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ABSTRACT
Term-Relevance Prediction from Brain Signals (TRPB) is
proposed to automatically detect relevance of text infor-
mation directly from brain signals. An experiment with
forty participants was conducted to record neural activity
of participants while providing relevance judgments to text
stimuli for a given topic. High-precision scientific equip-
ment was used to quantify neural activity across 32 electro-
encephalography (EEG) channels. A classifier based on a
multi-view EEG feature representation showed improvement
up to 17% in relevance prediction based on brain signals
alone. Relevance was also associated with brain activity
with significant changes in certain brain areas. Consequently,
TRPB is based on changes identified in specific brain areas
and does not require user-specific training or calibration.
Hence, relevance predictions can be conducted for unseen
content and unseen participants. As an application of TRPB
we demonstrate a high-precision variant of the classifier that
constructs sets of relevant terms for a given unknown topic of
interest. Our research shows that detecting relevance from
brain signals is possible and allows the acquisition of rele-
vance judgments without a need to observe any other user
interaction. This suggests that TRPB could be used in com-
bination or as an alternative for conventional implicit feed-
back signals, such as dwell time or click-through activity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance
feedback; H.5.2 [User Interfaces]: Evaluation/Methodology
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Brain Signals; Relevance Prediction; EEG
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1. INTRODUCTION

Relevance prediction is a central challenge of Information
Retrieval (IR) research as it determines the information pre-
sented to the user. In this paper, Term-Relevance Prediction
from Brain Signals (TRPB) is proposed to automatically de-
tect relevance of information directly from brain signals. Re-
search has begun to build an understanding of the neural ac-
tivity associated with relevance detection [25], but 1) the ex-
act brain areas associated with relevance judgments remain
unknown and 2) the methods to non-intrusively quantify the
neuronal activity can be very noisy [19]. Nevertheless, the
advantages of using brain signals to predict relevance are
1) that recording brain signals does not require any explicit
user interaction, and 2) the signals can be captured with
high throughput. That is, TRPB only requires participants
to examine text stimuli (e.g., text displayed on the screen),
and the signals can be continuously recorded. Consequently,
TRPB can be used in combination with or even as an al-
ternative for conventional implicit feedback signals, such as
dwell time or click-through activity, that have been shown
to be unreliable and are tightly connected to conventional
user interfaces and explicit user interaction [13].

We use multi-view machine learning to solve the predic-
tion problem and to cope with the uncertainties related to
active brain areas and signal noise. The multiple kernel
learning approach [9, 37] allows us to incorporate the tra-
ditionally complementary approaches to electroencephalog-
raphy (EEG)—time-based (event-related potentials, ERPs)
and frequency-based—simultaneously in order to maximize
TRPB predictive power. We demonstrate that predicting
relevance judgments is possible from brain signals alone, i.e.,
without any explicit user interaction or brain-computer in-
terface (BCI) training. The high throughput of brain signals
enables the capture of a huge number of relevance judgments
for text stimuli in a relatively short time. In practical ap-
plications it is possible to sacrifice recall and target high
precision to take advantage of the high throughput. We
demonstrate a high-precision variant of a relevance predic-
tor, which is able to detect terms of the users’ given topics
of interest.

We conducted an experiment in which EEG signals of
40 participants were recorded when they judged relevance
of text stimuli. The main findings of TRPB using these
data are the following:
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1. EEG signals can be used to automatically predict rel-
evance with an improvement of 17% in accuracy.

2. Relevance prediction can be done independently of the
user, without requiring user-specific calibration.

3. A high-precision variant of the classifier can automati-
cally construct term representations of topics of inter-
est with a precision increase of 30% while still main-
taining a feasible recall.

We were also able to confirm that the learned parameters
of the classifiers (kernel weights) gave pointers to significant
changes in brain activity. In an extended analysis we find
significant activity in brain areas that have previously been
found responsible for recognition and memory recall, and for
organizing, maintaining, and implementing intentions [18].
This supports TRPB from a cognitive science perspective.

The rest of the paper is organized as follows. Section 2 re-
views the related work ranging from mind-reading to brain-
computer interfacing and using sensory signals as relevance
feedback. Section 3 describes the experiment that was con-
ducted to record participants’ neural activity. Section 4
presents the term-relevance prediction experiment, and Sec-
tion 5 discusses the results of the experiments dividing them
into classification results (5.1) and physiological findings (5.2).
Section 6 demonstrates the effectiveness of TRPB in prac-
tice with a high-precision classifier. We conclude and discuss
the future work in Section 7.

2. RELATED WORK
Our work is related to a range of research from under-

standing relevance as it is associated with brain activity,
operationalizing these associations as sensory input for pre-
dicting relevance as in relevance feedback research, interfac-
ing between a computer and a human brain, and detecting
patterns form brain activity without explicitly looking for a
pre-known activity, as in mind-reading research.

