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ABSTRACT

The interaction of light with nanoscale structures consisting of metal and two-

level quantum emitters is investigated computationally. A method of tilting the

incoming electromagnetic wave is used to demonstrate coupling between a sinusoidal

grating and two-level quantum emitters. A system consisting of metallic v-grooves

and two-level emitters is thoroughly explored in the linear regime, where the spatially

uniform fields provide a unique means of characterizing the coupling between the v-

grooves and emitters. Furthermore, subwavelength spatial effects in the ground state

population of emitters in the v-grooves are observed and analyzed in the non-linear

regime. Finally, photon echoes are explored in the case of a one-dimensional ensemble

of interacting two-level emitters as well as two-level emitters coupled to metallic slits,

demonstrating the influence of collective effects on the echo amplitude in the former

and the modification of the photon echo due to interaction with surface plasmons on

the slits in the latter.
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Chapter 1

INTRODUCTION

1.1 Motivation

This chapter presents a review of theory and literature that is relevant to the

study of hybrid nanoscale systems. This work was published in Blake and Sukharev

(2015a) and Blake and Sukharev (2015b).

Plasmonics offers the potential for the creation and control of signals at the very

smallest of scales. Plasmonic versions of waveguides (Fernandez-Cuesta et al., 2009),

switches (Vasa et al., 2010), and lasers (Pusch et al., 2012) are being considered the-

oretically and experimentally. When excited optically, the wavelength of the corre-

sponding plasmonic effects can be smaller than that of the optical fields. We therefore

view plasmonics as a promising means around the diffraction limit.

The work presented herein is potentially useful in several respects. Simulations

are usually much easier to perform than experiments, and can thus guide time- and

labor-intensive experiments and reduce trial-and-error. Tilting the incident wave is

a ubiquitous means of examining the coupling that is present in hybrid systems,

and this can now be accomplished in our simulations. Slow light has been shown

in our simulations to influence the optical properties of hybrid systems, and one

can imagine precisely and uniquely configuring very small regions via application of

different laser pulses. Photon echoes are used to study, among other things, the

time dynamics of chemical reactions. We are able to reproduce this phenomenon

in our simulations and manipulate it as desired. The final chapter extends this to

1-D ensembles of interacting two-level emitters as well as hybrid systems; these are
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previously unexplored frontiers of the non-linear regime.

1.2 Surface Plasmon Polaritons

Surface plasmon polaritons (SPPs) are oscillations of charge on a metal-dielectric

boundary that are able to produce intense, highly localized evanescent fields. SPPs

can be described classically, but the name derives from the more accurate quantum

mechanical description. A quantum of surface charge oscillation (a plasmon) couples

to a quantum of light (a photon) leading to a system that is a hybrid of the two

independent entities: a surface plasmon polariton.

Maxwell’s equations are applied to the interface between a dielectric and a metal

in Raether (1988), leading to a dispersion relation for SPPs:

kx =
ω

c

√
ε1ε2
ε1 + ε2

(1.1)

ε2 is the permittivity of the dielectric, ε1 is the permittivity of the metal, kx is the

in-plane wave vector of the SPP (the x-direction lies in the plane of the interface; see

Fig. 1a), ω is the angular frequency of the SPP, and c is the speed of light in vacuum.

The limiting value of ω given ε2 = 1.0 is ωp/
√

2, where ωp is the plasma frequency (the

natural frequency of free electron plasma oscillations). The response of the metal,

obtained from the Drude model (to be discussed in Chapter 2) is substituted into the

above dispersion relation and the curve shown in Fig. 1b is obtained.

SPPs offer a means around the diffraction limit because as can be seen from the

dispersion curve, the wavelength corresponding to the SPP can be made much smaller

than that of light for a given frequency of excitation. (Barnes et al., 2003)

One means of exciting and observing SPPs is via the attenuated total reflection

(ATR) method which is discussed extensively in Raether (1988). In order to excite

SPPs, the in-plane wave vector of the light must match that of the SPP. This can be

2



Figure 1.1: Illustration of propagating surface plasmon-polaritons and associated
setup. a) A dielectric prism (medium 1) on top of a metal film (medium 2) with
air underneath (medium 3). b) Dispersion relation for SPPs formed on an air/metal
(2/3) interface. The curve follows the light line for air (with slope c) for low values
of k but bends downward and asymptotically approaches ωp/

√
2 for large values of

k. The dispersion line for light in a dielectric (medium 1, slope c/
√
ε1) is shown for

reference. Not shown is the dispersion relation for SPPs on the metal/dielectric (1/2)
interface: this curve lies entirely to the right of the dispersion line for light in the
dielectric.

achieved by placing a prism in contact with the top of the metal film (Kretschman-

Raether configuration) and having air or vacuum in contact with the bottom of the

film: see Fig. 1a. The dielectric (medium 1) has ε1 > 1, the metal (medium 2) has

ε2 represented by the Drude model, and air (medium 3) has ε3 = 1. According to

the dispersion relation for SPPs on the 1/2 interface (not shown in Fig. 1b), light

passing from the prism to the metal film cannot have the same in-plane wave vector

kx as an SPP (on the 1/2 interface) of the same frequency because the SPP dispersion

curve for the 1/2 interface lies completely to the right of the light line in the dielectric

(whose slope is c/
√
ε1). Light that is incident upon the 1/2 interface can be made

to undergo total internal reflection (TIR), and an evanescent wave whose in-plane

wave vector equals ω
csinθ0

√
ε1

extends into the metal to the 2/3 boundary. This line

corresponding to the dispersion relation of the evanescent wave intersects the SPP

3



dispersion relation for the 2/3 boundary: in other words, the in-plane wave vector

of the light is increased to match the in-plane wave vector kx for an SPP on the

2/3 boundary. SPPs are not excited on the 1/2 interface; the kx is set at the 1/2

interface and that kx transfers over to the dispersion relation at the 2/3 interface.

One finds that over a certain range of angles beyond the critical angle, reflection is

attenuated. This corresponds to the evanescent wave coupling to the SPP on the

air-side of the film, which absorbs the radiation and is therefore responsible for the

decreased reflection (hence attenuated total reflection).

Besides the ATR method, another means of matching in-plane wave vectors for

the purpose of exciting SPPs involves the use of a periodic grating (Garcia de Abajo,

2007). Periodic arrays of slits (Salomon et al., 2012) can be used as well as a periodic

sinusoidal grating (Sukharev et al., 2009). The grating modifies the in-plane wave

vector of the incident light such that it increases to match that of an SPP mode

supported by the grating.

Surface plasmon resonances find numerous applications, especially as biosensors

(Jonsson et al., 1991; Haes et al., 2004; Jain et al., 2007; Willets and Van Duyne,

2007; Homola et al., 1999; Rich and Myszka, 2000; Hoa et al., 2007). One common

application involves an ATR setup in which biochemically active molecules undergo

reaction near the dielectric, changing the index of refraction and causing the ATR

minimum to shift. This is a means of observing molecular dynamics.

1.3 Coupled Harmonic Oscillators

The idea of coupled harmonic oscillators is readily demonstrated for macroscopic

systems such as two mass-spring systems with a coupling spring between the masses.

Two coupled pendulums also serve as a good example. Remarkably, the analytical

machinery of coupled harmonic oscillators can be applied in the microscopic domain
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to quantum emitters (an atom or molecule that has a well-defined optical transition

and can be treated as a two-level atom), charge density waves, and electromagnetic

fields. None of these immediately conjures up an image of a mass on a spring. But

when emitters and charge density waves are treated as oscillators coupled by the fields

that they emit, features predicted by classical coupled oscillator equations, such as

strong coupling and avoided crossing, are clearly observed! We therefore have a firm

analytical framework for understanding hybrid materials consisting of emitters and

metallic structures.

Coupling two oscillators and solving for the eigenfrequencies ω+ and ω− yields

(Torma and Barnes, 2015):

ω2
+ = ω2

c + Ω2 (1.2a)

ω2
− = ω2

c − Ω2 (1.2b)

ω2
c = ω2 + Ω2 (1.2c)

ωc is the frequency that one oscillator would have if the other were held in place,

ω is the resonant frequency of each uncoupled oscillator, and Ω describes the cou-

pling strength between the oscillators. Clearly, the splitting between normal mode

frequencies increases as the coupling strength is increased.

In the case of coupling emitters to charge density waves such as SPPs, we are

dealing with an oscillator and a standing wave. Consider the (separate) dispersion

relations of two uncoupled systems: a two-level emitter and an SPP. The dispersion

relations for each uncoupled system as well as the coupled system are shown in Fig.

1.2. Each of the solid lines represents the dispersion relation that would be obtained

from each individual, independent oscillator. A complete picture of the coupling is

given in Torma and Barnes (2015). The Hamiltonian of the coupled exciton-SPP
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Figure 1.2: The dispersion relation of an uncoupled SPP (diagonal solid line),
two-level emitter (horizontal solid line), and coupled system consisting of the up-
per polariton (curved dashed line) and lower polariton (curved dash-dot line). Note
that at larger wave numbers (not shown here), the SPP dispersion curve bends and
asymptotically approaches a constant value.

system is as follows:

Em ∆

∆ Ep(k)

 (1.3)

Epl(k) is the energy of the uncoupled plasmon energy, Em is the energy of the

uncoupled emitter resonance, and ∆ is the coupling energy. This Hamiltonian is

diagonalized, yielding the following expression for the energies of the normal modes

of the system (referred to as upper and lower polaritons) as a function of wave vector

(Agranovich et al., 2003; Lidzey et al., 1998):

Eu,l(k) =
1

2
{[Epl(k) + Em]±

√
4∆2 + (Epl(k) + Em)2} (1.4)

Eu,l(k) is the energy of the upper or lower polariton as a function of the wave

number k and all other quantities are the same as in Eq. 1.3. The minimum energy

6



separation is the Rabi splitting of the system and this value increases as the coupling

strength is increased. Where the solid lines in Fig. 1.2 overlap (i.e. both systems

driven at resonance) the dispersion of coupled oscillators clearly departs from that of

the uncoupled oscillators. Far from resonance, the system response approaches that

of uncoupled oscillators.

This leads to the definition of two regimes: weak coupling and strong coupling.

When the coupling strength exceeds the upper and lower polaritons’ linewidths, the

system is in the strong coupling regime (Torma and Barnes, 2015). If the damping is

strong enough that the splitting is not observable, the system is in the weak coupling

regime.

We will look at several examples of weak and strong coupling between light and

matter, the first of which is emitters in a reflecting microcavity followed by emitters

coupled to surface plasmon polaritons via various geometric structures.

1.4 Coupling Microcavities to Quantum Emitters

The emission characteristics of an emitter depend upon the environment in which

it is placed. Modifying the environment in which an emitter is placed can be ac-

complished in many different ways. Photons can be confined inside of one of various

configurations of reflecting microcavities. As will be discussed in the next section,

an emitter can be placed in the intense fields of an SPP. Some experiments involve

shooting atoms through a cavity one at a time, with each atom interacting with the

fields from the atom that preceded it (Haroche, 2013). In this section, the coupling

of emitters to microcavities is discussed.

Confining emitters to a microcavity was first demonstrated by Efros and Efros

(1982) and Ekimov and Onushchenko (1981) in which semiconductor nanocrystals

were grown in glass. More elaborate structures have since been developed. Micropil-
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lars use Bragg mirrors to confine light axially and total internal reflection for radial

confinement. Microdisks use total internal reflection for confinement along all direc-

tions. Photonic crystals are periodic nanostructures with regions of high and low

dielectric constant that can create bandgaps (frequency regions over which propaga-

tion is forbidden) for photons. These actually occur naturally as opals. One of the

primary differences between these three structures is the size of the emitter (in this

case, a quantum dot) that can be placed in the cavity. A larger quantum dot gives a

larger dipole moment and therefore stronger coupling. The micropillar and microdisk

structures have larger volumes which would lead to weaker coupling were it not for

the fact that a larger quantum dot (with a larger dipole moment) can be placed in

this larger volume, whereas the photonic crystal offers a smaller volume and higher

quality factor Q leading to the largest E-field in the empty cavity (Khitrova et al.,

2006).

