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ABSTRACT  

   

Safe headway learning plays a core role in driving education. Traditional safe 

headway education just use the oral and literal methods to educate drivers the concept of 

safe headway time, while with the limitation of combining drivers subject and situational 

domains for drivers to learn. This study investigated that whether using ego-moving 

metaphor to embody driver's self-awareness can help to solve this problem. This study used 

multiple treatments (ego-moving and time-moving instruction of safe time headway) and 

controls with pretest experimental design to investigate the embody self-awareness effect 

in a car-following task. Drivers (N=40) were asked to follow a lead car at a 2-seconds safe 

time headway. Results found that using embodied-based instructions in safe headway 

learning can help to improve driver's headway time accuracy and performance stability in 

the car-following task, which supports the hypothesis that using embodied-based 

instructions help to facilitate safe headway learning. However, there are still some issues 

needed to be solved using embodied-based instructions for the drivers' safe headway 

education. This study serves as a new method for the safe headway education while 

providing empirical evidence for the embodied theories and their applications. 
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CHAPTER 1 

INTRODUCTION 

Safe headway learning plays a core role in driver education. Mastering the concept 

of safe headway means drivers can control their own safety during driving when following 

vehicles. Such a learning process and its transfer to changing environment can serve as a 

basic skill for traffic safety. Safe headway learning means the driver has the ability to 

transfer the standard and abstract concept of safe headway from the brain to finish motion 

control to apply the concept in the changing environment in car following task. This 

requires the driver to have a deep understanding of the process that allows for the creation 

of their personal meaning for the concept which can then transfer into different 

environments (Mayer, Fennell, Farmer, & Campbell, 2004). Safety headway concept 

transferred to applied settings requires drivers to observe the outer environment to gain 

situational awareness (Walker, Stanton, Kazi, Salmon, & Jenkins, 2009), detect the 

potential of being at risk to control their vehicle in a safe margin between vehicles (Lewis-

Evans et al., 2010; Summala, 1988) in simple car-following model. To create personal 

meaning of safe headway, drivers need to focus on both subject and situational domains. 

Subject domain includes driver’s body states such as marijuana smoking effects (A. Smiley, 

Moskowitz, & Ziedman, 1985; A. M. Smiley, Moskowitz, & Zeidman, 1981) and 

exhaustion (Fuller, 1981), driver’s perception-motor skills (van Winsum, 1998), driver’s 

decision making (Lewis-Evans et al., 2010) and driver’s ability to maintain an accurate 

safe time headway (Risto & Martens, 2013). Situational domains include environment 

changes such as traffic flow, changes in roadway geometry, traffic signal timing and 

headway (Ranney, 1999). Traditional education in driving safety maintains that driver 
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should focus on the environment domains to gain situational awareness to keep driving 

safety through standard post-hoc analyze results while ignoring driver's personal situation 

such as driver's body states. This may hinder drivers combine both their subject domains 

and situational domains to create their personal meanings to form their own safe headway 

concept to withstand environmental changes. As a result, finding a way to integrate both 

subject and situational domains to help better transfer safe headway driving experience to 

drivers, and compare its effect with traditional education method serves a main problem in 

safe headway learning. 

Embodied theory proposed that human bodies have the ability to integrate resources 

to solve the task triggered by environment. These resources include previous knowledge 

of the task in the brain, internal body states and the environment which finally coupled 

together via perceptual system (A. D. Wilson & Golonka, 2013). This ability allows 

humans to use limited resource to reach the optimal performance and therefore reach the 

action economy (Proffitt, 2006). Embodied theory has been proof in psychology area 

(Proffitt, 2006), robotics area (A. D. Wilson & Golonka, 2013) and motion control area 

(Todorov, 2004). Additionally, according to Zahavi (2002) and Mayer (2004), except for 

traditional embodied theories that just using body as a tool to improve task solving skills, 

using pronoun to induce people’s self-awareness in learning can help better transfer 

knowledge from abstract domains to applied settings to foster meaningful learning. 

Because safe headway learning problem can be viewed as a task triggered by the dynamic 

traffic environment (Fuller, 2005), and safe headway concept is learned from abstract 

domains from oral and literal expressions through words and languages, here the research 

question is: can embodied-based training that induce people’s self-awareness be 
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implemented to improve participant’s safe headway concept learning performance in car-

following model? 
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CHAPTER 2 

LITERATURE REVIEW 

 

Car following model, safe margin and traffic safety 

Traffic is a complex system that car following model serves as a simple model to 

research the traffic problem (Homburger, Keefer, & Mcgrath, 1982). Factors that influence 

safety in car-following model can be deduced in complex traffic stream  (May, 1990).  

In the car-following model, keeping safe means drivers should keep their vehicle in a 

safe margin (Fuller, 2005). Safe margin means that the driver should not follow a lead 

vehicle too close to avoid risk (Fuller, 1984). Traditional education in safe driving behavior 

training uses time headway to measure the distance between a lead vehicle and a driver’s 

vehicle. Time headway represents the time interval between the lead vehicle and the 

driver’s vehicle (van Winsum, 1998). The meaning of time headway is to tell the mean 

value of safe margin to the drivers that raise their awareness about what does safe margin 

mean to reduce their probability to cause a crash. 

There are three kinds of risk in the car-following model: the objective risk, subjective 

risk estimate and the feeling of risk (Fuller, 2005). Objective risk means the objective 

probability of being involved in a collision. This usually comes from a post hoc analysis 

from accident data, which refers to one kind of sources of the mean value of safe time 

headway. Subjective estimates of risk mean driver’s own estimates of the (objective) 

probability of being involving in an accident. These estimates of risk represent the output 

of a cognitive process based on the previous knowledge in the brain while the feeling of 

risk represents an emotional outcome triggered by the environment. Subjective estimates 
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of risk and feeling of risk may be closely associated when the subjective estimates of risk 

have exceeded some critical value. Such a value may serve as a critical threshold that 

represents the safe margin. Once the time headway has passed a critical threshold, driver’s 

feeling of risk, task difficulty, and feeling of comfort will increase harshly (See Figure 1.). 

Such a threshold was found to be in 1.5 second time headway. In addition, participant’s 

confidence in driving abilities was found to be negatively related to their perceived feeling 

of risk (Matthews & Moran, 1986). As a result, harsh changes in driver’s feeling of risk, 

task difficulty, feeling of comfort and confidence in driving abilities can help drivers to 

improve driver’s awareness of safe margin of distance. And such a safe margin is in around 

1.5 seconds.  

