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Abstract 

 

The seismic behaviour of many art objects and obelisks can be analysed in the context of the 

seismic response of rigid blocks. Starting from the pioneering works by Housner, a large number of 

analytical studies of the rigid block dynamics were proposed. In fact, despite its apparent simplicity, 

the motion of a rigid block involves a number of complex dynamic phenomena such as impacts, 

sliding, uplift and geometric nonlinearities. While most of the current strategies to avoid toppling 

consist in preventing rocking motion, in this paper a novel semi-active on-off control strategy for 

protecting monolithic art objects was investigated. The control procedure under study follows a 

feedback-feedforward scheme that is realised by switching the stiffness of the anchorages located at 

the two lower corner of the block between two values. Overturning spectra have been calculated in 

order to clarify the benefits of applying a semi-active control instead of a passive control strategy. In 
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accordance with similar studies, the numerical investigation took into account the dynamic response 

of blocks with different slenderness and size subject to one-sine pulse excitation.  

 

Keywords: Art objects, rigid block, rocking, semi-active control, non-linear system. 

 

1 Introduction 

While many studies and codes are devoted to the seismic protection of existing buildings and in 

particular of museum buildings, the protection of the contents of museums, e.g. art objects on display 

or kept in storage, has received much less attention by the earthquake engineering standards. This 

notwithstanding, in the last years the protection of museum collections against seismic hazard is 

becoming a critical issue. 

The past and recent seismic events have clearly shown the high vulnerability of art objects, and of 

museum contents, even in case of moderate earthquakes. Indeed, the art objects in many museums 

are displayed so that stability is not ensured during seismic events, and storage areas are often 

overloaded without any consideration for the seismic risk. The seismic mitigation of art objects 

requires a multidisciplinary approach in order to find a compromise between safety, conservation and 

exhibition.  

From a structural point of view, the seismic behaviour of art objects can typically be analysed 

within the context of the dynamic response of rigid bodies. The literature counts a large number of 

analytical studies on the non-linear dynamics of rigid blocks, starting from the pioneering work of 

Housner in 1963 [1]. The motion of rigid blocks on a rigid plane can be classified into six types: rest, 

slide, rotation, slide-rotation, translation jump and rotation jump. The equations of motion, transitions 

of motion and the motion after the impact between the block and the floor, in the presence of 

horizontal and vertical accelerations, were investigated by Ishiyama in 1982 [2]. Depending on the 

form and magnitude of the excitation [2] [3] and on the geometry and mass distribution of the 
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objects, the artefacts can experience all the types of motion mentioned above. Among different cases, 

a particular and fundamental role is assumed by the rocking motion that causes objects to fall from 

their supports and/or to collide with other objects.  

To mitigate the damage due to the rocking motion and to limit the probability of overturning, four 

different strategies are currently used [4]: (i) lowering the centre of gravity of the artefacts; (ii) 

adjusting the base-to-height ratio proportions of the art objects; (iii) fixing the objects to the 

floor/wall and (iv) separating the objects from the ground using base isolation devices. The efficacy 

of the first two strategies must be attributed to the dynamics of rigid block. During the rocking 

motion of a rigid block the restoring force is essentially due to its own rotational inertia. Lowering 

the centre of gravity of an artefact allows to increase, for a given value of the horizontal external 

action, the ratio between the restoring and the overturning moment of the system, and consequently 

its stability. The second strategy, i.e. adjusting the base-to-height ratio proportions, can be easily 

explained in terms of slenderness on overturning, a concept introduced for the first time by Housner 

[1] and subsequently investigated by several authors [5] [6]. These two strategies, as well as 

anchoring the objects to the ground, must be used with caution because of the possible high forces 

transmitted to the artefact. In this case, the art object is forced to bend and deform, instead of 

oscillating rigidly around the two corners. Hence, failure due to excessive stress is likely, especially 

in presence of weak and cracked material. 

