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X-ray free electron lasers are used in measuring diffraction patterns from

nanocrystals in the ‘diffract-before-destroy’ mode by outrunning radiation

damage. The finite-sized nanocrystals provide an opportunity to recover

intensity between Bragg spots by removing the modulating function that

depends on crystal shape, i.e. the transform of the crystal shape. This shape-

transform dividing-out scheme for solving the phase problem has been tested

using simulated examples with cubic crystals. It provides a phasing method

which does not require atomic resolution data, chemical modification to the

sample, or modelling based on the protein databases. It is common to find

multiple structural units (e.g. molecules, in symmetry-related positions) within a

single unit cell, therefore incomplete unit cells (e.g. one additional molecule) can

be observed at surface layers of crystals. In this work, the effects of such

incomplete unit cells on the ‘dividing-out’ phasing algorithm are investigated

using 2D crystals within the projection approximation. It is found that the

incomplete unit cells do not hinder the recovery of the scattering pattern from a

single unit cell (after dividing out the shape transforms from data merged from

many nanocrystals of different sizes), assuming that certain unit-cell types are

preferred. The results also suggest that the dynamic range of the data is a critical

issue to be resolved in order to apply the shape transform method practically.

1. Introduction

The commissioning of hard X-ray free electron lasers

(XFELs) has provided new opportunities for structural

biology. It has been demonstrated that ultra-short, extremely

intense X-ray pulses from XFELs can yield diffraction

patterns from sub-micron crystals in a ‘diffract-before-destroy’

manner, in which radiation damage is outrun, using femto-

second exposure times. Single shot diffraction patterns using a

beam of micron dimensions have thus been obtained from

nanocrystals as small as a dozen or fewer unit cells on a side

(Chapman et al., 2011). This technique, known as serial

femtosecond X-ray crystallography (SFX), may provide a new

phasing strategy by exploiting the intensity scattered between

Bragg spots for very small crystals [for a review of SFX, see

Spence et al. (2012)]. Analogous to a finite grating of N slits,

one sees (N � 2) subsidiary maxima in the scattering between

Bragg reflections in the experimental patterns. The number of

fringes between indexed spots therefore gives the number of

unit cells between facets of the nanocrystal along a particular

direction. As pointed out by Sayre (Sayre, 1952, see also

Perutz, 1954, for a related approach), by providing additional

intensity samples between Bragg reflections this allows, in

principle, a solution of the phase problem ab initio. In practice,

iterative methods based on this ‘oversampling’ approach have
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been proven powerful for this purpose (see Spence, 2007, for a

review). For larger crystals these continuous interference

fringes can be more simply described as the Fourier transform

of the crystal’s external shape envelope, laid down around

each reciprocal lattice point, and we will refer them as ‘shape

transforms’, whose central-maximum width is inversely

proportional to nanocrystal size. The Fourier transform of the

charge density within one unit cell, which spans all of recip-

rocal space, is modulated by these shape transforms around

lattice points. For simplicity, we will refer to this unit-cell

transform as the ‘molecular transform’, despite the possibility

of several molecules or n-mers per unit cell in protein crys-

tallography.

In previous work we demonstrated by simulation how the

complex molecular transform can be recovered if a large

number of patterns are available from nanocrystals of

different sizes, each showing shape transforms (Spence et al.,

2011). The inverse Fourier transform of this phased molecular

transform then provides the required 3D molecular density

map in real space. That approach does not phase each pattern

separately, since interactive 2D phasing is not practical with

the millions of patterns produced at an XFEL using SFX

technology, and the final goal is a 3D density map, requiring

multiple projections. Our earlier work relied on autoindexing

of all patterns to allow 3D merging, then a ‘dividing out’

approach to remove the effects of the shape transforms, by

dividing by a separately extracted average shape transform.

While successful in simulations, a difficulty arises for crystals

which terminate with incomplete unit cells. For example, if the

primitive unit cell contains two molecules A and a, a stacking

sequence across one side AaAaAaAa (complete cells) will

produce an entirely different set of inter-Bragg fringes from

the sequence AaAaAaAaA (incomplete cells). Such data,

merged in 3D, will in addition contain contributions from

crystals covering a range of sizes or numbers of complete cells.

