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Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey 3 

TW20 0EX, UK 4 

ABSTRACT 5 

Pinus (Pinaceae) is a diverse conifer genus that dominates Northern Hemisphere 6 

forests today, and is noteworthy for its fire-adapted traits. Here we describe the oldest 7 

known fossils attributable to the genus from the Lower Cretaceous (Valanginian, ~133–8 

140 Ma) part of the Chaswood Formation of Nova Scotia, Canada. Pinus mundayi sp. 9 

nov. comprises charred long-shoots, which show a constellation of derived characters 10 

including (1) axial resin ducts with thin-walled epithelial cells in the secondary xylem 11 

and phloem, (2) fenestriform or pinoid cross-field pits, and (3) helically-arranged short-12 

shoots that pass through growth ring boundaries before distally diverging into two 13 

separate needle bases. The fossils, which are interpreted as remains of an evergreen 2-14 

needle pine, provide a new constraint on timetrees of Pinaceae evolution. Their 15 

preservation as charcoal and the occurrence of resin ducts, which produce flammable 16 

terpenes in modern pines, show that Pinus has co-occurred with fire since its Mesozoic 17 

origin.  18 

INTRODUCTION 19 

The Pinaceae is the most diverse and widespread family of conifers, comprising 20 

11 genera and c. 230 species (Eckenwalder, 2009). It dominates large areas of the 21 

Northern Hemisphere, especially in cool temperate and taiga biomes (Farjon, 2010), a 22 

biogeographic pattern established in Early Cretaceous time (Peralta-Medina and Falcon-23 
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Lang, 2012). A sister taxon to all other crown-group conifers, molecular studies suggest 24 

that stem-Pinaceae diverged in Late Triassic time (Lu et al., 2014) with the origin of the 25 

most diverse Pinoideae crown-group (Pinus, Picea, and Cathaya; Gernandt et al., 2011) 26 

delayed until Late Jurassic time (Lin et al., 2010). However, accurate calibration of such 27 

timetrees is limited by the paucity of well-dated fossils, with the first representative of 28 

non-pinoid crown-group conifers (Podocarpaceae) known from Late Triassic time, the 29 

first stem-Pinaceae known from Late Jurassic time (Rothwell et al., 2012), and the oldest 30 

fossils attributable to extant pinoid genera occurring in Early Cretaceous time (Ryberg et 31 

al., 2012; Klymiuk and Stockey, 2012).  32 

The evolutionary history of Pinus has attracted special interest because, not only 33 

is it the most diverse (~115 species) genus of Pinaceae (Farjon, 2010), but also it exhibits 34 

fire-adapted ecological traits (Keely, 2012). These are restricted to P. subgenus Pinus, in 35 

which there are two end-member fire strategies: (1) fire-tolerators rapidly grow to great 36 

height, utilize thick bark, and self-prune lower branches, to maximize resilience to low-37 

intensity surface fires; (2) fire-embracers store flammable deadwood, to promote lethal 38 

crown fires, but deploy fire-dependent serotinous cones, to ensure post-fire cohort-39 

renewal (Keely, 2012). Molecular studies suggest that these adaptations arose in Early 40 

Cretaceous time (He et al., 2012) when atmospheric oxygen levels were elevated 41 

(Glasspool and Scott, 2010) and fires were common (Brown et al., 2012). However, Early 42 

Cretaceous fossil evidence for Pinus being part of a fire-prone community is lacking. 43 

In this paper, we describe the oldest known fossils referable to Pinus, and 44 

emphasize their preservation as charcoal, the product of wildfire (McParland et al., 2007). 45 
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Findings extend the antiquity of this genus, provide a new constraint for molecular 46 

timetrees, and demonstrate that Pinus has co-occurred with fire since its Mesozoic origin. 47 

GEOLOGICAL CONTEXT 48 

The Pinus fossils were obtained from Bailey Quarry, near Windsor, Nova Scotia, 49 

Canada (45°0110’’N; 64°0331’’W). At this site, deposits of the ‘lower member’ of the 50 