In contrast to the significant amount of theoretical research on the response of free-standing 

blocks, there are relatively few studies on the response of anchored objects. The in-plane behaviour 

of a rigid block on a rigid plane anchored with elastic-brittle restraints was studied by Dimentberg et 

al. [7] and by Makris et al. [8]. In particular Dimentberg et al. investigated the behaviour of anchored 

blocks excited by white noise, while Makris et al. studied the response of them to pulse-type ground 

motions, showing that there is a finite frequency range where the conclusions drawn by Dimentberg 

et al. do not hold concerning the response. The study about pulse-type excitations inferred that a 
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frequency range exists where a free-standing block has a better performance than an anchored block.  

Passive control strategies were also proposed to reduce the vulnerability of slender rigid blocks. 

For instance Dimitrakopoulos et al. [9] have proposed anchorages endowed with passive dampers 

placed at the lower corners of the block. Instead, this paper presents a few investigations concerning 

semi-active control strategies for blocks anchored with adjustable stiffness. Despite the 3D nature of 

the real rocking motion, in term of geometry and excitation, the numerical simulation performed, at 

this stage of the research are limited to a 2D rocking motion. In more detail, the simulations, 

conducted for blocks with different size and slenderness, were aimed at evaluating the performance 

of the restraint system proposed and of the associated control laws. Overturning was also examined 

in order to draw a few general conclusions. 

2 Model of the block 

Fig. 1(a) depicts a homogeneous rigid block with a rectangular shape in elevation and a 

rectangular footprint resting on a horizontal plane. The geometry of the block, assuming a 2D 

motion, is described by a size parameter          and by the slenderness   =    , while the 

angle  , defined as             , is the so-called critical angle of the block, i.e. the angle beyond 

which the overturning of the object will occur under gravity alone.  

The rocking motion of a rigid block, disturbed from its equilibrium position, starts with the 

rotation of the block about one of its corners. If the restoring force is larger than the toppling one, the 

object will undergo a deceleration in the angular motion, tending to return to the upright position with 

a residual angular velocity. Due to this residual velocity, the block overshoots the equilibrium 

position and begins to rotate about the other corner. The change of rotation centre implies an impact 

between the block and the support and, consequently, energy dissipation and decrease of the block 

angular velocity. This oscillatory motion continues until the impact will dissipate enough energy to 

make the magnitude of the overturning moment    smaller than the restoring one,   . Obviously 

the rocking motion will stop also if overturning occurs.  
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Figure 1 about here 

The governing equations of rocking motion of rigid blocks received a special attention in the 

literature. Housner [1] defined the governing equations of rocking motion of a free-standing rigid 

block (Fig. 1(b)) subject to horizontal and vertical base excitations, taking into account non-linear 

effects. Makris et al. [8] and Dimitrakopoulos et al. [9]  modified these equations in order to consider 

the presence of unilateral elastic-brittle anchorages (Fig. 1(c)) or damper devices (Fig. 1(d)) located 

at the two bottom corners of the rigid block. A brief summary of these dynamic models is reported 

hereinafter. 

2.1 Initial response 

Three different types of motion may characterise the initial response of a rigid block on a rigid 

plane: pure rocking, pure sliding and slide-rock motion [10] [11]. In this work the coefficient of 

friction between the block and its support is assumed to be sufficiently large so that the object enters 

in a pure rocking motion without experiencing any sliding. From an analytical point of view, it is also 

assumed that the following conditions are satisfied by the block (anchored and unanchored) at the 

initial time instant   : 

    
                       

(1)  

    
                      

(2)  

                 
          

     

    
                               

    
(3)  

where:   is the mass of the block;   is the gravitational acceleration;   
      is the horizontal 

ground excitation at time   ;         is the vertical ground excitation at the same time instant and    is 

the coefficient of friction between the block and its support. 

In more detail, Eq. (1) describes analytically the assumption that the toppling moment caused by 

the base excitation at time    is larger than the resisting moment at the same time. Similarly, Eq. (2) 

bounds the horizontal inertia force     
       to be smaller than the maximum friction force (no 
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sliding motion). Finally, Eq. (3) sets the horizontal reaction        at the contact point (either point 0 

or 0′) to be smaller than the friction force          .  This condition must be satisfied to ensure 

bonding at the pivoting point and to avoid sliding motion while the block is rotating on a corner (no 

slide-rock motion). Indeed, the slide-rocking motion occurs when the external force is large enough 

to cause uplift at one corner, but the friction force at the contact point, equal to            is 

insufficient to avoid sliding. 