The spontaneous emission rate of a quantum emitter can be controlled by placing

it in a reflecting microcavity (Haroche, 2013). Spontaneous emission is suppressed

when the size of the cavity is less than the emission wavelength and enhanced when

the size of the cavity is equal to the emission wavelength. The reason for this is that

spontaneous emission is actually stimulated by vacuum fluctuations and the size of

the cavity determines the wavelengths of vacuum fluctuations that are permitted.

The enhancement of spontaneous emission is known as the Purcell effect and is

quantified by the Purcell factor:

Fp =
3

4π2

λc
n

3

(Q/V ) (1.5)

λc is the wavelength in the cavity medium, n is the index of refraction of the cavity

medium, and V is the mode volume of the cavity.

Quantum information science, which requires photon-on-demand sources, can ben-
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efit from more deterministic control of photon emission. It is desirable to know exactly

when the photon is going to be emitted, and shorter emission lifetimes accomplish

this. The Purcell effect increases the emission rate and therefore decreases the emis-

sion time, thereby making the emission of the photon more deterministic. As can be

seen from Eq. 1.5, this can be realized by increasing the quality factor and decreasing

the effective volume of the cavity. The decreasing volume ultimately restricts the cav-

ity to a single mode (Khitrova et al., 2006). Also, the quantum dephasing rate must

be made much smaller than the cavity decay rate. If a quantum emitter / microcavity

system is to be used for quantum computing, it will ideally demonstrate antibunch-

ing (no more than one photon emitted at a time) and uniform spacing between the

emitted photons.

When an emitter is strongly coupled to a microcavity, the states of both systems

are altered: one system is coupled to another and the original energy levels of each

individual system are modified and become that of a single, hybrid system. The ex-

tent to which the original energy levels are modified is determined by the coupling

between the two systems. Strong coupling between inorganic quantum emitters and

microcavities has yielded Rabi splitting of 3-10 meV, whereas strong coupling be-

tween organic quantum emitters (such as J-aggregates) and microcavities shows Rabi

splitting of 100-500 meV (Agranovich and La Rocca, 2005). Bellessa et al. (2004)

coupled J-aggregates to a cavity and observed a Rabi splitting of about 300 meV.

The strong coupling regime can be mapped by varying the temperature of the

emitter, which sweeps the emitter resonance across that of the microcavity. This is

less than ideal, as changing the temperature of the emitter causes its optical prop-

erties to change. A less intrusive means of sweeping the emitter resonance involves

incrementally condensing Xe onto the interior of the microcavity (Mosor et al., 2005),

causing the index of refraction to increase relative to vacuum and the emitter reso-
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nance to shift to lower energies.

The dispersion relation for the upper and lower polaritons for a system consisting

of an organic semiconductor material inside of a microcavity is derived in Agranovich

and La Rocca (2005) and it is equivalent to Eq. 1.4 up to a damping term. This

is not surprising; even though one equation deals with SPPs and the other with mi-

crocavities, both describe systems of two-level emitters coupled to electromagnetic

field modes. The upper and lower polaritons (coherent excitations) are well defined

within certain limits of the wave vector k, outside of which (less than kmin or larger

than kmax) wave vector broadening is on the order of the wave vector itself and the

excitations become incoherent (Agranovich and La Rocca, 2005). The states of a

microcavity whose volume contains an organic semiconductor consist of a mixture of

a large number of incoherent states and a smaller number of coherent states. Photo-

luminescence from the former pumps the latter.

It is emphasized in Agranovich and La Rocca (2005) that the excitations, even

when not clearly defined, are coupled exciton-cavity excitations. kmin can be reduced

for inorganic structures because of the lower damping at lower temperatures. At

large wave vectors the upper polariton tends toward the cavity curve. These states

are coherent, and the upper polariton can decay into an incoherent state, which can

decay into the lower polariton. Either of these processes results in an optical phonon.

1.5 Strong Coupling Between Surface Plasmon Polaritons and Quantum Emitters

After demonstrating the coupling of emitters to microcavities, subsequent exper-

iments were performed in which emitters were coupled to SPPs. Pockrand et al.

(1982) demonstrated a splitting of the ATR minimum due to coupling between dye

molecules and SPPs on a metal film and Bellessa et al. (2004) were able to achieve

Rabi splitting of the order of that achieved in cavities. Because SPPs have very lo-
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calized fields corresponding to small effective volumes, strong coupling corresponding

to the values observed in small microcavities is achieved without the technical hassle

of using small microcavities. The largest Rabi splitting between SPPs and emitters

observed thus far is 700 meV (Schwartz et al., 2011). Coupling emitters to SPPs is

not a perfect scheme, however. SPP modes are dissipative, allowing only a limited

number of Rabi oscillations to take place (Torma and Barnes, 2015).

The coupling strength can be influenced by the dipole moment of the emitters, the

density of emitters, and the effective volume (originally associated with the volume of

a reflecting cavity in which emitters were placed) of the fields. A specific description

of the coupling strength between SPP modes and emitters is given in Vasa et al.

(2013):

~ΩR =
√
Nx ~µx · ~Ev (1.6)

where ~Ev is the SPP vacuum field, ΩR is the Rabi splitting, µx is the transition

dipole moment and Nx is the number of excitons. A calculation in Torma and Barnes

(2015), which analyzes the SPP dispersion relation and solves for the normal mode

frequencies, shows that the splitting of normal mode frequencies is proportional to
√
Nx. The strong coupling regime is defined in Torma and Barnes (2015) as when the

normal mode splitting (ΩNMS ≈ ΩR) exceeds all of the damping rates (and therefore

linewidths) in the system.

A departure from the usual normal mode splitting occurs when either or both

emitter density and emitter dipole moment (increasing either of these increases cou-

pling between SPPs and emitters) are made very large (Salomon et al., 2012). Ordi-

nary normal mode splitting is demonstrated by using lower values of emitter density

and dipole moment and varying the period of the slit array (which is experimen-

tally adjustable), causing the SPP resonance to shift. The SPP resonance is swept
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through the emitter resonance, demonstrating avoided crossing. This however as-

sumes interaction between SPPs and isolated emitters. The interaction between the

emitters themselves increases as emitter density and dipole moment increase and in

fact, the accuracy of the two-level model begins to suffer as the emitter density and

/ or dipole moment increases. For the case of ordinary normal mode splitting (no

interaction between the emitters), the Rabi splitting increases linearly as
√
N (Torma

and Barnes, 2015; Vasa et al., 2013), where N is the emitter density. Simulations from

Salomon et al. (2012) show deviations from this behavior at high emitter densities.

Rabi splitting increases linearly with the dipole moment, and deviations are not seen

in Salomon et al. (2012) at higher dipole moments.

In addition to the deviations mentioned, a new peak appears in between the upper

and lower polaritons and it is proposed to indicate a collective effect from the entire

ensemble of emitters. The progression from ordinary Rabi splitting to the appearance

of the collective peak is shown in Fig. 1.3. Experiments verify that this third peak

is present under conditions of very strong coupling (Salomon et al., 2009; Sugawara

et al., 2006; Hutchison et al., 2011). It does not deviate appreciably from the emitter

resonance even as the SPP resonance is tuned, suggesting that its origin is from the

emitters rather than the SPPs. An energy gap is also observed: when the coupling

strength is such that the collective mode is not seen, the upper and lower polariton

energies asymptotically approach the emitter resonance for large detuning. When the

collective peak is present, the asymptotes of the upper and lower polaritons (for large

detuning) have a gap between them. The upper polariton demonstrates a larger gap

than the lower polariton.

A spacer layer of variable thickness was inserted between the emitter layer and the

grating in order to see the dependence of emitter-emitter coupling on the strength of

the SPP field. The collective peak is observed to merge with the upper polariton as
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Figure 1.3: Emitter density and dipole moment affect the coupling between SPPs
and emitters. The raw data is taken from Salomon et al. (2012). Panel (a) shows
increasing emitter density (emitters per m3) and panel (b) shows increasing emitter
dipole moment. When either the density or dipole moment are low, “ordinary” Rabi
splitting is seen. As density or dipole moment is increased, the third “collective” peak
emerges and strengthens near the emitter resonance.

the spacer thickness increases. Coupling between the emitters themselves is suspected

given the fall-off of the collective mode as the SPP field decreases. Furthermore, a

simulation was run in which the entire region containing emitters was replaced by a

single two-level system (essentially a single quantum emitter with a very large dipole

moment), thereby eliminating the spatial variation of the fields. In this case, the

collective peak disappears even at extremely high emitter densities.

1.6 Control and Time Dynamics of Strong Coupling

The emission from quantum dots is essentially isotropic, but results shown in

Livneh et al. (2011) demonstrate that depositing quantum dots onto a periodic slit

array causes the dots’ emission to become both directional and wavelength-selective.

Quantum dots have also been placed upon a nanoscale Yagi-Uda antenna (Curto

et al., 2010).

An aluminum grating on a glass substrate is used, and the emitters are InAs /
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CdSe core-shell nanocrystal quantum dots (NQDs). The emission spectrum of the

NQDs peaks at 1.2 µm and has a FWHM of about 200 nm with no angular dependence

being observed.

A plot of near-field intensity (as seen in Fig. 3 in Livneh et al. (2011)) for the

NQD/slit system shows intense fields near the slits at zero angle from the slits and

much weaker fields at 15 degrees. A plot of emission intensity vs. incident angle (as

seen in Fig. 3 in Livneh et al. (2011)) shows a FWHM of 3.4 degrees and transmission

in the forward direction that is 20 times higher than a sample consisting only of NQDs.

This beaming effect is thought to be a result of the NQDs being coupled to the SPP

waves.

As stated previously, coupling can be manipulated by changing ~µx or ~ESPP and

Vasa et al. (2010) takes advantage of this in order to create an optically switchable

metallic mirror. By altering the dipole moment of the emitters (and thus the coupling)

on short timescales, the reflection can be reduced by 40% in parts of the near-infrared.

This is a reversible, sub-picosecond effect which is immediately appealing as a switch,

especially given that it can be controlled by a single photon.

Results are first presented for J-aggregates on a smooth gold film. At the emitter

resonance, the bare film displays a reflectivity of 0.95, which drops to 0.25 when the

emitters are added. With a pump pulse, the reflectance (relative to that of the bare

film) at the emitter resonance is seen to increase for all values of pump fluence. A

system of J-aggregates deposited upon a gold reflection grating is subsequently ana-

lyzed. A contour plot of reflectivity as a function of angle of incidence and wavelength

(as seen in Fig. 2 in Vasa et al. (2010)) shows an avoided crossing which of course

indicates strong coupling between the emitters and the SPPs, and calculations show

that the SPP fields are localized around the slits. The spectra obtained agree with

numerical solutions of Maxwell’s equations as applied to the hybrid structure. Non-
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equilibrium time dynamics is then detailed: a pump pulse is sent in first, followed by

a probe pulse 150 fs later. Near the exciton resonance, the reflection behaves as that

of the emitters on a smooth film; these excitons are therefore not strongly coupled to

the SPP fields. The usual upper and lower polariton features remain, but additional

structure (minima in reflections) is seen in these curves. As the pump fluence is in-

creased, these new features separate from the upper and lower polariton curves and

begin to resemble those of uncoupled oscillators. This can be understood in terms of

a decrease in coupling strength of the excitons that are strongly coupled to the SPP

field, as a reduction in the dipole moment occurs due to saturation of the excitonic

oscillator strength. Note that the pumping is non-resonant; it is on the tail of the

exciton curve. This creates a mixture of uncoupled and coupled excitons.

A pump pulse can therefore switch the system from well-defined upper and lower

polaritons to a system with structured upper and lower polariton curves. For an

incident angle of 49◦, (Vasa et al., 2010) demonstrates that a pump pulse can signifi-

cantly lower the reflectivity of the system by activating the reflection minima in these

structured curves.

Active control of the strong coupling regime is also demonstrated in (Berrier et al.,

2011) by a much different means. An ATR setup is used in which light is coupled to

SPP waves on the output side of a metal film (which is covered with emitters) via a

prism. The oscillator strength of the emitters is controlled by introducing nitrogen

dioxide into the system. As the concentration is increased from 0 PPM to 6 PPM, the

dispersion changes from an uncoupled SPP wave to that of a hybrid system; avoided

crossing is observed with a corresponding Rabi splitting of 130 meV. A coherent

energy exchange develops in which “light and matter exchange energy for a certain

number of periods before the energy escapes the system” (Berrier et al., 2011). The

system can be uncoupled by heating the sample, causing the reflectance spectrum to
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display a single ATR minimum instead of two.