Cretaceous Chaswood Formation unconformably infill hollows in the weathered top of a 51 

gypsum unit assigned to the Carboniferous Windsor Group. The Cretaceous beds 52 

comprise pebbly sandstone units showing low-angle cross-stratification and trough cross-53 

bedding, interpreted as the deposits of braided rivers that flowed through ‘tower karst’ 54 

topography. These fluvial deposits contain charred mesofossils as concentrated lag 55 

deposits and also yield an associated palynoflora of conifers (including many bisaccate 56 

forms), ginkgos, bennettites, cycads, ferns and lycopsids (Falcon-Lang et al., 2007). 57 

The palynoflora contains Aequitriradites verrucosus, Distaltriangulisporites 58 

perplexus and Trilobosporites canadensis indicating a Cretaceous (Valanginian–59 

Hauterivian) age compared with North American sections (Burden and Hills, 1989). 60 

Based on the Last Appearance Datum of T. canadensis that determination can be refined 61 

to an early Valanginian age compared to more proximal sites within the Atlantic Rift 62 

(Taugourdeau-Lantz, 1988). This placement is consistent with the diversity of 63 

Cicatricosisporites spore types, which suggests proximity to the Jurassic–Cretaceous 64 

boundary (Abbink et al., 2001). A younger age is unlikely because Plicatella spores are 65 

rare (one specimen found), Appendicisporites spores are absent, and angiosperm pollen is 66 

also lacking. Younger Barremian palynofloras at this paleolatitude (30 – 40ºN) typically 67 
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show greater abundance and diversity of Plicatella and Appendicisporites species 68 

(Burden and Hills, 1989) and contain angiosperm pollen (Heimhofer et al., 2005). 69 

METHODS 70 

Bulk samples were digested in 40% HF to release charcoal, and the residue 71 

washed in distilled water. Charred conifer axes (up to 20 mm long) were fixed to 72 

aluminum stubs using Electrodag 550 (nickel acrylic colloid), coated in 150 Å of gold 73 

palladium using an ISI Sputter coater and viewed at 15 kv with a Hitachi S-3500N 74 

Scanning Electron Microscope. The exterior of each specimen was imaged before being 75 

removed from the stub, dissected with a scalpel under a binocular microscope, and 76 

remounted in order to image internal anatomy. Half of each specimen was retained intact, 77 

while the other half was fractured and imaged along transverse (TS), radial longitudinal 78 

(RLS), and tangential longitudinal (TLS) surfaces to allow direct comparison with 79 

illustrations in the literature. When compared with extant conifer material, measurements 80 

were corrected to account for charring-induced contraction using published coefficients 81 

(Falcon-Lang et al., 2012).  82 

CHARRED PINUS MESOFOSSILS 83 

The Pinus fossils show features indicative of preservation as charcoal, the product 84 

of wildfire, such as homogenization of adjacent tracheid cell walls, elevated reflectance, 85 

and fire-cracks (McParland et al., 2007). Fossils are described as a new species.  86 

Pinus mundayi sp. nov., Falcon-Lang, Mages, Collinson (Fig. 1)  87 

Diagnosis: Eustelic long shoots with endarch primary xylem patches, axial resin ducts 88 

with 6 – 10 thin-walled epithelial cells in both the secondary xylem and phloem, 89 

fenestriform or pinoid cross-field pits, and helically-arranged short-shoots (3/8 90 



Publisher: GSA 

Journal: GEOL: Geology 

DOI:10.1130/G37526.1 

Page 5 of 15 

phyllotaxic fraction) that pass through growth ring boundaries and distally diverge as two 91 

separate needle bases; ray tracheids are absent. 92 

Holotype and repository: NSM016GF004.001, Nova Scotia Museum, Halifax, Canada 93 

Other material: NSM016GF004.002–004. 94 

Locality: Bailey Quarry, near Windsor, Nova Scotia, Canada 95 

Stratigraphy and age: Chaswood Formation (Cretaceous, Valanginian) 96 

Etymology: epithet in honor of Derek and Mary Munday of Bodowen, Barmouth 97 

Description of Long-Shoots 98 

Long-shoots, 3.6–4.2 mm diameter and <17 mm long, preserve the pith, primary 99 

vasculature, secondary xylem, and (locally) phloem (Fig. 1A–B). The stellate pith, 1.15 100 

mm diameter (Fig. 1B), is composed of axially-elongate parenchyma, cells 100–120 µm 101 

high and 20–25 µm diameter, with profuse pits on all walls. The eustele comprises ~20 102 

endarch primary xylem patches (Fig. 1C), composed of scalariform tracheids, ~10 µm 103 

diameter. The secondary xylem, 1.2–1.4 mm in radius, comprises one or two rings of 104 

growth, each ring being composed of thin-walled earlywood tracheids, 10–25 µm 105 

diameter, that pass centripetally into thick-walled latewood, 10–15 µm diameter. 106 

