(t) = [utt] we see from (7.3.11), that

ρV 2 +

[
β

Ξ
(WqXuXMpX −WpXuXMqX ) +

γ

Ξ
(WpXuXJqX −WqXuXJpX )

]
V

+
JuX
Ξ

(WqXuXMpX −WpXuXMqX ) +
MuX

Ξ
(WpXuXJqX −WqXuXJpX )−WuXuX = 0 .

(7.3.12)

Here Ξ = MpXJqX − JpXMqX .

Thus, the speed of the wave is

V = −E1

2ρ
+

√
E2

1

4ρ2
+
E2

ρ
, (7.3.13)

where

E1 =

(
βMpX

Ξ
− γJpX

Ξ

)
WqXuX +

(
γJqX

Ξ
− βMqX

Ξ

)
WpXuX , (7.3.14)

and

E2 = WuXuX +

(
MuXJpX

Ξ
− JuXMpX

Ξ

)
WqXuX

+

(
JuXMqX

Ξ
− MuXJqX

Ξ

)
WpXuX .

(7.3.15)

Actually, equation (7.3.12) allows for two waves, a right moving one and a left mov-

ing one. We here only deal with one, the one moving to the right.

Gentile and Straughan [35] chose the form of the fluxes as

JGS = k(χ)p and MGS = m(χ)q.

The jump reduces their system to

ρ[ü] =WuXuX [uXX ] +WuXpX [pXX ] +WuXqX [qXX ] ,

0 =k[pXX ]− β[u̇X ] ,

0 =m[qXX ]− γ[u̇X ] ,

(7.3.16)
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and using the Hadamard relation gives the following forms of PGS(t) and QGS(t)

PGS(t) = −βVGS
k

a(t) and QGS(t) = −γVGS
m

a(t) ,

and the speed of the wave is

VGS = −EGS
2ρ

+

√
E2
GS

4ρ2
+
WuXuX

ρ
,

where

EGS =
β

k
WuXpX +

γ

m
WuXqX .

Comparing our system (7.3.4) to (7.3.16) shows that JuX = MuX = JqX = MpX = 0,

JpX = k, and MqX = m in Gentile and Straughan [35].

7.4 Amplitude Equation

We may proceed to derive the amplitude equation for an acceleration wave by dif-

ferentiating equation (7.3.3)1 with respect to X and equations (7.3.3)2 and (7.3.3)3

with respect to t, and then take the jumps of the resulting equations. Moreover, to

simplify the calculations we suppose that the state ahead of the wave is constant,

i.e., p+ = constant, q+ = constant, and u+
,X = constant, which implies p+

,X = 0,

p+
,XX = 0, ṗ+ = 0, q+

,X = 0, q+
,XX = 0, q̇+ = 0, u+

,XX = 0 and u̇+
,X = 0 and therefore

many terms disappear. We employ the expressions obtained from the Hadamard

relation (7.3.7) together with the product jump relation

[ab] = a+[b] + b+[a]− [a][b] . (7.4.1)

One requires further relations and these may be obtained from the Hadamard rela-

tion as

[uXXX ] =− [u̇XX ]

V
+

1

V 3

δa

δt
, −[u̇XX ] =

[üX ]

V
+

1

V 2

δa

δt
,

[uXXX ] =
[üX ]

V 2
+

2

V 3

δa

δt
, [pXXX ] =− [ṗXX ]

V
+

1

V 3

δP

δt
,

−[ṗXX ] =
[p̈X ]

V
+

1

V 2

δP

δt
, [pXXX ] =

[p̈X ]

V 2
+

2

V 3

δP

δt
,

[qXXX ] =− [q̇XX ]

V
+

1

V 3

δQ

δt
, −[q̇XX ] =

[q̈X ]

V
+

1

V 2

δQ

δt
,

[qXXX ] =
[q̈X ]

V 2
+

2

V 3

δQ

δt
.

(7.4.2)
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The jump of the X derivative of (7.3.3)1 yields the equation

ρ[üX ] =WuXuX [uXXX ]−WuXuXuX [uXX ]2

−WuXuXpX [uXX ][pXX ]−WuXuXqX [uXX ][qXX ]

+WpXuX [pXXX ]−WpXuXuX [pXX ][uXX ]

−WpXuXpX [pXX ]2 −WpXuXqX [pXX ][qXX ]

+WqXuX [qXXX ]−WqXuXuX [uXX ][qXX ]

−WqXuXpX [qXX ][pXX ]−WqXuXqX [qXX ]2

+WquX [qXX ] +WpuX [pXX ]− β[pXX ]

− βpp+[pXX ]− βqp+[qXX ]− γ[qXX ]

− γpq+[pXX ]− γqq+[qXX ] .

(7.4.3)

After taking the t derivative of (7.3.3)2 we take the jump to arrive at the equation

α[p̈] =JuX [u̇XX ] + JuXuX [uXX ][u̇X ]− JuXpX [uXX ][ṗX ]

− JuXqX [uXX ][q̇X ] + JpX [ṗXX ]− JpXuX [u̇X ][pXX ]

− JpXpX [pXX ][ṗX ]− JpXqX [pXX ][q̇X ] + JqX [q̇XX ]

− JqXuX [qXX ][u̇X ]− JqXpX [qXX ][ṗX ]− JqXqX [qXX ][q̇X ]

+ Jp[ṗX ] + Jq[q̇X ]− β[üX ] .

(7.4.4)

Further, the jump of the t derivative of (7.3.3)3 yields

β1[q̈] =MuX [u̇XX ]−MuXuX [uXX ][u̇X ]−MuXpX [ṗX ][uXX ]

−MuXqX [q̇X ][uXX ] +MpX [ṗXX ]

−MpXuX [pXX ][u̇X ]−MpXpX [pXX ][ṗX ]

−MpXqX [pXX ][q̇X ] +MqX [q̇XX ]

−MqXuX [u̇X ][qXX ]−MqXpX [ṗX ][qXX ]

−MqXqX [q̇X ][qXX ] +Mp[ṗX ] +Mq[q̇X ]− γ[üX ] .

(7.4.5)

We have to remove the third derivative terms in equations (7.4.3), (7.4.4) and (7.4.5)

by employing (7.3.7) together with (7.4.2). To achieve this we form the combination

(7.4.3)×Ξ+(7.4.4)×WqXuXMpX −WpXuXMqX

V
+(7.4.5)×WpXuXJqX −WqXuXJpX

V
,
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where as defined in section (7.3) Ξ = MpXJqX − JpXMqX .

We then employ the wave speed equation (7.3.11) to show that a(t) satisfies the

amplitude equation
δa

δt
+
α2

α1

a(t) +
α3

α1

a2(t) = 0 , (7.4.6)

where δa/δt is the rate of change of the amplitude as seen by an observer moving

with the wave and the coefficients αi, i = 1, 2, 3, are given by

α1 =V Ξ2 {WpXuX (MqXζ1 − JqXζ2) +WqXuX (JpXζ2 −MpXζ1)}

+ V Ξ2 {2WuXuXΞ +WqXuXζ5 +WpXuXζ6} ,
(7.4.7)

and

α2 =V 2Ξ2(MqXζ1 − JqXζ2)
{
WpuX − β − βpp+ − γpq+

}
+ V 2Ξ2(JpXζ2 −MpXζ1)

{
WquX − βqp+ − γ − γqq+

}
− ζ3V Ξ(MqXζ1 − JqXζ2)

{
JpV + αV 2

}
− ζ3V Ξ(JpXζ2 −MpXζ1)JqV

− ζ4V Ξ(MqXζ1 − JqXζ2)MpV

− ζ4V Ξ(JpXζ2 −MpXζ1)
{
MqV + β1V

2
}

(7.4.8)
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and

α3 =− Ξ3WuXuXuX − 2WuXuXpXΞ2(MqXζ1 − JqXζ2)

− 2WuXuXqXΞ2(JpXζ2 −MpXζ1)

−WpXpXuXΞ(MqXζ1 − JqXζ2)2

− 2WpXqXuXΞ(MqXζ1 − JqXζ2)(JpXζ2 −MpXζ1)

−WqXqXuXΞ(JpXζ2 −MpXζ1)2

+ ζ3

{
JuXuXΞ2 + 2JpXuXΞ(MqXζ1 − JqXζ2)

}
+ 2JqXuXΞζ3(JpXζ2 −MpXζ1)

+ JpXpXζ3(MqXζ1 − JqXζ2)2

+ 2JpXqXζ3(MqXζ1 − JqXζ2)(JpXζ2 −MpXζ1)

+ JqXqXζ3(JpXζ2 −MpXζ1)2

+ ζ4

{
MuXuXΞ2 + 2MpXuXΞ(MqXζ1 − JqXζ2)

}
+ 2MqXuXΞζ4(JpXζ2 −MpXζ1)

+MpXpXζ4(MqXζ1 − JqXζ2)2

+ 2MpXqXζ4(MqXζ1 − JqXζ2)(JpXζ2 −MpXζ1)

+MqXqXζ4(JpXζ2 −MpXζ1)2 ,

(7.4.9)

where

ζ1 = JuX + βV ,

ζ2 = MuX + γV ,

ζ3 = WqXuXMpX −WpXuXMqX ,

ζ4 = WpXuXJqX −WqXuXJpX ,

ζ5 = MuXJpX −MpXJuX ,

ζ6 = MqXJuX −MuXJqX .

