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Abstract

Background: Accurately prioritizing candidate disease genes is an important and challenging problem. Various
network-based methods have been developed to predict potential disease genes by utilizing the disease similarity
network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a
common limitation of the existing methods is that they assume all diseases share the same molecular network and a
single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend
to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method
should be able to incorporate tissue-specific molecular networks for different diseases.

Results: In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for
disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate
the problem of candidate gene prioritization as an optimization problem based on network propagation. When there
are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance
of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization
problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular
networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence
properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate
gene prioritization compared with the state-of-the-art methods.

Conclusions: In our experiments, we compare our methods with 7 popular network-based disease gene
prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental
results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC
values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the
importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the
superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are
available at http://nijingchao.github.io/CRstar/.
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Background
Identifying disease-causing genes is a fundamental chal-
lenge in human health. Traditional linkage mapping or
more recent genome-wide association studies aim to iden-
tify genomic intervals that contain disease causal genes
[1]. The identified intervals typically contain tens to hun-
dreds of disease-gene candidates, but identifying the par-
ticular gene and causal mutation remains difficult because
experimentally validating a large amount of disease-gene
candidates is expensive. Therefore, it is important to
design efficient methods to prioritize disease-gene can-
didates. Recently, a series of sophisticated network-based
computational methods have been developed to predict
the most promising disease genes. The common motiva-
tion of these methods is that genes causing the same or
similar diseases tend to lie close to one another in the
molecular networks [2–6].
Figure 1(a) shows the typical network model used by

most of the existing methods. There are three compo-
nents in this model: a disease network representing the
similarities between different diseases, a molecular net-
work showing the interactions or functional associations
between molecules, such as the protein-protein interac-
tion network (PPIN) or the gene co-expression network
(GCN), and known disease-gene associations linking dis-
eases and molecules. Such a network model is usually
referred to as the heterogeneous network model because
of the heterogeneity between the disease network and
molecular network [7]. Based on this heterogeneous net-
work model, various approaches have been proposed,
including regression [8], network alignment [9], ran-
dom walk [7, 10], maximum flow [11], label propagation
[12, 13], and supervised link prediction [10, 14].
A limitation of this heterogeneous networkmodel is that

it uses a single generic molecular network to predict genes
for all different diseases. It implicitly assumes that all dis-
eases share exactly the samemolecular network. However,
recent studies have shown that the majority of genetic dis-
orders manifest only in a single or a few tissues [15–17],
and the molecular networks in different tissues are usually
different [18–20]. For example, Bossi et al. [18] analyzed
human protein interactions and found that proteins have
tissue-specific roles and form tissue-specific interactions.
Furthermore, Lage et al. [21] and Magger et al. [16] found
that the majority of the known disease genes are signif-
icantly expressed in the tissues where the correspond-
ing diseases manifest, thus gene expression is also tissue
specific. Therefore, instead of using a generic molecu-
lar network for all diseases, an ideal method should take
tissue-specificity into consideration.
So far, limited research has been done to integrate

tissue-specific networks for disease gene prioritization.
The most relevant work to us is the work by Magger
et al. [16]. In that paper, for each query disease, its

corresponding tissue-specific PPIN was used to replace
the generic molecular network in the heterogeneous net-
work model. It had been shown to be more accurate than
using a single generic molecular network. The limitation
of this approach is that even though the molecular net-
workmay not be relevant to other diseases, it is still shared
by all diseases.
To address the limitation of the existing methods, in

this paper, we develop a more robust and flexible network
model [22–24]. In this model, each disease is allowed to
have its own tissue-specific molecular network. An exam-
ple is shown in Fig. 1(b). In this figure, there are four
tissue-specific molecular networks, each for a disease in
the disease similarity network. The known disease genes
are highlighted in blue. This networkmodel can be treated
as a (disease) network of (tissue-specific molecular) net-
works. We refer to such a model as a network of networks
(NoN). Compared to the heterogeneous network model
shown in Fig. 1(a), a distinct advantage of the NoN model
is that it does not require all diseases to share the same
generic molecular network.
The NoN model in Fig. 1(b) allows one tissue-specific

molecular network for each disease. In practice, multi-
ple or different types of tissue-specific networks may be
available, such as tissue-specific PPINs [16] and tissue-
specific GCNs [25]. These networks provide comple-
mentary information about the diseases. To incorpo-
rate multiple tissue-specific molecular networks, we fur-
ther extend the basic NoN model to the network of
star networks (NoSN) model. An example is shown in
Fig. 1(c). In this figure, for each disease, there is a cen-
ter network (corresponding to the single tissue-specific
molecular network in the basic NoN model) and a set
of auxiliary networks. These auxiliary networks pro-
vide extra information of the diseases and can be uti-
lized to further improve the accuracy of candidate gene
prediction.
We formulate disease gene prioritization as optimiza-

