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ABSTRACT

Access control has been historically recognized as an effective technique for ensuring

that computer systems preserve important security properties. Recently, attribute-

based access control (ABAC) has emerged as a new paradigm to provide access me-

diation by leveraging the concept of attributes: observable properties that become

relevant under a certain security context and are exhibited by the entities normally

involved in the mediation process, namely, end-users and protected resources. Also

recently, independently-run organizations from the private and public sectors have

recognized the benefits of engaging in multi-disciplinary research collaborations that

involve sharing sensitive proprietary resources such as scientific data, networking ca-

pabilities and computation time and have recognized ABAC as the paradigm that

suits their needs for restricting the way such resources are to be shared with each

other. In such a setting, a robust yet flexible access mediation scheme is crucial to

guarantee participants are granted access to such resources in a safe and secure man-

ner. However, no consensus exists either in the literature with respect to a formal

model that clearly defines the way the components depicted in ABAC should interact

with each other, so that the rigorous study of security properties to be effectively

pursued. This dissertation proposes an approach tailored to provide a well-defined

and formal definition of ABAC, including a description on how attributes exhib-

ited by different independent organizations are to be leveraged for mediating access

to shared resources, by allowing for collaborating parties to engage in federations

for the specification, discovery, evaluation and communication of attributes, poli-

cies, and access mediation decisions. In addition, a software assurance framework

is introduced to support the correct construction of enforcement mechanisms imple-

menting our approach by leveraging validation and verification techniques based on

software assertions, namely, design by contract (DBC) and behavioral interface spec-
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ification languages (BISL). Finally, this dissertation also proposes a distributed trust

framework that allows for exchanging recommendations on the perceived reputations

of members of our proposed federations, in such a way that the level of trust of

previously-unknown participants can be properly assessed for the purposes of access

mediation.
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Chapter 1

INTRODUCTION

In the last decades, modern societies have experienced a dramatic change due

to the widespread introduction of computing infrastructures, which now influence

almost every aspect of daily life. As computer systems become more sophisticated

and efficient, they are becoming the core of many activities in both the public and

private sectors. As an example, end-users now leverage mobile and web applications

to perform tasks such as schooling, banking, shopping or traveling. In addition, web-

sites and system administrators are currently gathering data about users, including

usage patterns, either in a direct way, e.g., by asking a student to register to an on-

line course, or in a concealed way: tracking cookies and IP addresses when shopping

for later analysis. Such data, commonly known as a digital footprint (Girardin et al.

(2008)), should also be leveraged on favorable and convenient terms for the end-users.

For such a purpose, organizations may partner with each other to safely exchange in-

formation about end-users and running environments request for security purposes

to mediate access to protected resources. As an example, in recent years, worldwide

research-oriented institutions have engaged in active, high-performance and highly-

collaborative projects that demand the shared consumption of resources, e.g, scien-

tific data and distributed computation time. For instance, large amounts of data

are transferred daily between independent high-performance computing facilities by

using dedicated networking channels, allowing scientists to fully collaborate on the

processing of data that may potentially lead to groundbreaking new discoveries.

As of today, security measurements in such collaborative projects are configured

and maintained in a manual basis. For instance, authentication and authorization
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are implemented by manually creating, configuring, and communicating credentials,

e.g., by sending them over standard email attachments, and by deploying hetero-

geneous enforcement modules to restrict the nature, amount, and the physical lo-

cation of resources to be shared in the context of a collaborative project. Such a

task has been identified as tedious and error-prone as the aforementioned institu-

tions currently depict complex in-house systems that handle a considerable num-

ber of end-users and must accommodate an equally increasing number of new col-

laborative projects on a daily basis, which greatly affects their reliability, scalabil-

ity, and deployment time. As an example, the energy sciences network (ESnet)

(US Department of Energy (2015)), currently supported by the United States Depart-

ment of Energy (DoE), provides high-performance networking capabilities for approx-

imately 40,000 users located in 128 DoE-sponsored research centers. ESnet also sup-

ports collaborative projects with international scientific-oriented organizations such

as GÉANT (Europe’s National Research and Education Networks (NRENs) (2015))

and NORDUnet (Nordic Council of Ministers (2015)) in Europe, as well as other

organizations in Asia and the Americas, thus making the complete replacement of

existing security infrastructure not viable.

With this in mind, providing a robust, flexible, scalable, and easy-to-understand

approach that leverages independently-run systems and data for the automated speci-

fication, administration, and runtime enforcement of authentication and authorization

policies is extremely desired.

In the context of collaborative projects, attribute-based access control (ABAC)

(Hu et al. (2014)) as been recognized as a convenient way to mediate access to shared

resources. Using ABAC, rich yet flexible policies can be created by leveraging at-

tributes: well-defined security-relevant properties that are exhibited by the entities

involved in the process of authorization and authentication, namely, end-users, re-
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sources, and environmental infrastructures such as operating and file systems, cre-

dential management centers, network deployments, etc. As an example, policies re-

stricting access to inter-organizational network connections may be defined using

attributes obtained directly from the network infrastructure itself, (e.g., bandwidth

capabilities), the data to be transferred (e.g., origin and size), and from the end-

users attempting the connection, such as locally-defined credentials. However, no

standard model describing ABAC exists in literature that formally defines its main

components, the interactions between them, and the way attributes originated from

independent heterogeneous organizations are to be leveraged for specifying and en-

forcing policies tailored for collaborative projects. In addition, there is a need for

dedicated frameworks that can be used to verify that an ABAC solution is imple-

mented correctly at the source-code level by participant organizations, thus ensuring

the security guarantees as depicted by a theoretical model are indeed preserved in

real-life implementations.

1.1 Thesis Statement

We now introduce the main hypothesis that is developed throughout this disser-

tation:

Attributes can be leveraged for providing a federated access management solution

to support collaborations between independently-running organizations, which use the

same or different access control models, enforcement mechanisms, as well as assur-

ance and conformance frameworks.

This dissertation provides the following contributions towards supporting such an

hypothesis:
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1. Lately, approaches based on the concept of federations such as Shibboleth

(Morgan et al. (2004)) and OpenID (Recordon and Reed (2006)) have been

shown to be extremely useful for independently-run organizations to collab-

orate with each other for the purposes of authentication, at the same time they

maintain their independence with respect to the administration of local security

infrastructures, e.g., credential-based systems. Following this intuition, this dis-

sertation starts by describing the challenges involved in providing a well-defined

theoretical model for ABAC in the context of collaborative access management.

Later, the duties and responsibilities involved in a solution that allows for par-

ticipant organizations to engage in federations for the specification, discovery,

and communication of attributes, policies, and access mediation decisions are

described. This way, rich yet flexible policies can be specified and enforced, al-

lowing for attributes defined in an intra-organizational (local) scope to be used

in wider inter-organizational (federated) contexts, thus allowing for participant

organizations to engage in safe collaborations while keeping full control of the

decision making process, e.g., what to share, when to share, and who to share

to.

2. Next, the challenges as well as a solution for a reference implementation of

the theoretical model described above is presented, in such a way that it can

potentially serve as a guidance for participant organizations to independently

implement our proposed federations in a customized way, e.g., by reusing ex-

isting security infrastructures, without having to provide a complete solution

from scratch.

3. In addition, in order to support the detection and removal of security vulnerabil-

ities in the implementation of ABAC approaches for collaborations, this disser-
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tation introduces an assurance and conformance framework at the source-code

level based on the concept of software assertions (Rosenblum (1995)), and the

use of existing techniques based upon them, such as design by contract (Hoare

(1969)) and behavioral interface specification languages (BISL) (Burdy et al.

(2003)). We will provide a description of the research challenges involved in

fulfilling such a goal, as well as the description of a systematic solution that in-

volves the participation of different actors in the software development process,

namely architects, designers, coders, and testers.

4. Finally, as our proposed solution is expected to accommodate for an increasing

number of both participant organizations as well as collaborative projects, this

dissertation also presents the design and implementation of a trust management

framework (Ruohomaa and Kutvonen (2005)), in such a way that participants

can exchange recommendations on the perceived trust of other participants they

have interacted with in this past, thus removing the need for all participants

to know each other before engaging in new collaborative projects that involve

resource sharing.

1.2 Dissertation Outline

This dissertation is organized as follows: it starts by providing some background

in Chapter 2. Next, the challenges involved in providing a solution for our proposed

federated access management (FAM) are presented in Chapter 3. Later, a theoretical

model solving such challenges is discussed in Chapter 4. Next, a description is intro-

duced on a proof-of-concept enforcement mechanism for FAM in Chapter 5, followed

by an approach tailored for providing assurance guarantees when constructing such

mechanism in Chapter 6. Later, this dissertation proposes an approach for manag-

ing trust between different collaborating organizations in Chapter 7. Related work

5



is reviewed in Chapter 8 and future work, as well as some discussion on the topics

addressed in this dissertation is discussed in Chapter 9. Finally, some concluding

remarks are delivered in Chapter 10.

6



Chapter 2

BACKGROUND

2.1 Collaborative Environments

Recently, emerging technologies such as cloud computing (Armbrust et al. (2010))

have opened new possibilities for resource sharing in the context of collaborative

projects within different organizations. As an example, partner organizations can

now outsource data repositories and computation time to clouds and allow for other

cloud tenants to access those resources based on a previously-defined agreement. In

addition, collaborative research efforts may also benefit from similar settings by allow-

ing data to be transferred and processed in operational centers or clouds that happen

to be located remotely. Such a paradigm may not only include scheduling for effec-

tive resource sharing within a given cloud, but may also require data being efficiently

transferred within different independently-managed networks. Recently, other emerg-

ing technologies such as software-defined networks (SDN) (Monsanto et al. (2013))

have addressed this problem in the context of locally-managed intra-organizational

resources, e.g., a single network domain under control of a single organization. How-

ever, to fully obtain the benefits of inter-organizational projects, an automated solu-

tion that considers both distributed and independently-run networks and resources

is needed. With this in mind, several organizations providing high-performance net-

working capabilities have recently engaged into a collaborative effort for providing

advanced resource sharing, e.g., path and bandwidth scheduling over distributed and

independently-operated networks, in such a way that collaborations involving big

data and high-performance computational requirements can be better supported.
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Figure 2.1: A Collaborative Setting Between Independent Organizations.

As an example, the Open Grid Forum (OGF) (Forum (2015)) introduced a multi-

organizational effort called the network services interface (NSI) (Open Grid Forum

(2015)) that is composed of a set of well-defined protocols that allow participant orga-

nizations to collaborate on research endeavors by implementing inter-organizational

services in an automated way. The protocol devised for a given NSI service is imple-

mented by so-called network service agents (NSA) which are expected to support all

service-related tasks within the context of a given administrative domain. Fig. 2.1

shows an example depicting a data transfer between two hosts that are located within

the administrative boundaries of two different organizations and whose networking

path involves the participation of a third network serving as a bridge. In this example,

each participating network implements the protocol devised for the NSI connection

service by means of a dedicated NSA: a connection request R is first serviced by the

local NSA where R originates (NSA1 in Fig. 2.1). On each network, the local NSA

is in charge of reserving local ports and bandwidth to create a connection within its

network boundaries. NSA1 is also in charge of contacting the other NSAs involved

in serving R (NSA2 and NSA3) so that they can make reservations within their inner

networks. In addition, all involved NSAs must handle network connections between

independent networks by physically interconnecting any relevant service termination

points (STPs), which are abstract (high-level) representations of actual network ports
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and are labeled from A to F in Fig. 2.1. Once the connection path between the source

and destination hosts is completed, the requested data transfer takes place.

2.2 Access Control Models

Access control, also known as authorization, has been historically recognized as

an effective paradigm for providing security guarantees in computer-based systems.

For instance, industry and academic researchers, as well as security and military

agencies, have recognized since the early 1970’s the need to provide well-defined rules

for mediating access to sensitive resources, e.g., confidential data and information

(Ferrari (2010)). In addition, identifying and verifying that software systems correctly

follow such mediation rules was also identified as an emerging trend. An access control

model is intended to unambiguously describe the interactions between the different

entities that participate in an access mediation process. Such entities may include

actors, e.g., end-users (human beings) and subjects (computer programs acting on

behalf of end-users), a set of targets, e.g., protected resources, and a set of access

rights, also commonly referred as permissions. As an example, an authorization

model is expected to describe under which circumstances a given permission is to

be granted or denied to a given end-user upon an access request. Such interactions

are commonly described in the literature using formal mathematical approaches, e.g.,

set theory. Using an authorization model, policies can be specified and later enforced

within a computer system. In addition, models may serve as a guide for implementing

such enforcement mechanisms in a software system, and may also serve as a means

for the psychological acceptance and understanding of the process of access mediation

for both security officers and end-users. Over the years, several authorization models

were introduced to better capture the specific needs of particular organizations and

computer settings. Notable examples include discretionary access control (DAC)
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(Ahn (2009)), mandatory access control (MAC) (Upadhyaya (2011)), and role-based

access control (RBAC) (Sandhu et al. (1996)).

2.3 Attribute-based Access Control

Recently, attribute-based access control (ABAC) (Hu et al. (2014)) has emerged

as a novel and interesting paradigm for mediating access to sensitive resources within

software systems. In ABAC, a given access control request, e.g., reading a confiden-

tial data file, is granted upon the satisfaction of constraints involving security-relevant

properties, also known as attributes, that are exhibited by the access control entities

involved in the request. Commonly, such entities include the aforementioned actors

and targets, as well as any applicable context, i.e., the running environment where

a given software system is executed, such as an operative system or a cloud setting

(Rubio-Medrano et al. (2013b)). Constraints may be defined by using standard com-

parison operators (e.g., <, >, =, etc.) as well as domain-dependent boolean functions

over either predefined values or attributes. Constraints may also be related to other

constraints using boolean operators (e.g. and, or, not). Attribute provisioning is the

process of generating a given attribute and assigning it to a given entity, such that

the attribute can be effectively leveraged for making access decisions. Such a process

includes the discovery, creation, assignment, and communication of a given attribute.

The entity, e.g., a domain controller, that generates a given attribute is called the

attribute source. The entity assigning the attribute is known as the provider. Be-

cause many different constraints can be potentially created based on an equally large

variety of attributes, ABAC has been found to be convenient for the specification

of rich yet flexible authorization policies. In addition, it is suggested in literature

that ABAC may serve as a theoretical foundation for representing other well-known

access control models that have been largely discussed in literature and also widely
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Figure 2.2: A Combined Use Case Depicting ABAC in a Collaboration Setting.

implemented in practice such as RBAC (Jin et al. (2012)).

Fig. 2.2 provides a graphical depiction of a sample ABAC policy that is to be

enforced when actors request a data file (resource) to be transferred from a server

located in their local network to a server located in another network (environment),

depicting a use case like the one presented in Fig. 2.1. Such an access right is rep-

resented by a permission named TransferFilePermission, which is only granted if

the following constraints are met: first, the constraint C 1 requires the actor issuing

the request to be a member of a certain collaborative group, namely group G. Second,

the size of the data file to be transferred must be less or equal to 10 TB (constraint

C 2). Finally, constraint C 3 requires the available transfer bandwidth within each of

the participating networks should be greater or equal to 1 Gbit/s.
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2.4 Assertion-based Verification and Validation

The process of verification and validation has been a critical step to ensure soft-

ware systems observe their expected runtime behavior, e.g., they do what they are

supposed to when executed. Among the many existing techniques for such a purpose

(D’silva et al. (2008)), software assertions (Rosenblum (1995)) are defined as formal

constraints intended to precisely describe such runtime behavior and are commonly

written as annotations at the source code level. Using assertions, developers can

specify what conditions are expected to be valid before and after a certain portion of

code is executed, e.g., the range of values that the parameter of a given function is

allowed to take. Design by contract (DBC) (Hoare (1969)) is a software development

methodology based on assertions and the assumption that the creators as well as

the prospective consumer developers of a given software module establish a contract

that must be followed for the module to be used correctly. Commonly, such a con-

tract is defined in terms of assertions in the form of pre and post conditions, among

other related constructs. Before using a DBC-based software module M, consumers

must make sure that M ’s preconditions hold. In a similar fashion, creators must

guarantee that M ’s postconditions hold once it has finished execution, assuming its

corresponding preconditions were satisfied beforehand.

The Java modeling language (JML) (Burdy et al. (2003)), is a behavioral interface

specification language (BISL) for Java, with a rich support for DBC contracts. Using

JML, the behavior of Java modules can be specified using pre- and postconditions, as

well as class invariants, which are commonly expressed in the form of assertions, and

are added to Java source code as comments such as //@ or /*@...@*/. For illustrative

purposes, consider the DBC/JML contract shown in Fig. 2.3, which describes the ex-

pected runtime behavior of a Java method called transfer, which in turn implements
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the collaborative case described in Fig. 2.1. Informally, the contract can be described

as follows: a successful data transfer, represented by a return value true, will take

place only if the both the parameters representing the destination IP address and the

destination port are well-formatted and the file to be transferred exists in the local

file system. If any of these conditions is not met, the transfer will not take place and

false will be returned as a result. For simplicity, other potential issues present in

real-life deployments, e.g., networking problems are elided.

The contract makes use of the model fields sourceIP and sourcePort (lines 3–

4). In JML, it is possible to define model fields, methods and classes (Cheon et al.

(2005)), which differ from their regular (concrete) counterparts in the sense they are

used for specification purposes only, in an effort to better describe a given JML con-

tract in a higher level of abstraction, without worrying about how it is implemented

at the source code level. As an example, the model field sourceIP, shown in line 3,

is used to provide an abstract representation of the IP address held by the physical

machine where a Java class implementing the FileTransfer interface resides. Fol-

lowing JML rules, such a class will be required to provide a suitable implementation

for the sourceIP model field. In addition, the contract can be described by using

two specification cases. In JML, specification cases that are expected to terminate

normally, that is, without diverging nor throwing exceptions at runtime, are defined

by means of the normal behavior. Conversely, cases that allow a method to throw

a runtime exception are denoted by means of the exceptional behavior keyword.

The first case, shown in lines 10–17, contains preconditions (defined by means of the

requires keyword) requiring the method parameter file (of type java.io.File)

not to be null. In addition, the data file represented by such a parameter is also re-

quired to exist in the local file system, as depicted by the invocation of the exists()

method. Finally, both the destIP and destPort must also be within some predefined
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1 public interface FileTransfer {

2

3 //@ public model String sourceIP ;

4 //@ public model int sourcePort ;

5

6 //@ public invariant sourceIP != null &&

7 //@ sourceIP . length () > 0;

8 //@ public invariant sourcePort > 0;

9

10 /*@ public normal_behavior

11 @ requires file != null &&

12 @ file. exists () &&

13 @ destIP != null &&

14 @ destIP . length () > 0 &&

15 @ destPort > 0 &&

16 @ destPort <= 8080;

17 @ ensures \ result == true ;

18 @ also

19 @ public normal_behavior

20 @ requires file == null ||

21 @ !file. exists () ||

22 @ destIP == null ||

23 @ destIP . length () <= 0 ||

24 @ destPort <= 0 ||

25 @ destPort > 8080;

26 @ ensures \ result == false ;

27 @*/

28 public /*@ pure @*/ boolean transfer (File file ,

29 String destIP ,

30 int destPort );

Figure 2.3: An Excerpt of a JML-annotated Java Interface.
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parameters (lines 13–16). Postconditions for the first case, which are defined by the

ensures keyword, guarantee that the result of the method, assuming the aforemen-

tioned preconditions have been met, will be the value true. In a similar fashion,

the second specification case, shown in lines 19–26, ensures the method will return a

value of false if any of the preconditions listed above is not met before the method

gets executed. Because the transfer method is not allowed to modify the set of

memory locations, e.g. instance variables or model fields, that are accessible to the

FileTransfer interface, the method is regarded as pure in line 28. Finally, lines 6–8

depict assertions representing invariants: the model field sourceIP is never allowed

to be null or to have a length less than zero. In addition, the model field sourcePort

must be always greater than zero.

Over the years, a suite of verification and validation tools supporting DBC/JML

contracts has been developed (Burdy et al. (2005)). As an example, JET (Cheon

(2007)) is a dedicated tool tailored for providing automated unit testing of JML-

specified Java modules. Using JET, testers can verify the correctness of a Java module

by checking the implementation of each of its methods (either public, protected or pri-

vate) against their corresponding JML specifications. The contract of a given method

M is used as a test oracle, by first translating it into runtime assertion checking (RAC)

code. Then, proper values (either primitive or reference ones) are randomly created

for each of M ’s formal parameters, and compared to check compliance status against

the RAC code created for M ’s precondition. If such a precondition is satisfied, a valid

test case is said to be created. Otherwise, the test case is said to be useless, so it is

discarded. If the test case is found to be valid, M ’s body is executed. If any exception

not devised for M is thrown, the test case is regarded as failed. Otherwise, the RAC

code for M ’s postcondition is executed. If such a postcondition is satisfied, the test

is regarded as a success, otherwise, it is regarded as failed. Many different test cases
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can be created for M after different combinations of values for M ’s parameters are

created by JET. Each of these test cases is evaluated in a different execution thread.

Ideally, if M meets its corresponding JML specifications, all valid test cases should

ultimately be evaluated to a success.

In another example, ESCJava/2 (Burdy et al. (2003)) is a tool supporting JML

specifications that is based on a theorem prover and internally builds verification

conditions (VCs) from both the analyzed source code and its corresponding JML

specifications, which the theorem prover then attempts to prove, thus allowing for the

automated analysis of whole code modules without actually running the applications,

e.g., no test cases need to be generated. In particular, ESCJava/2 leverages modular

reasoning (Flanagan et al. (2002)), which is regarded as an effective technique when

used in combination with static checking since code sections can be analyzed and their

JML-based specifications can be proved by inspecting the specification contracts of

the methods they call within their method bodies.

2.5 Trust Management Systems

In the scenario depicted in Chapter 2.1, collaborative tasks are commonly carried

on by peers that implement resource sharing, e.g., data and network infrastructure,

on the basis of previously-arranged collaboration agreements (either formal or not)

that clearly specify the purposes of the collaboration, the amount of resources to

be shared, as well as the individuals who will be granted access to such resources.

Such a solution, while convenient in the context of a small number of both collabo-

rative projects and participant organizations, may not fully escalate to incorporate

an increasing number of participants as well as a dynamically-changing number of

resources to be shared over constant and variable periods of time. As an example,

research collaborations following our running example depicted in Fig. 2.1 are ex-
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pected to consume dynamically allocated amounts of network bandwidth as well as

a varying number of data files belonging to an equally varying number of end-users.

As collaborations grow in both size and nature, new organizations may be willing

to engage in such partnerships and may be also willing to consume or provide new

shared resources with other participants, thus complicating the establishment of ded-

icated agreements for resource sharing between all participants and also resulting in a

possible administrative burden that may require multiple system-level configurations

in order to all of these new collaborations to take place, e.g., issuing local credentials,

updating access mediation policies, configuring firewall systems, etc.

In the past, numerous approaches have been developed in the context of trust

management systems (Blaze et al. (1996)) to provide support for operations, e.g., col-

laborative resource sharing, between different organizations and individuals who may

have not previously known each other and may have not arranged in a well-defined

interaction agreement beforehand. In such a context, trust can be defined as the

extent in which one party is willing to participate in a given action with a given part-

ner, considering the risks and incentives involved (Ruohomaa and Kutvonen (2005)).

Moreover, in the context of collaborative resource sharing, the peer providing a shared

resource can be known as the trustor, whereas the peer getting access to it can be

known as the trustee. In addition, risk may involve exposing valuable assets, e.g.,

the aforementioned data and network facilities, to possible acts of misbehavior such

as attacks or abuse in the consumption of resources, e.g., monopolizing bandwidth

capabilities in detriment of other potential users or peers. Therefore, before engaging

into a possibly-risky operation with an untrusted peer P, resource owners may want

to assess a level of trustiness on P so they can decide whether or not to proceed.

In other to alleviate this problem, literature has presented approaches based on

taking into account the perception about a certain participant peer as created by a
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history of past interactions with other peers (Hendrikx et al. (2015)). Such a con-

cept, commonly known as reputation (Ruohomaa and Kutvonen (2005)), may take

into account previously-perceived behavior as observed by a certain number of peers

with respect to the actions, e.g., resource consumption, as conducted by a given peer.

When information about the reputation of a previously-unknown peer P is required,

participant peers may exchange a recommendation message clearly stating the repu-

tation of P in a way an interested requester can process it, e.g., by using a common

numerical scale. As an example, in Fig. 2.1, Net 3 may be willing to share a rec-

ommendation on the perceived reputation of Net 2 with Net 1, assuming Net 2 is

unknown to Net 1, but still required for the whole data file transfer process as it

serves as a bridge for connecting the networks of Net 1 and Net 3. Also, such an

example assumes Net 1 and Net 3 have a previously trust relationship themselves, in

such a way that Net 1 is willing to request and accept recommendations from Net 3.