Earlywood tracheids show 1–2-seriate, circular, bordered pits, 10–15 µm, with circular 107 

apertures (Fig. 1M), and opposite arrangement where biseriate. Latewood tracheids lack 108 

pits or show sparse, circular bordered pits only. Rays are uniseriate, 1–11 cells high (Fig. 109 

1K), and lack ray tracheids. Cross-fields of ray parenchyma show 1–4 fenestriform or 110 

pinoid pits (Fig. 1N). A few scattered axial parenchyma strands also occur close to axial 111 

resin ducts. A thin layer of secondary phloem, <350 µm radius (Fig. 1I), locally adheres 112 

to the outermost part of the shoot; periderm is not preserved. 113 
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Description of Short-Shoot Bases 114 

Prominent short-shoot bases, 0.7–1.1 mm diameter, are helically arranged on the 115 

preserved exterior of the long-shoot with a 3/8 phyllotaxic fraction (Fig. 1A). In cross-116 

section, short-shoot bases are oval in the proximal part of their course, comprising a pith 117 

and a concentric xylem cylinder (Fig. 1L). More distally, they diverge into two separate 118 

kidney-shaped bundles of secondary xylem that represent needle bases (Fig. 1H). In more 119 

mature specimens (NSM016GF004.004), traced from the pith, short-shoots pass through 120 

one or two subtle growth ring boundaries in the secondary xylem (Fig. 1D). 121 

Description of Resin Ducts 122 

Resin ducts occur within the secondary xylem and phloem of long-shoots. In the 123 

secondary xylem, axial resin ducts, 60–90 µm diameter, locally tylose-filled, and 124 

surrounded by 6–10 epithelial cells, are common in the earlywood (Fig. 1C, E) but reduce 125 

in frequency and size (30 µm diameter) toward the latewood. Radial resin ducts, 40–50 126 

µm diameter, with 6–8 epithelial cells (Fig. 1J) are present in some fusiform rays with a 127 

density of 2.6 per mm2 (based on limited observations of small areas). In the phloem, 128 

axial resin ducts, 40 µm diameter, occur (Fig. 1I). Resin ducts also occur within short-129 

shoot bases, where typically 1–4 axial ducts, 40–110 µm diameter, with 6–9 epithelial 130 

cells, occur (Fig. 1L). In all cases, epithelial cells are thin-walled, a characteristic that can 131 

be ascertained by comparing half the double-wall width of fused tracheid cell walls with 132 

those of epithelial cells (Fig. 1F). Epithelial cell walls lack pits except where in contact 133 

with vasicentric axial parenchyma. 134 

Diagnostic Characters of Pinus Seen in Fossils 135 
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A noteworthy character of the long-shoots is the presence of resin ducts (Fig. 1C). 136 

Where axial ducts occur in secondary xylem, wood anatomists distinguish 137 

schizogenously formed ‘normal’ ducts (tubular, and generally solitary) from ‘traumatic’ 138 

ducts (cyst-like and typically in tangential series) triggered by environmental shock (Lin 139 

et al., 2002). Although traumatic ducts occur in the secondary xylem of several of the 140 

eight families of the Pinales, especially in Cupressaceae and Pinaceae (Cleary and 141 

Holmes, 2011), normal axial ducts, as seen in the Bailey Quarry long-shoots, are 142 

confined to five genera of Pinaceae: Pinus, Picea, Cathaya, Larix, and Pseudotsuga (Wu 143 

and Hu 1997). Normal ducts occasionally occur in the secondary xylem of Nothotsuga 144 