2.2   Condition to sustain rocking motion 

In order to avoid sliding during the entire duration of the rocking motion, the ratio between 

horizontal reaction       and vertical reaction       exchanged at the contact points (defined as 0 and 

0′ in Fig.1) between the block and the support, always satisfies the following condition: 

 
     

     
     

(4)  

The horizontal and vertical reaction values at the contact points, 0 or 0′, fluctuate with time and 

they can be derived from the dynamic equilibrium in horizontal and vertical directions: 

          
            

(5)  

                        
(6)  

where       is the horizontal acceleration and       is the vertical acceleration of the centre of mass 

of the block.  

2.3 Governing equations of the unanchored rigid block 

The governing equation of motion for the free-standing (FS) rigid object with positive angular 

rotation can be derived by the rotational equilibrium about the corner 0: 

            
                                           

(7)  

where:    is the moment of inertia of the block about 0;   is the distance between the centre of 

rotation and the centre of mass of the block. Similarly, the rocking about 0′ (negative angular 

rotation) is described by: 
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(8)  

By introducing the frequency parameter of the rectangular block, defined as: 

   
   

  
  

  

  
 (9)  

the Eqs. (7) and (8) can be rewritten in a compact form: 

             
      

 
                      

       

 
                        

(10)  

where       denotes the signum function. 

An additional equation, connecting the angular velocities immediately before and after the 

impacts, must couple with Eq. (10), in order to reproduce the full motion of a rigid block subject to a 

generic ground excitation. 

2.4  Energy dissipation at impact 

The rotation centre switches from point 0 to 0’ and vice-versa which implies an impact between 

the block and its support. During the impact there is energy loss and, consequently, the angular 

velocity decreases. Housner [1] derived a model to calculate the angular velocity of the rigid body 

immediately after the impact. This model uses the following assumptions: (i) the impact is punctual; 

(ii) the impact time    is very short; (iii) the block remains in the same position during the impact 

time. Under these assumptions the relationship between the two angular velocities      
   and      

     

immediately before the and after the impact, respectively, can be derived from the principle of 

conservation of the angular moment [12].  

The value of the angular momentum immediately before the impact,       
  , can be written as 

function of the horizontal velocity    and of the position   at time   
  of the centre of gravity  .  

Having defined the unitary vectors    ,    and    as in Fig. 2, the horizontal velocity and the position 

of   immediately before the impact are expressed as: 
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(11)  

    
              

(12)  

whilst, the angular momentum of the block can be written as: 

     
           

          
  

 

                  

               
 

        
     

 
(13)  

which, after integration, becomes: 

     
           

 

 
              

      
(14)  

 Similarly, having defined the position and the horizontal velocity of the block immediately after 

the impact as: 

     
          

      
(15)  

    
        

(16)  

the angular momentum of the block becomes:  

     
          

 

         
      

 

 
         

      
(17)  

Equalling  Eqs. (14)  and (17) , a relationship between the velocity immediately before and after 

the impact is found: 

      
   

     
   

   
 

 
        

(18)  

In the literature   is referred to as coefficient of restitution and it is related to the energy    lost at 

time impact given by the following equation: 

   
 

 
       

    
 

 
       

   
 

 
            

         
     

 

 
                

    
(19)  

In this study, it is assumed that the coefficient of restitution is exactly described by Eq. (19). 

However, in real practice, a discrepancy is observed between the experimental values of   and the 
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theoretical one of Eq. (19).  Some studies have stressed a dependence of   on the interface materials 

[13], the amplitude of oscillation [14] and the velocity immediately before the impacts [15]. 

Therefore, the real values of the coefficient of restitution can be smaller or larger than the theoretical 

one [13] [15] [16] [17].  