Figure 1.  Drivers will feel a significant increase in risk and discomfort when 

following vehicles in 1.5 seconds time headway(Lewis-Evans, De Waard, & 

Brookhuis, 2010). 
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Except for safe margin awareness, there are also other variables that drivers use to 

control the safe margin: accuracy and reaction time. Accuracy means the driver has to keep 

the time headway in a safe margin which they were taught in driving training in car-

following. If the time headway they are following is shorter than the safe margin they were 

told, the probability of being at risk may increase. There are two kinds of assessment to 

measure accuracy. First is the absolute estimation error (Taieb-Maimon & Shinar, 2001), 

which describes the headway choice accuracy of the driver. Second is the relative 

estimation error (Taieb-Maimon, 2007), which describes the direction of deviation of a 

chosen headway from an instructed headway. Both assessments serve a useful tool in 

measuring headway accuracy. Second is reaction time. Reaction time means driver should 

control their braking response to avoid being too close to the lead vehicle. Such a response 

is highly related to driver’s perceptual-motor skills. If a driver has high perceptual-motor 

skills, they will choose smaller time headway because high perceptual-motor skills can 

reduce reaction time to brake response to avoid collision (van Winsum, 1998). These 

variables can help to estimate safe margin control behavior performance to determine 

whether the driver has followed a headway that is safe to him/her while driving. 

 

Driver education in safe driving behavior 

However, although many drivers know what the distance a safe time headway is 

representing for, they may still have trouble in implementing the safe time headway in car 

following. First is that, when driver first receive their driving education, the time headway 

told by the instructor or in the brochure of the driving institute is a new experience to new 

drivers, which means that it is a new situation a new driver never facing with. Because 
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what the new drivers know about the safe distance in the brochure is displayed in two-

dimension view, even though the new drivers have read how far the safe distance between 

two vehicles and get about how long of the distance from the brochure (see Figure 2.), they 

may still find it hard to apply it in the actual driving environment because the actual driving 

environment is displayed in three-dimension view. In addition, even though the new drivers 

have 

 

Figure 2. Length of the headway displayed in the two-dimension view.  
(http://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm, 2015.12.01). 

understood about what the distance is being represented by time headway, the accuracy of 

the driver’s perceptual distance will still be affected by their vehicle’s speed (Risto & 

Martens, 2013), which means the distance under a certain speed each headways 

representing will not always be safe under another speed. What’s more, because the ability 

to keep a constant distance while driving will also be affected by driver’s perceptual-motor 

skills (van Winsum, 1998), even using the same headway in the same speed, it is still not 

safe enough for the different drivers. As a result, to form and get better understanding of 

safe time headway, drivers should learn, feel and form their own safe headway based on 

the “safe time headway” told by driving institute and the real physical driving environment 

to finish their learning transfer. 
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Embodiment and safe driving behavior 

Embodiment means human engage their major modalities  (i.e., the sense systems that 

include visual, auditory, and kinesthetic) in a physical movement to perform some behavior 

or to learn (Johnson-Glenberg, Koziupa, Birchfield, & Li, 2011). Such a phenomenon is 

found to have an effect on human language learning (Glenberg & Kaschak, 2002), which 

means human bodies have the potential to learn and can serve as an additional resource for 

learning (Klemmer, Hartmann, & Takayama, 2006). Researchers in the learning science, 

psychology and human-computer-interaction area have found that human bodies can 

facilitate learning for abstract concepts such as math (Howison, Trninic, Reinholz, & 

Abrahamson, 2011), politics (Dijkstra, Eerland, Zijlmans, & Post, 2014), time (Casasanto 

& Boroditsky, 2008) and even system control (Antle, Corness, & Droumeva, 2009). As a 

result, using bodies as an additional resource for learning can be beneficial for the abstract 

concept learning, especially the concepts people have never experienced. 

Because the headway instructions that were conveyed through literal (through the 

brochures) or oral (through the driving instructor who teaches you) methods that are hard 

to just imagine if the learner has never experienced directly, they can be viewed as one of 

the abstract concepts, which were called symbols. Therefore, here an idea to solve the 

problem is, how to find a way for drivers to get better understand and learn about the 

concepts they have never exposed to and even understand better when they are exposing 

to the driving environment to reduce the chance to involve in a dangerous situation? Here 

the driver’s body can be a help. 

In 1990, Harnad proposed the symbol grounding problem. This problem views human 

abstract concepts as a projection from the connections between human sensations. As the 
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theory developed, Barsalou (2008) raised the grounded cognition from the interaction with 

the world in perception, sensation and motion. As a result, human bodies can serve as an 

additional resource to assist concept forming because the body can serve as a role to 

perform and receive the perception, sensation and motion to form the concept of “safe” 

headway for drivers. And the method of viewing the body as the role to perform and receive 

the perception, sensation and motion to assist forming is named embodied learning. 

Therefore, embodied learning can be a new way to help drivers to construct their own 

concept of “safe” time headway and increase safe driving performance. 

However, although using embodiment can help to assist forming the concept of “safe” 

time headway based on the description of the symbol grounding problem and the grounded 

cognition theory, the mechanism of why embodiment can help to assist driver’s concept of 

“safe” time headway in their driving reality is still unclear. The theories described above 

were too abstract and far away from reality that may need to be given a more detail 

explanation in the driving environment. As it can see, one of the cores to view a headway 

as “safe” is that the drivers’ feeling of risk is increasing sharply after they reach the safe 

margin (see Figure 1.). Second, what drivers thinking about the safe distance they 

perceived is accurate enough of what the physical distance they are thinking. Third, for the 

drivers, the safe time headway they choose must fit their perceptual-motor skills (van 

Winsum, 1998) that match their reaction time, and make them feel confidence to keep a 

distance that will not induce their feeling of risk. As a result, if embodiment can help to 

improve these aspects then embodiment can help to improve performance of driver’s safe 

driving behavior.  
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It is possible that embodiment can help to improve driver’s feeling of risk, perceptual 

accuracy, reaction time and make them feel more confidence to keep a distance. According 

to the Somatic Marker theory (A. Damasio, 2008; A. R. Damasio, 2004), some kinds of 

body states, emotions are resulted from mostly learnt environmental triggers. As a result, 

body states can bias action towards some certain outcomes, even if the individual does not 

have much awareness of them. In addition, Zero-Risk theory (Näätänen & Summala, 1974), 

the Driving Intensity model (Peltzman, 1975) and the Risk Avoidance theory (Fuller, 1984), 

also viewed that the awareness of being at risk in an accident will be a central factor in 

driver’s decision making. The driver’s body state can affect the action of outcomes 

involving risk in an accident even it is below the awareness of the driver. Additionally, the 

awareness of being at risk can affect the driver’s decision while driving. So the body can 

serve as an additional factor to help drivers to avoid risk, solve the driving task and 

therefore reduce the chance of being in a collision.  

Lewis-Evans, De Waard, and Brookhuis’s experiment (see Figure 1.) has proved this 

effect, which means body states can help to define driver’s safe margin. Once the driver 

past the short headway (at around 1.5 seconds), driver’s feeling of risk, feeling of comfort 

and task difficulty will increase harshly, which means body feelings will become more 

effective in detecting risk in shorter headways. As a result, putting body feelings as one of 

the resources in driving to avoid risk and make driving more safety can help driver detect 

risk more easily to improve the safe margin control driving performance for the drivers, as 

well as helping them detect their own safe headway, especially in short headways. 
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Figure 4. Using haptic device will help to increase the accuracy of 

hill slant perception (Proffitt, 2006). 