We must also consider that, in general, the choice of unit cell is

not unique in crystallography, so that the addition of molecule

a on the left of the last stacking sequence produces a nano-

crystal which is complete with respect to the new unit cell aA.

The nanocrystal size distribution function can be obtained, in

principle, from the widths of the shape transforms. In this

paper we investigate the incomplete unit-cell effect and

suggest methods to deal with it.

2. Theory and methods

For plane-polarized, monochromatic incident radiation with

wavevector ki (|ki| = 1/�) and negligible beam divergence, the

diffracted amplitude at �k = ki � ko produced by a paralle-

lepiped crystallite consisting of N = N1 � N2 � N3 unit cells, is

given in the kinematic theory (Als-Nielsen & McMorrow,

2011; Kirian et al., 2010)

Inð�kÞ ¼ J0r2
eP Fð�kÞ
�� ��2 Snð�kÞ

�� ��2��: ð1Þ

Here, J0 is the incident photon flux density (photons/pulse/

area), F(�k) is the structure factor, re is the electron scattering

radius, P is a polarization factor and �� is the solid angle

spanned by the detector pixel, and the shape-transform

amplitude is

Snð�kÞ ¼ N
sinðN1�1Þ

N1 sinð�1Þ

sinðN2�2Þ

N2 sinð�2Þ

sinðN3�3Þ

N3 sinð�3Þ
ð2Þ

and F(�k) is the structure factor of the unit cell. Here

�1 ¼ 2�a sinð�Þ cosð�Þ=�

�2 ¼ 2�b sinð�Þ cosð�Þ=�

�3 ¼ 2�c sinð�Þ cosð�Þ=� ð3Þ

where � is half the scattering angle, and �, � and � define the

crystal orientation as the angles which the scattering vector

�k makes with the directions of the real-space unit-cell

vectors a, b and c. �k is defined by the position of the detector

pixel and X-ray wavelength, and defines a point in reciprocal

space where the Ewald sphere intersects the shape transform.

An angular integration over the square of the triple product in

equation (2) is proportional to N1N2N3 and the volume of the

crystal. At a Bragg condition, the triple product is equal to

N1
2N2

2N3
2 and the diffracted intensity is therefore propor-

tional to the square of the number of electrons in the crystal.

In this paper we provide an analysis in the 2D plane normal

to the beam. The projection approximation for hard X-ray

diffraction holds in the approximation of a flat Ewald surface

which passes within the central maximum (measured along the

beam direction) of those shape transforms centered on reci-

procal lattice points which lie in a plane normal to the beam

(the zone axis reflections). Using a parabolic approximation

for the sphere, this condition then limits the resolution to d >

(�t/2)1/2, where t is the nanocrystal thickness (Spence, 2003).

For nanocrystals with large unit cells, such as the membrane

protein Photosystem I, consisting of ten 28-nm unit cells, this

would limit resolution using 0.1 nm X-rays to 3.7 nm.

Taking a beam running parallel to the c axis (� = 90�) and

orthogonal axes, equation (2) becomes

Snð�kÞ ¼ N1N2t
X

h;k

sin½N1�að�kx�h=aÞ�

N1�að�kx�h=aÞ

sin½N2�bð�ky�k=bÞ�

N2�að�ky�k=bÞ

ð4Þ

with nanocrystal thickness t and scattering angle � = 2� ~ �/d

for small-angle scattering and |�k| ~ �/� = q/2�, where d is the

crystallographic resolution, the d-spacing in Bragg’s law. [The

equality of (2) and (4) follows by noting that both functions (in

2D) have the same transform and so must be equal.] The 2D

Fourier transform of  (�k, Ni) is thus proportional to the

low-resolution electron density projected along the beam

direction within an orthorhombic supercell of size N1a � N2b.

2.1. Construction of crystals with partial unit cells at edges

A finite square lattice was first constructed in real space and

a radius (R0) was chosen to define the core region occupied by

complete unit cells, which were unchanged throughout the

simulations. An outer boundary layer is defined by the radius,

R1 = R0 + Tlayer, where Tlayer is the thickness of the boundary in
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units of unit cells (Tlayer = 1, for these results), as shown in Fig.