In order to evaluate whether after the impact the object will rest or will undergo uplift on the other 

corner, the absolute values of overturning moment    and restoring moment    should be 

compared. The object will rest if the following condition is satisfied: 

          
(20)  

 Excluding bouncing, at time impact the inertia of the body contribute to overturning moment, the 

self-weight to restoring one while the external excitation can intensify the overturning or the 

restoring moment depending on its direction. 

2.5   Governing equations of the anchored rigid block  

The governing equations of the block with unilateral elastic-brittle constant anchorages with 

stiffness   (EBK), see Fig. 1(c), differ from those of the free-standing block due to the presence of an 

additional restoring moment. Fig. 3(c) illustrates the moment-rotation relation for the EBK block, as 

resulting from the moment-rotation relation of the FS block (Fig. 3(a)) plus the contribution of the 

elastic-brittle anchorages (Fig. 3(b)).  

Figure 3 about here 

 

The restoring moment due to the elastic anchorages with respect to the rotation centre is: 

                
    

 
         

    

 
                        

(21)  

 and it turns out to be equal to zero when the rotation of the block is null (            .  

Consequently, the compact form of the governing equation for the anchored block becomes: 
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(22)  

 where:                and                are fracture functions for the right and left elastic-

brittle anchorages, respectively, whereas              and             are two functions used to 

establish which of the two anchorages is working during the rocking motion.  

     defines the maximum negative rotation that the block reached at the generic time  ,      is 

the maximum positive rotation at the same time and      is the rotation angle corresponding to the 

collapse of the working anchorage, and the fracture functions can be defined as: 

                
                   

                  
   

(23)  

                
                  

                 
  

(24)  

Similarly,          and          read: 

             
           

 
  

(25)  

             
           

 
  

(26)  

Eq. (21) reflects a large displacement formulation, accounting for a spring elongation equal to 

              and an eccentricity of                 with respect to the rotation corner. 

The formulation of the problem for restraints with adjustable stiffness remains unchanged. The 

only difference with respect to the block with constant stiffness is that   in Eq. (21) is not constant 

with time and may change in accordance with the control law.  

2.6   Governing equations of the anchored rigid block with dampers  

The governing equation of motion of a rigid block anchored with viscous damper devices (VDD) 

placed at two corners of the block can be obtained, similarly to the previous case, from Eq. (10) by 
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adding the restoring moment due to the working viscous damper device (see Fig. 1(d)). The restoring 

moment of the damper devices around the corner of rotation reads: 

               
    

 
               

    

 
              

    

 
       

(27)  

where   is the damping parameter of the devices.  Eq. (10) can be rewritten as: 

             
      

 
                       

  
    

 
                      

 
     

  
                            

      

  
                           

   

(28)  

where                and                are fracture functions for the right and left damper 

devices, respectively, whereas              and             are functions used to establish which of 

the two devices is working during the rocking motion. Similarly to the formulation of the EBK block, 

            and             are defined as: 

                
                   

                  
  

(29)  

                
                  

                 
  

(30)  

whereas              and             are defined as: 

             
           

 
  

(31)  

             
           

 
  

(32)  

The models described hereinabove are inherently nonlinear. In fact, there are four different causes 

of nonlinearity in the rocking motion of a rigid block:  the change of rotation centre from one edge to 

the other (implying a change of equation of motion); the impact energy dissipation (which induces a 

jump discontinuity in the angular velocity); the geometric effect of the slenderness ratio of the object 

(which  implies the presence of geometric nonlinearity terms in the governing  equation) and the 

coupling of the vertical excitation with the rocking response (entailing a change of conditions to 
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initialize and sustain pure rocking motion). These different sources of nonlinearity were investigated 

by several authors [18] [19]. In addition to this, the presence of the “on-off” stiffness introduces a 

further source of non-linearity in the rocking motion problem. 

 

3 Algorithm and control laws  

3.1  Algorithm description 

Closed form solutions for the rocking response to simple excitation forms are only found in the 

small displacement range. Therefore, the large displacement response of the rigid block subject to 

one-sine pulse has been solved numerically in Matlab®, by integrating Eqs. (10), (22) and (28) 

through a fourth-order Runge-Kutta scheme. The time-step used in the numerical integration was set 

to 0.0025 s.  