Relevance. In information retrieval, relevance is a widely
operationalized concept. A huge body of research exists
that attempts to make use of relevance in practical systems,
such as relevance feedback for improving retrieval, or rel-
evance judgement to produce ground truth for evaluation
purposes [36]. Cognitive scientists have long been inter-
ested in mapping basic cognitive functions that are highly
related to perceiving relevance (e.g., recognition and mem-
ory recall [32, 42]) and reacting to relevant stimuli (e.g.
implementing intentions [18]). The wealth of knowledge
from various fields underlines the fundamental complexity
of relevance, which may be the reason why the question of
“how does relevance happen in the brain” remains unan-
swered [25].

Relevance prediction. In information retrieval, rele-
vance judgments of the presented information can be ac-
quired from user interaction and behavior data. Previously,
researchers have made use of explicit [16], implicit [13], or
affective [1, 24] user signals and then used features extracted
from these signals to build models that can be used to auto-
matically predict relevance of information. Among explicit
interactions, such as typing queries, implicit monitoring of
user actions has been found the most practical source of user
signal, since it is less intrusive for the user and does not re-
quire users to explicitly provide relevance judgments [13].
While previous research has found evidence that implicit

behavioral signals, such as dwell time and click-through ac-
tivity, can be predictors of users’ information needs, they
can be noisy and unreliable [14, 40]. Collecting evidence of
click-through activity and dwell time also requires previous
explicit interaction between the user and the information
retrieval system as well as monitoring of the users over a
substantial amount of time. Explicit interaction is thus in-
creasingly challenged by new information access media, such
as augmented reality interfaces, which can make collecting
conventional implicit feedback impractical, but allow wear-
able sensors to be used to capture additional user signals.

Sensory signals. Recently, sensory signals have been
utilized to measure human emotion and map emotional
states to predict relevance [27, 28]. Such sensors can detect
changes often expressed through a psychophysiology. Psy-
chophysiology is reflected via cues, such as facial expressions,
changes in the electrodermal activity [2], or variations in the
skin temperature [6]. These physiological signals have pro-
vided researchers with additional sources of information not
previously available, and their effectiveness has been empir-
ically studied [1, 2]. However, the results seem to be contra-
dictory and validated only for image or video stimuli. These
media allow measuring users for extended periods of time,
which in itself is known to cause emotional responses and
more substantial physiological responses [24, 25].

Brain-Computer interfacing. A related research field
that has made use of EEG signals to allow (non-invasive) in-
terfaces to control computers is brain-computer interfacing
(BCI). The key difference that sets BCI apart from our re-
search is its requirement for user-specific memorizing. BCI
typically involves a user-specific training step in which the
user is required to memorize a motoric action, for instance,
pulling the left arm. The BCI system is then trained to
explicitly detect such previously established behavior [41]
in the control phase. Therefore, BCI does not detect the
associated, natural brain patterns related to relevance as
such, but creates an additional, “artificial” pattern requir-
ing extensive, conscious training. Given that a detection of
relevance may also appear subliminal, the methods used in
BCI are of limited use for the present study.

Mind-Reading. Mind-reading aims to use neuroimag-
ing, typically functional Magnetic Resonance Imaging
(fMRI), to learn specific patterns of brain activity with la-
beled object stimuli in order to predict each of these differ-
ent labels on an instance-by-instance basis from the fMRI
data [23]. For example, when humans think of an object,
many different areas of the brain activate. This pattern can
then be learned by a machine learning system (based on
the blood-oxygen-level-dependent activity). Conversely, the
conventional neuroimaging research aims at finding corre-
lates to external regressors such as task condition with ac-
tivity in specific brain areas. The present approach to term-
relevance prediction is similar to mind-reading in that we
likewise aim to directly associate brain patterns with users’
subjective perception of stimuli. However, the prediction of
relevance does not require association of specific patterns to
specific objects but rather abstracting of a general pattern
of brain activity in order to predict relevance for a stimulus.

Unique contributions. To our knowledge, our work is
the first to predict term-relevance from brain signals for an
IR scenario. What sets our research apart from the related
research is the following: 1) we use brain signals captured
via EEG alone without any other user signal, 2) we use text



Figure 1: (a) A participant of the experiment with the full EEG sensor setup to record the raw EEG signals
reading the instructions for the next task. (b) Excerpt of the participant’s captured raw EEG signals showing
one trial from term onset to key press to the next term onset. The x-axis shows the time in milliseconds,
the y-axis the different EEG channels. The annotations show a typical pattern of an eye blink, horizontal
eye movements, and variation in the alpha frequencies. An artifact correction procedure was then applied to
remove, for example, eye movement related activity (see Section 3.4), before specific features were extracted
(see Section 3.5).

stimuli, 3) we aim to learn brain patterns that are naturally
associated with relevance judgments rather than to detect
artificial, memorized patterns or pre-seen objects, 4) we aim
for generalization over participants such that we can learn
the underlying patterns of brain activation and use them for
an unseen content and unseen participants.

