
1 

 

Cap Inflammation Leads to Higher Plaque Cap Strain and Lower Cap Stress: 1 

An MRI-PET/CT-Based FSI Modeling Approach 2 

(Original article) 3 

Dalin Tang, FAHA,1*,2 Chun Yang,2,3  Sarayu Huang,4  Venkatesh Mani,4  Jie Zheng,5 4 

Pamela K Woodard,5 Philip Robson,4 Zhongzhao Teng,6 Marc Dweck,4   Zahi A. Fayad 4 5 

1 School of Biological Science and Medical Engineering, Southeast University, Nanjing, China   6 

2 Mathematical Sciences Department, WPI, Worcester, MA 01609, dtang@wpi.edu 7 

3Network Technology Research Institute, China United Network Comm. Co., Ltd., Beijing, 8 

China 9 

4 Department of Radiology, Translational and molecular imaging institute, Icahn School of 10 

Medicine at Mount Sinai, New York, USA 11 

5 Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, 63110, USA 12 

6 Department of Radiology, University of Cambridge, CB2 0QQ, United Kingdom 13 

 14 

Word count:   3305  15 

 16 

 17 

 18 

 19 

* Corresponding author,  Dalin Tang, Mathematical Sciences Department, Worcester 20 

Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, Phone: 508-831-5332, fax: 508-21 

831-5824, e-mail: dtang@wpi.edu.  22 

 23 

24 

mailto:dtang@wpi.edu


2 

 

Abstract  1 

Plaque rupture may be triggered by extreme stress/strain conditions.  Inflammation is also 2 

implicated and can be imaged using novel imaging techniques.  The impact of cap inflammation 3 

on plaque stress/strain and flow shear stress were investigated.  A patient-specific MRI-PET/CT-4 

based modeling approach was used to develop 3D fluid-structure interaction models and 5 

investigate the impact of inflammation on plaque stress/strain conditions for better plaque 6 

assessment.  18FDG-PET/CT and MRI data were acquired from 4 male patients (average age: 66) 7 

to assess plaque characteristics and inflammation.  Material stiffness for the fibrous cap was 8 

adjusted lower to reflect cap weakening causing by inflammation. Setting stiffness ratio (SR) to 9 

be 1.0 (fibrous tissue) for baseline, results for SR=0.5, 0.25, and 0.1 were obtained.  Thin cap 10 

and hypertension were also considered.  Combining results from the 4 patients, mean cap stress 11 

from 729 cap nodes was lowered by 25.2% as SR went from 1.0 to 0.1.  Mean cap strain value 12 

for SR=0.1 was 0.313, 114% higher than that from SR=1.0 model.  The thin cap SR=0.1 model 13 

had 40% mean cap stress decrease and 81% cap strain increase compared with SR=1.0 model.  14 

The hypertension SR=0.1 model had 19.5% cap stress decrease and 98.6% cap strain increase 15 

compared with SR=1.0 model. Differences of flow shear stress with 4 different SR values were 16 

limited (<10%).  Cap inflammation may lead to large cap strain conditions when combined with 17 

thin cap and hypertension. Inflammation also led to lower cap stress. This shows the influence of 18 

inflammation on stress/strain calculations which are closely related to plaque assessment.  19 

 20 
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1. Introduction  1 

Extreme mechanical stress and strain conditions have been identified as potential risk factors for 2 

plaque rupture, among other risk factors (Bluestein et al., 2008; Friedman et al., 2010; Samady et 3 

al., 2011; Tang et al., 2009, 2014; Vengrenyuk et al., 2006).  Considerable progress has been 4 

made in recent years in medical imaging (Tarkin et al., 2016; Vesey et al., 2016; Underhill et al., 5 

2010; Huibers et al., 2015) and image-based computational modeling (Bluestein et al., 2008; 6 

Friedman et al., 2010; Samady et al., 2011; Tang et al., 2004, 2005a, 2005b, 2009, 2014; Stone et 7 

al., 2012; Vengrenyuk et al., 2006) for better understanding of plaque progression and rupture.  8 

Tang et al. (2014) provided a recent review for plaque biomechanical analysis, covering essential 9 

topics including plaque components, tissue, modeling, and limitations and challenges the current 10 

technologies are facing.   Fleg et al. (2012) gave an authoritative review of findings from several 11 

large clinical studies for detection of high-risk atherosclerotic plaques, available techniques, 12 

findings from patient follow-up studies, and future recommendations.   13 

While it is believed that inflammation weakens plaque cap and may have considerable 14 

impact on cap stress and strain conditions, no single image modality is able to provide vessel 15 

geometry, plaque components and inflammation at the same time.  Fayad et al. (2011) and others 16 

have been developing multi-modality imaging technology using PET/CT (Positron Emission 17 