Starting from the rest state of the rigid block, the actual corner of rotation, and the equation to 

integrate, is determined using the sign of the horizontal base excitation. In fact, for a positive value of 

  
     , the block starts to rotate around the left corner (negative rotation), while for a negative value 

of horizontal ground acceleration it rotates around the right corner (positive rotation). The same 

equation is used for subsequent time steps until the sign of the rotation   changes. At each step, the 

condition               is checked in order to establish a possible change of rotation corner. If 

the condition is not satisfied, the velocity immediately before the impact,      
  , is evaluated and the 

velocity just after the impact,      
  , is determined by means the Eq. (18). With the initial conditions 

        and              
   the equation of motion on the other corner is used to evaluate the 

motion of the block in the subsequent time interval until the rotation angle   will change again its 

sign. The numerical code has been validated by comparing its solutions with time-histories reported 

for the same blocks and excitations by Housner [1], Makris et al. [20] and Spanos et al. [21]. 
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3.2   Control laws 

The stiffness of the control system is assumed to switch between two fix values,      and       

as a function of the state of the rigid block and of the ground excitation. With the aim to limit the 

rotation of the block, two different control laws have been examined. In both cases the stiffness at the 

generic time     is assigned as a function of the current state of the block and, for the second law, 

also as a function of the sign of the ground excitation. 

The first control law (CL01) minimises the positive work done by the anchorages and maximises 

the negative one. Therefore, the stiffness value of the restraint system during the rocking motion is 

instantaneously assigned in accordance with the following law: 

        
                  

                  
  

(33)  

The second control law (CL02) considered has two different working modes for setting the value 

of       . The first modality consists in minimising the absolute value of the total work, and it 

applies when the block is excited. The second one, which applies in the free oscillations conditions, 

consists in minimising the work done by the anchorage, this time in its signed value. Therefore, 

during the excitation, the stiffness is assigned using the following law: 

        
         

           

         
           

  (34)  

In the free oscillation phase, this control law coincides with the one in Eq. (33).  

Fig. 4 and Fig. 5 depict the normalised time-history of values assumed by the two “on-off” 

anchorages, located at the two lower corners of the block (see  Fig. 1(c)), in accordance with the two 

control laws examined. The block characteristics and the excitations are the same. It is worth noticing 

that the stiffness of the anchorage at the rotation pole is ineffective, thus a zero value was assigned in 

the plots. 

Figure 4 about here 

Figure 5 about here 
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Due to the difference between the positive and the negative work done by the anchorages, this 

type of restraint system dissipates additional energy to that dissipated by impacts.  

In Fig. 6 the phase portrait of the block anchored with the “on-off” elastic brittle anchorages is 

compared with that of the same block equipped with viscous damper devices. To stress the capability 

of the restraint system to dissipate energy, the coefficient of restitution   was assumed equal to one. 

Therefore, the spiral-shaped representation of cycles is to be attributed only to the dissipative 

characteristics of the restraint systems of the block. 

Figure 6 about here 

 

The dissipative properties of the restraint system depend not only on the control law but also on 

the values attributed to      and     . In fact, since the dissipated energy increases with increasing 

     and reducing     , these two values must be chosen as a function of the technology available 

and of the resistance of the artefact in correspondence of the anchorages. Fig. 7 shows the responses 

of a rigid block using the CL02 control law and for different values of      and       

Figure 7 about here 

 In a real practice implementation, the spring model must be intended as a system able to exert a 

time-varying restraint force that depends on the measured value of the uplift. Consequently, an 

equivalent implementation of the proposed control concept consists in replacing the physical springs 

with magnetic devices that can be regulated via a current. 