Following such an example, participants should be allowed to define their own repu-

tation scores based on a commonly-understood framework, e.g., by using a numerical

scale that can also serve for the purposes of combining (aggregating) the reputation

scores provided by a set of independent peers. Such a aggregation process may then

be based on mathematically-based techniques such as summation, average, weighting

and normalization (Hendrikx et al. (2015)). Finally, reputation scores should be up-

dated over time, in an effort to better capture the observed behavior of peers whose

reputation is being assessed. For such a purpose, a recommender peer may implement

its own in-house history tracking scheme which may take into account the history of

previous interactions or may also rely on a well-defined reputation evolution frame-

work that is established in the context of a given collaborative project. A possible

scenario for such a reputation evolution framework may include awarding positive

scores for transactions that were conducted within expected bounds and awarding
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negative scores for transactions that ultimately resulted in an abuse in the utilization

of a shared resource, e.g., consuming more bandwidth than expected, or resulted in

unwanted activities that may have compromised the overall security of the shared

resources or its supporting operating framework, e.g., a hacking incident.
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Chapter 3

PROBLEM STATEMENT

This chapter is intended to identify the research challenges involved in developing

an approach for federated access management that combines ABAC and the concept

of inter-organizational collaborative efforts. It starts by describing the challenges

identified for ABAC itself, and then moves on to address the challenges involved

in mediating access for resources shared between independently-run organizations.

Later, this chapter discusses the challenges in implementing an assurance and con-

formance framework that includes support for the assertion-based construction of

software modules implementing the approach presented in this dissertation as well as

a framework for the purposes of trust management between participant organizations

.

3.1 A Theoretical Model Leveraging ABAC

As introduced in Chapter 1, an approach for FAM should strive to provide a

formal description on the way different organizations are to exchange security-related

information, a.k.a., attributes, for the purposes of access management. Therefore, it

becomes necessary to provide a well-defined description, a.k.a., a model, of ABAC in

such a way that security guarantees with respect to FAM can be made. With this

in mind, the set of features that are desirable in such a model can be articulated as

follows:

Attribute Definition. A proposed model should strive to provide an unambigu-

ous definition of attributes, the main component underlying ABAC. That includes a
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proper way to specify the format of attributes, e.g., a naming convention, data types

and value sets.

Constraints Definition. A model for ABAC should also provide a well-defined

description of constraints based on attributes, which are also core to the model itself,

as described in Chapter 2. As an example, a formal description of constraints should

define under which circumstances they are to be evaluated and their expected result,

if any. Referring to Fig. 2.2 and the policy described in Chapter 2.3, a reference model

for ABAC should support the C 1, C 2, and C 3 defined upon attributes obtained from

different organizations.

Model Formalization. In addition, a formal description of a model for FAM must

be provided. As an example, the relationships between its different composing ele-

ments, such as end-users, attributes and access rights (permissions), should be de-

scribed in a well-defined, mathematically-based way, e.g., using set theory, semantic

descriptions, etc. This way, further source-code level implementations can be unam-

biguously developed by precisely defining how components interact with each other.

In addition, further validation and verification techniques can be potentially devel-

oped based on such a formal description, as it will be detailed in Chapter 6.

Security State. A model for FAM should also include a well-defined description

of how attributes may influence the security state of a given software system, e.g., by

satisfying attribute-based constraints related to access rights, so proper reasoning on

security properties can be done as a result. As an example, the access decision result-

ing of evaluating the policy described in Chapter 2.3 could be potentially modeled as

an access token to be issued to the requesting end-user for a certain period of time,

in a similar fashion to the approach implemented by well-known methodologies such
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as Kerberos (Neuman and Ts’o (1994)) or OAuth (Jones and Hardt (2012)).

Methodology Independence. A model supporting ABAC should be independent

of any technology or methodology, e.g., it should be agnostic to any underlying frame-

work in such a way that it can be implemented without requiring the mandatory a

priori installation of supporting technologies, thus allowing for independent organiza-

tions to customize their implementations to better fit their own needs without having

to accommodate additional requirements.

3.2 Collaborative Environments

As shown in the illustrative case depicted in Fig. 2.1, collaborations may involve

the sharing of proprietary resources between independent organizations that are re-

motely located from each other, e.g., scientists in organization Net 1 may want to

leverage the computational facilities offered by organization Net 3 by transferring a

considerable amount of data to the well-equipped processing servers located within the

boundaries of Net 3. As of today, such a setting would include leveraging the existing

high-performance capabilities of each of the three networks to manually schedule for

the data to be transferred, e.g., manually configuring supporting networking equip-

ment such as routers and switches. In addition, security settings must be manually

configured as well: creation and communication of new credentials, update of exist-

ing policies, configuration of firewalls and networks, etc. In such a context, incorrect

configurations can also potentially open the door for non-trivial security vulnerabil-

ities, e.g., granting more privileges than required to perform a certain task. With

this in mind, a solution for providing access management guarantees for collaborative

settings should accommodate for the following:
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Intra and Inter-organizational Policies. Participants should be allowed to de-

fine both intra-organizational and inter-organizational policies governing the way a

given resource is to be shared in the context of a collaboration. As an example, each

organization depicted in Fig. 2.1 may want to enforce its own set of access policies

for resources being shared within a local context. In addition, organizations may

favor the creation of inter-organizational policies to mediate access when a request

is being issued from an external collaborative organization. Following our running

example, the policy depicted in Fig. 2.2 could be implemented as a part of an agree-

ment between the involved organizations to better mediate the way data connections

are established.

Reusing Existing Infrastructure. Participants should be allowed to leverage

their own in-house authorization systems, which may in turn handle their own set of

local credentials and possibly their own set of locally-relevant attributes. This may

potentially result in problems such as attribute incompatibility (Paci et al. (2009)) or

different attributes being assigned to the same entity by different domains, e.g., users

getting credentials issued in the context of different collaborative projects, possibly

resulting in a large set of credentials to be handled. In such a context, organizations

may not favor a complete replacement of their current authentication and access

control modules, as that may involve an unfeasible organizational effort and monetary

cost.

Attribute Derivation. In practice, every access control entity, e.g., an end-user or

a protected resource, that is involved in servicing a given access request, is expected to

provide a set of attributes, e.g., user credentials or access certificates, which may have

been assigned either by its local security domain or by an external one. When evaluat-
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ing a given policy P, entities such as end-users must show the attributes required from

them in the context of P. If such attributes are not shown, e.g., they are not available

even when they may have been legitimately assigned beforehand, the evaluation of

P may fail as a result, thus possibly causing legitimate access to be denied. Also in

practice, attributes are commonly assumed to exist at policy evaluation time, either

locally or remotely, e.g., stored in a dedicated centralized database, or may be in turn

derived by processing other related attributes. However, existing infrastructures are

not capable of seamlessly locating and transforming attributes in a distributed setting

such as the one depicted by independently-run organizations. As an example, each

of the organizations depicted in Fig. 2.2 is expected to provide a bandwidth attribute

obtained from real-time network configuration settings. As each network may in turn

manage its own dedicated network infrastructure systems, a proper setting should be

in place to allow for such values to be extracted and transformed into a well-defined

format that can be properly understood by other organizations for access mediation

purposes.

Support for Authorization. Finally, existing approaches for inter-organizational

security, e.g., OpenID (Recordon and Reed (2006)) and Shibboleth (Morgan et al.

(2004)), are focused on authentication: support for authorization is limited and is

mostly left for third parties to implement from scratch, e.g., attribute and policy

definition, discovery, and evaluation. An approach for access management between

independently-run organizations should leverage the experience obtained from such

popular approaches to introduce well-defined authorization mechanisms that can be

understood and enforced by participants in an efficient and secure way.
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3.3 Enforcement Mechanisms

Based on the discussion introduced in Chapter 1, this section elaborates on the

challenges devised for an enforcement mechanism that is intended to implement the

approach depicted in Chapter 3.1 and Chapter 3.2, which is to be introduced in

Chapter 4.

Policy Discovery and Evaluation. As mentioned in Chapter 3.2, collaborative

organizations should be allowed to define both intra-organizational (local) as well as

inter-organizational (federated) policies for mediating resource sharing. As an initial

step, the set of policies (both local and federated) relevant to a given access request,

should be properly located. In the context of independently-run organizations, poli-

cies could be potentially stored in repositories located either locally, e.g., a local

database, or in a remote peer. Later, a policy that happens to be physically stored

and evaluated within a given domain may end up being enforced in different domains,

following a predefined collaboration agreement.

Incorporation with Domain-specific Functionality. In addition, there is a

need to resolve inter-domain policies on-the-fly, e.g, incorporating policy evaluation

with domain-specific functionality such as the data transfer connection depicted in

our running example in Fig. 2.1. For such a purpose, the policy discovery, retrieval

and evaluation process should be carried on as efficiently as possible, in such a way

that the performance delay introduced by such a process can be potentially dimin-

ished. Moreover, a proper interface between the policy evaluation modules and any

other relevant software components should be provided, e.g., implementing the autho-

rization mechanism as a client service that can be invoked by external domain-specific

components.
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Attribute Provisioning. As described in Chapter 3.2, the policy evaluation pro-

cess may rely on the runtime collection of attributes originated in different participant

peers. For such a purpose, there is a need to standardize the creation and maintenance

of automated attribute provisioning schemes, as different organizations may leverage

attributes assigned to many different access entities. Moreover, each organization

may in turn define their own internal processing for handling attributes. Therefore, a

protocol for the proper discovery, retrieval, and communication of attributes is highly

desired.

Reuse of Existing Infrastructure. As stated in Chapter 1, participant organiza-

tions may not favor the complete replacement of existing security-related infrastruc-

ture within their local domains, e.g., credential-based systems tailored for end-users.

Therefore, an enforcement mechanism depicting our approach should encourage the

reuse of existing infrastructure as much as possible.

Scalability and Platform Independence. Since an approach for access man-

agement in the context of collaborations is extended to serve a considerable num-

ber of participant organizations and collaborative projects, scalability and platform-

independence must be also considered as a required feature. In addition, the process

of joining the approach to be proposed in this dissertation should be carried on in an

efficient and prompt way, e.g., without requiring complicated setups or introductory

procedures that may complicate the adoption of the approach for interested organi-

zations.

Decentralized Implementation. Due to the independently-run nature of the par-

ticipants involved in collaborative settings, a decentralized architecture becomes de-

sirable. This way, no central node, e.g., a shared policy repository, may be needed for
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an access mediation approach to become operational, thus possibly alleviating any

politic-centric trouble, e.g., participants not willing to fully delegate policy evalua-

tion tasks to other participants. At the same time, potential denial of service (DoS)

attacks (Needham (1993)), which typically flourish in centralized approaches, may be

also significantly reduced.

3.4 Assurance and Conformance

As introduced in Chapter 1, this dissertation aims to provide a framework that can

ensure the overall deployment of an inter-organizational solution for access manage-

ment is done in a correct way, that is, it provides correct access mediation for shared

resources at the same time it encourages participants to actively engage in different

collaborative projects. As a first step, a correct implementation of an access manage-

ment mechanism at the wide inter-organizational level should focus on the way each

participating organization implements it independently at the source-code level. As

a second step, as the number of participant organizations, as well as the number of

collaborations is expected to increase over time, an initial assumption requiring all

participants to know and trust each other beforehand may no longer hold. Therefore,

participants should be able to assess a degree of trust on participants with they have

had no interaction with in the past. With this in mind, this chapter discusses the

challenges as well as a set of desired features involved in providing an assurance and

conformance framework that combines the two steps just mentioned before.

3.4.1 Implementing Enforcement Mechanisms

Verifying and Validating Independent Implementations. As it has been an-

ticipated in Chapter 3.3, the approach proposed in this dissertation relies on partic-

ipant organizations implementing a set of protocols for mediating access to shared
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resources. In such a context, the overall security of a given collaboration project may

heavily rely on participants implementing our approach in a correct way at the source

code level, as any deviation from the expected behavior may ultimately result in non-

trivial security vulnerabilities, e.g., allowing unintended access to sensitive resources.

With this in mind, there is a need for a framework that allows participants to con-

struct, verify and validate their own independent implementations of our approach for

access mediation, in such a way that the shortcomings just mentioned can be better

avoided, thus encouraging the development of new collaborative projects that involve

resource sharing as a result.

Supporting Extensibility and Customization. In addition, there is a need to

allow for participant organization to further extend and customize our proposed ap-

proach to better meet their specific organizational and community-wide needs. As an

example, participants within a certain federation may want to introduce their own

attribute derivations as discussed before in this chapter. Therefore, support must be

provided for the verification and validation of software modules implementing cus-

tomized behavior, such as the attribute derivations just mentioned.

Supporting Integration of In-House Systems. As mentioned in Chapter 1

and Chapter 3.3, participant organizations are expected to leverage already-existing

security-enforcement mechanisms, e.g., credential based systems, as their complete

replacement may not be feasible due to organizational costs and deployment time.

As such systems are expected to be integrated with our proposed approach, there is

a need to ensure such integration is done in a correct way by providing support for

the construction, verification and validation of source-code level implementations.
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3.4.2 Managing Trust Between Participants

Trusting Unknown Participants. As mentioned before in Chapter 1, the num-

ber of collaborations between independently-run organizations is expected to grow

over time due to the many benefits that engaging in such projects may offer: access

to resources such as data, computation time, etc., as well as by the ultimate bene-

fits intended for such endeavors, e.g., providing support for groundbreaking research

discoveries. As the number of participant organizations grow, the establishment of

trust relationships between all of them may get complicated. As an example, within

a reduced number of collaborative partners, trust relationships may be developed

between each other in such a way that each participant establishes resource sharing

agreements with each potential partner. Such agreements may ultimately result in

access mediation policies (either local or federated, as introduced in Chapter 3.2) that

may be enforced at runtime. However, as the number of participant organizations

grow, the establishment of such agreements may not be completely feasible, forcing

participants to interact with previously-unknown peers with whom there is no history

of previous interactions for the purposes of the enforcement of access mediation to

shared resources.

Incorporating Security-based Functionality. Moreover, the perception of trust

assigned to other participants should be incorporated into security-related function-

ality, in such a way that the level of trust assigned to a given interacting peer has a

direct impact on security decisions, e.g., access mediation. As an example, leverag-

ing the approach proposed in this dissertation, mutually-trusted partners may also

agree on the way attributes are to be provisioned, as introduced in Chapter 3.1, thus

allowing all parties to recognize and leverage each other’s attribute in a safely way.
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Fine-grained Trust Relationships. In addition, as collaborative projects may

include different organizational groups, entities or even end-users, trust relationships

may evolve differently over time, depending on the success or failure of each individual

project. Therefore, there is a need for an approach that allows for participants to

establish trust relationships at a fine-grained level, starting from the organizational

one, all the way down to research groups and even individual end-users.

Providing a Mathematical Foundation. An approach tailored to provide trust

management in the context of collaborative organizations may also require a mathe-

matical-based foundation, in such a way that participating peers can model their

perceptions on the trustiness of another peers based on a numerical scale, which can

be later used to combine the scores as provided by different peers in a straightforward

and easy-to-understand way, e.g., by performing a mathematical summation or an

average as suggested by (Hendrikx et al. (2015)). This way, participants can calculate

a perception of trust by collecting reputation scores from different sources. Such a

process should be carried on periodically, possibly at runtime, before engaging into

resource sharing operations with peers whose trust cannot be determined from direct

first-hand experience. Conversely, peers should be allowed to update their reputation

scores on other peers over time, as a response to changes in the history of shared

transactions.

Leveraging Previous Community-wide Experience. In addition, peers should

also be allowed to take into account the trust scores provided by other known peers

with whom a highly-scored trust relationship has been developed in the past. This

way, the scores provided by highly-trusted peers should be prioritized over the ones

provided by other peers not in the same category, leveraging previous experiences
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obtained from a community-wide context. For instance, following the example intro-

duced in Chapter 2.5, Net 3 may be able to share its perceived trust score on Net 2,

which can be later used by Net 1 to determine if Net 2 should be trusted for the file

transfer process depicted in Fig. 2.1. Assuming Net 1 trusts Net 3 beforehand, the

shared trust score will be taken into account when deciding if Net 2 should be trusted

or not.

Providing a Decentralized Approach. Finally, a trust management framework

supporting our approach should also follow the distributed architecture foreseen in

Chapter 3.3. As an example, peers should be allowed to maintain their own local

scores about their perceived reputation of other peers. In addition, peers should be

allowed to share those with other peers (as suggested by the example introduced

before) without the need of relying on a centralize node or set of nodes, thus staying

true to the architectural design objectives introduced in previous chapters at the same

time removing the chances of having nodes that might become attractive for hacking

attacks, e.g., the aforementioned denial of service (DoS) ones (Needham (1993)).
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Chapter 4

A THEORETICAL MODEL

In order to solve the challenges for inter-organizational access management de-

scribed in Chapter 3.1, we propose that participant organizations engage in highly-

collaborative and well-structured associations, also called as federations, for the provi-

sioning (specification, generation, and communication) and the use of both attributes

and policies to mediate access to shared resources. As depicted in a recent report

by the National Institute for Standards and Technology (NIST) (Hu et al. (2014)),

proper provisioning mechanisms may become a crucial component for the successful

development of new technologies and infrastructures based on attributes. With this

in mind, this chapter presents the core component of the overall federated access man-

agement that is discussed as a part of this dissertation. We start by first providing

a conceptual definition of our proposed approach in Chapter 4.1. Later, we provide

a formalization of our federated access management model in Chapter 4.2. Later,

Chapter 9.1.1 provides some discussion on the way the approach presented in this

chapter solves the challenges for inter-organizational access management described in

Chapter 3.1.

4.1 Conceptual Model

As described in Chapter 1 and in Chapter 3, our approach is to be based on the

utilization of attributes for access mediation purposes. With this in mind, we envision

participant organizations leveraging attributes originated within their own local secu-

rity domains in order to make access decisions. Such attributes are to be referred as
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local ones in the rest of this dissertation, and are defined in Chapter 4.2.1. In addition,

as many different heterogeneous attributes may exist between the security domains

implemented by participants, there is also a need to agree on a set of attributes whose

format, e.g., naming, data type and range of values, is well-defined and understood

by everyone involved in a given federation. Such attributes, to be known as federated,

should be in turn leveraged for defining and enforcing attribute-based federated poli-

cies for access mediation between participants. A definition for federated attributes

is shown in Chapter 4.2.2. Before engaging in a transaction that involves sharing

proprietary resources, all relevant federated policies should be located, parsed and

evaluated before deciding if the transaction is to be authorized or not.

A graphical depiction of our approach is shown in Fig. 4.1: a locally-defined

attribute a1 belonging to a given user is transformed into a series of federation-

recognized attributes (a2, a3, a4) that are in turn provided by other organizations

engaged in a federation and may be used for access control decisions. In a similar

fashion, a local attribute a3 is transformed into a globally-recognized attribute a4 for

access management purposes.

Fig. 4.2 presents a basic description of the methodology expected for our FAM

approach: initially, attributes are to be assigned to entities, e.g., an end-user, in the

context of the security domain established by each participant organization (0). Next,

such an entity may initiate an access request to a given shared resource (1). Next,

the set of attributes required for accessing such resource is communicated to the FAM

framework (2), which then receives the attributes as provided by the requesting entity

(3) and performs any necessary attribute provisioning as shown in Fig. 4.1 as well as

the evaluation of all relevant policies (4). Finally, a final decision is communicated

back and the requested resource may be accessed in case a positive decision was made

(5)(6).
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Figure 4.1: A Framework for Federated Access Management.

Our approach can be also described by leveraging the example shown in Fig. 4.3,

which in turn depicts our running example shown in Fig. 2.1: the data file trans-

fer operation is to be mediated by an inter-organizational federated policy as the

one featured in Fig. 2.2. Such a policy is to be implemented by Net 2 (dashed

line) and requires the Ta attribute, which serves as an access token related to the

TransferFilePermission granting access to the aforementioned data transferring.

The Ta attribute may be in turn obtained by transforming local attributes that are in

turn provided by remote peers. As an example, Net 1 provides the local attributes Ce

(local credential), Ne (network information), and D (file data size), which are then

transformed into the federated attributes G (group membership), S (data size) and

Be (network bandwidth) for policy evaluation purposes. Functionality is to be im-

plemented by dedicated modules known as access management agents (AMA), which

are later discussed in Chapter 5.

In order for our approach to be successfully implemented in practice, participant
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Figure 4.2: A Basic Methodology for Federated Access Management.

Figure 4.3: Our Proposed Solution Depicting our Running Example.

organizations engaging in our federations must fulfill the following requirements:

Resource Identification. As an initial step, participants should identify the set

of organizational resources they are willing to share in the context of collaborations.

As such resources may significantly vary in nature and quantity, e.g., data and com-

putation time, a considerable effort needs to be invested in an organizational-wide

analysis that may allow participants to rightfully determine what resources can be

shared and under which conditions sharing can take place. Referring to our running
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example in Fig. 2.1 and Fig. 4.3, participants must determine the network connection

links and ports that will be use for inter-organizational data transfers, in such a way

that the quality of service (QoS) (Sun et al. (2010)) devised for such connections can

be properly guaranteed.

Attribute Identification. Participating organizations are to identify security-rele-

vant properties within their local domains that may serve as local attributes for

access mediation purposes. As an example, in Fig. 2.1, Net 1 should identify relevant

metadata of the data to be transferred that contain the properties that are relevant

under the policy depicted in Fig. 2.2, e.g., its size in bytes.

Attribute Mapping. Participants must map local attributes onto a set of well-

known federated attributes to be used in the context of an inter-domain collaboration.

Following our running example, the federated attribute labeled as S in Fig. 4.3 should

provide an standard, widely-recognized definition of the size of a given chunk of data,

e.g., a convention name, size unit, etc.

Attribute Discovery. Participants should allow organizational peers to discover

the federated attributes they provide for policy specification purposes. Following our

running example, Net 2 should be able to locate the attributes provided by Net 1

and Net 3 when constructing inter-domain policy for shared connections depicted in

Fig. 4.3.

Policy and Attribute Administration. Organizations should implement a proper

administrative model for creating, updating, and removing both local as well as fed-

erated attributes and federated policies that restrict access to protected resources

within collaborative projects. Moreover, such an administrative model may also be
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based on attributes as well. As an example, users depicting an attribute showing

membership to a group of network administrators should be allowed to create and

modify policies at the local and federated level.

Policy Retrieval. Upon receiving a resource access request, participants should

retrieve the set containing local policies relevant to such request. Following our run-

ning example, Net 1 should retrieve any policies regarding data transfers originating

in its local domain.

Attribute Provisioning. Participants should provision any local and federated

attributes as specified in the policies relevant to a given access request. To enable

this provisioning, participants are to make their federated attributes available for

other peers to provision upon request. In addition, participants should provide an

automated way to perform attribute mappings from local attributes into federated

ones, and from federated to federated attributes as well, in such a way that end-users

located within the same organization or in other peers can transform attributes when

required. Following Fig. 4.3, Net 1 should provide a way to transform the credentials

presented by an end-user into an attribute depicting membership to the collaborative

group G that is required by the policy in Fig. 2.2.

Policy Dispatch. Participants should dispatch policy evaluation requests for fed-

erated policies that are relevant to a given access request. Conversely, participants

should evaluate and provide results for any policy evaluation requests they receive

as part of an evaluation process initiated by a federated peer. Back to our running

example, participant networks should retrieve all attributes relative to a connection

request that happen to be under the scope of their local security domain and should

dispatch both attribute and policy evaluation requests to the other networks involved
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Figure 4.4: A Model for Federated Access Management.

in the construction of the network connection.

Results Aggregation. Finally, the evaluation decisions for the relevant policies,

either local or federated, must be derived and combined to produce a final decision,

which is to be communicated to the requesting entity, e.g., the end-user under the

Net 1 domain in Fig. 2.1.

4.2 Model Formalization

Fig. 4.4 shows a visual representation of our proposed model: attributes are re-

lated to access control entities by means of the attribute assignment (AA) relation,

allowing each entity to exhibit many different attributes and a single attribute to be

potentially exhibited by more than one entity. As mentioned before, Federated at-

tributes are publicly-known attributes that may be relevant in the context of a given

collaboration project. Local attributes are related to federated attributes through

attribute derivation rules (AD-Rules), which are shown as directed arrows in a dotted

line in Fig. 4.4. The precise definition of such AD-Rules, e.g., how local attributes

are ultimately related to federated ones, is defined by peers within the context of a

38



given collaboration. As we will discuss in Chapter 4.2.3, AD-Rules can be organized

into a graph-like structure known as an attribute derivation graph (AD-Graph), which

provides a representation of how attributes are related to permissions, which are in

turn related to federated attributes by means of the permission assignment (PA) re-

lation. Permissions are depicted as a combination of a protected source (target) and

an operation that can be performed on it. A given attribute may be related to one or

more permissions, and a given permission may be related to one or more attributes.