3. NEURAL-ACTIVITY RECORDING
EXPERIMENT

We recorded the EEG signals of participants when they
assessed relevance in response to term stimuli shown on
a screen. The term stimuli were associated with a pre-
determined topic. For example, participants were asked to
judge relevance of terms“Snowmelt”and“hardware synchro-
nization” for a topic “Climate change and global warming”
(the first term is relevant, the second term is irrelevant).
Terms were chosen to represent real search situations where
terms are not always clearly discriminative. For example,
the term “Morse code” is not clearly irrelevant for the topic
“Iraq war”, and participants might differ in their relevance
judgments. We used a highly controlled experimental setup
to avoid possibly confounding effects related to hemispheric
lateralization, eye-movements, and motor activity. For ex-
ample, moving the eyes to read a word or moving the arm to
give the relevance judgment are visible in the brain signals
and can result in a classifier that learns, for example, the ef-
fect of the arm-movement and not the effect of the relevance
judgment.

3.1 Experimental Design
Each participant judged relevance for six terms in six top-

ics, for a total of 36 trials. The terms were randomly drawn
from a pool of relevant (for each topic) and irrelevant (for all

topics) terms defined by experts (column “Topic” in Table 4
lists all six topics; column “Predicted top 5 relevant terms”
gives an excerpt of the terms). We used a balanced setup,
i.e., for each topic three relevant and three irrelevant terms
were shown to the participant. We randomized the order of
the topics and the terms over participants. In addition, the
relevance-key assignment was balanced (right or left hand
used) between blocks of 12 trials to avoid possibly confound-
ing hemispheric effect. The presented items were balanced
to be apriori 50% relevant and 50% irrelevant. This ran-
dom baseline, although not entirely realistic, ensures that
we measure signals and effects related to relevance judg-
ments and not, for example, related to the well-known P300
effect in an oddball-paradigm based experiment [10]. The re-
coded data reflect the user’s subjective relevance judgment
of the items (i.e., if a participant assessed the apriori irrel-
evant “Morse code” relevant for the topic “Iraq war”, it was
recoded as relevant), as this is the user’s real assignment
and the corresponding effect is what we would also expect
to predict from the brain signals.

3.2 Participants
Forty participants, 34 males and 6 females, took part in

the study. The age of the participants ranged from 21 years
to 47 years (Mean = 28.17, Median = 26.5). Most of them
were post-graduate (37), and the rest were undergraduate
students. Only two of the participants reported to be En-
glish native speakers, seventeen different mother tongues
being reported. Nevertheless, English reading skills were
overall reported as advanced (Mean = 4.55, Median = 5;
on a scale from 1 to 5). Six of the participants were left-
handed. Participants reported themselves as physically and
mentally healthy. Participation was compensated with two
movie tickets.



Table 1: The outcome of the neural-activity record-
ing experiment: For each term presented to a par-
ticipant, we collected its binary relevance judge-
ment. Then, seven views were computed with fea-
tures based on the recorded EEG signal during a
certain period of time from term stimulus onset un-
til corresponding relevance judgments. The 20 fea-
tures represent the 20 most central channels F3, Fz,
F4, FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1,
CP2, CP6, P3, Pz, P4, O1, Oz, and O2.

Views vk Features
Relevance judgement view :

Relevance A binary relevance judgement provided
by a participant for a term for a given
topic

Frequency-band-based views:

Theta 1 40 features for each frequency band:
20 features of average power over
1 second epochs before the relevance
judgement; 20 features of average
power over entire period, minus power
of the second before term onset

Alpha 2
Beta 3

Gamma1 4
Gamma2 5

Engage 6
Event-related-potential-based view :

ERPs 7 80 features of average amplitude: 20
features for 80–150 ms, P1; 20 features
for 150–250 ms, N1/P2; 20 features
for 250–450 ms, N2 or P3a; 20 features
for 450–800 ms: N4 or P3b

3.3 Procedure
At the beginning of the session the participants were

briefed as to the procedure and purpose of the experiment.
Then they were asked to sign an informed consent. They
were furthermore informed on their right to withdraw from
the experiment at any moment without any adverse conse-
quence. The task was explained in more detail prior to the
execution. The participants were instructed to rate the text
stimulus either relevant or irrelevant by pressing either the
M-key (using the right hand) or the X-key (using the left
hand), on a QWERTY keyboard. They were instructed to
provide the relevance judgement by pressing the key as soon
as they were able to make the judgement. The next term was
presented as soon as the participants pressed the relevance
key. After the experiment, the participants were asked to
fill out an online questionnaire regarding their background
information.

3.4 EEG Recording and Processing
A QuickAmp (BrainProducts GmbH, Gilching, Germany)

amplifier recorded EEG at a sample rate of 100 Hz. EEG
was recorded from 30 Ag/AgCl scalp electrodes, positioned
using EasyCap elastic caps (EasyCap GmbH, Herrsching,
Germany) on equidistant electrode sites of the 10% system
excluding FT9/FT10. Figure 1 shows a participant with the
full EEG sensor setup. Processing of EEG was conducted in
EEGLAB [31] and included re-referencing to the common
average reference and filtering of the data between 1 and
80 Hz with a notch filter between 46 and 54 Hz to reduce
DC interference. After that, an automatic artifact correc-
tion, based on the Efficient Independent Component Anal-

ysis algorithm [17], as implemented in the AAR toolbox [8],
was carried out in order to eliminate noise and potential
confounds of common artifacts such as eye movements and
blinks (see Figure 1).