Tomography/ Computed Tomography) and MRI (magnetic resonance imaging) to identify 18 

inflammation in arteries (Tarkin et al., 2016; Vesey et al., 2016; Huibers et al., 2015; Fayad et al., 19 

2011; Calcagno et al., 2013).  Combining PET/CT with MRI, we are able to obtain plaque 20 

morphology with inflammation information on cap surface.  This gives us the base for better 21 

modeling stress/strain predictions.   22 
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The goal of this paper is to investigate the possible impact of cap inflammation on plaque 1 

stress/strain and flow shear stress conditions, with plaque and inflammation data provided by 2 

PET/CT combined with MRI.  A total of 52 models based on data obtained in 4 patients were 3 

used to investigate the impact of inflammation combined with thin cap thickness, plaque 4 

components and high blood pressure on plaque stress and strain and flow shear stress conditions. 5 

It should be noted that this is not a causality study.  In particular, it is commonly believed that 6 

flow shear stress may be a factor causing inflammation, not vice versa.  7 

2. Method: Data acquisition and Modeling Process    8 

2.1. MRI and PET/CT data acquisition.   9 

Data from 4 patients with identified carotid atherosclerotic plaques (m, mean age 66, 2 from 10 

Mount Sinai Hospital, 2 from Washington University, St Louis) were acquired with informed 11 

consent obtained respectively.  The data under consideration were acquired as part of clinical 12 

trial imaging patients to assess arterial inflammation within the bilateral carotid arteries and 13 

ascending aorta.  Patients with coronary heart disease were imaged with MRI and 18F-14 

fluorodeoxyglucose (18F-FDG) PET/CT in separate imaging sessions approximately 12 days 15 

apart.  16 

Image Acquisition: For the MRI examination the patients were imaged in a head-first 17 

supine position. 2-D multi-contrast (T2-weighted, T1-weighted and proton-density weighted) 18 

dark-blood turbo spin-echo images of the bilateral carotids were acquired as part of a longer 19 

imaging study. The imaging parameters for all three contrast-weightings were as follows: field of 20 

view 140mm x 140mm, in-plane spatial resolution 0.55x0.55mm, 14-16 slices, and slice 21 

thickness 3 mm with interslice gap 0.3 mm. Figure 1 provided the MRI slices, segmented 22 

contour plots and the 3D re-constructed vessel geometry of Patient 1 showing the locations of a 23 
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lipid pool and small calcification.  Details of the 3D geometry re-constructed procedures can be 1 

found in Yang et al. (2009).  The PET/CT was performed after the patient had fasted overnight, 2 

and 120 min after injection of 15mCi of 18F-FDG. A low-dose, non-contrast-enhanced CT scan 3 

was used for attenuation correction and anatomical information for the PET scan. The carotid 4 

arteries were imaged with a 15 min PET scan of one bed position in 3D mode. 5 

Image Analysis: The MR images were analyzed by an expert image analyst using the 6 

VesselMASS software (Medis Medical Imaging Systems, Leiden University, Netherlands). The 7 

outer vessel wall and the lumen wall for each axial slice of the carotid artery were manually 8 

traced and the contours saved in the VesselMASS software. The PET/CT images were 9 

anatomically matched to the MRI data in OsiriX imaging software (Pixmeo, Geneva, 10 

Switzerland). The 18F-FDG uptake in the carotid arteries was measured by placing a circular 11 

region-of-interest (ROI) on the co-registered PET/CT axial images so that the ROI included the 12 

entire vessel wall. The mean and maximum standard uptake values (SUV), adjusted for body 13 

weight and injected 18F-FDG dose, were determined in each ROI. Additional ROIs drawn in the 14 

jugular vein were used to correct for background 18F-FDG uptake, and generate the target to 15 

background ratio (TBR).  Figure 2 shows PET/CT of slices S4-S8 from Patient 1 and enlarged 16 

view of S4 with matching MRI slice. 17 

2.2 MRI-PET/CT-based modeling with fluid-structure interaction.   18 

An MRI-PET/CT-based modeling approach is proposed to develop fluid-structure interaction 19 