A formal description of our approach is shown in Fig. 4.5 and Fig. 4.6. The basic

components are actors (ACT), targets (TAR), and context (CON), which together

construct the set E of access control entities. Moreover, we also consider the sets

of operations (OPER) and permissions (P). We also define the sets of names (N)

and values (V), which are used for defining the sets of attributes (A) and federated

attributes (F). The relationships between the elements of our model are described by

defining the attribute assignment (AA) and permission assignment (PA) relations, as

well as our proposed AD-Rules.

The local and federated policies proposed in our approach are modeled by the POL

set, which is a subset containing entries belonging to the PA relation. The definition

of AD-Graphs is based on the concepts of graph theory and the definition of AD-

Rules. The access control decision process is modeled by functions provisionAttrs,

expectedAttributes, relevantPolicies, evaluate, combine, and checkAccess. Function

provisionAttrs calculates the set of attributes that can be provisioned from a given

AD-Graph based on the local and federated attributes initially exhibited by a set

of access control entities. Function expectedAttributes returns the set of attributes

that are related to a given policy, by inspecting the POL set. Function relevantPoli-

cies returns the set of policies that are relevant to a given access request, e.g., the

policies that may grant the permission contained in such request. Function evalu-
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ate returns true if a set of attributes provided as an input contains the ones defined

for a given policy as returned by the expectedAttributes function. Otherwise, the

function defaults to false. Function combine aggregates the results of evaluating the

policies relevant to a given access request as returned by the relevantPolicies func-

tion. The actual implementation of this function may take into account the specific

requirements depicted by each collaboration. As an example, some projects may find

convenient to implement the deny-overrides (OASIS Standard (2013)) combination

strategy, which returns false if one or more elements in the input set are false. Finally,

function checkAccess implements the authorization checking functionality by invoking

the aforementioned combine function on the results of invoking the evaluate function

on each of the policies returned by relevantPolicies. The set of input attributes for

the evaluation of each function is obtained by means of provisionAttrs by leveraging

the set of attributes initially provided as an input to the checkAccess function.

4.2.1 Attributes

We define attributes as an abstraction of security-relevant properties that are ex-

hibited by access control entities, namely, actors, targets, policies, and any applicable

context. Their physical nature, e.g., if the attribute represents a file’s metadata or an

end-user credential, and the way those attributes are collected from the access control

entities, remain dependent on each organizational domain.

As shown in Fig. 4.5, we define attributes to have the following three components:

(1) a data type, which restricts the nature and the possible range of values defined for

the attribute, (2) a name, which is later used for defining AD-Rules on them and is

defined in the context of a given inter-organizational setting, and (3) a value, which

is used when evaluating such AD-Rules. Examples of attributes include: <Double,

data.size, 100.0>, <String, data.source, “server.Net 1”>, and <Date, system.date,

40



• ACT, the set of actors.

• TAR, the set of targets.

• CON, the set of context instances.

• OPER, the set of operations.

• P ⊆ TAR × OPER, the set of permissions.

• E = ACT ∪ TAR ∪ CON, the set of access control entities.

• N, the set of names.

• V, the set of values.

• T, the set of data types.

• A ⊆ T × N × V, the set of attributes.

• F ⊆ A, the set of federated attributes.

• AA ⊆ A × E, the attribute assignment relation mapping attributes with a given

access control entity.

• PA ⊆ P × A, the permission assignment relation mapping permissions and attributes.

• POL ⊆ 2P A, the set of local and federated policies for access management purposes.

• ADR = { r | r: 2A → 2F }, the set of attribute derivation rules mapping sets of

attributes to sets of federated attributes.

• ADG, the set of directed, weakly connected, and possibly cyclic attribute derivation

graphs. A graph g = <NODES, ARCS> ∈ ADG if NODES ⊆ 2A and ARCS ⊆ ADR.

We say (n1, arc, n2) ∈ g if n1, n2 ∈ NODES and arc ∈ ARCS and n1 ⊆ domain(arc)

and n2 ⊆ codomain(arc).

Figure 4.5: A Model Description of Our Approach (I).

“11 -01 -2016”>.

4.2.2 Federated Attributes

We envision our proposed federated attributes as a special case of static (non-

modifiable), widely-recognized, fully-trusted and possibly custom-defined attributes
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• provisionAttrs: 2A × ADG → 2A, a function mapping a set of input attributes I

with the set of attributes that can be provisioned from a given AD-Graph adg. An

attribute f is said to be provisioned if there exists a set of attributes I ′⊆ I and a set

of paths P = {p, p = x0, x1, ...xn, n ≥ 0} ∈ adg such that ∀ p ∈ P, x0 ∈ I ′ and xn

= f, and ∀ x i, xj in p, 1 ≤ i < n, j = i + 1, ∃ r ∈ ADR such that xj ∈ r(x i).

• expectedAttributes: POL → 2A, a function returning the set of attributes that are

related to a given policy pol. Formally, returns all a ∈ A such that (p, a) ∈ pol.

• REQ = {req = <act, p = <tar, oper>>| act ∈ ACT, p ∈ P}, the set of access control

requests, allowing an actor act to request for a permission p.

• relevantPolicies: REQ × 2P OL → 2P OL, a function returning the set of policies that

are relevant to a given request req = (act, p) given an input set of policies polSet.

Formally, returns all pol ∈ polSet such that (p, a) ∈ pol.

• evaluate: POL × 2A → {true, false}, a boolean function that checks if the set of

attributes attrs satisfy a given policy pol. Formally, returns true if there exists a set

S = {e = (p, a), e ∈ pol, a ∈ attrs} and |S | >0, or false otherwise.

• combine: 2{true,false} → {true, false}, a boolean function that combines the results

of evaluating a set of policies. May be implemented based on the specific objectives

of each collaborative project.

• checkAccess: REQ × ADG × 2P OL × 2A → {true, false}, a boolean function that

checks if a given request req should be granted or denied based on an AD-Graph adg, a

set of policies polSet and a set of input attributes I. Formally, the combine function is

invoked taking as an input the results of evaluating the set of policies relSet obtained

from relevantPolicies(req, polSet). A policy pol ∈ relSet is evaluated using both the

set of input attributes I and the attributes obtained from provisionAttrs(I, adg).

Figure 4.6: A Model Description of Our Approach (II).
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that become relevant within a certain security context. They may be generated by

processing either local or other federated attributes, e.g., applying an access control

constraint on attribute values. Moreover, they may be used to provide a representa-

tion of more abstract concepts such as security states, capabilities, clearance labels,

organizational jobs (e.g., roles), etc. Federated attributes are obtained by processing

local attributes from access control entities under a given organizational domain. Such

processing is to be modeled through the AD-Rules, thus allowing federated attributes

to be related to access rights (permissions).

As an example, AD-Rules may provide functionality intended to validate a given

local attribute by inspecting its value component and producing a proper federated

attribute as a result. Thus, a validated federated attribute ensures that a given

collaboration state remains secure.

As described before, permissions can be assigned to federated attributes, which

then serve as a layer of association between local attributes and permissions defined in

another organizational domain for collaborative purposes. Such a layer helps identify

the local attributes that may be involved in granting a given inter-domain permission,

as well as the set of constraints represented by AD-Rules that may be involved in such

a process. Moreover, our approach allows for AD-Rules to take federated attributes as

an input or may also take both local as well as federated ones as an input to produce

federated attributes as a result, as depicted in Fig. 4.4, thus allowing for expressing

richer inter-domain policies based on processing already existing federated attributes.

4.2.3 Attribute Derivation Rules and Graphs

As introduced before, attribute derivation rules (AD-Rules) are expected to pro-

vide a mapping between local attributes and federated attributes. For this purpose,
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Figure 4.7: A Distributed AD-Graph Depicting the Sample Policy of Fig. 2.2.

AD-Rules are said to be non-injective ∗ , as two or more elements from an input

set of attributes (domain) may be mapped to the same element in the output set

(co-domain). In addition, AD-Rules can be chained together to produce a graph-like

structure showing how attributes can be provisioned. Such attribute derivation graphs

(AD-Graphs) are directed, because AD-Rules represent unidirectional edges (due to

their nature as functions). Moreover, AD-Graphs are also weakly connected, as there

is no requirement for all nodes (attributes) to be connected to each other. Finally,

AD-Graphs are also possibly cyclic, as a customized chaining of AD-Rules may end

up introducing a cycle in the produced AD-Graph.

As an example, Fig. 4.7, presents a graphical depiction of a set of AD-Rules
∗A function f : A → B is said to be injective or one-to-one, ∀ a, a′∈ A, a ̸= a′⇒ f (a) ̸= f (a′).
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combined together to create an AD-Graph following our running example, allowing

for different attributes to be obtained by transforming other attributes taken as an

input. For instance, in such a Figure, attribute G can be generated by means of the

AD-Rules labeled as r4 and r6.

AD-Graphs may also support collaborative processing by allowing a division into

proper subgraphs, each subgraph implemented in a different security domain: as men-

tioned before, each participating domain is in charge of defining its own permissions,

local and federated attributes, as well as the AD-Rules and AD-Graphs to generate

those. AD-Graphs can be modeled as a distributed graph: a given AD-Graph G

defined for a federation F may be divided into a set of subgraphs G′
1, G′

2, ... G′
n,

such that each G′
i is to be processed by a different domain in F.

4.2.4 Attribute Provisioning

As described before, our approach is intended to provide efficient provisioning

(discovery, derivation, and communication) of attributes within a federated setting.

These attributes may be in turn obtained from different entities such as end-users,

shared resources, execution environments, etc. In addition, attributes may also pro-

vide a representation of security-related properties obtained from different layers of

abstraction within a given organizational domain, e.g., network configurations and

services, software applications, or personal data, while others may be synthetically

created based on federated policies, e.g., security clearance levels.

With this in mind, attribute provisioning is crucial to handle access requests in

the context of inter-organizational resource sharing. Such a process includes allowing

for participating organizations to know about the AD-Rules that are implemented by

other organizations and are involved in a given AD-Graph G. Concretely, participants

need up-to-date information so that they can extract correct paths within G that can
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produce the desired federated attributes. With this in mind, attribute provisioning

can therefore be divided into two process: path discovery and path traversal.

The path discovery process allows for each organization to distribute information

about its locally-implemented AD-Rules to the federation, so that they can poten-

tially maintain a representation of G for path calculation. However, there are several

practical challenges: first, each organization needs to be notified when changes to G

occur, e.g. adding or removing a given AD-Rule, which may create a large set of com-

munication messages between participants. Second, there is an added maintenance

cost, e.g. processing time, that participating organizations must incur for handling

and maintaining an up-to-date G. Finally, storage efficiency may become an issue

when a large G must be locally maintained. An alternative approach would be creat-

ing a central database storing G, along with a set of replicas for enhanced availability.

However, such a scheme may suffer from service bottlenecks and consistency issues

when communicating updates to the replicas. In addition, a centralized server may

become the subject of a DoS attack, which could certainly limit the availability of

the overall attribute provisioning scheme, thus potentially preventing participating

organizations from serving inter-organizational access requests. With this in mind,

there is a need for a distributed approach that allows for participating organizations

to release information about the AD-Rules they implement in such a way that the

administration burden, e.g., number of communication messages, is significantly re-

duced. In addition, such an approach should also prevent organizations from having

to store a complete AD-Graph locally for path discovery purposes and should provide

support against attacks targeting a single point of failure. We present an implemen-

tation tailored for meeting such goals in Chapter 5.

Following the model described in Fig. 4.5 and Fig. 4.6, the path traversal process

allows participating organizations to invoke the AD-Rules included in a given path
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p in G that may ultimately produce a given federated attribute. Invocation of such

AD-Rules should be done by following a sequence starting from the first AD-Rule

in p up to the last one. Each time an AD-Rule is executed, the produced set of

attributes is added to a set of input attributes for the next AD-Rule in the sequence.

In addition, the invocation of an AD-Rule r enables to locate the federated domain

implementing r, the set of input attributes, as well as the set of produced attributes.

A request for the invocation of r should include the set of attributes that serve as its

input. Finally, the attributes produced by r, if any, should be then communicated

back to the requesting organization.

Leveraging the definitions shown in Fig. 4.5 and Fig. 4.6, the problem of resolv-

ing an access request to a shared resource within a federation can be modeled as a

path traversal problem within a given AD-Graph: determining if there exists a path

between a set of starting nodes (local attributes) and an ending node (federated at-

tribute), and using the obtained attributes to evaluate the policies that grant the

requested permission over the desired resource. A procedure for resolving an access

request Request, derived from the model shown in Fig. 4.4, is shown in Fig. 4.8: given

an AD-Graph Graph, a set of policies Policies, and a set of input attributes InputAt-

trs, the procedure starts by obtaining the set of policies that are relevant to Request,

e.g., the ones granting the permissions for the resources listed in Request (Line 2).

Then, each relevant policy is evaluated against the set of input attributes (Line 4).

If such evaluation fails, the procedure invokes the auxiliary function getPaths, which

inspects Graph to obtain a set of paths starting with an attribute in InputAttrs and

ending with an attribute in expectedAttrs (Lines 6–8). Subsequently, each path is

traversed by executing each of its included AD-Rules in sequential order. If new

federated attributes are generated, they are aggregated into the provisionedAttrs set,

which is then provided as an input for the evaluation of currently inspected policy
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1: procedure CheckAccess(Request, Graph, Policies, InputAttrs)

2: relevantPolicies← relevantPolicies(Request, Policies)

3: for each policy in relevantPolicies do

4: result← evaluate(policy, InputAttrs)

5: if result = false then

6: provisionedAttrs← InputAttrs

7: expectedAttributes← expectedAttributes(policy)

8: paths← getPaths(InputAttrs, Graph, expectedAttrs)

9: while hasNext(paths) do

10: path← next(paths)

11: provisionedAttrs← provisionAttrs(path, provisionedAttrs) ∪ provisionedAttrs

12: result← evaluate(policy, provisionedAttrs)

13: if result = true then

14: break while

15: end if

16: end while

17: end if

18: results← results ∪ result

19: end for

20: return combine(results)

21: end procedure

Figure 4.8: Algorithm for Checking a Resource Access Request.

(Lines 9–16). Finally, policy evaluation results are combined for a final decision (Lines

18–20).

As an example, the AD-Graph in Fig. 4.7 implements the inter-organizational

policy described in Fig. 2.2 as follows: each participant is responsible for distributing

information to partnering organizations about the AD-Rules they implement, includ-

ing the input and output attributes (either local or federated), as well as the way to

invoke them, e.g., by providing a web service interface. As an example, Net 1 will
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publish information on the AD-Rules labeled as r1 and r2. As described before, partic-

ipants use such information during the path discovery phase to effectively locate the

AD-Rules that can produce a given federated attribute. For instance, when attribute

G is requested, the sequence of AD-Rules composing the different paths leading to

it will be retrieved from the information published by all participants. Once such

paths are located, the path traversal process can be carried on. Continuing with our

example, attribute Ce, which depicts a locally-issued credential in the context of Net

1, is transformed by the AD-Rule labeled as r3 into the federated attribute L that

features membership to a research group L known to Net 1 and Net 3. Following our

definition depicted in Fig. 4.5, Ce may be modeled as an attribute of a custom-made

type Net 1.Credential, whose domain may be defined as a finite set of strings that

follow a certain previously-defined formatting. In a similar fashion, L can also be

defined as an attribute of a type named Net 1.LocalGroup, which may in turn depict

a domain composed of a single element denoting group membership. Subsequently,

r3 will then perform a mapping between a subset of the elements (strings) in the

input domain to a single element in the output domain. In practice, r3 may be imple-

mented by retrieving the list of group members from a local database file. Attribute

L is subsequently processed by the AD-Rule r6 in the Net 2 domain, producing the

federated attribute G , which in turn depicts membership to an inter-organizational

collaborative group. Following our previous intuition, G can be modeled as an at-

tribute of type FederatedGroup, whose domain is composed of a single element. Recall

that following the discussion introduced in Chapter 4.1, G is expected to be known

to all participants of a given collaboration, e.g., the ones depicted in our running

example. With this in mind, r6 may provide a simple mapping between an input and

an output domain both consisting of a single element. Later, attribute G , along with

attributes S , Be, Bg , and Bn , is forwarded to the AD-Rule labeled as r8, producing
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the Ta attribute as a result.

50



Chapter 5

A DISTRIBUTED ENFORCEMENT MECHANISM

Inspired by recent approaches such as OpenID (Recordon and Reed (2006)), Shib-

boleth (Morgan et al. (2004)), OAuth (Jones and Hardt (2012)) and Facebook Login

(Facebook Inc. (2015)), which are mostly intended for federated security in the con-

text of authentication, we have devised an enforcement mechanism for the model

presented in Chapter 4 that primarily relies on a distributed architecture deployed

over the participants of collaborative projects. We start in Chapter 5.1 by providing

a description of our proposed access management agent (AMAs), which are expected

to implement most of the functionality devised for our approach within the context of

a single participant organization. We then move on to provide in Chapter 5.2 details

on a proposed implementation for the path discovery and path traversal procedures

detailed in Chapter 4.2.4, which include a description on how the AMAs belonging to

different organizations are to interact with each other. In addition, in Chapter 5.2.3,

we detail our experimental results on a set of real-life collaborative policies derived

from cases similar to the one featured in our running example. Finally, Chapter ??

describes how the enforcement mechanism introduced in this chapter meets the chal-

lenges described in Chapter 3.3. Similarities and differences of our approach with the

aforementioned existing technologies are to be discussed as a part of our description

of related work in Chapter 8.
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5.1 Access Management Agents

Following our running example depicted in Fig. 2.1, we envision each participating

organization implementing a dedicated software module to be referred as access man-

agement agent (AMA) in the rest of this dissertation. Such an agent module will be

in charge of handling the functionality devised for our approach by implementing five

different layers of abstraction, as shown in Fig. 5.1: the policy administration layer

is expected to provide functionalities for the retrieval, creation, update and removal

of both local and federated policies. For such a purpose, it relies on both the policy

discovery and attribute discovery layers in charge of locating policies and attributes,

respectively, which may be physically located within the local domain or in a remote

one. In addition, the policy evaluation layer will be in charge of resolving resource ac-

cess requests by first locating the set of policies that are deemed as relevant, e.g., the

ones that mediate access to the requested resource, and by provisioning all attributes

enlisted in such policies by means of the attribute derivation layer. This layer will be

in charge of locating and provisioning attributes both in the local domain as well as

in external ones by issuing proper requests to other AMAs implemented by remote

peers.

5.1.1 Responsibilities for Participants

By implementing our proposed AMAs, each participant organization will be enti-

tled the following:

Attribute Implementation. Participants are to define the federated attributes

required for each policy guarding access to each shared resource, either by leveraging

federated attributes that are in turn provided by another participant or by imple-

menting federated attributes originating in the local context, or by any combination
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Attribute Discovery

Attribute DerivationPolicy Discovery

Policy EvaluationPolicy Administration

Figure 5.1: A Layered-based Depiction of an Enforcement Mechanism for FAM.

of the options just described.

Trusting Attributes of Others. Each federated participant is to trust the at-

tributes originated/managed under its local domain. In addition, participants in a

federation are to fully trust the attributes provided by other peers, assuming they

trust the participant providing such attributes. Chapter 7 will present a framework

for allowing participant to determine the peers they trust even when they may have

had no previous interaction with them.

Attribute Derivations. Finally, each participant is to define the attribute deriva-

tion transformations for the federated attributes under its control and provide an im-

plementation for them following the architectural layer defined as attribute derivation.

Such a process also includes allowing other participants to discover such attributes

by publishing information about them in the attribute discovery layer.

Policy Administration and Retrieval. Finally, following the policy adminis-

tration, policy discovery and policy evaluation layers described before, participants

should define and provide means for the administration of both local and federated

policies that mediate access to resource sharing devised in collaborative projects. In

addition, participants should retrieve policies relevant to a given local or federated

request issued either within the local security domain or by another participant peer.

Such policy retrieval should be implemented as efficiently as possible, e.g., physical
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storage and response time.

5.1.2 Source Code Implementation

Our proof-of-concept implementation consists of 146 Java classes and 52 interfaces

that are grouped into 29 packages and combine for a total of 9,238 lines of code, as

reported by the cloc tool (Danial, Al (2015)). Following the approach introduced

before, functionality comprising our approach is carried out by software agents known

as AMAs running on each participant network. With this in mind, we have developed

a dedicated AMA that can handle the management and the evaluation of federated

and local policies, as well as the provisioning of federated attributes.

Policy Administration Layer. The creation, update, and removal of policies

is implemented by means of a policy administration point (PAP) that leverages

a customized version of the well-known extensible access control markup language

(XACML) language (OASIS Standard (2013)). Such customization depicts a set of

policy rules and attribute selection functions that better suit policies such as the one

listed in our running example. For instance, we have introduced new attribute se-

lection functions to handle access tokens such as the Ta attribute shown in Fig. 4.7.

Policies are parsed and stored in a repository, which is based on a relational database.

When a new policy is added to the repository, policy targets are extracted and used

for indexing purposes. In addition, policy rules are transformed into serialized Java

objects and are stored in the database for further retrieval.

Policy Discovery and Evaluation Layers. Evaluation of local and federated

policies is implemented by a policy decision point (PDP) and a policy information

point (PIP) modules. Upon an access request, the PIP retrieves all relevant policies
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from the repository by using the targets listed in the request as search conditions.

For all relevant policies, the set of rules is retrieved and deserialized into Java objects

depicting our customized version of the XACML language. This way, a given policy

is not continuously parsed by XACML tools every time it is found relevant for eval-

uation. For such a purpose, we have extended the Sun XACML 1.0 implementation

(Sun Microsystems, Inc. (2015)). Our policy repository is implemented by means of a

MySQL CE Server (Oracle Corporation (2015)). In addition, the interaction between

the AMA and outside requesters is provided by means of a dedicated web service that

leverages the Apache CXF framework (The Apache Software Foundation (2015)).

Attribute Discovery and Derivation Layers. We implemented the DHT func-

tionality discussed in Sec. 5.2.1 and Sec. 5.2.2 by implementing a DHT module that

is included as a part of the modules performing policy evaluation tasks. Such a mod-

ule leverages the Open Chord 1.0 API (Kaffille and Loesing (2015)): an open source

implementation of the Chord DHT (Stoica et al. (2001)) that allows for remote peers

to implement a DHT ring by communicating over TCP/IP sockets. In addition, our

proposed AD-Rules, as discussed in Chapter 4.2.3, were implemented by leveraging a

client-server architecture over TCP/IP sockets with the standard java.net package.

An architectural depiction, focused on our running example, is shown in Fig. 5.2:

an connection request between Net 1 and Net 3 is handled by the policy decision point

(PDP) module implemented by AMA2 on top of Net 2 (1). The set of policies relevant

to a request is obtained by the policy information point (PIP) module by querying

a local database repository (2). Following our running example, this set contains

the policy described in Chapter 2.2. Next, such a policy is parsed and the list of

referenced attribute names is forwarded to the local DHT module for provisioning

purposes (3). Following Fig. 5.3, DHT modules within each AMA implement a ring
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Figure 5.2: Evaluating an Access Management Policy.

for locating and provisioning federated attributes. When requested, attributes are

provisioned by the DHT modules implemented by the AMAs on top of Net 1 and Net

3 respectively by means of attribute provisioning agents (APA), which are dedicated

modules with trusted access to local infrastructure, e.g., credential-based systems,

within each participating network (4). Provisioned attributes (if any) are sent back

to the PDP within Net 2 for evaluation (5) and (6).

5.2 Distributed Enforcement

In this section, we present an implementation of the path discovery process pre-

sented in Chapter 5.2.1 that is based the concept of distributed hash tables (DHT)

(Stoica et al. (2001)). In addition, we discuss our implementation on the path traver-

sal process shown in Chapter 5.2.2 that is based on a client-server architecture for

the remote invocation of our proposed AD-Rules.
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Figure 5.3: An Illustrative DHT Ring Depicting the AD-Graph of Fig. 4.7

5.2.1 Path Discovery

Fig. 5.3 illustrates the path discovery process based on our running example. We

allow for participants in a federation F to join a DHT ring to publish and retrieve

information about the AD-Rules that may produce federated attributes. This process

may be in turn decomposed into two inner components, namely, AD-Rule publishing

and AD-Rule retrieval.

The procedure for publishing an AD-Rule is conducted as follows: each domain is

in charge of inserting an entry into the DHT for each AD-Rule they implement for

a given AD-Graph under the context of F. Such an entry should include information

about the input attributes (either local or federated ones), the name of the AD-

Rule, and the set of federated attributes to be produced as a result. Moreover,

some information on how to execute such AD-Rule should be also provided, e.g.,

a universal resource locator (URL). As an example, the Net 1 domain will publish
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an entry into the DHT containing information about the AD-Rule r1, including the

local input parameter Ne, which conceptually depicts information about the current

state of the local network, and the federated attribute Be, which provides a standard

representation of the current bandwidth capacity. In addition, such an entry should

contain a valid URL for other federated peers invoking the AD-Rule r1 remotely.