tion problems based on network propagation techniques.
In particular, the known disease genes are used as seeds.
The ranking scores of different genes are (1) smooth
within eachmolecular network, (2) biased toward the seed
genes, and (3) consistent in molecular networks of simi-
lar diseases. To solve the problems, we develop a family of
novel algorithms which generalize single network propa-
gation algorithm to NoN and NoSN. Our algorithms are
fast with almost linear time complexity w.r.t. the network
sizes.We also provide rigorous theoretical foundations for
our algorithms in terms of their optimality and conver-
gence properties. Another novelty is that when multiple
tissue-specific networks are available for a disease, our
method can automatically infer the relative importances
of different networks, thus is robust to noisy and incom-
plete networks.
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Fig. 1 Different network models for disease gene prioritization. a the traditional heterogeneous network model, b the network of networks (NoN)
model, where T1 to T4 represent different tissues (and their specific molecular networks) that are specific to the corresponding diseases, and c the
network of star networks (NoSN) model, where each disease corresponds to multiple molecular networks of its specific tissue. In the NoN and NoSN
models, the known disease-gene associations are regarded as the seed nodes. In b, the seed nodes are highlighted in blue

We refer to the gene prioritization problem based on
NoN as CrossRank, and the problem based on NoSN as
CrossRankStar, which will be discussed in the following
sections.

Methods
CrossRank - candidate gene prioritization on NoN
We first discuss how to formulate the disease gene pri-
oritization problem as an optimization problem using the
basic NoN model and introduce CrossRank. Our prob-
lem formulation generalizes the existing label propagation
methods designed for using a single generic molecular
network [12, 13] to NoN. Important symbols used in this
paper are summarized in Table 1.
Suppose that there are h diseases in the disease sim-

ilarity network and let A be its adjacency matrix. Thus
A(i, j) measures the similarity between diseases i and j
(1 ≤ i, j ≤ h). For disease i, suppose there are ni genes
in its tissue-specific molecular network and let Gi be the
adjacency matrix of the tissue-specific molecular network
(note different Gi may be built on different sets of genes).
We use vector ri to represent the ranking scores of genes
in molecular network Gi.
The known disease genes are used as seed nodes. We

denote the seed vector in Gi as ei: if x is a seed node, then
ei(x) = 1

si , where si is the total number of seeds in Gi;
otherwise ei(x) = 0. If there is no known disease genes,
then ei = 0.
There are three criteria in our problem formulation. The

first two criteria focus on ranking scores within individual
molecular networks. They are commonly used in previ-
ous network prorogation methods [12, 13, 26]. The third
criterion is specific to the NoNmodel. Next, we introduce
them one by one.

Table 1 Summary of symbols

Symbol definition

A The adjacency matrix of disease similarity network

Gi The adjacency matrix of the tissue-specific molecular network of
disease i (for NoN)

Gi∗ The adjacency matrix of the center molecular network of disease i
(for NoSN)

Gip The adjacency matrix of the pth auxiliary molecular network of
disease i (for NoSN)

In An n × n identity matrix
ri The ranking score vector of genes in Gi (for NoN)
ei The seed vector of genes in Gi (for NoN)
ri∗ The ranking score vector of genes in Gi∗ (for NoSN)
ei∗ The seed vector of genes in Gi∗ (for NoSN)
rip The ranking score vector of genes in Gip (for NoSN)
eip The seed vector of genes in Gip (for NoSN)

h Number of diseases in A

ni Number of genes in Gi (for NoN)

ni∗ Number of genes in Gi∗ (for NoSN)
nip Number of genes in Gip (for NoSN)

ki Number of auxiliary molecular networks of disease i (for NoSN)

dA(i) Degree of disease i in A, i.e., dA(i) = ∑h
j=1 A(i, j)

Iij The set of common genes in Gi and Gj (for NoN)

Īij The set of genes in Gi but not in Gj (for NoN)

Ii∗,j∗ The set of common genes in Gi∗ and Gj∗ (for NoSN)
Īi∗,j∗ The set of genes in Gi∗ but not in Gj∗ (for NoSN)
Ii∗,ip The set of common genes in Gi∗ and Gip (for NoSN)

Īi∗,ip The set of genes in Gi∗ but not in Gip (for NoSN)
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The first criterion is the within-network smoothness, i.e.,
the ranking scores of nearby genes in a molecular network
should be smooth. That is, (ri(x) − ri(y))2Gi(x, y) should
be as small as possible. In matrix form, this term can be
represented as rTi (Ini − G̃i)ri, where G̃i is the symmet-
rically normalized adjacency matrix of Gi, and Ini is an
identity matrix of size ni × ni.
The second criterion is the within-network seed pref-

erence, i.e., the ranking scores of genes in a molecular
network should favor the known disease genes. That is,
‖ri−ei‖2F should be as small as possible, where ‖ ·‖2F is the
Frobenius norm.
Putting these two criteria together, we have the fol-

lowing objective function to measure the within-network
smoothness and seed preference of the gene ranking
scores

�within(ri) = crTi (Ini − G̃i)ri + (1 − c)‖ri − ei‖2F
(1)

where c is a regularization parameter balancing the
weights of these two terms.
The third criterion in our objective function is the

cross-network consistency: if diseases i and j are highly sim-
ilar, i.e., high A(i, j) value, their common genes should
have similar rankings in their corresponding molecular
networks.
More formally, let Iij be the set of common genes shared

by molecular networks Gi and Gj. Let ri(Iij) and rj(Iij)
be the ranking scores of the common genes in Gi and
Gj respectively. The difference between ri(Iij) and rj(Iij)
should be small for a large similarity value A(i, j) between
diseases i and j. This is because similar diseases tend to
have similar disease genes. That is, we want to minimize