Figure 3. Participant using her hand on the haptic device to 

perceive the slant of the hill (Proffitt, 2006). 
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Another aspect of viewing the headway as “safe” is the accuracy of driver’s perceptual 

distance in vehicle following. If the accuracy is accurate enough for the drivers to perceive 

the actual physical environment, then it can help to reduce the mistake to perceive the safe 

distance and therefore reduce the chance to be at risk. As a result, the accuracy of the 

driver’s perceptual distance can be one of the factors that helps to contribute to the 

construction of safe headway. As for embodiment in vehicle following in the accuracy 

perspective, there is an experiment that, if a person put their hands on a haptic device to 

perceive the slant of a hill (See Figure 3.) to increase the awareness of body existence, then 

the accuracy of the person to perceive the slant of the hill will increase (See Figure 4.). 

Another experiment in virtual reality area also discovered that using self-avatar to 

embodied participants’s body awareness in the virtual environment can help to increase the 

accurate judgments of absolute egocentric distance (Mohler, Creem-Regehr, Thompson, & 

Bülthoff, 2010). As a result, if body awareness was involved in the perception of the 

physical environment, the accuracy of perceiving the physical environment will increase. 

Therefore, involving body awareness to make people aware their body state and body 

position in perceiving the distance in vehicle following can help to improve drivers’ 

performance in headway accuracy.  

 

Embodiment also affects reaction time and confidence in driving abilities to affect safe 

driving behavior. Because internal state-related factors like smoking marijuana (A. Smiley 

et al., 1985; A. M. Smiley et al., 1981), prolonged driving (Fuller, 1981) will lead to longer 

headway choice to make drivers themselves have more reaction time to prepare for 

avoiding a collision, embodiment can help drivers to focus on their inner state that help 
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them to reduce their function of costs to perform the braking action (Proffitt, 2006). Such 

a reduction of function costs can result in less reaction time. For the driving abilities, body 

dimension which includes feeling united with the vehicle and knowing the exact position 

of the vehicle was found to be positively related with drivers’ confidence in driving ability 

(Tronsmoen, 2008). Therefore, embodiment can be viewed as positively related with 

drivers’ confidence of driving ability. As the body’s involvement increases, driver’s 

confidence in their driving ability is the higher. 

 

Situational awareness, agent-environment system and embodied metaphor 

During the process of detection and control for safe margins, drivers have to observe 

the outer environment to keep track of what is happening and adapt their behavior, which 

such a mental process is called situational awareness. Situational awareness is the human 

perception of a dynamic agent-environment system that people use to comprehend 

information elements in the environment, keep track of what’s going on, then make 

predictions of the future to control the safety based on their current situation (Bedny & 

Meister, 1999). In such a process, the driver must comprehend and integrate the meaning 

of information elements from the changing environment, then update their mental model 

to integrate their self-awareness into the environment to finish the environment control, 

which becomes an agent-environment system (Stanton, Chambers, & Piggott, 2001). In 

this situation, the driver must be conscious the outer environment not just simply foreign 

objects and his/her own experience of the outer environment to reveal the meaning of the 

outer environment for driver’s subjectivity (Zahavi, 2002). Because based on embodied 

theories (Proffitt, 2006; A. D. Wilson & Golonka, 2013), body can serve as an original tool 
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to experience the world  (both mental model and body states), using embodiment methods 

to induce driver’s self-awareness, embodied themselves into the environment can help the 

driver to update their mental model from their body experience, and finish updating 

situational awareness to form their own meaning of safe margin control. 

This kind of learning effect has been proved in the multimedia learning area, which 

was called Personalization Effect (Mayer et al., 2004). When using the pronoun to refer 

student’s self-awareness in the instructions (e.g. “During inhaling, [your] diaphragm 

moves down creating more space for [your] lungs.”), students scored higher in the transfer 

test in learning human respiratory systems, which is resulted from students’ deep cognitive 

process during learning and therefore foster meaningful learning. As a result, using 

pronouns to induce driver’s self-awareness can help to enhance the situational awareness 

to transfer experience from learning instructions to the changing environment while driving, 

which resulted in better safe margin control behavior performance. 

 

 

 

Figure 5. The optic flow 
(http://www.simplypsychology.org/perception-theories.html) 
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To transfer the Personalization Effect into driving area, there is an additional factor to 

be concerned. As it can see, when driving, drivers are immersing in a three-dimension 

environment called the optic flow (see Figure 5.). Optic flow can be viewed in two 

directions that come through the drivers. One is that, drivers can view themselves as an 

agent, controlling their vehicle moving towards objects or vehicles ahead on the road, 

which is called the ego-moving metaphor schema (Boroditsky, 2000). The other is that, 

drivers can view themselves just sitting in their vehicle, being static, then waiting other 

objects from outer environment on the road to flow through themselves while driving. This 

is called the time-moving metaphor schema (See Figure 6.). This serves as the traditional 

instruction to educate drivers to use outer environment elements to perceive  

 

Figure 6. Ego-moving schema (a) and time-moving schema (b) (Boroditsky, 

2000). 

the safe time headway. Compared to the time-moving metaphor scheme, ego-moving 

metaphor schema emphasizes embodied driver’s self-awareness as an agent in the 
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environment to move towards the objects, which increase the awareness of the body’s 

existence. In Boroditsky’s experiment, a statement used the pronoun ‘me’ with a picture 

pointing the optic flow direction from the observer to the outer environment was used to 

prime the ego-moving schema in a two-dimension view (See Figure 7.). This design 

corresponds to Mayer’s Personalization Effect. As a result, using ego-moving metaphor 

schema in driving can help drivers form their own concept of safe headway, improve their 

safe driving behavior and reduce the risk in causing in a collision. And to use such kind of 

metaphor from Boroditsky’s experiment with a combination of Personalization Effect, 

what is needed to do is to transfer the two-dimension ego-moving metaphor into  

three-dimension.  
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Current hypotheses and proposed study 

Embodied self-awareness can be helpful to improve participant’s safe headway 

concept learning in applied settings in car-following model. According to embodied 

theories, human perception triggered by the environment is the human body’s reflection of 

the environment based on the body’s inner state to help the human solve tasks within the 

environment (A. D. Wilson & Golonka, 2013). Such a mechanism allows humans to limit 

resources from both environment and their body to reach the optimal performance and 

 

Figure 7. Ego-moving schema (a) and time-moving schema (b) in spatial form 

(Boroditsky, 2000). 
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interact with the environment (Proffitt, 2006). This means that human action is resulted 

from human perception that serves as a cue for human to solve tasks to ensure human living 

based on both environment and body resources. As a result, participant’s driving behavior 

to avoid risks can be a result of body states and feelings (Lewis-Evans et al., 2010). This 

effect will begin to increase once the time headway reaches a critical threshold at around 2 

seconds, which can be defined as the safe margin. In addition, according to the Situational 

Awareness (Stanton et al., 2001) and Personalization Effect (Mayer et al., 2004), using 

pronouns to induce self-awareness to embody the driver in the environment can help to 

transfer previous experience into the current environment. But whether inducing driver’s 

self-awareness to focus on themselves while reducing their attention in outer environment 

will reduce their situational awareness is still unclear. This must be evaluated through a 

falsifiable study. As a result, the goal of this study is to estimate whether inducing body 

self-awareness during driving can improve situational awareness and other safe driving 

behaviors in both learning and applied settings. The following hypotheses and predictions 

are proposed to provide evidence for this possibility. 