Changes in the optical properties of a hybrid material from an ultrashort laser

pulse are observed in simulations performed by Sukharev et al. (2013). The simu-

lations demonstrate that the coherent energy exchange between emitters and SPPs

occurs over femtoseconds and this time scale can be adjusted via material or laser

parameters.

The Rabi oscillations are observed by pumping the emitters and then sending

in a probe pulse after a delay time ∆τ , with ∆τ = 0 corresponding to the probe

pulse being sent right as the pump pulse begins. This is clearly different from simply

probing the system, as a much larger number of emitters are excited. A series of

simulations is run, each with a longer ∆τ . Running this sequence of simulations

maps out the effect of the pump pulse over time; the Rabi oscillations are clearly seen

in a plot of reflectance (R) vs. time (Fig. 1.4).

For a 15 fs pump, a graph of pump delay ∆τ versus change in reflectance ∆R

shows that ∆R increases for the upper and lower polaritons relative to their values

without any pumping. This is thought to be caused by energy transfer between the

SPPs and the emitters: the period of oscillations in the ∆R vs ∆τ graph is 3.75

fs and this time depends only upon the local electric field strength and the emitter

dipole moment. It does not vary appreciably when slit period or emitter density is

changed. This period of oscillation does depend on the peak pump amplitude. For

a 30 fs pump pulse that is resonant with the emitters, ∆R vs. ∆τ is plotted for two

different peak pump amplitudes. At 2× 109 V/m, the period of oscillation is 3 fs and

at 4× 109 V/m the period of oscillation is 6 fs (see Fig. 1.4). Two surprising results

are also observed: the Rabi period slows down over time and the Rabi frequency is

smaller in these simulations as compared to a simple two-level atom in the same laser

field.
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Figure 1.4: Femtosecond oscillations of ∆R. The raw data is taken from Sukharev
et al. (2013) The Rabi oscillation period depends on the pump amplitude. + symbols
indicate an amplitude of 2 × 109 V/m (the oscillation period is 6 fs) and ∗ symbols
indicate an amplitude of 4× 109 V/m (the oscillation period is 3 fs).

A longer (180 fs) pump pulse is used to map out the excitation dynamics. The os-

cillations of ∆R and those of the ground state population are in step with one another,

suggesting that the oscillations in the transient spectra are caused by transitions of

the emitters between the ground state and the excited state.

Additionally, a pump pulse is applied and then abruptly truncated to zero. This

is a promising means of controlling the number of Rabi oscillations. With this in

mind, one could conceivably manipulate the time envelope and the incident angle of

the pump pulse to control the plasmon energy distribution.

Another instance of optical control of energy distribution in hybrid materials is

in Sukharev (2014). The transmission coefficient is able to be modified by using two

different types of emitters each with different resonant energies. These emitters are

coupled to a silver sinusoidal grating. Two absorption features are present in the bare

grating and they are identified as SPPs by noting that the minima in the transmission

spectrum correspond to the maxima in the reflection spectrum. The fields of the SPPs

are very inhomogeneous, and the spatial distribution of fields reveals the spatial extent
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of the coupling for each type of emitter.

The SPP resonances are able to be swept across the emitter resonances by varying

the amplitude of the grating. When the two types of emitters are added, the lower

energy resonance is seen to undergo Rabi splitting as would be expected. The higher

energy resonance not only undergoes splitting, but (for an amplitude of 60 nm and

greater) exhibits the collective peak that was previously described. The density and

dipole moment are not particularly large, but the fields (which of course affect cou-

pling) associated with this higher energy are much larger, giving rise to the collective

peak.

A chirped laser pulse (in this case, a pulse whose frequency increases or decreases

linearly over time) can be used to selectively excite either one emitter type or the

other, which was verified by sending a pulse into a single emitter only and recording

the density matrix elements corresponding to the ground and excited states. If the

laser pulse starts at the frequency of higher energy emitters and decreases, the lower-

energy emitters will be excited and the higher-energy type will not be; and vice versa

for the laser pulse starting at the lower emitter frequency and increasing. Given that

the two types of emitters couple to different SPP modes, whose fields corresponding

to each mode have different spatial distributions, a positive chirp will excite one set of

regions and a negative chirp will excite a different set of regions. These chirped pulses

effectively pump one type of emitter, causing its response to a subsequent probe pulse

to differ from that without the chirped pulse.

As is shown in Fig. 1.5, the transmission at the lower SPP resonance is altered by

a negative chirp (but not much by a positive chirp) and transmission at the higher

SPP resonance is altered by a positive chirp (but not much by a negative chirp). The

simulations show that a negative chirp inverts the lower energy emitters whereas a

positive chirp causes the higher energy emitters to undergo several Rabi oscillations.
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Figure 1.5: Panel (a) shows the lower polariton and panel (b) shows the upper
polariton. Raw data taken from Sukharev (2014). Circles indicate no chirp, diamonds
indicate a negative chirp, and asterisks indicate a positive chirp. A negative chirp
alters the lower polariton whereas a positive chirp does not. A positive chirp alters
the upper polariton whereas a negative chirp has no effect on it.
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Chapter 2

MODELING THE INTERACTION OF LIGHT AND MATTER AT THE

MICROSCOPIC SCALE

The interaction of light with nanoscale plasmonic structures must account for

the classical behavior of both light and metal as well as the quantum behavior of

emitters. The structures considered here consist of either an ensemble of emitters, a

silver structure, or are hybrid (silver plus quantum emitters). Silver is optimal for

plasmonic applications because its parameters are well suited to SPP features in the

visible range, e.g. no interband transitions in this region (LeRu and Etchegoin, 2009).

2.1 The Finite Difference Time Domain (FDTD) Method

Maxwell’s equations are used to describe the propagation of electromagnetic waves:

µ0
∂ ~H

∂t
= −∇× ~E (2.1a)

ε0
∂ ~E

∂t
= ∇× ~H − ~J (2.1b)

µ0 is the permeability of free space (we assume that the relative magnetic per-

meability is 1.0), ε0 is the permttivity of free space, ~E is the electric field, ~H is the

magnetic field and ~J is the current density.

Maxwell’s equations are of course continuous partial differential equations with a

limited number of analytical solutions. One cannot hope to find analytical solutions

that account for arbitrary geometries with dispersive structures and quantum emit-

ters. We therefore discretize the system by evaluating derivatives at finite distances

and time steps apart. For instance, a spatial derivative of the y-component of the
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E-field becomes:

∂Ey
∂x
→ Ey(i+ 1, j)− Ey(i, j)

dx
(2.2)

The indices i and j indicate grid points at which the fields are evaluated. Given

that this is an approximation to the correct physics, one must take steps to ensure

the accuracy of the results. The most reassuring procedure is to decrease the spatial

resolution incrementally and verify convergence. When the results no longer change

with decreasing spatial step size, the simulation is converged.

Several methods exist for discretizing and propagating Maxwell’s equations. The

method used in this research is the finite difference time domain (FDTD) method

(Taflove and Hagness, 2005), introduced by Yee in 1966 (Yee, 1966). The mesh

consists of two shifted grids: one for the electric field and one for the magnetic field.

In three dimensions, each E-field vector is surrounded by four H-field vectors and

vice versa; this makes evaluation of ∇ × ~E and ∇ × ~H very straightforward. All of

the results presented herein that employ FDTD use either a one- or two-dimensional

grid. In a one-dimensional grid, the structure is taken to be infinitely long in the x-

and y-directions and the fields propagate along the z-direction. In a two-dimensional

grid, the fields Ex, Ey and Hz are evaluated in the x-y plane and the structure is

taken to be infinitely long in the z-direction. Thus, each Hz vector is calculated using

four surrounding E-field vectors (two Ex and two Ey vectors) whereas each E-field

vector is calculated using only two adjacent Hz values as the Hx and Hy values are

zero everywhere, which must be so because there is no variation of any of the fields

along z. The H-field vectors point along z whereas the E-field vector has x and y

components. This corresponds to p-polarization (E-field in the plane of incidence);

s-polarization (E-field perpendicular to the plane of incidence) cannot excite SPPs.

A total-field / scattered-field (TFSF) formulation is used to introduce a plane wave
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into the grid. This is consistent with the illumination of a small sample with a beam

that covers all of it as well as the periodic nature of the structure. A lookup table

(Taflove and Hagness, 2005) is used to project the values of E and H onto the TFSF

boundary, and this generates the incident wave. While the physical system is open,

it makes sense to terminate it in regions sufficiently far from the structure. This is

accomplished by adding absorbing boundaries which are implemented as convolutional

perfectly matched layers (CPML). For periodic structures, CPML is added to the top

and bottom of the grid while a periodic boundary condition is applied to the left and

right of the grid.

2.2 Metal and Emitters

The Drude model (LeRu and Etchegoin, 2009) is used to describe the dispersion

of the metal. An electron cloud that is bound to an atom is treated as a damped

harmonic oscillator with resonant frequency ω0. Its motion is solved for, and then

ω0 = 0 is assumed yielding the frequency-dependent dielectric constant:

ε(ω) = εr −
ω2
p

ω2 − iγω
(2.3)

ωp is the plasma frequency (i.e. the natural frequency of the free electron plasma),

γ is the damping that corresponds to collisions between the free electrons and the

crystal (LeRu and Etchegoin, 2009), and εr is the high-frequency limit of the dielectric

function (Sukharev, 2012). For silver, these values are 1.76× 1016 rad/s, 3.08× 1014

rad/s, and 8.26 respectively (Gray and Kupka, 2003). In metal, the field values

(obtained from the Maxwell equations) are used to update the currents (Gray and

Kupka, 2003):

∂ ~J

∂t
= −γ ~J + ε0ω

2
p
~E (2.4)
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The case where ω0 6= 0 is also of interest, as this leads to the classical model of

polarization. We will characterize the susceptibility of the two-level emitters in this

context. The susceptibility in this case is given by:

χ(ω) =
ε(ω)

ε0
− 1 =

Ne2

ε0m

∑
j

fj(ω
2
j − ω2 − iωγj)−1 (2.5)

N is the number of molecules per unit volume, ε(ω) is the permittivity at a given

frequency, and fj is the number of electrons per molecule with binding frequency ωj

and damping γj. Near a resonance (ω = ωj), the real part of χ undergoes anomalous

dispersion while the imaginary part undergoes resonant absorption.

2.3 Maxwell-Bloch Equations and Two-Level Emitters

2.3.1 Density Matrix Formulation

The Schrodinger equation describes the evolution of a wavefunction in time. An

equivalent formulation uses the density matrix, whose dynamics are described by the

Liouville-von Neumann equation (discussed in the next section). The density matrix

formulation accounts for the observer possibly not knowing the exact state of the

system. This is known as a mixed state, as opposed to a pure state. A partially mixed

state is a state in which interference effects are present but reduced (MSU, 2009).