A(i, j)

⎡

⎣

∥
∥
∥
∥
∥

ri(Iij)√
dA(i)

− rj(Iij)
√
dA(j)

∥
∥
∥
∥
∥

2

F

⎤

⎦

where dA(i) and dA(j) represent the degrees of diseases
i and j in the disease similarity network, respectively. In
this paper, we define the degree of a node i as the sum
of edge weights incident on it, i.e., dA(i) = ∑h

j=1A(i, j).
In the above equation, we normalize ranking scores ri(Iij)
and rj(Iij) by the degrees of diseases i and j to make them
comparable for different diseases.
In addition to penalizing the difference between the

common gene ranking scores in different networks, we
also penalize the ranking scores of the genes not in com-
mon. If a gene exists in Gi but not in Gj, this indicates it
is not highly expressed in the relevant tissue of disease j.
Then we regard it as having a zero score in Gj. This will
decrease its score in Gi as well, since it is less likely to
be a disease gene than genes that are highly expressed in
both relevant tissues of diseases i and j. Putting these two

aspects together, we have the following criterion to mea-
sure the cross-network consistency of the gene ranking
scores

�cross(ri, rj) = A(i, j)

⎡

⎣

∥
∥
∥
∥
∥

ri(Iij)√
dA(i)

− rj(Iij)
√
dA(j)

∥
∥
∥
∥
∥

2

F

+
∥
∥
∥
∥
∥

ri(Īij)√
dA(i)

‖2F + ‖ rj(Īji)
√
dA(j)

∥
∥
∥
∥
∥

2

F

⎤

⎦

(2)

where Īij (Īji) represents the set of genes inGi (Gj) but not
in Gj (Gi).
Integrating Eqs. (1, 2), we have the overall objective

function as follows

JCR =
h∑

i=1
�within(ri) + β

h∑

i, j=1
�cross(ri, rj) (3)

where β is a regularization parameter that controls the
importance of the second term.
Note that the well known label propagation methods

[12, 13, 26] only optimize the within-network smooth-
ness and seed preference criteria for a single network,
i.e., �within. In our method, we generalize it to multi-
ple networks and further introduce the cross-network
consistency criterion �cross.

CrossRankStar - candidate gene prioritization on NoSN
To allow each disease to have multiple tissue-specific
molecular networks, in the following, we introduce Cross-
RankStar, which formulates the disease gene prioritization
problem based on NoSN shown in Fig. 1(c). In NoSN,
each disease has a center molecular network. This cen-
ter molecular network has the highest quality among all
available tissue-specific molecular networks for that dis-
ease. Other molecular networks are used as auxiliary
networks around the center network. In practice, the cen-
ter network can be selected by domain knowledge, or by
the reliabilities of different data types. For example, in
our experiments, tissue-specific GCNs are generally more
noisy than tissue-specific PPINs, thus the tissue-specific
PPINs are more reliable than the tissue-specific GCNs.
We useGi∗ to represent the adjacencymatrix of the cen-

ter network of disease i, andGip to represent the adjacency
matrix of the pth (1 ≤ p ≤ ki) auxiliary network of disease
i, where ki is the number of auxiliary networks of disease
i. Similarly, ri∗ and rip represent the ranking score vectors
of genes in Gi∗ and Gip, respectively. ei∗ and eip represent
the seed vectors of genes in Gi∗ and Gip, respectively.
Similar as before in CrossRank, in CrossRankStar we

also have the within-network smoothness and within-
network seed preference criteria for all molecular net-
works. Thus the within network objective functions
�within(ri∗) and �within(rip) can be defined in a similar
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way as�within(ri) in Eq. (1): we can simply replace the sub-
script i in Eq. (1) by i∗ (and ip), and get �within(ri∗) (and
�within(rip)).
In NoSN, the cross-network consistency criterion

between diseases is applied to center networks. That is, if
two diseases are highly similar, the common genes in their
center networks should have consistent ranking scores.
The cross-network objective function �cross(ri∗, rj∗) can
be similarly defined as �cross(ri, rj) in Eq. (2) by replacing
i and j in Eq. (2) by i∗ and j∗, respectively.
The criteria we have discussed so far are inherited from

the previous model on NoN. In NoSN, since now we have
multiple networks for each disease, we have another cross-
network consistency constraint, i.e., the ranking scores of
the same genes should be consistent in the networks of
the same disease. This is done by penalizing the differ-
ence between the ranking vectors ri∗ and rip, which can be
defined as follows.

