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ABSTRACT 

Accelerated life test (ALT) planning in Bayesian framework is studied in this paper with a 

focus of differentiating competing acceleration models, when there is uncertainty as to 

whether the relationship between log mean life and the stress variable is linear or exhibits 

some curvature. The proposed criterion is based on the Hellinger distance measure between 

predictive distributions. The optimal stress-factor setup and unit allocation are determined at 

three stress levels subject to test-lab equipment and test-duration constraints. Optimal designs 

are validated by their recovery rates, where the true, data-generating, model is selected under 

the DIC (Deviance Information Criterion) model selection rule, and by comparing their 

performance with other test plans. Results show that the proposed optimal design method has 

the advantage of substantially increasing a test plan’s ability to distinguish among competing 

ALT models, thus providing better guidance as to which model is appropriate for the follow-on 

testing phase in the experiment.  
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1. MOTIVATION FOR WORK 

     Most work of the optimal Accelerated Life Testing (ALT) designs in literature has focused on 

finding test plans that allow more precise estimate of a reliability quantity, such as life 

percentile, at a lower stress level (it is usually the use stress level); see, for example, Nelson and 
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Kielpinski [1] and Nelson and Meeker [2]. Nelson [3, 4] summarized the ALT literature up to 

2005 and a significant portion of this article is devoted to the optimal design of ALT planning. 

More recent discussions of optimal ALT plans and/or robust ALT plans can be found in, e.g., Xu 

[5], McGree and Eccleston [6], Monroe et al. [7], Yang and Pan [8], Konstantinou et al. [9], 

Haghighi [10]. In the previous study, the associated confidence intervals of an estimate reflect 

the uncertainty arising from limited sample size and censoring at test, but do not account for 

model form inadequacy. However, model errors can be quickly amplified and potentially 

dominate other sources of errors in reliability prediction through the model-based 

extrapolation that characterizes ALTs.  Implicit in the design criteria used in current ALTs is the 

assumption that the form of the acceleration model is correct. In many real-world problems 

this assumption could be unrealistic. A more realistic goal of an initial stage of ALT 

experimentation is to find an optimal design that helps in selecting a model among rival or 

competing model forms. The ALT designs that are good for model form discrimination could be 

quite different from those that are more appropriate for life percentile prediction under a 

specific model. 

Extrapolation in both stress and time is a typical characteristic of ALT inference. The most 

common accelerated failure time regression models (based, for example, on Lognormal or 

Weibull fit to the failure time distribution at a given stress level) are only adequate for modeling 

some simple chemical processes that lead to failure (Meeker and Escobar [11]). However, for 

modern electronic devices, more sophisticated models with basis in the physics of failure 

mechanisms are required. These complicated models are expected to have more parameters 

with possible interactions among stress factors. Therefore, investigating ALT designs with 

model selection capability is needed more than ever before. Meeker et al. [12] in their 

discussion of figures of merit when developing an ALT plan emphasizes the usefulness of a test 

plan’s robustness to the departure from the assumed model. For example, when planning a 

single-factor experiment under a linear model, it is useful to evaluate the test plan properties 

under a quadratic model. Also, when planning a two-factor experiment under the assumption 

of a linear model with no interaction, it is useful to evaluate the test plan properties under a 

linear model with an interaction term. We strongly believe that it is worthwhile to consider 



these recommended practices ahead of time when the test plan is being devised in the first 

place by allowing a design criterion that is capable of model form discrimination.  

 

2. PREVIOUS WORK 

A considerable work has been done in the development of experimental designs for 

discrimination among linear regression models; see, for example, Hunter and Reiner [13], Box 

and Hill [14], Hill et al. [15], Atkinson and Cox [2]. A comprehensive review of early 

contributions is given by Hill [17]. More recently, many authors focused on the development of 

T-optimum criterion (non-Bayesian) for model discrimination (de Leon and Atkinson [18], 

Atkinson et al. [19]). Dette and Titoff [20] derived new properties of T-optimal designs and 

showed that in nested linear models, the number of support points in a T-optimal design is 

usually too small to enable the estimate of all parameters in the full model; Agboto et al. [21] 

reviewed T-optimality among other new optimality criteria for constructing two-level optimal 

discrimination designs for screening experiments. These work resulted in sequential 

experimentation procedures. 

Bayesian criteria were also considered in model discrimination. Meyer et al. [22] considered 

a Bayesian criterion that is based on the Kullback-Leibler information to choose follow-up run 

after a factorial design to de-alias rival models. Bingham and Chipman [23] proposed a Bayesian 

criterion that is based on the Hellinger distance between predictive densities for choosing 

optimal designs for model selection with prior distributions specified for model coefficients and 

errors. For a comprehensive review on Bayesian experimental design reader is referred to 

Chaloner and Verdinelli [24].  