When we deal with an ensemble of particles, it could be that every state of every

particle is known. This corresponds to a pure state (additionally, any linear combi-

nation of pure states is also a pure state). On the other hand, it may be that the

states of the particles are only known statistically (say, 25% in one state and 75%

in another). This corresponds to a mixed state, and the probability for the particle

to be in one state or another is classical (i.e. it does not derive from a probability

amplitude, which of course creates interference effects (MSU, 2009)).
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Following MSU (2009), consider a beam of silver atoms in a Stern-Gerlach exper-

iment, with each atom described by the following pure state (which happens to be

|+x〉 expressed in the z basis):

|A〉 =
1√
2

(|↑〉+ |↓〉)

And consider another separate beam with 50% of the atoms in the state |↑〉 and the

other 50% in the state |↓〉:

|B〉 = 50% |↑〉 and 50% |↓〉

One can actually distinguish these two beams experimentally. Measuring the z-

component of spin for each beam will give the identical result of half up and half

down. Measuring the x-component of spin, however, yields |+x〉 every time for Beam

A:

〈+x|A〉 = 〈+x|+x〉 = 1

〈−x|A〉 = 〈−x|+x〉 = 0

PA,+x = | 〈+x|A〉 |2 = 1

PA,−x = | 〈−x|A〉 |2 = 0

For the mixed state B, a measurement of the x-component yields |+x〉 half the time

and |−x〉 half the time. Calculating the coefficients 〈+x|+z〉 and 〈+x|−z〉:

〈+x|+z〉 =
1√
2

(〈+z|+ 〈−z|) |+z〉 =
1√
2

〈+x|−z〉 =
1√
2

(〈+z|+ 〈−z|) |−z〉 =
1√
2
,
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which yields the following probability of observing |+x〉:

PB,+x =
1

2
| 〈+x|+z〉 |2 +

1

2
| 〈+x|−z〉 |2 =

1

2

Calculating the coefficients of 〈−x|+z〉 and 〈−x|−z〉:

〈−x|+z〉 =
1√
2

(〈+z| − 〈−z|) |+z〉 =
1√
2

〈−x|−z〉 =
1√
2

(〈+z| − 〈−z|) |−z〉 =
1√
2
,

which yields the following probability of observing |−x〉:

PB,−x =
1

2
(| 〈−x|+z〉 |2 + | 〈−x|−z〉 |2) =

1

2

We can use the density matrix operator to handle mixed states where the ith state

has probability Pi:

ρ̂ = ΣiPi |ψi〉 〈ψi| (2.6)

We specify an orthonormal basis to obtain the matrix elements. The matrix

element ρjk is obtained as follows:

〈j| ρ̂ |k〉

= 〈j|ΣiPi |ψi〉 〈ψi| |k〉

= ΣiPi 〈j|ψi〉 〈ψi|k〉

The matrix element ρjj is then:
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〈j| ρ̂ |j〉 = ΣiPi 〈j|ψi〉 〈ψi|j〉

= ΣiPi| 〈ψi|j〉 |2,

which is the probability of observing the state |j〉. Hence, given an ensemble of

particles, the diagonal elements ρjj of the density matrix represent the population

in the given state j. The off-diagonal elements are an average of the cross terms

〈j|ψi〉 〈ψi|k〉 over each and every pure state ψi that comprises the mixed state. These

elements represent coherence, that is, interference between two given states j and k.

For a two-level emitter, the macroscopic dipole moment is proportional to the off-

diagonal elements of the density matrix (Tang, 1979). The macroscopic polarization

consists of the sum of the individual atomic dipole moments, so it must depend on

the coherence of the individual dipoles (Tang, 1979).

The expectation value of an operator Â is conveniently calculated by:

< Â >= Tr(ρ̂Â) (2.7)

And the time dynamics of the density matrix are described by the Liouville von

Neumann equation, which is derived as follows:

dρ̂

dt
=
d |ψ〉
dt
〈ψ|+ |ψ〉 d 〈ψ|

dt

The Schrodinger equation Hψ = i~∂ψ
∂t

is invoked:

= − i
~
H |ψ〉 〈ψ|+ i

~
|ψ〉 〈ψ|H,

which leads to the Liouville-von Neumann equation:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] (2.8)
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Damping is accounted for as follows:

dρ̂

dt
= − i

~
[Ĥ, ρ̂]− Γ̂ρ̂ (2.9)

Interatomic interactions are absent from this approach, so we could theoretically use

the Schrodinger equation to describe the state of each atom. But practically speaking,

we would be unable to include damping and we would be restricted to delta function

potentials describing a transition with infinitely narrow width. We therefore proceed

with the density matrix formulation, as it lends itself to straightforward calculation

of populations in different energy states and permits a simple means of including

damping.

2.3.2 Quantum Dynamics

The Liouville-von Neumann equation (Eq. 2.9) is used to describe the time de-

pendence of an atom interacting with an electromagnetic field. The Hamiltonian Ĥ

describes an atom with dipole moment ~µ interacting with an electric field:

Ĥ = Ĥ0 − ~̂µ · ~E(t) (2.10)

The majority of the work is carried out in two dimensions with p-polarized fields.

As demonstrated previously, it is necessary to choose a basis in order to form the

density matrix elements. With an eye toward complex, multi-level systems, the basis

chosen for two-dimensional systems in this work consists of hydrogen atom states:

|1〉 = |s〉 , |2〉 = (|px〉+ i |py〉)/
√

2, |3〉 = (|px〉− i |py〉)/
√

2. (One-dimensional systems

follow similarly but are simpler and will not be described here.)

It is also necessary to obtain the matrix elements of the Hamiltonian from the

operator 2.10, and to do so we express it in the aforementioned basis. The diagonal

elements correspond to the energy relative to |1〉 (so H11 = 0 and H22 = H33 = ~ωa,
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where ~ωa is the transition energy between |1〉 and either of the degenerate states).

As an example, we expand the element H22:

〈2| (Ĥ0 − ~̂µ · ~E(t)) |2〉

= 〈2| Ĥ0 |2〉 − 〈2| ~̂µ · ~E(t) |2〉

= ~ωa −
∫

Ψ∗211(q~̂r · ~E)Ψ211d
3r

= ~ωa − q
∫

Ψ∗211(xEx + yEy)Ψ211d
3r

The integral involves integrals over spherical harmonics, which evaluate to zero for

H22. That is not always the case for the off-diagonal elements, which involve calcula-

tion of transition dipole moments.

Expanding the Hamiltonian in matrix form yields:


0 Ω−(t) −Ω+(t)

Ω+(t) ~ωa 0

−Ω−(t) 0 ~ωa

 (2.11)

Ω± = µsp[Ex(t)± iEy(t)]/
√

6, ~ωa is the transition energy, and µsp is the s-p matrix

element of the dipole moment operator (Sukharev and Nitzan, 2011). The matrix is

not diagonal as we are not using a basis of energy eigenstates, and thus the Liouville-

von Neumann equation will yield off-diagonal elements for the density matrix.

According to Eq. 2.10:

µ̂x = − ∂Ĥ
∂Ex

=
µsp√

6


0 −1 1

−1 0 0

1 0 0

 (2.12)
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and

µ̂y = − ∂Ĥ
∂Ey

=
µsp√

6


0 i i

−i 0 0

−i 0 0

 (2.13)

Eq. 2.11 is combined with Eq. 2.9 to yield the density matrix elements:

dρ11
dt

= iω+(ρ12 + ρ∗13)− iω−(ρ13 + ρ∗12) + γ1(ρ22 + ρ33)

dρ12
dt

= iωaρ12 − iω−(ρ22 − ρ11) + iω+ρ
∗
23 − γ2ρ12

dρ13
dt

= iωaρ13 + iω+(ρ33 − ρ11)− iω−ρ23 − γ2ρ13
dρ22
dt

= iω−ρ
∗
12 − iω+ρ12 − γ1ρ22

dρ23
dt

= −iω+(ρ13 + ρ∗12)− 2γ2ρ23

dρ33
dt

= iω−ρ13 − iω+ρ
∗
13 − γ1ρ33

ω± = Ω±/~ and γ2 = γp + γ1/2, where γp represents pure dephasing (Sukharev and

Nitzan, 2011).

In regions containing emitters, the fields are used to update the density matrix

elements via the Liouville-von Neumann equation. The expectation value of the dipole

moment operator is obtained by taking the trace of the product of the dipole moment

operator and the density matrix:

< ~µ >= Tr(ρ̂µ̂) (2.14)

The updated expectation value of the dipole moment is used to calculate the volume

polarization and then the polarization current of the emitters, which is subsequently
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Figure 2.1: Energy level diagram for emitters. The ground state is an s-type state
and the excited state consists of two p-type states.

inserted into the Ampere-Maxwell Law:

~P = na < ~µ > (2.15a)

~Jp =
∂ ~P

∂t
(2.15b)

na is the volume density of emitters, ~P is the polarization per unit volume, and

~Jp is the polarization current.

The approach is self-consistent in that all of the physics is described by the afore-

mentioned equations, with each equation getting all that it requires entirely from the

other equations.

2.4 Excitation and Detection

In the linear regime, when the frequency response of a system to external EM

excitation is independent from the excitation intensity, one can use a short pulse
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method to obtain the spectrum of the system within a single FDTD run (Sukharev

and Nitzan, 2011) rather than running a series of simulations with CW waves of

different frequencies. The reflection and / or transmission spectra are calculated

by launching a short pulse whose duration is on the order of femtoseconds at the

structure. The form of the pulse is such that its value is zero at t = 0 and t = τ and

its derivative is zero at those times which is important for numerical convergence.

(One example is E0 sin2(πt
τ

) cos(ωt).) The Poynting vector is formed by the cross

product of the Fourier transformed E- and H-fields (in runs with two dimensions,

ExHz). To obtain reflection spectra, this calculation is performed in the scattered-

field region, thereby measuring only the reflected fields. The transmission spectrum

is calculated in the total-field region. In two dimensions, the y-component of the

Poynting vector is spatially integrated across the grid.

A digital Fourier transform (DFT) (Taflove and Hagness, 2005) is used to integrate

the Poynting vector across the unit cell. This method multiplies the fields by phasor

functions at each time step. Because the fields are transformed on-the-fly, this method

requires much less memory than recording the fields at every point and transforming

at the end, which requires an array at every point of interest whose size is equal to the

(usually large) number of time steps. Thus, the slight performance penalty incurred

by using DFT is more than compensated for as it allows the inclusion of more grid

points in calculating integrated energy flux.
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Chapter 3

PERIODIC HYBRID MATERIALS AT OBLIQUE INCIDENCE

3.1 Oblique Incidence

It is very useful to be able to tilt the incoming wave. Infinite, repeating struc-

tures are modeled and therefore periodic boundary conditions (PBCs) are imposed

on a single unit cell. When PBCs are combined with obliquely incident waves, the

numerical situation becomes much more involved than one might expect. The work

presented in this chapter was published in Blake and Sukharev (2015a).

For normal incidence, the PBC can be applied by simply using fields from one

boundary to calculate fields at the other. For oblique incidence, however, one can

see from Fig. 3.1 that the fields on the right boundary are equal to those on the

left boundary at a time tdelay in the past. Applying the PBC at the right boundary

is straightforward: the field values at the left boundary are recorded and applied

at a time tdelay later. Matching the left boundary to the right, however, requires

that we know the fields at a time tdelay in the future which of course is not possible.

Several methods (spectral FDTD (Aminian and Rahmat-Samii, 2006), sin/cos (Harms

and Mittra, 1994), multiple unit cells (Taflove and Hagness, 2005), etc.) have been

developed to reconcile this issue, though many were cumbersome (sin/cos) or came

with excessive computing times (multiple unit cell).

A method developed by Todd Lee is both robust and straightforward (Lee and

Smith, 2005). The grid is broken up into two unit cells as shown in Fig. 3.1. The

fields in the good cell (on the right) are always accurate whereas the fields in the

bad cell (on the left) are subject to an error that fills the cell over time. Rather
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Figure 3.1: Error propagation and delay time in applying periodic boundary con-
ditions. The error propagates from the left boundary of the bad cell at the speed of
light in that medium. The periodic boundary condition is enforced on the left and
right boundaries of the good cell.

than enforce a PBC or an absorbing boundary on the left side of the bad cell, it is

simply left to propagate with a value of zero to the left of it. This causes an error

that propagates from the boundary at the speed of light, but the critical point is that

the wave reaches the right unit cell before the error does for θinc < 90◦. The wave
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propagates into the rightmost unit cell and is allowed to continue propagating until

the error from the left boundary reaches the rightmost unit cell. At that point, the

values in the right unit cell (which are still valid) are copied into the left unit cell, and

the right unit cell gets values pasted into it from a previous time step. This ensures

that there is no discontinuity in the wavefront. The process is allowed to run until

the error again reaches the right unit cell.

We tested this method thoroughly. The electric field updates properly and is

absorbed by the CPML boundaries, as expected. The simulation has been stable for

every geometry modeled and every angle of wave (up to and excluding 90◦).

To test the method, a dispersionless dielectric (n = 1.414) is placed on the lower

half of the grid and vacuum (n = 1.0) on the upper half. The reflection (R) and

transmission (T) values, which are derived from the Fresnel equations, were compared

with analytical values given by Griffiths (1998):

α =

√
1− [n1

n2
sinθi]2

cosθi
(3.1a)

β =
n2

n1

(3.1b)

T = αβ(
2

α + β
)2 (3.1c)

R = (
α− β
α + β

)2 (3.1d)

The results are shown in Fig. 3.2. The simulations were run with a spatial step

of 1.0 nm and for 300,000 time steps, which corresponds to a time of 500 fs. The

agreement between theory and the simulations is excellent.