1. There are three possible states for the cells in this boundary

layer: fully occupied, partially occupied, or unoccupied.

Noting that crystals are usually faceted, the same analysis was

carried out for the case of a square core region, and the same

conclusions were reached. In each simulation, the prob-

abilities for a boundary unit cell to be in three states are fixed

and the actual state is assigned according to these probabilities

in a random manner. For a simple 2D case, the unit cell is

assumed to be composed of two halves: left and right. For a

partial unit cell attached to the left of the crystal center, it has

only the right half and vice versa for the right side of the

crystal. The cases where the unit cell is composed of multiple

(>2) subunits are not considered in the current work.

Although multiple components per unit cell introduce more

complexity, the conclusions found in this simple case should be

valid as long as the core region is formed with complete unit

cells.

2.2. Scattered intensity from a crystal with incomplete unit
cells

Our aim is to extract the unit-cell transform from data

described by equation (1), phase it, and so recover an image of

the unit cell. We treat the photon flux and polarization factors

as constants, and focus on the means to divide out the

modulating term Sð�kÞ
�� ��2 (which depends on crystal shape).

In a 3D treatment, we showed (Spence et al., 2011) that if the

diffraction patterns from nanocrystals of different sizes are

indexed and merged, then equation (1) may be summed over

both crystal orientation and size. Because the scattering factor

of a single unit cell is independent of this sum (which is the

same for all crystals), it may be brought outside of the sum,

and so extracted by dividing the average shape transform into

the summed experimental data. For 2D crystals at low reso-

lution where the Ewald sphere is approximately flat, we

assume the crystalline monolayers have only one degree of

rotational freedom about the axis normal to the layer.

Indexing and merging patterns from platelets with a range of

sizes, randomly rotated about this axis, would produce the

required sum over shape transforms, which we now discuss.

For the case where the crystals are formed from complete

unit cells with sharp edges, i.e. N(n) = N1 � N2 � N3, the

Sð�kÞ
�� ��2 has a simple analytical form as described by equa-

tions (2) and (4) above. For irregularly shaped crystals with

partial unit cells at the boundary layers, we must sum over all

contributing components explicitly, as follows.

The scattering from one unit cell is proportional to the

Fourier transform of the electron density 	(r) in the unit cell:

Fð�kÞ ¼
X

r

	ðrÞexpði�k � rÞ ð5Þ

where r = r(x, y, z) and �k is the scattering vector. For a 2D

crystal, and assuming a flat Ewald surface, this is given by

Fð�kx;�kyÞ ¼
X

x;y

	ðx; yÞexp ½ið�kxxþ�kyyÞ� ð6Þ

where the summation is over (x, y) in the single unit cell. For a

unit cell located at �R, the corresponding form factor is

Fð�k;�RÞ ¼ Fð�kÞexpði�k ��RÞ: ð7Þ

For 2D crystal scattering, we have �R = (�X, �Y) and

Fð�kx;�ky; �X;�YÞ

¼
X

x;y

	ðx; yÞexp i½�kxðxþ�XÞ þ�kyðyþ�YÞ�
� �

¼ Fð�kx;�kyÞexp ½ið�kx�X þ�ky�YÞ�: ð8Þ

The total scattering form factor of a given crystal can be

obtained by summing up the contributions from all unit cells.

For the 2D crystal shown in Fig. 1(b), the contribution from

each unit cell can be grouped to expedite the calculation of the

total Fourier transform.

In our demonstration, the total Fourier transform can be

expressed as the sum of three components (see Fig. 2),

Fð�k; leftÞ, Fð�k; rightÞ and Fð�k; fullÞ, weighted by the

summed phase terms,

Fð�k; totalÞ ¼
X

�R�left

exp ði�k ��RÞFð�k; leftÞ

þ
X

�R�right

exp ði�k ��RÞFð�k; rightÞ

þ
X

�R�full

exp ði�k ��RÞFð�k; fullÞ: ð9Þ

The intensity is obtained as the norm, jFð�k; totalÞj2.