Following the insertion procedure for DHTs (Stoica et al. (2001)), such an entry may

end up being stored for future location at a different federated peer, following a

hashing scheme based on the standardized naming convention for federated attributes

introduced in Chapter 4.2.1. In Fig. 5.3, the entry for the AD-Rule labeled as r1

(published by Net 1) ends up being stored by the DHT node under the scope of

the Net 2 domain. Conversely, AD-Rules may be retired from a given AD-Graph by

removing their corresponding entries from a given DHT ring. Recall such procedure

may not necessarily remove the production of federated attributes in the context of

an AD-Graph, as such attributes may be produced by another AD-Rule in the DHT

ring, e.g., in Fig. 5.3, removing the entry for the AD-Rule r6 does not prevent an

attribute G from being produced by the AD-Rule labeled as r4.

The retrieval procedure for entries containing information about AD-Rules is to be

conducted as follows: a participating organizational domain O interested in producing

a given attribute A may retrieve the set E of entries corresponding to A in the

DHT ring, e.g., by hashing the A’s identifier. Then, by inspecting the information

about AD-Rules contained in E, O must determine if there exists a local or federated

attribute under its local domain that can be used as an input parameter to an AD-

Rule to produce A. If so, information from the corresponding entry in the set E

is retrieved and the AD-Rule is invoked, following the procedure to be detailed in

Chapter 5.2.2. However, if no suitable entry is found, e.g., all input attributes to the

entries in E are out of scope or cannot be locally produced, O may attempt to explore
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the DHT ring once again for entries producing the attributes taken as an input to

the entries in E, thus potentially producing a set P of graph paths in an AD-Graph

stored in the DHT. Such a process may be repeated up to the point when no more

entries can be obtained from the DHT or a cycle in the AD-Graph stored in the DHT

is detected, e.g., when an iteration retrieves entries that were previously retrieved in

the past, or a path can be traversed. A path in P is traversed, e.g., by calling the

sequence of AD-Rules contained in it, only if it starts with an attribute under the

scope of O and ends with the desired attribute A.

Considering our running example, an entity under the Net 1 domain may provision

an attribute Ta depicted in Fig. 4.7 as follows: the DHT featured in Fig. 5.3 retrieves

the entry for the AD-Rule labeled as r8 from the ring node implemented by Net

3. As the input parameters of r8 are all federated attributes, Net 1 inspects the

DHT ring once again for determining proper AD-Rules provisioning those attributes.

Then, entries generating Be (r1), Bg (r7), Bn (r5 and r9), S (r2) and G(r4, r6), are

returned. For the federated attribute Be, Net 1 can provide the local attribute Ne

required for r1, thus creating a traversable path within the distributed AD-Graph.

In addition, for the federated attribute S , Net 1 can also provide the required local

attribute D required for r2, thus creating a path as well. In the case of G , the

entry belonging to r4 may be discarded as its input attribute (Cn) is local only to

Net 3. However, in the case of the entry for r6, Net 1 may inspect the DHT ring

once again for an entry producing the input attribute L. Next, the entry for r3 is

returned taking Ce as an input. Since Ce is local to Net 1, another traversable path

is constructed. With respect to an attribute Bn , the AD-Rules labeled as r5 can

be also discarded as its input attribute (Nn) is local to Net 3. However, r9 can be

used as it takes the federated attribute G as an input, and a path producing G has

been already obtained. Similarly, an attribute Bg can be obtained from r7 as such
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an AD-Rule takes G as an input. The setting depicted in Fig. 4.7 and Fig. 5.3 allows

for the AD-Rules labeled as r7 and r9 to disclose network-related information, e.g.,

bandwidth, only when membership to an inter-organizational project (as depicted by

the G attribute) can be shown.

5.2.2 Path Traversal

Our implementation supports the process of path traversal by allowing for each

organizational domain O to implement a software agent that is capable of handling

requests for the invocation of the AD-Rules that are under the scope of O. Information

on locating such agent and invoking the implemented AD-Rules should be consistent

with the entries published in the DHT ring described in Sec. 5.2.1, e.g., Net 1 may

provide a TCP/IP agent that implements the AD-Rule labeled as r1 in Fig. 4.7 and

Fig. 5.3. For a given path P composed of n entries obtained from a DHT ring, the

traversal procedure would include requesting for the execution of each entry starting

from the entry at the first position and collecting the attributes produced by the

AD-Rule being invoked (if any). The process continues as soon as new attributes

are produced on every AD-Rule invocation and finishes either when a given AD-Rule

depicted by an entry in the path is not able to produce any attributes or the final entry

(at position n - 1) has been executed and the final attributes have been produced as

a result.

Fig. 5.4 shows a simplified version of a class diagram depicting our attribute pro-

visioning scheme, which allows participating domains to produce their own AD-Rules

by developing Java classes that subclass our ADRule interface. Moreover, attributes,

as described in Sec. 4.2.1 and Sec. 4.2.2, can be modeled by classes implementing the

Attribute interface or subclassing the AbstractAttribute class. Entries depicting

information related to AD-Rules are modeled by means of the ADRuleEntry inter-
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Figure 5.4: A Simplified Class Diagram Depicting our Enforcement Mechanism.

face. Such entries are stored into the DHT ring by using the identifier of the output

attribute(s) as a key and a serialized ADRuleEntry as the value. As an example, the

Java object belonging to the entry depicting information about the AD-Rule labeled

as r1 in Fig. 5.3 (depicted as R1ADRule in Fig. 5.4) is serialized and stored into the

ring by using Be as the hash key. In a similar fashion, the location of such an entry is

discovered using the name Be as the key and retrieving the serialized object from the

ring node in Net 1 (Fig. 5.3). In addition, a path P in a distributed AD-Graph is rep-

resented by a sequence of Java objects, ADRuleEntry, that have been obtained from

a DHT ring. The path discovery process described in Sec. 5.2.1 was implemented

by customizing the well-known depth-first search (DFS) algorithm (Tarjan (1972))

With this in mind, traversing P involves retrieving the input attributes as well as the

information of the domain implementing each AD-Rule from each of the entries in P

and requesting for their execution by following P’s sequence. Remote execution of an

AD-Rule R involves the client domain sending a TCP/IP socket request in the form
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Figure 5.5: The Link Ownership (LO) Policy.

of a serialized class object which is an interface, ADRuleRequest. This interface takes

the input attributes (objects implementing the Attribute interface) devised by R’s

entry. The server domain then attempts to execute R upon the verification of the

input attributes contained in the request object, and sends back a response in the

form of a serialized object via another interface, ADRuleResponse. Such a response

object may contain the federated attributes if the input validation and execution of

R succeed, or an error message otherwise.

5.2.3 Experimental Evaluation

For our experimental evaluation, we simulated a set of collaborative networks such

as the one depicted in Fig. 2.2 by instantiating four virtual machines on a private

cloud running the OpenStack controller software (Rackspace (2015)). Each instance

was equipped with 2 VCPU, 2 GB RAM and 20 GB of Storage, running Ubuntu

Desktop 12.04 (Precise Pangolin).

In our first experiment, we examined a set of sample policies obtained from ac-

tual discussions hosted in the context of the OGF/NSI group introduced in Chap-
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Figure 5.6: The Bandwidth Restriction (BR) Policy.

Figure 5.7: The Group Membership (GM) Policy.

ter 2 (Roberts et al. (2015)) (Trompert and MacAuley (2015)), all of them depicting

a collaborative setting as described in Chapter 3.2, which involves two non-adjacent

networks (Net 1 and Net 3) trying to establish a connection by using a third network

as a bridge (Net 2). First, we have included the policy depicted in our running ex-

ample, whose implementing AD-Graph is shown in Fig. 4.7. Such a policy leverages

attributes obtained from the set of end-users, e.g., attribute G , attributes obtained
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Figure 5.8: A Sample Simulated Policy.

from the set of protected resources, e.g, attribute D and attributes from the running

environment, such as the Be attribute.

Conversely, Fig. 5.5 depicts policy Link Ownership (LO), which allows for the

aforementioned connection to take place only when the two interested networks (Net 1

and Net 3) have explicitly expressed their authorization by issuing federated attributes

representing access tokens, labeled as aE and aN respectively, which are then used

by Net 2 to produce the Ta required for authorizing the requested connection. As

with our running example policy, authorization is modeled through the Ta attribute,

which, as mentioned before, represents an access token.

Policy Bandwidth Restriction (BR, Fig. 5.6) allows for the connection to take place

only when a minimum amount of bandwidth is available in the connection links, in

an effort to offer a certain QoS. With this in mind, the federated attribute Bw can be

obtained from local information stored within Net 2. This case depicts an interesting

situation where attributes are to be obtained from a single collaborative organization,

however, the effects of the federated policy ultimately reside in an inter-organizational

scope.
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Figure 5.9: Experimental Results for OGF/NSI Policies.

Finally, policy Group Membership (GM, Fig. 5.7) allows for establishing the con-

nection only when both end-users at the source and destination end-points are mem-

bers of a certain collaborative group G . In such a case, aUI , depicting information on

the users attempting the connection, serves as an input to the AD-Rules producing

G which are in turn implemented by Net 1 and Net 3.

In our experiments, we implemented the policies just described by leveraging our

customized version of the XACML language described previously. In addition, entries

for the AD-Rules defined by such policies were stored in a DHT ring composed of

our simulated AMAs, as shown in Fig. 5.3. Such AD-Rules were in turn implemented

by each participating AMA by means of APA software modules such as the ones

described in Fig. 5.2. As an example, the APA module of the AMA on top of the Net

1 domain implemented the r1, r2, and r3 AD-Rules of our running example policy as

shown in Fig. 4.7, and its DHT module contained the entries belonging to r2, r3, r4,

and r5 as shown in Fig. 5.3.
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On each experiment, we manually crafted a request targeting the goal attributes

for each policy, e.g., the Ta attribute, and issued an access to the AMA2 implemented

by the VM representing the Net 2 network. We measured the path discovery time

(PDT) for constructing paths within a given AD-Graph, e.g., locating a path from a

source attribute to a desired attribute, and the path traversing time (PTT) taken for

our approach to provision the set of attributes depicted in P. We also introduced code

to add a variable delay to the execution of each AD-Rule, in an effort to simulate

both its processing time, e.g., accessing local infrastructure for attribute provisioning,

as well as the network latency when working on a distributed setting. We call such

code as simulation time (ST). In our experiments, the time invested in the retrieval

of our sample policies remained under a range of 0 to 3 ms, mostly due to the fact

that only a few policies were stored within our database repository. In addition, as

our sampled policies required only the provisioning of a single attribute serving as

an access token, e.g., Ta , time invested in the policy evaluation process was also in a

range of 1 to 4 ms.

Results for our first experiment are shown in Fig. 5.9: variation in the overall

processing time was mostly due to variation introduced in the PTT. This is due to

the ST code we introduced as a part of our experiments, as well as to the fact that the

number of DHT entries belonging to each of the policies under test remains the same,

thus provoking the PDT time to construct paths within the AD-Graphs depicted for

our experimental policies to remain within a manageable range.

We designed a second experiment to measure the performance of our implemen-

tation against policies depicting AD-Graphs with a varying number of both paths

(branches) and composing nodes (links). As an example, Fig. 5.8 shows a policy

made of 4 branches, each of them depicting 4 links. On each experiment instance,

we crafted a policy intended to provision the attribute produced by the DHT entry
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Figure 5.10: Experimental Results for Simulated Lazy AD-Graphs.
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Figure 5.11: Experimental Results for Simulated Eager AD-Graphs.
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located at the last node of each path in the simulated AD-Graph. We then issued a

request for a required attribute (labeled as aG in Fig. 5.8), including as an input the

attribute depicted in the entry located in the position 0 of the path (labeled as aS). In

addition, the AD-Rules composing each AD-Graph were randomly distributed within

the simulated AMAs that were used in our testbed. As with the previous experiment,

we introduced ST code to simulate the execution time of each AD-Rule involved in

the AD-Graph as well as the network latency by using a configurable parameter and

measured the PDT and PTT as described previously. As with our first experiment,

our crafted policies were simplified to include only our goal attribute aG, and were

stored within only a few other policies in the repository, thus making the policy

location and evaluation time negligible with respect to the PDT and the PTT.

Fig. 5.10 shows our results when constructing AD-Graphs of size (b-l) where b

stands for the number of branches and l stands for the number of links on each

AD-Graph, e.g., the first four-column set shows the processing time observed when

constructing AD-Graphs of size (5-5), and varying the ST to have values of 10, 50,

100, and 500 ms. In this experiment, the processing time consists mainly of the

PCT, as the process of constructing paths is significantly affected by the different

number of possible paths within the simulated AD-Graph that need to be explored

when attempting to provision the aG attribute having the aS attribute as a starting

point. Since our lazy approach first calculates the set of paths within the AD-Graph

before starting the path traversal process, path discovery may represent an important

bottleneck for highly-dense AD-Graphs. An alternative approach would consider

attempting the path traversal process as soon as a new path P in a given AD-Graph

G is constructed, by letting a dedicated subprocess handle the traversal of P whereas

the main process keeps exploring paths in G. As soon as a new path in G is identified,

a new subprocess is created. If one of these subprocesses is able to provision the goal
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attributes, e.g., aG, the main process, as well as any created subprocesses, are halted

and policy evaluation may be carried on next. We implemented this eager approach

and the experimental results are shown in Fig. 5.11. As expected, the PDT is greatly

reduced, as it is halted as soon as a path in the sampled AD-Graph is constructed

and traversed.
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Chapter 6

AN ASSURANCE AND CONFORMANCE FRAMEWORK

As introduced in Chapter 3.4.1, the proper implementation of the enforcement

mechanism described in Chapter 5 is crucial to guarantee the approach proposed

in this dissertation indeed preserves important security properties related to autho-

rization, e.g., preventing unintended access to sensitive resources and also preventing

previously-authorized accesses to be incorrectly denied at runtime. We start in Chap-

ter 6.1 by providing an introduction to the construction of enforcement mechanisms

as the one depicted in Chapter 5 by means of leveraging well-known techniques in

the field of software engineering. Then, we move on to present some additional back-

ground on specification techniques for software construction in Chapter 6.2, which

we leverage in Chapter 6.3 for the purposes of our approach. Finally, we provide

experimental evidence supporting our proposed solution in Chapter 6.4. Later on, in

Chapter 9.2.1, we provide a discussion on how the approach presented in this chapter

meets the requirements for assurance and conformance described in Chapter 3.4.

6.1 Assertion-based Software Construction

The problem for providing correct implementations of the approach presented

in this dissertation gets complicated by the existence of customized source-code con-

structs, which may in turn leverage existing in-house systems belonging to participant

organizations, as it has been also described before as a part of the initial requirements

for our collaborative settings. In addition, incorrect implementations of our proposed

AD-Rules and AD-Graphs, as depicted in Chapter 4.2.3, may also introduce non-
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trivial security vulnerabilities, as they may allow for unintended attribute derivations

to take place, thus potentially producing attributes in a wrongful way, which can

ultimate affect the evaluation result of a given authorization policy (either local or

federated). With this in mind, we now present an approach tailored to assist de-

velopers and testers when constructing enforcement mechanisms based on the ideas

discussed in this dissertation. We start in Chapter 6.2 by extending our background

description on assertion-based verification and validation as it was first introduced

in Chapter 2.4 in order to provide the necessary supporting methodologies for our

proposed approach, which is then presented in Chapter 6.3 and Chapter 6.3.1. We

finalize this chapter section by presenting in Chapter 6.4 the results of an experimen-

tal procedure we conducted in order to show the effectiveness of our approach for the

purposes we have just described.

6.2 Specification Modeling with DBC and JML

As it was first described in Chapter 2.4, DBC has been shown to be an effec-

tive methodology for precisely describing the runtime behavior of a given software

module, e.g., what it is supposed to do when executed. In such a context, JML im-

plements the DBC paradigm by recurring to software assertions which better describe

such a runtime behavior and also serve as a supporting methodology for verification

and validation (Burdy et al. (2003)). In order to better support the development of

modern software modules, specification-only types, e.g., classes or interfaces, were

added to JML to provide behavioral specifications in a higher level of abstraction,

e.g., without recurring to specific source-code level constructs. Such types, known as

model specifications (Cheon et al. (2005)), allow for highly-customized, independent

and self-contained modules to be constructed by precisely defining the way they must

behave when executed without including any specific implementation details. In ad-
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dition, these specification-only models can be mapped to actual low-level source code

implementations in order to support the verification and validation of JML-specified

modules.

As an example, Fig. 6.1 shows an excerpt of a JML-annotated Java interface called

FAMAttribute, which is intended to provide a source-code representation of attributes

in the context of our approach, as it was first introduced in Chapter 4.2.1. Lines 5-7

show three model variables intended to describe the main basic components required

for an attribute: a name, a type, and a value in the range determined by type. Such

model variables are later used in the rest of the JML constructs to specify the way an

attribute should be constructed in a correct way. For instance, the invariants shown in

Lines 10-12 specify that the aforementioned model variables must be instantiated to

proper objects during the whole lifetime of an object implementing the FAMAttribute

interface. This way, a correctly-constructed object may prevent unwanted situations

in which an attribute is missing a basic required component, e.g., the name component

being set to null, which could in turn deviate in unwanted security-risky situations

at runtime, e.g., forcing the code implementing a policy evaluation routine to crash

due to a NullPointerException, thus possibly affecting the results of an access

mediation request. Moreover, as shown in Line 5, the name model variable is of type

FAMAttributeName, which in turn can be specified using JML constructs to further

defined how attribute names in the context of our approach should be handled, e.g., by

requiring all names to be of a certain minimum or maximum length. In addition, JML

allows for defining model methods that can be used to further specify both structural

constraints as well as runtime behavior. As an example, Lines 15-21 introduce the

isFromProperType model method that is later used in the DBC contract shown in

Lines 23-28 to further restrict the nature of the value that will be included as a

component of a given attribute. This way, such a value component must always
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1 package edu.asu. sefcom .fam. model . attributes ;

2

3 public interface FAMAttribute {

4

5 //@ public instance model FAMAttributeName name;

6 //@ public instance model Object value ;

7 //@ public instance model Object type;

8

9

10 //@ public invariant this .name != null ;

11 //@ public invariant this . value != null ;

12 //@ public invariant this .type != null ;

13

14

15 /*@ public model pure boolean

16 @ isFromProperType ( Object newValue , Object type){

17 @

18 @ Class typeClass = type. getClass ();

19 @ return typeClass . isInstance ( newValue );

20 @ }

21 @*/

22

23 /*@ public normal_behavior

24 @ requires newValue != null &&

25 @ isFromProperType (newValue , this .type);

26 @ assignable this . value ;

27 @ ensures this . value . equals ( newValue );

28 @*/

29 public void setValue ( Object newValue );

30

31 ...

32 }

Figure 6.1: An Excerpt of a Java Interface with Model Specifications.
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be of the data type specified by the model variable type referred in Line 7, thus

also preventing a situation when those two components differ, which can cause some

unwanted runtime behavior as a consequence.

As mentioned before, model specifications can be mapped to actual implementation-

specific constructs for the purposed of verification and validation. As an example,

Fig. 6.2 shows class FAMBasicAttribute, which implements the FAMAttribute in-

terface. Such a class provides so-called concrete implementations for the model con-

structs discussed before as follows: for the value and type model variables, a straight-

forward implementation is provided by creating instance variables of the same Java

type, e.g., java.lang.Object as shown in Lines 10-11. Such a strategy is convenient

when the Java type defined for the model variables matches the one desired for the

concrete implementation code. The actual mapping between concrete and model vari-

ables is done by means of the JML represents construct, as shown in Lines 13-15.

This way, every time a model variable is reference in a JML specification (as in Lines

23-28 of Fig. 6.1) JML-based tools such as the ones introduced in Chapter 2.4 may

replace it with the corresponding concrete variable for verification purposes.

A more interesting case is presented for the name model variable. This time, the

concrete implementation depicts a Java type (java.lang.String) that is different

from the one intended for the model variable (FAMAttributeName). In such a scenario,

a model method can be introduced in such a way the concrete Java type can be used to

produce a proper representation of the type depicted by the model variable. As shown

in Fig. 6.2 (Lines 17-21), the model method getAttributeName takes the concrete

variable name as an input in order to produce an object of class FAMAttributeName

which is then mapped to the name model variable by means of the aforementioned

represents construct in Line 10. This way, the getAttributeName allows for a

concrete variable ( name) to be mapped to a model variable (name) that is said to
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be defined in a higher level of abstraction. Therefore, in the rest of this dissertation,

we refer to such model methods as abstraction functions (Cheon et al. (2005)).

6.3 Assertion-based Security Models

As it was hinted in Fig. 6.1 and Fig. 6.2, we propose an approach that combines

the concepts of specification modeling and software assertions for describing security

features at the source-code level. These so-called assertion-based security models are

intended to provide compact, well-defined and consistent descriptions that may serve

as a common reference for implementing security-related functionality. Our approach

strives to fill in the gap between high-level descriptions of security features, which are

mostly abstract and implementation-agnostic, and supporting descriptions focused

at the source-code level, which are intended to cope with both security-related and

behavioral-based specifications, such as the ones described in Section 2. As it will be

described in Chapter 8, previous work has also explored the use of software assertions

and DBC-like contracts for specifying security features such as access control policies.

However, our approach is intended to leverage the modeling capabilities offered by

software specification languages, such as the ones described in the previous Chap-

ter 6.2, using a well-defined reference description of a security model as a source, in

such a way that it not only allows for the correct communication, enforcement and

verification of security-related functionality, but it also becomes independent of any

supporting constructs, e.g., application programming interfaces (APIs) and software

development kits (SDKs), thus potentially allowing for its deployment over applica-

tions composed of high-customized heterogeneous modules.

Fig. 6.3 presents a graphical depiction of a framework for software construction:

initially, we aim to develop our a security model tailored for our FAM approach, which

includes a description of its main components, their syntactic interface, their runtime
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1 package edu.asu. sefcom .fam. model . mapping ;

2

3 import edu.asu. sefcom .fam. model . attributes . FAMAttribute ;

4

5 //@ model import edu.asu. sefcom .fam. model . attributes . FAMAttributeName ;

6

7 public class FAMBasicAttribute implements FAMAttribute {

8

9 protected /*@ spec_public @*/ String _name ; /*@ in name; @*/

10 protected /*@ spec_public @*/ Object _value ; /*@ in value ; @*/

11 protected /*@ spec_public @*/ Object _type ; /*@ in type; @*/

12

13 //@ public represents this .name <- getAttributeName ( _name );

14 //@ public represents this . value <-_value ;

15 //@ public represents this .type <-_type ;

16

17 /*@ public pure model FAMAttributeName

18 @ getAttributeName ( non_null String strName ){

19 @ return new FAMBasicAttributeName ( strName );

20 @ }

21 @*/

22

23 public FAMBasicAttribute ( /*@ non_null @*/ String name ,

24 /*@ non_null @*/ Object value ,

25 /*@ non_null @*/ Object type){

26 this . _name = name;

27 this . _value = value ;

28 this . _type = type;

29 }

30

31 public void setValue ( Object newValue ){

32 this . _value = newValue ;

33 }

34 ...

35 }

Figure 6.2: An Excerpt of a Java Class Implementing Model Specifications.
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Figure 6.3: A Methodology for Assertion-based Construction.

behavior, as well as the relationships between each other, in a similar approach to

the description of the FAMAttribute interface depicted in Fig. 6.1, which is intended

to describe the way attributes following our approach should be implemented at

the source-code level (Fig. 6.3 (1)). A detailed description of our proposed security

model, to be referred as FAM security model, is shown in Chapter 6.3.1. Next,

our FAM security model is to be later leveraged for participant organizations in

order to develop their own DBC/JML contracts that reference the specification-only

classes such a model includes as well (Fig. 6.3 (2)). In a subsequent step (Fig. 6.3

(3)), participant organizations leverage the DBC/JML specifications described before

when constructing their own customized implementations of our approach, e.g., by

providing concrete implementations of the specification-only interfaces included in it,

as it is shown in Fig. 6.2. Finally, both the DBC/JML specifications as well as the

implementation source code are to be fed to dedicated tools such as the ones described

in Chapter 2.4 for verification and validation purposes (Fig. 6.3 (4)).
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In the rest of this chapter, we will provide evidence on the effectiveness of our

proposed framework for software construction. First, we will provide details on our

proposed FAM security model in Chapter 6.3.1, including the way security function-

ality relevant to our overall approach is modeled using DCB/JML features. Then,

we will describe how to leverage such a model in order to construct a custom-made

implementation by using DBC/JML specifications on top of it and by providing

source-code-level constructs that follow such specifications. Later, in Chapter 6.4,

we will presents our results on an experimental procedure tailored to measure the

effectiveness of our approach for detecting non-trivial security vulnerabilities.