The transmittance and reflectance were found to be identical at different frequen-

cies, which is expected given that this setup is dispersionless. Also, these values

remained constant as the grid was widened and / or lengthened. Additionally, the
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Figure 3.2: Comparison of analytical transmittance and reflectance showing accu-
rate results obtained from FDTD. a) Transmittance. b) Reflectance.

angles of reflection and refraction were found to behave as expected. The maximum

in the T graph and the minimum in the R graph correspond to a Brewster angle.

These comparisons with well-established but non-trivial theory give confidence

that the code is working correctly.

3.2 Problems with Critical Angle and Total Internal Reflection

Unfortunately, problems arise in using this copy/shift routine when one tries to

simulate total internal reflection (TIR). For this discussion, the top half of the grid

(region 1) will have n1 and the bottom half (region 2) will have n2 where n1 > n2. As

stated previously, the copy/shift routine assumes that an error travels from the left

boundary of the bad cell to the left boundary of the good cell in a time terror, which

must be greater than the time tdelay it takes for the periodic time to be reached. As

will be shown here, when the wave is launched from n1 to n2 at the critical angle or

greater, tdelay is equal to or greater than terror. In other words, once the time tdelay

is reached, the error has already propagated into the good unit cell. The simulation

must run for at least tdelay for the copying and shifting to take place and will therefore

not work under these conditions.
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Specifically, terror is the least amount of time it takes for the error to propagate

from the edge of the bad cell up to the good cell. This time can vary if different

regions of the grid have different indices of refraction. The entire grid is copied and

shifted at the same time, and this happens when the error reaches the boundary of

the good cell. In the region with the lower index of refraction, we have v2 = c/n2

which is greater than v1 = c/n1. Because the error travels faster in region 2, the time

that it takes for the error to reach the boundary in region 2 is used to calculate terror:

terror =
unit cell width

v2
=
unit cell width

( c
n2

)
=
n2 × unit cell width

c
(3.2)

The simulation must run for at least the region 1 delay time tdelay so that the

copy/shift routine can take place. First, it is shown that the delay time in region 1

is equal to that of region 2. The delay time in region 1 is:

tdelay1 =
unit cell width× sinθ1

v1
=
n1 × unit cell width× sinθ1

c
(3.3)

And the delay time in region 2 is:

tdelay2 =
unit cell width× sinθ2

v2
=
n2 × unit cell width× sinθ2

c
(3.4)

By Snells Law, n1sinθ1 = n2sinθ2 so the delay times are equal. If they were not

equal, this scheme would not work!

If the incident wave is launched from region 1 at the critical angle θc (so that by

Snells Law, sinθc = n2

n1
), then the delay time becomes:

tdelay1 =
n1 × unit cell width× sinθc

c
=
n1 × unit cell width× n2

n1

c

=
n2 × unit cell width

c
= terror
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And of course, any angle greater than the critical angle gives an even longer delay

time. So any angle below the critical angle works fine and any angle equal to or

greater than the critical angle will not work.

If one wishes to simulate a flat film, the film can simply be terminated instead of

having the PBC applied to it. Unwanted features that depend on the length of the

film will be present and these can be minimized (and moved to longer wavelengths)

by increasing the length of the film, leaving accurate results in the frequency region

of interest.

3.3 Exploration and Characterization of Sinusoidal Grating With and Without

Emitters

3.3.1 Bare Silver Gratings: Previous and Present Results

Plasmon-assisted tunneling of light through sinusoidal (corrugated) gratings is

examined in Avrutsky et al. (2000). The phenomenon of extraordinary optical trans-

mission (EOT) is well known in quantum optics and was first seen by shining light

through a thin film with a periodic array of holes and observing that the fraction of

light transmitted was greater than the fraction of the film covered in holes (Ebbesen

et al., 1998). It is shown in Treacy (1999) and Avrutsky et al. (2000) that a sinu-

soidal grating is not only capable of producing this effect, but able to do so with a

transmission peak that is stronger and more narrow than that of a periodic array of

holes. Transmission through thin films is also explored in Treacy (2002).

A sinusoidal grating of the form shown in Fig. 3.3 is studied. Such sinusoidal

gratings are investigated by Sukharev et al. (2009) and Mu et al. (2010). An in-phase

grating with single-ended excitation, a period of 410 nm, an amplitude of 28.8 nm

and thickness 20 nm is simulated, where it is shown that the symmetry of the grating
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Figure 3.3: Schematic of silver / emitter hybrid sinusoidal system.

is such that the quantity T+R (rather than T or R separately) can be minimized

for a single adjustable parameter, namely the grating amplitude. A graph of T + R

from Sukharev et al. (2009) reveals a gently curved region at low wavelengths and

SPP modes near 540 nm and 620 nm. Additionally, a Wood’s anomaly is present

at 532 nm (corresponding to a grating period of 400 nm and a refractive index of

1.33). This is a physical phenomenon that occurs when incoming and outgoing waves

interact with waves that diffract tangent to the grating (Hessel and Oliner, 1965).

A sinusoidal grating with period 400 nm, amplitude 70 nm, and thickness 20 nm

was run and the results are shown in Fig. 3.4. This spectrum, which compares well

to that in Sukharev et al. (2009) is taken as a starting point for analyzing sinusoidal

gratings. In addition to the two SPP modes seen in Fig. 3.4, a Wood’s Anomaly is

present at 3.1 eV. The energy of the Wood’s anomaly is as expected for a 400 nm
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Figure 3.4: It is encouraging to see features corresponding to those in (Sukharev
et al., 2009): a gently curving region at low energies, a Wood’s anomaly at 3.1 eV
corresponding to n = 1.0 and a period of 400 nm, a broad resonance at lower energy
and a narrow resonance at a higher energy. The simulation was run for 1× 106 time
steps (corresponding to a total time of 1.67 × 10−12 s). The spatial step size is 1.0
nm.

grating surrounded by a medium with a refractive index of 1.0, and it shifts to higher

energies when the grating period is shortened.

The period, amplitude and thickness of the grating were adjusted. It was found

that the previously mentioned period of 400 nm, amplitude of 70 nm and thickness

of 20 nm give well-defined features and these parameters were therefore used for the

simulations that followed.

As the incident wave is tilted it is expected that excitation of higher order Brillouin

zones will cause both SPP features to split and that is precisely what is seen. A

progression of T+R from 0 degrees to 10 degrees is shown in Fig. 3.5a and a contour

plot from 0 to 40 degrees is shown in Fig. 3.5b.
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Figure 3.5: Spectra of the sinusoidal grating as the incident angle is varied. Am-
plitude is 70 nm, thickness is 20 nm and the period is 400 nm. a) The lower energy
resonance (near 2.1 eV) begins to split at 2.29 degrees and this splitting clearly in-
creases as the angle is increased. The higher energy resonance (near 2.9 eV) appears to
have split at 2.29 degrees and the splitting becomes more pronounced as the incident
angle is increased. At 10 degree incidence the higher energy resonance is beginning
to overlap with the lower energy resonance. The Wood’s anomaly moves to higher
energies as expected. b) Contour plot showing the variation in the spectrum as in-
cident angle is varied. The higher energy SPP mode crosses the (split) lower energy
mode near an incident angle of 15 degrees. An observable avoided crossing might be
expected if the coupling between these modes were to be increased.

3.3.2 Oblique Incidence with Hybrid Silver / Emitter System

When oscillators are coupled (in this case, the oscillators are the SPPs and the

emitters), avoided crossing is expected in which the energies of the upper and lower

polaritons approach each other and reach a minimum separation value (Torma and

Barnes, 2015). In this case, the emitter resonance is placed at 2.7 eV and the angle

is swept from 0 to 10 degrees. Tilting the incident wave causes the SPP resonance

to split. This split resonance shifts as the incident wave is tilted, effectively sweeping

it across the emitter resonance. Coupling between the split SPP resonance and the

emitter resonance causes Rabi splitting into upper and lower polaritons and avoided

crossing is clearly demonstrated in Fig. 3.6.

In other simulations, the value of the emitter resonance is simply changed and

the simulation is run again. It must be emphasized that this is a different way of
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Figure 3.6: Avoided crossing is a signature of the strong coupling regime and is
demonstrated here. a) Avoided crossing is observed when the incident wave is tilted,
causing an SPP resonance to split and sweep past the emitter resonance. The quantity
T+R is indicated by the contours. b) Upper polariton (squares) and lower polariton
(circles) energies as a function of incident angle. The minimum energy separation is
on the order of 20 meV.

observing avoided crossing: the incident wave is tilted such that an SPP resonance

splits and as the incident wave is tilted further, this split resonance sweeps across the

emitter resonance.

It is pointed out in Torma and Barnes (2015) that one of the attractions of the

combination of having excitons as one of the oscillators and plasmon modes as the

other is the very extensive control we have over the plasmon modes supported by

metallic nanostructures. The geometry of the metallic structure can be adjusted to

tune the SPP features as desired. In order to investigate strong coupling, one can

prepare nanoscale slit arrays of varying periods with emitters deposited on top. This

effectively sweeps the SPP resonance through the emitter resonance. The simulations

performed in this work demonstrate the possibility of sweeping the SPP resonance

much more efficiently: one can tilt the incident wave, causing an SPP resonance to

split. As the incident wave is tilted, the split SPP feature sweeps past the emit-

ter resonance, eliminating the need to use multiple nano-structures with different

parameters.
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Chapter 4

V-GROOVES

4.1 Introduction

The major point of interest in this section is to scrutinize the electromagnetic

properties of molecular aggregates composed of simple two-level emitters strongly

coupled to SPP waves supported by plasmonic waveguides. A periodic array of V-

grooves was chosen as an example of such a waveguide. V-grooves are host to various

optical phenomena, many of which involve the intense, highly localized fields that

result from SPP waves. The work presented in this chapter was published in Blake

and Sukharev (2015c).

Theoretical studies have been conducted using the Green’s Function Integral

Equation Method (Bhushan, 2012), yielding well-defined reflection features that are

thought to result from surface plasmon polaritons, geometrical resonances, and a

Wood’s anomaly (Søndergaard and Bozhevolnyi, 2009). The origins of these features

are identified by their response to changes in the geometry of the grooves: period,

depth, groove angle, and angle of the incident fields. One point of interest is that one

type of resonance displays intensity that is distributed over the entire groove whereas

the intensity of another type is localized near the bottom of the groove.

A numerical investigation of how different SPPs interact with molecular aggre-

gates in both linear and nonlinear regimes is conducted. The latter is considered us-

ing pump-probe simulations (Sukharev et al., 2013). V-grooves offer two useful field

distributions with which to investigate the strong coupling regime and it is beneficial

to analyze unique phenomena such as the collective mode (discussed in Section 1.4,
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referred to as the ”third feature” in this section) in more than just one system, and

hence with different configurations of fields, in order to characterize the phenomena

more effectively. Additionally, we observe large Rabi splitting in the hybrid V-groove

system, and we demonstrate that Rabi splitting can be eliminated with a femtosecond

pump. The large Rabi splitting leads to substantial differences in the reflection spec-

trum compared to that of the uncoupled system, which suggests applications such as

an optical switch.

4.2 Model

All of the results presented herein use a two-dimensional grid in which the fields

Ex, Ey and Hz are evaluated in the x-y plane and the structure is taken to be infinitely

long in the z-direction, as shown in Fig. 4.1. The fields are propagated via FDTD,

the metal is described by the Drude model, and the time dynamics of the interaction

between the EM field and the molecular aggregate is described by the Liouville-von

Neumann equation.

The system under consideration is open in the y direction and periodic in x. We

add absorbing boundaries using convolutional perfectly matched layers (CPML) on

the top and the bottom of the grid as shown in Fig. 4.1. The left and right sides of

the grid are terminated with periodic boundary conditions (PBCs) and the incident

wave is introduced via a total field / scattered field (TFSF) approach (Taflove and

Hagness, 2005). A spatial step of 1.0 nm was selected as results are converged for this

spacing, which was demonstrated by obtaining the same data using a spatial size of

0.5 nm. A time step of dx/(2c) was chosen such that the Courant stability condition

is satisfied.

