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Abstract

We study a model of decentralised bilateral interactions in a small market where one of the

sellers has private information about her value. In addition to this informed seller, there are

two identical buyers and another seller, whose valuation is commonly known to be in between

the two possible valuations of the informed seller. We consider an infinite horizon game with

simultaneous one-sided offers and simultaneous responses. We characterise one PBE of the

game and show that, as the discount factor goes to 1, prices in all transactions converge to

the same value. We then show that this is the case with any stationary equilibrium of the

game. That is, the asymptotic outcome is unique across all stationary equilibria.

JEL Classification Numbers: C78, D82

Keywords: Bilateral Bargaining, Incomplete information, Outside options, Coase con-

jecture.

1 Introduction

This paper studies a small market in which one of the players has private information about

her valuation. As such, it is a first step in combining the literature on (bilateral) trading with
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incomplete information with that on market outcomes obtained through decentralised bilateral

bargaining.

We shall discuss the relevant literature in detail later on in the introduction. Here we summarise

the motivation for studying this problem.

One of the most important features in the study of bargaining is the role of alternative bargain-

ing partners in determining the trading outcome. There have been several different approaches

to modelling the effect of such alternatives on an existing negotiation, starting with treating al-

ternatives to the current bargaining game as exogenously given and always available. Accounts

of negotiation directed towards practitioners and policy-oriented academics, like Raiffa’s masterly

“The Art and Science of Negotiation”,([37]) have emphasised the key role of the “Best Alternative

to the Negotiated Agreement” and mentioned the role of searching for such alternatives in prepar-

ing for negotiations. We could also take such alternatives into account by explicitly considering

strategic choice of bargaining partners.

Proceeding more or less in parallel, there has been considerable work on bargaining with

incomplete information. The major success of this work has been the complete analysis of the

bargaining game in which the seller has private information about the minimum offer she is willing

to accept. The probability distribution from which the seller’s reservation price is drawn is common

knowledge. The buyer makes repeated offers which the seller can accept or reject; each rejection

takes the game to another period and time is discounted at a common rate by both parties.1

With the roles of the seller and buyer reversed, this has also been part of the development of the

foundations of dynamic monopoly and the Coase conjecture.2

Our model here analyses a small market in which players make strategic choices of whom to

make offers to and (for sellers), whose offer to accept. Thus, though trades remain bilateral, a

buyer can choose to make an offer to a different seller than the one who rejected his last offer

and the seller can entertain an offer from some buyer whom she has not bargained with before.

These alternatives are internal to the model of a small market, rather than given as part of

the environment. What we do is as follows: We take the basic problem of a seller with private

information and an uninformed buyer and add another buyer-seller pair. The new seller’s valuation

is commonly known and is different from the possible valuations of the informed seller. The buyers’

valuations are identical and commonly known. Specifically, the informed seller’s valuation can

1Other, more complicated, models of bargaining have also been formulated (for example, [11]), with two-sided
offers and two-sided incomplete information, but these have not usually yielded the clean results of the game with
one-sided offers and one-sided incomplete information.

2The “Coase conjecture” relevant here is the bargaining version of the dynamic monopoly problem, namely that
if an uninformed seller (who is the only player making offers) has a valuation strictly below the informed buyer’s
lowest possible valuation, the unique sequential equilibrium as the seller is allowed to make offers frequently, has a
price that converges almost immediately to the lowest buyer valuation. In the current work, we show that even if
the bilateral bargaining is embedded in a small market, a similar conclusion holds for all stationary equilibria-hence
an extended Coase conjecture holds.
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either be L or H (H > L ≥ 0) and the new seller’s valuation is M such that M ∈ (L,H). Each

seller has one good and each buyer wants at most one good. This is the simplest extension of the

basic model that gives rise to alternatives for each player, though only one buyer can deviate from

the incomplete information bargaining to choose the other seller (if this other seller accepts the

offer), since each seller only has one good to sell.3

In our model, buyers make offers simultaneously, each buyer choosing only one seller.4 Sellers

also respond simultaneously, accepting at most one offer. A buyer whose offer is accepted by a

seller leaves the market with the seller and the remaining players play the one-sided offers game

with or without asymmetric information. We consider the case when buyers’ offers are public, so

that the continuation strategies can condition on both offers in a given period and the set of players

remaining.5 We first characterise a stationary equilibrium. The main result of our analysis

shows that in the incomplete information game, any stationary equilibrium must have certain

specific qualitative features. As agents become patient enough, these qualitative features enable

us to show that all price offers in any stationary equilibrium converge to the highest

possible value of the informed seller (H). In the two-player case, there is a unique sequential

equilibrium for the “gap”6 case. However, there could be non-stationary equilibria with different

outcomes in the four-player, public offers case. We note that the discussion of the features of

the stationary equilibrium is concerned with the properties of proposed actions occurring with

positive probability on the equilibrium path. However, in order to show existence, the properties

of outcome paths following deviations become important.

The equilibrium we construct to demonstrate existence is in (non-degenerate) randomized

behavioural strategies. As agents become patient enough, in equilibrium competition always

takes place for the seller whose valuation is commonly known. The equilibrium behaviour of

beliefs is similar to the two-player asymmetric information game. However, the off-path behaviour

sustaining any equilibrium is different and has to take into account many more possible deviations.7

Our asymptotic convergence result above has a flavour of the Coase Conjecture and could be

considered as a contribution to the discussion of its robustness to the setting of a small market.

3What do the seller’s valuations represent? (The buyers’ valuations are clear enough.) We could consider a
seller who can produce a good, if contracted to do so, at a private cost of H or L and pays no cost otherwise. Or
we could consider the value she gets from keeping the object as H or L. Thus, supposing her value is L, if she
accepts a price offer p with probability α, her payoff is L(1 − α) + (p)α = (p − L)α + L. Hence, one can think of
(p − L) as the net expected benefit to the seller from selling the good at price p. For the purpose of making the
decision on whether to accept or reject, the two interpretations give identical results.

4Simultaneous offers extensive forms capture best the essence of competition.
5We also discuss private offers in the extensions. This is the case when only the proposer and the recipient of

an offer know what it is and the only public information is the set of players remaining in the game.
6The gap case implies the situation when the highest possible value of the seller is strictly below the valuation

of the buyer.
7The result of this paper is not confined to uncertainty described by two types of seller. Even if the informed

seller’s valuation is drawn from a continuous distribution on (L,H], it can be shown that the asymptotic convergence
to H still holds as the unique limiting stationary equilibrium outcome. Please refer to [8] for a formal analysis.
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Related literature: The modern interest in this approach dates back to the seminal work

of Rubinstein and Wolinsky ( [38], [39]), Binmore and Herrero ([5])and Gale ([19]),[20]). These

papers, under complete information, mostly deal with random matching in large anonymous mar-

kets, though Rubinstein and Wolinsky (1990) is an exception. Chatterjee and Dutta ([9]) consider

strategic matching in an infinite horizon model with two buyers and two sellers and Rubinstein

bargaining but with complete information.

In ([7]), we have analysed markets with equal finite numbers of buyers and sellers, under

complete information. The bargaining is with one-sided offers. We show that in any stationary

equilibrium, as agents become patient enough, prices in all transactions converge to a single value.

In the current work, we show convergence of prices in an incomplete information framework.8

Chatterjee and Dutta ([10]) study a similar setting as this paper but with sequential offers

by buyers. They do not obtain asymptotic convergence of all stationary equilibrium outcomes to

a uniform price. This is mainly because they always have an equilibrium in which prices in the

two transactions are bounded away from each other. Thus, the asymptotic stationary equilibrium

outcome is not unique, unlike our current model.

A paper analysing outside options in asymmetric information bargaining is that by Gantner([24]),

who considers such outside options in the Chatterjee and Samuelson ([11]) model. Our model dif-

fers from hers in the choice of the basic bargaining model and in the explicit analysis of a small

market. (There is competition for alternatives too, in our model but not in hers.) Another paper,

which in a completely different setting, discusses outside options and bargaining is Atakan and

Ekmekci([1]). Their model is based on the presence of inflexible behavioural types and matching

over time. They consider the steady state equilibria of this model in which there are inflows of

different types of agents every period. Their main result shows that there always exist equilibria

where there are selective breakups and delay, which in turn leads to inefficiency in bargaining. In

a recent paper, Board and Pycia([6]) have shown that in a model of bilateral baragaining with

incomplete information and one-sided offers, the Coase conjecture does not hold in the presence

of outside options.

Some of the main papers in one-sided asymmetric information bargaining are the well-known

ones of Sobel and Takahashi([41]), Fudenberg, Levine and Tirole ([17]), Ausubel and Deneckere

([2]). The dynamic monopoly papers mentioned before are the ones by Gul and Sonnenschein

8 In the complete information case (see [7]), we get a similar result. This however, does not imply that the
analyses are the same. In the bilateral bargaining game with complete information where the seller has valuation
H, the price is H; if it is L, the price is L. From this fact, it is non-trivial to guess that as the discount factor
goes to 1 and the probability of a H seller being positive, the price goes to H. (This explains the large number of
papers on this bilateral case.) With four players, even with only one seller’s value being unknown, the problem is
compounded by the presence of the other alternatives. We leave out the construction of the equilibrium itself, which
requires some careful consideration of appropriate beliefs. Without this construction, of course, the equilibrium
path cannot be known to be such, so the fact that two equilibrium paths end up looking similar doesn’t mean that
the equilibria are the same.
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([25]) and Gul, Sonnenschein and Wilson([26]).9

There are papers in very different contexts that have some of the features of this model. For

example, Swinkels [43] considers a discriminatory auction with multiple goods, private values

(and one seller) and shows convergence to a competitive equilibrium price for fixed supply as the

number of bidders and objects becomes large. We keep the numbers small, at two on each side

of the market. Other papers that have looked into somewhat related issues but in a different

environment are Fuchs and Skrzypacz ([16]), Kaya and Liu ([29]) and Horner and Vieille ([28]).

Compte and Jehiel ([14]) in the context of reputational bargaining and Lee and Liu ([31]) in

the context of repeated bargaining consider the role of outside options of the informed player

and examine how the equilibrium outcome is altered. Also, there are several other papers on

searching for outside options, for example, Chikte and Deshmukh ([13]), Muthoo ([32]), Lee ([30]),

Chatterjee and Lee ([12]) (This has private information about outside options). We do not discuss

these in detail because they are not directly comparable to our work.

Outline of rest of the paper: The rest of the paper is organised as follows. Section 2

discusses the model in detail. The qualitative nature of the equilibrium, its detailed derivation

and the asymptotic characteristics are given in section 3, which is the heart of the paper. Section

4 discusses the possibility of other equilibria, as well as the private offers case. Finally, Section 5

concludes the paper.

2 The Model

2.1 Players and payoffs

The setup we consider has two uninformed homogeneous buyers and two heterogeneous sellers.