There are three types of uncertainties involved in the ALT planning – the uncertainty of 

failure time distribution, the uncertainty of lifetime-stress relationship and the uncertainty of 

model parameter value (Pascual [25]). Bayesian methods have been proposed for ALT planning 

to deal with the uncertainty of model parameter (Zhang and Meeker [26]; Yuan, et al. [27]), but, 

to our knowledge, none has been explicitly targeting the model discrimination of life-stress 

functions. All of the previous attempts at model discrimination have been in the context of 

traditional experimental design for linear models, while the failure time regression models used 



in ALTs are nonlinear. In particular, failure time censoring is commonly expected in ALT 

experiments. Nelson [28] (p. 350) has cautioned that the statistical theory for traditional 

experimental design is correct only for complete data, one should not assume that properties of 

standard experimental designs hold for censored and interval-censored data as they usually do 

not hold. For example, aliasing of effects may depend on the censoring structure. In addition, 

the variance of an estimate of a model coefficient depends on the amount of censoring at all 

test conditions and on the true value of (possibly all) model coefficients. Thus, the censoring 

times at each test condition are part of the experimental design and affect its statistical 

properties. As such, our current work draws its importance from its attempt at contributing to 

model discrimination literature for accelerated life test planning when censoring is inevitable. 

 

3. PROPOSED METHODOLOGY 

3.1. Rationale for Model Discrimination Methodology 

     Suppose that the objective is to arrive at an ALT test plan that is capable of discriminating 

among competing acceleration models. Assume that there are two rival models and it is better 

that the experimental data can help in choosing one of them.  Intuitively, a good design should 

be expected to generate far apart results based on the two competing models, and then the 

experimenter can select the model based on the actual observations from the experiment. In 

ALT, the lifetime percentile is typically of interest; therefore the larger the distance 

(disagreement) in prediction the better our ability to discriminate (distinguish) among these 

competing models. Therefore, we propose to use the relative prediction performance of each 

model over the range of its parameters to identify the optimal design. Figure 1 shows how 

important it is for the experimenter to arrive at the best representative model to reduce 

prediction errors at use conditions (UCs). For example, if 𝑀1is the true model but experimenter 

assumes 𝑀2, then under ALT extrapolation the error in prediction of a quantile of interest at 

use conditions,  ∆�̂�𝑝(𝑈𝐶),  is much worse than any predictions at tested conditions.  

 

 

Insert Figure 1 here 



To distinguish predictive distributions from rival models, the Hellinger distance, as a measure of 

disagreement between predictive densities, is used in this work.   

3.2. Distance (Divergence) Measure of Probability Distributions 

There are a substantial number of distance measures applied in many different fields such 

as physics, biology, psychology, information theory, etc. See Sung-Hyuk Cha [11] and Ullah [35] 

for a comprehensive survey on distance/similarity measures between probability density 

functions. From the mathematical point of view, distance is defined as a quantitative measure 

of how far apart two objects are. In statistics and probability theory, a statistical distance 

quantifies the dissimilarity between two statistical objects, which can be two random variables 

or two probability distributions. A measure 𝐷(𝑥, 𝑦) between two points 𝑥,𝑦 is said to be a 

distance measure or simply distance if 

I. 𝐷(𝑥,𝑦) > 0 when 𝑥 ≠ 𝑦 and 𝐷(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦, 

II. 𝐷(𝑥,𝑦) = 𝐷(𝑦, 𝑥),  

III. 𝐷(𝑥,𝑦) + 𝐷(𝑦, 𝑧) ≥ 𝐷(𝑥, 𝑧).                                                                                                       

Conditions (I) through (III) imply, respectively, that the distance must be non-negative (positive 

definite), symmetric and sub-additive (triangle inequality: the distance from point 𝑥 to 

𝑧 directly must be less than or equal to the distance in reaching point 𝑧 indirectly through 

point 𝑦.  

The choice of a distance measure depends on the measurement type or representation of 

quantities under study. In this study, the Hellinger distance (DH) (Deza and Deza [29]) is chosen 

to measure the distance between the two probability distributions that represent the 

distributions of �̂�𝑝 at lower and higher ALT stress test conditions. Computing the distance 

between two probability distributions can be regarded as the same as computing the Bayes (or 

minimum misclassification) probability of misclassification (Duda et al. [30], Cha and Srihari 

[31]). For the discrete probability distributions 𝑃 = (𝑝1⋯𝑝𝑘) and  𝑄 = (𝑞1⋯𝑞𝑘), the Hellinger 

distance (𝐷𝐻) is defined as: 



𝐷𝐻(𝑃,𝑄) = 1
√2
�∑ (�𝑝𝑖 − �𝑞𝑖)2𝑘

𝑖=1                                                            (1) 

This is directly related to the Euclidean norm of the difference of the square root vectors, 

𝐷𝐻(𝑃,𝑄) = 1
√2
�√𝑃 − �𝑄�2                                                        (2) 

For the continuous probability distributions, the squared Hellinger distance is defined as: 

𝐷𝐻2(𝑃,𝑄) =
1
2
��𝑝𝑥

1
2 − 𝑞𝑥

1
2�

2

𝑑𝑥 

= 1 − ∫�𝑝𝑥𝑞𝑥  𝑑𝑥                                                        (3) 

Hellinger distance follows the triangle inequality and 0 ≤ 𝐷𝐻(𝑃,𝑄) ≤ 1. The maximum distance 

of 1 is attained when 𝑃 assigns probability zero to every set to which 𝑄 assigns a positive 

probability, and vice versa. 

 

3.3. Criterion for Model Discrimination  

In Bayesian framework of experimental design, the problem of optimal design can be 

thought of as finding a design, d∗, such that it maximizes a utility function U(d) that quantifies 

the objective of the experiment (which is the model form distinguishability in our case). 