6.3.1 An Assertion-based Security Model for FAM

In order to better describe the set of DBC/JML specifications as well as the Java

modules that have been developed as a part of our proposed FAM security model, we

now present a set of specification categories that help us provide a systematic approach

for describing security-related functionality. For each category we describe its main

purpose, its relevance with respect to detailing security issues, as well as the set of

DBC/JML constructs that are supported. In addition, we exemplify the use of each

category by presenting specification excerpts from our actual FAM security model

code. Finally, Table 6.1 presents a summary of some of the components depicting our

approach we are discussed in this chapter and the specification categories we used for

describing their intended functionality at runtime.

Structural Specifications. We start our discussion by presenting a very basic

category that is composed of specifications intended to provide descriptions on the

structural composition of modules implementing security-related functionality. Such

an internal structure may be composed of instance variables, data structures, as well

78



as the instance methods that may ultimately manipulate those (commonly known

as setters/getters). This way, this category strives to provide specifications that can

constraint either the set of values, the dimensions, or the features such internal struc-

tures must observe in order for the module being specified to remain in a consistent

state throughout its lifetime.

Structural specifications can be expressed in DBC/JML by means of class invari-

ants, model methods, as well as method contracts that make use of model variables.

For security-related purposes, modules that stay in an inconsistent state may intro-

duce unintended security vulnerabilities as a result, either in an internal way, or by

forcing other modules to enter into vulnerable states because of them. As an exam-

ple, Fig. 6.1 presents some structural specifications for our proposed FAMAttribute

module, which, has mentioned before, is intended to model the functionality desired

for attributes within our approach. Lines 5-8 present a set of model variables that

are constrained by means of the invariants shown in Lines 10-12, e.g., all of them are

forbidden from being null at anytime during the existence of an object implement-

ing interface FAMAttribute. In addition, Lines 23-28 present a method contract that

besides reinstating the aforementioned constraint on the value model variable, also

introduces an additional one as detailed by the isFromProperType model method.

This way, the three inner components of an attribute, as described in Chapter 4.2.1,

should be implemented in such a way that they always stay within the desired bounds

as expressed by the aforementioned specifications, thus possibly preventing unwanted

situations in which they may pose a security risk. As an example, setting the model

variable value to null may force another component, e.g., FAMPolicyEvaluator to

crash due to an unexpected NullPointerException, which could potentially affect

the way a given policy for inter-organizational resource mediation is ultimately eval-

uated and enforced.
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Compositional Specifications. Our next specification category is intended to

describe the way different components are to interact with each other, either by

means of nesting components inside one another, or by requiring mutual pointer

references between them at runtime. Such interactions can be described in DBC/JML

by means of class invariants as well as contracts for methods that ultimately access

those components. For security purposes, components may be composed into sub-

systems whose functionality may be affected if they are not able to interact with each

other in a proper way.

As an example, Fig. 6.4 shows an excerpt of a Java interface FAMPolicyRepository,

which is intended to provide an abstract implementation independent component that

can handle the storage of both local and federated policies as it is depicted by the

policy administration layer featured in Chapter 5.1.2. Policies are modeled by means

of the FAMPolicy interface, which is composed by a set of inner components of type

FAMResource: an abstract representation of a shared resource within the context of

our approach. In such a setting, a given policy is stored within the repository by

using each of its composing resources as an index key. This way, such a policy will

be retrieved when a future access request on any of its composing resources must

be mediated. Fig. 6.4 (Lines 7-9) provides an abstract representation of the policy

repository by means of a model variable called theRepository, which leverages the

JMLEqualsToEqualsRelation specification-only type provided by the JML frame-

work. Following the discussion on model constructs presented in Chapter 6.2, JML

provides a rich set of model types that are intended to be used in specifications only,

in order to provide behavioral descriptions with higher levels of abstraction. Con-

cretely, the JMLEqualsToEqualsRelation provides a mathematical relation between

two Java types. This way, the theRepository model variable is to provide an entry

relating a given resource of type FAMResource with a corresponding mediating policy
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1 package edu.asu. sefcom .fam. model . policies ;

2

3 //@ model import org. jmlspecs . models . JMLEqualsToEqualsRelation ;

4

5 public interface FAMPolicyRepository {

6

7 //@ public instance model JMLEqualsToEqualsRelation theRepository ;

8

9 //@ public invariant theRepository != null ;

10

11 /*@ public normal_behavior

12 @ assignable theRepository ;

13 @ ensures (\ forall FAMResource resource ;

14 @ policy . getResources (). contains ( resource );

15 @ theRepository .has(resource , policy ));

16 @*/

17 public void addPolicy (/*@ non_null @*/ FAMPolicy policy );

18

19 ...

20 }

Figure 6.4: An Excerpt of a Java Interface Describing a Policy Repository.

of type FAMPolicy, as it is shown in the contract depicted in Lines 11-16. Using

this abstract specification, implementers of a policy repository may choose different

ways to provide actual storage capabilities for policies, assuming the relation between

resources and policies is correctly implemented as it is shown in Fig. 6.4.

Model Data Structures and Methods. As it was first introduced in the previ-

ous section, we leveraged several specification-only types provided by the DCB/JML

framework in order to provide an abstract representation of important data structures

within the different components included in our FAM security model. As it was also

mentioned before, such model data structures allow to specify important security-

relevant constraints on top of them, which should be then preserved by any further
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implementation that provides its own concrete data structures based on particular

needs. In addition, we introduced a series of model methods intended to provide

advanced descriptions of intended security-related functionality. We have developed

such an approach based on the assumption that advanced descriptions, while still rep-

resentable by means of other JML constructs, e.g., invariants and contracts, may have

a simplified representation using model methods, as they are mostly based in Java

source code, which can potentially be easier for future implementers to understand

and follow when crafting their own source code.

With respect to security purposes, both model variables and methods provide

a convenient way to specify non-trivial constraints and functionality that must be

preserved in further implementations. Fig. 6.5 presents an specification for the

FAMPolicy component representing both local and federated policies in our secu-

rity model, which was also introduced before in this dissertation. Based on the

background topics discussed in Chapter 2.3 as well as on the discussion on policies

presented in Chapter 4.2, Chapter 5.1, and Chapter 5.2, we have chosen to model

policies as a combination of sets containing protected resources, policy rules as well

as the attribute names that are listed in those rules. This way, the attributes names

required for evaluating a given policy can be extracted by the attribute provision-

ing scheme detailed in Chapter 5.2 before the actual evaluation of a policy can take

place. Fig. 6.5 shows an specification of such sets in Lines 5-7, which leverage the

abstract JML type JMLEqualsSet. As mentioned before, implementers can provide

their own custom-made way to provide a concrete data structure representing those

sets. In addition, Lines 11-28 provide a specification on the way attribute names

(represented by type FAMAttributeName) are to be obtained from the rules contained

in the policy (FAMPolicyRule) and concentrated into a dedicated set. As shown in

the sample specification code, implementers should inspect each policy rule, extract
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its inner attribute names, and concentrate all into the attributeNames set, which is

then used by the method contract shown in Lines 30-36 to describe the contents being

returned to a runtime called that invokes the getAttributeNames method.

Client-based Invariants/Contracts. As an special case of our proposed DBC/JML

specifications, we have also identified the need to provide advanced invariants and

method contracts that can precisely describe the way a given component within our

FAM security model is to be leveraged by other external components, a.k.a., clients,

by means of invoking security-sensitive public methods. Commonly, such clients will

delegate security functionality to the modules implementing our FAM security model.

Therefore, a well-defined and precise description detailing any initial assumptions, pa-

rameter passing, as well as a description of any return data is extremely desired.

With respect to security purposes, recent pitfalls in the proper specification of

security-implementing APIs have been identified as the main source of serious vul-

nerabilities in major security software (Georgiev et al. (2012)). With this in mind,

we aim to provide a dedicated categorization that highlights the functionality our

FAM security model provides to external client components, in such a way that all

interactions between the involved parties can be carried on safely as intended.

Fig. 6.6 presents a set of DBC/JML specifications tailored to describe the function-

ality of the FAMProvisioningRuleDiscoveryEntryPath interface, which is intended

to represent the attribute discovery paths as described in Chapter 5.1 and Chap-

ter 5.2. In such a context, entries depicting each of the AD-Rules to be included in

the path are to be included in a model data structure known as thePath (Line 5).

In addition, Lines 18-22 depict a very important invariant with respect to attribute

discovery paths that must be preserved during the whole lifetime of an object imple-

menting interface FAMProvisioningRuleDiscoveryEntryPath: the entries located in
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1 package edu.asu. sefcom .fam. model . policies ;

2

3 public interface FAMPolicy {

4

5 //@ public model instance JMLEqualsSet rules ;

6 //@ public model instance JMLEqualsSet resources ;

7 //@ public model instance JMLEqualsSet attributeNames ;

8

9 //@ public represents this . attributeNames <- getFromRules ( this . rules );

10

11 /*@ public pure model JMLEqualsSet getFromRules ( JMLEqualsSet rules ){

12 @ JMLEqualsSet result = new JMLEqualsSet ();

13 @ JMLIterator iter = rules . iterator ();

14 @

15 @ while (iter. hasNext ()){

16 @ FAMPolicyRule rule = ( FAMPolicyRule ) iter.next ();

17 @ List attributeNames = rule. getAttributeNames ();

18 @ for(int j = 0; j < attributeNames .size (); j++){

19 @ FAMAttributeName attributeName =

20 @ ( FAMAttributeName ) attributeNames .get(j);

21 @ if (! result .has( attributeName )){

22 @ result . insert ( attributeName );

23 @ }

24 @ }

25 @ }

26 @ return result ;

27 @ }

28 @*/

29

30 /*@ public normal_behavior

31 @ ensures \ result != null && \ result .size () > 0 &&

32 @ (\ forall FAMAttributeName attributeName ;

33 @ this . attributeNames .has( attributeName );

34 @ \ result . contains ( attributeName ));

35 @*/

36 public /*@ pure @*/ List getAttributeNames ();

37 }

Figure 6.5: An Excerpt of a Java Interface Describing a FAM Policy.
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thePath must be chained one after the other so that the attribute path can be further

traversed for attribute provisioning purposes, as depicted in Chapter 5.2.2. Such a

property is indeed crucial to ensure paths remain in a consistent state and can be

effectively used for their intended purpose by other client modules. As shown in Lines

18-22, such a property is then preserved by required all entries being consecutive to

each other, e.g., AD-Rule entries A and B such that A appears immediately before B

in thePath, to satisfy a constraint requiring their the intersection of the sets depicted

for both A output attributes as well as B input attributes to be non-empty, e.g.,

the size of the resulting set should be greater than zero. A model method specifying

how such intersection can be calculated is shown in Lines 7-16. Finally, the afore-

mentioned constraint is also enforced in the method contract shown in Lines 24-32

which requires clients invoking the addRuleDiscoveryEntry method to satisfy such

a property before a new AD-Rule entry can be added to the attribute path.

Specifications for Method Customization. Finally, we present the last cate-

gory of DBC/JML specification included in our proposed FAM security model. As

it is intended in major languages following the object-oriented programming (OOP)

paradigm (Rentsch (1982)), the functionality intended for software modules such as

classes and interfaces is expected to be updated by means of providing customized

version of existing methods, either by implementing a given interface or by using the

concepts of subtyping and method overriding. This way, a newly introduced module

may update the functionality of an already-existing one by implementing a dedicated

interface or by first subclassing it and then overriding any method of interest.

While highly-convenient, such an approach may introduce non-trivial security vul-

nerabilities, as existing functionality devised in the original component may be broken

in the newly-developed one, which may complicate the way such new component is to
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1 package edu.asu. sefcom .fam. model . provisioning ;

2

3 public interface FAMProvisioningRuleDiscoveryEntryPath {

4

5 //@ public instance model List < FAMProvisioningRuleDiscoveryEntry > thePath ;

6

7 /*@ public pure model List intersection (List input , List output ){

8 @ List result = new ArrayList ();

9 @ for(int i = 0; i < input .size (); i++){

10 @ if( output . contains ( input .get(i))){

11 @ result .add( input .get(i));

12 @ }

13 @ }

14 @ return result ;

15 @ }

16 @*/

17

18 /*@ public invariant

19 @ (\ forall int i; 0 <= i && i < thePath .size () - 1;

20 @ intersection ( thePath .get(i+1). getInputAttributes () ,

21 @ thePath .get(i). getOutputAttributes ()).size () > 0);

22 @ */

23

24 /*@ public normal_behavior

25 @ requires this . intersection (

26 @ entry . getInputAttributes () ,

27 @ this . getRuleDiscoveryEntry ( this .size ())

28 @ . getOutputAttributes ())

29 @ .size () > 0;

30 @ assignable thePath ;

31 @ ensures thePath .get( thePath .size () -1). equals ( entry );

32 @*/

33 public void addRuleDiscoveryEntry (/*@ non_null @*/

34 FAMProvisioningRuleDiscoveryEntry entry );

35 ...

36 }

Figure 6.6: An Excerpt of a Java Interface for an Attribute Provisioning Path.
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interact with others in the context of implementing security-related functionality for

a given sub-system. In order to prevent this situation, we have resorted to leveraging

DBC/JML contracts for methods that are intended for further customization. This

way, the basic required functionality for a given module is stated using an original

DBC/JML contract. Later, a customized new version of such a module may also

introduce new specification cases by means of the also construct. Following the se-

mantics defined for DBC/JML contracts, any implemented/overridden method will

be expected to fulfill not only its new set of DBC/JML specifications, but also the

ones defined for the original one as well, thus preserving existing related functionality

contained in the original software as a result.

As an example, Fig. 6.7 presents a Java interface called FAMProvisioningRule

that is intended to represent our proposed AD-Rules discussed in Chapter 4.2.3. The

actual functionality for transforming an attribute into another is to be implemented

by means of the process method, which can be then customized by modules imple-

menting such an interface or by modules subclassing an existing implementation of it.

The contract for the process method shown in Fig. 6.7 can be described as follows:

preconditions (Lines 6-9) require that the attribute derivation request, represented

by an object implementing the FAMProvisioningRequest interface, contains a set of

attributes whose names contain the ones intended to serve as an input to the trans-

formation being performed by the current AD-Rule. In case such a precondition is

fulfilled, the method’s postconditions (Lines 11-22) state that the responding mes-

sage, represented by an object of interface FAMProvisioningResponse, will contain

either the resulting attributes as intended for the AD-Rule, in case the transformation

was carried on successfully, or a single default empty attribute (FAMEmptyAttribute)

otherwise, for the case the transformation was not performed due to some unexpected

circumstances, e.g., runtime errors.
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Fig. 6.8 shows a Java class FAMIdentityProvisioningRule that implements the

aforementioned FAMProvisioningRule interface to provide a customized transforma-

tion that simply returns the same set of attributes provided as an input, thus depicting

an identity function. In such a case, the source code intended for the process method

(Lines 9-14) must follow the specifications defined for it in the FAMProvisioningRule

interface as described before, as well as the ones that are related to its expected cus-

tomized behavior, which are shown in Lines 5-7: the resulting response message will

include all the attributes including in the original request and nothing else. In Chap-

ter 6.4, we present our experiments intended to verify that actual implementations

as the one provided by Fig. 6.8 meet their corresponding DBC/JML specifications as

defined by our proposed FAM security model.

6.4 Experimental Evaluation

In this chapter, we describe an experimental process tailored to provide evidence

of the suitability of our proposed FAM security model to allow for the construction

of custom-made enforcement mechanisms following the approach described in this

dissertation. In addition, we aim to show how our proposal can serve as a media for

conducting a conformance procedure for such customized implementations, in such

a way that the desired security features, as expressed by means of the DBC/JML

constructs described in the previous chapter, are indeed preserved at the source-code

level. Finally, we present an experimental procedure tailored to show the suitability of

our proposal for detecting non-trivial security vulnerabilities that may be introduced

as a part of the development process and can be potentially located by using our

FAM security model as a testing oracle. We provide a description of the methodology

used as well as some experimental results that support our claims.
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1 package edu.asu. sefcom .fam. model . provisioning ;

2

3 public interface FAMProvisioningRule {

4

5 /*@ public normal_behavior

6 @ requires (\ forall FAMAttributeName attributeName ;

7 @ this . getRuleDiscoveryEntry ().

8 @ getInputAttributes (). contains ( attributeName );

9 @ request . getAttributesNames (). contains ( attributeName ));

10 @

11 @ ensures \ result != null &&

12 @ \ result . getPeerInfo (). equals ( request . getPeerInfo ()) &&

13 @ \ result . getAttributes ().size () > 0 &&

14 @ (\ result . getAttributes ().size () > 1 ==>

15 @ ((\ forall FAMAttribute attribute ;

16 @ \ result . getAttributes (). contains ( attribute );

17 @ !( attribute instanceof FAMEmptyAttribute ))) &&

18 @ (\ forall FAMAttribute attribute ;

19 @ \ result . getAttributes (). contains ( attribute );

20 @ this . getRuleDiscoveryEntry ().

21 @ getOutputAttributes (). contains ( attribute . getName ()))

22 @ );

23 @*/

24 public /*@ pure @*/ FAMProvisioningResponse

25 process (/*@ non_null @*/ FAMProvisioningRequest request );

26 }

Figure 6.7: An Excerpt of a Java Interface for an Attribute Provisioning Rule.
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1 package edu.asu. sefcom .fam. model . testing ;

2

3 public class FAMIdentityProvisioningRule implements FAMProvisioningRule {

4

5 /*@ also

6 @ ensures \ result . getAttributes (). equals ( request . getAttributes ());

7 @*/

8 public FAMProvisioningResponse process ( FAMProvisioningRequest request ){

9 List < FAMAttribute > attributes = new ArrayList < FAMAttribute >();

10 attributes . addAll ( request . getAttributes ());

11

12 return new FAMBasicProvisioningResponse ( this . getRuleDiscoveryEntry () ,

13 request . getPeerInfo () ,

14 attributes );

15 }

16 ...

17 }

Figure 6.8: An Excerpt of a Java Class for an Attribute Provisioning Rule.

Constructing an Implementation. We start our discussion by presenting our

results when constructing a customized implementation of our FAM security model,

following the assertion-based DBC/JML descriptions that were introduced in Chap-

ter 6.3.1.

Initially, we provided Java classes implementing the interfaces contained in the

FAM security model, which in turn provide a representation of each of the components

of an enforcement mechanism as depicted in Chapter 5.

Next, we proceed to construct each component by following the structural specifi-

cations devised for each of them. As an example, Fig. 6.2 presents an implementation

of the FAMAttribute interface presented in Fig. 6.1: for each model variable we pro-

vide a concrete implementation and also use DBC/JML constructs in such a way

that a mapping between the two is established, e.g., using the represents and in
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Table 6.1: A Set of Sample Components of our FAM Security Model.
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FAMAttribute
√ √ √

FAMPolicy
√ √ √

FAMPolicyRepository
√ √ √ √

FAMPolicyEvaluator
√ √ √

FAMPolicyDecisionCombinator
√

FAMProvisioningDiscoveryEntryPath
√ √ √

FAMProvisioningDiscoveryEntryRepository
√ √ √

FAMProvisioningRule
√ √ √ √

FAMProvisioningAgent
√ √ √ √

constructs (Lines 9-15). Later in this chapter, we show how such mapping allows for

a verification and validation process for conformance and vulnerability detection to

be carried on. In addition, we provide proper class constructors and getter/setter

methods that follow the class invariants defined over the aforementioned model vari-

ables, in such a way that the structural consistency of the implemented class can be

preserved.

In a subsequent step, we combined different components with each other following
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our proposed compositional specifications, in an effort to implement functionality

that is intended for security-subsystems within our enforcement mechanism. As an

example, Fig. 6.4 provides a representation of a software module that is intended to

store policies (represented by the FAMPolicy shown in Fig. 6.5), so they can be later

located for further evaluation, implementing the functionality devised in Fig. 6.4: the

repository itself is modeled by means of a dedicated data structure implementing a

hashtable (java.util.Hashtable, Lines 5-7). A policy is added to the repository by

the implementation of the addPolicy method (Lines 27-36), which retrieves the list

of protected resources (FAMResource) listed in the policy and inserts and entry into

the hashtable linking both the policy and each resource for future retrieval.

Continuing with the example shown in Fig. 6.9, we also provided a concrete im-

plementation for the model data structure theRepository listed in Fig. 6.4 (Line 7)

by means of the aforementioned hashtable labeled as repositoryTable. Mapping be-

tween those two variables (model and concrete) is actually implementing by means

of the convert model method, shown in Lines 11-25 of Fig. 6.9: each entry in the

hashtable is extracted and used to populate entries into the specification-only type

JMLEqualsToEqualsRelation. This way, any reference within our DBC/JML speci-

fications to the theRepository model variable with be linked to an object constructed

from parsing the concrete implementation provided by the theRepository hashtable by

means of the aforementioned convert model method, thus implementing an abstrac-

tion function as described before in this chapter. Such a feature will be extremely

useful for the conformance and vulnerability-detection testing to be discussed later

in this chapter.

Our next step included following the specifications contained in class invariants

and method contracts in order to provide implementations of security-related func-

tionality for software clients. As an example, Fig. 6.10 depicts the implementation
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1 package edu.asu. sefcom .fam. model . mapping ;

2

3 public class FAMBasicPolicyRepository implements FAMPolicyRepository {

4

5 private /*@ spec_public @*/

6 Hashtable < FAMResource , List <FAMPolicy >> repositoryTable ;

7 /*@ in theRepository ; @*/

8

9 //@ public represents this . theRepository <- convert ( repositoryTable );

10

11 /*@ public model pure JMLEqualsToEqualsRelation convert ( Hashtable table ){

12 @ JMLEqualsToEqualsRelation result = new JMLEqualsToEqualsRelation ();

13 @ Enumeration tableKeys = table .keys ();

14 @ while ( tableKeys . hasMoreElements ()){

15 @ FAMResource resourceKey = ( FAMResource ) tableKeys . nextElement ();

16 @ List policies = getPolicyList ( resourceKey );

17 @

18 @ for(int i = 0; i < policies .size (); i++){

19 @ FAMPolicy policy = ( FAMPolicy ) policies .get(i);

20 @ result = result .add( resourceKey , policy );

21 @ }

22 @ }

23 @ return result ;

24 @ }

25 @*/

26

27 public void addPolicy (/*@ non_null @*/ FAMPolicy policy ){

28 List < FAMResource > policyResources = policy . getResources ();

29

30 for(int i = 0; i < policyResources .size (); i++){

31 FAMResource resource = policyResources .get(i);

32 List <FAMPolicy > policyList = getPolicyList ( resource );

33 policyList .add( policy );

34 this . repositoryTable .put(resource , policyList );

35 }

36 }

37 ...

38 }

Figure 6.9: An Excerpt of a Java Class for a Policy Repository.
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of a Java class FAMBasicProvisioningAgent, with provides a representation for the

APA modules discussed in Chapter 5.1.2. In such a class, the functionality devised for

the path discovery process, as described in Chapter 5.2.1, is implemented by method

getPaths (Lines 5-36) by leveraging the well-known breadth-first search (BFS) al-

gorithm (Lee (1961)). Our implementation initially places the names of the goal

attributes contained in the original request into the queue data structure and then

tries to retrieve entries producing such attributes from the local entry repository (Line

7-10). The process of locating entries producing an attribute is called attribute ex-

pansion. Every single time a new entry is located, they are added into a resulting

path and its input attributes are added to the queue. Following the BFS algorithm,

the process is repeated until no attributes are left in the queue. This way, paths are

constructed in a backwards fashion until no more attributes are left to be expanded.

In such an implementation code, we leverage the invariant and method contract

specifications describing how a given path should be constructed, e.g., by creating

a consistent object of class FAMProvisioningRuleDiscoveryEntryPath as shown in

Fig. 6.6. Recall from Chapter 5.2.1 and Chapter 6.3.1 that an attribute-provisioning

path must contain entries representing AD-Rules in such a way that for each pair of

consecutive entries A and B must contain a non-empty set depicting the intersection

of A’s input attributes and B’s output ones. During the discovery of possible paths

in method getPaths, we preserve the aforementioned constraint by means of the

auxiliary method getPreviousEntries (Line 19), which takes as an input the name

of the attribute being expanded and retrieves any locally-stored entries that ultimately

may produce such an attribute. Later, Lines 23-31 iterate over such entries and, for

each entry, a new shall copy of the current path being explored is created and the

entry is added in the beginning position of it. This way, the aforementioned constraint

is preserved and every resulting path is said to be in a consistent state.
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1 package edu.asu. sefcom .fam. model . mapping ;

2

3 public class FAMBasicProvisioningAgent implements FAMProvisioningAgent {

4

5 public List getPaths ( FAMProvisioningRuleDiscoveryRequest request ,

6 List < FAMAttributeName > attributeNames ){

7 List result = new ArrayList ();

8 Queue queue = new LinkedList ();

9 HashMap pathsMap = new HashMap ();

10 queue . addAll ( this . getPreviousEntries ( request . getRequestedAttributeName ()));

11

12 try{

13 while (! queue . isEmpty ()){

14 FAMProvisioningRuleDiscoveryEntry entry = queue . remove ();

15 FAMProvisioningRuleDiscoveryEntryPath path = this . getStoredPath (entry , pathsMap );

16

17 for(int i = 0; i < entry . getInputAttributes ().size (); i++){

18 FAMAttributeName attributeName = entry . getInputAttributes ().get(i);

19 List producingEntries = this . getPreviousEntries ( attributeName );

20

21 for (int j = 0; j < producingEntries .size (); j++){

22 FAMProvisioningRuleDiscoveryEntry producingEntry = producingEntries .get(j);

23 FAMProvisioningRuleDiscoveryEntryPath newPath = path. clonePath ();

24

25 if (! newPath . hasRuleDiscoveryEntry ( producingEntry )){

26 newPath . prependRuleDiscoveryEntry ( producingEntry );

27 pathsMap .put( producingEntry , newPath );

28 attributeNames . addAll ( producingEntry . getOutputAttributes ());

29

30 if (! attributeNames . containsAll ( producingEntry . getInputAttributes ())){

31 if (! queue . contains ( producingEntry )){ queue .add( producingEntry );}}

32 ...