In the linear regime, when the frequency response of a system to external EM

excitation is independent from the incident intensity, one can use a short pulse method
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Figure 4.1: Schematic diagram of the system. The absorbing boundary conditions
are implemented as Convolutional Perfectly Matched Layers (CPML). The periodic
boundary conditions are imposed upon the left and right sides of the grid as indicated
by the dashed lines. The incident wave is introduced via a total-field / scattered-field
(TFSF) approach. The figure represents both the plane of incidence and the plane of
scattering. The incident field is p-polarized and is normally incident on the grating
as shown.

to obtain the spectrum of the system within a single FDTD run (Sukharev and Nitzan,

2011) as described earlier. Under the assumption that only the elastic scattering

contributes to the spectrum, the reflection is calculated by launching a short pulse (of

duration τ = 0.15fs and whose form is E0 sin2(πt
τ

) cos(ωt)) and spatially integrating

the y-component of the Poynting vector (formed by the cross product of the Fourier

transformed E- and H-fields; specifically, ExHz) along a line of constant y-value on

the input side. This calculation is performed in the scattered-field region, thereby

measuring only the reflected fields.

In order to account for all possible local field polarizations we consider quantum

emitters with two energy levels, one of which is degenerate: an s-type ground state and

two degenerate excited p-type states. In the basis of angular momentum, wave func-
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tions are chosen (Sukharev and Nitzan, 2011): |1〉 = |s〉 , |2〉 = (|px〉+i |py〉)/
√

2, |3〉 =

(|px〉 − i |py〉)/
√

2.

The following set of parameters describing a quantum emitter is used in this paper:

the transition dipole moment is 10 Debye and the radiationless lifetime of the excited

state is 1 ps. The number density and the pure dephasing time are varied.

4.3 Results and discussion

The intent of this paper is to scrutinize the optical properties of a periodic system

comprised of a periodic array of V-grooves in an optically thick silver film (the thick-

ness of the film in all simulations is 800 nm) that is optically coupled to quantum

emitters. We first consider a periodic array of V-grooves without emitters, followed

by a hybrid system consisting of emitters (all starting in the ground state) added into

the grooves, and finally this same system with an optical femtosecond pump applied.

The reflection spectrum of a bare silver grating with a 400 nm period obtained at

normal incidence is shown in Fig. 4.2a. Three well-resolved resonances are observed

with the energy of each depending on the geometrical parameters of the grating.

Both of the resonances at lower energy are thought to be of a plasmonic, rather than

geometrical, nature as each disappears when the conductivity of the metal is made

infinite (i.e. perfectly reflecting by forcing the electric field to have a value of zero

everywhere within the metal). The third resonance occurs at 3.09 eV, which corre-

sponds to a wavelength of 401 nm. This is extremely close to the grating wavelength

of 400 nm.

As noted in Søndergaard and Bozhevolnyi (2009), the intensity of the lower energy

resonance is distributed throughout the groove whereas that of the higher energy

resonance is localized near the bottom (see Fig. 4.2).

On account of each resonance being well-defined for this geometry, the remainder
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Figure 4.2: Linear optical response of bare V-grooves at normal incidence. Panel
(a) shows reflection spectrum of bare grooves with 400 nm period, 20 degree groove
angle and 200 nm groove depth. Panel (b) shows time-averaged intensity in the
bare groove when excited by CW plane wave at 1.2 eV. The intensity is distributed
throughout the groove. Panel (c) shows time-averaged intensity in the bare groove
when excited with CW plane wave at 2.255 eV. The intensity is localized near the
bottom of the groove. The contour data in panels (b) and (c) is logarithmic and
normalized to the incident intensity.

of this work (unless otherwise specified) will focus on V-grooves with a period of 400

nm, a groove angle of 20 degrees, a groove depth of 200 nm, and normally incident

fields.

We now consider the optical response of the system when emitters are added inside

the grooves. When the emitters are resonant to the structure, normal mode split-

ting (Rabi splitting) is clearly observed (Fig. 4.3a). The Rabi splitting reaches 380

meV. This amount of splitting is considered large for hybrid nanostructures (Schlather

et al., 2013). Either at high emitter densities or a large transition dipole moment a

third feature appears at or near the emitter resonance as can be seen in Fig. 4.3a

near 1.2 eV. This feature, which is not predicted by the coupled-oscillator model,

has been observed previously in simulations (Salomon et al., 2012; Sukharev et al.,

2013; Antosiewicz et al., 2014) as well as in experiments (Hutchison et al., 2011; Sa-

lomon et al., 2009; Sugawara et al., 2006). Several observations discussed in Salomon

et al. (2012) suggest that this peak has its origins in SPP enhanced emitter-emitter

interactions.
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To better understand the physics of this resonance we performed simulations grad-

ually varying either groove angle (Fig. 4.3b) or groove depth (Fig. 4.3c). Note that

the bare SPP lines plotted in Fig. 4.3b and 4.3c are clearly not linear with groove

angle or groove depth (see below). By varying the groove depth or angle, we sweep

the SPP resonance through the emitter’s mode. In the reflection spectrum we record

the energy positions of the lower and upper branch of the hybrid mode. This is car-

ried out at the emitter density of 3 × 1026 emitters/m3 (at which the third feature

is prominent) and the results are shown in Fig. 4.3b and 4.3c. The results clearly

indicate avoided crossing - an indication of the strong coupling due to efficient energy

exchange between the corresponding SPP mode and molecular excitons (in our case

these are simply two-level emitters). Next, the energy of the intermediate peak (green

triangles in Fig. 4.3b and c) does not deviate appreciably from the emitter resonance

even as the SPP resonance is tuned. Furthermore, this peak merges with the upper

polariton as the thickness of a spacer layer between the grating and emitters increases.

The dipole coupling between the emitters themselves is therefore suspected given the

fall-off of this peak as the SPP field at the emitters’ location decreases. Finally, a sim-

ulation was run in which the entire region containing emitters was replaced by a single

two-level system (essentially a spatially distributed single emitter with a very large

dipole moment), thereby eliminating any possible interaction between the emitters.

In this case, the third peak disappears even under extremely high coupling conditions.

This confirms earlier findings (Salomon et al., 2012; Antosiewicz et al., 2014) which

suggested that the intermediate resonance located in the middle of the Rabi splitting

corresponds to dipole-dipole interactions between emitters greatly enhanced by the

SPP mode.

The strong coupling regime is defined in Torma and Barnes (2015) as when the

coupling strength exceeds the linewidths of all damping processes and becomes exper-
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imentally observable. In order to verify the onset of strong coupling, the dephasing

time (and hence the linewidth of the emitter transition) was decreased from 400 fs

to 5 fs over several increments. Even with the emitter resonance tuned to the SPP

resonance (i.e. the strongest possible coupling), the Rabi splitting was not resolvable

for dephasing times of 20 fs and lower.

The dashed lines in Fig. 4.3b and 4.3c are calculations of the values of the upper

and lower polaritons using the coupled oscillator model. The coupled oscillator model

has been shown in Salomon et al. (2012) to give accurate results so long as the coupling

strength is not too high. The Hamiltonian of the coupled system is:

Em ∆

∆ Epl

 (4.1)

Epl is the SPP energy of the bare metallic grooves (obtained from simulations), Em

is the transition energy of uncoupled emitters, and 2∆ is the minimum Rabi splitting

value. The eigenvalues obtained are:

EU,L =
(Epl + Em)±

√
(Epl + Em)2 − 4∆2

2
(4.2)

EU,L are the energies of the upper or lower polaritons. In Fig. 4.3b, the comparison

to the coupled oscillator model is close whereas in Fig. 4.3c it deviates somewhat at

larger groove depths. In particular, we note that both the upper and lower polaritons

appear to be ”pinched” toward each other in Fig. 4.3c. We offer two possible expla-

nations for this. First, a large groove depth requires the incident fields to traverse a

larger length of emitters. More absorption takes place than for a shallower groove,

leading to decreased excitation of SPP waves near the bottom and therefore less cou-

pling. Second, the third feature may interact with the upper and lower polaritons at

greater groove depths in such a way as to reduce the coupling.
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Figure 4.3: Optics of periodic V-grooves coupled to quantum emitters. Panel (a)
shows the reflection for bare grooves (dashed line) and the reflection for grooves with
emitters is shown as a solid line (with emitters resonant at 1.2 eV). Panel (b) shows
the upper polariton (red squares), lower polariton (blue circles), and third resonant
mode (green triangles) as a function of the groove angle to sweep the SPP resonance
through the emitter resonance. Panel (c) shows the same modes as in panel (b)
but as functions of the groove depth to sweep the SPP resonance through the emitter
resonance. The horizontal black lines in panels (b) and (c) represent the fixed emitter
resonance, the curved black lines represent the SPP energy of the bare grooves for the
given geometry, and the dashed lines are values predicted by the coupled oscillator
model. The density of emitters is 3× 1026 emitters/m3.

While it is clear that many of the emitters are coupled to the SPPs, some may re-

main coupled only to the incident field (Agranovich and La Rocca, 2005) and thus act

as an absorbing layer. To better understand the overall optical coupling in spatially

distributed inhomogeneous hybrid systems, two different arrangements of emitters

49



are simulated: ”full” grooves and ”hollowed” grooves, as shown in Fig. 4.4a. In the

”full” grooves, the region of the grooves occupied by emitters is completely full of

emitters up to a given height, whereas in ”hollowed” grooves, the region of emitters

extends out sideways from either side of the groove by a fixed width (referred to as

”width of emitters” from here on). The grooves are illuminated with CW fields at

1.2 eV (uniform intensity, Fig. 4.2b) or 2.255 eV (localized intensity, Fig. 4.2c).

The Rabi splitting is observed as the area occupied by the emitters is varied. Fig.

4.4b shows that, for the distributed resonance, there is relatively little difference in

Rabi splitting when the same amount of area is occupied by the emitters for either full

or hollowed grooves, which demonstrates that the entire volume of emitters is indeed

coupled to the SPP waves. Given that coupling strength depends on field strength,

this is reasonable in light of the uniform distribution of intensity in the bare groove

at this frequency; the same Rabi splitting is achieved regardless of where a given area

of emitters is placed in the groove. In other words, for the distributed resonance we

expect (and observe) the Rabi splitting to scale with the number of emitters, which

is represented by the area within the groove that is occupied by the emitters. Fig.

4.4c shows that, for the localized resonance, a large increase in Rabi splitting occurs

as the area is increased from the bottom, but then it levels off to a constant value

well before the emitters reach the top of the groove. This is exactly what is expected

as the strong fields near the bottom of the groove give the strongest coupling. The

constant value of Rabi splitting is smaller for the lowest width of emitters (10 nm)

and this occurs because the fields above the bottom of the groove are weaker but not

zero (hence a larger hollow region loses some of the emitters coupled to those weaker

fields). A small jump occurs at the end of each graph in Fig. 4.4c and this is due to

the increased fields at the sharp corners of the groove. This jump occurs at smaller

areas for more hollowed grooves as they occupy less area when they extend to the top
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Figure 4.4: Spatially dependent coupling. The density of emitters is 1026

emitters/m3, the transition energy is 1.2 eV, and the pure dephasing time is 400
fs. As the height of the molecular aggregate is increased, the coupling for the dis-
tributed resonance increases continuously whereas that for the localized resonance
levels off quickly. Panel (a) shows schematics of ”full” grooves versus ”hollowed”
grooves. Panel (b) shows the Rabi splitting as a function of the area occupied by
the emitters for the more spatially distributed 1.2 eV resonance, where blue circles
indicate full grooves, red squares indicate hollowed grooves (width of emitter region
is 10nm) and green triangles indicate hollowed grooves (width of emitter region is
15 nm). Panel (c) is the same as panel (b) except the data is shown for the more
localized 2.255 eV resonance. The pure dephasing time is 600 fs.

of the groove.

All simulations discussed above begin with all of the emitters in the ground state.

One can pump the system by sending in a high-intensity pulse, thereby inducing Rabi

oscillations in the emitters. Below the time dynamics of a pumped hybrid system is

discussed. In particular, we observe how Rabi splitting depends on the ground state

population at the end of the pump.