Equation (7.4.6) may be written as

δa

δt
+ λ1a(t) + λ2a

2(t) = 0 , (7.4.10)

where λ1 = α2/α1 and λ2 = α3/α1. Under the conditions that V, λ1 and λ2 are con-

stants ahead of the wave, equation (7.4.10) may be integrated to yield the amplitude
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a(t) as

a(t) =
a(0)

eλ1t + (λ2a(0)/λ1){eλ1t − 1}
. (7.4.11)

The blow-up time is

T =
1

λ1

ln

(
λ2a(0)
λ1

1 + λ2a(0)
λ1

)
. (7.4.12)

For the blow-up,

1) if λ2a(0)/λ1 < −1, we need λ1 > 0, which implies either

(a) λ2 < 0 and a(0) > 0 such that |λ2a(0)| > λ1 , or

(b) λ2 > 0 and a(0) < 0 such that |λ2a(0)| > λ1 ,

2) if λ2a(0)/λ1 > 0, we need λ1 < 0, which implies either

(a) λ2 < 0 and a(0) > 0, or

(b) λ2 > 0 and a(0) < 0.

3) if λ1 = 0, then a(t) satisfies the amplitude equation

δa

δt
+ λ2a

2(t) = 0.

This gives

a(t) =
a(0)

1 + a(0)λ2t
,

a similar case to this has been discussed in Straughan [100]. In which for the blow-

up time, T = −1/a(0)λ2,

if a(0) < 0, we need λ2 > 0, and

if a(0) > 0, we need λ2 < 0.

7.5 Special Case: Given Strain Energy Function

To solve (7.4.10) and obtain some useful information we need to know the strain

energy function W = W (χ), the fluxes, M(χ), J(χ), and the constitutive functions,
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β(p, q) and γ(p, q). Suppose

W (χ) =ι1u
2
X + ι2uXp+ ι3uXq + ι4pq + ι5p

2 + ι7p
2
X

+ ι8pXqX + ι9q
2
X ,

M(χ) =ι10u
2
X + ι11uXp+ ι12uXq + ι13pq + ι14p

2 + ι15q
2

+ ι16p
2
X + ι17pXqX + ι18q

2
X ,

J(χ) =ι19u
2
X + ι20uXp+ ι21uXq + ι22pq + ι23p

2 + ι24q
2

+ ι25p
2
X + ι26pXqX + ι27q

2
X ,

β(p, q) =ι28p
2 + ι29pq + ι30q

2 ,

γ(p, q) =ι31p
2 + ι32pq + ι33q

2 ,

(7.5.1)

for constants ι1, ι2, ..., ι33. Then,

WuX = 2ι1uX + ι2p+ ι3q ,

WuXuX = 2ι1 ,

WuXuXuX = 0 ,

WuXuXpX = WuXuXqX = WpXpXuX = WpXqXuX = WqXqXuX = 0 ,

WpXuX = WqXuX = 0 ,

WpuX = ι2 ,

WquX = ι3.

(7.5.2)

Moreover,

MuX = 2ι10uX + ι11p+ ι12q ,

MuXuX = 2ι10 ,

MpXuX = MqXuX = 0 ,

MpX = 2ι16pX + ι17qX ,

MqX = ι17pX + 2ι18qX ,

Mp = ι11uX + ι13q + 2ι14p ,

Mq = ι12uX + ι13p+ 2ι15q ,

MpXpX = 2ι16 ,

MpXqX = ι17 ,

MqXqX = 2ι18 ,

(7.5.3)
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and

JuX = 2ι19uX + ι20p+ ι21q ,

JuXuX = 2ι19 ,

JpXuX = JqXuX = 0 ,

JpX = 2ι25pX + ι26qX ,

JqX = ι26pX + 2ι27qX ,

Jp = ι20uX + ι22q + 2ι23p ,

Jq = ι21uX + ι22p+ 2ι24q ,

JpXpX = 2ι25 ,

JpXqX = ι26 ,

JqXqX = 2ι27.

(7.5.4)

While the derivatives of the constitutive functions β(p, q) and γ(p, q) are

βp = 2ι28p+ ι29q ,

βq = ι29p+ 2ι30q ,

βpq = ι29 ,

γp = 2ι31p+ ι32q ,

γq = ι32p+ 2ι33q ,

γpq = ι32.

(7.5.5)

Then, by using (7.5.2)-(7.5.5), it follows that the wave speed is

V =

√
2ι1
ρ
. (7.5.6)

Whereas the amplitude equation is

δa

δt
+
α2

α1

a(t) =
δa

δt
+ λ1a(t) = 0 , (7.5.7)

because α3 = 0 and

α1 =2(2ι1)Ξ3

√
2ι1
ρ

,

α2 =
2ι1
ρ

Ξ2(MqXζ1 − JqXζ2)
{
WpuX − β − βpp+ − γpq+

}
+

2ι1
ρ

Ξ2(JpXζ2 −MpXζ1)
{
WquX − βqp+ − γ − γqq+

}
,

(7.5.8)
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for

Ξ =MpXJqX − JpXMqX

=(2ι16ι26 − 2ι17ι25)p2
X + (4ι16ι27 − 4ι18ι25)pXqX + (2ι17ι27 − 2ι18ι26)q2

X ,
(7.5.9)

and

ζ1 =2ι19uX + ι20p+ ι21q

+

√
2ι1
ρ

(ι28p
2 + ι29pq + ι21q

2) ,

ζ2 =2ι10uX + ι11p+ ι12q

+

√
2ι1
ρ

(ι31p
2 + ι32pq + ι33q

2) ,

ζ3 =ζ4 = 0 ,

ζ5 =(4ι10ι25 − 4ι16ι19)uXpX + (2ι10ι26 − 2ι17ι19)uXqX

+ (2ι11ι25 − 2ι16ι20)ppX + (ι11ι26 − ι17ι20)pqX

+ (2ι12ι25 − 2ι16ι21)qpX + (ι12ι26 − ι17ι21)qqX ,

ζ6 =(2ι17ι19 − 2ι10ι26)uXpX + (4ι18ι19 − 4ι10ι27)uXqX

+ (ι17ι20 − ι11ι26)ppX + (2ι18ι20 − 2ι11ι27)pqX

+ (ι17ι21 − ι12ι26)qpX + (2ι18ι21 − 2ι12ι27)qqX .

(7.5.10)

Therefore, the amplitude equation (7.5.7) gives

ln a(t)− ln a(0) = −λ1t , (7.5.11)

which implies

a(t) = a(0)e−λ1t. (7.5.12)

From (7.5.12), we see that a(t) will decay exponentially in time if λ1 > 0 and will

grow up in time if λ1 < 0.



Chapter 8

Three-Dimensional Acceleration

Waves in Non-Linear Double

Porosity Materials

8.1 Introduction

In the previous chapter (7), we derived the equations governing the wavespeed and

the amplitudes of an acceleration wave in a one-dimensional model describing the

behaviour of a nonlinear elastic body containing a double porosity structure. While

this is very useful and leads to important results, the overall situation is more

complicated as a wave moves in a three-dimensional body. Here, we are investigating

the propagation of an acceleration wave in three-dimensional fully nonlinear model.

Let B0 be a body deformed from a reference configuration at time t = 0 into a

new configuration at time t. Denote the points in the reference configuration by XA,

where A = 1, 2, 3. The mapping to the new configuration denoted by

xi = xi(XA, t). (8.1.1)

By referring to the reference configuration, the displacement u of a typical particle

moving from X in the reference configuration to x at time t is

ui(XA, t) = xi(XA, t)−Xi. (8.1.2)

149
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The deformation gradient tensor is

FiA =
∂xi
∂XA

, (8.1.3)

which leads to the displacement gradient

ui,A =
∂ui
∂XA

=
∂xi
∂XA

− ∂Xi

∂XA

= FiA − δiA. (8.1.4)

We consider the theory of double porosity elastic materials based on an internal

strain energy function W. The basic equations involve the elastic displacement,

ui(XA, t), the fluid pressure associated with the macro pores, p(XA, t), and the

fluid pressure associated with the micro pores, q(XA, t). The governing equations of

double porosity elastic materials in three dimensions are

ρüi =
∂

∂XA

(
∂W

∂ui,A

)
− ∂

∂XA

(βiAp)−
∂

∂XA

(γiAq) ,

αṗ =
∂JA
∂XA

− λ(p− q)− βiA
∂u̇i
∂XA

,

β1q̇ =
∂MA

∂XA

+ λ(p− q)− γiA
∂u̇i
∂XA

.

(8.1.5)

In these equations W is the strain energy function, JA and MA are the fluxes as-

sociated with the macro and micro pores, respectively, referred to the reference

configuration. For constitutive theory, we use the list of variables

χ = ui,A , p,A , q,A , p , q ,

and suppose that

W = W (χ), JA = JA(χ), and MA = MA(χ) , (8.1.6)

and

βiA = βiA(p, q) and γiA = γiA(p, q). (8.1.7)

8.2 Acceleration Waves

An acceleration wave for a system of a non-linear double porosity elastic material in

three dimensions is defined as a surface S such that ui(XA, t), p(XA, t), q(XA, t) are
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C1 everywhere and the second and higher derivatives of ui(XA, t), p(XA, t), q(XA, t)

are allowed to have finite discontinuities across the surface S.