 

4 Numerical validation of the semi-active control strategy  

This section reports a few examples of the control strategy applied to rigid blocks subject to one-

sine pulse excitations, characterised by different amplitudes,      and frequencies,   . Studying rigid 

blocks under one-sine excitation constitutes the first step towards the control under a generic loading 

(e.g. earthquake).  
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To start with, overturning spectra were utilised to clarify the benefits of semi-active control with 

respect to viscous damper devices or to anchorages with constant stiffness  . The numerical 

investigations regarded the dynamic response of 9 blocks with different size ( ) and slenderness (λ) 

(see Table 1).  

 Table  1 about here 

To evaluate the performance of the “on-off” semi-active control, two systems were compared: (i) a 

block with constant stiffness  , such that       ; (ii) a viscously damped block, with the 

damping parameter   chosen so that its free decay response, in the assumption of no dissipation at 

impacts      , fits the phase portrait of the same block subjected to semi-active control (see Fig. 

6). 

The first assumption implies the same behaviour for the two blocks (EBK block and OOK block) 

during their initial stages of motion (see Fig. 8(a)), thus allowing to appreciate the effect of the “on-

off” control. 

The second condition implies that the amount of energy dissipated by the “on-off” control is 

comparable with the one dissipated by the same block with damper devices (see Fig. 8(b)). However, 

it is worth underlining that the performance of the control is not to be measured in terms of mere 

dissipation, as it reflects a different strategy to prevent overturning. 

Figure 8 about here 

In accordance with previous studies [22],     , and thus  , are chosen so that the failure strength 

of the anchorages,   , which is set at       , corresponds exactly to the critical angle   of the 

blocks. As for     , its value is set to zero (on-off control). 

Regarding the 9 VDD blocks, the damping, obtained from the curve fitting equivalence, resulted 

in similar values for systems having the same frequency parameter p. The values of relative damping, 

defined as                , are reported in Table 2 for the investigated blocks. 
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Table 2 about here 

4.1 Simulation results 

The overturning spectra associated to the 9 blocks are obtained by calculating the responses to 

one-sine pulses characterised by a frequency,     in the range (p, 6p) and an amplitude,    , in the 

range               .  The ranges were chosen so as to appreciate the effect of the anchor 

devices and of the control strategies on the overturning boundaries. It is worth noticing that in such 

plots the domain of interest depends on the block slenderness and size. As an example, for a pulse 

with amplitude and frequency of 1g and 10 Hz respectively, the maximum significant ratio        

can be assumed approximately equal to the block slenderness. Similarly  for blocks with   equal to 

1.8394, 0.8175 and 0.4598 m (see Table 1), the significant values for       can be virtually limited 

to 31, 20 and 15, respectively. 

For each couple of values,    and     , a point of the safe or unsafe area of overturning spectra is 

obtained, depending to whether or not overturning occurs. 

From numerical simulations a substantial overlapping of the overturning spectra for blocks with 

the same slenderness and different size was found, independently of the restraint conditions (FS, 

EBK, etc.). For example, Fig. 9(a) superimposes the overturning spectra of two free-standing blocks, 

(BLC02 and BLC05) having the same slenderness but different size (see Table 1 for more details). 

The unsafe area of the BLC05, defined by the magenta boundary, is seen to fit approximately the 

unsafe area of the BLC02 identified by the dotted area.  One may notice that Fig. 9(a) conveys 

information only on the occurrence of toppling, while nothing can be inferred about the actual nature 

of the responses. Indeed, the rotation time-histories of the two blocks subject to the same excitation 

(       and         ) present a difference in form of a stretching of the response in the time 

axis  (see comparison in Fig. 9(b)) .  

Makris et al. [8]  introduced a useful representation in terms of overturning spectra of blocks. 

Similarly, the overturning spectra reported in Fig. 9(a) identify two different unsafe regions, in 
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accordance with previous works [8] [20][22]: (i) unsafe area, mode 1, corresponding to overturning 

after one impact and (ii) unsafe area, mode 2, corresponding to overturning without impact.  

Figure 9 about here 

 Based on the previous comments to Fig. 9(a), the results referred to three blocks with the same 

size ( ) and different slenderness ( ), BLC04, BLC05 and BLC06, are reported in order to evaluate 

the performance of the semi-active control strategies.  