First, the system is pumped with a 30 fs pulse, and it is subsequently probed with a

short, low-intensity pulse as it was in the linear regime. The Rabi splitting is obtained

from the reflection spectrum by calculating the difference in resonant energies for the

upper and lower polaritons. Fig. 4.5a shows Rabi splitting as a function of pump

amplitude at the end of the pump. Fig. 4.5b shows the ground state population,

averaged over the entire region of emitters at the end of the pump, as a function
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Figure 4.5: Pump-probe dynamics. Panel (a) shows Rabi splitting as a function
of pump amplitude. Each value is obtained by launching a short, low-intensity probe
pulse immediately after the pump. Panel (b) shows ground state population, ρ11, as
a function of pump amplitude. This value is averaged over the entire region occupied
by emitters and obtained at the end of the pump. The density of emitters is 1026

emitters/m3, the pure dephasing time is 400 fs, the transition energy is 1.2 eV, and
the duration of the pump is 30 fs.

of pump amplitude. Notice how the plot in Fig. 4.5b oscillates; this is because the

area under the pump pulse (which depends on both pump amplitude and duration)

determines the number of Rabi cycles (Allen and Eberly, 1975). Thus different pump

amplitudes generate greater or fewer Rabi oscillations, leading to different values of

the ground state population at the end of the pump.

Fig. 4.5 indicates that the amount of Rabi splitting depends on the ground state

population of the emitters, ρ11. We see that a large excited population of emitters

in the entire groove will reduce or eliminate the Rabi splitting whereas a smaller

excited population will yield larger Rabi splitting. We speculate that the coupling

may take on a different character in the non-linear regime, perhaps to the extent that

Rabi splitting is not the only indicator of coupling strength. Further investigation of

the optical properties of excited emitters coupled to plasmons is clearly warranted.

Also, the reduction of Rabi splitting with increasing excited state population may

be related to saturation effects that are observed (Vasa et al., 2010), in which an
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increasing pump energy ”reduces the exciton transition dipole density”, resulting in

the upper and lower polaritons acquiring structure and (for the larger pump energies)

causing uncoupling of SPPs and emitters from one another.

Although the changes of ρ11 are in step with changes in Rabi splitting, large

decreases of ρ11 do not always give a correspondingly large decrease in Rabi splitting

and this can be understood in terms of the non-uniformity of ρ11 throughout the

groove. In particular, the pumping fields arrive at deeper parts of the groove later

than they arrive at the top and the Rabi oscillations are not perfectly in phase with

one another along the length of the groove due to retardation. Additionally, the SPP

fields are inhomogeneous throughout the groove. Thus, the spatially averaged value

of ρ11 after the pump gives a good, though not ideal, indication of the subsequent

coupling to SPP fields.

Fig. 4.6a shows a spatial distribution of ρ11 at the end of 70 fs long pump. A

clear strong spatial variation of the ground state population is seen. In fact, the

variations of the ground state population are oscillations whose wavelength varies

somewhat over the region of emitters. One might surmise that the wavelength of

these oscillations is on the order of that of the pump, but it is actually significantly

smaller. To investigate this further, we numerically solve the Schrödinger equation

for a one-dimensional region of two-level atoms (finite along, say, the z-axis while

infinite along two others) subject to excitation from a pump.

Because we consider a one-dimensional region, retardation effects must be included

by using the retarded time t − z/v, where v is the speed of light in the medium in

the expression for the pulse. The retardation effects are revealed to be the cause

of the spatial modulations of the ground state population, as shown in Fig. 4.6b:

the temporal oscillations of the ground state probability are similar between adjacent

spatial points, but slightly shifted. Hence at a given time, adjacent points have
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Figure 4.6: Spatial modulations of the molecular ground state. Each run consists
of a 70 fs pump applied to the hybrid V-grooves system. The simulations shown in
panels (a), (c), and (d) are run with FDTD and the Liouville-von Neumann equation
whereas that in panel (b) is run by numerically integrating the Schrodinger equation
for a two-level atom. For panels (a), (c), and (d) the density is 1026 emitters/m3, the
pump amplitude is 7 × 108 V/m, and the dephasing time is 400 fs. Panel (a) shows
the fraction of emitters in the ground state. The characteristic length of spatial
modulations is much less than the pump wavelength of 1033 nm. Panel (b) shows
oscillations of the ground state population for two emitters separated by 50 nm. Panel
(c) shows that the group velocity at the transition frequency is less than c. The plot
displays two spikes. We hypothesize that these are numerical artifacts associated
with taking a finite derivative of the index of refraction in the region of anomalous
dispersion, as runs performed with a smaller spatial step result in smaller spikes.
Panel (d) shows the ground state population as a function of coordinate for the
system pumped on resonance (1.2 eV, solid line) and slightly off resonance (1.15 eV,
dashed line).

slightly different values of ground state probability. To further elucidate this idea, we

generated larger phase shifts in the temporal oscillations between nearby points by

adjusting two parameters: the pump amplitude and the propagation velocity of light
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in the emitter region.

For a larger pump amplitude, each emitter will undergo Rabi flopping more rapidly

in time. Thus a given phase shift between adjacent locations will lead to a larger shift

in the ground state population between those two locations. This was observed in

our simulations: in general, increasing the pump amplitude leads to an increase in

the number of spatial oscillations of the ground state population over the region of

emitters. For a slower group velocity, the pump takes longer to reach an adjacent

point, causing the temporal oscillations between two adjacent points to acquire a

larger phase difference. Our simulations allow for the adjustment of the group velocity

of light in the emitter region, and we see that a decrease in the group velocity results

in a greater number of spatial oscillations relative to a larger speed of light.

Fig. 4.6c shows that group velocity is decreased (in fact, negative since most emit-

ters are inverted) at the transition frequency of 1.2 eV, and it is higher away from

resonance. A negative group velocity is possible in inverted systems and has been ex-

perimentally observed (Wang et al., 2000). It is stated that this occurs when different

frequency components of a pulse interfere with one another (in a region of anomalous

dispersion) in such a way as to cause a resonant pulse to be advanced relative to a

non-resonant pulse traveling at c. We are assured by Siddiqui and Mojahedi (2003)

that this does not violate causality and that it occurs because the early parts of the

pulse are reshaped to resemble the later pulse. Furthermore, Woodley and Mojahedi

(2003) point out that in passing through a medium with negative group velocity, the

information transmitted by the pulse front suffers a positive and causal delay. Our

system was pumped (in separate runs) both on and off of resonance and Fig. 4.6d

shows that the wavelength of the spatial oscillations for the off resonance pump is

indeed increased relative to the on resonance pump on account of the latter having

a slower group velocity.
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All of these results indicate that retardation effects give rise to spatial oscillations

in the ground state population of the emitters contained within the groove. The larger

fields of the surface plasmons and the slower group velocity within the emitter region

surely enhance these spatial oscillations. It may be possible to use this phenomenon

to perform a new type of optical design using femtosecond pulses as a tool to craft

hybrid systems. Highly inhomogeneous spatial modulations of molecules lead to the

modified refractive index, which is appreciably anisotropic. One can envision an ex-

citing opportunity for a new research direction, in which both the geometry of metal

nanostructures and pump pulses govern the refractive index of the system. Further-

more one can apply optimization techniques such as genetic algorithms (Brixner and

Gerber, 2003), for instance, to design materials with desired optical properties.

4.4 Conclusion

The optical properties of the bare and hybrid V-groove systems have been ex-

plored under several different circumstances. Two SPP resonances with entirely dif-

ferent spatial distributions were shown. Optical coupling between quantum emitters

and SPP waves was thoroughly characterized by simulating different groove geome-

tries and spatial configurations of emitters’ distributions within the grooves. The

value of Rabi splitting was shown to vary with the pumping intensity and in accord

with the ground state population. An explanation of this awaits a more developed

understanding of coupling in the non-linear regime. Spatial oscillations of the ground

state population of emitters within the groove are shown to be the result of field

retardation. This work puts forth several suggestions for experimental investigation

of coupling in hybrid systems, most notably an investigation of the time dynamics of

coupling when the system is pumped with different intensities.
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Chapter 5

PHOTON ECHOES

5.1 Introduction

The work presented in this chapter will be submitted for publication (Blake and

Sukharev, 2016).

Free induction decay is a well-documented phenomenon that was demonstrated in

nuclear magnetic resonance (NMR) and is also observed in optics (Allen and Eberly,

1975). A population of two-level emitters can exist in which all emitters have the

same ”central” transition energy but each is detuned by some amount from this

central energy due to inhomogeneous broadening, which can result from conditions

such as Doppler shift in individual gas molecules or variations in E-field from point

to point in a solid (Mandel and Wolf, 1995).

The total polarization of an ensemble of two-level emitters is of course the sum

of each individual contribution from every emitter of the ensemble. Given that the

energies of the emitters in the ensemble are described by a distribution, each indi-

vidual emitter will oscillate at a frequency that is slightly different from the others.

As a result, all of the emitters will oscillate in phase at first, but they will all (for a

realistic number of emitters) dephase within a characteristic inhomogeneous lifetime

and, if left alone, never rephase again (Allen and Eberly, 1975).

However, for times less than the natural lifetime of the emitter, each emitter is

still oscillating. If one inverts the system by applying a π pulse, the oscillations will

all ”run in reverse”, resulting in a subsequent rephasing. The ensemble polarizes once

again, and a ”photon echo” signal is observed.
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This technique is widely used in chemistry and is referred to as photon echo spec-

troscopy. Inhomogeneous effects due to variations in an emitter’s surroundings cause

each emitter to oscillate at a slightly different frequency than the others, and photon

echo spectroscopy ”removes” this effect. Any remaining dephasing is irreversible by

the echo technique, and is revealed as diminished intensity of the echo (Cho et al.,

1992). For example, as the delay in applying the π pulse increases, the natural life-

time of the emitters causes all of their oscillations to decrease, resulting in an echo

with lower intensity.

Additionally, the recovery of a signal after dephasing offers prospects for memory

storage. In Langer et al. (2014), the optical properties are ”copied” to a spin system

whose lifetime is much longer than that of the optical system thus extending the

duration of the system’s memory.

We consider an ensemble of two-level emitters and introduce a model that in-

corporates a distribution of detuned energies. This corresponds to inhomogeneous

broadening and will be referred to as such from here on. We discuss the fact that

after initial excitation of a point-like ensemble of non-interacting emitters, free induc-

tion decay occurs followed by spontaneous rephasing. This spontaneous rephasing is

unphysical for a realistic number of emitters and we discuss how to avoid this. We

show that application of a π/2 pulse to a 1-D ensemble followed by application of a

π pulse generates a photon echo signal. The density of emitters in this ensemble is

varied and the strength of the echo is considered in terms of the transmission and

reflection of the ensemble. Finally, we investigate the photon echo of two hybrid

systems, metallic slits and a metallic cylinder, each combined with inhomogeneously

broadened two-level emitters. The schematics of each system are shown in Fig. 5.1.
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Figure 5.1: Schematics of the systems under consideration. a) 1-D ensemble. b)
Slits with emitters. c) Core-shell nanoparticle.

5.2 Model

As in all previous sections, the FDTD method is used to generate and propagate

fields and the Liouville-von Neumann equation describes the time dynamics of the

emitters.

A normalized Gaussian distribution G is used to describe the energies of the atoms

in the ensemble. The width of this distribution is referred to as the inhomogeneous

broadening. The distribution is normalized such that:

∑
kk

G(kk) = 1 (5.1)

where kk corresponds to a specific energy in the distribution. This distribution is

multiplied by a given density, giving the density of atoms at each energy.

The following set of parameters describing a quantum emitter is used in this paper:

the transition dipole moment is 10 Debye and the radiationless lifetime of the excited

state is 1 ps.
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5.3 Results and Discussion

In the absence of damping processes, the polarization of an ensemble of emitters

with a distribution of only a few energies (compared to a realistic number) excited

by a π/2 pulse corresponding to the central energy will undergo free induction decay

and then spontaneously rephase periodically afterward. As the number of energies

(points) on the Gaussian curve is increased, the time between rephasings increases.

For a realistic number of emitters, the rephasing time of course becomes infinite

(Allen and Eberly, 1975). We therefore work within an amount of time for which no

spontaneous rephasings occur.