Buyers (B1 and B2 ) have a common valuation of v for the good (the maximum willingness to

pay for a unit of the indivisible good). There are two sellers. Each of the sellers owns one unit

of the indivisible good. Sellers differ in their valuations. The first seller (SM) has a reservation

value of M which is commonly known. The other seller (SI) has a reservation value that is private

information to her. SI ’s valuation is either L or H, where,

v > H > M > L

It is commonly known by all players that the probability that SI has a reservation value of L is

π ∈ [0, 1). It is worthwhile to mention that M ∈ [L,H] constitutes the only interesting case. If

M < L (or M > H) then one has no uncertainty about which seller has the lowest reservation

value. Although our model analyses the case of M ∈ (L,H), the same asymptotic result will be

9See also the review paper of Ausubel, Cramton and Deneckere ([3])
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true for M ∈ [L,H].

Players have a common discount factor δ ∈ (0, 1). If a buyer agrees on a price pj with seller Sj

at a time point t, then the buyer has an expected discounted payoff of δt−1(v − pj). The seller’s

discounted payoff is δt−1(pj − uj), where uj is the valuation of seller Sj.

2.2 The extensive form

This is an infinite horizon, multi-player bargaining game with one-sided offers and discounting.

The extensive form is as follows:

At each time point t = 1, 2, .., offers are made simultaneously by the buyers. The offers are

targeted. This means an offer by a buyer consists of a seller’s name (that is SI or SM) and a

price at which the buyer is willing to buy the object from the seller he has chosen. Each buyer

can make only one offer per period. Two informational structures can be considered; one in which

each seller observes all offers made ( public targeted offers) and the one ( private targeted offers)

in which each seller observes only the offers she gets. (Similarly for the buyers, after the offers

have been made-in the private offers case each buyer knows his own offer and can observe who

leaves the market.) In the present section we shall focus on the first and consider the latter in

a subsequent section. A seller can accept at most one of the offers she receives. Acceptances or

rejections are simultaneous. Once an offer is accepted, the trade is concluded and the trading pair

leaves the game. Leaving the game is publicly observable. The remaining players proceed to the

next period in which buyers again make price offers to the sellers. As is standard in these games,

time elapses between rejections and new offers.

3 Equilibrium

We will look for Perfect Bayes Equilibrium[18] of the above described extensive form. This requires

sequential rationality at every stage of the game given beliefs and the beliefs being compatible

with Bayes’ rule whenever possible, on and off the equilibrium path. We will focus on stationary

equilibria10. These are the equilibria where strategies depend on the history only through the

updated value of π (the probability that SI ’s valuation is L). Thus, at each time point, buyers’

offers depend only on the number of players remaining and the value of π. The sellers’ responses

depend on the number of players remaining, the value of π and the offers made by the buyers.

10Please see section 5 for discussion of non-stationary equilibria
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3.1 The Benchmark Case: Complete information

Before we proceed to the analysis of the incomplete information framework, we state the results of

the above extensive form with complete information. A formal analysis of the complete information

framework has been done in [7].

Suppose the valuation of SI is commonly known to be H. In that case there exists a unique11

stationary equilibrium (an equilibrium in which buyers’ offers depend only on the set of players

present and the sellers’ responses depend on the set of players present and the offers made by the

buyers) in which one of the buyers (say B1) makes offers to both the sellers with positive probability

and the other buyer (B2) makes offers to SM only. Suppose E(p) represents the expected maximum

price offer to SM in equilibrium. Assuming that there exists a unique pl ∈ (M,H) such that,

pl −M = δ(E(p)−M)12

, the equilibrium is as follows:

1. B1 offers H to SI with probability q. With the complementary probability he makes offers

to SM . While offering to SM , B1 randomises his offers using an absolutely continuous distribution

function F1(.) with [pl, H] as the support. F1 is such that F1(H) = 1 and F1(pl) > 0. This implies

that B1 puts a mass point at pl.

2. B2 offers M to SM with probability q
′
. With the complementary probability his offers to

SM are randomised using an absolutely continuous distribution function F2(.) with [pl, H] as the

support. F2(.) is such that F2(pl) = 0 and F2(H) = 1.

It is shown in [7] that this pl exists and is unique. Also, the outcome implied by the above

equilibrium play constitutes the unique stationary equilibrium outcome and as δ → 1,

q → 0 , q
′ → 0 and pl → H

This means that as market frictions go away, we tend to get a uniform price in different buyer-

seller matches. If S ′Is type is commonly known to be L, the asymptotic convergence is to M.

Thus, one might conjecture that for high values of π, the convergence is to M and for low values

to H. In this paper, however, we show convergence to H, even with incomplete information. The

analysis is different, since the current value of π plays a major role.

11Up to the choice of B1 and B2
12Given the nature of the equilibrium it is evident that M(pl) is the minimum acceptable price for SM when she

gets one(two) offer(s).
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3.2 Equilibrium of the one-sided incomplete information game with

two players

In the equilibrium of the four-player game, if a buyer-seller pair leaves the market after an agree-

ment, then the two-player games that could arise can be of two types. Either it is one of the buyers

remaining with the seller SM or it is one of the buyers remaining with seller SI . In the former

case, the unique equilibrium is the buyer making an offer of M to SM . In the latter case, we have

a two-player game with one-sided asymmetric information, where buyer makes all the offers. In

the current subsection, we discuss the equilibrium of this game.

The setting is as follows: There is a buyer with valuation v, which is common knowledge. The

seller’s valuation can either be H or L where v > H > L = 013. At each period, conditional on no

agreement being reached till then, the buyer makes the offer and the seller (informed) responds

to it by accepting or rejecting. If the offer is rejected then the value of π is updated using Bayes’

rule and the game moves on to the next period when the buyer again makes an offer. This process

continues until an agreement is reached. The equilibrium of this game(as described in, for example,

[15]) is as follows.

For a given δ, we can construct an increasing sequence of probabilities, d(δ) = {0, d1, ....., dt, ....}
such that if on the equilibrium path the game can continue for at most t periods from now then

we have the current belief πt ∈ [dt, dt+1). Here πt is the updated belief implied by the play for

the game so far. The buyer in this case offers pt = δtH. The H type seller rejects this offer with

probability 1. The L type seller rejects this offer with a probability that implies, through Bayes’

Rule, that the updated value of the belief πt−1 = dt−1. The cutoff points dt’s are such that the

buyer is indifferent between offering δtH and continuing the game for a maximum of t periods

from now or offering δt−1H and continuing the game for a maximum of t − 1 periods from now.

Thus, here t means that the game will last for at most t periods from now. The maximum number

of periods for which the game can last is given by N(δ). It is already shown in [15] that this N(δ)

is uniformly bounded above by a finite number N∗ as δ → 1.

The off-path behaviour that sustains the above equilibrium is described in [8].

Given a π, the expected payoff to the buyer vB(π) is calculated as follows:

For π ∈ [0, d1), the two-player game with one-sided asymmetric information involves the same

offer and response as the complete information game between a buyer of valuation v and a seller

of valuation H. Thus we have

vB(π) = v −H for π ∈ [0, d1)

13L = 0 is assumed to simplify notation and calculations.
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For π ∈ [dt, dt+1), (t ≥ 1 ), we have,

vB(π) = (v − δtH)a(π, δ) + (1− a(π, δ))δ(vB(dt−1)) (1)

where a(π, δ) is the equilibrium acceptance probability of the offer δtH.

These values will be crucial for the construction of the equilibrium of the four-player game.

In the following subsection, we describe the characteristics of any stationary equilibrium of the

four-player game with incomplete information and formally show existence of such an equilibrium.

3.3 Equilibrium of the four-player game with incomplete information.

In this subsection, we will characterise a particular stationary PBE of the four-player game with

incomplete information. This is summarised in the following proposition.

Proposition 1 There exists a δ∗ ∈ (0, 1) such that if δ > δ∗, then for all π ∈ [0, 1), there exists

a stationary PBE of the four-player game with incomplete information. The equilibrium has the

following features.

(i) One of the buyers (say B1) will make offers to both SI and SM with positive probability.

The other buyer B2 will make offers only to SM .

(ii) B2 while making offers to SM , will put a mass point at p
′

l(π) and will have an absolutely

continuous distribution of offers from pl(π) to p̄(π) where p
′

l(π) (pl(π)) is the minimum acceptable

price to SM when she gets one(two) offer(s). For a given π, p̄(π) is the upper bound of the price

offer SM can get in the described equilibrium (p
′

l(π) < pl(π) < p̄(π)). B1, when making offers

to SM , will have an absolutely continuous (conditional) distribution of offers from pl(π) to p̄(π),

putting a mass point at pl(π).

(iii) B1, when making offers to SI on the equilibrium path, makes the same offer, as a function

of the current belief about the type of the informed seller, as in the two-player game with one-sided

asymmetric information.

(iv) SI ’s response behaviour on the equilibrium path is identical to that in the two-player game.

SM accepts the largest offer with a payoff at least as large as the expected continuation payoff from

rejecting all offers.

(v) Each buyer in equilibrium obtains a payoff of vB(π).
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(vi) Strategies off the equilibrium path that sustain the on-path play are described in appendix

(A.2)

The mass points and the distribution of buyers’ offers will depend upon π though we show

that these distributions will collapse in the limit (as δ → 1).

The descriptions above imply that if the discount factor is high enough, then irrespective of the

probability with which the informed seller has valuation L, in equilibrium buyers always compete

for the seller whose valuation is known to be M . In the later sub-section, we will show that this will

be the case for any stationary equilibrium of the four-player game with incomplete information.

We provide here an informal account of the proof, the details of which are in appendix (A.1).

The first step is to consider the effect of buyer competition for the sellers. Our complete information

analysis suggests that if the sellers have values H and M , competition for the M seller will drive

prices to H, whilst if these values are M and L, competition will be for the L seller. One

might therefore expect, in an environment where one seller value is unknown to the buyers, that

competition will be for SI if the probability of SI ’s value being L is sufficiently high. As it

turns out, this is not the case for high enough δ. This is a fundamental difference between the

complete and incomplete information settings. We formalise this by proving a competition lemma,

terminology borrowed from a similar result in the different model of Chatterjee and Dutta [10].

To state it more formally, let p̄t be the price offer such that the payoff to the buyer from getting it

accepted is the same as the buyer’s equilibrium expected payoff in the two-player game with SI ,

when on the equilibrium path the game will last for at most t more periods. Hence,

p̄t = v − [(v − δtH)α + (1− α)δ(v − p̄t−1)]

Let p
′
t be the upper bound of the minimum acceptable price offer to SM , when she gets only one

offer in equilibrium. The competition lemma shows that if δ is high enough then p̄t > p
′
t.