The amplitudes ai(t), P (t), Q(t) of the three dimensional acceleration wave are de-

fined by

ai(t) = [üi], P (t) = [p̈(t)], Q(t) = [q̈(t)].

To find the wave speed of an acceleration wave, we begin with equations (8.1.5). By

the chain rule, employing the relations(8.1.6), system (8.1.5) may be rewritten as

ρüi =
∂2W

∂ui,A∂uj,B

∂2uj
∂XA∂XB

+
∂2W

∂ui,A∂p,B

∂2p

∂XA∂XB

+
∂2W

∂ui,A∂q,B

∂2q

∂XA∂XB

+
∂2W

∂ui,A∂p

∂p

∂XA

+
∂2W

∂ui,A∂q

∂q

∂XA

− βiA
∂p

∂XA

− ∂βiA
∂p

∂p

∂XA

p

− ∂βiA
∂q

∂q

∂XA

p− γiA
∂q

∂XA

− ∂γiA
∂p

∂p

∂XA

q − ∂γiA
∂q

∂q

∂XA

q ,

αṗ =
∂JA
∂ui,C

∂2ui
∂XC∂XK

+
∂JA
∂p,C

∂2p

∂XC∂XK

+
∂JA
∂q,C

∂2q

∂XC∂XK

+
∂JA
∂p

∂p

∂XK

+
∂JA
∂q

∂q

∂XK

− λ(p− q)− βiA
∂u̇i
∂XA

,

β1q̇ =
∂MA

∂ui,C

∂2ui
∂XC∂XK

+
∂MA

∂p,C

∂2p

∂XC∂XK

+
∂MA

∂q,C

∂2q

∂XC∂XK

+
∂MA

∂p

∂p

∂XK

+
∂MA

∂q

∂q

∂XK

+ λ(p− q)− γiA
∂u̇i
∂XA

.

(8.2.1)

General compatibility relations for a function f(X, t) are needed across the surface

S, cf. Chen [21] and Straughan [100]. If f is continuous in R3 but its derivative is

discontinuous across S then

[f,A] = NAB where B = [NRf,R]. (8.2.2)

When f ∈ C1(R3) then

[f,AB] = NANBC where C = [NRNSf,RS]. (8.2.3)

In (8.2.2) and (8.2.3), NA refers to the unit normal to S in the reference configuration

and [f ] is the jump of a function across the wave as defined in chapter (7), equation

(7.3.1).

To proceed we evaluate equations (8.2.1) on either side of S by taking the jump,

employing the definition of the acceleration wave S, and the constitutive theory
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(8.1.6) to obtain

ρ[ui,tt] = Wui,Auj,BN
ANB[uj,RSN

RNS]

+Wui,Ap,BN
ANB[p,RSN

RNS]

+Wui,Aq,BN
ANB[q,RSN

RNS] ,

0 =
∂JA
∂ui,C

NANC [ui,RSN
RNS] +

∂JA
∂p,C

NANC [p,RSN
RNS]

+
∂JA
∂q,C

NANC [q,RSN
RNS]− βiANA[u̇i,CN

C ] ,

0 =
∂MA

∂ui,C
NANC [ui,RSN

RNS] +
∂MA

∂p,C
NANC [p,RSN

RNS]

+
∂MA

∂q,C
NANC [q,RSN

RNS]− γiANA[u̇i,CN
C ].

(8.2.4)

The relation corresponding to the Hadamard formula (7.3.5) in three dimensions is

δ

δt
[f ] =

[
ḟ
]

+ UN
[
NAf,A

]
, (8.2.5)

where δ/δt denotes the time derivative at the wave, ḟ = ∂f/∂t|X, f,A = ∂f/∂XA,

and UN is the speed at the point on S with unit normal NA.

Since ui, p, q ∈ C1(R3), [ui,t] = 0, [ui,A] = 0, [pt] = 0, [p,A] = 0, [qt] = 0, [q,A] = 0,

so employing the Hadamard relation in three dimensions, i.e. equation (8.2.5), we

obtain

0 =
δ

δt
[ui,t] = [ui,tt] + UN [NAu̇i,A] , 0 =

δ

δt
[ui,A] = [u̇i,A] + UN [NBui,AB] ,

0 =
δ

δt
[p,t] = [p,tt] + UN [NAṗ,A] , 0 =

δ

δt
[p,A] = [ṗ,A] + UN [NBp,AB] ,

0 =
δ

δt
[q,t] = [qtt] + UN [NAq̇,A] , 0 =

δ

δt
[q,A] = [q̇,A] + UN [NBq,AB] .

(8.2.6)

Thus,

[üi] = −UN [NAu̇i,A]. (8.2.7)

which implies

[NAu̇i,A] = − ai
UN

, (8.2.8)

and

[NAu̇i,A] = −UN [NANBui,AB]. (8.2.9)

Combining (8.2.7) and (8.2.9) gives

[üi] = U2
N [NANBui,AB], (8.2.10)
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likewise

[p̈] = U2
N [NANBp,AB], (8.2.11)

and

[q̈] = U2
N [NANBq,AB]. (8.2.12)

Using relations (8.2.7)− (8.2.12) in (8.2.4) we derive the three jump equations(
ρδijU

2
N −Wui,Auj,BN

ANB
)
aj(t) = Wui,Ap,BN

ANBP (t) +Wui,Aq,BN
ANBQ(t) ,(

∂JA
∂ui,C

NANC + βiAN
AUN

)
ai(t) = − ∂JA

∂p,C
NANCP (t)− ∂JA

∂q,C
NANCQ(t) ,(

∂MA

∂ui,C
NANC + γiAN

AUN

)
ai(t) = −∂MA

∂p,C
NANCP (t)− ∂MA

∂q,C
NANCQ(t).

(8.2.13)

Let

ξ2 =
∂JA
∂q,C

NANC , ξ1 =
∂JA
∂p,C

NANC ,

µ2 =
∂MA

∂p,C
NANC , µ1 =

∂MA

∂q,C
NANC ,

Σ = ξ1µ1 − ξ2µ2 ,

Γi =  Li + γiAN
AUN and Λi = Ki + βiAN

AUN ,

where

Ki =
∂JA
∂ui,C

NANC and  Li =
∂MA

∂ui,C
NANC .

Then equations (8.2.13) may be rewritten in the form(
ρδijU

2
N −Qij

)
aj(t) = PiP (t) +QiQ(t) ,

Λiai(t) = −ξ1P (t)− ξ2Q(t) ,

Γiai(t) = −µ2P (t)− µ1Q(t) ,

(8.2.14)

where the terms Qij, Pi, and Qi are given by

Qij = Wui,Auj,BN
ANB , Pi = Wui,Ap,BN

ANB , Qi = Wui,Aq,BN
ANB .

Solving for P (t) and Q(t) in terms of ai(t) only from equations (8.2.14)2 and

(8.2.14)3, i.e. ξ1 ξ2

µ2 µ1

P (t)

Q(t)

 =

−Λiai

−Γiai

 ,



8.2. Acceleration Waves 154

implies P (t)

Q(t)

 =
1

Σ

 µ1 −ξ2

−µ2 ξ1

−Λiai

−Γiai

 ,

which yields

P (t) =

(
ξ2Γi − µ1Λi

Σ

)
ai(t) , (8.2.15)

and

Q(t) =

(
µ2Λi − ξ1Γi

Σ

)
ai(t) . (8.2.16)

Substitute the expressions (8.2.15) and (8.2.16) into equation (8.2.14)1 to obtain

(
ρδijU

2
N −Qij

)
aj(t) =

Pi
Σ

{
ξ2

(
 Lj + γjAN

AUN
)
− µ1

(
Kj + βjAN

AUN
)}
aj(t)

+
Qi

Σ

{
µ2

(
Kj + βjAN

AUN
)
− ξ1

(
 Lj + γjAN

AUN
)}
aj(t) ,

(8.2.17)

Equation (8.2.17) may be written as a wavespeed relation as follows

Rijaj = ρδijU
2
Naj , (8.2.18)

where

Rij = Qij +
Pi
Σ

{
ξ2

(
 Lj + γjAN

AUN
)
− µ1

(
Kj + βjAN

AUN
)}

+
Qi

Σ

{
µ2

(
Kj + βjAN

AUN
)
− ξ1

(
 Lj + γjAN

AUN
)}
.

(8.2.19)

Relation (8.2.18) is an eigenvalue/eigenvector equation. The wavespeeds U2
N are the

eigenvalues of Rij and aj are the eigenvectors. This equation governs the propagation

of a nonlinear acceleration wave and yields the wavespeed in three dimensions. Since

the reference configuration B0 is deformed to a new current configuration B, it means

that there is an applied transformation to the surface S. Moreover, when applying

a transformation to the surface S it is useful to derive normals ni for the resulting

surface s in the current configuration from the original normals NA.

The transformation is well known, cf. Chen [21] Eq.(4.10) and Gentile & Straughan

[35],

NA = FiAni
|∇xs|
|∇XS|

. (8.2.20)
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We use this in all the expressions in Rij to write Rij = Rij(ni). So, we write

Qij =
∂2W

∂uj,B∂ui,A
NANB

= Wuj,Bui,AFrAnrFtBnt

(
|∇xs|
|∇XS|

)2

= Qij(ni) .