2.3. Recovering the scattering pattern of a single unit cell

As described in Spence et al. (2011), the scattered intensity

from a single unit cell (the ‘molecular transform’) is a smooth

function F(�K) with a slow variation which modulates all the

Bragg reflections [as in equation (1)], but which may change

sign between them. Although the dividing-out approach was

originally proposed to study the cases where crystals have

complete unit cells and sharp edges, it can also be applied to

the present cases where crystals have irregular shapes with

partial unit cells at boundaries. In short, first, the indexed
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Figure 1
Schematic drawings of crystal boundary (a) and an example of crystal
composition (b). In (a), the boundary is defined to be the unit cells in
between the two circles (red and blue); the unit cells are colored in grey.
In (b), the state of boundary unit cells is assigned randomly: full (black),
unoccupied (white) and brown (partial). The ratio of three unit-cell states
at the boundary is 1:2:1 in (b), i.e., 1/3 of the boundary for each state.



intensities are accumulated over the whole dataset; then the

average shape transform is obtained by shifting each Bragg

spot and its surrounding region to the origin and summing the

accumulated scattered intensity for individual pixels in the

surrounding region; the final step is to divide this average

shape transform into the accumulated intensities for nano-

crystals with a range of sizes. This leaves the desiired mole-

cular transform, which is independent of these sums. The

recovered scattering pattern is then compared with that of a

single full unit cell. The difference is quantified as an R factor,

defined in a similar way as in crystallography,

R ¼

P
i

cIrec
i � Ith

i

�� ��
P

i

Ith
i

ð10Þ

where Irec
i is the recovered scattering intensity and Ith

i is the

theoretical scattering intensity from a single unit cell, both at

index i, and c is the scaling factor.

2.4. Phase retrieval

The hybrid-input-output algorithm (HIO) (Fienup, 1982)

implemented in Hawk (Maia et al., 2010) was used to recon-

struct the real space image from the recovered single unit-cell

scattering pattern. Initial phases were randomly assigned. The

support size is estimated from the autocorrelation function,

with an initial support constructed by excluding pixels whose

values are below a threshold of 0.1. The HIO feedback para-

meter, �, was set to 0.9, and reality and positivity were

enforced during iterations. The area of the object support was

reduced from 10% to 2% of the overall support area within

20 000 steps using the shrink-wrap approach (Marchesini et al.,

2003) and 20 000 extra steps were carried out to ensure

convergence.

3. Results

3.1. Simulations

The 2D unit cells used for the simulations are shown in Fig. 2.

A butterfly figure was used as a default binary density	(x, y) for

2D crystals, and the left/right halves are attached to the

boundary of the crystals randomly with specified probabilities.

Following the crystal packing rules, the left halves are attached

to the right side of the crystal to form additional half-unit cells,

so their left nearest neighbor is the right half butterfly; the

same rule is applied to the right halves. The first three rows

show the full and partial unit cells with their corresponding

scattering patterns. The fourth row shows an alternative unit

cell (whose left and right halves are swapped) and its scat-

tering pattern. The conditions under which the recovered

pattern matches the alternative unit cell will be discussed.

3.2. Ideal conditions

We first show simulations for ideal conditions, ignoring

instrumental instabilities. We assume an infinite dynamic

range for the X-ray detector and unlimited photon flux, which

allows accurate intensity measurement within the desired

resolution range. These simulation results for the ideal cases

establish mathematical foundations for the subsequent work.

Following the procedure described in the Theory and

methods section, diffraction patterns were computed from 200

randomly generated crystals with a maximum dimension of 10

unit cells. The core region (see Fig. 1) is packed with complete

unit cells; partial unit cells are randomly placed in 20% of the
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Figure 2
The images used in the simulations. The top row shows the default full
unit cell and its scattering pattern. The two middle rows show the left and
right half unit cells with their scattering patterns. The bottom row shows
the swapped unit cell with its scattering pattern. For the images: the white
pixels have density values of 1 and black are 0 (fully transmittive). The
intensity is shown on a log-scale using a gray scale map. Axes are marked
with the Miller indices.



lattice sites at the boundary layer. Fig. 3(a)

shows the accumulated diffraction patterns on

a log scale, while Fig. 3(b) shows the recovered

molecular transform of the complete unit cell

(Figs. 2a and 2b). Clearly, the accumulated

diffraction pattern has intensities concentrated

at Bragg spots and nearby pixels, and the

scattering pattern of a single unit cell is

recovered after data processing, as Fig. 3(b) is

consistent with the theoretical data shown in

Fig. 2(b). The R factor between the recovered

and theoretical molecular transforms de-

creased from about 0.4 to 0.1 as the number of

patterns approached 200, as shown in Fig. 3(c).