(FSI) models for human carotid plaque assessment and investigate the effect of inflammation on 20 

plaque stress/strain conditions.  Blood flow was assumed to be laminar, Newtonian, viscous and 21 

incompressible. Inlet and outlet were fixed (after initial pre-stretch) in the longitudinal (axial) 22 

direction, but allowed to expand/contract with flow otherwise.  Patient-specific arm pressure 23 
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conditions were used as the imposed pressure conditions (see Fig. 3 (a)).  The 3D FSI model was 1 

built following established procedures (Tang et al., 2004, 2009). The 3D FSI model is given 2 

below:  3 

ρ(∂u/∂t + ((u – ug)  ) u ) = - p + 2 u ,  (equation of motion for fluid)         (1) 4 

 u = 0,       (equation of continuity)         (2) 5 

u | = ∂x/∂t ,  ∂u/∂n|inlet, outlet = 0,   (BC for velocity)                    (3) 6 

p|inlet = pin(t),     p|outlet = pout(t),      (pressure conditions)                    (4) 7 

ρ vi,tt = σij,j  ,  i,j=1,2,3; sum over j,    (equation of motion for solid)        (5) 8 

ij = ( vi,j + vj,i + v,i v,j)/2,  i,j=1,2,3   (strain-displacement relation)        (6) 9 

σij  nj  |out_wall =0,  σr
ij  nj  |interface = σs

ij  nj|interface , (natural and traction equilibrium)   (7) 10 

where u and p are fluid velocity and pressure, ug is mesh velocity,  stands for vessel lumen 11 

surface, f  , j stands for derivative with respect to the jth variable, σ and  are stress and strain 12 

tensors, v is solid displacement vector.  Material densities for fluid, vessel and plaque 13 

components are assumed to be the same for simplicity.   14 

The artery wall was assumed to be hyperelastic, isotropic, incompressible and 15 

homogeneous. The nonlinear modified Mooney-Rivlin model was used to describe the material 16 

properties of the vessel wall (Tang et al., 2004, 2005b, 2009).  The strain energy function was 17 

given by, 18 

  W= c1( I1 – 3) + c2 ( I2 –  3) + D1 [ exp(D2 ( I1 – 3)) – 1 ],         (8) 19 

  I1 =  iiC ,  I2 = ½ [I1
2  – CijCij],            (9) 20 

where I1 and I2 are the first and second strain invariants, C =[Cij] = X
T
X is the right Cauchy-21 

Green deformation tensor, ci and Di are material parameters chosen to match experimental 22 

measurements and the current literature (Humphrey 2002; Holzapfel et al., 2004). Parameter 23 
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values used in this paper were: vessel/fibrous cap, c1=36.8 kPa, D1=14.4 kPa, D2=2; calcification, 1 

c1=368 kPa, D1=144 kPa, D2=2.0; lipid-rich necrotic core, c1=2 kPa, D1=2kPa, D2=1.5; c2 = 0 2 

was set for all materials (Tang et al., 2009).  3 

For the 15-slice MRI/PET/CT data set acquired from the above procedures, inflammation 4 

was identified for S4-S10 for Patient 1 (see Figures 1 & 2) and selected slices with lipid-rich 5 

pools for other patients.  Material stiffness for the fibrous cap was adjusted lower to reflect the 6 

cap weakening caused by cap inflammation. Setting stiffness ratio (SR) to be 1.0 for the baseline 7 

model, coefficients c1 and D1 in Equation (8) were multiplied by SR=0.5, 0.25, and 0.1 to make 8 

the cap softer.  D2 was kept unchanged for simplicity.  Figure 3 gives the material stress-stretch 9 

plots of calcification, lipid core, and the curves for the 4 SR ratios, with SR=1.0 corresponding to 10 

normal vessel tissue material properties.  Figure 4 shows a plaque sample with inflammation on 11 

the lumen surface.  It is showing macrophage infiltrations in the fibrous cap. The increased 12 

density of macrophages has been shown to reduce the material strength in fibrous cap in aortic 13 

atherosclerotic lesions, through release of matrix metalloproteinases (Lendon et al., 1991). 14 

The baseline model was modified to create thin-cap models, calcification models (Ca 15 

Model) and a high blood pressure (HP) models.  This is a test-of-the-concept approach to 16 

observe the impact of inflammation with those complications and seek motivations and 17 

justifications for further effort in quantifying inflammation and its link to mechanical factors.  18 

The mean cap thickness for S4-S8 of Patient 1 were changed from 0.114, 0.092, 0.083, 0.076 and 19 