Visual inspection of the raw data revealed extreme noise
levels for two participants (possible, for example, because of
loose electrodes or a cap which does not fit exactly). These
participants’ data were removed from further analysis, which
left us with S = 38 participants. In addition, we only con-
sidered judgments that conformed with the ground truth to
reduce noise induced by judgments possibly done by chance
when participants were not sure about their judgement.

3.5 Feature Engineering
Frequency-band-based features (FBF) and event-related-

potential-based features (ERPF) were extracted from the
pre-processed signals. FBFs capture the change in the sig-
nals for the whole time window when the user was shown
the stimulus. ERPFs capture the changes in the signals
for a specific short time window when a participant makes
the relevance judgement—which can be a much shorter time
window and not necessarily at the time of giving the explicit
relevance judgement but, e.g., a few (milli)-seconds after the
term was shown on screen.

As no consensus exists on where and how binary relevance
judgments of text stimuli affect neural activity, it was not
possible to focus on, e.g., one specific frequency band or
brain area. Therefore, we engineered a set of different FBFs
and RPRFs in order to capture all the data that are po-
tentially related to the relevance judgement. In both cases,
the EEG was time-locked to the start (i.e., term shown on
screen) or end (i.e., participant gave the relevance judge-
ment) key events in the experiment. Table 1 gives a sum-
mary of the seven views and the corresponding features.

In order to maximize the cortical activity signal and min-
imize muscle-related activity and other artifactual noise, we
included only the 20 centrally located electrodes. To obtain
features, we calculated the power of the segment of 1 second
following the term onset using the fast Fourier transform and
applying log-transformation to normalize the signal. From
this, a baseline was subtracted by the same procedure over
the 1 second prior to the term onset.

Frequency-band-based views. An essential aspect of
electroencephalography (EEG) is that different types of os-
cillations, from the very slow theta (4–8 Hz) to the higher
gamma (80 Hz), have been associated with various psycho-
logical functions. For example, alpha activity has been re-
lated to attentiveness [3], theta activity to attention [22],
and alpha desynchronisation with semantic memory perfor-
mance [15]. Possibly, decisions regarding relevance or ir-
relevance, through acts of motor imagery [21] and motor
control [38], would trigger activity in the beta frequency.
Finally, given previous indications of the role of gamma ac-
tivity in consciousness [4], one might expect relevant search
results to be particularly accessible to consciousness and
thus be associated with gamma activity. Further evidence
for this comes from the observation that gamma-band os-
cillations have been associated with attentional information
processing through the salience of stimuli [12].

Furthermore, combinations of multiple frequency bands
have also been shown to account for cognitive functions. For
example, a combination of theta, alpha and beta bands has
been found to be an index of engagement [31], which we



therefore include here as another candidate. Other combi-
nations of frequency bands were also tested from within the
multi-view model as will be discussed further on.

Event-related-potential-based view. Event-related-
potentials (ERPs) are brain responses resulting from spe-
cific sensory, cognitive or motor events as measured using
EEG. Generally, as stimuli are sensed, the modality-specific
sensory areas in the brain are activated early, appearing in
the EEG as peaks with a specific topography, latency and
direction (negative or positive).

A set of ERPs have been associated with cognitive func-
tions [20]. For example, the negative, fronto-central N2 has
been associated with uncertainty and cognitive control [7],
which could be related to the task of information retrieval.
The P3 potential occurs generally after 300 ms and is com-
monly separated in two sub-components called the P3a and
P3b. The P3a has more frontal topography than the P3b
and is associated with orientation and attention while the
P3b is related to memory processing and retrieval [30]. The
P3 is also one of the earliest potentials to be used for the
purposes of BCI [5].

As with the frequency analyses, no apriori decision was
made to exclude specific potentials. Instead, we calculated
the cross-individual average of the ERP and defined the in-
tervals, based on the literature and visual inspection, to oc-
cur at 80–150 ms (P1), 150–250 ms (N1/P2), 250–450 ms
(N2 or P3a) and 450–800 ms (N4 or P3b) for all the 20 elec-
trodes mentioned earlier, relative to the 200 ms prior to the
onset of the term, thus constituting 80 features in total.

4. RELEVANCE PREDICTION FROM
BRAIN SIGNALS

Given the feature representation of the collected neural-
activity data, we studied:

1. How well can we predict relevance judgments on terms
from the brain signals of unseen participants?

2. Which EEG views are important for the prediction?

The first question is motivated by real search situations in
which no user-specific training or calibration is necessarily
possible. The second question is motivated by the currently
unknown brain areas associated with relevance judgments;
an answer to this question allows us to draw some conclu-
sions about the cognitive basis of the brain areas that are
found to be important for relevance prediction.