�′
cross(ri∗, rip) =

∥
∥
∥
∥
∥

ri∗
(
Ii∗,ip

)

√
ki

− rip
(
Ii∗,ip

)
∥
∥
∥
∥
∥

2

F

+
∥
∥
∥
∥
∥

ri∗
(
Īi∗,ip

)

√
ki

‖2F + ‖rip
(
Īip,i∗

)
∥
∥
∥
∥
∥

2

F
(4)

where ri∗(Ii∗,ip) (rip(Ii∗,ip)) represents the ranking scores
of the common genes in Gi∗ (Gip), and Īi∗,ip (Īip,i∗) rep-
resents the set of genes in Gi∗ (Gip) but not in Gip (Gi∗).
Eq. (4) is the cross-network consistency criterion applied
to the networks of the same disease. Note that we nor-
malize ranking vector ri∗ by its degree ki to make it
comparable to rip.
Integrating �within(ri∗), �within(rip), �cross(ri∗, rj∗) and

�′
cross(ri∗, rip), we obtain the following objective function

on the NoSN

JCRstar =
h∑

i=1

⎛

⎝�within(ri∗) +
ki∑

p=1
�within(rip)

⎞

⎠

+ α

h∑

i=1

ki∑

p=1
�′

cross(ri∗, rip)

+ β

h∑

i,j=1
�cross(ri∗, rj∗)

(5)

where α and β are two regularization parameters balanc-
ing the weights of the two corresponding terms.
Comparing to the objective function JCR in Eq. (3), the

major difference of JCRstar in Eq. (5) is the consideration of
the auxiliary networks in �within(rip) and �′

cross(ri∗, rip).

Weighted CrossRankStar
The optimization problem of JCRstar in Eq. (5) treats all
auxiliary networks equally for a disease. In practice, differ-
ent tissue-specific molecular networks may have different
qualities since some networks may contain more noises
or be more incomplete than others. Therefore, an ideal
method should be able to automatically determine the
relative importances of these auxiliary networks.
To achieve this, we modify Eq. (5) by assigning a

weight αip (αip ≥ 0) to the ranking inconsistency term
�′

cross(ri∗, rip), and learn αip automatically. Intuitively,
the larger the ranking inconsistency �′

cross(ri∗, rip), the
smaller the weight αip. Let αi = (αi1, ...,αiki)

T be the
column vector of the weights for disease i. We require
∑ki

p=1 αip = 1 such that the weights in αi are comparable
for different diseases. Therefore, the weighted version of
CrossRankStar is

JWCRstar =
h∑

i=1

⎛

⎝�within(ri∗) +
ki∑

p=1
�within(rip)

⎞

⎠

+
h∑

i=1

ki∑

p=1
αip�

′
cross(ri∗, rip)

+ β

h∑

i,j=1
�cross(ri∗, rj∗) + γ

h∑

i=1
‖αi‖2F

(6)

In the last term of the above equation, we use �2-
norm regularization on αi so that we can control non-zero
weights in αi by varying the parameter γ (γ > 0). This
is useful and can help avoid trivial solutions. Without it,
all weights in αi will be zero except for the one with the
least inconsistency �′

cross(ri∗, rip). This overfitting pre-
vents the use of other informative auxiliary networks.
By setting a larger value to γ , the more weights in αi
will be assigned non-zero values. A mathematical dis-
cussion about this based on the optimization solution
can be found in the Additional file 1 (Sec. Optimization
Solution to JWCRstar). This is also verified in our experi-
mental results in the Additional file 2 (Sec. Selectivity of
Parameter γ of WCRSTAR).

Optimization methods
Solutions to CrossRank and CrossRankStar
The detailed techniques for minimizing the objective
functions JCR in Eq. (3) and JCRstar in Eq. (5) can be
found in the Additional file 3 and the Additional file 4,
respectively. Here, we give a brief overview. The objec-
tive function JCR in Eq. (3) is jointly convex in r1, ..., rh.
This can be shown by first deriving its matrix form, which
is a quadratic function of r = (rT1 , ..., r

T
h )T (i.e., the

concatenated ranking score vector of all molecular net-
works). Similarly, the matrix form of JCRstar in Eq. (5) is
a quadratic function of a concatenated vector of {ri∗} and
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{rip}. Their matrix forms can be found in Eq. (3) in the
Additional file 3 and Eq. (4) in the Additional file 4, respec-
tively, from which we derive power methods to minimize
JCR and JCRstar, i.e., Eq. (5) in the Additional file 3 and
Eq. (6) in the Additional file 4. These equations are fixed-
point updating rules to compute the concatenated vectors
r’s that converge to the global optimal solutions of JCR
and JCRstar, respectively. They have the similar form to
the label propagation methods [12] and thus are easy to
implement.
The detailed algorithms are included in the Additional

file 3 as Algorithm CR and in the Additional file 4 as Algo-
rithm CRSTAR, which are efficient with almost linear time
and space complexities. After the algorithms converge, we
can break r down into {ri} (for CR) or {ri∗} and {rip} (for
CRSTAR) and rank genes in each molecular network by
their scores. The theoretical analysis of the complexity,
convergence and optimality of CR and CRSTAR can also
be found in the Additional file 3 and the Additional file 4,
respectively.