0.064 (unit: cm) to 0.073, 0.058, 0.052, 0.046 and 0.064 (cm) by moving the lipid core closer to 20 

the lumen in each model, respectively.  The average reduction rate for the cap thickness of S4-S7 21 

was 30%.  The calcification models were obtained by assigning the calcification material 22 

properties to the lipid core geometry so it became calcification in our model.  Maximum pressure 23 
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for the pressure profile was set to 165 mmHg (50% higher than 110 mmHg) to make high blood 1 

pressure simulations.  The stiffness ratio was set to SR=1.0, 0.5, 0.25 and 0.1 to observe its 2 

impact on stress/strain calculations.  Results from these models were compared to investigate the 3 

combined effects of inflammation with thin cap thickness, plaque components and high blood 4 

pressure on plaque mechanical conditions. 5 

2.3 Solution methods 6 

For each patient, we made 4 models with baseline geometry and pressure condition and SR=1.0, 7 

0.5, 0.25, and 0.1, 4 thin cap models with 4 SR values, and 4 hypertension models with 4 SR 8 

values.  For Patient 1, we also made 4 Ca models with 4 SR values. A total of 52 models were 9 

made.  The pre-shrink process and component-fitting mesh generation technique were used in 10 

our model construction and mesh generation process (Huang et al., 2009; Yang et al., 2009).  All 11 

the 3D FSI models were solved by a commercial finite element package ADINA (ADINA R & D, 12 

Watertown, MA, USA), using unstructured finite element methods for both fluid and solid 13 

domains.  More details of the computational models and solution methods can be found in Tang 14 

et al. (2005, 2009).  Plaque cap stress, strain and flow shear stress data from all 4 cap stiffness 15 

variations corresponding to peak systolic pressure were recorded for analysis. 16 

 17 

3. Results.   18 

Results from Patient 1 were used to show the details of stress/strain behaviors slice by slice.  19 

Figures 5 & 6 gave stress, strain and flow shear stress plots on the lumen surface of the vessel 20 

(with vessel set to be transparent) from the 4 models, showing their local maximum values on the 21 

cap nodes for comparison.  Figure 7 presented stress and strain cross-section plots on 5 slices 22 

with the lipid core showing more details of stress/strain distributions.  Tables 1 and 2 23 
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summarized local maximum stress/strain values on 7 slices from Patient 1 with caps covering 1 

plaque components for easy comparison.  Overall mean stress and strain comparisons from the 4 2 

patients were given by Table 3. 3 

3.1. Cap inflammation leads to lower cap stress values.   4 

Since plaque rupture is of local nature and may occur where cap stress has a local maximum 5 

(regardless if it was greater or smaller than overall maximum plaque stress), local maximum cap 6 

stress values from different models were compared.  Figure 5 (a) shows that the local maximum 7 

cap stress value without inflammation (SR=1.0) was 47.19 kPa.  Corresponding to SR=0.5, 0.25, 8 

and 0.1, the local maximum cap stress values were 34.04, 27.69, and 18.95 kPa, respectively.  9 

The local maximum cap stress value reduced 60% from SR=1.0 to SR=0.1.  Looking at S6 from 10 

Fig. 7,  the local maximum cap stress value reduced from 62.79 kPa (SR=1.0 case) to 17.22 kPa 11 

(SR=0.1), a 72% decrease.  On the other hand, local maximum stress values on S4 and S8 were 12 

much limited (<20%).  Table 1 shows for caps covering the calcification, maximum cap stress 13 

variations were even more limited (<10%). 14 

3.2  Cap inflammation leads to higher cap strain values. 15 

When the cap becomes softer, cap strain would increase under the same pressure conditions.  16 

Compared to the stress decrease observed in 3.1, cap strain variations caused by inflammation 17 

were much greater.  Figure 5 (b) shows that the local maximum cap strain value without 18 

inflammation (SR=1.0) was 0.1065.  Corresponding to SR=0.5, 0.25, and 0.1, the local 19 

maximum cap strain values were 0.1730, 0.2388 and 0.3178, which was 62.4%, 124%, and 20 

195% higher than that of SR=1.0, respectively.  Looking at S6 from Fig. 7, the local maximum 21 

cap strain value increased from 0.1392 with SR=1.0 to 0.4372 with SR=0.1, a 214% increase.  22 



10 

 