Fig. 10 depicts the overturning spectra of three blocks controlled according the two laws in Eq. 

(33) and Eq. (34) (CL01 and CL02, respectively).   

Figure 10 about here 

Fig. 10 shows that for all the blocks the use of semi-active control, independently of the control 

law utilised, has no effect on the domain associated to overturning without impact (mode 2). Instead, 

real time adjustment of the anchorages stiffness affects the extension of the unsafe area referred to 

the first overturning mode.  From Fig. 10 one may observe the superiority in performance of the 

second control law (CL2). Indeed, the clear reduction in the unsafe area supports a feedback-

feedforward control strategy, which entails the measurement of both input and output. 

The performance of the “on-off” semi-active control was then compared with that of uncontrolled 

blocks, namely free-standing blocks, anchored blocks with additional constant stiffness and anchored 

blocks with viscous damper devices. The overturning spectra, obtained for the different restraint 

conditions, are superimposed in Fig. 11, 12 and 13. From the same figures one can observe that the 

second overturning mode is not significantly influenced by the type of connection to the ground, as in 

this case the overturn occurs for amplitude values that depend only on the excitation frequency. On 

the contrary, the first overturning mode appears to be considerably influenced by the characteristics 

of the anchorages.  

Figure 11 about here 
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Figure 12 about here 

Figure 13 about here 

The use of a semi-active control sensibly reduces the extension of the unsafe area associated to 

overturn with impact  (Fig. 11, 12 and 13) without the negative effects pointed up by Makris et al. [8] 

due to the introduction of additional stiffness in the block system. Indeed, unlike the case of blocks 

with constant anchorages stiffness, the unsafe area of the overturning spectra related to the proposed 

control is enclosed in the unsafe area of the free-standing ones. This occurs independently of the 

slenderness of the blocks.  

Fig. 15 presents a few time-histories of the block BLC04 with different ground connections (FS, 

KC, VDD and OOK) subject to one-sine pulses (see Fig. 14).  In these cases, the anchorage with 

adjustable stiffness resulted to be the only one that prevented overturning. 

Figure 14 about here 

Figure 15 about here 

Finally, the semi-active control strategy was applied to a real artefact, San Matteo sculpture, 

allocated in the “Galleria dei Prigioni” in Florence. Starting from the geometric characteristic of 

Michelangelo’s sculpture, the dimension and the mass of the equivalent symmetric block were 

determined (see Fig. 16(b)). Fig. 16(d) depicts the dynamic responses of equivalent block subject to 

the same one-sine pulse, evaluated with regard different ground connection. The example reported 

shows, in accordance with the previous study, that the controlled system is the only one that avoids 

overturning. 

Figure 16 about here 

 

5 Conclusions 

This paper investigates a strategy for controlling the rocking response of art objects and structures 
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that can be approximated as rigid blocks. The assumed control devices consist in adaptive anchorages 

connected to the ground, whose stiffness can be adjusted according to simple energetic laws. The 

performance of the semi-active control system was evaluated based on the dynamic behaviour of 9 

blocks, with different size and slenderness, subjected to one-sine pulse excitations. Comparisons 

were performed essentially in term of overturning spectra, as the maximum stress transmitted to the 

art objects can be limited to acceptable values at the design stage, by choosing the range of the on-off 

control force.  

Overturning spectra were built in order to clarify the benefits of applying a semi-active control, 

and to draw a few general conclusions on the quality of the proposed control strategy. To this aim, a 

few comparisons were made with non-controlled systems, including blocks with constant linear 

springs and damper devices. Then, numerical investigations were conducted on blocks with different 

size and slenderness. Finally, the control strategy was validated on an equivalent system simulating 

the S. Matteo statue by Michelangelo. 

Numerical simulations led to the following conclusions: 

 Control laws that can support a feedback-feedforward control strategy perform better than 

simple feedback approaches. 

 The use of a semi-active control reduces appreciably the extension of the unsafe area 

associated to overturn with impact (mode 1), without the negative effects due to the 

introduction of additional stiffness in the block system pointed up by previous works. 