The second step is to derive the equilibrium. We fix a δ > δ∗ and derive the sequence

dτ (δ) = {0, d1, d2, ..., dt, ..}, which is identical with the similar sequence in the two-player game

with asymmetric information. We can find a t ≥ 0 (t ≤ N∗) such that π ∈ [dt, dt+1). Next, we

compute vB(π), which is the expected payoff to a buyer in a two-player game with the informed

seller. We define p̄(π) as

p̄(π) = v − vB(π)

Let p
′

l(π) be the minimum acceptable price offer to seller SM in the event she gets only one

offer in equilibrium. From the competition lemma we know that p̄(π) > p
′

l(π). Assuming existence

of a pl(π) ∈ (p
′

l(π), p̄(π)) such that pl(π) is the minimum acceptable price to SM in the event she

gets two offers in equilibrium, we derive the distribution of offers and the probabilities at the mass
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points from the indifference condition of the buyers.

The third step involves proving a lemma which we term as the basis lemma. This lemma

exploits the fact that for any δ ∈ (0, 1), d1 is independent of δ and if π ∈ [0, d1), the two player

game with a buyer and the informed seller is identical to the two-player game of a buyer with

valuation v and the seller with valuation H. The benchmark results now allow us to conclude that

for π ∈ [0, d1), an equilibrium as conjectured in the current proposition exists.

In the final step, we prove a recursion lemma. Suppose for a T ( 1 ≤ T < N∗), there exists a δ̄

such that for all δ exceeding δ̄, the conjectured equilibrium exists for all π ∈ [0, dT ). The recursion

lemma argues that we can find another threshold for δ, namely δ∗T ≥ δ̄ such that if δ exceeds this

threshold then the conjectured equilibrium exists for all π ∈ [dT , dT+1).

Since N∗ is finite, we can find a maximum of the thresholds of δ defined in the recursion

lemma. We denote this threshold by δ∗. Thus, if the discount factor exceeds δ∗, the basis lemma

and the recursion lemma together imply that for all π ∈ [0, 1), the equilibrium as conjectured in

the proposition exists. This completes the informal account of the proof of the proposition.

We can show that as δ → 1, all price offers in the equilibrium characterised converge to H.

To show this we argue that as δ → 1, probabilities at all mass points converge to 0, and pl(π)

converges to p̄(π). Thus, all distributions of offers collapse. As δ → 1, from the two-player

game with one-sided asymmetric information, we know that vB(π) goes to v − H. This implies

p̄(π) → H. Hence, as δ → 1, all price offers converge to H. This asymptotic result is formally

proved in appendix (B).

In the following sub-section, we show that any stationary equilibrium of the four-player game

with incomplete information has the same characteristics as described above and as δ → 1, all

price offers in equilibrium converge to H.

3.4 Uniqueness of the asymptotic equilibrium outcome

In this subsection, we show that prices in all stationary equilibrium outcomes must converge to

the same value as δ → 1. This shows that there exists a unique limiting stationary equilibrium

outcome.

It turns out to be convenient if we adopt the following sequence of stages in proving this result.

Let Π be the set of beliefs such that for any belief belonging to this set, a stationary equilibrium

exists where, on the equilibrium path, both buyers offer only to the informed seller. Let Φ(Π) be

the set of such equilibria, in case there is more than one with this feature. Let ΠC therefore be the

set of values of π,such that no stationary equilibrium strategies entail both buyers making such

offers only to SI .Let the set of stationary equilibria for π ∈ ΠC be denoted by Ψ(ΠC).

The first stage proves the main result for any equilibrium belonging to the set Ψ(ΠC). In the

next stage, we show that the set Π is empty. Thus, these two stages together imply the main
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result of this subsection.

In stage 1, we restrict ourselves to the set Ψ(ΠC). The argument follows from the following

steps.

First, we rule out the possibility of having any stationary equilibrium with the feature that

both buyers, on the equilibrium path, offer only to seller SM . We show that if such an equilibrium

exists, then it involves both buyers putting a mass point at the lower bound of the common

support. This is not possible in equilibrium.

In the next step, we show that in any stationary equilibrium, SM always accepts an equilibrium

offer immediately. This is irrespective of whether SM gets one offer or two offers on the equilibrium

path. The intuition for these results is as follows. If SM gets two offers, then rejection of both does

not lead to any change in the belief and hence, the expected equilibrium payoff in the continuation

game remains unchanged. In a stationary equilibrium this implies that these offers always yield a

payoff of zero. This is inconsistent with these being equilibrium offers. If SM gets only one offer,

we use the standard argument in bargaining that it is better for the proposer to make an offer

that gives the receiver a payoff equal to the discounted expected continuation payoff than waiting

for the next period and discounting his own payoff. The formal proof14 requires some explicit

calculations to verify these intuitions.

The third step considers the revision of beliefs about the informed seller. In any equilibrium,

which involves the informed seller rejecting offers, she must also accept equilibrium offers with

some positive probability to generate these revisions of beliefs. We show that for any δ ∈ (0, 1)

and for any π ∈ (0, 1), conditional on getting offers, the informed seller by rejecting equilibrium

offers can generate a path of beliefs such that she is offered H in finite time. Hence, the second

and the third step together imply that in any equilibrium, the game ends in finite time.

Next, we show that if players are patient enough, then in equilibrium both buyers cannot offer

to both sellers with positive probability. If this were to happen then we can show that one of

the buyers will deviate to make an unacceptable offer to the informed seller in order to increase

his probability of being in a two-player game with SM next period. Also, we show that every

equilibrium has the feature that both buyers make offers to SM with positive probability. This

follows from the fact that if only one buyer makes offers to SM , then from the third step we can

conclude that the buyer offering to SI can profitably deviate.

These conclusions allow us to infer that in any stationary equilibrium in the set Ψ(ΠC), one

buyer makes offers only to SM and the other buyer randomises between making offers to SI and

SM .

In the last part of the argument, we can show that as δ → 1, all price offers converge to H.

This happens because in equilibrium, SM always accepts an offer immediately, the buyer offering

14This is done in detail in appendix
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to SI is essentially facing a two-player game with the informed seller, in which we know the offers

converge to H as δ → 1. In order to prevent a deviation by this buyer, price offers in equilibrium

to SM should also converge to H.

These results are summarised in the following proposition

Proposition 2 Consider the set of stationary equilibria of the four-player game such that any

equilibrium belonging to this set has the property that both buyers do not make offers only to the

informed seller (SI) on the equilibrium path. As the discount factor δ → 1, all price offers in any

equilibrium belonging to this set converge to H

The detailed proof of this proposition is formally outlined in Appendix D .

We will now argue that there does not exist any belief such that a stationary equilibrium

is possible, where on the equilibrium path, both buyers offer only to the informed seller. The

following lemma shows this

Lemma 1 Let Π be the set of beliefs such that for π ∈ Π, it is possible to have a stationary

equilibrium where both buyers offer only to SI . The set Π is empty

Proof. Suppose Π is non-empty. Consider any π ∈ Π. At this belief, it is possible to have

a stationary equilibrium such that both buyers on the equilibrium path offer only to SI . First,

we will argue that the highest price offer in such a case is always strictly less than H for all

δ ∈ (0, 1). This is because, in the continuation game SM either faces a four-player game or a two

player game. In the former case, either the equilibrium of the continuation game is in Φ(Π) or

in Ψ(ΠC). Hence, the maximum price offer she can get is bounded above by H. In the latter

case the maximum price offer she can get is M . Since an informed seller always accepts an offer

in equilibrium with positive probability, the latter case can occur with positive probability. This

implies that if Eπ is the expected continuation payoff to SM , then Eπ < H −M . Let p̄π be such

that p̄π −M = δEπ < δ(H −M). Hence, p̄π < H for all δ ∈ (0, 1). If the maximum price offered

to SI exceeds p̄π, then the buyer making the highest offer to SI can profitably deviate by making

an offer to SM
15

Let p̄ be the largest price offer, for any π ∈ Π, in any such equilibrium. (It is without loss of

generality to assume that the maximum exists. This is because a supremum always exists and we

can consider prices in the ε-neighborhood of this supremum). Clearly, as argued above, p̄ < H.

As explained earlier, no equilibrium can involve offers that are rejected by both L and H types of

SI . Therefore, the L type must accept an offer with positive probability. This implies (by Bayes’

Theorem and δ < 1) that the sequence of prices must be increasing. Consider the offer of p̄. There

15One can easily check that it is not possible in equilibrium to have that as δ → 1, the price offered to SI goes
to H. This is because as the price offered to SI goes to H, the probability of acceptance goes to 1 . Hence,
Eπ < H −M and it is bounded away from H −M as δ → 1. Thus, one of the buyers can profitably deviate
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are two possibilities. Either the equilibrium of the continuation game (given the updated belief

conditional on p̄ being rejected) is in Φ(Π) or it is in Ψ(ΠC). In the former case, SI should accept

the offer with probability 1 and the updated belief is π = 0, where the equilibrium price offer

must be H > p̄. This means there exists a profitable deviation for the L-type SI , for δ sufficiently

high. For the latter case, if δ is high then from proposition (2) we know that for any stationary

equilibrium all offers converge to H as δ → 1. Once again, this implies the existence of a profitable

deviation for the L-type SI . Hence, we cannot have Π non-empty. This concludes the proof.

It is to be noted that since Π is empty, there are no equilibria with both buyers offering only

to SI . Thus Ψ(ΠC) is the set of all stationary equilibria of the four-player game with incomplete

information. The main result of this subsection is summarised in the theorem below.

Theorem 1 In any arbitrary stationary equilibrium of the four-player game, as the discount factor

goes to 1, price offers in all transactions converge to H for all values of the prior π ∈ [0, 1).

Proof. The proof of the theorem follows directly from proposition (2) and lemma (1).

In the next subsection, we discuss some extensions by considering non-stationary equilibria

and private offers.

4 Extensions

In this section we consider some possible extensions by considering a non-stationary equilibrium.

We then discuss private offers.

4.1 A non-stationary equilibrium

We show that with public offers we can have a non-stationary equilibrium, so that the equilibrium

constructed in the previous sections is not unique. This is based on using the stationary equilibrium

as a punishment (the essence is similar to the pooling equilibrium with positive profits in [33]). The

strategies sustaining this are described below. The strategies will constitute an equilibrium for

sufficiently high δ, as is also the case for the stationary equilibrium.

Suppose for a given π, both the buyers offer M to SM . SM accepts this offer by selecting each

seller with probability 1
2
. If any buyer deviates, for example by offering to SI or making a higher

offer to M, then all players revert to the stationary equilibrium strategies described above. If SM

gets the equilibrium offer of M from the buyers and rejects both of them then the buyers make

the same offers in the next period and the seller SM makes the same responses as in the current

period.
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Given the buyers adhere to their equilibrium strategies, the continuation payoff to SM from

rejecting all offers she gets is zero. So she has no incentive to deviate. Next, if one of the buyers

offers slightly higher than M to SM then it is optimal for her to reject both the offers. This is

because on rejection next period players will revert to the stationary equilibrium play described

above. Hence her continuation payoff is δ(Eπ(p) − M),which is higher than the payoff from

accepting.