Strain values on S4 and S8 increased less from SR=1.0 to SR=0.1.  But the increases were still 1 

around 100%.  2 

3.3 Differences of flow shear stress with different SR values were small.  3 

Flow shear stress has been a focus of research for plaque progression.  Figure 6 shows that flow 4 

shear stress (FSS) on a sagittal cut had an 8% increase from SR=1.0 model to SR=0.1 to model.  5 

Table 1 shows FSS mean values on the cap changed from slice to slice, indication of flow pattern 6 

changes.  All FSS values stayed in a narrow range within their SR=1.0 values. 7 

3.4 Impact of cap thickness combined with inflammation.   8 

Cap thickness is a major risk factor and has great impact on cap stress and strain.  It is of interest 9 

to observe the combined impact of cap thinning and inflammation.  Figure 8 (a)-(b) gave stress 10 

and strain plots from the thin cap models where cap thicknesses on S4-S7 were reduced by 30%.  11 

More stress and strain values were given in Table 2.  First of all, local maximum plaque cap 12 

stresses and strains from the thin cap model were in general higher than those from the 13 

corresponding baseline models.  For SR=1.0, thin cap local maximum cap stress and strain were 14 

85.80 kPa and 0.183, about 82% and 72% higher than that from the baseline model.  Looking at 15 

the thin-cap models, local maximum cap stress from the model with SR=0.1 was 55.79 kPa, a 16 

35% decrease from 85.80 kPa, the value for the SR=1.0 model.  Local maximum cap strain from 17 

the model with SR=0.1 was 0.305, a 67% increase from 0.183, the value for the SR=1.0 model.  18 

So thin cap thickness led to greater absolute cap stress and strain values, but smaller relative 19 

stress decrese and strain increase, when combined with inflammation.   20 

3.5  Impact of plaque components combined with inflammation.   21 

It is of interest to see the impact if inflammation was observed on cap over a calcification 22 

component.  The calcification models were made by replacing the lipid core in the baseline 23 
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model by calcification without changing its shape. Figure 8 (c)-(d) gave stress and strain plots 1 

from the calcification (Ca) models.   It is easy to see (and understand) that changing cap material 2 

properties (this is how we define inflammation) had much less noticeable impact on cap stress 3 

and strain values.   For SR=1.0, local maximum cap stress and strain from the Ca model were 4 

57.62 kPa and 0.147, about 22% and 13.8% higher than that from the baseline model.  Looking 5 

at the Ca models with different SR values, local maximum cap stress from the model with 6 

SR=0.1 was 52.43 kPa, a mere 9% decrease from the value for the SR=1.0 model.  Local 7 

maximum cap strain from the model with SR=0.1 was 0.253, a 72% increase from 0.147, the 8 

value for the SR=1.0 model.  So inflammation on cap covering calcification led to very modest 9 

cap stress decrease, but still considerable cap strain relative increase. 10 

3.6  Impact of hypertension combined with inflammation.   11 

Hypertension is one of the major risk factor for cardiovascular diseases.  The hypertension 12 

models were made by adjusting peak systolic blood pressure in the baseline model 50% higher to 13 

165 mmHg. Figure 8 (e)-(f) gave stress and strain plots from the hypertension models.   First of 14 

all, local maximum plaque cap stresses and strains from the hypertension model were 15 

considerably higher than those from the corresponding baseline models.  For SR=1.0, local 16 

maximum cap stress and strain from the hypertension model were 103.11 kPa and 0.228, about 17 

85% and 86% higher than that from the baseline model, respectively.  Looking at the 18 

hypertension models with different SR values, local maximum cap stress from the model with 19 

SR=0.1 was 87.70 kPa, a mere 15% decrease from the value for the SR=1.0 model.  However, 20 

local maximum cap strain from the SR=0.1 model was 0.652, a 186% increase from 0.228, the 21 

value for the SR=1.0 model.  So cap inflammation combined with hypertension led to large cap 22 

strain increases.   23 

24 
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3.7 Mean cap stress and strain comparisons using all 4 patient cap nodes combined. 1 

Comparing local maximum cap stress and strain from one patient leads to high uncertainty.  2 