Solution to weighted CrossRankStar
The objective function JWCRstar in Eq. (6) is not jointly
convex. Therefore, we minimize Eq. (6) by an alternat-
ing minimization approach, i.e., the objective function is
alternately minimized with respect to one variable while
fixing others. This procedure repeats until convergence.
Specifically, we solve ri∗ and rip according to Theorem
1 and Theorem 2 in the Additional file 1, respectively.
We solve αi using a method derived from the Karush-
Kuhn-Tucker (KKT) conditions [27], which is similar to
the method in [28]. The details of solving αi are included
in the Additional file 1 (Sec. Optimization Solution to
JWCRstar).
Since each of the updating strategies for ri∗, rip and αi

decreases the value of the objective function JWCRstar in
Eq. (6), and JWCRstar is lower bounded by 0, alternately
updating ri∗, rip and αi will converge. The detailed algo-
rithm is summarized in the Additional file 1 as Algorithm
WCRSTAR, which is efficient with almost linear time and
space complexities. The complexity analysis of Algorithm
WCRSTAR can also be found in the Additional file 1.

Data sources
In this section, we describe the datasets that will be used
to evaluate our methods.

Disease similarity network
We use the frequently used disease similarity network
from [29], which contains 5080 diseases. The similari-
ties are calculated based on the medical subject head-
ings description in the Online Mendelian Inheritance in
Man (OMIM) database [30]. Following the approach in
[7, 11, 31], we construct a k-nearest-neighbor graph of the

disease similarity network with k = 5, a good choice that
has been evaluated by earlier studies [7, 11, 31]. By doing
so, there are 21006 edges in the disease similarity network.

Disease-tissuemappingmatrix
To map diseases to tissues, we use the disease-tissue asso-
ciation matrix from [21]. In this matrix, each tissue is
assigned to a disease with certain probability. The proba-
bility between a disease and a tissue is estimated according
to their co-occurrences in the PubMed abstracts. The
matrix contains association probabilities between 965 dis-
eases and 68 tissues.

Tissue-specific PPINs
The tissue-specific PPINs for 60 tissues are obtained from
[16]. They are constructed by removing lowly expressed
genes w.r.t. each tissue from a generic PPIN of 9998
proteins. Magger et al. [16] considered a gene as lowly
expressed in a tissue if its expression in that tissue was
below 200 Affymetrix average-difference (AD) units. The
number of nodes and edges in the generated tissue-
specific PPINs range in [ 942, 6702] and [ 2026, 27571],
respectively.

Tissue-specific GCNs
We use a recently published human gene expression
dataset [25] to construct tissue-specific GCNs. In this
dataset, 19 tissues also exist in the disease-tissue mapping
matrix, thus can be used in our experiments. These 19
tissue-specific GCNs are generated by first calculating the
Pearson correlation coefficients between the expression
profiles of tissue-specific genes, which range in [−1, 1].
We normalize the correlation coefficients to range in
[ 0, 1] by using the widely used Weighted Gene Co-
expression Network Analysis (WGCNA) [32, 33]. Specif-
ically, each correlation coefficient cor(x, y) between two
genes x and y is normalized to a similarity score s(x, y) by

s(x, y) = (0.5 + 0.5cor(x, y))κ

where the power κ is a soft thresholding parameter.
We use the typical setting of κ = 12 in our experi-
ments1. Finally, we constructed the k-nearest-neighbor
graph with k = 5 which generally gave more reliable
results among k ∈ {3, 5, 10} in our experiments. The
number of nodes and edges in these tissue-specific GCNs
range in [ 985, 1515] and [ 3506, 5957], respectively.

Known disease-gene associations
We use two versions of disease-gene associations that are
frequently used in previous studies [13, 31]. These two sets
of associations are obtained fromOMIMonMay 2007 and
May 2010, respectively. May-2007 version contains 1393
associations between 1126 diseases and 916 genes. May-
2010 version contains 2187 associations between 1524
diseases and 1326 genes.
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Construction of NoN and NoSN
Figure 2 illustrates the construction processes of NoN and
NoSN. To construct NoN, we first assign the 60 tissue-
specific PPINs to diseases. By mapping the diseases in
the disease similarity network and those covered by the
disease-tissue association matrix, 926 diseases have tissue
associations. Using the disease-tissue association matrix,
we assign a tissue-specific PPIN to a disease if the tissue
is the most relevant tissue of the disease and their asso-
ciation probability is above 0.4 (as suggested in [16, 21]).
This ensures that the considered diseases show strong tis-
sue specificities. After this step, 361 diseases are assigned
with tissue-specific PPINs, which covers 38.98% diseases
that have tissue associations.
To construct NoSN, we further assign the 19 tissue-

specific GCNs to their corresponding diseases as auxiliary
networks by using the disease-tissue association matrix.
A disease may not have an auxiliary network if its most
relevant tissue does not appear in the 19 tissues of GCNs.

Results and discussion
In this section, we present comprehensive experimen-
tal results to evaluate the performance of our ranking
algorithms CR, CRSTAR and WCRSTAR.

Baseline methods
We compare our methods to both the classic and the
state-of-the-art network-based algorithms. CIPHER-DN
and CIPHER-SP [8] are classic regression based meth-
ods. They score a candidate gene for a query disease by
the Pearson correlation coefficient between their respec-
tive similarities to all diseases. RWRH [7] is a random
walk with restart algorithm on the heterogeneous net-
work model. PRINCE [12] is a label propagation method
derived from [26]. BIRW [13] alternately propagates labels
on disease similarity network and molecular network

with certain number of walks to reconstruct the asso-
ciation network. Katz [34] is popular for social network
link prediction [35]. It is also shown to be effective for
disease-gene association prediction in [10]. The authors
of [10] also propose a supervised link prediction method
CATAPULT. It extracts walk-based features from the net-
work and learns a biased SVM model from the positive
and unlabeled examples to predict unseen disease-gene
associations. The authors of [10] show that CATAPULT
performs better than another supervised link prediction
method, ProDiGe [14]. We have tested ProDiGe on our
datasets and get the same conclusion. The results of
ProDiGe can be found in the Additional file 2 (Sec. More
Results on Accuracy Evaluation). The parameters of these
algorithms are tuned using leave-one-out cross validation
for optimal performance. Note that all these methods are
developed on the heterogeneous network model as shown
in Fig. 1(a).