The π/2-π-echo sequence is shown in Fig. 5.2. τ1 corresponds to the time between

the maximum of the π/2 pulse and the π pulse, and τ2 corresponds to the time between

the maximum of the π pulse and the maximum of the echo. These times are roughly

equal as they should be (Mandel and Wolf, 1995). An ensemble is excited by a

π/2 pulse which then undergoes free induction decay. A π pulse is applied, and the

maximum of the photon echo signal is observed at time τ1 + τ2 after the maximum

of the π/2 pulse. In this simulation, emitters at a point are driven by external fields

but do not emit their own fields and thus, the polarization current dP/dt is plotted

and used as an indication of rephasing.

The ensemble treated thus far has been a collection of emitters at a single point.

In order to determine the influence of collective effects on the echo amplitude, an

extended one-dimensional ensemble of emitters is driven by incident fields. We allow

emitters within the ensemble to interact with each other through the fields that each

one emits via polarization current.

In the linear regime, the transmission and reflection broaden and flatten as the

inhomogeneous broadening is increased. A representative transmission spectrum is
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Figure 5.2: The π/2-π-echo sequence. The photon echo signal occurs after appli-
cation of a π/2 pulse followed by a π pulse to an ensemble of two-level emitters all
located at a single point with a Gaussian distribution of energies.

shown in Fig. 5.3. More importantly, the transmission decreases toward 0 and the re-

flection increases toward 1 as the density increases beyond 1026 m−3 as demonstrated

in Puthumpally-Joseph et al. (2014). Distortion is observed in the edges of the spec-

tral features due to increasing interference between the reflected signals from varying

depths of the ensemble. This is also noted in Puthumpally-Joseph et al. (2014).

We apply the π/2 and π pulses, then record the integral of the echo field squared

on both the input and output sides. This is performed for several densities, ensemble

lengths, and values of inhomogeneous broadening and the results are shown in Fig.

5.4. On both sides of the ensemble, the echo amplitude increases with density for lower

densities but, in many instances, decreases sharply at higher densities. This can be

understood in terms of how the transmission and reflection of the ensemble vary with

density. At higher densities, the reflection approaches 1 and the transmission becomes

very small as previously discussed. Thus, the driving fields don’t make it as far into

the ensemble for higher densities.

This is verified in Fig. 5.5 where it is seen that, for a higher density, the ground
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Figure 5.3: Transmission spectrum for a 1-D ensemble of interacting emitters with
and without inhomogeneous broadening (IB). Length is 200 nm and density is 1025

m−3.

state population ρ11 tends toward 1 as we look farther into the ensemble; the driving

fields are smaller and therefore do not drive the emitters through π/2 oscillations.

With this in mind, it makes sense that the echo on the output side drops off at

higher densities: more and more of the ensemble (toward the output side) ceases to

participate in the echo at higher densities, and the echo from the input side is not

able to travel through the ensemble to the output side. Furthermore, we see that for

the shortest (200 nm) ensembles, the echo signal continues to increase or does not

drop as sharply on the input side, as there is less interference from deeper regions of

the ensemble.

We now turn our attention to a hybrid system of metallic slits and two-level

62



0 1 2 3 4 5

Density (m−3 ) 1e26

0

2000

4000

6000

8000

10000

12000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Input: Broad IB

200nm
400nm
600nm

0 1 2 3 4 5

Density (m−3 ) 1e26

0

500

1000

1500

2000

2500

3000

3500

4000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Input: Intermediate IB

200nm
400nm
600nm

0 1 2 3 4 5

Density (m−3 ) 1e26

0

500

1000

1500

2000

2500

3000

3500

4000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Input: Narrow IB

200nm
400nm
600nm

0 1 2 3 4 5

Density (m−3 ) 1e26

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Output: Broad IB

200nm
400nm
600nm

0 1 2 3 4 5

Density (m−3 ) 1e26

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Output: Intermediate IB

200nm
400nm
600nm

0 1 2 3 4 5

Density (m−3 ) 1e26

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

In
te

g
ra

l 
o
f 

[E
(t

)]
2

Output: Narrow IB

200nm
400nm
600nm

Figure 5.4: Photon echo energy on the input and output sides of a 1-D ensemble.
Density, ensemble length, and inhomogeneous broadening are varied. The signal
increases with density at lower densities and in several cases drops sharply at higher
densities, which is attributed to highly increased reflection.
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Figure 5.5: Ground state population along the 1-D ensemble of emitters. The
ensemble is 400 nm in length. Density is: a) 1025 m−3 b) 1026 m−3
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Figure 5.6: Linear transmission spectra of slits system. Film thickness is 200 nm
and slit width is 140 nm. a) Bare metal slits with different periods showing SPP
resonance. b) Hybrid slits, whose emitters include inhomogeneous broadening, with
different periods.

emitters with inhomogeneous broadening. The bare metallic grating exhibits a surface

plasmon resonance in the form of enhanced transmission and decreased reflection.

Adding two-level emitters with no inhomogeneous broadening and probing in the

linear regime results in Rabi splitting into an upper and lower polariton. When the

two-level emitters are given inhomogeneous broadening and we again probe in the

linear regime, the Rabi splitting is still present but it is smoother and more gentle

than without the distribution. Fig. 5.6 shows transmission spectra for bare slits and

for hybrid slits whose emitters are inhomogeneously broadened.

We apply the π/2 - π - echo sequence to the hybrid system and observe the x-

component of the electric field on both the input and output side of the system for

the duration of the echo. What is seen is very different from the echo generated by

the 1-D ensemble: for this system, an echo with a double-peaked structure is observed

(Figs. 5.7 and 5.9), and an FFT of the echo signal reveals two peaks. We proceed to
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Figure 5.7: Double-peaked photon echo from hybrid system consisting of metallic
slits and two-level emitters with inhomogeneous broadening. The density is 1026 m−3

and the thickness of the film of emitters is 20 nm. A spacer of varying thickness is
inserted between the film and the slits, and the double-peaked structure gradually
reduces to a single peak as the spacer thickness is increased. The spacer lengths (from
left to right) are 0 nm, 5 nm, 25 nm, and 75 nm.

show that this double-peaked structure has its origin in the interaction between the

surface plasmons and the emitters.

Surface plasmons are intense and localized to within nanometers of the metallic

structure. In order to ascertain whether the double-peak is influenced by surface

plasmons, we insert a (vacuum) spacer layer of variable thickness between the film

of emitters and the slits. As the spacer thickness is increased, the film is moved

into progressively weaker plasmon fields. As shown in Fig. 5.7, the double-peaked

structure of the echo gradually disappears as the spacer thickness is increased.

Proceeding with the idea that the double peak is caused by surface plasmons, we

consider a different hybrid system consisting of a metallic cylinder surrounded by a

shell of two-level emitters with inhomogeneous broadening. The bare metallic cylinder

shows a plasmon resonance at 3.59 eV; the scattered field intensity is enhanced at

this energy. Linear spectra of scattered field intensity are shown in Fig. 5.8 for a bare

metal cylinder and for a hybrid cylinder with inhomogeneously broadened emitters.
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Figure 5.8: Linear spectra of core-shell system. Cylinder radius is 25 nm. a) Bare
metal cylinder showing SPP resonance. b) Hybrid system, whose emitters include
inhomogeneous broadening.
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Figure 5.9: Photon echo from a hybrid system consisting of a core-shell cylinder.
The core is metallic and the shell consists of two-level emitters with inhomogeneous
broadening. In order to illustrate the plasmonic origin of the double-peaked echo
structure, the central energy of the two-level emitter distribution is detuned from the
plasmon resonance of 3.59 eV. The central energies are (from left to right) 3.50 eV,
3.40 eV, 3.30 eV, and 3.09 eV.
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Figure 5.10: Double-peaked echo from an ensemble of inhomogeneously broadened
emitters located at a point. The double-peaked photon echo is reproduced by driving
the emitters with a superposition of pulses with two different driving frequencies.

To minimize the interaction between the two-level emitters and the surface plasmons,

the central energy of the distribution of emitters is detuned by varying amounts from

the plasmon resonance. As shown in Fig. 5.9, this results in the gradual loss of

the double-peak structure in the echo. Detuning was also applied to the hybrid slits

system, both by adjusting the emitters’ central energy as well as adjusting the slit

period (and therefore altering the surface plasmon energy). As expected, the double-

peak structure disappeared in each instance as detuning was increased.

We are confident that the double-peaked echo is caused by surface plasmons, and

we further speculate that the double peak structure is the signature of the upper and

lower polaritons that form as a result of strong coupling between surface plasmons and

emitters. A precise correspondence between the upper and lower polariton energies

and the two peaks in the echo spectrum was difficult to obtain for several reasons.
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First, the energies of the peaks in the FFT of the echo signal were very sensitive to

the sampling range. As the range was changed, the double-peak structure remained

roughly the same but the energies of the peaks shifted. Secondly, we sought a relation

between the upper and lower polariton amplitudes in the linear spectrum versus the

height of the FFT peaks, but a larger peak in the linear spectrum does not necessarily

correspond to a stronger peak in the FFT spectrum as the echo depends on rephasing,

and the upper and lower polariton energies may be asymmetrically detuned from the

central energy, leading to a weaker rephasing of one component or the other. Finally,

spatial inhomogeneities of the fields also complicate the matter in that some emitters

may be driven through more or less than the ”correct” π/2 - π sequence. In spite of

these difficulties, we find some reassurance in that a double-peaked echo is able to be

reproduced by driving emitters at a point with a superposition of pulses with slightly

different driving energies as shown in Fig. 5.10. Though simpler, this is analogous to

a hybrid system being driven by its hybrid modes.

5.4 Conclusion

We have demonstrated that our numerical methods reproduce photon echoes and

we have characterized the echo from a one-dimensional ensemble in terms of density,

ensemble length, and amount of inhomogeneous braodening. The double-peaked echo

from two hybrid systems is shown by various different means to be of plasmonic origin,

with the double-peaked structure likely resulting from the hybrid modes of the system.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this work, a method of launching obliquely incident waves was implemented for

hybrid systems. It is limited in some situations, but still proves insightful in studying

the coupling between emitters and a metallic nanoscale structure. V-grooves were

thoroughly studied: the coupling in the linear regime was characterized by varying

the groove parameters and also by placing emitters within the groove in different

geometries and observing the coupling at the resonance energies. In this system,

coupling strength is in step with ground state population. Slow light is responsible

for spatial variations of the ground state population within the emitters, as verified

by adjusting parameters that determine field retardation. Photon echoes from an

ensemble of inhomogeneously broadened emitters at a point were successfully simu-

lated, followed by the analysis of the photon echo from a 1-D ensemble of interacting

emitters. Finally, the photon echoes from two hybrid systems were observed to have a

unique double-peaked structure, due in all probability to the coupling between surface

plasmons and the emitters.

It would be intriguing to carry out experiments with v-grooves in both the lin-

ear and non-linear regimes to see how well the results correspond to those of the

simulations. Assuming that an array of v-grooves could be fabricated as in the sim-

ulations (such that the array supports a mode with uniform intensity and one with

localized intensity), the Rabi splitting corresponding to emitters carefully distributed

in various spatial arrangements within each groove should show no dependence upon

the arrangement for the uniform mode whereas it should for the localized mode. A

pump-probe setup showing Rabi splitting as the pump amplitude is varied would re-
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veal changes in coupling due to the emitters being driven through Rabi oscillations.

A series of simulations that takes advantage of slow light could be run in which the

spatial oscillations of the ground state population are specifically arranged in vari-

ous ways by a short, high-intensity pump, ”crafting” different configurations of the

emitters within the groove and identifying their corresponding optical properties. It

would be exciting to compare these predicted properties with experimental work.

Photon echoes in hybrid systems and 1-D ensembles of interacting emitters are rel-

atively unexplored. An experimental exploration of the photon echo in 1-D ensembles

of interacting emitters is called for, as a very simple prediction is made: as molecular

density increases, the echo strength on the output side will increase until reflection

increases substantially, at which point the echo strength plummets. The photon echo

associated with a hybrid system especially warrants further theoretical and experi-

mental attention: simply observing the double-peaked structure of the photon echo

in a hybrid system would be significant, and ascertaining the influence of plasmons on

the echo structure (by adding a spacer layer or by detuning the plasmon and emitter

resonances) would be even more so. Simulating different types of systems or adjusting

the π/2 - π sequence in the simulations as well as the molecular parameters could

provide a more accurate correspondence between the upper and lower polaritons and

the energy of each peak in an FFT of the echo.

All in all, many of the theoretical results described in this work present compelling

opportunities for experimental work and for further theoretical study.
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