(8.2.21)

Then we have to write

Pi = Wui,Ap,BN
ANB

= Wui,Ap,BFrAnrFtBnt

(
|∇xs|
|∇XS|

)2

= Pi(ni) ,

(8.2.22)

and

Qi = Wui,Aq,BN
ANB

= Wui,Aq,BFrAnrFtBnt

(
|∇xs|
|∇XS|

)2

= Qi(ni) .

(8.2.23)

Then we write (8.2.14)1 as

(
ρδijU

2
N −Qij(ni)

)
aj(t) = Pi(ni)P (t) +Qi(ni)Q(t) , (8.2.24)

and then

Rij(n)aj = ρδijU
2
Naj , (8.2.25)

defines the correct relation from which we may deduce the existence of a plane ac-

celeration wave that may propagate if aj is an eigenvector of Rij(ni).

The wavespeed may be calculated if we know the direction of an acceleration

wave, say aj = amj, where mj is the unit vector in the direction of aj.

Taking the inner product of (8.2.25) with mi one may solve for the wavespeed as

U2
N =

Rijmimj

ρ
. (8.2.26)
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However, Rij involves UN so the wavespeed equation is

ρU2
N =Qijmimj +

Pi
Σ

(ξ2  Ljmimj − µ1Kjmimj)

+
Qi

Σ
(µ2Kjmimj − ξ1  Ljmimj)

+ UN
Pi
Σ

{
ξ2γjAN

Amimj − µ1βjAN
Amimj

}
+ UN

Qi

Σ

{
µ2βjAN

Amimj − ξ1γjAN
Amimj

}
,

(8.2.27)

which may be written as

ρU2
N + A1UN + A2 = 0 , (8.2.28)

thus, the speed of the wave is

UN = −A1

2ρ
+

√
A2

1

4ρ2
+
A2

ρ
, (8.2.29)

where

A1 =
Pi
Σ

{
µ1βjAN

Amimj − ξ2γjAN
Amimj

}
+
Qi

Σ

{
ξ1γjAN

Amimj − µ2βjAN
Amimj

}
,

and

A2 = Qijmimj +
Pi
Σ

(ξ2  Ljmimj − µ1Kjmimj) +
Qi

Σ
(µ2Kjmimj − ξ1  Ljmimj) .

Equation (8.2.28) allows for two waves, a right moving one and a left moving one.



Chapter 9

Conclusions and Future Work

Convection in porous media, particularly double-diffusive convection in porous me-

dia, has attracted our attention due to its wide range of applications in geological

process and a variety of geotechnical applications, cf. Malashetty & Biradar [60].

We worked on a model of thermosolutal convection in porous media proposed

by Pritchard & Richardson [83], Wang & Tan [124], and Malashetty & Biradar [60]

and a generalization. They used the linear instability technique to investigate the

stability of the systems. We used the energy method to obtain the space of definite

stability because the linear instability technique guarantees instability but it does

not specify any information about stability.

In chapters 2 and 3 we studied continuous dependence of the Darcy and the

Brinkman thermosolutal convection on reaction. This investigation was needed to

assess and study the properties of the models before the numerical work which

follows in chapters 4 - 6. We obtained the nonlinear boundaries numerically using

the energy method. Our study reveals regions of potential sub-critical instability

when there is a reaction as we have shown in chapter 4 for the Darcy porous medium

and chapter 5 for the Brinkman porous medium. In chapter 6 our investigation shows

that the mechanical anisotropy parameter has opposite effect to that of the thermal

anisotropy parameter on the stability of the Darcy thermosolutal convection system,

in which we have restricted our consideration to the horizontal isotropic porous

medium.

For further work, one may use the energy method to study the stability of the
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reactive Brinkman thermosolutal convection with anisotropic permeability and ther-

mal diffusivity. There are more than one form in which one may consider for

the mechanical and thermal anisotropy parameters, the horizontal isotropic form

mij = diag{m,m,m33} or the general form mij = diag{m11,m22, 1}. We may refer

the reader to an article on nonlinear thermal convection in anisotropic porous media

by Kvernvold & Tyvand [51] and the references therein. Moreover, one may consider

the configuration of Tyvand & Storesletten [119] and Straughan & Walker [111] for

the permeability. These writers studied a porous medium in which the permeability

is transversely isotropic.

Regarding a deformed skeleton, we investigated the behaviour and the amplitude

of a one-dimensional acceleration wave in non-linear double porosity materials in

chapter 7 and we analysed the wave speed in three-dimensions in chapter 8. A

further extension to this work is to obtain the amplitude equations for the three-

dimensional acceleration waves in nonlinear double porosity materials, cf. Chen

[21], Chen [20], and Lindsay & Straughan [55]. There are many application areas

for multi-porosity elasticity, for example carbon sequestration in fissured aquifers,

capacitive de-ionization water treatment process employing dual porosity electrodes,

and many other applications, cf. Straughan [107] and the references therein.

Another possibility and interesting opportunity would be to study the behaviour

of the acceleration waves in triple porosity elastic materials, cf. Straughan [108],

Straughan [107], Svanadze [115], and Svanadze [114]. One may examine the be-

haviour of the acceleration waves for different forms of the terms representing con-

nectivity between the pressures in the various pore scales as modelled by Straughan

[107].
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Appendix A

Useful Expressions

In section 1.1, we recalled two lemmas due to their usefulness in the qualitative

stability analysis. Here, we are introducing the derivation of the identities used in

our qualitative analysis by providing the proofs of the lemmas.

A.1 The Proof of lemma 1

Proof : To derive the Rellich Identity we begin by writing∫
Ω

xiφ,i∆φ = 0, (A.1.1)

which can be written as ∫
Ω

xiφ,iφ,kk = 0, (A.1.2)

upon integration of (A.1.2) by parts, we obtain∫
Ω

∂

∂xk
(xiφ,iφ,k) dV −

∫
Ω

φ,k
∂

∂xk
(xiφ,i) dV = 0,

using the Divergence Theorem, implies∮
Γ

xiφ,inkφ,kdA−
∫

Ω

φ,kφ,ixi,kdV −
∫

Ω

φ,kxiφ,ikdV = 0,

which can be written as∮
Γ

xiφ,inkφ,kdA−
∫

Ω

φ,kφ,ixi,kdV −
1

2

∫
Ω

xi
∂

∂xi
(φ,kφ,k) dV = 0. (A.1.3)
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Integrating by parts on the last term of (A.1.3) and with the aid of the Divergence

Theorem, we obtain∮
Γ

xiφ,inkφ,kdA−
∫

Ω

φ,kφ,ixi,kdV −
1

2

∮
Γ

xiniφ,kφ,kdA+
1

2

∫
Ω

xi,iφ,kφ,kdV = 0.

Using the fact that xi,k = δik, we see∮
Γ

xiφ,i
∂φ

∂n
dA+

1

2

∫
Ω

φ,kφ,kdV −
1

2

∮
Γ

xiniφ,kφ,kdA = 0,

which can be written as∮
Γ

xiφ,i
∂φ

∂n
dA+

1

2
‖∇φ‖2 − 1

2

∮
Γ

xini|∇φ|2dA = 0. (A.1.4)

Employing the fact that on the boundary Γ, the gradient of φ is defined as

∇φ = ∇sφ+ n
∂φ

∂n
, (A.1.5)

where ∇sφ are the components of the surface gradient vector. Using (A.1.5) in

(A.1.4), we obtain∮
Γ

xini

(
∂φ

∂n

)2

dA+

∮
Γ

x.∇sφ
∂φ

∂n
dA+

1

2
‖∇φ‖2 − 1

2

∮
Γ

xini|∇φ|2dA = 0. (A.1.6)

Squaring both sides of (A.1.5), leads to

|∇φ|2 = |∇sφ|2 + 2∇sφ.n
∂φ

∂n
+

(
∂φ

∂n

)2

, (A.1.7)

since ∇sφ and ni
∂φ
∂n

are orthogonal vectors on the surface, their product is zero.

Therefore, (A.1.7) will be

|∇φ|2 = |∇sφ|2 +

(
∂φ

∂n

)2

. (A.1.8)

Now, employing (A.1.8) in (A.1.6) we obtain∮
Γ

xini

(
∂φ

∂n

)2

dA+

∮
Γ

x.∇sφ
∂φ

∂n
dA+

1

2
‖∇φ‖2

−1

2

∮
Γ

xini|∇sφ|2dA−
1

2

∮
Γ

xini

(
∂φ

∂n

)2

dA = 0,

(A.1.9)

which can be written as

1

2

∮
Γ

xini

(
∂φ

∂n

)2

dA+
1

2
‖∇φ‖2 =

1

2

∮
Γ

xini|∇sφ|2dA−
∮

Γ

x.∇sφ
∂φ

∂n
dA

≤ 1

2

∮
Γ

xini|∇sφ|2dA
(A.1.10)
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Assume that Ω is star shaped so that xini ≥ K0 > 0 on Γ and also xini ≤ B0 on Γ,

where K0 and B0 are constants. Therefore, from inequality (A.1.10) we may show

that

K0

∮
Γ

(
∂φ

∂n

)2

dA+ ‖∇φ‖2 ≤
∮

Γ

xini

(
∂φ

∂n

)2

dA+ ‖∇φ‖2

≤
∮

Γ

xini|∇sφ|2dA

≤ B0

∮
Γ

|∇sφ|2dA,

from which we conclude that

‖∇φ‖2 +K0

∮
Γ

(
∂φ

∂n

)2

dA ≤ B0

∮
Γ

|∇sφ|2dA. (A.1.11)

This ends the proof. 2

A.2 The Proof of lemma 2

Proof : To prove the inequality (1.1.9), we begin by writing∫
Ω

ψφ∆φdV = 0.