Suppose that under design d, the experimental outcome may be generated by one of the 

following two models: 

• Model 1, 𝑀1, with its parameter vector 𝜃1, its outcome denoted by  𝑌1 = (𝑦11, … ,𝑦𝑁1) 

• Model 2, 𝑀2, with its parameter vector 𝜃2, its outcome denoted by 𝑌2 = (𝑦12, … ,𝑦𝑁2)  

Consider, as an initial utility function to be maximized, the difference in prediction of life 

percentile of interest 𝜏𝑝 at the low stress  𝜏𝑝(𝑆1) of the ALT test setup across all pairs of 

competing models. Ultimately, interest lies in the prediction of the 1st percentile of life 

distribution at use condition, 𝜏0.01. Since the lower stress level is the closest to the use stress 

level, a large difference in prediction at the lower level will give rise to an even larger difference 

in prediction at the use level (due to the extrapolation error). Therefore, a design that may 

generate larger difference in the failure time at the lower stress level among rival models is 

preferable in discrimination sense. However, selection of the lower stress level to optimize the 



local utility function may run the risk of not enough fails obtained to sufficiently estimate life 

distribution percentiles. Therefore, we consider the simultaneous difference in prediction of life 

percentile of interest, 𝜏𝑝, at the lower stress  𝜏𝑝(𝑆1) and the higher stress 𝜏𝑝(𝑆2) test setup 

across all pairs of competing models. This study considers constant-stress ALT plans, where no 

interaction between stress variables is assumed. It is also assumed that the disperse parameter 

of log (life) distribution does not depend on stress. 

For the two competing models, M1 and M2, the pairwise local utilities are as follows: 

u2|1�d, M1(θ1, Y1), M2(θ2, Y1)� = DS1  �τ�p,(M2|Y1), τ�p,(M1|Y1)� + DS2  �τ�p,(M2|Y1), τ�p,(M1|Y1)�

= u2|1                                                                                                                                                               (4)      

u1|2(d, M1(θ1, Y2), M2(θ2, Y2)) = DS1�τ�p,(M1|Y2), τ�p,(M2|Y2)� + DS2�τ�p,(M1|Y2), τ�p,(M2|Y2)�  

= u1|2                                                                                                                                                               (5) 

where 𝐷𝑆1(∙) and 𝐷𝑆2(∙) denote the Hellinger distance at the lower stress and the higher stress, 

respectively. Equation (4) represents the difference in τp  prediction of model (M2) conditional 

on data from model (𝑀1) relative to model (𝑀1) prediction of the same quantity, while Equation 

(5) represents the difference in 𝜏𝑝  prediction of model (𝑀1) conditional on data from model 

(𝑀2) relative to model (𝑀2) prediction of the same quantity. That is the relative prediction 

performance of each model over the range of its parameter vector. 

At the time of designing an experiment, the experimental outcome is yet to observe and the 

true model form and its parameter vector are unknown. Therefore, 

a) The utility 𝑢𝑖|𝑗(∙) of a design is assessed by its expectation with respect to the sampling 

distribution of the data 𝑝(𝑦1|𝜃1,𝑑), and 𝑝(𝑦2|𝜃2,𝑑) , and the prior distribution of the 

parameter vectors 𝜋(𝜃1) and 𝜋(𝜃2) . That is calculating the pre-posterior expectation. 

𝐸�𝑢2|1� = �𝑢2|1 𝑝(𝑦1|𝜃1,𝑑) 𝜋(𝜃1|𝑑)𝑑𝑦1𝑑𝜃1                                                  (6) 

𝐸�𝑢1|2� = �𝑢1|2 𝑝(𝑦2|𝜃2,𝑑) 𝜋(𝜃2|𝑑)𝑑𝑦2𝑑𝜃2                                                 (7) 

Equation (6) gives an expression of the expected pre-posterior prediction difference in τp of M2 

conditional on data from model M1 relative to model M1 prediction of the same quantity. The 

reverse is true for Equation (7). 



b) Since it is not known which of the two models (𝑀1) or (𝑀2) is the true model, a weighted 

sum of expected utilities 𝐸(𝑢𝑖|𝑗) is obtained as the desired global utility function 𝑈(𝑑) to be 

maximized. The weighing is achieved by priors assigned to the models, 𝜋(𝑀1) and 𝜋(𝑀2) 

respectively.  

𝑈(𝑑) = � 𝜋(𝑀𝑖).𝐸(𝑢𝑖|𝑗)
𝑖,𝑗=1,2 
𝑖≠𝑗

 

= 𝜋(𝑀1).𝐸(𝑢2|1) + 𝜋(𝑀2).𝐸(𝑢1|2)                                            (8) 

Equation (8) can be interpreted as a measure of model distinguishability between two models. 

The larger the value of U(d), the dissimilar the two models are to each other. Extending (8) to 

account for situations where more than two models are to be distinguished among is 

straightforward. 

As can be seen from Equations (6)-(8), arriving at an optimal design 𝑑∗ that maximizes (8) is 

a nontrivial task due to the high dimensional integration and optimization required. There is no 

closed form solution to (8). Numerical evaluation of the multiple integral for a given choice of 

design will be needed, which in itself a formidable task given the fact that the integration is 

defined over the data space and parameter space. The obtained estimate of 𝑈(𝑑) must then be 

maximized over the design variable, 𝑑, which is in often cases a multidimensional vector. We 

use a Monte Carlo simulation-based approach to find the optimal design, 𝑑∗. As non-sequential 

ALT designs are always performed off-line, the relatively heavy computation requirement of 

this approach is not a critical issue. 