Mean cap stress and strain values from all the cap nodes (729) from the 4 patients were obtained 3 

from all the models and compared.  For the baseline models, mean cap stress from was lowered 4 

by 25.2% as SR went from 1.0 to 0.1.  Mean cap strain value for SR=0.1 was 0.313, 114% 5 

higher than that from SR=1.0 model.  The thin cap SR=0.1 model had 40% mean cap stress 6 

decrease and 81% cap strain increase compared with SR=1.0 model.  The hypertension SR=0.1 7 

model had 19.5% cap stress decrease and 98.6% cap strain increase compared with SR=1.0 8 

model.  Comparisons among baseline, thin cap and high pressure models could also be made to 9 

observe their differences. 10 

4. Discussions. 11 

4.1. Significance of cap inflammation: huge impact on cap strain, reduced cap stress.   12 

Most investigations for atherosclerosis plaque rupture and vulnerability have been focused on 13 

flow shear stress and extreme cap stress conditions.  Our findings in this paper indicate that 14 

inflammation may lead to lower cap stress and higher cap strain.  That suggests our future effort 15 

should be focused more on cap strain conditions.  Indeed, while stress is determined by both 16 

material stiffness and strain, strain is more an intrinsic condition of the plaque.  Weakened 17 

plaque cap becomes softer and its lower stiffness reduces cap stress level.  On the other hand, the 18 

increased strain may serve as a critical vulnerability indication.  Needless to say, mechanical 19 

testing of plaque cap materials to find out its material strength would be a task for researchers in 20 

this field to provide threshold values to serve as base for model predictions. 21 

22 
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4.2. Inflammation combined with thin cap and hypertension may lead to alarming critical 1 

cap strain conditions. 2 

It is clear from this sample that the impact of inflammation on stress/strain is heavily dependent 3 

on cap thickness, hypertension, the location and size of the plaque component, tissue type, and 4 

tissue material properties.  In particular, results from 3.4 and 3.6 suggested that inflammation 5 

combined with thin cap and hypertension may lead to alarming cap strain conditions which may 6 

serve as a plaque rupture trigger and should be closely watched.  This paper serves as a 7 

motivation to demonstrate the impact of inflammation on plaque mechanical conditions and the 8 

importance of further investigations.  9 

4.3. Model assumptions, material properties and other limitations. 10 

This paper is mainly a conceptual study showing importance of including inflammation in 11 

modeling for stress/strain calculations.  Patient-specific tissue material properties were not 12 

available.  Sensitivity analysis of vessel and plaque component material properties (lipid and 13 

calcification) were performed in our earlier studies (Tang et al., 2005b). Since material stiffness 14 

of plaque cap with inflammation was not available, going from SR=1.0 (no inflammation), we 15 

took a bisection approach to reduce SR to 0.5, 0.25, and 0.1.  The SR=0.1 case would be an 16 

extreme case when the cap is ready to give up. The rupture process involves cap thinning and 17 

weakening where inflammation is a major player.  We are hoping this work could serve as 18 

motivation and justification for further investigations in those directions: imaging, mechanical 19 

testing, and modeling.   20 
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 1 

Captions 2 

Figure 1:  MRI, contour plots and re-constructed 3D geometry of a carotid plaque. Ca: 3 

calcification. 4 

Figure 2:  18F-FDG PET and CT images from S4-S8 with lipid-rich necrotic core and enlarged 5 

view of PET on CT for Slice 4 registered with MRI showing Region of Interest (ROI) with 18F-6 

FDG uptake suggestive of inflammation. 7 

Figure 3.  Imposed pressure condition and material stress-stretch plots. Cap material curves with 8 

4 SR values are shown. 9 

Figure 4. A plaque sample showing inflammation. 10 

Figure 5. Stress and strain plots from 4 models with baseline geometry and pressure conditions 11 

showing weakening cap materials led to decreased cap stress and increased cap strain. 12 

Figure 6. Flow shear stress plots from 2 models (SR=1.0, SR=0.1) with baseline geometry and 13 

pressure conditions showing FSS has small differences in models with different inflammation 14 

material stiffness.   15 

Figure 7.  Stress-P1 and Strain-P1 cross-section plots from 2 models showing weakening cap 16 

materials led to plaque cap stress decrease and strain increase with slice by slice detailed 17 

variations (S5-S8).   18 

Figure 8.  Strain-P1 plots from thin cap, calcification and hypertension models with SR=1.0 and 19 

0.1 showing impact of cap thickness, plaque components and hypertension on cap stress and 20 

strain conditions.   21 

 22 

23 
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Table 1.  Inflammation leads to plaque cap stress decrease and large cap strain increase. 1 

 2 

 3 

Max PC-Stress (kPa) 