H: Because embodied self-awareness can help drivers to integrate both environment 

and body resources to solve problems triggered by the environment to avoid risk, inducing 

embodied self-awareness when driving can help to improve safe driving behavior. 

According to the hypothesis, the prediction here will be: 

   1a:  If embodied metaphor impacted situational awareness as proposed, then a larger 

number of elements will be reported in the embodied metaphor condition is activated than 

when time metaphor condition.  
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1b:  If embodied metaphor separately impacted feeling of risk, task difficulty, feeling 

of comfort and confidence of driving ability as proposed, then a higher ratings of feeling 

of risk, task difficulty, feeling of comfort and confidence of driving ability will be reported 

in the embodied metaphor condition is activated than when time metaphor condition. 

1c: If embodied metaphor separately impacted absolute estimation error, related 

estimation error and reaction time as proposed, then a lower data of absolute estimation 

error, related estimation error and reaction time will be reported in the embodied metaphor 

condition is activated than when time metaphor condition. 
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CHAPTER 3 

METHODS 

Participants 

A totally of 43 participants were recruited, among which 3 were left due to the report 

of suffering Motion Sickness or feeling discomfort in the study. Thus, a totally of 40 

participants were counted in the study. Among the participants, 30 were males, 9 were 

females, 1 people choose “I do not wish to say”. The participants’ ages ranged from 18 to 

31 years (M = 21.30, SD = 3.90). All participants have driving experience. The participants’ 

driving experience ranged from 01 to 12 years (M = 3.51, SD = 3.181). 

 

Design 

The experiment was employed as a multiple treatments and controls with pretest 

design. There are two treatments. One was ego-moving metaphor treatment. This treatment 

used personal pronouns in the instruction to prime participants to drive the simulate vehicle 

approaching towards the lead vehicle as engaging body awareness into the vehicle driving 

process. Another was time-moving metaphor treatment. This treatment used object-based  

(not include any personal pronouns) instruction to prime participants drive the simulate 

vehicle facing the lead vehicle to slow down towards them as not engaging body awareness 

into the vehicle driving process. In the control condition, participants received non-priming 

materials that took the same time as the ego-moving and time-moving treatment. 

Participants did the pretest first, then received priming based on different conditions, then 

took the posttest again. During both the pretest and posttest, participants were asked to take 

                                                 
1
 0 years means participants just received the driver’s license within one year. 
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a car-following task. This car-following task asked participants to follow the lead vehicle 

in a 2-seconds headway, then brake the panel when the lead vehicle began to slow down. 

The dependent variables were situational awareness, feeling of risk, task difficulty, feeling 

of comfort, confidence of driving ability, reaction time, constant error and variable error.  

 

Materials 

Priming Materials. Because the ego-moving metaphor and time-moving metaphor 

materials Boroditsky used in the experiment (See Figure 7.) were displayed in two-

dimension, to make the priming materials more fix in the three-dimension driving 

environment, a PowerPoint with the pictures demonstrating the car-following scenario was 

displayed in the priming section. 

Ego-moving metaphor. Because ego-moving metaphor views people as the agent to 

approach the objects, ego-moving metaphor was designed to prime participants’ body self-

awareness when driving the simulate vehicle to approach to the lead vehicle. This treatment 

used personal pronouns instruction with three arrows in the image of environment pointing 

towards the lead vehicle from participants, with the lead vehicle image in the PowerPoint 

becoming larger as the presentation progresses to induce the priming effect. For example, 

when a lead car appeared on the screen, the instruction “When a car is slowing, it will 

become closer to me. I need to determine the headway time between myself and the car” 

was displayed, accompanied by the arrows pointing the lead vehicle from participants. The 

full script is in Appendix A. 

Time-moving metaphor. Because time-moving metaphor views people being static, 

waiting objects moving towards them, time-moving metaphor was designed to prime using 
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object-based view. The participants sitting in the simulate vehicle, then wait the lead 

vehicle slowing down to approach them. This treatment used object-based (not include any 

personal pronouns) instruction, the larger and larger lead vehicle image in the PowerPoint, 

and three arrows in the image of environment pointing towards participants from the lead 

vehicle to induce the priming effect. For example, when a lead car appeared on the screen, 

the instruction “When a car is slowing, environmental elements can be used to determine 

the headway time.” was displayed, accompanied by the arrows pointing the participants 

from the lead vehicle. The full script is in Appendix A. 

Control.  Because control condition needed to be neutral that neither the participants 

are driving the simulate vehicle to approach to the lead vehicle nor the lead vehicle are 

slowing down to approach to the simulate vehicle, the instruction in the control condition 

just neutrally describe that the distance between two vehicles are decreasing, with no 

arrows in the image of the environment and the same lead vehicle image. These did not 

induce any kinds of vehicle movement, which help to maintain the control effect. For 

example, when a lead car appeared on the screen, the instruction “When a car is slowing, 

the distance between two cars is decreasing. The headway time needs to be determined.” 

was displayed, accompanied by no arrows in the image. The full script is in Appendix A. 

All materials were primed on an iPad Mini 2 placed on a holder in front of the 

participant in the simulator cab in the priming section. When priming, the participants were 

asked to keep the posture as driving cars, and read aloud the instruction on the PowerPoint. 

The experimenter would help to control the slides so that the participants would read the 

instruction smoothly. The participants needed to press the brake panel to induce the 

embodied effect for the post-test when the instruction asked them to do so. 
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Car-following task. Before the beginning of the formal car-following task, there was 

a practice section for the participants to practice following the lead car in a 2-seconds 

headway. There would be green number on the left-up corner of the screen presenting the 

current time headway between the lead vehicle and the participant’s vehicle. Participants 

were asked to follow the lead vehicle at a 2-seconds time headway as accurate as possible 

using the green number as assistance, and to brake to avoid a collision when the lead 

vehicle slows down, then recover to follow the lead vehicle in a 2-seconds time headway 

when another lead car appear again. When the practice section ended, participants were 

asked to do the formal car-following task. The procedure and the requirement of the formal 

car-following task was almost the same as the practice one but have a longer running time.  