Figure 2 presents a high level flow of the proposed methodology. For a candidate design, it 

is evaluated by the utility function (8) according to the assumed model and the true model. The 

numbered steps of this process are explained below.  

Step 1 - Fail data 𝑌1 are generated from the acceleration model 𝑀1 (the assumed true 

model). For those failure times that exceed the test censoring time, they are replaced by 

the censoring time.  



Step 2 – Given model 𝑀1 is assumed, the failed data are combined through Bayes’s theorem 

with the prior info available on parameters 𝜋𝑀1(𝜃) to produce the posterior estimates of 

the parameter, 𝑃𝑀1(θ|𝑌1). Repeat it for model 𝑀2. 

Step 3 - Posterior distribution of the predicted life percentile of interest 𝜏𝑝 is obtained using 

Gibbs sampler at both high and low stress conditions, which are Steps 3a and 3b. Same 

steps are repeated on same data set 𝑌1 using rival model 𝑀2.   

Step 4 - The Hellinger distances between the prediction distributions under the true model 

𝑀1 and the rival model 𝑀2 are obtained for both the lower and higher stress levels.  

Step 5 - The sum of the Hellinger distances is denoted as the local utility.  

If there are more than one rival model, this process will be repeated for models 𝑀2 through 

𝑀𝑚. Local utilities are then weighted by model priors and summarized into a global utility. This 

utility value gives the overall performance of model discrimination of a candidate design. 

An R program is written to automate the process. It first generates random fail data 

according to the true acceleration model. Then, it calls WinBUGS to perform Bayesian inference 

by Markov chain Monte Carlo (MCMC). Using WinBUGS, a stream of samples from the posterior 

distribution of the life percentile under an assumed acceleration model will be generated and 

they are feedback to the R program to compute the Hellinger distance and the utility value. 

Eventually, multiple candidate designs will be evaluated and a response surface model is used 

to fit their utility values. The best design can be found by maximizing the fitted model.  

 

 

Insert Figure 2 here 

4. MODEL SELECTION CRITERION 

In this section, the tools that are used for validating the obtained optimal designs are 

introduced. It can be shown that these designs are indeed optimal under desired optimality 

criterion as they maximize the proportion of times (the recovery rate) in which the true, data-

generating, model is selected under an appropriate model selection rule.  



The Deviance Information Criterion (DIC) was introduced by Spiegelhalter et al. [32] as an 

easily computed and rather universally applicable Bayesian criterion for posterior predictive 

model comparison. It compromises between data fit and model complexity, like many other 

non-Bayesian criteria.  It generalizes Akaike’s information criterion (AIC) that appears as a 

special case under a vague prior (negligible prior information), and Bayesian information 

criterion (BIC), also known as Schwarz criterion. DIC is particularly useful in Bayesian model 

selection problems where the posterior distributions of the models have been obtained by 

MCMC simulation, because it can be directly computed using the MCMC samples. Claeskens 

and Hjort (Ch. 3.5) [33] show that the DIC is large-sample equivalent to the natural model-

robust version of the AIC. 

Define the following 

• Deviance is defined as 𝐷𝑒𝑣(𝜃) = −2 log[𝑝(𝑦|𝜃)] + 𝐶, where 𝑦 are the data, 𝜃 are 

vector of model unknown parameters, 𝑝(𝑦|𝜃) is the likelihood function and 𝐶 is a 

constant term that cancels out when comparing models.  

• Expectation is defined as 𝐷𝑒𝑣����� = 𝐸𝜃[𝐷𝑒𝑣(𝜃)]. This measures how well a model fits 

the data, the larger its value, the worse the fit.  

• Effective number of model parameters is defined as 𝑝𝐷 = 𝐷𝑒𝑣����� − 𝐷𝑒𝑣(�̅�), where �̅� 

is the expectation of 𝜃. The larger 𝑝𝐷 , the easier for the model to fit the data. 

Finally, DIC is defined as a classical estimate of fit plus twice the effective number of 

parameters, i.e.,  

𝐷𝐼𝐶 = 𝐷𝑒𝑣(�̅�) + 2𝑝𝐷                                                                                      

= 𝐷𝑒𝑣����� + 𝑝𝐷                                                                         (9) 

When comparing models, models with smaller DIC are preferred to models with larger DIC. 

Models are penalized both by the value of 𝐷𝑒𝑣�����, which favors a good fit, but also (in common 

with AIC and BIC) by the effective number of parameters 𝑝𝐷. Since 𝐷𝑒𝑣�����  decreases as the 

number of parameters in a model increases, the 𝑝𝐷 term compensates for this effect by 

favoring models with a smaller number of parameters. 

5. METHODOLOGY ILLUSTRATION  



In this section, we use a real industrial example to demonstrate the proposed methodology. 

The R and WinBUGS codes of this example had been submitted to the publisher’s website as 

the supplementary material.  

 

5.1. Description of Design Problem 

Reliability engineer is interested in studying the intermetallic growth of Au-Al interface in a 

semi-conductor assembly. It is known that fail mechanism of interest is activated by 

temperature stress so an accelerated life test is desired in order to estimate the device lifetime. 