Tissue Type Slice # SR=1 SR=0.5 SR=.25 SR=.10 

lipid 4 50.32 51.07 52.82 55.36 

lipid 5 62.99 47.07 34.89 19.55 

lipid 6 62.79 45.88 32.97 17.22 

lipid 7 55.96 44.90 33.26 18.08 

lipid 8 56.35 47.65 46.39 47.04 

Ca 9 58.18 53.01 51.53 53.28 

Ca 10 48.30 48.77 51.07 54.76 

Max PC-Strain 

lipid 4 0.123 0.159 0.203 0.253 

lipid 5 0.144 0.223 0.307 0.409 

lipid 6 0.139 0.226 0.321 0.437 

lipid 7 0.127 0.203 0.288 0.389 

lipid 8 0.132 0.147 0.173 0.218 

Ca 9 0.149 0.186 0.221 0.258 

Ca 10 0.129 0.149 0.168 0.187 

Mean PC-FSS (dyn/cm2) 

lipid 4 26.11 25.95 26.02 26.34 

lipid 5 20.48 19.06 17.66 16.32 

lipid 6 17.53 16.30 15.11 13.99 

lipid 7 14.97 13.90 12.90 11.94 

lipid 8 15.53 15.85 16.35 17.04 

Ca 9 19.29 19.47 19.68 19.91 

Ca 10 20.76 20.81 20.96 21.07 
 4 

 5 

6 



21 

 

Table 2.  Combined effects of cap inflammation with cap thickness, component and high blood 1 

pressure on plaque stress and strain variations. 2 

 3 

  4 

Thinner Cap 

Tissue 

Type 

Slice 

# 

Max PC-Stress (kPa) Max PC-Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

lipid 4 58.57 55.79 55.41 55.79 0.134 0.170 0.204 0.241 

lipid 5 87.04 59.50 36.48 15.13 0.183 0.238 0.287 0.332 

lipid 6 85.80 57.64 31.43 15.37 0.179 0.247 0.305 0.368 

lipid 7 74.36 48.22 29.12 15.98 0.149 0.208 0.268 0.340 

lipid 8 52.29 44.74 43.82 43.46 0.123 0.140 0.167 0.202 

Ca 9 58.50 53.24 51.59 53.29 0.149 0.187 0.221 0.258 

Ca 10 48.37 48.82 51.10 54.79 0.129 0.149 0.168 0.187 

Lipid Replaced by Calcification 

Tissue 

Type 

Slice 

# 

Max PC-Stress (kPa) Max PC-Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

lipid 4 38.41 36.09 34.70 35.16 0.101 0.117 0.135 0.155 

lipid 5 40.23 41.46 43.84 47.97 0.098 0.112 0.136 0.166 

lipid 6 37.79 40.51 44.27 50.13 0.085 0.111 0.138 0.186 

lipid 7 35.93 38.68 42.90 49.41 0.090 0.110 0.139 0.174 

lipid 8 46.72 42.22 44.66 47.95 0.112 0.112 0.118 0.128 

Ca 9 57.62 51.98 50.64 52.43 0.147 0.183 0.217 0.252 

Ca 10 48.45 48.89 51.01 54.66 0.129 0.149 0.168 0.187 

High Blood Pressure 

Tissue 

Type 

Slice 

# 

Max PC-Stress (kPa) Max PC-Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

lipid 4 78.86 79.55 81.53 84.66 0.197 0.248 0.307 0.373 

lipid 5 100.08 79.47 61.20 37.95 0.228 0.344 0.460 0.599 

lipid 6 103.11 81.36 63.96 42.98 0.228 0.358 0.491 0.652 

lipid 7 93.09 77.53 64.01 44.23 0.204 0.317 0.439 0.584 

lipid 8 88.36 78.28 75.76 75.69 0.207 0.235 0.276 0.335 

Ca 9 91.65 84.25 81.69 82.60 0.234 0.286 0.334 0.381 

Ca 10 75.56 76.10 82.02 87.70 0.201 0.230 0.258 0.284 

 5 
 6 
 7 

 8 

 9 

   10 

11 
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Table 3.  Average cap stress and strain from 4 patients: baseline, thinner cap and high blood 1 

pressure with stiffness variations.  2 

  3 

Baseline: Data from MRI/CT/PET 

Patient 
Cap 

Nodes # 

Mean Cap Stress (kPa) Mean Cap Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