Finally each buyer obtains an equilibrium payoff of 1
2
(v −M) + 1

2
δvB(π). If a buyer deviates

then, according to the strategies specified, SM should reject the higher offer if the payoff from

accepting it is strictly less than the continuation payoff from rejecting(which is the one period

discounted value of the payoff from stationary equilibrium). Hence if a buyer wants SM to accept

an offer higher than M then his offer p
′

should satisfy,

p
′
= δEπ(p) + (1− δ)M

The payoff of the deviating buyer will then be δ(v − Eπ(p)) + (1 − δ)(v − M). As δ → 1,

δ(v − Eπ(p)) + (1− δ)(v −M) ≈ δ(v − p̄(π) + (1− δ)(v −M)

= δvB(π) + (1− δ)(v −M).

For δ = 1 this expression is strictly less than 1
2
(v−M)+ 1

2
δvB(π), as (v−M) > δvB(π). Hence

for sufficiently high values of δ this will also be true. Also if a buyer deviates and makes an offer

in the range (M, p
′
) then it will be rejected by SM . The continuation payoff of the buyer will then

be δvB(π) < 1
2
(v−M) + 1

2
δvB(π). Hence we show that neither buyer has any incentive to deviate.

4.2 Private offers

In this subsection, we consider a variant of the extensive form of the four-player incomplete

information game in which offers are private to the recipient and the proposer. This means in

each period a seller observes only the offer(s) she gets and a buyer does not know what offers are

made by the other buyer or received by the sellers.

The equilibrium notion here is that of a public perfect Bayesian equilibrium (PPBE). That is,

in equilibrium. strategies can condition only on the public history, (which is the set of players

remaining in a particular period) and the public belief. If we suitably define the play off the

equilibrium path, then we can sustain the equilibrium characterised for the four-player incomplete

information game with public offers as a PPBE of the game with private offers. The following

proposition describes this.

Proposition 3 There exists a δ
′
< 1 such that for all δ > δ

′
, there exists a PPBE of the four-

player incomplete information game with private offers. The equilibrium has the following features:

(i) On the equilibrium path, the play is identical to the equilibrium described in proposition 1.
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(ii) Off the equilibrium path, the play is defined in appendix (G)

Proof. We refer to the proof of proposition (1) in order to ensure that on the equilibrium path,

no player has any incentive to deviate. Appendix(G) shows that behaviour described for off the

the equilibrium path constitute mutual optimal play by the players.

The main difference between private and public offers lies in the nature of the deviations that

are observable. In particular, a buyer cannot observe a deviation in offers made by the other

buyer. In this model, we specifically need to take into account three kinds of deviations by the

players and the associated observables. While this is outlined formally in the appendix, here we

provide an informal discussion.

All these three deviations are from the buyer (B2) who is supposed to make offers only to

SM . First, we consider the situation when B2 makes an unacceptable offer to the seller SM . The

second case is when B2 makes an offer to the informed seller but it is less than the equilibrium

offer. Finally, we need to consider the situation when B2 deviates and makes an offer to the

informed seller but the offer is higher than the equilibrium offer. Any of these deviations matters

only when following it, all four players are present when the equilibrium play would have resulted

in SM , at least, leaving with a buyer. This means that the buyer who is making offers to both

sellers with positive probability (B1) has made an equilibrium offer to the informed seller that

has been rejected. In that case, if all players are present, B1 can detect that some deviation has

taken place. However, he does not know the exact kind of deviation. In such a situation, suppose

B1 regards such deviations as mistakes but believes different mistakes take place with different

orders of probability. We suppose that the first case (B2 makes an unacceptable offer to SM)

occurs with the highest order of probability. In the first case, as well as the second, the beliefs

of both buyers are identical, though revised, after the deviation. In the third case, (B2 makes a

higher-than-equilibrium offer to SI ), the deviating buyer becomes more pessimistic, compared to

B1, about the valuation of the informed seller (he now believes it to be H since an offer higher

than the one that makes the L type indifferent has been rejected). This third type of deviation

is accorded the lowest order of probability. Therefore, as the probability of any mistake goes to

zero, a deviation is almost surely believed to be of the first kind. The deviating buyer B2, who

offers only to SM on the equilibrium path, does not do worse by playing an equilibrium strategy

with actions corresponding to the belief of B1.

In case of public targeted offers, while proving that the stationary equilibrium outcome is

unique, we did not use the fact that each seller while responding observes the other seller’s offer.

This implies that any stationary equilibrium of the public targeted offers game is a particular

public perfect Bayesian equilibrium of the game with private targeted offers

We now argue that no non-stationary equilibrium with public offers can be established as an

equilibrium with private offers. To begin with, it is to be noted that it is not possible to establish
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the equilibrium described in the previous subsection in a model with private offers. This is because

the equilibrium depends crucially on “overbidding” by one of the buyers to SM being detected

by the other buyer and seller, who then condition their future play on this deviation. But with

private offers, this deviation is not detectable, so the switch to the “punishment phase” is not

possible.

To be more general, any non-stationary equilibrium depends on the expected future changes

due to publicly observed deviations. With private offers, the only deviation that is observed results

in either some subset of players leaving or all players remaining. In the first case, the continuation

game will be a 2 player game. These continuation games have unique equilibria. This implies

that in any non-stationary equilibrium, there has to be a possible off-path play where all four

players remain. However, in that case, the player who deviated needs to be detected for proper

specification of continuation play after a deviation. This is not possible with private offers.

5 Conclusion

To summarise, we have first construct a stationary PBE, thus demonstrating existence. For

this equilibrium, as δ → 1, the price in all transactions converge to H and the game ends “almost

immediately”. We then show that any stationary equilibrium must have qualitative characteristics

similar to the equilibrium we initially describe, so that the unique stationary PBE outcome has

the property that , as δ → 1, the prices in both transactions go to the highest seller value H, with

the buyers making offers. This is reminiscent of the Coase Conjecture, though the setting here is

that of a stylised small market, rather than one of bilateral bargaining or such bargaining with an

exogenously fixed outside option. With private offers, the uniqueness result is for public perfect

Bayes’ equilibrium, since stationarity does not have any bite in this context.

Unlike the bilateral bargaining case, non-stationary equilibria exist in this model with very

different characteristics and we show one such.

In our future research we intend to address the issue of having two privately informed sellers

and to extend this model to more agents on both sides of the market.
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Appendix

A Equilibrium of the four-player game with incomplete

information

A.1 Proof of Proposition 1

Proof. We prove this proposition in steps. First, we derive the equilibrium for a given value of π by assuming that

there exists a threshold δ∗, such that if δ exceeds this threshold then for each value of π, a stationary equilibrium
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as described exists. Later on we will prove this existence result.

To formally construct the equilibrium for different values of π, we need the following lemma which we label as

the Competition Lemma, following the terminology of [10], though they proved it for a different model.

Consider the following sequences for t ≥ 1:

p̄t = v − [(v − δtH)α+ (1− α)δ(v − p̄t−1)] (2)

p
′

t = M + δ(1− α)(p̄t−1 −M) (3)

where α ∈ (0, 1) and p̄0 = H.

Lemma 2 There exists a δ
′ ∈ (0, 1), such that for δ > δ

′
and for all t ∈ {1, ....N(δ)}, we have,

p̄t > p
′

t

Proof.

p̄t − p
′

t = v − [(v − δtH)α+ (1− α)δ(v − p̄t−1))]−M

−δ(1− α)(p̄t−1 −M)

= (1− δ)(v −M) + α(δtH − δM − (1− δ)v)

We need to show that the second term is always positive. Note that the coefficient of α is increasing in δ and

is positive at δ = 1. Take t = N∗, where N∗ is the upper bound on the maximum equilibrium duration of the two

player game with one sided asymmetric information. For t = N∗, ∃ δ′ < 1 such that the term is positive whenever

δ > δ
′
. Since this is true for t = N∗, it will be true for all lower values of t.

For any δ < 1, N(δ) ≤ N∗. Hence, for all t ∈ {1, ....N(δ)},

p̄t > p
′

t

whenever δ > δ
′
.

This concludes the proof of the lemma.

Fix a δ > δ∗. Suppose the current prior is π ∈ (0, 1). 16 Consider the sequence dτ (δ) = {0, d1, d2, ...dt..}, which

is identical with the similar sequence in the two-player game with asymmetric information. This implies that there

exists a t ≥ 0 ( t ≤ N∗ ) such that π ∈ [dt, dt+1). Next, we evaluate vB(π) (from the two player game). Define

p̄(π) as,

p̄(π) = v − vB(π)

Define p
′

l(π) as,

p
′

l(π) = M + δ(1− a(π))[Edt−1
(p)−M ] (4)

where Edt−1
(p) represents the expected price offer to SM in equilibrium when the probability that SI is of the low

type is dt−1. a(π) is the probability with which the informed seller accepts an equilibrium offer. From (4), we can

posit that in equilibrium, p
′

l(π) is the minimum acceptable price for SM , if she gets only one offer.

16π = 0 is the complete information case with a H seller.
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For π = dt−1, the maximum price offer to SM (according to the conjectured equilibrium) is p̄(dt−1). This

implies that Edt−1
(p) ≤ p̄(dt−1).

Since a(π) ∈ (0, 1), from Lemma (2) we can infer that p̄(π) > p
′

l(π). Suppose there exists a pl(π) ∈ (p
′

l(π), p̄(π))

such that,

pl(π) = (1− δ)M + δEπ(p)

We can see that pl(π) represents the minimum acceptable price offer for SM in the event she gets two offers. (Note

that if SM rejects both offers, the game goes to the next period with π remaining the same.)

From the conjectured equilibrium behaviour, we derive the following17 :

1. B1 makes offers to SI with probability q(π), where

q(π) =
vB(π)(1− δ)

(v − p′l(π))− δvB(π)
(5)

B1 offers δtH to SI . With probability (1− q(π)), he makes offers to SM . The conditional distribution of offers to

SM , given B1 makes an offer to this seller is

Fπ1 (s) =
vB(π)[1− δ(1− q(π))]− q(π)(v − s)

(1− q(π))[v − s− δvB(π)]
(6)

We can check that Fπ1 (pl(π)) > 0 and Fπ1 (p̄(π)) = 1. This confirms that B1 puts a mass point at pl(π).

2. B2 offers p
′

l(π) to SM with probability q
′
(π), where

q
′
(π) =

vB(π)(1− δ)
(v − pl(π))− δvB(π)

(7)

With probability (1 − q′(π)), he makes offers to SM by randomizing his offers in the support [pl(π), p̄(π)]. The

conditional distribution of offers is given by

Fπ2 (s) =
vB(π)[1− δ(1− q′(π))]− q′(π)(v − s)

(1− q′(π))[v − s− δvB(π)]
(8)

This completes the derivation. Appendix(A.2) describes the off-path behaviour of players and shows that it

sustains the equilibrium play.

Next, we show that there exists a δ∗ such that δ
′
< δ∗ < 1 and for all δ > δ∗, an equilibrium as described

above exists for all values of π ∈ [0, 1). This is shown by proving the following two lemmas.

Lemma 3 If π ∈ [0, d1), then the equilibrium of the game is identical to that of the benchmark case.