To answer these questions we have devised a set of bi-
nary relevant/irrelevant classification experiments based on
a multi-view learning method and a leave-one-participant-
out strategy. Multi-view learning is the task of learning from
two or more data sets with co-occurring observations. This
concept perfectly suits our scenario, and we used it by treat-
ing the different representations of the EEG signals as dif-
ferent views of a relevance judgement given by a participant.
Formally, each relevance observation ri = (yi,v1, . . . ,vK) is
described by the binary relevance judgment yi and by K dif-
ferent feature vectors v· (i.e., views). For each participant s,
we have Ns relevance observations, i.e., Rs = {rs1, . . . , rsNs}
is the set of relevance observations pertaining participant s.
The R = {R1, . . . , RS} is the set of all relevance observations
across all participants.

4.1 Multiple Kernel Learning
We use multiple kernel learning (MKL) support vector

machines [37] as a multi-view learning method to learn clas-
sification models of the form

y = f(v1, . . . ,vK) =

K∑
k=1

βk〈wk,Φk(vk)〉+ b,

given a set of relevance observations {ri}Ni=1 as learning
data. Here y denotes the binary relevance judgement, 〈·, ·〉
the scalar product, wk the weight vector of the observa-
tions, Φk(vk) the feature map of the view vk, βk the kernel
weights, and b the bias. The learning problem is to esti-
mate the optimal kernel weights βk along with wk and b
from the given data. Using different feature maps (and con-
sequently different kernels) allows us to represent the fact
that the different EEG signals can have different measures
of similarities, and we can capture nonlinear relationships
between features. The estimated kernel weights βk can be
used as an indication for the importance of the different
views [37], which, consequently, allows us to draw conclu-
sions on the importance of individual EEG signals in pre-
dicting relevance.

For the concrete estimation of the classification models,
we use a Bayesian MKL algorithm with an efficient infer-
ence based on variational approximation [9]. Among other
advantages, the Bayesian formulation of MKL estimates the
predictive distribution of the class labels. We will later on
utilize the predictive distributions when constructing the
high-precision classifier (Section 6). For concrete details, es-
pecially on the actual model specification, the distributional
assumptions, and the formulation of the deterministic vari-
ational approximation, we refer to [9].

4.2 Prediction Setup
Our prediction setup is based on the data of S = 38 par-

ticipants and K = 7 views vk with features described in
Table 1. We computed models with different combinations
of views. We applied a leave-one-participant-out learning
strategy as follows. For each participant s we learned a clas-
sification model fs using the other participants’ data (i.e.,
the learning set Rs̄ = R \ Rs) with the views that were
selected for the particular model (e.g., All views and Al-
pha+ERPs). The prediction accuracy was then computed
on the participant’s relevance observations, i.e., the test set
Rs. The learning of the models results in estimated obser-
vation weights ws̄

k, kernel weights βs̄
k, and the bias bs̄.

We used an automatic feature selection procedure on each
view vk, whereby the features were ranked according to
the t-statistic (computed between the relevant and irrele-
vant observations) and the highest ranking features were
selected [35]—in our case the top ten features. Given the
selected features for each view vk, we normalized the data
and computed a Gaussian kernel with the kernel width de-
fined as the median distance between the observations [11].

The number of relevance observations Ns varies slightly
for each participant because we used only observations that
conformed to the ground truth. We established balanced
data by randomly drawing the learning set and the test set
from the set of relevant and the set of irrelevant observations,
each with the number of observations defined by the smaller
set. This reassembles our original experimental design and
is a simple but well-established strategy to exclude possi-



Table 2: Classification results based on all 38 partic-
ipants for different sets of views. The table lists the
mean classification accuracy, the p-value indicating a
significant better mean classification accuracy than
the random baseline, and the corresponding mean
improvement. Because of our experimental design,
the random baseline prediction of whether a term is
relevant or irrelevant is 0.5. Bold entries denote that
improvements are statistically significant at a level
of α = 0.01, p-value < α with correction for multiple
testing.

Views
Mean Mean

accuracy p-value improvement
All 0.5415 0.0003 8.30%

Individual views:

Alpha (Al) 0.5242 0.0265 4.83%
Gamma1 (Ga1) 0.5143 0.1445 2.86%

Beta (Be) 0.5005 0.4838 0.10%
Gamma2 0.5101 0.2003 2.02%

Theta 0.5000 0.4984 0.01%
ERPs (E) 0.5312 0.0092 6.24%

Engage 0.4773 0.9673 −4.55%
Selected combined views:

Al+Ga1 0.5429 0.0014 8.59%
Al+E 0.5475 0.0007 9.50%

Ga1+E 0.5528 0.0002 10.55%
Al+Ga1+Be 0.5369 0.0022 7.37%
Al+Ga1+E 0.5586 <0.0001 11.72%

ble problems of the classification method with imbalanced
classes. To eliminate a possible observation sampling bias
we repeated this procedure five times; i.e., for a participant s
we estimated five models f i

s (i = 1, . . . , 5) and consequently
five estimations of model parameters. We report averaged
results, unless otherwise noted.