3.3. Effects of partial unit cells on boundaries

As the fraction of partial unit cells at the

boundary layer increases, it becomes more

difficult to recover the molecular transform.

Fig. 4 shows the R-factor progression as more

patterns are accumulated. The partial unit cells

are placed at boundary layers at five fractions

(fp = 0.1, 0.3, 0.5, 0.7, 0.9), giving five R-factor

curves. The final recovered molecular trans-

forms for the datasets at five partial unit-cell

occupancies are also summarized in Fig. 4. As

fp gets larger, the R factor between recovered

patterns and the theoretical pattern of the

default unit cell increases, indicating poorer

recovery. When fp is larger than 0.5, however,

an interesting phenomenon emerges: the

recovered molecular transform becomes more

similar to that of the alternative unit cell shown

in Fig. 2. This can be explained by the fact that

partial unit cells will form the alternative full

unit cell if it is combined with the nearest

neighboring halves. As more partial unit cells

are placed at the boundary, the number of full

alternative unit cells will increase. When partial

unit cells cover half of the boundary, the two

types of full unit cells are equally weighted;

therefore the recovered scattering pattern is a

superposition of two scattering patterns (Fig.4d

is the superposition of patterns shown in Fig. 2b

and 2h). As the partial unit cells cover more

than half of the boundary layer, the alternative

unit cell becomes dominant, and the recovered

molecular transform becomes more consistent

with the pattern of the alternative unit cell

(Figs. 4e and 4f show features of Fig. 2h).

The real space images were constructed from

the recovered oversampled patterns using an

ab initio phase retrieval approach described in

the Theory and methods section. The recon-

structed images are shown in Fig. 5, including
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Figure 3
Recovery of the molecular shape transform. (a) Accumulated diffraction patterns from 200
crystal diffraction patterns showing Bragg spots; (b) The recovered single unit-cell scattering
pattern (the ‘molecular transform’); (c) the R factor is progressively reduced as the number of
patterns increases. The Miller indices are marked in the patterns, where kmax = 13.

Figure 4
The recovered pattern from crystals with partial unit cells. The fractions of partial unit cell
occupied boundary layer are 0.1, 0.3, 0.5, 0.7, 0.9 for (b)-(f), correspondingly. The R factor
as a function of the number of diffraction patterns is shown in (a) for all five cases with the
fraction of partial unit cells indicated. The recovered patterns shown in (b) and (c) are
consistent with the default unit-cell scattering pattern, while the patterns shown in (e) and
(f) are more similar to the scattering pattern of the alternative unit cell. The pattern shown
in (d) is a superposition of the patterns, as the partial unit cells cover half of the crystal
boundary.

Figure 5
The real space image construction via the ab initio phase retrieval (HIO) method. The same
control parameters were applied for all six cases (see Theory and methods for details). The
reconstructed object from theoretical data is shown in (a), and (b)–(f) are the
reconstructions from the recovered patterns shown in Figs. 4(b)–(f), respectively.



the image reconstructed from theoretical data (Fig. 2b). The

results are consistent with the observations of scattering

patterns. Depending on the fraction of the boundary layer that

is occupied by partial unit cells, the real space images recon-

structed are either the default unit cell (Figs. 5b,c) or the

alternative unit cell (Figs. 5e,f), or the superposed image (Fig.

5d). Compared with the image in Fig. 5(a), we can see that the

recovered patterns contain sufficient information for a faithful

model reconstruction. Even for the worst scenario where the

recovered pattern is a superposition of the two distinct unit-

cell transforms, the reconstructed real space image reveals

important features of the original object.