Proof. From the equilibrium of the two player game with one sided asymmetric information, we know that for

π ∈ [0, d1), buyer always offers H to the seller and the seller accepts this with probability 1. Hence, this game is

identical to the game between a buyer of valuation v and a seller of valuation H, with the buyer making the offers.

Thus, in the four-player game, we will have an equilibrium which is identical to the one described in the benchmark

case. We conclude the proof by assigning the following values:

p
′

l(π) = M and p̄(π) = H for π ∈ [0, d1)

17We obtain these by using the indifference relations of the players when they are using randomized behavioural
strategies.
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Lemma 4 If there exists a δ̄ ∈ (δ
′
, 1) such that for δ ≥ δ̄ and for all t < T (T < N∗) an equilibrium as described

in the current Proposition exists for π ∈ [0, dt(δ)), then there exists a δ∗T ≥ δ̄ such that, for all δ ∈ (δ∗T , 1), such an

equilibrium also exists for π ∈ [dT (δ), dT+1(δ)).

Proof. We only need to show that there exists a δ∗T ≥ δ̄ such that for all δ > δ∗T and for all π ∈ [dT (δ), dT+1(δ)),there

exists a pl(π) ∈ (p
′

l(π), p̄(π)) with

pl(π) = (1− δ)M + δEπ(p)

From now on we will write dT instead of dT (δ). For each δ ∈ (δ
′
, 1), we can construct d(δ) and the equilibrium

strategies as above for any pl = x ∈ (p
′

l(π), p̄(π)). Function G(x) is constructed as

G(x) = x− [δExπ(p) + (1− δ)M ]

We can infer from ([7]) that the function G(.) is monotonically increasing in x. Since Exπ(p) < p̄(π),

lim
x→p̄(π)

G(x) > 0

Next, we have

G(p
′

l(π)) = p
′

l(π)− [δE
p
′
l(π)
π (p) + (1− δ)M ]

By definition, E
p
′
l(π)
π (p) > p

′

l(π). So for δ = 1, G(p
′

l(π))) < 0. Since G(.) is a continuous function, there exists a

δ∗T ≥ δ̄ such that for all δ > δ∗T , G(p
′

l(π))) < 0. By invoking the Intermediate Value Theorem we can say that for a

given δ > δ∗T , there exists a unique x∗(π) ∈ (p
′

l(π), p̄(π)) such that G(x∗(π)) = 0. This x∗(π) is our required pl(π).

This concludes the proof.

From Lemma (3), we know that for any δ ∈ (0, 1), an equilibrium exists for π ∈ [0, d1).18 Using Lemma (4),

we can obtain δ∗t for all t ∈ {1, 2, ..., N∗}. δ∗ is defined as:

δ∗ = max
1,..,N∗

δ∗T

We can do this because N∗ is finite. Lemma (3) and (4) now guarantee that whenever δ > δ∗, an equilibrium as

described in the current proposition exists for all π ∈ [0, 1) .

This concludes the proof of the proposition.

A.2 Off-path behaviour of the 4 player game with incomplete infor-

mation(public offers)

Suppose B2 adheres to his equilibrium strategy. Then the off-path behaviour of B1 and that of L-type SI , while B1

makes an offer greater than δtH to SI , are the same as in the 2-player game with incomplete information. If B1’s

offer to SI is less than δtH then the off-path behaviour of the L-type SI is described in the following manner. If

B2’s offer to SM is in the range [pl(π), p̄(π)], then the L-type SI behaves in the same way as in the 2-player game.

Consider the case when B2 offers p
′

l(π) to SM . If the offer to SI from B1 is less than [q(π)δt+1H+(1−q(π))δt+2H],

then both types reject the offer and SM also rejects the offer. If the offer is greater than [q(π)δt+1H+(1−q(π))δt+2H]

18Note that d1 is independent of δ
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but less than [q(dt)δ
tH + (1− q(dt))δt+1H] then the L-type SI rejects it with a probability such that the updated

belief is dt. SM also rejects the offer. In the following period(s), the offer to SI is either δt−1H or a randomised

offer between δtH or δt−1H. Randomisations are done in a manner such that SI is indifferent between accepting

or rejecting the offer. If the offer is greater than [q(dt)δ
tH + (1− q(dt))δt+1H], the offer is accepted by L-type SI

with a probability such that the updated belief is dt−1. SM randomises between accepting and rejecting the offer

of p
′

l(π). In the following period(s), offer to SI is either δt−1H or a randomised offer between δt−1H and δt−2H.

These randomisations are such that SI is indifferent between accepting and rejecting the offer. For high values of

δ, B1 does not have any incentive to deviate.

Next, suppose B2 makes an unacceptable offer to SM , (which is observable to SI) and B1 makes an equilibrium

offer to SI . The L-type SI rejects this offer with a probability that takes the updated belief to dt−1. If SI

rejects this equilibrium offer and next period both the buyers make offers to SM , then two periods from now, the

remaining buyer offers δt−2H (the buyer is indifferent between offering δt−1H and δt−2H at π = dt−1) to SI .

Thus the expected continuation payoff to SI from rejection is δ(q(dt−1)δt−1H + δ(1− q(dt−1))δt−2H) = δtH. This

implies that the L-type SI is indifferent between accepting and rejecting an offer of δtH if he observes SM to get

an unacceptable offer.

Now consider the case when B2 deviates and makes an offer to SI . It is assumed that if SI gets two offers then

she disregards the lower offer.

Suppose B1 makes an equilibrium offer to SI and B2 deviates and offers something less than δtH to SI . SI ’s

probability of accepting the equilibrium offer (which is the higher offer in this case) remains the same. If SI rejects

the higher offer (which in this case is the offer of δtH from B1 ) and next period both the buyers make offers to

SM , then two periods from now, the remaining buyer offers δt−2H to SI .

If B2 deviates and offers po ∈ (δtH, δt−1H] to SI , then SI rejects this with a probability that takes the updated

belief to dt−2. If SI rejects this offer then next period if B1 offers to SI , he offers δt−2H. If both B1 and B2 make

offers to SM then two periods from now the remaining buyer randomises between offering δt−2H and δt−3H to SI

(conditional on SI being present). Randomisations are done in a manner to ensure that the expected continuation

payoff to SI from rejection is po. It is easy to check that for high values of δ, this can always be done. Lastly,

if B2 deviates and offers to SI and B1 offers to SM (according to his equilibrium strategy), then the off-path

specifications are the same as in the 2-player game with incomplete information.

We will now show that B2 has no incentive to deviate. Suppose he makes an unacceptable offer to SM . His

expected discounted payoff from deviation is given by,

D = q(π)[δ{a(π)(v −M) + (1− a(π))vB(dt−1)}] + (1− q(π))δvB(π) (9)

From (4) we know that,

p
′

l(π) < M + δ(1− a(π))[p̄(dt−1)−M ]

as Edt−1
< p̄(dt−1). Hence we have,

p
′

l(π) < M + δ(1− a(π))[(v −M)− (v − p̄(dt−1))]

Rearranging the above terms we get,

(v − p
′

l(π)) > δ{a(π)(v −M) + (1− a(π))vB(dt−1)}+ (1− δ)(v −M) (10)
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By comparing (9) and (10) we have,

q(π)(v − p
′

l(π)) + (1− q(π))δvB(π) > D

The L.H.S of the above relation is B2’s equilibrium payoff, as he puts a mass point at p
′

l(π). Hence, he has no

incentive to make an unacceptable offer to SM .

Next, suppose B2 deviates and makes an offer of po to SI such that po ∈ (δtH, δt−1H]. B2’s payoff from

deviation is:

ΓH = q(π)[(v − po)a
′
(π) + (1− a

′
(π))δvB(dt−2)] + (1− q(π))[(v − po)a(π) + (1− a(π))δvB(dt−1)]

where a
′
(π) is the probability with which B2’s offer is accepted by SI in the event when both B1 and B2 make offers

to SI and B2’s offer is in the range (δtH, δt−1H]. From our above specification it is clear that a
′
(π) > a(π), where

a(π) is the acceptance probability of an equilibrium offer to SI . This is also very intuitive. In the contingency when

B1 makes an equilibrium offer to SM and B2’s out of the equilibrium offer to SI is in the range (δtH, δt−1H], the

acceptance probability is equal to a(π). This is the equilibrium acceptance probability. In this case if the L-type

SI rejects an offer, then next period he will get an offer with probability 1. However if both B1 and B2 make offers

to SI and B2’s offer is in the range (δtH, δt−1H] then the L-type SI accepts this offer with a higher probability.

This is because, on rejection, there is a positive probability that SI might not get an offer in the next period. This

explains why a
′
(π) > a(π).

Since po > p
′

l(π)19 and p̄(dt−2) > p
′

l(π)20, we have

v − p
′

l(π) > (v − po)a
′
(π) + (1− a

′
(π))δvB(dt−2) (11)

Also, since po > δtH, we have

(v − po)a(π) + (1− a(π))δvB(dt−1) < vB(π)

The expression [(v − po)a(π) + (1 − a(π))δvB(dt−1) − δvB(π)] is strictly negative for δ = 1. From continuity, we

can say that for sufficiently high values of δ, (v − po)a(π) + (1− a(π))δvB(dt−1) < δvB(π). This implies that

(v − p
′

l(π))q(π) + (1− q(π))δvB(π) > ΓH

The L.H.S of the above inequality is the equilibrium payoff of B2. Similarly if B2 deviates and makes an offer to

SI such that his offer p0 is in the range [δt+1H, δtH), the payoff from deviation is

ΓL = q(π)[δ{a(π)(v −M) + (1− a(π))vB(dt−1)}]

+(1− q(π))[(v − p0)a
′′
(π) + (1− a

′′
(π))δvB(dt)]

From the 2-player game we know that [(v − p0)a
′′
(π) + (1 − a

′′
(π))δvB(dt)] < vB(π). Also, from the previous

analysis we can posit that (v− p′l(π)) > δ{a(π)(v−M) + (1− a(π))vB(dt−1)}. Thus, for sufficiently high values of

δ, (v − p′l(π))q(π) + (1− q(π))δvB(π) > ΓL.

Hence, B2 has no incentive to deviate and make an offer to SI .

19For sufficiently high values of δ this will always be the case.
20Since p̄(dt−2) > p̄(π) > p

′

l(π).

25



B Asymptotic result

We will show that in the equilibrium characterised in Proposition 1, as δ → 1, price offers in all transactions

converge to H.

Appendix (C) shows that as δ → 1, p
′

l(π) reaches a limit which is strictly less than H. Since vB(π)→ (v −H)

as δ → 1, from (5) we have

q(π)→ 0 as δ → 1

From (6) we have,

1− Fπ1 (s) =
p̄(π)− s

(1− q(π))[v − s− δvB(π)]

We have shown that q(π)→ 0 as δ → 1. Hence as δ → 1, for s arbitrarily close to p̄(π), we have

1− Fπ1 (s) ≈ p̄(π)− s
p̄(π)− s

= 1

Hence, the distribution collapses and pl(π)→ p̄(π). From the expression of pl(π), we know that pl(π)→ Eπ(p)

as δ goes to 1. Thus, we can conclude that as δ goes to 1, Eπ(p)→ H for all values of π.