5. RESULTS
In this section, we first present results from classification

experiments with various combinations of EEG views. We
discuss the importance and influence of the various EEG
views and—encouraged by the well-known“BCI illiteracy”—
we show that there exists a restricted set of participants for
which we can further improve the prediction accuracy. We
then show physiological findings that map the important
views to effects that can be localized to certain brain areas.

5.1 Classification Performances
Table 2 summarizes the classification accuracies for differ-

ent sets of views. We report the mean classification accu-
racy, improvement over the random baseline, and the p-value
of a t-test for significance corrected for multiple testing us-
ing the Bonferroni correction. The t-test was applicable be-
cause the Shapiro-Wilk test showed no significant difference
from the normal distribution. The classifiers using all seven
EEG views (All) predicted relevant and irrelevant terms for
an unseen participant significantly better than the random
baseline, and achieved a mean improvement of 8.30%.

Importance and influence of EEG views. The es-
timated kernel weights βk of all learned classification mod-
els using all seven views gave us a first indication of the

Figure 2: Individual classification accuracy for each
of the 38 participants with all seven views based on
training on the data of the remaining participants
and ordered according to the accuracy. TBRP gen-
eralizes for about 70% of the participants which fol-
lows the BCI illiteracy.

Table 3: Classification results for a restricted set of
participants motivated by the well-known “BCI illit-
eracy”. Bold entries denote that improvements are
statistically significant at a level of α = 0.01, p < α
with correction for multiple testing.

Views
Mean Mean

# accuracy p-value improvement
All 26 0.5750 <0.0001 15.00%

Al+Ga1 28 0.5641 <0.0001 12.82%
Al+E 25 0.5853 <0.0001 17.06%

Ga1+E 26 0.5792 <0.0001 15.83%
Al+Ga1+Be 25 0.5490 0.0019 9.81%
Al+Ga1+E 28 0.5545 0.0005 10.89%

importance of each EEG view. Alpha and Gamma1 have
the highest weights, then Beta, then Gamma2, Theta and
ERPs, and finally Engage. To study the influence of dif-
ferent views on the classification accuracy, we built mod-
els for each view separately. The corresponding results are
shown in the middle block of Table 2. These single-view
runs indicated that none of the individual views alone led
to significant improvements. However, we found that Al-
pha and ERPs showed good performances (0.52/4.83% and
0.53/6.24%, respectively), which was in line with the kernel
weights. Influenced by these results, we also computed clas-
sification models by combining the best-performing views
and the views with highest kernel weights.

The corresponding classification results with combined
sets of views are shown in the lower block of Table 2. The
best set of views was found to be the one with the Alpha,
Gamma1, and ERPs (0.56/11.72%). Other significant im-
provements were achieved with classification models based
on Alpha and ERPs, and Gamma1 and ERPs. Even though
Beta had a high kernel weight, it did not significantly im-



Figure 3: Visualizations of physiological findings based on all 38 participants (details in Section 5.2): (a,
top) Localization of the Alpha change associated with relevance mapped to a normalized brain space. Hori-
zontal and sagittal slice show an area of maximum change with peak significant area localized in the Brodmann
Area 10, which has been associated with a range of cognitive functions that are important for relevance judg-
ments, such as recognition, semantic processing, memory recall, and intentional planning. (a, bottom) To-
pography of the event-related potential in the interval between 450 and 747 ms after irrelevant (left) and
relevant (right) term onset. Peak significant difference was found in the Pz channel. (b) The corresponding
ERP signal at the Pz channel shows the significant difference between relevant and irrelevant after 450 ms,
maximizing at 747 ms.

prove the classification accuracy when combined with Alpha
and Gamma1. In summary, this suggests that changes in
Alpha, Gamma1, and ERPs activities are associated with
term-relevance judgments. The physiological findings pre-
sented in the next section support these results for Alpha
and ERPs.

“BCI illiteracy” analogy. Motivated by the well-known
“BCI illiteracy”, which means that BCI control does not
work for a non-negligible proportion of participants (ca. 15-
30%, [39]), we were interested to find out whether a simi-
lar effect could be observed in TRPB. In detail, we stud-
ied whether we could achieve a better classification accu-
racy for a specific group of participants. Figure 2 shows
the classification accuracy of the classification models us-
ing all views; the horizontal line at 0.5 marks the random
baseline. 26 participants are above, and 12 participants are
below the random baseline. This proportion suggests that
capturing the relevance effect is generalizable for 70% of the
participants and not generalizable for about 30% of the par-
ticipants, which follows the BCI illiteracy rate mentioned
in [39].

A screening of the EEG signals of the 12 participants did
not show a higher noise level, which would explain the worse-
than-random prediction accuracy. Given that the learning
data for these cases are the other participants (leave-one-
participant-out strategy), there may be a group of partici-
pants with similar brain signals. There seems, however, to
be a group of participants with possibly different brain sig-
nals. In order to investigate if we could achieve further clas-
sification improvements, we investigated an additional set
of classification models for a restricted set of participants.
The restricted set was determined via a simple trial-and-

error procedure: i.e., we included all participants with an
accuracy above the random baseline.