P1 189 56.41  48.33  43.28  37.90  0.135  0.185  0.240  0.307  

P2 108 65.32  56.03  51.45  46.62  0.191  0.263  0.334  0.404  

P3 324 36.60  31.39  27.69  24.55  0.105  0.132  0.177  0.273  

P4 108 67.68  63.51  61.36  60.05  0.175  0.204  0.233  0.269  

All 729 56.50  49.81  45.94  42.28  0.151  0.196  0.246  0.313  

Thinner Cap 

Patient 
Cap 

Nodes # 

Mean Cap Stress (kPa) Mean Cap Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

P1 189 66.42  52.57  42.71  36.26  0.149  0.191  0.231  0.275  

P2 108 87.05  66.57  52.98  43.07  0.222  0.288  0.344  0.395  

P3 324 43.81  35.81  29.85  25.17  0.115  0.146  0.193  0.276  

P4 108 74.07  67.23  63.33  59.58  0.184  0.208  0.236  0.269  

All 729 67.84  55.54  47.22  41.02  0.168  0.208  0.251  0.304  

High Blood Pressure 

Patient 
Cap 

Nodes # 

Mean Cap Stress (kPa) Mean Cap Strain 

SR=1 SR=.5 SR=.25 SR=.10 SR=1 SR=0.5 SR=.25 SR=.10 

P1 189 90.10  79.51  72.88  65.12  0.214  0.288  0.366  0.458  

P2 108 107.3  93.14  86.74  82.69  0.290  0.387  0.473  0.560  

P3 324 48.47  43.47  40.34  37.00  0.140  0.187  0.261  0.399  

P4 108 105.9  102.2  100.35  98.64  0.266  0.309  0.349  0.393  

All 729 87.96  79.56  75.08  70.86  0.228  0.293  0.362  0.453  

 4 
  5 
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Tang et al.           Fig. 1 1 
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(a) Carotid plaque MRI slices from a patient

(b) Segmented contour plots showing lipid core and calcification

(c) Re-constructed 3D geometry
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 5 

Figure 1:  MRI, contour plots and re-constructed 3D geometry of a carotid plaque. Ca: 6 
calcification. 7 
 8 
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Tang et al.           Fig. 2 1 

 2 

 3 

 4 

S4 S5 S6 S7 S8

S4 S5 S6 S7 S8

Region of Interest (ROI): Possible Inflammation

Region of Interest (ROI): Possible Inflammation

(a) PET images showing region of interest (ROI): Possible Inflammation

(b) PET overlapping CT images showing region of interest with possible Inflammation

S4

ROI: Inflammation

(c) Slice 4: Enlarged view of PET on CT, PET, MRI, and Contour Plot

Enlarged PET 

MRI MRI Enlarged Contour Plot

Lipid core

PET on CT
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 9 
 10 
Figure 2:  18F-FDG PET and CT images from S4-S8 with lipid-rich necrotic core and enlarged 11 

view of PET on CT for Slice 4 registered with MRI showing Region of Interest (ROI) with 18F-12 

FDG uptake suggestive of inflammation. 13 

14 
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Tang et al.           Fig. 3 1 
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 8 
Figure 3.  Imposed pressure condition and material stress-stretch plots. Cap material curves with 9 

4 SR values are shown. 10 
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Tang et al.           Fig. 4 1 
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Figure 4. A plaque sample showing inflammation. 14 
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Tang et al.           Fig. 5 1 
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(a) Stress-P1 plots showing cap stress 

decreases as cap stiffness decreases

(b) Strain-P1 plots showing cap strain 

increases as cap stiffness decreases
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Figure 5. Stress and strain plots from 4 models with baseline geometry and pressure conditions 7 

showing weakening cap materials led to decreased cap stress and increased cap strain. 8 
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Tang et al.           Fig. 6 1 
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(a)  FSS, SR=1.0

(b) FSS, SR=0.1

Max FSS =39.97 dyn/cm2
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 7 

Figure 6. Flow shear stress plots from 2 models (SR=1.0, SR=0.1) with baseline geometry and 8 

pressure conditions showing FSS has small differences in models with different inflammation 9 

material stiffness.   10 
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Tang et al.           Fig. 7 1 
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Figure 7.  Stress-P1 and Strain-P1 cross-section plots from 2 models showing weakening cap 8 

materials led to plaque cap stress decrease and strain increase with slice by slice detailed 9 

variations (S5-S8).   10 
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Tang et al.           Fig. 8 1 
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Figure 8.  Strain-P1 plots from thin cap, calcification and hypertension models with SR=1.0 and 7 

0.1 showing impact of cap thickness, plaque components and hypertension on cap stress and 8 

strain conditions.   9 
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