At the beginning of the following task, a vehicle would appear on the right lane ahead 

of the participant’s vehicle. When the participant accelerated their car, the lead car would 

begin to accelerate to a random speed. When passed some certain points on the driving 

map, the lead vehicle would suddenly slow down to 2mph, then accelerate to a random 

speed again. During the procedure, participants needed to follow the lead vehicle in a 2-

seconds headway and to brake to avoid a collision when the lead vehicle slowed down. 

Each participant performed a totally of 8 trials in the car-following task. During the task, 

the headway-time between the two vehicles, and reaction time for the braking were 

measured by the system.  

Apparatus. The DS-600c Advanced Research Simulator by DriveSafety™ was used 

for the experiment. This simulator is comprised of a 300 deg wraparound display, a full-

width automobile cab (a Ford Focus) and a motion platform. Tactile and proprioceptive 

feedback cues were provided via dynamic torque feedback from the steering wheel and 
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vibration transducers mounted under the driver’s seat. The motion platform provided 

coordinated inertial cues for the onset of longitudinal acceleration and deceleration. The 

data recording rate is 60 Hz. 

There were two-lane in the three-dimension virtual environment. At the beginning of 

the driving test phrase, the participant’s vehicle was set in the right lane. Participants will 

be asked to practice the driving simulator to get familiar to control it, then the participants 

were asked to take the headway following task. 

 

Reaction time. Reaction time was measured as the interval between the moment the 

lead vehicle starts to brake and the release of the accelerator pedal by the driver (van 

Winsum, 1998). This data was given by the DriveSafety™ system. The shorter the reaction 

time, the better driving performance the participants have. 

      Constant Error. Because the measured headway time from the study were all larger 

than 2-seconds, which means that there were means distinguishing the direction of the 

headway time accuracy. The headway time accuracy here was defined as the constant error 

between the driver’s perceptual distance and the actual physical distance. These data were 

calculated from the headway time from the DriveSafety™ system, which used the drivers’ 

perception headway time to minus the 2-seconds headway time. The lower the constant 

error, the higher time accuracy the participants have, the better driving performance the 

participants have. 

Variable Error. Variable error was defined by the deviation scores from the 

DriveSafety™ system that describes the participants’ performance to keep their headway 

time stable. This data was given by the DriveSafety™ system. This was an added variable 
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beyond the literature review because it was given by the set system. The lower the score, 

the lower the participant’s performance deviation, the better driving performance the 

participants have. 

Change Scores of Reaction Time, Constant Error and Variable Error. These 

scores are defined by how much scores were changed before and after the treatment in the 

pre-test and post-test. These scores were calculated using pre-test scores to minus post-test 

scores that come from the above variables. The higher the change score, the higher 

performance change the participants have. 

 

Situational awareness. Situational awareness was measured using a query method 

(Endsley, 1988a, 1988b) in which the participants were asked to answer relevant questions 

about the driving scene. In this experiment, a total of seven SA questions were asked that 

pertained to the car-following task (e.g., “How many times have the lead car slowed down?” 

“Can you pass the left lane legally?”). This method was used because it can help better 

translate SA instrument into a more measurable one. The SA variable was measured by the 

total correct answers the participant has responded. When the participant has answered one 

correct answer, then the total SA scores were calculated as “one”. In addition, the numbers 

of environmental elements participants recalled from Question Five (SA5) “What was the 

scenery of the foreground?” and the deviation scores away from the correct answers from 

Question Seven  (SA7) “How many cars passed you going in the opposite direction?” were 

calculated separately for detail analysis. The higher score in the total situational awareness 

survey and SA5, the lower score in SA7, the better driving performance the participants 

have. 
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The whole part of the situational awareness question can be seen in Appendix B. 

 

Feeling of Risk, Feeling of Task Difficulty and Feeling of Comfort.  Feeling of risk, 

feeling of task difficulty and feeling of comfort will be measured by the 7-point Likert 

scales as shown in Appendix B. This survey is retrieved from Lewis-Evans, De Waard, and 

Brookhuis’s study (2010). The higher score in the feeling surveys, the better driving 

performance the participants have. 

   Confidence of Driving Ability Test. Confidence of driving ability is measured by 

three questions in 7-point Likert scales as shown in Appendix B. The survey was retrieved 

from Matthews and Moran’s study (1986). The total score of all three questions was 

calculated as the summary scores for data analysis. The higher score in the feeling surveys, 

the better driving performance the participants have. 

 

Demographics. Surveys included participant’s gender, age, and the amount of time 

they have had a valid driver’s license were measured as the demographics. The 

demographics were measured at the end of the study and at the end of the survey to 

maintain an immersive environment to keep the measuring effect of the surveys above. The 

whole part of the demographics can be seen in Appendix B. 

 

The situational awareness, feeling of risk, feeling of task difficulty, feeling of comfort 

and confidence of driving ability were served as self-report surveys, as well as the 

demographics, were measured through an iPad Mini 2 placed on a holder in front of the 

participant in the driving simulator using Google Forms. 
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Motion Sickness Questionnaire. The Motion Sickness Questionnaire was used to 

find out if the participant was susceptible to suffer motion sickness during the study. This 

was used to avoid foreseeable risks, discomforts, or inconveniences related to participation 

in the study. Participants that score higher than 20 were suggested not to participate in the 

study. The Motion Sickness Questionnaire was implemented before the experiment started 

using the paper-based questionnaire. The whole questionnaire can be seen in Appendix C. 

 

Procedure 

In the first phrase, the experimenter will introduce the overall procedure to the 

participants, then the participants will be asked to complete the inform consent form. After 

that, the participants were asked to finish the Motion Sickness Questionnaire to make sure 

they would not suffer motion sickness during the experiment. This part of the experiment 

took about 10 minutes. 

After that, the participants were asked to practice in the driving simulator for about 5 

minutes. After the practice section, the participants would have a 2-minutes break time to 

rest. Then participants were asked to finish the car-following task. During this task, the 

participant’s reaction time and headway-time, as well as variable error were collected by 

the system as the baseline. The task lasted for about 8 minutes. After this, the participants 

would have a 2-minutes break time to rest to prepare for the next car-following task again. 

The total procedure of the task took for about 17 minutes to complete. 

In the second phrase, participants were randomly assigned to either the ego-moving 

condition, time-moving condition or the control condition. In the ego-moving condition, 

participants were primed using the ego-moving priming materials. Participants in the time-
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moving condition were primed using time-moving priming materials. Participants in 

control condition were primed using control priming materials on the screen. The priming 

procedure took about 5 minutes. 

After this, participants were asked to finish the car-following task again. Participant’s 

reaction time and headway-time were measured by the system again as the post-

measurement. Then the participants were asked to finish the survey that included 

situational awareness, feeling of risk, feeling of task difficulty, feeling of comfort, 

confidence of driving ability assessments and demographics as the post-test. This 

procedure took about 20 minutes. 