Using integration by parts, gives∫
Ω

∂

∂xi

(
ψφ

∂φ

∂xi

)
dV −

∫
Ω

∂

∂xi
(ψφ)

∂φ

∂xi
dV = 0. (A.2.1)

Applying the Divergence Theorem to the first term, we obtain∮
Γ

ψφ
∂φ

∂n
dV −

∫
Ω

∂

∂xi
(ψφ)

∂φ

∂xi
dV = 0. (A.2.2)

Since ψ = 0 on Γ, condition (1.1.8)2, the first term of (A.2.2) is zero, implying that∫
Ω

∂

∂xi
(ψφ)

∂φ

∂xi
dV = 0. (A.2.3)

Equation (A.2.3) may be written as∫
Ω

ψ,iφφ,idV +

∫
Ω

ψφ,iφ,idV = 0. (A.2.4)

Handling the first term of (A.2.4), we see∫
Ω

ψ,iφφ,idV =

∫
Ω

∂

∂xi
(ψ,iφφ) dV −

∫
Ω

ψ,iiφ
2dV −

∫
Ω

ψ,iφ,iφdV,
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which implies that

2

∫
Ω

ψ,iφφ,idV =

∫
Ω

∂

∂xi

(
ψ,iφ

2
)
dV −

∫
Ω

ψ,iiφ
2dV. (A.2.5)

Applying the Divergence Theorem to the first term in the right hand side of (A.2.5)

and employing condition (1.1.8)1 to the second term, we obtain∫
Ω

ψ,iφφ,idV =
1

2

∮
Γ

φ2∂ψ

∂n
dA+

1

2

∫
Ω

φ2dV. (A.2.6)

Substituting (A.2.6) in (A.2.4), gives

1

2

∮
Γ

φ2∂ψ

∂n
dA+

1

2

∫
Ω

φ2dV +

∫
Ω

ψφ,iφ,idV = 0, (A.2.7)

which can be written as

2 (ψ∇φ,∇φ) + ‖φ‖2 = −
∮

Γ

φ2∂ψ

∂n
dA

≤ ψ1

∮
Γ

M2dA,

in which (1.1.10) and (1.1.6)2 have been used.

This ends the proof. 2



Appendix B

The Chebyshev Tau Method

Throughout this thesis, we have used the Chebyshev Tau method to solve the eigen-

value problems numerically. In this appendix we will introduce the Chebyshev poly-

nomials and their properties which make them useful to apply and solve the equa-

tions. Then we will show how this technique work by applying it to a differential

system of equations.

B.1 Chebyshev Polynomials

Chebyshev polynomials are a sequence of orthogonal polynomials which are related

to de Moivre’s formula and which can be defined recursively. In the study of differ-

ential equations they arise as the solution to the Chebyshev differential equations

(1− x2)y88 − xy8 + n2y = 0.

The Chebyshev polynomials of the nth degree, Tn : [−1, 1]→ [−1, 1], are defined by

Tn(cos(θ)) = cos(nθ); n = {0, 1, 2, 3, ...}. (B.1.1)

The first two polynomials, the polynomial of degree 0 and the polynomial of degree

1, are defined by setting n = 0 and n = 1 respectively in (B.1.1) to find that

T0 = 1,

T1 = cos(θ).
(B.1.2)

176



B.2. Roots and Extrema 177

Then to define the higher degree Chebyshev polynomials recursively, we start by

defining Tn+1 and Tn−1 using the known trigonometric identities, to find that

Tn+1(cos(θ)) = cos((n+ 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ) ,

Tn−1(cos(θ)) = cos((n− 1)θ) = cos(nθ) cos(θ) + sin(nθ) sin(θ) .
(B.1.3)

Adding (B.1.3)1 and (B.1.3)2, we obtain the recurrence relation

Tn+1(cos(θ)) + Tn−1(cos(θ)) = 2 cos(nθ) cos(θ). (B.1.4)

We now use the known polynomials, i.e. T0 and T1, in (B.1.4) to find the higher

degree Chebyshev polynomials. Setting x = cos(θ), (B.1.4) may be written as

Tn+1(x) + Tn−1(x) = 2xTn(x). (B.1.5)

It follows that the full set of Chebyshev polynomials is

T0(x) =1 ,

T1(x) =x ,

T2(x) =2x2 − 1 ,

T3(x) =4x3 − 3x ,

T4(x) =8x4 − 8x2 + 1 ,

T5(x) =16x5 − 20x3 + 5x ,

etc.

(B.1.6)

B.2 Roots and Extrema

A Chebyshev polynomial of degree n has n different roots in the interval [−1, 1].

Using the trigonometric definition and the fact that

cos
(π

2
(2k + 1)

)
= 0 ,

one can easily prove that the roots of Tn are

xk = cos

(
π

2

2k − 1

n

)
; k = 1, 2, ..., n.

The extrema of Tn on the interval −1 ≤ x ≤ 1 are located at

xk = cos

(
k

n
π

)
; k = 0, 1, ..., n.
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The Chebyshev polynomials have extrema at the endpoints, given by

Tn(1) = 1 ,

Tn(−1) = (−1)n.
(B.2.1)

One unique property of the Chebyshev polynomials is that on the interval −1 ≤

x ≤ 1 all of the extrema have values that are either −1 or 1.

B.3 Orthogonality

The fact that the Chebyshev polynomials form a sequence of orthogonal polyno-

mials is employed in the Chebyshev Tau method. In this section we explore the

orthogonality property of the Chebyshev polynomials. We start by considering a

weighted integral of TnTm over the interval [−1, 1].∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0

cos(nθ) cos(mθ)dθ

=
1

2

∫ π

0

[cos ((n+m)θ) + cos (|n−m|θ)] dθ.
(B.3.1)

We consider three cases, n 6= m, n = m = 0, and n = m 6= 0.

Case 1: n 6= m

In this case, we integrate (B.3.1) to obtain∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0

cos(nθ) cos(mθ)dθ

=
1

2

∫ π

0

[cos ((n+m)θ) + cos (|n−m|θ)] dθ

=
1

2

[
sin ((n+m)θ)

n+m
+

sin (|n−m|θ)
|n−m|

]π
0

= 0 .

(B.3.2)

Case 2: n = m = 0

Here, in order to avoid the division by zero we simplify our expression to obtain∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0

cos(nθ) cos(mθ)dθ

=
1

2

∫ π

0

[1 + 1]dθ

= π .

(B.3.3)
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Case 3: n = m 6= 0

In this case, we have to simply the second term before integrating it to avoid the

division by zero. ∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =

∫ π

0

cos(nθ) cos(mθ)dθ

=
1

2

∫ π

0

[cos ((n+m)θ) + 1] dθ

=
1

2

[
sin ((n+m)θ)

n+m
+ θ

]π
0

=
π

2
.

(B.3.4)

Therefore, the Chebyshev polynomials are orthogonal with respect to the weighted

inner product in L2(−1, 1) so that

〈Tn(x), Tm(x)〉 =

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =


0 ; n 6= m ,

π ; n = m = 0 ,

π
2

; n = m 6= 0 .

B.4 Chebyshev Differential Matrices

In this section we will derive the coefficient of the Chebyshev differential matrix D.

A continuously differentiable function defined in (−1, 1) may be expanded in terms

of Chebyshev polynomials such that

f(x) =
∞∑
n=0

fnTn(x) , (B.4.1)

where fn are the coefficients of the expansion. If f is a polynomial of degree n,

then the series will be finite, truncating at n = N th term. The derivatives of f take

similar form to (B.4.1), so that in general

f (k)(x) =
∞∑
n=0

f (k)
n Tn(x) , (B.4.2)

where f (k) is the kth derivative of f , with f (0) = f, and f
(k)
n are the coefficients

related to the Chebyshev expansion of the kth derivative of f .
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We start by differentiating Tn(x) with respect to x so that

dTn(x)

dx
=
dTn
dθ

dθ

dx

=
n sin(nθ)

sin(θ)
,

(B.4.3)

from which we obtain

1

n+ 1
T 8
n+1(x)− 1

n− 1
T 8
|n−1|(x) =

1

sin(θ)
{sin ((n+ 1)θ)− sin ((n− 1)θ)}

= 2 cos(nθ)

= 2Tn(x) , n ≥ 2.