The similarities between the recovered patterns and the

transform of the default unit cell were quantified using R

factors. Likewise, the R factors between recovered patterns

and the alternative unit-cell transform are also calculated. The

results for a range of partial unit-cell fractions are summarized

in Fig. 6. As expected, the R factors are

anti-correlated with the partial unit-cell

fractions (fp), showing a clear shift from

one unit-cell type to the other. This

poses a serious problem when handling

real experimental data, where we may

not have any control over partial unit-

cell coverage at the boundaries. It

makes data processing very challenging

as we would need to classify the patterns

into groups from which we can recover

distinct patterns from certain types of

unit cells. On the positive side, biolo-

gical molecules often have preferred

interacting surfaces, along which the

molecular binding interaction is

stronger. As a consequence, some types

of unit cells should be favored over

others. For instance, the default unit cell in Fig. 2(a) might be

preferred because there are more contacts between the two

subunits, compared with the alternative unit cell. If this is the

case, then the transform of the favored unit cell should be

dominant and will be the one that is recovered using this

approach. To conclude, the described approach will work as

long as the unit cells are not equally favored when forming

crystals, since the choice of unit cell is not unique.

3.4. Crystal size variations

Crystal size variations cannot be avoided in reality. By

generating crystals with different sizes, the size variation

effects were investigated in this study. The default diameter of

crystals was set to be 10 unit cells, which is the same as in the

simulations for the ideal cases. The individual crystal diameter

was randomly generated to allow a maximum of 2, 3 or 5 unit-

cell variations. For each crystal, the partial unit cells were

placed at the boundary according to the desired fractions of

boundary occupied by partial unit cells. The R factors are

plotted in Fig. 7. It is clear that the crystal size variations do

not reduce the recovered pattern quality, compared with the

ideal case where the crystal core had a fixed size and only the

partial unit-cell fraction of the boundary was varied. In

summary, the crystal size variations do not reduce the recov-

ered scattering pattern quality.

3.5. Limitations due to the dynamic range of detector

In real experiments, the photon flux and detector’s dynamic

range together set limits on the data range that can be

collected. For example, if the scattered number of photons is

very small even at low angles because of low photon flux, the

maximum number of photons that can be recorded is limited.

The dynamic range of detectors also imposes limitations on

the intensity range. Typical detectors used in X-ray crystal-

lography experiments have a dynamic range between 103 and

104 photons/pixel. Here, our purpose is to study the conse-

quences of a limitation on the data range due to these two
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Figure 6
The R factors between the recovered patterns and the default (or the
alternative) unit-cell transforms [equation (10)]. The trend clearly
indicates that the recovered patterns drift away from the default unit
cell and toward the alternative unit cell, as larger fractions of crystal
boundary are occupied by partial unit cells.

Figure 7
Crystal size variations do not affect molecular transform recovery. The crystal sizes vary 20%, 30%
and 50% around the mean (10 unit cells). The variations in crystal sizes do not hinder the recovered
pattern quality, indicated by the R factors compared with the theoretical patterns from default unit
cell (circles) or alternative unit cell (squares). The axes are defined as in Fig. 6. Green line: original
unit cell; blue line: alternate unit cell.



factors. We assume that the photon flux and detector dynamic

ranges are optimally matched to allow us to measure the

highest intensity at the upper limit, and the lower limit sets the

measurable weakest intensity. In simulations, this means the

data will be scaled linearly such that the maximum intensity is

equal to the data range, and all the intensity values smaller

than one will be zero. Thus, the data range actually is a

parameter that controls the lowest intensity that can be

measured, and therefore, we refer this to as the ‘measurable

data range’. It is clear that the measurable data range is critical

for the recovery of molecular transforms. The R-factor plots

are summarized in Fig. 8 for three different measurable data

ranges. For a measurable data range of 103, it is almost

impossible to recover an accurate scattering pattern for the

simulated 2D crystals. For data with an

intensity range of 104, the recovered

patterns are reasonably accurate, and,

furthermore, the recovery accuracy

becomes comparable to the ideal

scenario when the data range gets to 3�

104. The desired data range depends on

the samples, especially the number of

unit cells in the crystal that determines

the modulating function, the shape

transform.