After the experiment finished, the participants were debriefed. The experiment totally 

took approximately sixty minutes per participant. 
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CHAPTER 5 

RESULTS 

 

Data Analysis Introduction 

Because driving experience was considered as an impact for the variables, ANCOVA 

analysis with driving experience as co-variance were chosen to analyze the data. The 

following section introduce the results of different variables. 

 

Situational Awareness, Feelings of Risk, Task Difficulty and Comfort, and 

Confidence of Driving Ability.  A series of ANCOVA analysis was conducted for the 

situational awareness, feelings of risk, feeling of task difficulty, feeling of comfort and 

confidence of driving ability (the self-report variables) to determine if there were any 

significances among conditions. All means and standard deviations can be found in Table 

1 (N means all valid data). However, there were not any significant differences in these 

variables in each condition. This means that using ego-moving instruction or embodied 

instructions did not have any impact on situational awareness, feelings of risk, feeling of 

task difficulty feeling of comfort and confidence of driving ability.  
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Post Reaction Time, Post Constant Error and Post Variable Error. To determine 

if there were significant differences on the pre-test measures of reaction time, constant error 

and variable error, a series of ANCOVA was conducted. Results showed that there were 

not any significant differences in the pre-tests. All means and standard deviations can be 

found in Table 2 (N means all valid data). Therefore, a series of ANCOVA analysis were 

conducted for the post measures of reaction time, constant error and variable error. Results 

showed there was not any significant difference for the post-reaction time and variable 

error. However, there was the significant difference for the constant error with a medium 

Table 1 

Means and Standard Deviations for the Self-Report Variables. 

  N 
Ego-moving 

M (SD) 

Time-moving 

M (SD) 

Control 

M (SD) 

Situational 

Awareness  
37 5.25 (.62) 5.69 (.85) 5.58 (.79) 

Foreground 

Recall 
39 1.38 (.87) 1.38 (.65) 1.54 (1.05) 

Car 

Deviation 

34 1.58 (1.00) 1.55 (.69) 1.55 (1.29) 

Feelings      

Risk 39 3.15 (1.73) 3.69 (1.32) 3.69 (1.75) 

Difficulty 39 
4.31 (1.11) 4.31 (1.18) 3.77 (1.64) 

Comfort 
39 

4.23 (1.48) 4.15 (1.57) 3.92 (1.66) 

Confidence 39 15.46 (3.50) 13.00 (4.22) 14.08 (4.44) 
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effect size, F (2, 34) = 4.412, p = .02, ηp
2 = .206). LSD post hoc tests indicated that 

participants with time-moving metaphor instruction were significantly underperformed 

participants receiving control instruction with a large effect size (Md = .290; p = .006; 

Cohen d = 1.102) in the post constant error, while participants with ego-moving metaphor 

outperformed participants receiving time-moving condition but just have a marginal 

significance with a medium effect size (Md = .172; p = .070; Cohen d = .650). Participants 

receiving ego-moving instruction did not have any significance with participants receiving 

control condition but have a large effect size (Md = .118; p = .220; Cohen d = 1.079). This 

means that the driver’s accuracy in the ego-moving group has the same level of 

performance as the control group, but hurts in the time-moving group.  
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Change Scores of Reaction Time, Constant Error and Variable Error. A series 

of ANCOVA analyses were conducted on the change scores of reaction time, constant error 

and variable error to determine if there were any significances among conditions. All 

means and standard deviations can be found in Table 3 (N means all valid data). There was 

not any significant difference in the change score of reaction time and constant error. 

However, there was a marginal significant difference for the variable error with a medium 

effect size, F (2, 34) = 3.222, p = .052, ηp
2 = .159. LSD post hoc tests indicated that 

participants with time-moving metaphor instruction significantly outperformed 

participants receiving control instruction with a medium effect size  (Md = .125; p = .019; 

Cohen d = .574), while participants in ego-moving metaphor marginally outperformed 

participants receiving control instruction with a medium effect size  (Md = .090; p = .073; 

Cohen d = .471). Participants receiving time-moving instruction did not have any 

significance with participants receiving the ego-moving condition and with a small effect 

 

 

 

 

 

Table 2 

Means and Standard Deviations for Participant’s Reaction Time, Constant Error, 

Variable Error in Each Instruction Condition. 

 Reaction time Constant Error Variable Error 

 Pre-test 

 (N=34) 

Post-test 

 (N=29) 

Pre-test 

 (N=39) 

Post-test 

 (N=38) 

Pre-test 

 (N=39) 

Post-test 

 (N=38) 

Ego-moving 
.90 (.30) 0.87 (.19) 0.83 (.20) 0.79 (.12) 0.25 (.07) 0.24 (.03) 

Time-moving 1.08 (.30) 1.00 (.24) 0.94 (.30) 0.96 (.35) 0.22 (.09) 0.20 (.07) 

Control 0.94 (.36) 0.98 (.23) 0.81 (.20) 0.68 (.08) 0.24 (.06) 0.29 (.18) 
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size (Md = .035; p = .461; Cohen d = .24). This means that using embodied instructions can 

help to improve variable error for the safe headway concept learning. 

 

Table 3 

Means and Standard Deviations for the Change Scores 

  N 
Ego-moving 

M (SD) 

Time-moving 

M (SD) 

Control 

M (SD) 

Chng of RT 27 .13 (.23) .13 (.38) .02 (.26) 

Chng of HT-

acc 
38 -0.03 (.25) 0.02 (0.14) -0.13 (.21) 

Chng of PC 38 0.01 (.06) 0.03 (.10) -0.05 (.17) 
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CHAPTER 6 

DISCUSSION 

The current study hypothesized that an ego-moving metaphor can help drivers to 

integrate both environment and body resources to solve problem triggered by the 

environment to avoid risk. If so, then inducing embodied self-awareness when driving can 

help to improve safe driving behavior. In accordance with the hypotheses, driver receiving 

embodied training in headway learning will report a higher situational awareness 

(prediction 1a), higher feeling of risk, task difficulty, comfort, and confidence of driving 

ability  (prediction 1b). While drivers should perform at a lower constant error and reaction 

time in breaking performance (prediction 1c) when primed with an ego-moving metaphor 

during training. 

The current study found some support that embodied cognition can support driver 

training. However, the overall support for the ego-moving metaphor predictions were 

limited. First, the current study did not support prediction 1a: participants did not report a 

significant difference in situational awareness among conditions. In the situational 

awareness measurement, participants received an average of five score with similar 

standard deviations. This means that drivers receiving different instructions did not affect 

their attention to the outer environment, that embodiment did not help drivers to update 

their mental model from the body experience with environment compared to the control 

condition. However, because participants across conditions reported almost the same high 

scores (5-points), the non-significant differences for situational awareness may come from 

the ceiling effect of the limited situational awareness questions or the limited information 

elements in the driving environment. As a result, driving environment with more 
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environmental elements that help to report more information of the environment can be 

used to dig out more effects for the further study. 