(B.4.4)

When n = 0 we have

T 8
1(x) + T 8

1(x) = 2T0(x) , (B.4.5)

and when n = 1, we need to multiply (B.4.4) by n− 1 we find that

T 8
0(x) = 0. (B.4.6)

Use of (B.1.6) shows that (B.4.5) and (B.4.6) are true and therefore

2Tn(x) =
1

n+ 1
T 8
n+1(x)− 1

n− 1
T 8
|n−1|(x) , for n ≥ 0. (B.4.7)

Therefore,

d

dx

∞∑
n=0

fnTn(x) =
∞∑
n=0

f (1)
n Tn(x)

=
1

2

∞∑
n=0

f (1)
n

{
1

n+ 1
T 8
n+1(x)− 1

n− 1
T 8
|n−1|(x)

}
=

1

2

d

dx

∞∑
n=0

f (1)
n

{
1

n+ 1
Tn+1(x)− 1

n− 1
T|n−1|(x)

}
.

(B.4.8)

So

2
d

dx
(f0T0 + f1T1 + ...) =

d

dx

(
f

(1)
0 (T1 + T1) + f

(1)
1

(
T2

2

)
+ f

(1)
2

(
T3

3
− T1

)
+ · · ·

)
=

d

dx

(
T1(2f

(1)
0 − f

(1)
2 ) +

T2

2
(f

(1)
1 − f

(1)
3 ) +

T3

3
(f

(1)
2 − f

(1)
4 ) + · · ·

)
,

(B.4.9)
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where we have used (B.4.7) and (B.4.6). Equating the coefficients of Ti we have that

2f0 = 0 ,

2f1 = 2f
(1)
0 − f

(1)
2 ,

2f2 =
1

2
(f

(1)
1 − f

(1)
3 ) ,

2f3 =
1

3
(f

(1)
2 − f

(1)
4 ) ,

2f4 =
1

4
(f

(1)
3 − f

(1)
5 ) ,

2f5 =
1

5
(f

(1)
4 − f

(1)
6 ) ,

etc.

(B.4.10)

which leads to the recurrence relation

2jfj = cj−1f
(1)
j−1 − f

(1)
j+1 for j ≥ 1 , (B.4.11)

where c0 = 2 and cj = 1 for j ≥ 1.

Taking the sum of both sides of (B.4.11) from j = n+ 1 to j =∞ where n ≥ 0

such that j + n is odd, i.e.

2
∞∑

j=n+1
j+n=odd

jfj =
∞∑

j=n+1
j+n=odd

cj−1f
(1)
j−1 − f

(1)
j+1

= (cnf
(1)
n − f

(1)
n+2) + (cn+2f

(1)
n+2 − f

(1)
n+4) + (cn+4f

(1)
n+4 − f

(1)
n+6) + · · ·

= cnf
(1)
n ,

(B.4.12)

where we have used the fact that ci = 1 for i ≥ 1, and we have cancelled all the

terms except the first term. It follows that

f (1)
n =

2

cn

∞∑
j=n+1
j+n=odd

jfj . (B.4.13)

Therefore, in general

f (k)
n =

2

cn

∞∑
j=n+1
j+n=odd

jf
(k−1)
j , n ≥ 0 . (B.4.14)
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The Chebyshev expansion of f (k)(x) is now truncated at n = N term to find that

f (k)(x) =
N∑
n=0

f (k)
n Tn(x) + eN+1(x) , (B.4.15)

where eN+1 is the error which is assumed to be small and that there exist a function

f̃ (k)(x) which approximate f (k)(x) so that

f̃ (k)(x) =
N∑
n=0

f̃nTn(x).

If we define a vector f̃ (k) = (f̃
(k)
0 , f̃

(k)
1 , f̃

(k)
2 , f̃

(k)
3 , · · · , f̃ (k)

N )T and then substitute into

the expression (B.4.14) to obtain

f̃ (k)
n =

2

cn

N∑
j=n+1
j+n=odd

jf
(k−1)
j , n ≥ 0 . (B.4.16)

Then we may construct an (N + 1)× (N + 1) upper triangular matrix D such that

f̃ (k) = Df̃ (k−1) where the matrix D is given by

D =



0 1 0 3 0 5 0 7 0 ...

0 0 4 0 8 0 12 0 16 ...

0 0 0 6 0 10 0 14 0 ...

0 0 0 0 8 0 12 0 16 ...

0 0 0 0 0 10 0 14 0 ...

... ... ... ... ... ... ... ... ... ...


. (B.4.17)

(B.4.17) is the first Chebyshev differential matrix. The second differential matrix

D2 is defined by f̃ (k) = D2f̃ (k−2). By matrix multiplication, we expect D2 to be

D2 = D ×D =


0 0 4 0 32 0 108 ...

0 0 0 24 0 120 0 ...

0 0 0 0 48 0 192 ...

... ... ... ... ... ... ... ...

 . (B.4.18)
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To verify this we start from (B.4.14)

f (2)
n =

2

cn

∞∑
j=n+1
j+n=odd

jf
(1)
j

=
2

cn

∞∑
j=n+1
j+n=odd

j
2

cj

∞∑
p=j+1
p+j=odd

pfp

=
4

cn

∞∑
j=n+1
j+n=odd

j

∞∑
p=j+1
p+j=odd

pfp , cj≥1 = 1

=
4

cn
(n+ 1) [(n+ 2)fn+2 + (n+ 4)fn+4 + (n+ 6)fn+6 + · · · ]

+
4

cn
(n+ 3) [(n+ 4)fn+4 + (n+ 6)fn+6 + (n+ 8)fn+8 + · · · ]

+
4

cn
(n+ 5) [(n+ 6)fn+6 + (n+ 8)fn+8 + (n+ 10)fn+10 + · · · ]

+ · · ·

=
4

cn
(n+ 1)(n+ 2)fn+2

+
4

cn
[(n+ 1) + (n+ 3)] (n+ 4)fn+4

+
4

cn
[(n+ 1) + (n+ 3) + (n+ 5)] (n+ 6)fn+6

+
4

cn
[(n+ 1) + (n+ 3) + (n+ 5) + (n+ 7)] (n+ 8)fn+8

+ · · ·

=
4

cn

∞∑
j=n+2

j+n=even

jfj

j−1∑
p=n+1
p+n=odd

p .

(B.4.19)
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We may simplify the finite sum as

j−1∑
p=n+1
p+n=odd

p = (n+ 1) + (n+ 3) + (n+ 5) + (n+ 7) + · · ·+ (j − 1)

=

1
2

(j−n−2)∑
q=0

(n+ 2q + 1)

= (n+ 1)

1
2

(j−n−2)∑
q=0

1 + 2

1
2

(j−n−2)∑
q=0

q

= (n+ 1)

(
1

2
(j − n)

)
+ 2

(
1

2
(j − n− 2)

)
1

2

(
1

2
(j − n)

)
=

1

2
(j − n)

[
(n+ 1) +

(
1

2
(j − n)− 1

)]
=

1

2
(j − n)

[
1

2
n+

1

2
j

]
=

1

4
(j2 − n2).

(B.4.20)

Employing (B.4.20) in (B.4.19), it follows that

f (2)
n =

1

cn

∞∑
j=n+2

j+n=even

j(j2 − n2)fj , n ≥ 0 , (B.4.21)

from which we find that

f
(2)
0 = 4f2 + 32f4 + 108f6 + · · ·

f
(2)
1 = 24f3 + 120f5 + · · ·

f
(2)
2 = 48f4 + 192f6 + · · ·

etc.

(B.4.22)

Similar expressions to (B.4.21) may be found for higher derivatives. Following the

truncation method procedure used to obtain the first differentiation matrix, we find

that (B.4.21) approves the matrix (B.4.18).

The Chebyshev tau method may be used to compute higher order derivative

matrices, detailed explanation of the technique may be found in Dongarra et al. [26].
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B.5 Application of Chebyshev Tau Method

In this section, we will show how to apply the Chebyshev-Tau method to solve the

system (1.2.25) introduced in chapter 1 which is

(D̂2 − a2)2W −Ra2Θ = 0

(D̂2 − a2)Θ +RW = 0 ,
(B.5.1)

where W is the velocity in the ẑ direction, Θ is the temperature, a is the wave

number, and R is the Rayleigh number. The corresponding boundary conditions

D̂W = W = Θ = 0 on ẑ = 0, 1. (B.5.2)

We have to make the transformation from ẑ ∈ (0, 1)→ z ∈ (−1, 1), i.e. z = 2ẑ − 1.

Under this transformation D = d/dz = 2d/dẑ. We have to introduce a variable χ

such that χ = ∆w. Then equations (B.5.1) will be

(4D2 − a2)W − χ = 0

(4D2 − a2)χ−Ra2Θ = 0

(4D2 − a2)Θ +RW = 0 ,

(B.5.3)

we consider (B.5.3) to be an eigenvalue problem with eigenvalue R, and we have to

obtain the critical Rayleigh number Rc.

We expand the functions W,χ,Θ in terms of Chebyshev polynomials such that

W (z) =
∞∑
n=0

WnTn(z), χ(z) =
∞∑
n=0

χnTn(z), Θ(z) =
∞∑
n=0

ΘnTn(z),

W 88(z) =
∞∑
n=0

W (2)
n Tn(z), χ88(z) =

∞∑
n=0

χ(2)
n Tn(z), Θ88(z) =

∞∑
n=0

Θ(2)
n Tn(z) ,

where Wn, Θn, and χn are the coefficients of the expansions. Truncating the expan-

sions in the n = N th term, so that the functions are approximated as

W̃ (z) =
N∑
n=0

WnTn(z), χ̃(z) =
N∑
n=0

χnTn(z), Θ̃(z) =
N∑
n=0

ΘnTn(z),

W̃ 88(z) =
N∑
n=0

W (2)
n Tn(z), χ̃88(z) =

N∑
n=0

χ(2)
n Tn(z), Θ̃88(z) =

N∑
n=0

Θ(2)
n Tn(z) .