33 }}}}

34 } catch ( Exception e){.. .}

35 return result ;

36 }

37 ...

38 }

Figure 6.10: An Excerpt of a Java Class for an Attribute Provisioning Agent.
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1 package edu.asu. sefcom .fam. model . mapping ;

2

3 public abstract class FAMBasicProvisioningRule implements FAMProvisioningRule {

4

5 public FAMProvisioningResponse process ( FAMProvisioningRequest request ){

6 List attributes = new ArrayList ();

7 attributes .add(new FAMEmptyAttribute ());

8

9 return new FAMBasicProvisioningResponse ( this . getRuleDiscoveryEntry () ,

10 FAMProvisioningAgent . localPeerInfo ,

11 attributes );

12 }

13 }

Figure 6.11: An Excerpt of a Java Class for an Attribute Provisioning Rule.

Finally, we leveraged the specification tailored for further method customization in

order to produce the basic functionality as intended by the basic component and then

leveraging customized versions of it that introduce addition runtime behavior while

preserving the original one. Such a step followed an approach similar to the one al-

ready shown in Fig. 6.7 and Fig. 6.8: basic functionality for AD-Rules is implemented

by a basic component in the form of an abstract Java class and further refinements are

then introduced to produce customized behavior, which should preserve the original

one at any time for the sake of consistency. As an example, basic functionality for the

Java interface depicted in Fig. 6.7 is implemented by the FAMBasicProvisioningRule

abstract class shown in Fig. 6.11: the implementation code for the process method

simply returns an attribute list with an object of the FAMEmptyAttribute as a result.

Later, such a behavior is customized by the implementation shown in Fig. 6.8.

Conformance Testing. As mentioned before in this chapter, we aim to provide

experimental evidence that can show the suitability of our proposed FAM security
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model to serve as a guidance for the correct construction of source-code implemen-

tations of our enforcement mechanism, which is shown in Chapter 5. With this in

mind, we now describe an experimental procedure tailored to assess the conformance

of our custom-made implementation, as described in Chapter 6.3, with respect to the

FAM security model we have also described in Chapter 6.3.1.

Methodology. For such a purpose, we resorted to a methodology based on

manually producing different execution traces based on the DBC/JML specifica-

tions contained in our FAM security model, in such a way that we can reproduce

security-related functionality as intended at runtime, following the descriptions for

inter-organizational resource sharing mediation as they are described both in Chap-

ter 4 and Chapter 5. We developed different traces for each of the specification

categories introduced in Chapter 6.3.1. As an example, traces intended for structural

specifications included the instantiation of different objects from the classes provid-

ing concrete implementations of DBC/JML interfaces representing the major com-

ponents included in our approach: attributes (FAMAttribute), policies (FAMPolicy),

AD-Rules (FAMProvisioningRule) and so on. In addition, we also introduced traces

of method invocation calls for the methods commonly known as getters/setters. In a

similar fashion, execution traces for compositional specifications included the creation

of different objects belonging to dedicated sub-systems, e.g., the policy storage and

retrieval functionality depicted in Fig. 6.4 and Fig. 6.5, as well as the introduction of

method calls exercising the functionality intended for them, e.g., adding, retrieving

and removing a variant number of policies stored in a given repository.

In addition, we tested our proposed specifications that include model data struc-

tures and methods by introducing sequence traces that exercise the concrete data

structures implementing such model constructs and verifying that the invariants de-
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vised for them are always preserved. As in the sequences for the previous composi-

tional category, we also tested the concrete data structures by adding or removing a

varying number of elements and by explicitly attempting to add them in the bound-

aries defined for each specific data structure, e.g., the initial and the final position for

data structures of type java.util.List. We also provided traces for our client-based

method specifications by selecting the ones that implement the most security-sensitive

functionality and the ones that ultimately have an effect on preserving important

class invariants. As an example, we provided traces adding and removing AD-Rule

entries (FAMProvisioningRuleDiscoveryEntry) into the attribute provisioning path

depicted in Fig. 6.6. Finally, our conformance testing methodology for methods in-

tended for further customization included creating traces for the original method and

then adding sequences of method calls tailored to meet its original specifications.

Later, we also provided method calls taking as an input objects and/or values in-

tended to test the specifications that describe customized behavior, and checking

they behave as expected at the same time the behavior of the original module is

preserved as well.

Supporting Tools. Our testing traces as just described were tested by leverag-

ing runtime assertion checking (RAC) code. As introduced in Chapter 2.4, dedicated

tools can transform DBC/JML specifications into RAC code that can be then exe-

cuted along with the one devised for concrete implementations. This way, any dis-

crepancy between those two will be detected and a signal in the form of the runtime

error raised. In our experiments, we leveraged the JET tool described in Chapter 2.4

to compile both our DBC/JML specifications included in our FAM security model as

well as our implementation classes in order to produce Java bytecode enhanced with

RAC constructs. As an example, Fig. 6.12 shows a simplified version of Java source
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code that emulates RAC constructs for illustrative purposes. Such a code depicts a

compilation of the concrete implementation of class FAMBasicAttribute as shown

in Fig. 6.2, which in turn follows the specifications defined for the FAMAttribute

interface depicted in Fig. 6.1. Compilation of the FAMBasicAttribute with the JET

tool will produce RAC code as follows: taking as an example the setValue method,

code constructs included in its original body, e.g., the ones included in Fig. 6.2 Line

32), are moved into a new private method called setValue$original, as shown in

Lines 19-21 of Fig. 6.12. In addition, the preconditions devised for such a method,

which are listed in Fig. 6.1 Lines 24-25, are translated into the setValue$PRE method.

Each precondition assertion is then translated into an evaluation condition of an if

statement, and several assertions are glued together by means or an or (||) opera-

tor. This way, any violation of an assertion at runtime will result in an error of type

JMLPreconditionError, along with a description of what went wrong. In a similar

fashion, the postconditions devised for the setValue method, shown in Line 27 of

Fig. 6.1, are translated into the code contained within the setValue$POST method,

which implements an approach analogous to the one described before for assertion

checking by raising an error of type JMLPostconditionError in case a violation is

detected. Finally, the body of the setValue method, as shown in Fig. 6.12 in Lines

8-10, is replaced with method invocation calls to the aforementioned new methods as

produced by the RAC-based compilation: as expected, an invocation of the method

checking preconditions is followed by the invocation of the original method contents,

finalizing with the assertion-checking code for the corresponding postconditions.

Results. During the course of our experiments, we were able to detect sev-

eral discrepancies between our provided implementation and their corresponding

DBC/JML specifications as defined in our FAM security model, which resulted in
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the RAC code raising errors as the ones described above. Some of such discrepancies

were due to an initial incomplete understanding of the actual specifications intended

for our approach, or simply because of common pitfalls in coding, e.g., array indexes

going out of bounds. In order to fix such a problem, we resorted to a careful analysis

of the model specifications and modified the implementation code accordingly, thus

resulting in an implementation refinement process. As an example, the implemen-

tation of method addPolicy shown in Fig. 6.9 (Lines 27-36) exhibited two initial

pitfalls: first, the iteration range defined for the for loop defined in Line 30 was ini-

tially incorrect, as the stopping condition was set to i < policyResources.size() -

1. Second, the method call listed in Line 33, which effectively inserts the policy into

the list of policies defined for a given resource, was initially missing. After receiving

error messages when executing such a code enhanced with RAC constructs, proper

corrections were made as a consequence.

An additional set of discrepancies involved a careful revision of our proposed

DBC/JML specifications, which ultimately resulted in the actual specification being

updated to better reflect the intended runtime behavior. An example of such sit-

uation, which we call specification refining, included updating the model invariant

depicted by interface FAMProvisioningRuleDiscoveryEntryPath in Fig. 6.6, Lines

18-22. An initial version depicted a stricter constraint requiring that, for every pair

of consecutive AD-Rule entries A and B, the set of output attributes produced by A

is a subset of the input attributes devised for B. After careful examination, such a

constraint was regarded as too strong, deriving in the one that is depicted in Fig. 6.6.

We conducted an additional set of experiments to measure the impact on run-

time execution time of the implementation code enhanced with RAC constructs. For

such a purpose, we leveraged the execution traces discussed above and measure the

time taken for the RAC-enhanced code to complete a trace run. For comparison
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1 package edu.asu. sefcom .fam. model . attributes ;

2

3 public abstract class FAMBasicAttribute extends FAMAttribute {

4

5 protected Object _value ;

6

7 public void setValue ( Object newValue ){

8 setValue$PRE ( newValue );

9 setValue$original ( newValue );

10 setValue$POST ( newValue );

11 }

12

13 protected void setValue$PRE ( Object newValue ){

14 if( newValue == null || ! isFromProperType (newValue , this . getType ())){

15 throw new JMLPreconditionError (" Preconditions failed !");

16 }

17 }

18

19 private void setValue$original ( Object newValue ){

20 this . _value = newValue ;

21 }

22

23 protected void setValue$POST ( Object newValue ){

24 if (! this . _value . equals ( newValue )){

25 throw new JMLPostconditionError (" Postconditions failed !");

26 }

27 }

28 ...

29 }

Figure 6.12: An Excerpt of a Java Class Depicting RAC Code.
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purposes, we also measure the execution time taken by our implementation code to

run the same traces without any RAC code included. In addition, in the case of

the compositional specifications described before, we also provided a varying number

of composing elements to the traces being executed, in such a way we can observe

the runtime performance of the modules under test by taking into account different

configurations. In our experiments, we observed that RAC has an impact in runtime

performance that is linear with respect to the number of assertions being checked,

as shown in Fig. 6.12, as well as with respect to the number of composing elements

being considered. As an example, Fig. 6.13 shows our experimental results for the

FAMBasicPolicyRepository module as shown in Fig. 6.9, whose FAM security model

specifications are shown in Fig. 6.4. In such a experiment, we varied the number of

protected resources (FAMResource) as well as the number of policies (FAMPolicy)

guarding access to them. As observed in Fig. 6.13, the performance detriment in-

troduced by the execution of RAC code remains within manageable terms as soon

as the number of resources and policies stays low. As such a number increases, the

execution time gets increased as well, due to the increasing number of RAC code

assertions that need to be checked within those inner components as well on each

execution trace. A similar pattern was observed in an additional experiment depict-

ing the FAMProvisioningRuleDiscoveryEntryPath module shown in Fig. 6.6. As

with the previous example, we varied the number of composing elements by introduc-

ing different entries depicting AD-Rules. Once again, we observed a linear increase

with respect to the number of inner components and a performance detriment caused

by an increasing number of RAC-based assertions to check at runtime. Finally, an

experiment showing a different trend is shown in Fig. 6.15, which was intended to

depict the FAMProvisioningRule module as presented in Fig. 6.7 and Fig. 6.8. As

discussed before, the sample AD-Rule implemented by Fig. 6.8 simply returns as a
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Figure 6.13: Experimental Results for a Policy Repository Module.

result all of the attributes it receives as an input. In our experiment, we kept vary-

ing the number of attributes provided to our implementation, and observed a linear

performance impact with respect to the number of attributes as with our previously

discussed experiments. However, the difference between the runtime execution times

obtained for our non-RAC implementation as well as the RAC-enhanced one was not

as wide as with our previous experiments (10-15 ms). This is due to the nature of

the DBC/JML specifications listed in Fig. 6.7 and Fig. 6.8, which constraint the be-

havior of the AD-Rule being implemented but introduce no constraints on composing

elements such as the varying number of attributes introduced on each experiment

instance. As such attributes depict no RAC-based assertions to check, they introduce

no noticeable performance detriment as a consequence.

Limitations. Even when our conformance testing approach was extremely suc-

cessful to perform a refinement process for both the DBC/JML specifications as well
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Figure 6.14: Experimental Results for an Attribute Provisioning Path.
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Figure 6.15: Experimental Results for an Attribute Provisioning Rule.
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as our customized implementation of our FAM security model, still some limitations

may be introduced by the fact our traces simulating runtime behavior may have not

been able to provide a deep exploration of the multiple execution paths that may be

in turn included in a given implementation, thus preventing our experimental process

for discovering some discrepancies between specifications and implementing source

code that may not be easily spot at plain sight. An approach to alleviate this prob-

lem may include considering static analysis techniques such as the ones presented

by (Doupé et al. (2012)) to calculate different execution states in which advanced

discrepancies specifications-implementation can be detected and corrected.

Vulnerability Testing. In addition to the conformance experiments just described,

we also performed an experimental evaluation intended to measure the effectiveness

of our approach for detecting security vulnerabilities within our customized imple-

mentation of our FAM security model as discussed in Chapter 6.3. This way, we

aim to provide insight on the capabilities of our approach for finding mismatches be-

tween the DBC/JML specifications and source-code implementations based on them,

in such a way that any potential discrepancies, which can be later categorized as

vulnerabilities, can be property detected and corrected.

Methodology. In order to fulfill the purposes just described, we resorted to an

approach primarily based on mutation testing (Jia and Harman (2011)): we manually

inserted well-crafted modifications, a.k.a., mutants, into our implementation source

code that may potentially represent security vulnerabilities. Later, we followed a

similar approach as the one described before for our conformance testing process: we

compiled the mutated source code with the JET tool to produce RAC-enhanced code,

which was then executed by leveraging the aforementioned traces that simulate the
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expected runtime behavior of the implemented enforcement mechanism. This way, if

our RAC-enhanced code is able to detect a given mutant, e.g., by raising a runtime

error as a consequence of an assertion-based checking code being violated, the mutant

is then said to have been killed. With this in mind, we measured the effectiveness of

our approach by the number of mutants that were actually killed by our RAC code

with respect to the number of mutants that were crafted into the implementation in

the first place.

In addition, we strove to introduce mutants in our implementation code as real-

istically as possible. Taking into account the classification of DBC/JML constructs

introduced in Chapter 6.3.1, we produced mutated source code as follows: for the

structural specifications category, we inserted mutations that were intended to de-

liberately violate the inner invariants and method contracts defining the consistency

of a given module. As an example, in Fig. 6.2, we inserted a mutation in method

setValue (Line 32) in such a way that the instance variable value was set to null,

thus deliberately violating the DBC/JML structural class invariant defined in Fig. 6.1

(Line 11). For our compositional specifications, we inserted mutants in the body of

methods intended to preserve compositional properties. As an example, in Fig. 6.9,

we commented Line 34, which belongs to the addPolicy method and is in charge of

effectively adding a new entry into the repositoryTable structure, thus violating the

compositional constraints stated in the DBC/JML contract depicted in Lines 11-16

of Fig. 6.4.

With respect to our model data structures and methods, mutants were designed

in such a way that their corresponding concrete implementations were in conflict

with them. As an example, in Fig. 6.9, we introduced mutants into the convert

model method designed to provide a mapping between the model structure labeled

as theRepository and its corresponding concrete implementation repositoryTable. For
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1 package edu.asu. sefcom .fam. model . mapping ;

2

3 public class FAMBasicProvisioningRuleDiscoveryEntryPath

4 implements FAMProvisioningRuleDiscoveryEntryPath , Cloneable {

5

6

7 private /*@ spec_public @*/ List _path ; /*@ in thePath ; @*/

8

9 //@ public represents thePath <- this . _path ;

10

11 public void addRuleDiscoveryEntry ( FAMProvisioningRuleDiscoveryEntry entry ){

12 this . _path .add( entry );

13 }

14 ...

15 }

Figure 6.16: An Excerpt of a Java Class Depicting an Attribute Provisioning Path.

such a purpose, we modified Line 20 of Fig. 6.9 to prevent an entry to the JMLEquals-

ToEqualsRelation model structure to be created, thus leaving it empty for speci-

fication purposes, not being able to meet the constraints defined in the DBC/JML

contracts that refer to the theRepository model variable as a consequence. A similar

approach was designed for the specifications tailored for describing runtime behavior

intended for Clients: we introduced mutants into the bodies of method implementing

functionality primarily intended for clients in such a way that there was a discrepancy

between them and their corresponding DBC/JML contract, which was in turn vio-

lated by the implementation code. As an example, Fig. 6.16 shows an implementation

of the FAMProvisioningRuleDiscoveryEntryPath shown in Fig. 6.6. In this case,

we deliberately modified Line 12 to prevent the entry passes as a parameter from

being inserted into the path data structure, thus violating the DBC/JML contract

devised for such a method.

Finally, mutants for source code intended for further customizations included mod-
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ifying the implementations depicting such customized behavior in such a way that

they potentially create a discrepancy with their corresponding DBC/JML specifi-

cations as devised in a base component, e.g., an interface or a superclass. As an

example, we modified Line 10 of Fig. 6.8 so that no attributes are included in the re-

sponse message of type FAMProvisioningResponse, thus violating the specifications

for the process method as shown in Lines 11-23 of Fig. 6.7.

Supporting Tools. As mentioned before, we followed a similar procedure as

with our previous conformance experiments: using our mutated implementation code

as well as the DBC/JML specifications of our FAM security model as an input, we

leveraged the JET tool to produce RAC-enhanced Java bytecode that is then used

to execute simulated traces of expected behavior. On each experiment instance, we

recorded the mutant being introduced, the components, e.g., classes being on each

trace, as well as the result of executing each trace, either normal termination, e.g.,

the mutant went undetected, or abnormal termination because of an assertion-based

DBC/JML error, which may indicate the mutant was effectively killed.

Results. As expected, our experimental process was able to successfully de-

tect all the mutants introduced in our sample implementation which followed the

methodology described in this chapter. As an example, Fig. 6.17 shows a runtime

error being thrown as a result of the mutant being introduced in the source code

shown in Fig. 6.16, which prevents the actual construction of the path by erasing

the method call depicted in Line 12. While most of the mutants were detected right

away as the corresponding RAC code implementing DBC/JML specifications found

a discrepancy within the initial set of statements comprising our simulated traces,

some other mutants take additional time to be effectively killed. As an example, we
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designed a mutant for the implementation shown in Fig. 6.10, in such a way that

the invocation of method getPreviousEntries in Line 19 was modified to retrieve

the same entries all the time instead of the ones producing the attribute being ana-

lyzed at a time. While such modification was expecting to break the invariants for

the FAMProvisioningRuleDiscoveryEntryPath defined in Fig. 6.6, Lines 18-22, the

actual detection of the mutant was not self-evident in the first place, as our exper-

imental running trace included constructing paths depicting the same entry of the

AD-Rule shown in Fig. 6.8, which takes as an input and output sets the same set of

attributes. As a consequence, our mutant went undetected as all paths constructed

using the same AD-Rule will always preserve the invariant just mentioned.

Limitations. Even when our approach was successful in detecting the mutants

we introduced to deliberately violate the specifications contained within our FAM

security model, which may in turn represent potential vulnerabilities, still a more

extensive mutant creation process may be needed to further evaluate the capabilities

of our approach for detecting advanced situations what may represent hard-to-spot

vulnerabilities. As an example, an advanced approach can be tailored to produce

mutants that follow the expected control and data flow of a given customized imple-

mentation and try to break DBC/JML specification in a more interesting way. In

addition, advanced mutation-based testing may also take into account the behavior

of supporting in-house security systems, which, as described in Chapter 3 and Chap-

ter 5, are intended to provide backend functionality for our proposed AD-Rules. This

way, the actual functioning of a given implementation can be tested in a broader way

by incorporating components not devised within the experimental process discussed

in this chapter.
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1 ----------------------------------------------------------------------------

2 Testing ... edu.asu. sefcom .fam. model . testing . FAMProvisioningEntryPathTester

3 ----------------------------------------------------------------------------

4 Exception in thread "main"

5 org. jmlspecs . jmlrac . runtime . JMLInternalNormalPostconditionError :

6 by method FAMBasicProvisioningRuleDiscoveryEntryPath . addRuleDiscoveryEntry

7 regarding specifications at

8 File " FAMProvisioningRuleDiscoveryEntryPath .java", line 54, character 63 when

9 ’entry ’ is (Rule :[A-0, A-1, A-2, A -3] ->[A-0-0, A-0-1, A-0-2, A-0-3, A -0 -4])

10 ’this ’ is edu.asu. sefcom .fam. model . mapping

11 . FAMBasicProvisioningRuleDiscoveryEntryPath@ ...

12 at edu.asu. sefcom .fam. model . mapping . FAMBasicProvisioningRuleDiscoveryEntryPath

13 . addRuleDiscoveryEntry ( FAMBasicProvisioningRuleDiscoveryEntryPath .java :590)

14 at edu.asu. sefcom .fam. model . testing . FAMTesterUtils . getEntryPath (.. .)

15 at edu.asu. sefcom .fam. model . testing . FAMProvisioningEntryPathTester . innerTest (.. .)

16 at edu.asu. sefcom .fam. model . testing . FAMMainTester .test( FAMMainTester .java :30)

17 at edu.asu. sefcom .fam. model . testing . FAMProvisioningEntryPathTester .main(.. .)

Figure 6.17: An Excerpt of a Runtime Error Depicting RAC Code.
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Chapter 7

A TRUST MANAGEMENT SYSTEM

As mentioned in Chapter 1 and Chapter 3, our proposed FAM federations, as de-

tailed in Chapter 4, are expected to incorporate new organizational members and

new end-users over time. In addition, the number of collaborative projects involving

shared resources is also expected to grow. In such a context, new and heterogeneous

interactions between different organizations and users may be introduced over time,

and some of them may involve the participation of entities not having a record of

previous successful interactions with each other. In such a case, participants may

find it difficult to trust these previously-unknown peers without any previous piece

of evidence that can facilitate such a process. In addition, organizations may find it

convenient to establish fine-grained trust relationships not only at the organizational

level, but also at the level of research departments, groups and end-users. With this in

mind, this chapter presents an approach tailored to provide a way for participants to

define and exchange trust scores on the perceived trust of other participants, in such

a way that interactions between previously-unknown peers can be better supported,

thus solving the issues for trust management described in Chapter 3.4.2. We start

in Chapter 7.1 by providing a definition of trust as well as by providing some use

cases for collaborations within the context of our proposed FAM approach. Later, in

Chapter 7.2, we present our proposed solution for a trust management system that

can be implemented on top of the theoretical model described in Chapter 4 and the

enforcement mechanism described in Chapter 5. In addition, we also describe our

prototype implementation of such a system in Chapter 7.3 and provide experimental

evidence of its suitability for runtime deployments in Chapter 7.4. Later on in Chap-
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ter 9.3.1, we will provide a description of how our approach solves the challenges for

trust management as described in Chapter 3.4.2.

7.1 Definition of Trust

We start our discussion on trust management by exploring the way trust can

be understood in the context of our proposed federations for FAM. As it has been

introduced in this dissertation, the main motivation of our approach is to provide

access mediation for collaborative resource sharing. With this in mind, an initial

definition of trust must include participant organizations trusting each other for the

purposes of sharing proprietary resources, e.g., making a fare use of them in such a way

abusing or unsafe situations are prevented. In addition, participants are also to trust

each other for the proper implementation of our proposed FAM approach, including

policy specification, retrieval, and evaluation, as well as for the purposes of attribute

provisioning: publishing, discovering, derivation and communication. As an example,

participants may need to trust the implementation of AD-Rules as provided by other

peers, as an incorrectly-implemented AD-Rule may have unpleasant consequences for

FAM purposes, e.g., allowing for unintended attribute derivations to take place.

Trust Relationships. With this in mind, our approach for FAM may support

different use cases depicting trust relationships between participants. Fig. 7.1 provides

a graphic depiction of a basic use case in which the participant serving as the origin

of a trust judgment is is known as the trustor and the receiving of such trust is

known as the trustee, thus depicting a direct relationship between the two participants.

Within our FAM approach, such a relationship may be established when the trustor

incorporates attributes that are originated within the domain implemented by the

trustee, e.g., when crafting and evaluating a given inter-organizational policy.
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Figure 7.1: A Direct Trust Relationship Use Case.

Moreover, Fig. 7.2 presents a case for an indirect relationship when a delegation

scheme allows for a trustor to trust a third-party known as the delegatee, which is in

turn trusted by the aforementioned trustee entity. Within our FAM approach, such

indirect relationships may be established by allowing the trustee to transform the

attributes of the delegatee into the ones expected by the trustor, e.g., by means of

chained AD-Rules.