Table 3 shows the corresponding classification results for
the restricted set of participants. The results indicate that
it is possible to increase the mean prediction accuracy and
therefore the mean improvement in all cases; in the best
case up to 17% (Alpha and ERPs). Because the simple trial-
and-error procedure, these analyses do not provide generaliz-
able results over all participants. This procedure, however,
allowed us to demonstrate an analogy to the well-known
“BCI illiteracy” effect.

5.2 Physiological Findings
The views that were found most effective for the classifica-

tion (Alpha and ERPs) were investigated from a physiologi-
cal point of view. We present brain mappings of the average
Alpha effect across all 38 participants and the topography
of the strong ERP effect.

Alpha. We attempted to localize the intracranial source
of the Alpha using exact low resolution electromagnetic to-
mography (eLORETA, [29]). eLORETA is a discrete dis-
tributed linear weighted minimum norm inverse solution to
the source localization of scalp recorded activity, yielding
images with exact localization, at a cost of a low spatial res-
olution. For each participant, two large 1024 ms segments of
relevant versus irrelevant terms were used to calculate the
cross spectra across all electrodes resulting in 6000 voxels
for both relevant and irrelevant terms for each participant.
In order to localize the Alpha change associated with rele-
vance, we used a pairwise log of F -ratio test across voxels
using spatial normalization to find a maximally significant
source localization (with correction for multiple testing [26]).



Table 4: Results of the high-precision classifier based on all 38 participants and all seven views. The average
top 5 terms are shown. The terms which are relevant according to the ground truth are in normal font,
irrelevant terms according to the ground truth are in italics. Note that, e.g., the irrelevant term “morse
code” in the topic “Iraq war” is predicted. A possible explanation is that brain signals associated with “morse
code” being relevant for this topic were detected even tough participants finally decided to judge the term
as irrelevant.

Topic
Count

Precision Recall Top 5 relevant terms
all relevant

Climate change and global warming 209 111 0.52 0.02 Snowmelt, Elevated CO2, Climate change,
hardware synchronization, sightseeing

Entrepreneurship 199 110 0.69 0.18 business risk, startup company, business cre-
ation, shopping, virtual relationships

Immigration integration 204 105 0.52 0.10 citizenship, ethnic diversity, xenophobia, ar-
sonist, morse code

Intelligent vehicles 185 109 0.80 0.11 pedestrian tracking, collision sensing, remote
driving, radar vision, arsonist

Iraq war 208 111 0.63 0.15 Saddam Hussein, US army, Tony Blair, morse
code, rock n roll

Precarious employment 204 106 0.57 0.11 minimum wage, employment regulation, job
instability, virtual relationships, video-games

Mean 202 109 0.62 0.13

The analysis based on the obtained corrected critical two-
sided F∗ = .37 results in an area of 10 voxels, all located in
the left frontal lobe, specifically in Brodmann Area 10 and
a peak localization at MNI coordinates (−25, 55, 25) with a
corrected p < 0.02; see Figure 3(a, top). The source local-
ization of the effect on alpha oscillations supports the key
role of the frontal lobe. The Brodmann Area 10 has previ-
ously been related to recognition [32], memory retrieval [33],
and the evaluation of working memory [42].

ERPs. To investigate which components of the ERP con-
tribute most to the model, we analyzed the average differ-
ence between relevant and irrelevant terms also in a more
traditional manner. Average relevant and irrelevant ERPs
were computed for each participant over a minimum of 8
and a maximum of 16 correctly classified epochs in each
condition. The main significant areas were observed in the
Cz, Pz, C4, and P4 channels, with the peak difference in
Pz beginning at 477 ms (p < .05) and peaking at 757 ms
(p < .0001); see Figure 3(a, bottom) and Figure 3(b). The
latency and topography of the potential suggest the involve-
ment of a P3-like potential. The high latency and parietal
topography coincide with the P3b, thus suggesting that rel-
evance does not affect an early change in orientation, but a
later, memory-related effect [30].

6. HIGH-PRECISION TRPB
In a practical information retrieval application that can

benefit from relevance prediction, the target is to detect true
positive examples of terms that represent user’s search in-
tent [34]. In such applications, a classifier that trades recall
for the benefit of precision can be used to maximize user
experience. In other words, a classifier predicts a term as
relevant only if the estimated probability of being relevant
is very high, i.e., above a certain threshold (high precision).
Obviously, the classifier will miss a lot of true relevant terms
(low recall). However, we can take advantage of the fact
that brain signals can be captured continuously and with

high throughput—compared to implicit signals that require
explicit user interaction. As a result, a large number of rele-
vance judgments can be observed in a relatively short time.
We demonstrate such a high-precision variant of the TRPB
classifier and show that it can construct meaningful sets of
terms for unknown topics and unseen participants.