(B.5.4)
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The error resulting from this truncation may be expressed as

W̃ (2)(z)− a2W̃ (z)− χ̃(z) = τ1TN−1 + τ2TN ,

χ̃(2)(z)− a2χ̃(z)−Ra2Θ̃(z) = τ3TN−1 + τ4TN ,

Θ̃(2)(z)− a2Θ̃(z)−RW̃ (z) = τ5TN−1 + τ6TN ,

(B.5.5)

where the τ ′is are the error measurements.

Taking the weighted inner product of (B.5.5) with Tj for j = 0, 1, 2, ..., N−2 and us-

ing the orthogonality property of the Chebyshev polynomial on L2(−1, 1) to remove

the τ ′is. In this way we obtain (2N − 2) equations. Then we define vectors W̃ =

(W0,W1,W2, ...,WN)T , χ̃ = (χ0, χ1, χ2, ..., χN)T , and Θ̃ = (Θ0,Θ1,Θ2, ...,ΘN)T , and

make the substitution W̃ (2) = 4D2W̃ , χ̃(2) = 4D2χ̃, and Θ̃(2) = 4D2Θ̃. We may then

write our system in the form

4D2W̃ − a2W̃ − χ̃ = 0 ,

4D2χ̃− a2χ̃ = Ra2Θ̃ ,

4D2Θ̃− a2Θ̃ = RW̃ .

(B.5.6)

We have to add two rows of zeros to the bottom of the matrix D2 To make the matrix

square. Then we have to overwrite these two rows by the boundary conditions, in

which we have to employ the property of the Chebyshev polynomials at −1 and 1,

that

Tn(±1) = (±1)n , T 8
n(±1) = (±1)n−1n2 ,

so that the boundary conditions may be expressed in the form

N∑
n=0

Wn = 0 ,
N∑
n=0

(−1)nWn = 0 ,

N∑
n=0

Θn = 0 ,
N∑
n=0

(−1)nΘn = 0 ,

N∑
n=0

n2Wn = 0 ,
N∑
n=0

(−1)n−1n2Wn = 0 .

Our system is now in the form of a generalised eigenvalue problem, in the form

Ax = RBx, and can be solved using the QZ algorithm, cf. Moler & Stewart
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[67], where x = (W0,W1,W2, ...,WN , χ0, χ1, χ2, ..., χN ,Θ0,Θ1,Θ2, ...,ΘN) and the

matrices A and B are given by

A =



4D2 − a2I −I 0

1, 1, 1, 1, ..., 1 0 · · · 0 0 · · · 0

1,−1, 1, ..., (−1)N 0 · · · 0 0 · · · 0

0 4D2 − a2I 0

0, 1, 4, 9, ..., (N)2 0 · · · 0 0 · · · 0

0, 1,−4, 9,−16, ..., (−1)N−1N2 0 · · · 0 0 · · · 0

0 0 4D2 − a2I

0 · · · 0 0 · · · 0 1, 1, 1, 1, ..., 1

0 · · · 0 0 · · · 0 1,−1, 1, ..., (−1)N



,

B =



0 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

0 0 a2I

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0

I 0 0

0 · · · 0 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0 0 · · · 0



.

For more details, explanation, examples, and implementation of the Chebyshev-Tau

method, we refer the reader to the books of Straughan [99,100], Dongarra et al. [26],

Bourne [14], and Orszag [73].



Appendix C

The Compound Matrix Method

In chapter 5, we employed the Compound Matrix method to solve the Brinkman

thermosolutal convection with reaction system. Below is the list of the 70 Compound

Matrix variables which we generated:

y1 = W1W
8
2W

88
3W

888
4 + · · · y2 = W1W

8
2W

88
3 Θ4 + · · · y3 = W1W

8
2W

88
3 Θ8

4 + · · ·

y4 = W1W
8
2W

88
3 Φ4 + · · · y5 = W1W

8
2W

88
3 Φ8

4 + · · · y6 = W1W
8
2W

888
3 Θ4 + · · ·

y7 = W1W
8
2W

888
3 Θ8

4 + · · · y8 = W1W
8
2W

888
3 Φ4 + · · · y9 = W1W

8
2W

888
3 Φ8

4 + · · ·

y10 = W1W
8
2Θ3Θ8

4 + · · · y11 = W1W
8
2Θ3Φ4 + · · · y12 = W1W

8
2Θ3Φ8

4 + · · ·

y13 = W1W
8
2Θ8

3Φ4 + · · · y14 = W1W
8
2Θ8

3Φ8
4 + · · · y15 = W1W

8
2Φ3Φ8

4 + · · ·

y16 = W1W
88
2W

888
3 Θ4 + · · · y17 = W1W

88
2W

888
3 Θ8

4 + · · · y18 = W1W
88
2W

888
3 Φ4 + · · ·

y19 = W1W
88
2W

888
3 Φ8

4 + · · · y20 = W1W
88
2 Θ3Θ8

4 + · · · y21 = W1W
88
2 Θ3Φ4 + · · ·

y22 = W1W
88
2 Θ3Φ8

4 + · · · y23 = W1W
88
2 Θ8

3Φ4 + · · · y24 = W1W
88
2 Θ8

3Φ8
4 + · · ·

y25 = W1W
88
2 Φ3Φ8

4 + · · · y26 = W1W
88
2 Θ3Θ8

4 + · · · y27 = W1W
888
2 Θ3Φ4 + · · ·

y28 = W1W
888
2 Θ3Φ8

4 + · · · y29 = W1W
888
2 Θ8

3Φ4 + · · · y30 = W1W
888
2 Θ8

3Φ8
4 + · · ·

y31 = W1W
888
2 Φ3Φ8

4 + · · · y32 = W1Θ2Θ8
3Φ4 + · · · y33 = W1Θ2Θ8

3Φ8
4 + · · ·

y34 = W1Θ2Φ3Φ8
4 + · · · y35 = W1Θ8

2Φ3Φ8
4 + · · · y36 = W 8

1W
88
2W

888
3 Θ4 + · · ·

y37 = W 8
1W

88
2W

888
3 Θ8

4 + · · · y38 = W 8
1W

88
2W

888
3 Φ4 + · · · y39 = W 8

1W
88
2W

888
3 Φ8

4 + · · ·

y40 = W 8
1W

88
2 Θ3Θ8

4 + · · · y41 = W 8
1W

88
2 Θ3Φ4 + · · · y42 = W 8

1W
88
2 Θ3Φ8

4 + · · ·

188
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y43 = W 8
1W

88
2 Θ8

3Φ4 + · · · y44 = W 8
1W

88
2 Θ8

3Φ8
4 + · · · y45 = W 8

1W
88
2 Φ3Φ8

4 + · · ·

y46 = W 8
1W

888
2 Θ3Θ8

4 + · · · y47 = W 8
1W

888
2 Θ3Φ4 + · · · y48 = W 8

1W
888
2 Θ3Φ8

4 + · · ·

y49 = W 8
1W

888
2 Θ8

3Φ4 + · · · y50 = W 8
1W

888
2 Θ8

3Φ8
4 + · · · y51 = W 8

1W
888
2 Φ3Φ8

4 + · · ·

y52 = W 8
1Θ2Θ8

3Φ4 + · · · y53 = W 8
1Θ2Θ8

3Φ8
4 + · · · y54 = W 8

1Θ2Φ3Φ8
4 + · · ·

y55 = W 8
1Θ8

2Φ3Φ8
4 + · · · y56 = W 88

1W
888
2 Θ3Θ8

4 + · · · y57 = W 88
1W

888
2 Θ3Φ4 + · · ·

y58 = W 88
1W

888
2 Θ3Φ8

4 + · · · y59 = W 88
1W

888
2 Θ8

3Φ4 + · · · y60 = W 88
1W

888
2 Θ8

3Φ8
4 + · · ·

y61 = W 88
1W

888
2 Φ3Φ8

4 + · · · y62 = W 88
1 Θ2Θ8

3Φ4 + · · · y63 = W 88
1 Θ2Θ8

3Φ8
4 + · · ·

y64 = W 88
1 Θ2Φ3Φ8

4 + · · · y65 = W 88
1 Θ8

2Φ3Φ8
4 + · · · y66 = W 888

1 Θ2Θ8
3Φ4 + · · ·

y67 = W 888
1 Θ2Θ8

3Φ8
4 + · · · y68 = W 888

1 Θ2Φ3Φ8
4 + · · · y69 = W 888

1 Θ8
2Φ3Φ8

4 + · · ·

y70 = Θ1Θ8
2Φ3Φ8

4 + · · ·

The above 70 variables satisfy the 70 differential equations

y81 = RER
a2

γ̃
y2 −RERs

a2

γ̃

(
1∓ λ

2

)
y4

y82 = y3 + y6

y83 = y7 + a2y2 −RE
hλ

2
y4

y84 = y8 + y5

y85 = y9 + (a2 + η)y4 −RE
h

2
y2

y86 = y7 + y16 +

(
2a2 +

1

γ̃

)
y2 +RERs

a2

γ̃

(
1∓ λ

2

)
y11

y87 = y17 +

(
2a2 +

1

γ̃

)
y3 +RER

a2

γ̃
y10 + a2y6 −RE

(
hλ

2

)
y8 +RERs

a2

γ̃

(
1∓ λ

2

)
y13

y88 = y9 + y18 +

(
2a2 +

1

γ̃

)
y4 +RER

a2

γ̃
y11

y89 = y19 +

(
2a2 +

1

γ̃

)
y5 +RER

a2

γ̃
y12 −RERs

a2

γ̃

(
1∓ λ

2

)
y15 + (a2 + η)y8 −RE

h

2
y6

y810 = y20 −RE

(
hλ

2

)
y11

y811 = y12 + y13 + y21
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y812 = y14 + y22 + (a2 + η)y11