However, there is an uncertainty as to whether the relationship between log(life) and the stress 

(possibly transformed) is linear or exhibit some curvature as indicated by an early look-ahead 

data set. As a result, current interest lies in an accelerated life test plan that is capable of 

discriminating between linear and quadratic acceleration models in temperature stress. There 

are also constraints imposed by available budget for testing (test units), and stress-lab 

equipment availability and capability as shown below.  

• Bake stress chambers are available for 42 days (1,008 hours maximum test time). 

• Two types of bake ovens are available with different temperature range capabilities.  

– The lower stress bake oven can be set to run temperature range from 60°C to 

115°C. 

– The higher stress bake oven can be set to run temperature range from 100°C to 

250°C. 

– The equipment’s tolerance is estimated at +/-5°C. 

• Experimental budget allows for no more than 20 runs.  

The engineer’s objective is to determine a feasible test plan, including the stress level settings 

and the test unit allocation at each stress level, so as to discriminate between the two 

competing acceleration models.  

 

5.2. Competing Acceleration Models 

Based on the past experience with similar fail mechanism, the reliability engineer believes 

that Weibull distributions would adequately describe Au-Al intermetallic growth life in a 



semiconductor package, which implies a smallest extreme value (SEV) distribution for the log-

life. That is, if  𝑇 is assumed to have a Weibull distribution,T~WEIB(α,β), then 

log(𝑡)~𝑆𝐸𝑉(𝜇,𝜎), where σ = 1
𝛽

  is the scale parameter and µ = log(𝛼) is the location 

parameter. The Weibull CDF and PDF can be written as 

𝐹(𝑡|𝛼,𝛽) = Φ𝑆𝐸𝑉 �
log(𝑡)−𝜇

𝜎
� = 1 − 𝑒𝑥𝑝 �−�𝑡

𝛼
�
𝛽
�                                                      (10) 

 

𝑓(𝑡|𝛼,𝛽) = 1
𝜎𝑡
ϕ𝑆𝐸𝑉 �

log(𝑡)−𝜇
𝜎

� = 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

𝑒𝑥𝑝 �−�𝑡
𝛼
�
𝛽
� ,   𝑡 > 0                          (11) 

 

In above parameterization, β > 0 is the shape parameter and 𝛼 > 0 is the scale parameter as 

well as the 0.632 quantile. 

 The Arrhenius life-temperature relationship was expected to describe the acceleration 

behavior.  

𝑡(𝑇𝑒𝑚𝑝) = 𝐴 . exp � 𝐸𝑎
𝐾× 𝑇𝑒𝑚𝑝

� ,                                                                (12) 

where, 

• 𝑡(𝑇𝑒𝑚𝑝) is the life characteristic related to temperature. 

• 𝐴 is constants, and  (𝐸𝑎) is the activation energy of the chemical reaction in electron 

volts. 

• 𝑇𝑒𝑚𝑝 is temperature in Kelvin (oC+273.15). 

• 𝐾 is Boltzmann’s constant  (8.617385 𝐸−5 𝑒𝑉/𝐾) 

However, due to the complexity of the material, engineer would like to consider two possible 

life-stress relationships, namely, the linear relationship M1 and the quadratic relationship M2. 

 The M1 model can be expressed in the linearized form by taking the logarithmic of both 

sides of (12) as 

𝜇1 = 𝛽0 + 𝛽1𝑥                                                                                        (13) 

By standardizing the accelerating variable, the above model can be expressed as 



𝜇1 = 𝛾0 + 𝛾1 𝜉 ,                                                                                     (14) 

where the standardized variables are expressed a 𝜉 =  (𝑥−𝑥𝑙𝑜𝑤)
(𝑥ℎ𝑖𝑔ℎ−𝑥𝑙𝑜𝑤)

 , 𝜉 ∈ [0, 1]. 

New coefficients are related to previous ones through 𝛾0 = 𝛽0 + 𝛽1𝑥𝑙𝑜𝑤 and 𝛾1 = 𝛽1(𝑥ℎ𝑖𝑔ℎ −

𝑥𝑙𝑜𝑤). Thus, we have  𝜇1 𝑙𝑜𝑤 = 𝛾0 and  𝜇1 ℎ𝑖𝑔ℎ = 𝛾0 + 𝛾1. 

 The M2 model is an extension of M1 by adding a quadratic term as 

𝜇2 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2                                                                      (15) 

By standardizing the accelerating variable, the above model (15) can be expressed as 

𝜇2 = 𝛾0 + 𝛾1 𝜉 + 𝛾2 𝜉2 ,                                                                  (16) 

where 𝛾0 = 𝛽0 + 𝛽1𝑥𝑙𝑜𝑤 + 𝛽2𝑥2𝑙𝑜𝑤, 𝛾1 = 𝛽1�𝑥ℎ𝑖𝑔ℎ − 𝑥𝑙𝑜𝑤�, and 𝛾2 = 𝛽2(𝑥2ℎ𝑖𝑔ℎ − 𝑥2𝑙𝑜𝑤). 

Similarly, we have  𝜇2 𝑙𝑜𝑤 = 𝛾0 and 𝜇2 ℎ𝑖𝑔ℎ = 𝛾0 + 𝛾1 + 𝛾2. 