(Lin et al., 1995) and Keteeleria (Lin et al., 2000), but they are absent from juvenile 145 

shoots so those genera are unlike the fossils. 146 

The wall thickness of epithelial cells that surround ‘normal’ axial ducts in the 147 

secondary xylem (Fig. 1F) is a further key feature for fossil diagnosis (Wu and Hu, 148 

1997). Pinus shows thin-walled (unlignified) epithelial cells that are thinner than the 149 

walls of adjacent tracheids, whereas the other Pinaceae genera have thick-walled 150 

(lignified) epithelial cells similar to tracheids (Lin et al., 2002). This distinction is not 151 

completely clear-cut because 9% of the ~115 extant Pinus species have thick-walled 152 

epithelial cells (Esteban et al., 2004) and some juvenile Picea shoots show of a mixture 153 

of thin- and thick-walled epithelial cells (Lin et al., 2002). Applying this criterion, the 154 

long-shoots from Bailey Quarry, which show exclusively thin-walled epithelial cells, are 155 

probably Pinus, although referral to Picea cannot be completely excluded based on these 156 

characters alone because the fossil material is juvenile. 157 
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However, other anatomical characters collectively confirm placement of the 158 

fossils in Pinus and rule out other possible taxa with resin ducts as follows: 159 

(1) Axial resin ducts occur in the secondary phloem (Fig. 1I), a feature that is never seen 160 

in Cathaya, Picea or Pseudotsuga but is typical of Larix and Pinus (Lin et al., 2002); 161 

(2) Axial resin duct diameter is always >60 µm (after correction; Fig. 1E), a feature 162 

characteristic of almost all Pinus species, but absent elsewhere in Pinaceae (Esteban 163 

et al., 2004); 164 

(3) Radial duct density is ~1.3 per mm2 (after correction), a value that is within the 165 

normal range for Pinus (0.5 – 2), but uncharacteristic of Cathaya (0.7), Larix (0.15 – 166 

0.7), Picea (0.3 – 0.4), or Pseudotsuga (0.15 – 0.2) (Lin et al., 2002); 167 

(4) Cross-field pits are fenestriform or pinoid (Fig. 1N), typical of Pinus but 168 

uncharacteristic of the piceoid pits of Pseudotsuga, Larix, Picea, and Cathaya 169 

(Esteban et al., 2004) even when distortion due to charring is taken into account 170 

(Gerards et al. 2007); and 171 

(5) Divergent secondary xylem bundles in the more distal course of short-shoots suggest 172 

they bore two needles per fascicule (Fig. 1H; Dörken et al., 2010), a feature that is 173 

strongly suggestive of Pinus because other Pinaceae (with the exception of Larix) 174 

bear single leaves directly attached to main shoots (Farjon, 2010). 175 

DISCUSSION 176 

Based on anatomical analysis, Pinus mundayi sp. nov., reported here, is the oldest 177 

known representative of the genus (~133–140 Ma; Valanginian). Pinus yorkshirensis, the 178 

former oldest recognizable member of the genus, is based on material of uncertain 179 

provenance, but palynology of attached sediment indicates an origin in rocks close to the 180 
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Hauterivian–Barremian (~129 Ma) boundary (Ryberg et al., 2012). The new fossils 181 

therefore extend the record of Pinus by 4–11 myrs, meaning that it is of similar antiquity 182 

to the oldest known Picea, which is also of Valanginian age (Klymiuk and Stockey, 183 

2012). Although pinaceous cones of Pityostrobus-type are abundant from Barremian time 184 

onward (~129 Ma), their systematic position within the Pinaceae is poorly resolved 185 

(Rothwell et al., 2012). The new fossils are therefore only one of three pre-Albian 186 

occurrences identifiable to an extant genus of Pinaceae, and improve calibration of 187 

molecular timetrees of the family (Lin et al., 2010). In addition, the occurrence of two 188 

needles per fascicle suggests an affinity with Pinus subgenus Pinus (Farjon, 2010) and 189 

implies that subgeneric diversification may have occurred earlier than previously thought 190 

(Gernandt et al., 2011). Further, based on its unusual short-shoot/long-shoot syndrome, it 191 

has been hypothesized that ancestral Pinus was deciduous (Dörken et al., 2010); 192 

however, the passage of short-shoots through > 2 growth rings demonstrates that the 193 

fossil short-shoots were evergreen as seen in extant species. 194 

The preservation of long-shoots as charcoal, also, may be significant. Fire-195 

adaptive traits are widespread within Pinus, and especially in P. subgenus Pinus (Keely, 196 