Accuracy evaluation
We first evaluate the accuracy of the selected methods
by leave-one-out cross validation which is a widely used
method in many existing works [12, 16]. Each time, a
known disease-gene association (d, g) is removed together
with all other disease-gene associations involving g. The
selected methods are assessed by their abilities to uncover
the removed association (d, g) when querying d.
Since the heterogeneous network model is not designed

to handle multiple tissue-specific molecular networks,
each time when querying a disease, we use its most rel-
evant tissue-specific molecular network to replace the
generic molecular network and apply the baseline meth-
ods on the resulted heterogeneous network. Note that this
approach has been shown to achieve better performance
than using the same generic molecular network for all
query diseases [16].

60 tissue-specific PPINs

Disease similarity network (5080 diseases)

t1

d1

t2 t60
(1) t1 is the most relevant tissue to d1
(2) Their association probability > 0.4

d1

d2

d3

d4

d5

TPPIN of d1
TPPIN of d2

TPPIN of d3 TPPIN of d4

TPPIN of d5

19 tissue-specific GCNs

NoN d1

d2

d3

d4

d5

TPPIN of d1TPPIN of d2 TPPIN of d5

TGCN of d2

TPPIN of d3

TGCN of d3

TPPIN of d4

TGCN of d4

NoSN

The same assignment strategy
as tissue-specific PPINs

Fig. 2 An illustration for NoN and NoSN construction. TPPIN: tissue-specific PPIN. TGCN: tissue-specific GCN. First, each disease in the disease
similarity network is assigned a TPPIN using the disease-tissue association matrix, if the shown two criteria are satisfied. Thus we obtain an NoN.
Then each disease in the NoN is assigned a TGCN as the auxiliary molecular network to form an NoSN, using the same strategy as assigning TPPINs
to diseases. Please see text for details



Ni et al. BMC Bioinformatics  (2016) 17:453 Page 8 of 13

Table 2 shows the average AUC values (across all cross
validation runs) of the compared methods. We report the
AUC values for up to 50, 100, 300, 500, 700 and 1000
false positives. These values are effective to estimate the
prediction accuracy of each method for top ranked genes
and have been widely used to evaluate gene prioritization
methods [13, 22, 31]. For example, the average AUC50 is
large if many test genes are ranked highly among the top
50 of the ranking list and the average AUC50 is 1 if all test
genes are ranked first in their respective validation runs.
Note that the traditional AUC value calculates the area
under the ROC curve over all false positives, which is not
suitable in practice where only top ranked genes will be
experimentally studied later in a usual disease gene iden-
tification process. Thus we only look at AUC values over
certain number of highly ranked false positives to see if the
true positives are discovered before these false positives.
In the first two panels of Table 2 (i.e., network mod-

els Heterogeneous network, NoN and NoSNa), we present
the statistical significance of the paired t-test between the
AUC values of CRSTAR and other methods. Specifically,
for each setting, e.g., AUC100, every method has a vector
of AUC values (with each entry being the AUC value for
one test gene). The paired t-test is performed between the
AUC vector generated by CRSTAR and the ones generated
by other methods. In Table 2, we only report the ranges of
the p-values represented by ∗’s. The exact p-values can be
found in the Additional file 2 (Sec. The p-values of Paired
t-test).
From the first two panels of Table 2, we can see that our

methods CR and CRSTAR achieve higher accuracy (AUC
values) than other methods. The paired t-test further
shows that the performance improvements are significant.
This is because NoN and NoSN are flexible to allow dif-
ferent diseases to have different tissue-specific molecular

networks while the heterogeneous network model forces
all diseases to share the same molecular network. More-
over, CRSTAR achieves better performance than CR. This
demonstrates the effectiveness of NoSN to integrate mul-
tiple tissue-specific molecular networks for each disease.
Note that CIPHER-DN is generally worse than CIPHER-

SP. In the following, we consider CIPHER-SP as the rep-
resentative of CIPHER algorithm, which is also the focus
of the original work [8]. We also evaluate the baseline
methods using a generic PPIN which was used to generate
the tissue-specific PPINs [16]. The results can be found
in the Additional file 2 (Sec. More Results on Accuracy
Evaluation). The results demonstrate that these methods
perform better on the tissue-specific PPINs than on the
generic PPIN in terms of prediction accuracy.