 For both models, for Type-I censored data (time censoring), the probability of obtaining a 

censored observation at time 𝑡𝑐 is given by 

Pr(t > t𝑐) = 𝑒𝑥𝑝 �−�𝑡𝑐
𝛼
�
𝛽
� ,                        𝑡𝑐 > 0                             (17) 

5.3. Prior Distributions Elicitation 

Engineer assumed an equal weight for both models to begin with. That is, 𝜋(𝑀1) =

𝜋(𝑀2) = 0.5. For model 𝑀1, Equation (14) shows parameter vector 𝜃 as(𝛾0, 𝛾1,𝜎)𝑇, and for 

model 𝑀 2, Equation (16) shows parameter vector 𝜃 as(𝛾0, 𝛾1,𝛾2,𝜎)𝑇. One would need to 

specify a prior distribution for each of the parameters or 𝑝𝑀1(𝜃) and 𝑝𝑀2(𝜃). We would initially 

use the parameters in their original units (before transformation) to relate to the engineer’s 

prior knowledge. Standardization is applied once prior distributions in original units have been 

effectively solicited from engineers. 

Given historical learning and previous experience with similar fail mechanism, the reliability 

engineer believes that appropriate independent prior distributions on the parameters can be 

specified as follows: for the activation energy, a uniform distribution that gives an equal 



likelihood for values that range from 1.0 to 1.05 eV would be appropriate to use. Note that in 

the case of the quadratic model 𝑀2 this parameter may no longer directly correspond to the 

activation energy of the chemical reaction. Not much was known about the intercept, and the 

quadratic coefficient in 𝑀2 so both were given a vague (diffuse) normal distribution with mean 

of 0.0 and low precision of 1.0𝐸−6 (𝜎 = 1000 𝑜𝑟 𝜎2 = 1𝐸+6). A positive density support was 

assumed for the Weibull shape parameter as gamma distribution with shape of 2 and scale of 1. 

 

5.4. Construction of Optimal Design 

The optimization algorithm is Monte Carlo simulation-based, in which the optimal design 𝑑∗ 

is arrived at by evaluating the design criterion in (9) for each of the candidate designs, and 

selecting the design that maximizes the design criterion (utility function of interest). The 

optimization steps are summarized as follows: 

1. For a given experimental run budget, 𝑁, and the number of stress-factors to study,𝑘, 

construct a Latin hypercube  design (𝐿𝐻𝐷 (𝑁,𝑘)). 

2. Over the design grid, for each candidate design 𝑑 randomly simulate fail data from the joint 

density (𝜃𝑖 ,𝑦𝑖)𝑑,𝑀𝑖  of each of the rival models 𝑀𝑖  (𝑖 = 1,2). 

(𝜃𝑖 ,𝑦𝑖)𝑑,𝑀𝑖  ~ 𝑝𝑑,𝑀𝑖
(𝜃,𝑌) =  𝑝(𝜃)𝑀𝑖 .𝑝𝑑,𝑀𝑖

(𝑦|𝜃)                                                (18)                                                                        

That is, independently generate random fail data using the competing acceleration models 

(using (14) for model 𝑀1 and (15) for model 𝑀2). Consider all possible combinations of 

sample sizes (unit allocation) at each stress factor-level combinations. Computational time 

can be reduced if units are allocated at increments >1 to each of the stress levels.   

3. Simulated experiments (failure times) are compared against a predetermined test duration 

𝑡𝑐 to determine if a test unit failure time is censored.  

4. Calculate the relative prediction performance of each model over the range of its 

parameters. This is done by using a Gibbs sampler (WinBUGS) to compute posterior 

predictions of, 𝜏𝑝(𝑥𝑆) , the 100 𝑝𝑡ℎ quantile of the lifetime distribution at both the higher 

and lower stress conditions (𝑆 = 𝑆𝐻𝑖𝑔ℎ,𝑎𝑛𝑑 𝑆 = 𝑆𝐿𝑜𝑤). A typical reliability interest is when 

𝑝 = 0.01, so in the case of models 𝑀1 and 𝑀2, the outcome of this step is the posterior 

distribution of the predicted quantile values for each model given the same data set; i.e., 



�̂�0.01,(𝑀2|𝑌1), �̂�0.01,(𝑀1|𝑌1), �̂�0.01,(𝑀1|𝑌2) and �̂�0.01,(𝑀2|𝑌2) at both the higher and lower stress 

conditions. 

5. Use the Hellinger distance measure, 𝐷𝐻, to calculate pairwise local utilities (𝑢2|1) and (𝑢1|2) 

as in (7) and (8), which are reproduced below for convenience: 

For model 𝑀2 conditional on data from model 𝑀1 

𝑢2|1 = 𝐷𝐻𝑆𝐻𝑖𝑔ℎ��̂�0.01,(𝑀2|𝑌1), �̂�0.01,(𝑀1|𝑌1)� + 𝐷𝐻𝑆𝐿𝑜𝑤��̂�0.01,(𝑀2|𝑌1), �̂�0.01,(𝑀1|𝑌1)�       

For model 𝑀1  conditional on data from model 𝑀2 

𝑢1|2 = 𝐷𝐻𝑆𝐻𝑖𝑔ℎ��̂�0.01,(𝑀1|𝑌2), �̂�0.01,(𝑀2|𝑌2)� + 𝐷𝐻𝑆𝐿𝑜𝑤��̂�0.01,(𝑀1|𝑌2), �̂�0.01,(𝑀2|𝑌2)�       

6. Since it is unknown which of the two models is the true data generating model, we combine 

the Monte Carlo samples of local utilities 𝑢2|1 and 𝑢1|2 to obtain the desired total observed 

utility function 𝑢(𝑑) = 𝑢2|1 + 𝑢1|2 to be maximized for an optimal design. 