An additional case is show in Fig. 7.3, in which the attributes originated from

different trustees are transformed into federated attributes that are in turn leveraged

by the trustor, thus depicting a multicast situation in which the relationship of trust

between trustor and trustees is based on an additional component, e.g., the aforemen-

tioned federated attributes, that serves as a layer of indirection that many different

trustees may leverage. As with the previous example, transformation of attributes

local to trustees into federated ones can be performed by our proposed AD-Rules.

Finally, Fig. 7.4 presents a combined case when the different trust relationships

as described above are combined together: the attributes of a delegatee are first

transformed into the ones of the trustee, which then are mapped to the federated

attributes trusted by the trustor. We believe other combinations like the one depicted

in Fig. 7.4 may exist in practice.

Trust in Attribute Provisioning. As it was hinted before during our discus-

sion on trust relationships, the attribute provisioning scheme we have discussed in

Chapter 4 and Chapter 5 plays a major role in the establishment of trust relation-
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Figure 7.2: An Indirect Trust Relationship Use Case.

Figure 7.3: A Multicast Trust Relationship Use Case.

Figure 7.4: A Combined Trust Relationship Use Case.

ships between participants, as the process of path discovery and path walking may

be greatly affected by the degree of trust between the different participants providing

each of the AD-Rule depicted in those. Fig. 7.6 provides a graphical depiction of an

AD-Graph composing an attribute path, which is in turn composed of a sequence of

AD-Rules implemented by different participant organizations. In such a figure, the

input attribute A3 is to be converted into the goal attribute A1. For each attribute,

a corresponding source entity is shown, e.g., the participant organization implement-

ing the AD-Rule creating such attribute. In such a setting, the overall result of the
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Figure 7.5: An AD-Graph with Source Entities.

path traversal procedure, as depicted in Chapter 5.2.2, may depend upon the trust

assigned to each of the source entities included in the path. As an example, if one of

the source entities fails to implement its corresponding AD-Rule correctly, e.g., the

entity labeled as SAW
producing the attribute labeled AW in Fig. 7.6, the derivation

process for goal attribute A1 may be affected as a result, thus also possibly affecting

the evaluation of policies leveraging such attribute for access mediation purposes.

7.2 Trust Management for FAM

Inspired by previous approaches we will discuss in Chapter 8 as a part of our review

of works already in the literature, we now present our approach for establishing a trust

management framework intended to work on top of our proposed FAM solution which

has been already discussed previously in this dissertation.

Trust Scores. Initially, we aim to model trust as an increasing monotonic numeric

value within a certain predefined scale depicting a well-defined range of values. Such

a scale is to be determined by the participants of each federation and is expected to be

maintained by all of them during the whole duration of collaborative projects. As an

example, in a numeric scale depicted by the range [0, 1], the value of 0 may represent

the complete absence of trust, e.g., the entity obtaining such a score can be regarded
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as completely untrusted, whereas on the other hand the value of 1 may be assigned

to a fully trusted entity. The actual meaning of all intermediate values may be deter-

mined by a consensus within the participants of a given federation. In our proposed

approach, participants will be allowed to keep their own scores on the perceived trust

of other peers within a given federation, and will be allowed to store and change those

at will, e.g., by implementing a dedicated local repository. In addition, participants

will be allowed to keep trust scores not only at the organizational-level, but also in

fine-grained levels such as departmental, research groups, or even end-users, etc.

Trust Scores for AD-Graphs. Following the discussion on trust for AD-Graphs

presented before in this chapter, we aim to allow for participants to calculate trust

scores on the AD-Graphs depicting attribute paths that were previously obtained from

a path discovery process such as the one described in Chapter 5.2.1. As an example,

Fig. 7.6 presents an updated version of the attribute path depicted in Fig. 7.5 that

contains trust scores for each of the source entities as depicted in the path. In such a

figure, and in the rest of this chapter, we assume a trust scale in the range [0, 1] that

leverages the value of 0 for untrusted peers and 1 for fully trusted ones, as mentioned

before, and also the intermediate values of 3/4 for partially trusted (well-behaved)

peers, 1/4 for possibly untrusted (misbehaving) ones, as well as 1/2 as the initial

neutral value with all other options do not apply. As an example, the trust score for

the source entity producing attribute A3, denoted T (SA3), is 1, which denotes the

entity is fully-trusted. Conversely, the score for the source entity SAW
is 1/2, which

represents the neutral initial value within our proposed scale.

With this in mind, the trust score of a given AD-Graph P, denoted T(P), can

obtained as follows:

Definition 1 T(P) = min( T(A1), T(A2), ... T(An−1), T(An))
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Figure 7.6: Assigning Trust Scores to Source Entities within an AD-Graph.

where T(Ai) is the trust value on each of the attributes involved in P, and can

be obtained from the trust score of its source entity, e.g., T (SA3), or from the trust

score assigned to the AD-Rule Ri producing it, if a fine-grained approach is in place.

As an example, the trust score of the attribute path P as depicted in Fig. 7.6 can be

calculated as T(P) = min(T (SA3)), T (SAX
), T (SAW

), T (SAZ
), T (SA1)) = min(1, 3/4,

1/2, 1, 1) = 1/2.

In addition, we may combine the trust scores of two AD-Graphs P1 and P2 as

follows:

Definition 2 T(P1, P2) = min( T(P1), T(P2))

As example, Fig. 7.7 presents an alternative AD-Graph that is in turn composed

of three inner AD-Graphs, namely P1, P2, and P3. We may calculate the trust scores

for each of them individually and combined them together as follows: T(P1, P2) =

min(T(P1), T(P2)) min (1/2, 1) = 1/2. Also, T(P1, P2, P3) = min(1/2, 1) = 1/2.

Recommendations. In addition, we will allow for participants to exchange rec-

ommendations with each other on the trust scores assigned to peers within a given

federation. This way, participants may ask for recommendations on the trust scores
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Figure 7.7: Combining Different Trust Scores for Paths within an AD-Graph.

of a participant they have had no previous interaction with. Such exchange may take

place upon request, in an offline mode independent of any FAM-related operation,

or as a part of the access mediation process we have presented in Chapter 4 and

Chapter 5. As an example, when calculating the trust score of path P as shown in

Fig. 7.6, the score of the source entity labeled as SAW
may be unknown. Following

our proposed recommendation system, other peers, e.g., SAZ
, may be able to pro-

vide a recommendation on SAW
which can be later used to calculate a trust score

for P as shown in Definition 1. Moreover, the value of a given recommendation may

also depend on the reputation of the issuing peer. This way, when receiving multi-

ple recommendations for the same entity, highly-trusted peers may provide the most

valuable ones. This notion is captured in the following definition:

Definition 3 T(Recommendee) = T(Recommender) × R(Recommendee)
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where R(Recommendee) stands for the trust score received as a recommendation as

issued by Recommender. In such a setting, each participant organization is required to

maintain, at least, the reputation scores of the source entities providing the attributes

that serve as an input to the AD-Rules it provides. As an example, in Fig. 7.6, SAZ

will be required to maintain a trust score on SAW
as the AD-Rule it provides (r3)

takes attribute AW as an input. This way, each source entity in a given path P can

provide a recommendation on the source entity located in the previous AD-Rule in P.

However, a negative recommendation from a low-trusted peer may result in a given

path being discarded, e.g., SAZ
recommending SAW

in a negative way cause P to

evaluate to 0. The same situation may arise when leveraging the recommendation of

a previously-unknown peer, e.g., SAW
recommending SAX

.

An algorithm for calculating trust scores for a given AD-Graph, which solves the

problem just described, is shown in Fig. 7.8: taking as an input an AD-Graph Path,

the algorithm starts by inspecting each AD-Rule contained within Path, labeled as r,

and attempts to retrieve the local trust score for the source entity s implementing r

(Lines 3-4). If no local score is found, the algorithm leverages the auxiliary function

getRecommendedScoreOfSource() in order to retrieve a recommendation on s (Lines

5- 6). In case no recommendation exists, then the default score DefaultScore, which

has been provided as a parameter, is used (Lines 7-8). In case a recommendation

is found, the trust score of the recommender is examined to avoid a lowly-trusted

recommender from having an impact on the overall trust score being computed for

Path. In the case the trust score obtained for the recommender (Line 10), is found

to be less than the MinTrust parameter, the default NegativeScore is used (Lines 11-

12). Otherwise, we leverage Definition 3 to calculate the score of the recommendee

taking the trust score of the recommender as well as the actual recommended score

as an input (Line 14). Finally, the algorithm implements Definition 2 to calculate the
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1: procedure CalculateTrustScore(Path, MinTrust, DefaultScore, NegativeScore)

2: result← 1

3: for each AD-Rule r in Path do

4: ruleScore← getLocalScoreOfSource(r)

5: if ruleScore = NOT FOUND then

6: ruleScore← getRecommendedScoreOfSource(r)

7: if ruleScore = NOT FOUND then

8: ruleScore← DefaultScore

9: else

10: recommenderTrust← getScoreOfPreviousSource(r)

11: if recommenderTrust ≥MinTrust then

12: return NegativeScore

13: else

14: ruleScore← recommenderTrust× ruleScore

15: end if

16: end if

17: end if

18: result← min(result, ruleScore)

19: end for

20: return result

21: end procedure

Figure 7.8: Algorithm for Calculating the Trust Score of an AD-Graph.

overall trust score for Path (Line 18).

7.3 Implementation

Representing Trust Recommendations. As mentioned previously in this chap-

ter, participants may also want to maintain trust scores at different levels of granu-

larity with respect to other peers in a given FAM federation. As an example, Fig. 7.9

presents an scenario, leveraging the attribute path shown in Fig. 7.5 in which the
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Figure 7.9: Different Cases for Trust Score Assignment.

trust score of the AD-Rule labeled as r3 is unknown at the moment of calculating a

trust score for the whole attribute path. In such a context, the trust score for r3 can

be obtained from the trust score assigned to its source entity SAW
(1), or by a ded-

icated trust score assigned to r3 itself (2), or to the actual attribute being produced

by it: AW (3).

As shown before in this chapter, peers may be allowed to keep a local repository for

both source entities as well as specific AD-Rule implemented by other peers. For such

a purpose, federations may implement their own naming convention system to prevent

name clashes, e.g., by using universal resource identifiers (URI) (Berners-Lee et al.

(2005)), thus covering cases (1) and (2) as depicted in Fig. 7.9. For case (3), a trivial

approach would append to the recommendation message information about different

attributes and their corresponding trust scores. Following the definition of attributes

presented in Chapter 4.2.1, the name, the data type, as well as the value of a given

attribute, along with a trust score, may be added to the recommendation message,

allowing for peers to leverage a finer granularity level. As an example, a given peer

may assign a higher degree of trust over the members of a certain research group over

the rest. Leveraging our running example, members of a research group, labeled as

G, may be fully trusted to initiate a data transfer request such as the one depicted in

Fig. 2.1. A recommendation on such a group would then include an entry containing
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the 3-tuple: <FederatedGroup, research.group, G> and a trust score.

However, this tuple-based approach may get complicated when many different

tuples, each of them possibly depicting a different trust score, are to be added to

a given recommendation message, due to the fact that many attribute-trust score

relationships exist. For instance, going back to our running example, let us assume a

recommendation is to be made on the federated attribute labeled as S , which depicts

a representation of the size of a given data file to be transferred. If a recommendation

is to be issued assigning a low trust value to files whose size stays within a certain

range, e.g., from 0 to 1200 byes, a 3-tuple depicting each possible value may have to

be added to the recommendation message, thus incurring in an excessive increase in

the size of the message itself as well as in the processing time to parse and retrieve

all of those tuples. Therefore, a direct representation of the mapping between large

attribute sets and trust scores may not be a suitable approach.

As a solution to this problem, we propose leveraging the XACML language, also

mentioned in Chapter 5.1.2, to represent mappings between attribute sets and trust

scores, which are then included into an XACML policy file, which gets appended to a

recommendation message, thus creating a recommendation policy. We aim to leverage

the XACML constructs for the specification of policy targets for the definition of trust

scores, as well as the constructs intended for specifying attribute-based constraints

for policy rules in order to specify attribute sets. As an example, Fig. 7.10 presents

a sample policy where a trust score of 0 is assigned to attributes depicting the data

size of a given file whose value is greater than 10. The value of the trust score being

assigned is included as a resource within the Target section (Lines 3-16) using an

identifier that is expected to be known to all members of a given federation. The

attribute set such a score is mapped to is then specified by means of a rule-based

constraint as shown in Lines 18-29.
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1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Policy >

3 <Target >

4 <Subjects ><AnySubject /></ Subjects >

5 <Resources >

6 <Resource >

7 <ResourceMatch MatchId ="...:anyURI - equal ">

8 < AttributeValue DataType =".. ./ XMLSchema # anyURI ">

9 edu.asu. sefcom . fedam . trust . TrustValue .0 -0

10 </ AttributeValue >

11 <ResourceAttributeDesignator AttributeId =".. :resource -id"/>

12 </ ResourceMatch >

13 </ Resource >

14 </ Resources >

15 <Actions ><AnyAction /></ Actions >

16 </ Target >

17

18 <Rule Effect =" Permit ">

19 <Condition FunctionId ="...:double -greater -than">

20 <Apply FunctionId ="...:double -one -and -only">

21 <SubjectAttributeDesignator

22 AttributeId ="data.size.S"

23 DataType =".. ./ XMLSchema # double " />

24 </ Apply >

25 < AttributeValue DataType =".. ./ XMLSchema # double ">

26 10.0

27 </ AttributeValue >

28 </ Condition >

29 </ Rule >

30 </ Policy >

Figure 7.10: An XACML Policy for Representing Trust.
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Using XACML, peers may use their own tools for parsing and evaluating a recom-

mendation policy. In addition, the expressiveness, the existing supporting tools, as

well as the research literature on using XACML can be also leveraged, thus avoiding

the need for introducing a new language for expressing trust score recommenda-

tions. Our approach, however, assumes that our recommendation policies are syntax-

compliant when shared among participant peers, and also refer to attributes included

within the output set of the recommended AD-Rule. As an example, in Fig. 7.9, the

recommendation policy on the values of attribute AW should not refer to any other

attribute in the attribute constraint part implemented as an XACML rule, as shown

in Fig. 7.10. Finally, we assume our recommendation policies are conflict-free, that

is, no contradictory rules exist within them. As an example, we assume only a single

trust score value is mapped to a single attribute, as defined by the attribute-based

constraints implemented as XACML rules as shown before. An approach tailored to

detect and remove such inconsistencies may include the work of (Hu et al. (2012)).

7.3.1 Architectural Depiction

A graphical depiction of our proposed architecture as well as a workflow for a trust

management system for FAM is show in Fig. 7.11: as mentioned before, we aim for

each participant peer to maintain a local storage repository for trust scores (1). In

addition, peers are to create recommendation policies in the XACML format as shown

in Fig. 7.10 by leveraging the information contained within their own repositories. As

mentioned before, our recommendation policies may be shared with other peers upon

request, e.g., by leveraging an offline client-server mode. In addition, we aim to

support the dynamic sharing of recommendations following an online approach by

allowing peers to include their recommendation policies as a part of the AD-Rule

entries that are leveraged while performing the path discovery procedure described
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Figure 7.11: A Workflow for a Trust Management System for FAM.

in Chapter 5.2.1. As an example, Fig. 7.11 (3) contains an entry for the AD-Rule

labeled as r3 in Fig. 5.3, that has been modified to include a recommendation policy

for the attributes it receives as an input (Ce). Later on, such an entry is to be

stored within the DHT structure following the approach described in Chapter 5.2 (4).

This way, when constructing paths for attribute provisioning, peers may also collect

recommendations on the perceived trust of the AD-Rules depicted in such paths,

thus avoiding an extra communication sequence to retrieve those, which may have

a considerable impact in runtime performance. Upon receiving a recommendation

policy, peers may parse an evaluate it using their own tools (5), thus retrieving the

trust scores contained in them (6), which are later forwarded to a trust calculation

procedure, following the algorithm depicted in Fig. 7.8.

The source code implementation of our proposed trust management framework

comprises 26 Java classes and interfaces that contain 2555 lines of code, as reported

by the cloc tool (Danial, Al (2015)). Our implementation is organized intro three

main software modules: first, a trust policy administration point (TrustPAP) module
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is in charge of maintaining a local repository for adding, deleting and retrieving trust

scores, which is in turn implemented as a MySQL (Oracle Corporation (2015)) backend

in the form of a relational database. In addition, this module is also in charge of pars-

ing, syntax-checking, adding, deleting and retrieving XACML policies by leveraging

a customized version of the XACML Sun Implementation (Sun Microsystems, Inc.

(2015)). This way, our TrustPAP module provides support for the steps (1) and (2)

as depicted in Fig. 7.11. Next, we have also implemented a trust policy information

point (TrustPIP) module, which is in charging of preparing the entries for AD-Rule

so they contain the XACML recommendation policies as described before in this

chapter. Conversely, it also extracts policies contained in AD-Rule entries that have

been received from other peers while performing a path discovery process, and pro-

vides parsing and syntax-checking capabilities for received XACML recommendation

policies. Our TrustPIP module implements step (3) and some of (5) as described in

Fig. 7.11. Functionality devised in step (4), e.g., adding and retrieving entries from

a DHT structure, is implemented by the software modules described in Chapter 5.2.

Finally, we have also provided a trust policy decision point (TrustPDP) that is in

charge of providing a mapping between the attribute format as described in XACML

policies, as shown in Fig. 7.10, and the format for attributes we have presented as

a part of our FAM approach in Chapter 4.2.1. In addition, such a module performs

the actual evaluation of XACML trust policies and implements the calculation of

trust scores over AD-Graphs, as described in the algorithm shown in Fig. 7.8, thus

providing support for steps (5) and (6) as shown in Fig. 7.10.

7.4 Experimental Evaluation

We conducted an experimental evaluation tailored to measure the impact on the

runtime performance of our proposed trust management framework with respect to

126



the enforcement mechanism for FAM that is described in Chapter 5. Concretely, we

aimed to measure the impact on execution time when calculating trust scores for at-

tribute provisioning paths as described previously in this chapter, either by leveraging

locally-stored scores from a repository or by leveraging the recommendations issued

by other peers by means of XACML policies. In the rest of this chapter, we present

our experimental methodology, our supporting tools as well as a description of the

results obtained, including highlights and observed limitations.

Methodology. Initially, we conducted a series of experiments that leveraged simu-

lated AD-Graphs to serve as attribute provisioning paths of different size, e.g., differ-

ent number of composing AD-Rules. First, we conducted an experiment to measure

the time taken for calculating an overall trust score for each of the aforementioned

paths. For such a purpose, we introduced trust scores within a local repository for

each of the source entities implementing the AD-Rules contained in each path under

test. Next, we conducted an experiment in which the trust score for each AD-Rule

is obtained from a fixed recommendation policy composed of three XACML rules,

following the approach described in this chapter. Third, for comparison purposes, we

conducted an experiment that performs no calculations on trust scores on the same

set of paths as described before, thus implementing an approach similar to the one

described in the experimental section shown in Chapter 5.2.3.

In an additional series of experiments, we also measured the execution time taken

to construct attribute paths of different sizes when trust scores are obtained from

recommendation policies depicting a varying number of composing XACML rules, in

an effort to better measure the impact of parsing and evaluating different policies.
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Supporting Tools. We conducted our experimental evaluation by customizing the

implementation of our proposed enforcement mechanism for FAM as described in

Chapter 5.1.2. We implemented a simulation engine that creates the AD-Graphs serv-

ing as attribute provisioning paths as described in the previous section, and leverages

the implementation of our trust management system for FAM as described before in

this chapter for adding, retrieving and parsing XACML recommendation policies as

well as trust scores that are stored locally within our database repository. Entries

for the AD-Rules composing the aforementioned paths where customized to include

XACML recommendation policies and inserted into the DHT structure used for the

experimental procedure conducted as a part of Chapter 5.2.3.

Results. Results for our first series of experiments are shown in Fig. 7.12. As de-

scribed before, we implemented AD-Graphs depicting attribute provisioning paths of

different sizes, and implemented three approaches on top of each of these paths: trust

calculation with locally-stored scores, trust calculation with recommendation policies,

and no trust calculation at all. For each experiment, we obtained the execution time

taken to construct each path, denoted as path discovery time (PDT) as mentioned in

Chapter 5.2.3. As it can be observed in Fig. 7.12, the PDT of our approach leveraging

locally-stored scores, and the one depicting no trust calculations, stays within com-

parable means, and grows linearly as the number of composing AD-Rules increases,

thus showing that the introduction of local repositories has no noticeable impact in

runtime performance. In addition, the PDT observed for an approach when each

AD-Rule in a given path contains an XACML recommendation policy, which is then

parsed an evaluated for retrieving trust scores for calculations, depicts a manageable

increase with respect to the two other options just described. As expected, such

a difference increases with respect to an also increasing number of AD-Rules and
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recommendation policies to process.

Results for an experiment varying the number of AD-Rules containing recommen-

dation policies are shown in Fig. 7.13. This time, only a subset of such AD-Rules

composing attribute paths of varying sizes, e.g., 5, 20 and 50 AD-Rules, where aug-

mented with recommendation policies. Once again, a fixed recommendation policy

containing 3 XACML rules was used to serve as a parameter of common reference.

As expected, the overall PDT time observed increases as the number of AD-Rules

from which a trust score must be obtained from as recommendation policy increases,

due to the parsing and evaluation procedures as described before in this chapter.

Finally, Fig. 7.14 shows the results of an experiment intended to vary the number

of composing XACML rules for our proposed recommendation policies. Once again,

as the number of such rules increases, so it does the overall time taken to parse and

evaluate a given policy as a result, thus ultimately affecting the obtained PDT. As

with the previous experiment, increasing the number of composing AD-Rules has

a direct linear impact on the overall execution time observed on each experiment

instance.

Limitations. While the results observed for our experimental process provide evi-

dence of the suitability of our approach for real-life deployments, still some limitations

in both our proposed approach as well as in the experimental process arise. First, as

observed in Fig. 7.13 and Fig. 7.14, the process of parsing and evaluating XACML

recommendation policies has a noticeable impact at runtime. While we expect the

number of composing AD-Rules contained in real-life attribute provisioning paths to

be small, e.g., less than 6, and we also expect the number of such AD-Rules whose

trust scores can be obtained from recommendation policies to be small as well, e.g.,

less than 3, still the processing of recommendation policies containing many different
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XACML rules may be an important factor affecting runtime performance, as shown in

the experimental results contained within Fig. 7.14. As a solution, in Chapter 9.3.2

we present a discussion on an alternative approach in which federated peers may

agree on a more suitable representation for XACML policies that eludes the text-

based parsing and evaluation procedure, e.g., a binary representation that contains

well-defined bit segments that can be retrieved and processed more efficiently.

In addition, an extended experimental process may be needed to properly assess

the benefits of recurring to a constraint-based language such as XACML instead of a

direct tuple-based representation for recommendation policies, as described previously

in this chapter. Even when the results shown in Fig. 7.14 suggest that leveraging a

small number of constraint-based XACML rules for defining fine-grained attribute-

trust score relationships may be a suitable option, an extended experimental process

may be required to further corroborate such a claim.

Finally, even when our experimental process relied on simulated AD-Graph that

may provide a good abstract representation of real-life settings, still a further ex-

perimental procedure taking into account recommendation settings obtained from

realistic scenarios is required. As an example, several partnership organizations may

in fact implement recommendation settings depicting different trust relationships, in

a similar way to the ones depicted in Chapter 7.1.
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Figure 7.12: An Experimental Evaluation for a Trust Management System.
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Figure 7.13: Varying Recommendation Policies in a Trust Management System.
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Chapter 8

RELATED WORK

8.1 Attribute-based Access Control

Using the requirements for ABAC stated in Chapter 3.1 as a comparison criteria,

we now examine existing approaches in the literature. One of the initial attempts in

defining ABAC was proposed by (Wang et al. (2004)), who explored the use of logic

programming and computable set theory for modeling the main features of ABAC,

taking into account a web-based context. Our work depicts a similar approach by

proposing the evaluation of attributes through functions, but does not depend on

any particular supporting methodology for its implementation. In a similar context,

(Yuan and Tong (2005)) explored the use of ABAC for the specification of access con-

trol policies for web services. Moreover, (Priebe et al. (2006)) presented an approach

leveraging the concepts of ontologies and the semantic web in order to formalize the

notion of ABAC. Another approach leveraging the concept of the semantic web for

ABAC include the one of (Cirio et al. (2007)), who provide a model definition in-

cluding attribute-based constraints. Such an approach, however, does not provide a

formalization of ABAC that can be regarded as independent of any other supporting

technologies. The work of (Zhu and Smari (2008)) and (Smari et al. (2009)) has pro-

vided a definition of both attributes and attribute-based access control constraints

tailored for supporting collaborative software systems. In the context of grid comput-

ing, the approach presented by (Lang et al. (2009)˙ also provided an ABAC model

mostly focused on the definition of attributes and the access control constraints. In

addition, (Covington and Sastry (2006)), introduced the contextual attribute access
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control (CABAC) model, which was realized in mobile applications. As in their

approach, our model leverages the notion of attributes and their relationship with

access control entities (including modeling the runtime context as an access entity).