2012), an ecology that is hypothesised to have originated in Early Cretaceous time based 197 

on molecular clock estimates (He et al., 2012). However, testing of this hypothesis is 198 

hampered by the fact that neither Pinus nor securely identified Pinaceae have hitherto 199 

been identified in Cretaceous charcoal assemblages (Brown et al., 2012). While our 200 

charred long-shoot fossils show, for the first time, that Pinus burned in Early Cretaceous 201 

fires, and probably, crown fires, this does not prove fire-adaption as all plants 202 

occasionally burn. Crown fires are characteristic of fire-embracer pines (Keely, 2000), 203 
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but the fossils lack evidence, such as serotinous cones, to demonstrate adaption. The only 204 

fossil feature that is noteworthy is the occurrence of axial resin ducts. In extant Pinus, 205 

these ducts secrete terpene, a highly flammable, unsaturated hydrocarbon that contributes 206 

to fire ecology (He et al., 2012). Therefore, the occurrence of resin ducts and preservation 207 

as charcoal in P. mundayi are consistent with He et al. (2012)’s hypothesis that fire-208 

adaptive traits of Pinus originated in Early Cretaceous time, but do not provide 209 

confirmation. 210 
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 302 

FIGURE CAPTIONS 303 

 304 

Figure 1. Pinus mundayi (all images of holotype, NSM016GF004.001, except D, 305 

NSM016GF004.004) from the Cretaceous (Valanginian) of Nova Scotia, Canada. A., 306 

Lateral view of long-shoot showing helically arranged short-shoot bases (ss), and 307 

prominent fire cracks (fc); scale: 2 mm. B., Cross-section of long-shoot showing stellate 308 

pith (pi), short-shoot traces (sst), secondary xylem (sx) and fire-cracks (fc); TS, scale: 309 

400 µm. C., Detail from (B) showing pith (pi), endarch primary xylem patches (arrows), 310 

short shoot traces (sst), and axial resin ducts (ard, arrow); TS, scale: 150 µm. D., Growth 311 

ring boundary (grb) in secondary xylem (sx); TS, scale: 250 µm. E., Cross section of an 312 

axial resin duct (ard) and its epithelial cells (ec) in secondary xylem (sx); TS, scale: 30 313 

µm. F., Detail from (D) showing thin-walled epithelial cells (ec) of an axial resin duct 314 

(ard). Adjacent cells include thin-walled parenchyma (p) and thick-walled tracheids (tr) 315 

for comparison, also note absence of wall layering in tracheid cell walls, a characteristic 316 
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of charcoal; TS, scale: 15 µm. G., Longitudinal section of axial resin duct (ard) in 317 

secondary xylem (sx); RLS, scale: 100 µm. H., Cross-section through distal part of short 318 

shoot base showing diverging secondary xylem bundles (sx) of two needle bases, and 319 

fire-cracks (fc); TS, scale: 250 µm. I., Outer edge of secondary xylem (sx) and phloem 320 

(ph) containing an axial resin duct (ard, arrow); TS, scale: 75 µm. J., Radial resin duct 321 

(rrd) with epithelial cells (ec) within fusiform ray (fr); epithelial cells are thin-walled but 322 

coated with a volatile residue; oblique TLS, scale: 25 µm. K., Short, uniseriate rays in the 323 

secondary xylem close to the pith; TLS, scale: 75 µm. L., Cross-section through proximal 324 

part of short shoot base showing pith (pi) and concentric secondary xylem (sx) cylinder 325 

with axial resin ducts (ard, arrow); TS, scale: 250 µm. M., Circular, uniseriate, bordered 326 

pits in secondary xylem; RLS, scale: 25 µm. N., Fenestriform to pinoid cross-field pitting 327 

in secondary xylem; RLS, scale: 50 µm. 328 

 329 

1GSA Data Repository item 2016xxx, xxxxxxxx (Phylogeny teaching slide and 330 

justification of new species), is available online at www.geosociety.org/pubs/ft2015.htm, 331 

or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 332 

9140, Boulder, CO 80301, USA. 333 



Figure 1 Click here to download Figure Figure 1.jpg 

http://www.editorialmanager.com/geology/download.aspx?id=249094&guid=0452de2b-5b1b-49db-b50e-c3332d10c005&scheme=1
http://www.editorialmanager.com/geology/download.aspx?id=249094&guid=0452de2b-5b1b-49db-b50e-c3332d10c005&scheme=1