Since G(p̄(π)) > 0, there will be a threshold of δ such that for all δ higher than that threshold, we have

G(δp̄(π)) > 0. Thus pl(π) is bounded above by δp̄(π) for high values of δ. From (7), we can then infer that

q
′
(π) =

1
v

vB(π) + δp̄(π)−pl(π)
(1−δ)vB(π)

Since pl(π) is bounded above by δp̄(π) for high values of δ, q
′
(π)→ 0 as δ goes to 1.

Thus, we conclude that as δ goes to 1, prices in all transactions in the equilibrium characterised go to H.

C Limit of p
′
l(π)

We first prove the following lemma

Lemma 5 For a given π > d1, the acceptance probability a(π, δ) of an equilibrium offer is increasing in δ and has

a limit ā(π) which is less than 1.

Proof. The acceptance probability a(π, δ) of an equilibrium offer is equal to πβ(π, δ), where β(π, δ) is the proba-

bility with which the L-type SI accepts an equilibrium offer. From the updating rule we know that β(π, δ) is such

that the following relation is satisfied:

π(1− β(π, δ))

π(1− β(π, δ)) + (1− π)
= dt−1(δ)

From the above expression, we get

β(π, δ) =
π − dt−1(δ)

π(1− dt−1(δ))

Since d′ts have a limit as δ goes to 1, so does β(π, δ). Therefore, a(π, δ) also has a limit ā(π) which is less than 1

for π ∈ (0, 1).

The above lemma implies that as δ → 1, p
′

l(π) reaches a limit which is strictly less than H and greater than

M .
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D Proof of proposition 2

Proof. We prove this proposition in steps, through a series of lemmas. First, we show that for any equilibrium

belonging to the set of equilibria considered, the following lemma holds.

Lemma 6 For any π ∈ (0, 1), it is never possible to have a stationary equilibrium in the set of equilibria considered

such that both buyers offer only to SM on the equilibrium path.

Proof. Suppose it is the case that there exists a stationary equilibrium in the game with four players such that

both buyers offer only to SM . Both buyers should have a distribution of offers to SM with a common support21

[s(π), s̄(π)]. The payoff to each buyer should then be (v − s̄(π)) = v4(π)(say). Let vB(π) be the payoff obtained

by a buyer when his offer to SM gets rejected. This is the payoff a buyer obtains by making offers to the informed

seller in a two player game.

Consider any s ∈ [s(π), s̄(π)] and one of the buyers (say B1). If the distributions of the offers are given by Fi

for buyer i, then we have

(v − s)F2(s) + (1− F2(s))δvB(π) = v − s̄(π)

This follows from the buyer B1’s indifference condition.22

Since in equilibrium, the above needs to be true for any s ∈ [s(π), s̄(π)], we must have v− s̄(π) > δvB(π). The

above equality then gives us

F2(s) =
(v − s̄(π))− δvB(π)

(v − s)− δvB(π)

Since v − s̄(π) > δvB(π), for s ∈ [s(π), s̄(π)), we have v − s > v − s̄(π) > δvB(π). This implies

F2(s(π)) > 0

Similarly, we can show that

F1(s(π)) > 0

In equilibrium, it is not possible for both the buyers to put mass points at the lower bound of the support. Hence,

SM cannot get two offers with probability 1. This concludes the proof of the lemma.

For any equilibrium belonging to the set of equilibria we are considering, we know that SM must get at least

one offer with positive probability. The above lemma implies that SI also gets at least one offer with a positive

probability. We will now argue that for any equilibrium in the set of equilibria considered, SM always accepts an

equilibrium offer immediately. This is irrespective of whether SM gets one offer or two offers.

To show this formally, consider such an equilibrium. We first define the following. Given a π, let pi(π) be the

minimum acceptable price to the seller SM in the event she gets i (i = 1, 2) offer(s) in the considered equilibrium.

We have

21If the upper bounds are not equal, then the buyer with the higher upper bound can profitably deviate. On the
other hand, if the lower bounds are different, then the buyer with the smaller lower bound can profitably deviate.

22If there exists a stationary equilibrium where both buyers offer to SM only, then the lower bound of the common
support of offers is not less than the minimum acceptable price to SM in the candidate stationary equilibrium.
To see this, let p2

2(π) = (1 − δ)M + δE2
p(π). Suppose the lower bound of the support is strictly less than p2

2(π).
Let z(π) be the probability with which each buyer’s offer is strictly less than p2

2(π). If v2
4(π) is the payoff to the

buyers in this candidate equilibrium, the expected payoff to the buyer from making an offer strictly less than p2
2(π)

is z(π)δv2
4(π) + (1 − z(π))δvB(π). In equilibrium, we must have z(π)δv2

4(π) + (1 − z(π))δvB(π) = v2
4(π). Either

vB(π) > v2
4(π) or vB(π) ≤ v2

4(π). In the former case the equality does not hold for values of δ close to 1 and in the
later case the equality does not hold for any value of δ < 1.
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p1(π)−M = (1− (α(π))δ[Ep(π̃)−M ]

Ep(π̃) is the price corresponding to the expected equilibrium payoff to the seller SM in the event she rejects the

offer and the informed seller does not accept the offer. It is evident that when the seller SM is getting one offer,

the informed seller is also getting an offer. Here α(π) is the probability with which the informed seller accepts the

offer and π̃ is the updated belief.

Similarly, we have

p2(π)−M = δ[Ep(π)−M ]

where Ep(π) is the price corresponding to the expected equilibrium payoff to SM in the event she rejects both

offers. In appendix E we argue that Ep(π) > M . The following lemma has the consequence that SM always accepts

an equilibrium offer (or highest of the equilibrium offers) immediately.

Lemma 7 For any π < 1, if we restrict ourselves to the set of equilibria considered, then in any arbitrary equilib-

rium, it is never possible for a buyer to make an offer to SM , which is strictly less than min{p1(π), p2(π)}.

Proof. Suppose the conclusion of the lemma does not hold, so there is such an equilibrium. Let the payoff

to the buyers from this candidate equilibrium of the four-player game be v4(π). In appendix F we argue that

v4(π) < v − p2(π). Let vB(π) be the payoff the buyer gets by making offers to SI in a two-player game.

Consider the buyer who makes the lowest offer to SM . We label this buyer as B1 and the lowest offer as

p(π),where p(π) < min{p1(π), p2(π)}. Let q(π) be the probability with which the other buyer makes an offer to the

seller SI . Let γ(π) be the probability with which the other buyer, conditional on making offers to the seller SM ,

makes an offer which is less than p2(π). Finally, α(π) is the probability with which the informed seller accepts an

offer if the other buyer makes an offer to her. Since B1’s offer of p(π) to SM is always rejected, the payoff to B1

from making such an offer is

{q(π)δ{α(π)(v −M) + (1− α(π))(v − Ebp(π̃))}+ (1− q(π))δ{γ(π)v4(π) + (1− γ(π))vB(π)}

where Ebp(π̃) is such that (v − Ebp(π̃)) is the expected equilibrium payoff to the buyer if the updated belief is

π̃. We first argue that (v − Ebp(π̃)) is less than or equal to (v − Ep(π̃)). This is because since (Ep(π̃) −M) is the

expected equilibrium payoff to the seller SM when the belief is π̃, there is at least one price offer by the buyer,

which is greater than or equal to Ep(π̃). Hence, we have

δ{α(π)(v −M) + (1− α(π))(v − Ebp(π̃))} ≤ δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))}

⇒ (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ebp(π̃))}

≥ (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))}

Since, (v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ep(π̃))} = (1− δ)(v −M) > 0, we have

(v − p1(π))− δ{α(π)(v −M) + (1− α(π))(v − Ebp(π̃))} > 0

There are two possibilities. Either p1(π) < p2(π) or p2(π) < p1(π). If p2(π) > p1(π), then the buyer can

profitably deviate by making an offer of p1(π). The payoff from making such an offer is

q(π)(v − p1(π)) + (1− q(π)){γ(π)δv4(π) + (1− γ(π))δvB(π)}
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Since (v−p1(π))−δ{α(π)(v−M)+(1−α)(v−Ebp(π̃))} > 0, we can infer that this constitutes a profitable deviation

by the buyer.

Next, consider the case when p2(π) < p1(π). In this situation, the buyer can profitably deviate by making an

offer of p2(π). The payoff from making such an offer is

{q(π)δ{α(π)(v −M) + (1− α(π))(v − Ebp(π̃))}+ (1− q(π)){γ(π)(v − p2(π)) + (1− γ(π))δvB(π)}

Since v4(π) < (v − p2(π)), this constitutes a profitable deviation by the buyer.

This concludes the proof of the lemma.

There are two immediate conclusions from the above lemma. First, if p2(π) < p1(π), then it can be shown that

if δ is high enough, then in equilibrium, no buyer should offer anything less than p1(π). To show this, suppose at

least one of the buyers makes an offer which is less than p1(π) and consider the buyer who makes the lowest offer

to SM . Let γ1(π) be the probability with which the other buyer, conditional on making offers to SM , makes an

offer which is less than p1(π). The payoff to the buyer by making the lowest offer to SM is

{q(π)δ{α(π)(v −M) + (1− α)(v − Ebp(π̃))}+ (1− q(π))δ{vB(π)}

However, if he makes an offer of p1(π) then the payoff is

{q(π)(v − p1(π)) + (1− q(π)){γ1(π)(v − p1(π)) + (1− γ1(π))δvB(π)}

We know that as δ → 1, vB(π) → v −H. Since p1(π) < H, this implies that for high δ, γ1(π)(v − p1(π)) + (1 −
γ1(π))δvB(π) > δvB(π). Hence, for high δ, this constitutes a profitable deviation by the buyer.

Secondly, if p1(π) < p2(π), then only one buyer can make an offer with positive probability that is less than

p2(π). This is because, any buyer who makes an offer to SM in the range (p1(π), p2(π)) can get the offer accepted

when the seller SM gets only one offer. In that case the offer can still get accepted if it is lowered and that will not

alter the outcomes following the rejection of the offer. Hence, the buyer can profitably deviate by making a lower

offer. Thus, in equilibrium if a buyer has to offer anything less than p2(π) to the seller SM , then it has to be equal

to p1(π). However, in equilibrium both buyers cannot put mass points at p1(π). This shows that only one buyer

can make an offer to SM which is strictly less than p2(π).

Hence, we have argued that all offers to SM are always greater than or equal to p1(π) and in the event SM gets

two offers, both offers are never below p2(π). This shows that SM always accepts an equilibrium offer immediately.

We will now show that for any equilibrium in the set of equilibria considered, the informed seller by rejecting

equilibrium offers for a finite number of periods can take the posterior to 0. This is shown in the following lemma.