Robustness evaluation
Next, we evaluate whether the selected methods are
robust to noises. In our tissue-specific GCNs, we set a
threshold on the gene expression levels to select genes
for each tissue. This threshold controls the qualities of
the resulted GCNs. To evaluate the robustness of the
selected methods, we use the datasets in the previous
subsection and vary the thresholds for constructing the
tissue-specific GCNs. Note that in this subsection GCNs
(instead of PPINs) are used as the tissue-specific molec-
ular networks in the heterogeneous network model and
NoN, and center networks in NoSN.
The average expression value in the GCNs is around 7.

Figure 3 shows the AUC500 and AUC1000 of the selected
methods when varying the threshold between 8 and 9. A
higher threshold keeps genes that aremore tissue-specific,
and a lower threshold introduces more noises. We omit
the performance of CIPHER-SP since its AUC500 and
AUC1000 values are very low.

Table 2 AUC value comparison

Network model Method AUC50 AUC100 AUC300 AUC500 AUC700 AUC1000

Heterogeneous network CIPHER-DN 0.2332*** 0.2439*** 0.2510*** 0.2524*** 0.2530*** 0.2535***

CIPHER-SP 0.2068*** 0.2478*** 0.3112*** 0.3369*** 0.3568*** 0.3790***

RWRH 0.2382*** 0.2849*** 0.3849*** 0.4503** 0.4922** 0.5388**

PRINCE 0.2632* 0.3065* 0.3787** 0.4247*** 0.4594*** 0.5092***

BIRW 0.2615* 0.3082* 0.4095* 0.4653 0.5068* 0.5513*

Katz 0.2101*** 0.2726*** 0.3831** 0.4451* 0.4838** 0.5289**

CATAPULT 0.1370*** 0.1957*** 0.3148*** 0.3803*** 0.4315*** 0.4875***

NoN CR 0.2711* 0.3235 0.4244 0.4815 0.5233 0.5665

NoSNa CRSTAR 0.2900 0.3408 0.4347 0.4890 0.5331 0.5779

NoSNb
CRSTAR 0.2900 0.3400 0.4355 0.4882 0.5331 0.5798

WCRSTAR 0.2906 0.3409 0.4384 0.4973 0.5415 0.5863
aNoSN with one set of tissue-specific GCNs. bNoSN with two sets of tissue-specific GCNs. The p-value ranges: * represents 0.005 ∼ 0.05, ** represents 0.0005 ∼ 0.005,
*** represents < 0.0005
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Fig. 3 Robustness evaluation. The threshold is set to select tissue-specific genes to construct tissue-specific GCNs

From the results, we have the following observations.
First, CRSTAR performs the best, with approximately 3 to
5 % AUC500 (1 to 6 % AUC1000) improvement over CR
and 8 to 10 % AUC500 (6 to 12 % AUC1000) improve-
ment over other methods. Both CR and CRSTAR perform
better than other methods, with approximately 5 to 10 %
AUC500 (5 to 12 % AUC1000) improvement. These ver-
ify their effectiveness to integrate multiple tissue-specific
molecular networks. Second, all methods perform better
with higher threshold (e.g., threshold value 9), which cor-
responds to lower noise level. Third, both CR and CRSTAR
are more robust to noise than other methods, since the
gaps between these two methods and the remaining ones
become larger when more noises are introduced. This is
because NoN and NoSN allow each disease to have its
own tissue-specific molecular networks, while the hetero-
geneous network model uses a single molecular network
thus is more sensitive to noise. Fourth, CR STAR is more

robust than CR. This attributes to the capability of NoSN
to integrate multiple types of molecular networks for a
single disease.
We also evaluate the effects of the parameters of CR and

CRSTAR. CR has two parameters β and c, CRSTAR has
three parameters α, β and c. For both CR and CRSTAR,
we fix c = 0.85 which is a typical setting for label prop-
agation methods and random walk with restart methods
such as PageRank [36]. We test the remaining parameters
of CR and CRSTAR on the datasets used in the previous
subsection.
Figure 4 shows the effects of the parameters. AUC1000

is used as a measure of performance. For CRSTAR, we fix
β = 0.5 when varying α and fix α = 0.3 when varying β .
The performance of other methods are also presented for
reference. We observe that both CR and CRSTAR are not
sensitive to their parameters, their performance are stable
in a large range of values of their respective α and β . In our

Fig. 4 Effects of parameters on the performance of CR and CRSTAR
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experiments, we set β = 0.5 for CR, α = 0.3 and β = 0.5
for CRSTAR.

Automatically inferring weights of auxiliary networks
In this section, we evaluate the effectiveness ofWCRSTAR.
Recall thatWCRSTAR allows to automatically infer the rel-
ative importances of different auxiliary networks. This is
achieved by assigning lower αip values to higher ranking
inconsistencies between the auxiliary networks and the
center network �

′
cross(ri∗, rip). In this way, the more noisy

auxiliary networks will contribute less than the higher
quality auxiliary networks.
To generate multiple auxiliary networks for each dis-

ease, we construct another set of tissue-specific GCNs.
The tissue-specific gene expression profile is obtained
from [37], where 353 samples are available for 14 tissues.
Using the same processing steps as before, we construct
tissue-specific GCNs and assign them to their corre-
sponding diseases.
Figure 5 shows the learned auxiliary network weights