7. Approximate the pre-posterior global utility 𝑈(𝑑) = 𝐸[𝑢(𝑑)] by fitting a smooth surface to 

the combined Monte Carlo sample generated in Step 6 as a function of selected design.  

8. The optimal design 𝑑∗ is found by maximizing the fitted surface (the maximum pre-posterior 

Hellinger distance between predictive densities).  

A direct application of Monte Carlo simulation to find the optimal design will require very 

large scale simulations and it will be computationally inefficient due to the large number of 

iterations needed and the duplication of effort in neglecting valuable information already 

generated at a nearby design points. Therefore, to reduce computational cost, in Step 7 and 

Step 8 the non-parametric surface fitting approach, originally proposed by Müller and 

Parmigiani [34] and Müller [35], is used for finding optimal designs.  

 

5.5. Results for Discriminating Linear vs. Quadratic ALT models 

Table 1 lists the temperature stress ranges that were used in the planning of the ALT 

experiment. The surface fitting smoothing approach for finding optimal design requires the 

simulation of experiments (𝑑𝑖,𝜃𝑖 ,𝑦𝑖) on a design grid. Full grid of the three temperature ranges 

can be used in the simulation. However, we instead use a modified Latin Hypercube design to 

replace the full grid and reduce computational cost at no loss of coverage and to allow available 



experimental budget.  Table 2 shows the design grid created using a modified Latin Hypercube 

design (𝑚𝐿𝐻𝐷) for the available budget of 20 experimental runs. 

 

Table 1. Temperature Stress Range used in Experiment  

Bake Stress 
Temperature Range in oC (Oven tolerance ± 5 oC) 

Lower Upper 

𝑇𝐻𝑖𝑔ℎ 150 180 

𝑇𝑀𝑖𝑑𝑑𝑙𝑒 115 145 

𝑇𝐿𝑜𝑤 80 110 

 

Table 2. mLHD Grid with 12 Runs and 8 Corner Augmentations  

Run # 

Low Temp Oven Setup High Temp Oven Setup 

Run Source 

Temp°C (low) Temp°C (Mid) Temp°C (High) 

1 85 140 155 mLHD 
2 80 125 150 mLHD 
3 90 115 170 mLHD 
4 100 120 160 mLHD 
5 95 145 165 mLHD 
6 100 130 180 mLHD 
7 110 135 160 mLHD 
8 95 130 165 mLHD 
9 110 120 175 mLHD 

10 90 125 150 mLHD 
11 105 135 175 mLHD 
12 80 140 170 mLHD 
13 80 115 150 AUG-C1 
14 110 145 180 AUG-C2 
15 110 115 150 AUG-C3 
16 110 115 180 AUG-C4 
17 80 115 180 AUG-C5 
18 80 145 150 AUG-C6 
19 80 145 180 AUG-C7 
20 110 145 150 AUG-C8 

 



Following the simulation optimization algorithm steps, the optimal design under criterion (8) 

for discriminating between linear and quadratic acceleration models in single accelerating 

variable (temperature) is summarized in Figure 3. 

Figure 3 displays the pre-posterior expected value of the utility function (𝐿𝑜𝑔[𝑈(𝑑)]) as a 

function of the stress magnitude and percent unit allocation to each of the three stress levels 

used in planning of the experiment. The utility function is maximized when  

• The higher temperature level is set at 180°C with an approximated unit allocation of 12%. 

• The middle temperature level is set at 130°C with an approximated unit allocation of 55%. 

• The lower temperature level is set at  100°C with an approximated unit allocation of 33%. 

 

Insert Figure 3 here 

5.6. Some Remarks on the Optimal Model-Discrimination Test Plan  

The Bayesian model-discrimination test plan is compared to some conventional test plans 

and the Meeker and Hahn’s 4:2:1 compromise ALT plan. Although the primary objective of 

some of these plans (model estimation accuracy) is quite different than ours (model 

discrimination), pointing out similarities and dissimilarities between them is of an added value 

in our judgment. Nelson [28] pointed out that “a good plan should be multi-purpose and robust 

and provide accurate estimates.” Assumptions used in the stress setup and unit allocation for 

each plan are: 

• The same prior distributions are given to same parameters across all models.  

• All plans use three levels of stress (temperature) in the range of (150°C − 180°C ) for high 

temp, (115°C − 145°C ) for middle temp, and (80°C − 110°C ) for low temperature 

stress. All plans share the same fixed experimental budget (sample size).  