Lemma 8 Suppose we restrict ourselves to the set of equilibria considered. Given a π and δ, there exists a

Tπ(δ) > 0 such that conditional on getting offers, the informed seller can get an offer of H in Tπ(δ) periods from

now by rejecting all offers she gets in between. Tπ(δ) depends on the sequence of equilibrium offers and corresponding

strategies of the responders in the candidate equilibrium. Tπ(δ) is uniformly bounded above as δ → 1.

Proof. To prove the first part of the lemma, we show that in the candidate equilibrium, rejection of offers by the

informed seller can never lead to an upward revision of the belief.23 If it does, then it implies that the offer is

23We consider updating in equilibrium. Since this is about a candidate equilibrium, out of equilibrium events
could only arise from non-equilibrium offers made by the buyers. However, if we were to follow the definition of the
PBE, then no player’s action should be treated as containing information about things which that player does not
know (no-signalling-what-you-don’t-know). Hence, these out of equilibrium events cannot lead to change in beliefs.
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such that the H-type SI accepts the offer with a positive probability and the L-type SI rejects it with a positive

probability. Since the H-type accepts the offer with a positive probability, this means that the offer must be greater

than or equal to H (let this offer be equal to ph ≥ H ) and we have

ph −H ≥ δ(E
′
−H)

where E
′

is the price corresponding to the expected equilibrium payoff to the H-type SI next period. Then,

ph ≥ δ(E
′
) + (1− δ)H ⇒ ph − L ≥ δ(E

′
) + (1− δ)H − L

⇒ ph − L ≥ δ(E
′
− L) + (1− δ)(H − L) > δ(E

′
− L)

This shows that the L- type SI should accept ph with probability24 1 . This is a contradiction to our supposition

that the L-type SI rejects with some positive probability. Thus, the belief revision following a rejection must be

in the downward direction. It cannot be zero since in that case it implies that both types reject with probability

1. This is not possible in equilibrium.

Thus, in equilibrium, SI (L-type) should always accept an offer with a positive probability. This proves the

first part of the lemma.

To show that the number of rejections required to get an offer of H is uniformly bounded above as δ → 1, we

need to show that it cannot happen that the acceptance probabilities of any sequence of equilibrium offers to SI

are not uniformly bounded below as δ → 1.

In the equilibrium considered, if only one buyer makes offers to SI , then the claim of the lemma holds. This

is because of the fact that SM always accepts an equilibrium offer immediately and hence, SI on rejecting an offer

knows that the continuation game will be a two-player game with one-sided asymmetric information. Thus, by

invoking the finiteness result of the two-player game with one-sided asymmetric information, we know that SI can

take the posterior to 0 by rejecting equilibrium offers for finite number of periods.

Consider equilibria where more than one buyer makes offers to SI . Given the set of equilibria we have considered

and the results already proved, we can posit that in such a case, either one of the buyers is making offers only to

SI and the other is randomising between making offers to SI and SM , or both buyers are offering to both sellers

with positive probabilities.

Let pl be the minimum offer which gets accepted by SI with positive probability in an equilibrium where two

buyers offer to SI with positive probability. We will now argue that there exists a possible outcome such that SI

gets only one offer and the offer is equal to pl. When one of the buyers is making offers to SI only, then pl must be

the lower bound of the support of his offers . In the second case, when both buyers with positive probability make

offers to SI and SM , with positive probability SI gets only one offer. Thus, there exists an instance that SI gets

the offer of pl only.

When SI gets the offer of pl only, then she knows that by rejecting that she gets back a two- player game,

which has the finiteness property. Thus there exists a T̃ (δ) > 0 such that SI is indifferent between getting pl now

and H in T̃ (δ) periods from now. This implies

pl − L = δT̃ (δ)(H − L)

From the finiteness property of the two player game with one sided asymmetric information, we know that T̃ (δ) is

24This follows from the fact that from next period onwards, L-type SI can always adopt the optimal strategy
of the H-type SI . Hence, following a rejection of the offer ph, the expected equilibrium payoff to the L-type SI is
≤ E′ − L
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uniformly bounded above as δ → 1.

Suppose there is a sequence of equilibrium offers such that the acceptance probabilities of the offers are not

bounded below as δ → 1. Let p be the initial offer of that particular sequence. p ≥ pl. For a given δ, let T (δ) > 0

be such that, given the acceptance probabilities of the sequence of offers, by rejecting p and subsequent equilibrium

offers, SI can get H in T (δ) periods from now. Hence, the L-type SI should be indifferent between getting p now

and H in T (δ) time periods from now. As per our supposition, T (δ) is not uniformly bounded above as δ → 1.

Then, we can find a δh < 1 such that for all δ ∈ (δh, 1), we have T (δ) > T̃ (δ). This gives us

δT (δ)(H − L) < δT̃ (δ)(H − L) = pl − L ≤ p− L

Hence, the L-type SI is not indifferent between getting p now and H in T (δ) time periods from now, contrary to

our assumption.

Hence, as δ → 1, probabilities of acceptance of any sequence of equilibrium offers are bounded below. This

concludes the proof of the lemma.

The above lemma shows that any stationary equilibrium in the set of equilibria considered possess the finiteness

property. We will now show that we cannot have both buyers offering to both sellers with positive probability.

This is argued in the following lemma.

Lemma 9 In any equilibrium belonging to the set of equilibria considered, if players are patient enough then both

buyers cannot make offers to both sellers with positive probability.

Proof.

From the arguments of lemma (8), we know that in an arbitrary stationary equilibrium, any offer made to the

informed seller should get accepted by the low type with a positive probability bounded away from 0. Suppose

there exists a stationary equilibrium of the four-player game where both buyers offer to both sellers with a positive

probability. Hence, in equilibrium, if the informed seller gets offer(s), then she either gets two offers or one offer.

Since SM always accepts an offer in equilibrium immediately, SI knows that on rejecting an offer(s) she will get

another offer in at most two periods from now. Hence, from lemma (8) we infer that if the informed seller gets one

offer, then the L-type SI can expect to get an offer of H in at most T1(π) > 0 time periods from now, by rejecting

all offers she gets in between. Similarly, if the informed seller gets two offers then the L-type SI by rejecting both

offers can expect to get an offer of H in at most T2(π) > 0 time periods from now by rejecting all offers she gets

in between. As we have argued in lemma (8), both T1(π) and T2(π) are bounded above as δ → 1. Thus, any offer

s to the informed seller in equilibrium should satisfy

s ≥ δT1(π)H + (1− δT1(π))L ≡ s1(δ)

and

s ≥ δT2(π)H + (1− δT2(π))L ≡ s2(δ)

It is clear from the above that as δ → 1, both s1(δ)→ H and s2(δ)→ H. Hence, if there is a support of offers

to SI in equilibrium, then the support should collapse as δ → 1.

We will now argue that for δ high enough but δ < 1, the support in equilibrium cannot have two or more

points.

Suppose it is possible that the support of offers to SI has two or more points. This implies that the upper

bound and the lower bound of the support are different from each other. Let s(π) and s̄(π) be the lower and upper

bound of the support respectively.
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Consider a buyer who is making an offer to SI . This buyer must be indifferent between making an offer of s(π)

and s̄(π). Let q(π) be the probability with which the other buyer makes an offer to SI . Since in equilibrium SM

always accepts an offer immediately, the payoff from making an offer of s(π) to SI is

Πs(π) = (1− q(π))[αs(π)(v − s(π)) + (1− αs(π))δvB(π
′
)]

+q(π)Es{[βsπδ(v −M) + (1− βsπ)δv4(π
′′

s )]}

αs(π) is the acceptance probability of s(π) when SI gets the offer of s(π) only. βsπ is the acceptance probability of

the offer s to SI when she gets two offers. vB(.) and v4(.) are the buyer’s payoffs from the two-player incomplete

information game and the four-player incomplete information game respectively. For the second term of the right-

hand side, we have taken an expectation because when two offers are made, this buyer’s offer of s(π) to SI never

gets accepted and the payoff then depends on the offer made by the other buyer. When SI gets only one offer and

rejects an offer of s(π), then the updated belief is π
′
; π
′′

s denotes the updated belief when SI rejects an offer of

s ∈ (s(π), s̄(π)] and she gets two offers.

Similarly, the payoff from offering s̄(π) is

Πs̄(π) = (1− q(π))[αs̄(π)(v − s̄(π)) + (1− αs̄(π))δvB(π
′′′

)] + q(π)[β2π(v − s̄(π)) + (1− β2π)δv4(π4)]

Here π
′′′

is the updated belief when SI gets one offer and rejects an offer of s̄(π). When SI gets two offers

and rejects an offer of s̄(π), the updated belief is denoted by π4. Note that if at all SI accepts an offer, she always

accepts the offer of s̄(π), if made. The quantity αs̄(π) is the probability with which the offer of s̄(π) is accepted by

SI when she gets one offer. When SI gets two offers, then the offer of s̄(π) gets accepted with probability β2π.

As argued above, s̄(π) → H and s(π) → H as δ → 1. This implies that v4(π) → (v − H) as δ → 1. From

the result of the two-player one-sided asymmetric information game, we know that vB(π) → H as δ → 1. Since

v −M > v −H, we have Πs(π) > Πs̄(π) as δ → 1. From lemma (8) we can infer that both βsπ and β2π are positive.

Hence, there exists a threshold for δ such that if δ crosses that threshold, Πs(π) > Πs̄(π). This is not possible in

equilibrium. Thus, for high δ, the support of offers can have only one point. The same arguments hold for the

other buyer as well. Hence, each buyer while offering to SI has a one-point support. Next, we establish that both

buyers should make the same offer. If they make different offers, then as explained before, for δ high enough the

buyer making the higher offer can profitably deviate by making the lower offer. However, in equilibrium it is not

possible to have both buyers making the same offer to SI
25

Hence, when agents are patient enough, in equilibrium both buyers cannot offer to both sellers with a positive

probability. This concludes the proof of the lemma.

In the following lemma we show that in any stationary equilibrium of the four player game, as players get

patient enough, SM always gets offers from two buyers with a positive probability.

Lemma 10 In any stationary equilibrium belonging to the set of equilibria considered, there exists a threshold of

δ such that if δ exceeds that threshold, both buyers make offers to SM with positive probability.

Proof.

25These arguments would also work even if the supports were not taken to be symmetric. In that case, let s(π)
be the minimum of the lower bounds and s̄(π) be the maximum of the upper bounds. If these are associated with
the same buyer, then same arguments hold. If not, then the buyer with the higher upper bound can proftibaly
deviate by shifting its mass to s(π).
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Suppose there exists a stationary equilibrium where SM gets offers from only one buyer, say B1. There are two

possibilities. Either SI gets an offer from B2 only or from both B1 and B2 with positive probability.