αip and their corresponding ranking inconsistencies
�

′
cross(ri∗, rip) when querying a random disease. The

learned weights are sorted in decreasing order. From the
figure, we can see thatWCRSTAR can automatically assign
low weights to high inconsistencies. In this way, it can
effectively utilize the information in high quality networks
and at the same is also robust to the noisy low quality
networks.
The prediction accuracies of CRSTAR and WCRSTAR

on this dataset are shown in the third panel of Table 2
(i.e., network model NoSNb). The results of other meth-
ods are the same as before, since they do not use auxiliary
networks. Comparing the performance of CRSTAR in the
second and third panels, we can see that without learn-
ing the relative importances of auxiliary networks, the
performance of CRSTAR does not improve with more
auxiliary networks. However, WCRSTAR gives the best
AUCs among all methods by learning optimal weights
for auxiliary networks. This indicates that WCRSTAR can
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Fig. 5 Learned weights and corresponding ranking inconsistencies

effectively leverage useful information from the additional
networks.

Evaluation on finding new associations
To evaluate the capabilities of the selected methods on
predicting newly discovered associations, we apply them
on the associations obtained before May 2007 to predict
the associations obtained between May 2007 and May
2010. There are 439 associations before May 2007 and 126
new associations afterMay 2007. All other dataset settings
are the same as those in Sec. Accuracy Evaluation.
Figure 6(a) shows the ROC curves of the selected meth-

ods. This task is more difficult than that of cross validation
since less associations are known onMay 2007. Figure 6(c)
(blue bars) shows the AUC1000 values of different meth-
ods in Fig. 6(a). These AUC values can be compared to
the AUC1000 values in Table 2. By this comparison, we
observe decreases in performance of all methods com-
pared to the results of cross validation. Consistently, CR
and CRSTAR outperform other methods.
In addition, some test genes have known associations

with diseases other than the query diseases on May 2007.
Such genes can be easily predicted if they are associated
with diseases that are similar to the query diseases. If we
remove such known associations, the results are shown
in Fig. 6(b) and (c) (gray bars). As we can see from the
AUC values, all methods show decreases in performance
as compared with using all associations (blue bars), indi-
cating the difficulty of this second task. On the other
hand, the performance gaps between our methods and
other methods in Fig. 6(b) and (c) become more obvious.
This indicates that CR and CRSTAR are more effective in
predicting associations involving new genes that have no
known associations.

The importance to use NoN and NoSN
Next we give a concrete example to show that it is essential
to allow diseases to have their own tissue-specific molecu-
lar networks. The association between disease d1 (OMIM
record: MIM 114480) and gene ATM is known after May
2007. It is an unknown association to be discovered using
the dataset before May 2007.
This association is ranked 16 by CR and CRSTAR while

the highest rank given by other methods is 178 (by
RWRH). The tissue associated with d1 is prostrate. d1 has
two neighbors, d2 (MIM 176807) and d3 (MIM 151623),
in the disease similarity network. The tissues associated
with d2 and d3 are prostrate and adrenal cortex, respec-
tively. In the May-2007 version, d2 has no known causal
genes, d3 has a known causal gene TP53. In the tissue-
specific PPIN of adrenal cortex, ATM is a neighbor of
TP53 with high similarity 0.9999, which results in the high
rank of ATM in the tissue-specific PPIN of prostrate by
CR and CRSTAR. However, TP53 does not exist in the
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Fig. 6 ROC curve and AUC value comparisons on predicting new associations. The black solid lines in a and b denote what random guess would
have achieved

tissue-specific PPIN of prostrate. Other methods force
all diseases to share the tissue-specific PPIN of prostrate,
thus are not able to search ATM through the associa-
tion between d3 and TP53. This shows the importance
to allow different diseases to have different tissue-specific
molecular networks.

Conclusion
The existing network-based methods for disease gene pri-
oritization often exploit a heterogeneous network model
that combine prior knowledge about disease similarities,
gene relationships and disease-gene associations. A major
drawback of this network structure is that it forces all
diseases to share the same molecular network. Recent
studies demonstrate that disease genes tend to express
in the tissues where the corresponding diseases mani-
fest. In this paper, we exploit novel network models, NoN
and NoSN, to model this genetic dynamics of diseases.
In NoN, each disease corresponds to its most associated
tissue-specific molecular network. In NoSN, each disease
can have multiple tissue-specific molecular networks with

complementary information. A family of ranking algo-
rithms, CR, CRSTAR, and WCRSTAR, are developed on
NoN and NoSNwith rigorous theoretical analysis on their
optimality and convergence properties. Extensive exper-
imental results on real datasets from OMIM database
demonstrate our methods recover true associations more
accurately than other 7 popular network-based disease
gene prioritization methods in terms of AUC values, with
statistically significant differences (paired t-test p-values
less than 0.05). The results also validate the robustness of
our methods when using noisy gene co-expression net-
works, with approximately 5 to 12 % improvement of AUC
values over the compared methods. These results con-
firm that our network models are flexible and effective
in incorporating tissue specificities of diseases for disease
gene prioritization task, and our ranking algorithms can
effectively work on our novel network models.

Endnote
1 en.wikipedia.org/wiki/Weighted_correlation_

network_analysis.

http://en.wikipedia.org/wiki/Weighted_correlation_network_analysis
http://en.wikipedia.org/wiki/Weighted_correlation_network_analysis
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