• Stress setup and unit allocation are determined as follows 

o Model-discrimination plan: unequally spaced test levels with unequal allocation that 

puts more units at the middle of the test range. Optimal design setup used: highest 

temp of (180°C) with 12% allocation, intermediate temp of (130°C) with 55% 



allocation, and lower temperature of (100°C), slightly above the intermediate value in 

the low temp range, with 33% allocation.  

o Good compromise plan: equally spaced test levels with unequal allocation that puts 

more units at the extremes of the test range and fewer in the middle. We’ve used 50% 

at lower level, 30% at higher level, and remaining 20% at the middle level. For the equal 

spacing of stress levels 180°C was selected as highest possible, 110°C  as lowest, and 

145°C as the intermediate stress.  

o Best traditional plan: equally spaced test levels with equal allocation. Typically, the 

highest possible stress needs to be selected, which is 180°C. The lowest test stress is 

selected to minimize std. error of ML estimate of log mean life at design stress, which is 

110°C. The intermediate stress at an equal space is then 145°C. Equal allocation puts 

approximately 33.33% of units at each stress level.  

o Meeker and Hahn’s 4:2:1 compromise plan: Borrowing from the best traditional plan, 

180°C, 145°C and 110°C are set as the high, intermediate and low test stress levels, 

respectively. Allocation of samples follows 4
7

 𝑜𝑟 (57%) to low stress, 2
7

 𝑜𝑟 (29%) to 

middle stress, and 1
7

 𝑜𝑟 (14%) to high stress. 

 

Some remarks on the obtained optimal model-discrimination test plan are: 

1. The test plan allocates the larger proportion of units to the intermediate stress level (~55%). 

This is favorable for test robustness and for generating more failure observations. This plan 

will be most sensitive for detecting nonlinearity of the relationship (minimize variance of 

the estimate of the quadratic coefficient).  

2. The test plan allocates more test units to the lower stress level (~33%) than to the higher 

stress level (~12%).  This is favorable for more accurate extrapolation with respect to stress, 

as suggested by optimum plans. 

3. The test plan sets the high temperature value to the highest possible in its allowable range, 

this is known to be a good practice when interest lies in minimizing the standard error of 

the estimate of any percentile at the design stress (a very common objective of ALTs). 



4. The test plan does not set the lower temperature value to the lowest possible in its 

allowable range as suggested by the optimum test plan (effective if the design stress is close 

to the test range), but rather it chooses an intermediate value. One drawback to having to 

test at the lowest extreme of the test range is the longer test time needed for units to fail. 

 

5.7. Recovery Rates of Different Test Plans  

Optimal model-discrimination designs are expected to maximize the proportion of times in 

which the true, data-generating, model is selected under an appropriate model selection 

criterion. We have chosen to use the DIC model selection rule as explained in Section 4. Other 

methods of model selection such as BF (Bayes Factor) or BIC (Bayesian Information Criterion) 

could have also used. The following definitions are used in creating the plan comparison, as 

shown in Figure 4. 

• True Model: The acceleration model from which fail data were generated; that is, 

Equation (14) for the linear model, and Equation (16) for the quadratic model. 

• Assumed Model: The actual acceleration model fitted to the simulated data. 

• % Recovery Rate: The fraction of times the true model recovered (correctly 

identified) under the DIC-based model selection. 

Figure 4 clearly illustrates the superior recovery rate of the proposed model-discrimination 

plan. As the sample size increases, this recovery rate converges to 90%, while the recovery 

rates of other plans are still below 50%. As noted previously, the primary objectives of these 

test plans could be different from model-form discrimination; therefore, the apparent 

superiority of our test plan w.r.t. to the recovery rate under DIC should come as no surprise. By 

the comparison across different plans, it is demonstrated that the proposed methodology is 

effective in recommending stress setup and unit allocation for model discrimination. In general, 

model-discrimination plan tends to allocate a higher percentage of units to the middle stress 

level, which is intuitively appealing for detecting curvatures in acceleration models and for 

generating more failures.  

Insert Figure 4 here 



 

6. CONCLUSIONS 

 This paper presents a simulation-based Bayesian approach to the accelerated life test 

planning with the objective of differentiating competing acceleration models. It is different 

from the previous research of Bayesian methods for ALT planning, which is concerned with the 

model parameter uncertainty only. We propose a design criterion that is based on the Hellinger 

distance measure between the predictive distributions of a life percentile of interest under 

different acceleration models. Therefore, when facing the model form uncertainty, the 

experimental results from this type of test plan can better assist the experimenter in choosing 

the right model. Our approach was applied to a real-world application, where there was 

uncertainty as to whether the relationship between log mean life and the stress variable is 

linear or exhibits some curvature. Both the stress-factor setup and the unit allocation at three 

stress levels were optimized and the obtained optimal test plan was validated by its recovery 

rate of correct model using simulated data. Comparing to other conventional test plans, such as 

the three stress-level good compromise plan, the best traditional plan and the well-known 4:2:1 

compromise ALT test plan, our test plan has the advantage of substantially increasing the 

desirable ability of distinguishing among competing model forms, thus provides better guidance 

as to which model is appropriate for the follow-on product testing.  

The main limitation of the proposed approach is the intensive computation required for the 

point-wise evaluation of utility function. This has been eased by the use of a modified Latin 

Hypercube sampling scheme, followed by the application of curve-fitting optimization 

approach. The simulation-based Bayesian approach described in this paper could be extended 

to model-discrimination ALT planning problems with more than one accelerating variable and 

more complicated acceleration models.  
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Figure 1. 𝑀�1 versus 𝑀�2 at UCs: importance of identifying correct model 



 

Figure 2. High level methodology flow chart 
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Figure 3. The pre-posterior expected Log(U)  as a function of stress condition and unit allocation 

  



 

 

  
Figure 4. Plots of recovery rate versus sample size for different test plans  

 