Consider the first possibility. From lemma (8), we know that in a stationary equilbrium, the informed seller

should always accept an equilibrium offer with some positive probability. Thus, as δ → 1, the equilibrium payoff

to B2 approaches v − H from above. On the other hand, B1 knows that the informed seller is going to accept

with some probability and hence under that situation if his offer to SM gets rejected, he gets a two-player game

with SM . The payoff to B1 from that two-player game is (v −M). Thus, B1’s continuation payoff from his offer

getting rejected by SM is strictly greater than (v −H). This implies that the equilibrium payoff to B1 should also

be strictly greater than (v −H). Hence, as δ exceeds a threshold, B2 finds it profitable to deviate and make offers

to SM .

In the latter case, we know that B1 offers to both SI and SM with positive probability and B2 makes offers

only to SI . Therefore, using the result of lemma (8), if B1 has to get an offer accepted by SI , then for high values

of δ that offer should be close to H and thus the payoff to B1 from making offers to SI should be close to (v−H).

However as argued, the payoff to B1 from making offers to SM is strictly greater than (v − H). In equilibrium,

the buyer has to be indifferent between making offers to SI and SM . Hence, it is not possible to have a stationary

equilibrium where SM gets offers from only one buyer. This concludes the proof.

From the characteristics of the restricted set of equilibria being considered, we know that SM always gets an

offer with a positive probability. The above lemma then allows us to infer that, in any stationary equilibrium of the

four player game, both buyers should offer to SM with positive probability. From our arugments and hypothesis,

we know that both buyers cannot make offers to only one seller (SI or SM ) and both buyers cannot randomise

between making offers to both sellers. Hence, we can infer that one of the buyers has to make offers to SM only

and the other buyer should randomise between making offers to SI and SM .

The following lemma now shows that for any π ∈ [0, 1), any equilibrium in this restricted set possesses the

characteristic that the price offers to all sellers approach H as δ → 1.

Lemma 11 For a given π, in any hypothesised equilibrium, price offers to all sellers go to H as δ → 1.

Proof. Let s̄(π) be the upper bound of the support26 of offers to SM .

SM always accepts an equilibrium offer immediately. Hence, if the L-type SI rejects an equilibrium offer, she

gets back a two-player game with one-sided asymmetric information. Thus, the buyer offering to SI in a period

must offer at least pe such that

pe − L = δ(H − ε− L)⇒ pe = (1− δ)L+ δ(H − ε)

where ε > 0 and ε→ 0 as δ → 1.

Consider B1, who is randomising between making offers to SI and SM . When offering to SI , B1 must offer pe

and it must be the case that

(v − pe)α(π) + (1− α(π))δ{v − (H − ε)} = v − s̄(π)

where α(π) is the probability with which the offer is accepted by the informed seller. This follows from the fact that

B1 must be indifferent between offering to SI and SM . The L.H.S of the above equality is the payoff to B1 from

offering to SI and the R.H.S is the payoff to him from offering to SM . Since in any hypothesized equilibrium, SM

26The upper bound of support of offers to SM for both buyers should be the same. Else, the buyer with the
higher upper bound can profitably deviate
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always gets an offer in period 1 and SM accepts an equilibrium offer immediately, SI , by rejecting an equilibrium

offer, always gets back a two-player game with one-sided asymmetric information. Hence, the payoff to the buyer

from offering to SI is the same as in the two-player game with one-sided asymmetric information. This implies

that

(v − pe)α(π) + (1− α(π))δ{v − (H − ε)} = vB(π)

Thus, we can conclude that vB(π) = v − s̄(π).

We will now show that the upper bound of the support of offers to SM is strictly greater than pe. We have

(v − pe)− δ{v − (H − ε)} = v(1− δ) + δ(H − ε)− δ(H − ε)− (1− δ)L

= (1− δ)(v − L) > 0

for δ < 1. This implies that

v − pe > δ{v − (H − ε)}

Since (v − s̄(π)) is a convex combination of v − pe and δ{v − (H − ε)}, we have

v − pe > v − s̄(π)⇒ s̄(π) > pe

Next, we will argue that as δ → 1, the support of offers to SM from any buyer is bounded below by pe. Consider

a buyer who makes an offer of pe to SM in equilibrium. Then, if qe is the probability with which this offer gets

accepted, we have

(v − pe)qe + (1− qe)δvB(π) = v − s̄(π)

This follows since SM always accepts an offer in equilibrium immediately, this buyer’s offer to SM gets rejected

only when the other buyer also makes an offer to SM .

This gives us,

qe =
(v − s̄(π))− δvB(π)

(v − pe)− δvB(π)
=

(1− δ)(v − s̄(π))

(v − pe)− δ(v − s̄(π))

⇒ qe =
1

v
v−s̄(π) + δs̄(π)−pe

(1−δ)(v−s̄(π))

and

qe → 0 as δ → 1

This shows that in equilibrium, as δ → 1, any offer to SM that is less than or equal to pe always gets rejected.

Since we have argued earlier that in equilibrium, no buyer should make an offer to SM that she always rejects, we

can infer that the support of offers to SM from any buyer is bounded below by pe as δ approaches 1. Hence, in any

arbitrary stationary equilibrium of this kind, the price offers to all sellers are bounded below by pe as δ approaches

1. However, as δ → 1, pe → H. Hence, as δ → 1, the support of offers to SM from any buyer collapses and hence

price offers to all sellers converge to H.

Thus, we have shown that for any stationary equilibrium in the set of equilibria considered, one of the buyers

randomises between making offers to SM and SI and the other buyer makes offers to SM only. Further, as δ → 1,

price offers in all transactions in these stationary equilibria go to H. This concludes the proof of the proposition.
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E Ep(π) > M

Suppose not. This means that Ep(π) = M . The implication of this is that the seller SM in equilibrium only gets

offer(s) equal to M . Thus, in that case SM can get offers from one buyer only and the offer is always equal to M .

SM always accepts this offer immediately as by rejecting she cannot get anything more. Hence, the equilibrium

payoff of this buyer is v−M . The other buyer is making offers to SI only. Since, SM immediately accepts an offer,

the payoff to her is never greater than vB(π) where vB(π) is the payoff to a buyer in the two-player game with one

sided asymmetric information. As δ → 1, vB(π)→ H. Hence, this buyer can profitably deviate by offering to SM .

Thus, we must have Ep(π) > M .

F (v − p2(π)) > v4(π)

Since Ep(π)−M is the expected payoff to the seller SM in equilibrium, there is at least one price offer by the buyer

which is greater than or equal to Ep(π). Hence, we must have v4(π) ≤ (v − Ep(π)). This gives us

(v − p2(π)) = δ(v − Ep(π)) + (1− δ)(v −M) > (v − Ep(π)) ≥ v4(π)

This concludes the proof.

G Off-path behaviour with private offers

The off-path behaviour of the players in the case of private offers, to sustain the equilibrium described in Proposition

3 are described as follows.

Specifically we need to describe the behaviour of the players in the following three contingencies.

(i) B2 makes an unacceptable offer to SM .

(ii) B2 makes an offer of po to SI such that po < δtH.

(iii) B2 makes an offer of po to SI such that po > δtH.

We denote the above three contingencies by E1, E2 and E3 respectively. We now construct a particular belief

system that sustains the equilibrium described in the text.

Suppose B1 attaches probabilities λ,λ2 and λ3 (0 < λ < 1 ) to E1, E2 and E3 respectively. Thus, he thinks

that B2 is going to stick to his equilibrium behaviour with probability [1− (λ+ λ2 + λ3)]. On the other hand, in

the event when SM does not get any offer, she attaches probabilities λ2

λ2+λ3 and λ3

λ2+λ3 to E2 and E3 respectively.

If E1 or E2 occurs and B1 makes an equilibrium offer to SI , then SI ’s probability of accepting the equilibrium

offer remains the same and two periods from now (conditional on the fact that the game continues until then), if

B2 is the remaining buyer he offers δt−2H to SI . If E3 occurs and all players are observed to be present, then next

period B2’s offers to SM has the same support and follows the same distribution as in the case with belief equal to

dt−1. In any off-path contingency, if B1 is the last buyer remaining (two periods from now) then he offers δt−2H

to SI .

The L-type SI accepts an offer higher than δtH with probability 1 if she gets two offers. If she gets only one

offer then the probability of her acceptance of out-of-equilibrium offers is the same as in the two-player game with

incomplete information.

We will now argue that the off-path behaviour constitutes a sequentially optimal response by the players to

the limiting beliefs as λ→ 0.
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Suppose B1 makes an equilibrium offer to SI and it gets rejected. Although offers are private, each player can

observe the number of players remaining. Thus, next period, if B1 finds that all four players are present he infers

that this is due to an out-of-equilibrium play by B2. Using Bayes’ rule he attaches the following probabilities to

E1, E2 and E3 respectively.

1

1 + λ+ λ2
to E1

λ

1 + λ+ λ2
to E2

λ2

1 + λ+ λ2
to E3

As λ→ 0, the probability attached to E1 goes to 1. Thus B1 believes that his equilibrium offer of δtH to SI was

rejected and the updated belief is dt−1. Also, when SM does not get an offer, then next period if all four players

are present then SM ’s belief is also dt−1. In the case of E1 or E2 the beliefs of B1 and B2 coincide. However, in

the case of E3 they differ. Suppose E3 occurs and B1’s equilibrium offer to SI gets rejected. Then next period all

four players will be present and given L-type SI ’s behaviour, the belief of B2 will be π = 0 and that of B1 will be

π = dt−1. In that contingency it is an optimal response of B2 to offer to SM as in the case with belief equal to

dt−1. This is because he knows that B1 is playing his equilibrium strategy with the belief dt−1.

Next we will argue that the L-type SI finds it optimal to accept an offer higher than δtH with probability 1,

if she gets two offers. This is because in the event when she gets two offers she knows that rejection will lead the

buyer B1 to play according to the belief dt−1 and, two periods from now, the remaining buyer will offer δt−2H to

SI . Thus her continuation payoff from rejection is

δ{δt−1Hq(dt−1) + δ(1− q(dt−1))δt−2H} = δ{δt−1H} = δtH

Hence she finds it optimal to accept an offer higher than δtH with probability 1.

We need to check that B2 has no incentive to deviate and make an offer of po to SI such that po > δtH.

Suppose B2 deviates and makes an offer of po to SI such that po > δtH. With probability q(π), SI will get

two offers and B′2s will be accepted with probability π. With probability (1− q(π)), SI will get only one offer. B2

then gets a payoff of

(v − po)q(π)π + (1− q(π))[(v − po)a(π) + (1− a(π))δvB(dt−1)]

For high values of δ we have (v − po)a(π) + (1− a(π))δvB(dt−1) < δvB(π). Also for high values of δ, po > p
′

l(π).

Thus27,

vB(π) = (v − p
′

l(π))q(π) + (1− q(π))δvB(π)

> (v − po)q(π)π + (1− q(π))[(v − po)a(π) + (1− a(π))δvB(dt−1)]

Hence B2 has no incentive to deviate and make an offer of po to SI .

Lastly, to show that B2 has no incentive to deviate and make an unacceptable offer to SM or offer p0 to SI

such that p0 < δtH we refer to the analysis described in appendix A.2.

27This is because B2 puts a mass point at p
′

l(π)
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