Second, the current study did not support prediction 1b: participants did not report 

significant differences in feeling of risk, task difficulty, feeling of comfort and confidence 

of driving ability. In Lewis’s experiment (2010), participants were asked drive at a series 

of shorter headways and to report their feeling of risk, feeling of comfort and task difficulty 

in each headway times. What their research found out was that closer headway that induce 

sharply higher feeling scores can help to define the safe headway time, while did not 

compare whether using different kinds of body awareness induction can help to make a 

difference in safe headway margin decision. Because the current study compared the 

difference of different training instruction that asked participants to follow at the same 

headway, while not compared the effect of the length of the headway time, if adding the 

length of the headway time as an additional variable for the study, then a clear effect of 

using different training instructions in safe headway learning could be seen. 

For the confidence of driving ability, although based on the previous study that, 

feeling body united with the vehicle was positively related with drivers’ confidence in 

driving ability (Tronsmoen, 2008), confidence in driving ability was found to negatively 

related to feeling of risk (Cestac, Paran, & Delhomme, 2011; Rosenbloom, 2003). This 

means that, if feeling of risk, (feeling of task difficulty and comfort) are higher in embodied 

conditions, confidence in driving ability may still get higher if the prediction works, but its 

score differences among conditions may get less distinguishable, which could make it an 

insensitive index to measure the differences of learning scores among instructions. 
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However, the current study did find some evidence to support the hypotheses. It was 

observed that using ego-moving metaphor instruction can help drivers have a more 

accurate safe headway-time while following cars, while using time-moving metaphor can 

help to improve participants’ performance stability. This means that the results provided 

support for part of the prediction 1c: participants receiving embodied metaphor will have a 

lower data score of constant error and reaction time, the lower the data, the better the 

participants performed. For the constant error that represents the headway time accuracy 

first, such a result can be an analogy that that using physical feedbacks like haptic device 

(Proffitt, Bhalla, Gossweiler, & Midgett, 1995) and self-avatar  (Mohler et al., 2010) to 

induce the awareness of body existence will increase people’s perception accuracy with 

the real world, because using the pronoun “I” can help to inform participants that they, with 

their body, were presented in the present of the driving cab in an environment when they 

were driving. This means that human’s awareness of the “existence” of their own body can 

serve as a reference to evaluate their position with the physical environment. This 

phenomenon helps human to increase their accuracy in evaluating physics-based features  

(like slant and distance) in the environment, which also corresponded with the embodied 

theory (Proffitt, 2006). As a result, the findings of using ego-moving instruction improve 

driver’s constant error serves a positive impact in the hypotheses.  

Additionally, variable error also provide evidence that using embodied-related 

instruction can help to increase driving performance stability. This means that if viewed 

body as a resource to interact with the environment  (Barsalou, 2008; A. D. Wilson & 

Golonka, 2013; M. Wilson, 2002), than it can help to make people’s behavior more stable 
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to avoid making behaviors come into hazard to induce accidents (Brown, Willis, & Prussia, 

2000). Such a finding also serves a positive impact on the current hypotheses. 

To summarize, this study found out that using embodied-related instruction can help 

to provide a new method to help drivers perform more accurate and stable headway concept 

related to the safe time headway. These can help to reduce the potential risk of drivers to 

crash into a car accident, which increases the traffic safety. As it can see, embodiment 

theories views body as a resource to interact with environment to learn (M. Wilson, 2002). 

If participants’ performance increase in the accuracy and behave more stable in embodied 

instructions, then participants reflect a more accurate and stable perception with their actual 

world (Proffitt, 2006), which reflect a stronger learning outcome compares to the 

traditional learning methods. Such an effect supports embodied theories’ assumption that 

human mind, as well as the languages and the concepts, are grounded in mechanisms that 

involve for interacting with the environment (Barsalou, 2008; M. Wilson, 2002). 

Additionally, because time headway is a quantity concept (2-seconds), it is a concept to 

represent the physical distance between vehicles based on vehicles’ speed. The current 

study found that, using an embodiment effect to increase sensorimotor involvement will 

increase driver’s physical perception of a quantity, and abstract concept (2-seconds). This 

result is also in line with the magnitude theory, the processing of time, space and quantity 

shared a same cortical metrics, and it is this kind of process that facilitates the formation 

of  an abstract concepts  (2-seconds that presented by the symbols) using from the input of 

sensorimotor consequences of processing magnitude (Walsh, 2003).  

Additionally, this study also transfer Boroditsky’s (2000) two-dimensional ego-

moving and time-moving metaphors into a three-dimensional environment, and prove their 
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effects in embodied learning. Such a transfer provides a way to prime ego-moving and 

time-moving schema from two-dimension to three-dimension, which adds a new 

dimension to the study of Boroditsky’s metaphoric structuring theory. This new dimension 

of ego-moving and time-moving metaphors priming can also serve as a new method to 

increase participant’s accuracy and performance stability in virtual world-based research 

except for just using self-avatar (Ries, Interrante, Kaeding, & Anderson, 2008). 

 

Limitations and Future Study 

Although the study found that using embodied-related instruction facilitates driver’s 

safe headway learning, there are still some limitations in the study. The following section 

discusses about the limitation of the current study in three areas of validity: Internal validity, 

power issues (statistical conclusion validity), and generalizability  (external validity). 

For the internal validity, the following-task’s settings to trigger participants’ braking 

performance is not precise enough. When the lead car began to stop in the task, participants 

just sometimes follow too far away that do not need an immediate stop to trigger the 

breaking response. Therefore, a portion of data was missing in reaction time compared to 

other variables, which may have caused the non-significant effects in breaking 

performance. Second, the gradations to measure situational awareness and feeling of risk, 

task difficulty and discomfort is not sensitive enough to detect differences due to the 

original limited gradation scale. The original scale of the situational awareness, feeling of 

risk, task difficulty and comfort just have 7-points. If using a scale with a more gradation, 

like the NASA Task Load Index that has 21 gradation on each scale  (Hart, 2006), then a 

better discrimination of the impact of each condition may be found.  
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For the power (statistical conclusion validity), this study suffered from a small sample 

size (a totally 40 valid data were collected). So, the underpowered nature of the study raised 

the possibility that some of the marginal difference and analyses approaching significance 

could be real effects. So, the current interpretation is at risk of making a type II error. Given 

the observed effect sizes (i.e. the marginally significant effect of change score of variable 

error with a large effect size of ηp
2 = .159), it is highly plausible that a larger simple size 

would have produced significant effects for the change score of variable error. So, future 

studies should try to collect enough data to avoid the risk of making type II error. 

Although driving experience was used as a covariant in all analysis, this could still 

limit the generalizability of the findings. Participants that recruited from the study were not 

all novice drivers. Some of them have rich driving experience, which may lead to under-

interpreting the impact of using different kinds of instructions. If there is a possible 

opportunity to recruit novice drivers for the study, then a clear impact of how using 

different metaphor instruction affects driver’s safe headway concept learning can be seen. 