6.1 Prediction Setup
One of the advantages of the Bayesian MKL algorithm

introduced in Section 4.1 is that its outcome for an unseen
term y is not simply the binary decision to relevant or ir-
relevant, but the predictive distribution of the term being
relevant, i.e., p(y = relevant | θ) with θ the estimated model
parameters. We built a high-precision TRPB variant by
predicting a term to be relevant only if the probability was
higher than 0.99. We used the same prediction setup as in
Section 4.2; the models are based on all 38 participants and
all seven views. The learned classification models were used
to predict the relevance of the terms for an unseen partic-
ipant and an unknown topic. We then quantified the pre-
dicted relevant terms per topic over all unseen participants,
which let us to compute the top relevant terms per topic for
an average unseen participant.

6.2 Results
The results of the high-precision classifier in predicting

relevant terms are shown in Table 4. For each of the six
topics, we show the number of observations used in the pre-
diction, precision, and recall achieved by the high-precision
classifier, and the terms predicted relevant by the classifier.

While the overall classification problem is still hard, the
high-precision classifier achieves a mean precision of 0.62
with an improvement of 25% from the baseline while still
sustaining feasible recall of 0.13. However, there are dif-
ferences in precision across the topics ranging from 0.52 up
to 0.8. This suggests that some terms in some topics may
have been more difficult for the participants than others.



For example, for the “Entrepreneurship” topic, the classifier
was used to classify 199 samples, of which 110 were rele-
vant and the rest were irrelevant. The high-precision clas-
sifier reconstructed 29 terms from these samples, of which
20 were relevant and 9 irrelevant, and achieved a precision
of 0.69 and recall of 0.18. The top five terms for this topic
were “business risk”, “startup company”, “business creation”,
“shopping”, and “virtual relationships”. While “shopping”
and “virtual relationships” were not relevant for the topic in
the strict sense (in the ground truth), they were still pre-
dicted relevant by the high-precision classifier. One may
argue that these terms are still somewhat relevant for the
topic. Similar is the effect of the classifier picking a term that
was classified relevant, but assessed irrelevant in the ground
truth, is for example the term “Morse code” for the topic
“Iraq war” or the term “virtual relationships” for the topic
“Precarious employment”. This suggests that the classifier
can possibly detect the correct brain pattern of a participant
first thinking that the term may be relevant, even when the
participant still ends up assessing it irrelevant.

7. DISCUSSION AND CONCLUSIONS
In essence, relevance judgments happen in the brain and

therefore the most intriguing way to predict relevance is to
directly use the brain signals. Brain signals also have ad-
vantages over the more conventional sources of user signals
from a practical IR point of view. The recording of the
relevance judgments do not require any explicit user inter-
action, such as user actively clicking on items. The signals
can be captured with higher throughput than from explicit
user interaction signals. Most practical information retrieval
systems assume the interface between the content and the
user to be based on user’s expression of the information need
using a term representation. Therefore, in order to opera-
tionalize brain signals as a part of a real IR system, a central
challenge is to predict the relevance of terms based on the
brain signals.

We showed that term-relevance prediction using only
brain signals captured via EEG is possible. The classifi-
cation results showed significantly better performances than
the random baseline. As a practical application of TRPB,
we demonstrated a high-precision relevance predictor and
showed that it can construct meaningful sets of terms for
unknown topics and unseen participants. To our knowl-
edge, this is the first work utilizing only brain signals as
a source for relevance in an IR scenario. Our approach does
not require users to explicitly memorize an artificial pattern
or a pre-seen object as in BCI or mind-reading research.
Moreover, our approach is based on well-established meth-
ods, both for the EEG processing and the prediction task,
and we were able to support the classification results with
physiological findings. The localized brain areas have pre-
viously been associated with cognitive functions important
for relevance judgments.

While our results show significant improvements, we see
several future research directions in order to utilize TRPB
as a part of a real IR system. First, our experimental design
is balanced between relevant and irrelevant terms in order
to ensures that we measure signals and effects related to rel-
evance judgments. In a real IR setting, however, it is likely
that the two classes are imbalanced with the majority of the
terms being irrelevant. Experiments with more realistic data
and larger amount of observations are needed to show how

our results generalize to such scenarios. Second, our classi-
fication results already generalize over unseen participants,
but more sophisticated EEG processing steps and advanced
detection methods are needed to automatically cope with
the detected “BCI illiteracy” analogy. Third, an obvious
next step is to use the predictions as relevance feedback and
to quantify the effectiveness of EEG-based relevance feed-
back as a part of a real interactive IR system. Fourth, we
recognize a need for studies that could more specifically re-
veal the areas of the brain that are activated when users
conduct relevance judgements. This could help to reveal the
plurality of different mental operations potentially associ-
ated with relevance and allow to build non-intrusive wear-
able EEG systems that could rely on a small number of
electrodes at specific positions.

In conclusion, our findings open a horizon for adaptive
information retrieval systems that can detect relevance di-
rectly from brain signals without requiring users to engage
with any particular interaction technique or user interface.
With the current trend of wireless, light weight, and portable
EEG sensors, our findings can enable systems, which analyze
relevance as it happens as a part of our everyday information
seeking activities.
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