 The second mode (overturning without impact) does not seem to be significantly 

influenced by the type of control, as in this case overturn occurs for amplitude values that 

depend only on the loading frequency.  

Future research will address possible adaptations of the control strategies in order to deal with more 

general excitation forms, including real ground motions and higher frequency vibrations.  
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Fig.1. (a) Idealization of an artefact as a rigid body,  positive convention of displacements and geometrical 

parameters of the block; (b) mechanical model of unanchored rigid block; (c) mechanical model of rigid 

block anchored with unilateral elastic-brittle anchorages (reacting only in tension); (d) mechanical model of 

rigid block anchored with damper devices. 
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Fig. 2. Rectangular block under rocking motion just before it impacts on point 0’. 

 

Figure(s)



   

Fig.3. Restoring moment–rotation law. (a) FS block; (b) elastic-brittle anchorages; (c) EBK block. 
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Fig.4. First control law. (a) Normalised time-history of ground motion , rotation angle  and angular 

velocity  of a block with on-off ancorages; (b) normalised time-history of the stiffness of the anchorage 

placed at the right corner of the block; (c) normalised time-history of the stiffness of the anchorage placed at 

the left corner of the block. 
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Fig.5. Second control law. (a) Normalised time-history of ground motion , rotation angle  and 

angular velocity   of a block with on-off anchorages; (b) normalised time-history of the stiffness of the 

anchorage placed at the right corner of the block; (c) normalised time-history of the stiffness of the 

anchorage placed at the left corner of the block. 
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Fig.6. Phase portrait of the free rocking, initial condition         and         , of a rigid block (  = 3 

and   = 0.8175 m) with       in case of: (a) controlled block by means of control law CL01 (OOK_CL01) 

and uncontrolled block equipped with viscous damper devices (VDD); (b) controlled block by means of 

control law CL02 (OOK_CL02) and uncontrolled block equipped with viscous damper devices (VDD).  
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Fig.7. Time-history of OOK block, control law CL02 and different values of      and      CS01 (     
               ; CS02 (                       ); CS03 (                       ). 
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Fig.8. (a) Time-history of a rigid block (BLC05) anchored with constant (EBK) and on-off restraint systems 

(OOK); (b) time-history of the total energy of a rigid block (BLC05) with on-off restraint system (OOK) and 

with damper device (VDD).   
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Fig.9. (a) Overlapping of the overturning spectra of blocks (BLC02 and BLC05) having the same slenderness 

and different size; (b) comparison of time-histories of rigid blocks (BLC02 and BLC05) subject to the same 

one-sine pulse, “Ex1” in Fig. 9(a) (       and         ) . 
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Fig.10. Overturning spectra associated to the two control laws CL01 and CL02: (a) BLC04; (b) BLC05; (c) 

BLC06 and (d) overturning spectra of the three blocks evaluated by using CL02. 
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Fig.11. Overturning spectra of BLC04 evaluated for different restraint conditions: free-standing (FS); 

anchorages with elastic-brittle stiffness (EBK); anchorages with on-off stiffness (OOK); viscous damper 

devices (VDD).  
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Fig.12. Overturning spectra of BLC05 evaluated for different restraint conditions: free-standing (FS); 

anchorages with elastic-brittle stiffness (EBK); anchorages with on-off stiffness (OOK); viscous damper 

devices (VDD). 
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Fig.13. Overturning spectra of BLC06 evaluated for different restraint conditions: free-standing (FS); 

anchorages with elastic-brittle stiffness (EBK); anchorages with on-off stiffness (OOK); viscous damper 

devices (VDD). 
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Fig.14. Overturning spectra of BLC04.  
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Fig.15. Comparison of normalised time-history of BLC04 with different ground connection subjected to one-

sine pulse (a)           and             (excitation “Ex1” in Fig.15); (b)           and  

           (excitation “Ex2” in Fig.15); (c)           and              (excitation “Ex3” in 

Fig.15);  (d)           and              (excitation “Ex4” in Fig.15). 
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