Supplemental file 1 Click here to download Supplemental file Supplementary file 1.jpg 

http://www.editorialmanager.com/geology/download.aspx?id=249095&guid=1e8efdac-ced5-4457-8124-108d1413bf95&scheme=1
http://www.editorialmanager.com/geology/download.aspx?id=249095&guid=1e8efdac-ced5-4457-8124-108d1413bf95&scheme=1


Supplementary discussion: Justification for a new species 

 

Plant fossils are usually preserved in a disarticulated state, and new taxa are described 

based on individual organs; there are very few taxa reconstructed as ‘whole-plants’. 

The new Pinus fossils described here comprise remains of partial twigs, with short 

shoot bases, lacking fertile remains. We note that there is a paucity of anatomically-

preserved pinaceous twigs in the Cretaeous fossil record. Prior to this paper, the oldest 

described twig material is from the Cretaceous (Cenomanian) of the Czech Republic, 

some 40 million years younger than our new Pinus fossils; however, that material is 

assigned to family level only, and all other Cretaceous fossils that are similar to 

modern pines are based on secondary xylem only, and therefore assigned to genera 

such as Pinuxylon (Peralta-Medina and Falcon-Lang, 2012) rather than Pinus sensu 

stricto. Based on the antiquity, rarity, good preservation, and genus-level 

identification of the new material, it is advantageous to apply a binomial name, to 

allow its discussion in the literature. 

As the material is assignable to the extant genus, Pinus, it is also necessary to 

consider how the fossil differs from the c. 115 extant species. Pinus is subdivided into 

two subgenera, Pinus Pinus and Pinus Strobus (Farjon, 2010). Pinus subgenus 

Strobus shows, typically, five needles per fascicle, whereas Pinus subgenus Pinus, 

shows, variably, 1 to 8 needles per fascicle (Farjon 2010). Our new Pinus fossils 

consistently show two needles per fascicle suggesting an affinity with Pinus subgenus 

Pinus (Farjon, 2010), and implying that the two subgenera diverged earlier than 

previously thought (Gernandt et al., 2011).  

In Pinus subgenus Pinus, the number of needles per fascicle is species-specific in the 

range of (1) 2 – 5 (8) needles per fascicle (Farjon 2010). Two needles per fascicle is a 

stable characteristic of the 19 species of so-called ‘Old World Pines’ only: P. densata, 

P. densiflora, P. hawnshanensis, P. kesiya, P. latteri, P. luchuensis, P. massoniana, P. 

merkusii, P. mugo, P. nigra, P. resinosa, P. sylvestris, P. tabuliformis, P. taiwanensis, 

P. thunbergii, P. tropicalis, P. uncinata, and P. yannanensis (Farjon, 2010). A few 

additional species may show two needles per fascicle but in these taxa, the number of 

needles per fascicle is highly variable (1-5), unlike the stable two needle state 

observed in our material (Farjon, 2010). 

Another important character state of the new Pinus fossils is their 3/8 phyllotaxic 

fraction. The most common phyllotaxic fractions in Pinus subgenus Pinus 

approximate to 1/3, 2/5, 3/8, and 5/13 (Farjon, 2010). Of the classic ‘Old World 

Pines’ that show two needles per fascicle, the most common fractions are 2/5 and 5/13 

(Farjon, 2010). Only P. sylvestris and P. nigra has a phyllotaxic fraction that 

commonly and closely approximates to 3/8 (i.e., 135o) (Farjon, 2010). According to 

the analysis of the wood of 352 conifer species compiled by Esteban et al. (2004), the 

new fossil Pinus differs from P. sylvestris and P. nigra, and most other ‘Old World 

Pines’ based on the absence of alternate ray tracheids. Therefore, the fossil material 

can justifiably be treated as a new species. 
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