Finally, for the problems to generalizability (external validity), there still two issues 

to generalize the findings of the study – the issue to explain the concept of “safe” in safe 

headway training and the issue to transfer study findings from a simulate environment to 

the reality. 

First, for generalizability (external validity) area, it is not clear whether following a 

more close and accurate headway time to 2-seconds, or a farther and less accurate headway 

time to 2-seconds is safer to the drivers. If drivers follow a more close and accurate 2-

seconds headway time, then there will be less zone for drivers to react to brake to avoid a 

collision compared to a farther and less accurate 2-seconds time headway. However, the 
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purpose of the study is that, to educate driver to have the concept of safe margin, which 

means that the 2-seconds headway time is the closest margin. Once they get closer than 2-

seconds, they will not be much safer as original. As it can see, the current study found that 

drivers used ego-moving instruction perform to follow a headway time more close and 

accurate to the 2-seconds, while drivers in the control condition followed at a headway 

time which was farther and less accurate than the to the 2-seconds time headway, this 

means that drivers receiving ego-moving instruction have a deeper understand of the 2-

seconds time headway, while it is not clear that following such a closer and more accurate 

means “safer” to the driver. As a result, here will be an issue to generalize the findings to 

safe headway training. 

Additionally, there is still an issue to transfer the current findings to the real and 

changing driving environment. As it can see, the current study is experimented in a driving 

simulator, which is resulted from examining a simple car-following model. Although using 

the driving simulator can provide a most similar environment for driving study, it is still 

lacking the full fidelity as the real environment (Kemeny & Panerai, 2003). For example, 

the image display frequency of the driving simulator may be different from the reality that 

caused some behavior errors to transfer the learning effect in embodied instructions from 

simulation to reality application. In addition, because the study just using the simple car-

following model to research about the effect of embodied learning, the real-world traffic 

environment may be more complex. If want to apply embodied learning in a more practical 

education way except for just using it to learn the safe headway concept, then further 

studies considering the complexity of traffic systems should be held. 
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Conclusion 

This study investigated embodiment effects in driver’s safe headway concept learning 

and found a modest effect for using embodied self-awareness instruction can encourage 

safer and more consistent driving behaviors. In that, drivers had a better headway-

following accuracy for the 2-seconds safe time headway, and have the effect of increasing 

the performance stability during the task. Such a finding provides supports for embodied 

cognition theory (Barsalou, 2008; Proffitt, 2006; A. D. Wilson & Golonka, 2013), which 

provides the theory with another practical application. This result can serve as a further 

direction for future embodied cognition research to determine practical applications. 
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PRIMING SCRIPT  
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Time-moving metaphor 

<Screen One> 

Please read aloud the following PowerPoint slide by slide.  

<Screen Two> 

Traditional safe time headway is two seconds.  

In this headway, drivers should follow the lead car at a two second time manner. 

<Screen Three> 

Now a method to help better control the car to follow a two second time headway will be 

presented in the following section. 

<Screen Four> 

When a car is slowing, environmental elements can be used to determine the headway time. 

These elements should be used to determine the headway time. 

 

 

 

<Screen Five> 

After this is determined, press the brake panel to prevent crashing into the car. 
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<Screen Six> 

Now, practice it once again through reading the following PowerPoint. 

<Screen Seven> 

When a car is slowing, environmental elements can be used to determine the headway time. 

These elements should be used to determine the headway time. 

 

<Screen Eight> 

After this is determined, press the brake panel to prevent crashing into the car. 
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<Screen Nine> 

Please use this technique to follow the lead car at a safe two second time headway. 

 

 

Ego-moving metaphor 

<Screen One> 

Please read aloud the following PowerPoint slide by slide. 

<Screen Two> 

Traditional safe time headway is two seconds. 

In this headway, I should follow the lead car at a two second time manner. 

<Screen Three> 
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Now a method to help better control the car to follow a two second time headway will be 

presented in the following section. 

<Screen Four> 

When a car is slowing, it will become closer to me. I need to determine the headway time 

between myself and the car. 

 

<Screen Five> 

After I determined this, I will press the brake panel to prevent crashing into the car. 

 

<Screen Six> 

Now, practice it once again through reading the Following PowerPoint. 

<Screen Seven> 
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When a car is slowing, it will become closer to me. I need to determine the headway time 

between myself and the car. 

 

<Screen Eight> 

After I determined this, I will press the brake panel to prevent crashing into the car. 

 

<Screen Nine> 

Please use this technique to follow the lead car at a safe two second time headway. 

 

Control condition 

<Screen One> 

Please read aloud the following PowerPoint slide by slide. 
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<Screen Two> 

Traditional safe time headway is two seconds. 

In this headway, drivers should follow the lead car at a two second time manner. 

<Screen Three> 

Now a method to help better control the car to follow a two second time headway will be 

presented in the following section. 

 

<Screen Four> 

When a car is slowing, the distance between two cars is decreasing. The headway time 

needs to be determined.  

 

<Screen Five> 

After determined, press the brake panel to prevent crashing into the car. 
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<Screen Six> 

Now, practice it once again through reading the following PowerPoint. 

<Screen Seven> 

When a car is slowing, the distance between two cars is decreasing. The headway time 

needs to be determined. 

 

 

<Screen Eight> 

After determined, press the brake panel to prevent crashing into the car. 

 

<Screen Nine> 

Please use this technique to follow the lead car at a safe two second time headway. 
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APPENDIX B  

SELF-REPORT SURVEYS 
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Situational awareness 

Please answer the following questions based on the virtual reality driving environment 

you just immersived in the car-following task. 

1. What is the speed limit of the road? 

2. What is the color of the lead car? 

3. Was there any trees beside the road? 

4. At some points, could you pass the lead car legally? 

5. What was the scenery of the foreground? 

6. How many lanes were there on the road? 

7. How many cars have passed towards you going in the opposite direction? 

 

Feeling of risk, task difficulty and feeling of comfort scale 

 How much risk did you experience following the lead vehicle at this time headway? 

1       2       3       4       5      6       7 

             No Risk                                                              Maximum Risk 

How difficult did you find it to follow the lead vehicle at this time headway? 

1       2       3       4       5      6       7 

           Not Difficult                                         Very Difficult 

How comfortable did you feel following the lead vehicle at this time headway? 

1       2       3       4       5      6       7 

           Very comfortable                                     Very uncomfortable 

 

 

 

Confidence of driving ability test  

How confident in your ability to maintain control of the vehicle at this time headway? 

1       2       3       4       5      6       7 

             Very poor                                                              Excellent 
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How confident in your ability to make safe vehicle-handling decisions at this time 

headway? 

1       2       3       4       5      6       7 

             Very poor                                                              Excellent 

How confident that you possess the driving reflexes necessary to avoid accident 

involvement? 

1       2       3       4       5      6       7 

             Very poor                                                              Excellent
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APPENDIX C  

MOTION SICKNESS QUESTIONNAIRE 
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