Due to the interference effects, the

strong scattering is near the Bragg spots

while weak scattering happens nearly

midway between Bragg spots. As a

result, it is difficult to recover the scat-

tering pattern at high resolution and for

the regions that are in the middle of

Bragg spots when the dynamic range is

small and tuned to measure high inten-

sities without saturating the pixel (Fig. 9).

3.6. Crystal shape effects

The crystal can form various shapes,

apart from the rounded shape used here

for the case of 2D crystals. In general it

will be facetted and often express the

point group symmetry of the crystal, or

be determined by the Wulff construc-

tion if in equilibrium (Sekerka, 2005).

Here, by generating oval shapes with

different radii and adding full and

partial unit cells to the boundary, crystal

shape effects were investigated under

more realistic simulation conditions: 3

� 104 dynamic range, mean radius of 5

unit cells with up to 2 unit-cell variation

along the major and minor axes (40%

variation), with Poisson noise added to

the patterns. The recovered patterns are

shown in Fig. 10, at fp = 0.2, 0.5, 0.8.

Surprisingly, crystal shape and size

variation did not diminish the accuracy

of the recovered molecular transform.

The R factors corresponding to Fig. 10

are almost identical to those in Fig. 8(c),

which was based on the same para-

meters without crystal size or shape

variation.
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Figure 10
Crystal shape variations do not reduce the recovered molecular transform qualities. The fraction of
boundary that is covered by partial unit cell is the determining factor for the recovered unit-cell
patterns. The fractions are 0.2, 0.5, 0.8 for (a), (b), (c), correspondingly. The numbers shown in the
lower right corners are the R factors compared with the theoretical unit-cell transform, relative to
the default unit cell; and the values in parentheses are the R factors compared with the alternative
unit-cell transform (see Fig. 2h).

Figure 9
The recovered molecular transforms at different data ranges. The partial unit cells cover 20% of the
boundary layer, i.e. fp = 0.2. The data ranges are 103, 104 and 3 � 104 for (a), (b) and (c),
correspondingly. For a small data range, the weak scattering in inter-Bragg regions is not recovered
(a); more intensities are recovered at medium data range [104, in (b)]; and, eventually, the recovered
pattern is comparable to the results in the ideal case when the measurable data range gets to 3� 104

(c).

Figure 8
Measurable data range is critical to recover the molecular transforms. The data ranges are indicated
in each plot. The partial unit cells cover 20% of the boundary layer, i.e. fp = 0.2. The corresponding
recovered molecular transforms are shown in Fig. 9. The axes are defined as in Fig. 6.



3.7. Classification of nanocrystal terminations

Under certain circumstances, for example, when the varia-

tion of the fraction of partial unit cells at the boundary is

narrowly distributed, pre-processing the diffraction patterns

and classifying them based on their similarities may allow

recovery of molecular transforms for multiple unit-cell types.

We tested the expectation maximization (EM) algorithm (Loh

& Elser, 2009) for this purpose. This has been developed for

single particle scattering orientation recovery and data

assembly. By modifying the algorithm to handle multiple

model cases, the EM algorithm can be applied to separate the

diffraction patterns of 2D crystals into different classes. The

distance between patterns (a measure of their similarity) was

measured using R factors. In each simulation, 200 patterns

were collected from mixtures of crystals with partial unit cells,

covering a varying fraction of the 2D crystal boundary layer,

where 100 patterns resulted from crystals with a mean fp = 0.2

and the other 100 with a mean of fp = 0.8. To classify the 200

simulated patterns using the EM algorithm, two patterns were

generated using random intensities to seed merged patterns

and start the iterative classification. Under the EM algorithm,

individual simulated patterns were assigned to one of the two

classes based on the distance (measured by R factor) between

the patterns and the seeding pattern. After class assignments

for each simulated pattern, two newly merged patterns were

computed by summing the patterns belonging to the class.