y813 = y14 + y23 + a2y11

y814 = y24 + a2y12 −RE

(
hλ

2

)
y15 + (a2 + η)y13 +RE

h

2
y10

y815 = y25 +RE
h

2
y11

y816 = y17 + y36 +RERs
a2

γ̃

(
1∓ λ

2

)
y21

y817 = y37 +RER
a2

γ̃
y20 + a2y16 −RE

hλ

2
y18 +RERs

a2

γ̃

(
1∓ λ

2

)
y23

y818 = y19 + y38 +RER
a2

γ̃
y21

y819 = y39 +RER
a2

γ̃
y22 −RERs

a2

γ̃

(
1∓ λ

2

)
y25 + (a2 + η)y18 −RE

h

2
y16

y820 = y40 + y26 −RE
hλ

2
y21

y821 = y41 + y27 + y23 + y22

y822 = y42 + y28 + y24 + (a2 + η)y21

y823 = y43 + y29 + y24 + a2y21

y824 = y44 + y30 + a2y22 −RE
hλ

2
y25 + (a2 + η)y23 +RE

h

2
y20

y825 = y45 + y31 +RE
h

2
y21

y826 = y46 +

(
2a2 +

1

γ̃

)
y20 −RE

(
hλ

2

)
y27 −RERs

a2

γ̃

(
1∓ λ

2

)
y32

y827 = y47 + y29 + y28 +

(
2a2 +

1

γ̃

)
y21

y828 = y48 + y30 + (a2 + η)y27 +

(
2a2 +

1

γ̃

)
y22 +RERs

a2

γ̃

(
1∓ λ

2

)
y34

y829 = y49 + y30 + a2y27 +

(
2a2 +

1

γ̃

)
y23 +RER

a2

γ̃
y32

y830 = y50 +

(
2a2 +

1

γ̃

)
y24 +RER

a2

γ̃
y33 + a2y28 −RE

(
hλ

2

)
y31 + (a2 + η)y29

+RERs
a2

γ̃

(
1∓ λ

2

)
y35 +RE

h

2
y26
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y831 = y51 +

(
2a2 +

1

γ̃

)
y25 +RER

a2

γ̃
y34 +RE

h

2
y27

y832 = y33 + y52

y833 = y53 −RE

(
hλ

2

)
y34 + (a2 + η)y32

y834 = y54 + y35

y835 = y55 + a2y34 −RE
h

2
y32

y836 = y37 −
(
a4 +

a2

γ̃

)
y2 +RERs

a2

γ̃

(
1∓ λ

2

)
y41

y837 = RER
a2

γ̃
y40 + a2y36 −RE

(
hλ

2

)
y38 −

(
a4 +

a2

γ̃

)
y3 +RERs

a2

γ̃

(
1∓ λ

2

)
y43 +RERy1

y838 = y39 +RER
a2

γ̃
y41 −

(
a4 +

a2

γ̃

)
y4

y839 = RER
a2

γ̃
y42 −RERs

a2

γ̃

(
1∓ λ

2

)
y45 + (a2 + η)y38 −RE

h

2
y36

−
(
a4 +

a2

γ̃

)
y5 −RERs

(
1∓ λ

2λ

)
y1

y840 = y46 −RE

(
hλ

2

)
y41 +RERy2

y841 = y47 + y43 + y42

y842 = y48 + y44 + (a2 + η)y41 −RERs

(
1∓ λ

2λ

)
y2

y843 = y49 + y44 + a2y41 −RERy4

y844 = y50 + a2y42 −RE

(
hλ

2

)
y45 + (a2 + η)y43 −RERy5 +RE

h

2
y40 −RERs

(
1∓ λ

2λ

)
y3

y845 = y51 +RE
h

2
y41 −RERs

(
1∓ λ

2λ

)
y4

y846 = y56 −RE

(
hλ

2

)
y47 +

(
2a2 +

1

γ̃

)
y40 +RERy6 +

(
a4 +

a2

γ̃

)
y10

−RERs
a2

γ̃

(
1∓ λ

2

)
y52

y847 = y57 + y49 + y48 +

(
2a2 +

1

γ̃

)
y41 +

(
a4 +

a2

γ̃

)
y11
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y848 = y58 + y50 + (a2 + η)y47 +

(
2a2 +

1

γ̃

)
y42 −RERs

(
1∓ λ

2λ

)
y6 +

(
a4 +

a2

γ̃

)
y12

+RERs
a2

γ̃

(
1∓ λ

2

)
y54

y849 = y59 + y50 + a2y47 +

(
2a2 +

1

γ̃

)
y43 +RER

a2

γ̃
y52 −RERy8 +

(
a4 +

a2

γ̃

)
y13

y850 = y60 +

(
2a2 +

1

γ̃

)
y44 +RER

a2

γ̃
y53 + a2y48 −RE

(
hλ

2

)
y51 + (a2 + η)y49

+

(
a4 +

a2

γ̃

)
y14 +RERs

a2

γ̃

(
1∓ λ

2

)
y55 −RERy9 +RE

h

2
y46 −RERs

(
1∓ λ

2λ

)
y7

y851 = y61 +

(
2a2 +

1

γ̃

)
y45 +RER

a2

γ̃
y54 +

(
a4 +

a2

γ̃

)
y15 +RE

h

2
y47 −RERs

(
1∓ λ

2λ

)
y8

y852 = y62 + y53 −RERy11

y853 = y63 −RE

(
hλ

2

)
y54 + (a2 + η)y52 −RERy12 −RERs

(
1∓ λ

2λ

)
y10

y854 = y64 + y55 −RERs

(
1∓ λ

2λ

)
y11

y855 = y65 + a2y54 +RERy15 −RE
h

2
y52 −RERs

(
1∓ λ

2λ

)
y13

y856 =

(
a4 +

a2

γ̃

)
y20 −RE

(
hλ

2

)
y57 −RERs

a2

γ̃

(
1∓ λ

2

)
y62 +RERy16

y857 = y59 + y58 +

(
a4 +

a2

γ̃

)
y21

y858 = y60 + (a2 + η)y57 −RERs

(
1∓ λ

2λ

)
y16 +

(
a4 +

a2

γ̃

)
y22 +RERs

a2

γ̃

(
1∓ λ

2

)
y64

y859 = y60 + a2y57 +RER
a2

γ̃
y62 −RERy18 +

(
a4 +

a2

γ̃

)
y23

y860 = RER
a2

γ̃
y63 + a2y58 −RE

(
hλ

2

)
y61 + (a2 + η)y59 +

(
a4 +

a2

γ̃

)
y24

+RERs
a2

γ̃

(
1∓ λ

2

)
y65 −RERy19 +RE

h

2
y56 −RERs

(
1∓ λ

2λ

)
y17

y861 = RER
a2

γ̃
y64 +

(
a4 +

a2

γ̃

)
y25 +RE

h

2
y57 −RERs

(
1∓ λ

2λ

)
y18

y862 = y66 + y63 −RERy21

y863 = y67 −RE

(
hλ

2

)
y64 + (a2 + η)y62 −RERy22 −RERs

(
1∓ λ

2λ

)
y20
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y864 = y68 + y65 −RERs

(
1∓ λ

2λ

)
y21

y865 = y69 + a2y64 +RERy25 −RE
h

2
y62 −RERs

(
1∓ λ

2λ

)
y23

y866 = −
(
a4 +

a2

γ̃

)
y32 +

(
2a2 +

1

γ̃

)
y62 + y67 −RERy27

y867 = −
(
a4 +

a2

γ̃

)
y33 +

(
2a2 +

1

γ̃

)
y63 −RE

(
hλ

2

)
y68 + (a2 + η)y66

−RERs
a2

γ̃

(
1∓ λ

2

)
y70 −RERy28 −RER

(
1∓ λ

2λ

)
y26

y868 = −
(
a4 +

a2

γ̃

)
y34 +

(
2a2 +

1

γ̃

)
y64 + y69 −RERs

(
1∓ λ

2λ

)
y27

y869 = −
(
a4 +

a2

γ̃

)
y35 +

(
2a2 +

1

γ̃

)
y65 +RER

a2

γ̃
y70 + a2y68 +RERy31

−RE
h

2
y66 −RERs

(
1∓ λ

2λ

)
y29

y870 = RERy34 −RERs

(
1∓ λ

2λ

)
y32