These two new merged patterns then served as the references

for the next iteration. Once the classification converged, the

EM algorithm was terminated, and the 200 patterns were

separated into two classes. All the simulated patterns came

from crystals with the same fixed core region and a varying

boundary layer, and the data range was set to be 3 � 104 with

Poisson noise. In this simulation, 195 patterns were correctly

assigned to the correct groups and only 5 were wrongly clas-

sified. The recovered molecular transforms from the classified

patterns are shown in Fig. 11. Although we had to simplify the

problem by assuming a fixed core region, such an approach

offers a possible solution for extracting information from a

large ensemble of patterns resulting from unclassified crystals.

4. Discussion and conclusions

Serial femtosecond nanocrystallography (SFX) using XFEL

pulses not only allows the collection of diffraction data at

Bragg spots, but also provides opportunities for phasing by

exploiting the scattering between Bragg spots. Using this

‘dividing-out’ approach, the oversampled scattering intensities

for a single unit cell can be recovered, and phase retrieval can

be accomplished subsequently via ab initio phasing algorithms.

Unlike the ‘direct methods’ numerical approach used in

protein crystallography, this approach does not require atomic

resolution data; unlike the single isomorphous replacement

(SIR) approach, it does not required chemical modification to

the sample; and unlike the multi-wavelength anomalous

diffraction (MAD) method, it does not require the operation

of an X-ray source at specific energies.

It has been a concern that the incomplete unit cells at the

surfaces of crystals introduce signals that cannot be decoupled

from the scattering pattern of a single unit cell (see

Acknowledgements). In this work, using a simplified 2D crystal

system, we demonstrated that molecular transform recovery is

possible even in the presence of such incomplete unit cells. In

our simplified model, the unit cell was composed of two

subunits, thus the recovered molecular transform could be a

linear combination of the molecular transforms of the default

and alternative unit cells, depending on the fraction of the

boundary that is covered by partial unit cells. In a real crystal,

certain types of unit cells are preferred over others, due to the

different binding affinity between subunits. This provides a

chance to recover the molecular transform of the preferred

unit cell. We found that the measurable data range is the main

limiting factor that determines the recovered pattern quality.

In order to get accurate molecular transforms, the experiments

must record data at inter-Bragg regions. The other relevant

issue concerns the achievable resolution. Since the intensity

decrease is proportional to q�4 for molecular transforms, the

measurable intensity range sets a limit on the data resolution.

The shape transform imposes a local variation on intensities

by multiplying the modulation function with the molecular

transform around each Bragg spot. This modulation function

sets the limits of measurable intensity around the vicinity of

the Bragg spots, as observed in Fig. 9. Based on the Shannon

theorem, only a single additional intensity sample is ideally

needed midway between Bragg spots. In the presence of noise,
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Figure 11
Classification of diffraction patterns from crystals with different numbers
of partial unit cells at the boundary. Using the expectation maximization
algorithm, the two classes of diffraction patterns are separated and the
accumulated diffraction patterns are shown in (a), (b) for each class; the
corresponding recovered molecular transforms are shown in (c), (d).



additional sampling points between neighboring Bragg spots

improve ab initio phase retrieval, to build an electron density

map. In these simulations, we sampled 8 points between Bragg

spots, and the R factor was calculated based on all non-zero

intensities. As mentioned above, the intensity between Bragg

spots decays rapidly as the scattering vector k moves away

from Bragg spots, and the requirement on the data range can

be relaxed if fewer points between Bragg spots are

needed (i.e. the pixels that are not too far away from

Bragg spots). An even number of samples between Bragg

spots avoids the weakest scattering at midpoint. Never-

theless, a larger dynamic range and increased photon flux

would allow us to record intensities at more pixels, and to

recover scattered intensities over a larger fraction of the

intensity space.

In summary, it is possible to extract the molecular

transform of a single unit cell even in the presence of

partial unit cells, provided a unique, complete unit cell can

be defined that is dominant over the whole crystal. The

variation of crystal size does not hinder the accuracy of

molecular transform recovery using the dividing-out

approach. The most critical factor is the measurable data

range that is determined by sample, X-ray brilliance and

detector: the requirement is that the measurable data

range should be large enough to allow the recovery of the

weak inter-Bragg scattering, in order to retrieve the

phases using this oversampling approach.
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