However, our approach takes a step further by describing the way such attributes

are mapped to access rights (permissions) by means of our proposed AD-Rules and

AD-Graphs. Recently, (Jin et al. (2012)) proposed a noticeable approach intended

to formalize a series of ABAC model families. In addition, the relationship between

ABAC and other well-known access control models was explored. We have been in-

fluenced by this paper with respect to the definition of attributes as described in

Section 4.2.1. However, our approach introduces a notion of attribute derivations to

capture the mapping between attributes and corresponding access rights. Finally,

another interesting approach was presented by (Zhang et al. (2005)), who developed

their attribute-based access control matrix, which extends classical theory in the field

of access control to accommodate attributes as well as the notion of security state.

However, it provides no definition for attribute-based constraints, which is considered

in our approach by means of our proposed AD-Rules and AD-Graphs.

Table 8.1 shows a summary on a literature survey on recent papers addressing

ABAC taking the aforementioned design goals as a criteria for comparison purposes.

As shown, no approach proposed so far meets all the criteria we have identified as a

part of this dissertation.

8.2 Approaches for Federated Security

The problem of providing security guarantees in inter-organizational settings has

been largely addressed in literature. In particular, several federated identity (Chadwick

(2009)) approaches have been introduced to allow partnering organizations to reuse

locally-issued credentials when accessing resources located under the scope of an exter-
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Table 8.1: A Survey on Recent Approaches for ABAC.
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Wang et al. (2004)
√ √ √

× ×

Yuan and Tong (2005) × × × × ×

Zhang et al. (2005)
√
×
√ √ √

Covington and Sastry (2006)
√
× × × ×

Priebe et al. (2006) × ×
√
× ×

Cirio et al. (2007) ×
√ √

× ×

Zhu and Smari (2008)
√
× × × ×

Lang et al. (2009)
√ √

× × ×

Smari et al. (2009)
√ √

× × ×

Shen (2009) × × ×
√
×

Wei et al. (2010) × ×
√
× ×

Jin et al. (2012)
√
×
√
×
√

nal security domain. As an example, OpenID (Recordon and Reed (2006)) and Shib-

boleth (Morgan et al. (2004)) have recently gained acceptance in both industry and

academia respectively for user-credential sharing. Our approach builds on this idea by

allowing participants to exchange federated attributes, thus potentially allowing for

such attributes to serve as tokens granting access to shared resources, in an approach

also inspired by Kerberos (Neuman and Ts’o (1994)), OAuth (Jones and Hardt (2012))
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and more recently, Facebook Login (Facebook Inc. (2015)), strive to allow third-party

applications to leverage the user credentials defined for the popular social network

to access application-dependent resources. However, our approach goes a step fur-

ther by providing stronger support for defining, evaluating and enforcing policies in

both the local and federated contexts. In addition, our proposed attribute derivation

schemes, e.g., AD-Rules and AD-Graph, are also novel in the context of federated

inter-organization settings.

Moreover, our AD-Rules are inspired by the idea depicted in the credential-

discovery protocol proposed by the RT Framework (Li et al. (2002)), which allows

for credentials issued by independent domains to be located and leveraged for access

management. Similar to the RAMARS Framework (Jin and Ahn (2009)), our AD-

Rules are depicted in a graph-like structure that allows for user-defined attributes to

be transformed into a set of widely-recognized credentials. However, the RAMARS

framework assumes each security domain implementing the transformation functions

may be partially trusted by modeling trust in the range [0,1]. In Chapter 7, we

present a similar approach that differs in the way an overall trust score among peers

providing entries in a given AD-Graph is calculated.

Our approach is also inspired by existing research-oriented infrastructures for shar-

ing resources: the OSCARS system (Guok et al. (2006)) provides a way for organi-

zations to reserve shared resources within high-performance networks, e.g., network

bandwidth. In a similar context, the perfSONAR (Hanemann et al. (2005)) infras-

tructure allows for partnering organizations to obtain and share network-related infor-

mation obtained within their administrative domains such that inter-organizational

network problems can be better diagnosed and resolved.

In addition, recent approaches leveraging federated identity for sharing resources

include the work of (Broeder et al. (2012)) and Globus Nexus (Ananthakrishnan et al.
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(2013)). Moreover, (Klingenstein (2007)) and (Chadwick and Inman (2009)) incor-

porate the concept of end-user attributes with the federated identity. Our solution

differs from this approaches as it includes attributes originated from different access

control entities rather than considering credentials from end-users only.

A survey depicting a literature review of existing approaches for federated security

and collaborations, which leverages the comparison criteria as defined in Chapter 3.3,

is shown in Table 8.2.

8.3 Software Assurance

The work presented in Chapter 6.1 is related to other efforts in software secu-

rity, most notably, architectural risk analysis and language-based security. Archi-

tectural risk analysis (McGraw (2006)) attempts to identify security flaws on the

level of the software architecture and hence is unrelated to the source-code level ad-

dressed in this approach. Language-based security approaches in the sense of Jif

(Sabelfeld and Myers (2003)) allow software to be verified against information flow

policies rather than supporting specific security requirements for software construc-

tion. In addition, formal verification of RBAC properties has been already discussed

in the literature (Hu and Ahn (2008)). These approaches are mostly focused on

verifying the correctness of RBAC models without addressing their corresponding

verification against an implementation at the source-code level.

The work closely related to ours involves the use of DBC, which was explored by

(Dragoni et al. (2007)). In addition, (Belhaouari et al. (2012)) introduced an ap-

proach to the verification of RBAC properties based on DBC. Both approaches,

while using DBC for checking RBAC properties, do not include the use of refer-

ence models to better aid the specification of DBC constraints in the security con-

text. Moreover, no support is provided as customized source-code implementations,
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Table 8.2: A Survey on Recent Approaches for Federated Security/Collaborations.
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Kerberos (Neuman and Ts’o (1994))
√ √

×
√ √

×

RT (Li et al. (2002)) ×
√
× ×

√ √

Shibboleth (Morgan et al. (2004)) ×
√
×
√ √ √

perfSONAR (Hanemann et al. (2005)) ×
√
× ×

√ √

OpenID (Recordon and Reed (2006)) ×
√
×
√ √ √

OSCARS (Guok et al. (2006)) ×
√
× ×

√ √

(Klingenstein (2007)) ×
√
×
√
×
√

(Chadwick and Inman (2009)) ×
√
×
√
×
√

RAMARS (Jin and Ahn (2009))
√ √

×
√ √ √

(Broeder et al. (2012))
√ √

×
√
×
√

OAuth (Jones and Hardt (2012)) ×
√
×
√ √ √

Globus Nexus (Ananthakrishnan et al. (2013)) ×
√
×
√
× ×

Facebook Login (Facebook Inc. (2015)) ×
√
×
√
× ×
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Table 8.3: A Survey on Recent Approaches for Software Assurance.
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(Cataño and Huisman (2002)) ×
√ √

(Sabelfeld and Myers (2003)) ×
√
×

(McGraw (2006)) ×
√
×

(Dragoni et al. (2007)) ×
√
×

(Hu and Ahn (2008)) ×
√
×

(Lloyd and Jürjens (2009)) ×
√
×

(Belhaouari et al. (2012)) ×
√
×

(Mustafa and Sohr (2014)) ×
√ √

which are in turn supported by he JML model capabilities discussed in our ap-

proach. Other works that apply a DBC approach based on JML in the security

context are presented by (Lloyd and Jürjens (2009)) (biometric authentication sys-

tem), (Cataño and Huisman (2002)) (smart card system), and (Mustafa and Sohr

(2014)) (Android system services). These works, however, do not cover applications

consisting of highly-customizable modules and do not leverage dynamic testing tech-

niques for assertion-based verification.

A survey of related approaches for software assurance that takes into account the

criteria defined in Chapter 3.4.1 is shown in Table 8.3.
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8.4 Trust Management Systems

As detailed in Chapter 3, in this dissertation we have striven to provide a trust

management system that can effectively allow for participant organizations within our

proposed federations to trust previously-unknown peers for the purposes of resource

sharing. In addition, we have also striven to accommodate for such a framework

within the theoretical model as well as the enforcement mechanisms we have devised

for our approach, as discussed in Chapter 5. With this in mind, we now present a de-

scription of several different approaches for trust management found in the literature.

For each of them, we briefly detail their most noticeable features, at the same time

we provide a comparison with the approach for trust management we have presented

in Chapter 7, including similarities, points of inspiration, and differences.

Trust management has been largely explored in the literature. Over the years,

specialized trust policies languages have been introduced in an effort to better capture

the relationships between trustors and trustees, as introduced in Chapter 7.1. Notice-

able examples include Ponder (Damianou et al. (2001)), KAos (Uszok et al. (2004))

and Rei (Kagal et al. (2003)). While such approaches may be extremely convenient

for modeling complex trust relationships and related context, we have resorted to the

use of XACML, the de facto language for authorization, as we are mostly concerned

with the communication of recommendation scores rather than expressing complex

trust relationships. In addition, we believe XACML provides a common ground in

which existing literature and tools based on such a language can be further leveraged.

As introduced in Chapter 2.5, the definition of risk within a certain community

represents an important factor for determining trust relationship between different

members. In such a context, different approaches in literature have represented risk

by introducing a mathematical model that combines scores obtained from different
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dimensions. As an example, Regret (Sabater and Sierra (2001)) presents an approach

tailored for an electronic marketplace where different dimensions such as overcharg-

ing customers, late product delivery as well as overall quality are combined together

to produce a trust score over different vendors included in the system. In a sim-

ilar approach, PeerTrust (Xiong and Liu (2004)) provides a decentralized approach

for peer-to-peer networks where participants combine scores obtained from direct

feedback, quantity of previous transactions as well as credibility. Moreover, GRAft

(Hendrikx and Bubendorfer (2013)) allows for communities to provide a customized

set of dimensions for risk representation. Later on, each community member may

decide how to represent and combine those for a final trust calculation. In our ap-

proach, we have chosen to provide a single trust score to combine different dimensions

such as fair use of shared resources, confidence on the implementation of enforcement

mechanisms, as well as a degree of confidence in the implementation of our proposed

AD-Rules. Whereas resorting to single combined score may be sufficient for most

cases, specialized federations may find it convenient to provide a separate score for

each of these dimensions. We will discuss an approach for such a purpose while we

describe our plans for future work in Chapter 9.3.2.

Trust management systems in the literature have also struggled to provide frame-

works for the introduction of possibly-untrusted newcomers to a given community,

a.k.a., federations in our approach. In addition, different approaches have been in-

troduced in order to establish and communicate recommendations on the observed

behavior of both newcomers and old members. As an example, the Confidant frame-

work (Buchegger and Le Boudec (2002)) provides an approach in which all members

are initially fully-trusted, and recommendations are only issued when a misbehav-

ing peer is detected, thus in fact implementing an alarm-based system. A similar

approach is implemented by P-Grid (Aberer and Despotovic (2001)): negative rec-
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ommendations, a.k.a., complaints, are issued as a response to malicious behavior, and

are later distributed for storage to a subset of participants. Later, when a peer is

interested in calculating a trust score on another peer, the framework can be queried

to retrieved the set of stored complaints, which are then combined together using a

mathematical approach. In our proposed trust framework, we allow for participants

to issue negative recommendations that are to be later forwarded through the entries

describing AD-Rules. When malicious behavior is detected, a given peer may update

the entries stored in the distributed implementation based on DHT in such a way

that a new negative score is introduced for the faulting peer. Later on, other peers

will be notified of the complaint when constructing their own AD-Graphs following

the approach described in Chapter 5.2.1. Our approach for the combination of trust

scores is influenced by RAMARS (Jin and Ahn (2009)), which allows for so-called

trust chains to be created when leveraging recommendation scores that are issued by

other participants in a given community. This way, the level of trustiness assigned to

recommenders may also influence the degree of confidence that is ultimately assigned

to their recommended scores. We have captured this notion in Definition 3.

Another important factored mentioned in the literature is the support for the

recalculation of trust scores over time. Ideally, peers should be allowed to update

the trust scores assigned to other peers by taking into account a history of previous

interactions. As an example, R2Trust (Tian and Yang (2011)) combines a history of

previous interactions with a given peer along with a set of recommendations obtained

from others in order to provide a new trust score, which can be then used for future

decisions. A similar approach is implemented by popular websites such as Amazon

(Amazon Inc. (2016)) and Stackoverflow (Stackoverflow (2016)), which allow for end-

users to provide feedback on a history of transactions. Later on, such history, along

with the reputation given to the end-users themselves, is used to calculate a trust
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score over certain resource, e.g., an item for purchase or a blog post detailing an

answer to a technical issue, respectively.

Over the years, different architectural depictions have been proposed for trust

management systems. As an example, the trust framework implemented by eBay

(eBay (2016)), (Melnik and Alm (2002)) has been largely studied in the literature

and depicts a centralized architectural style in which all scores and calculations are

performed in a logically centralized location, e.g., a proprietary cloud implementing

the same security domain. In contrast, several approaches have been introduced in

order to provide decentralized architectures that leverage the distributed nature that

is featured by most communities. As an example, XRep (Damiani et al. (2002)) and

EigenTrust (Kamvar et al. (2003)) leverage DHT to exchange recommendation on

trust scores that are later combined in a mathematical-based approach by partici-

pants. Moreover, RateWeb (Malik and Bouguettaya (2009)) provides a decentralized

approach that allows for peers to obtain recommendations on different web services.

Before utilizing a given web service, a peer may obtain recommendation score on it

from other peers and may combine those to obtain an overall trust score, which is then

used to determine if the web service should be invoked or not. In our approach, we

have striven to leverage the distributed architecture depicted by our proposed DHT

implementation as much as possible, allowing for peers to locally store and later rec-

ommend trust scores by adding them in the form of recommendation policies, which

are stored and retrieved from the DHT by other peers when attempting to provision

attributes.

Moreover, (Resnick et al. (2000)) provided an study on the requirements for suc-

cessful trust recommendation systems: first, the participant peers must be long-lived,

that is, they should stay in a given community for a considerable amount of time with

respect to the lifetime of such community. Second, recommendation scores must be
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captured, distributed and made available for use in the future. Third, recommenda-

tion scores must be ultimately used to guide decisions in the context of the enclosing

community. We believe our proposed trust management framework, as depicted in

Chapter 7, meets the three aforementioned requisites as follows: first, we expect

participant organizations to stay within our proposed federations for a considerable

amount of time, engaging in more collaboration projects over time due to the benefits

entitled to the use of shared resources. Second, we provide means for the definition,

storage and communication of trust scores via recommendations. Finally, we have

also provided an approach for guiding the functionality of our attribute provisioning

scheme by leveraging trust scores and recommendations, following Definitions 1, 2

and 3.

Finally, Table 8.4 presents a comparison between the approaches presented in

this chapter and the requirements for a trust management system as introduced in

Chapter 3. As shown, no approach found in the literature solves all the issues with

respect to trust management in the context federations for access mediation as they

are detailed in Chapter 3.4.2. Later on, in Chapter 9.3.1 and Table 9.4, a discussion

is presented on how the approach introduced in this dissertation effectively fulfills

such requirements.
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Table 8.4: A Survey on Recent Approaches for Trust Management.
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Regret (Sabater and Sierra (2001))
√ √ √ √ √

×

Confidant (Buchegger and Le Boudec (2002))
√ √ √

×
√ √

XRep (Damiani et al. (2002))
√ √

× ×
√ √

EigenTrust (Kamvar et al. (2003))
√ √

×
√ √ √

P-Grid (Aberer and Despotovic (2001))
√ √

×
√ √ √

PeerTrust (Xiong and Liu (2004))
√ √

×
√ √ √

RateWeb (Malik and Bouguettaya (2009))
√ √

×
√ √ √

R2Trust (Tian and Yang (2011))
√ √

×
√ √ √

GRAft (Hendrikx and Bubendorfer (2013))
√ √ √

×
√ √

Amazon (Amazon Inc. (2016))
√ √ √ √ √

×

eBay (eBay (2016))
√ √ √ √ √

×

Stackoverflow (Stackoverflow (2016))
√ √ √ √ √

×

Delegent (Firozabadi and Sergot (2003))
√ √ √

×
√
×

RAMARS (Jin and Ahn (2009))
√ √

×
√ √ √
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Chapter 9

DISCUSSION AND FUTURE WORK

In this chapter, we present some discussion on the topics composing the main con-

tributions of this dissertation, which have been presented in Chapters 4, 5 and 6.

In addition, we also identify some opportunities for improvement and present some

guidelines for future work that can effectively improve the suitability of our approach

for production environments.

9.1 FAM Model and Implementation.

9.1.1 Addressing Challenges

The approach proposed in Chapter 4 provides a solution to the problems we

have described in Chapter 3.1 as follows: first, we provide a well-defined description

of attributes, e.g., their inner components, that is intended to solve the attribute

definition problem, allowing for attributes to be defined in a local as well as in a

federated context in a clear and unambiguous way. In addition, our proposed model

also addresses the attribute constraints problem by modeling attributes as 3-tuples

that can be used to define constraints on top of them, e.g., by restricting the data

type as well as the set of values a given subset of attributes is expected to have in

order to meet a certain constraint for an ABAC policy. In addition, our proposed AD-

Rules may be also used to model constraints due to their definition as mathematical

functions, as described in Chapter 4.2.3.

In a similar fashion, our model, as shown in Fig. 4.5 and Fig. 4.6, also provides a

well-defined description of the way the inner components of ABAC, e.g., access enti-
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ties, attributes and permissions, interact with each other, thus providing a solution

to the model formalization problem described before in Chapter 3.1. The problem of

providing a definition for modeling the security state of a given collaborative setting

that includes resource sharing can be also solved by means of our proposed definition

of attributes, and the AD-Rules and the AD-Graphs based on them. As an example,

the AD-Graph shown in Fig. 4.7 depicts a case when the authorization to perform a

security-sensitive operation such an inter-organizational data transferring is modeling

by means of a federated attribute Ta, which is in turn produced by applying several

AD-Rules to a well-defined set of both local and federated attributes belonging to the

organizations depicted in such a transferring operation. In such a setting, attribute

Ta serves as an access token that represents the TransferFilePermission depicted

in Fig. 2.2, thus providing a representation of a state in the context of a given col-

laboration in which a security-sensitive operation can be carried on. Moreover, our

proposed approach also meets the goal of being independent of any supporting tech-

nology as we have opted to propose a model formulation that can be implementing

without requiring any basic platform and/or previous knowledge on any previous

methodology other than the set theory formulations depicted in Fig. 4.5 and Fig. 4.6.

In addition, our proposed model also supports the specification, enforcement and

evaluation of both intra and inter-organizational policies, by defining them as descrip-

tions of attributes that are related to a given permission over a protected resource.

Also, our model defines how policies relevant to a given access request can be located

and evaluated in the context of mediating access to a given resource request. In the

same context, our approach encourages the reuse of existing infrastructure as our

proposed AD-Rules (and AD-Graphs), while formally defined within our model as

function mappings within attributes, are expected to be implemented at the source

level in customized ways by participant organizations, which can then leverage lo-
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cal attributes originated in such existing security systems, in such a way that they

can be later transformed into federated attributes. Our proposed AD-Rules and AD-

Graphs also provide a strong foundation to support the attribute derivation features

also explained in Chapter 3.1. Such a scheme is complemented in Chapter 5 when an

approach for supporting the path discovery and path traversal procedures described in

Chapter 4.2.4 is introduced. Finally, we believe our approach provides strong support

for implementing authorization features that go far beyond the support for authen-

tication that is the main concern in the inspiring existing frameworks for federated

security described at the end of Chapter 3.1. A complete description matching each

identified problem and our proposed solution is presented in Table 9.1.

As mentioned in the introduction of Chapter 5, our proposed enforcement mecha-

nism is intended to address the challenges for the implementation of federated access

management in the context of collaborations as described in Chapter 3.3. First,

our proposed mechanism provides a solution to the policy discovery and evaluation

problem by implementing the policy administration, evaluation and discovery layers

discussed in Chapter 5.1.2. In addition, our approach also strives to incorporate spe-

cific functionality derived from a collaboration setting, e.g., a data file transfer, by

means of our policy administration and evaluation layers, which can then be used to

provide policies that mediate access to such specific tasks only to authorized entities.

Moreover, our attribute discovery and derivation layers, as well as our DHT-based ar-

chitecture provide support for implementing the attribute provisioning challenge also

described before, by allowing for implementers to defined customized AD-Rules that

can be later leveraged by end-users for transforming local and federated attributes

into federated ones as needed in the context of a given collaboration. The challenge

of reusing existing infrastructure is also addressed by means of our AD-Rules, which,

as mentioned earlier in this chapter, are to be implemented in a customized way
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Table 9.1: Addressing the Challenges Devised for an ABAC-based Model.
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Attribute Definition
√ √ √ √ √

Constraints Definition
√ √

Model Formalization
√ √ √ √ √

Definition of Security State
√ √ √ √ √

Independence of Supporting Methodology
√ √ √ √ √ √

Intra and Inter-organizational Policies
√ √ √ √ √ √ √ √ √

Reusing Existing Infrastructure
√ √ √ √

Attribute Derivation
√ √ √ √ √

No Native Support for Authorization
√ √ √ √ √ √ √

by each participant organization, thus allowing them to use existing security-related

systems as a backend providing support for such custom-made functionality. Such a

platform independence feature is also supported by our attribute discovery and DHT

architecture as proposed in this chapter, which can be in turn supported by each par-

ticipating organization by means of different underlying frameworks, assuming the

basic protocols for each of those layers, e.g., path discovery and path traversal as

stated in Chapter 5.2.1 and Chapter 5.2.2, are properly met.

Moreover, our DHT distributed implementation described in Chapter 5.2 may also
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support the overall scalability of our approach by allowing to many new members to

enter or exit our proposed federations without the need for storing information about

memberships in a centralized node. This way, new members may only need to join the

DHT ring for the purposes of path discovery and provide an implementation for the

AD-Rules they make available to other peers. With many new members join a given

federation, many different paths may be obtained as a result when attempting to

provision a given attribute. Peers may then want to implement their own strategies

for deciding which paths should be attempted to traverse. As an example, peers

may leverage the trust framework presented in Chapter 7 for choosing the paths

whose composing entries are provided by the peers whose degree of trust is found

to be optimal. Finally, our decision of implementing our approach by means of

custom-made AMA agents running on each participant organization, as well as the

decision of organizing the path discovery procedure into a distributed architecture

based on DHTs, provides strong support for addressing the challenge of decentralized

implementation, as described at the end of Chapter 3.3. Table 9.2 presents a summary

on the topics addressed in this section.

9.1.2 Future Work

Attribute Provisioning. As shown in Chapter 5.2.3, efficient provisioning of

federated attributes is crucial for processing and resolving policies in a timely manner.

The attribute provisioning scheme presented in Chapter 5.2 supports this goal by

reducing the number of communication messages between participating domains to

determine if a given AD-Graph depicts a path between a pair of attributes. Each

participant organization should decide the number of times it will attempt to retrieve

new entries from a DHT ring when constructing a given path. As an example, an

organization may set a limit of three explorations of the DHT ring while trying to find
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Table 9.2: Addressing the Challenges Devised for an Enforcement Mechanism.
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Policy Discovery and Evaluation
√ √ √

Incorporating Domain-Specific Functionality
√ √

Attribute Provisioning
√ √ √

Reusing Existing Infrastructure
√

Scalability and Platform Independence
√ √ √

Decentralized Implementation
√ √ √ √

a set of input attributes for AD-Rules that fall under the scope of its local domain.

Setting a low limit of explorations might prevent participants from discovering a

potential path in the AD-Graph. However, a large limit may increase the attribute

provisioning time, thus possibly affecting the overall processing time of a given policy.

In addition, due to the fact DHTs require participants to locally store only a subset of

all the entries included in a given ring, our scheme allows participants to store only a

subset of AD-Rules entries, thus potentially relieving them from storing information

related to the complete AD-Graph. In this way, the process of adding and removing

AD-Rules is significantly simplified, thus providing a means for modifying a given

AD-Graph to better meet the specific goals devised for collaborations, e.g., adding

new AD-Rules to handle user credentials from a new participating domain.
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Future work may also focus on providing enhancements to our attribute provision-

ing technique. Concretely, we plan to explore alternative techniques for attribute pro-

visioning by means of traversing the AD-Graphs. As an example, federated domains

may want to avoid repeatedly traversing a given AD-Graph by caching previously-

produced attributes for a certain time. In addition, other domains may find useful

to introduce alternative shortcut paths within a given graph to replace frequently

used ones, e.g. introducing local AD-Rules to replace external ones. Another ap-

proach may consider caching the paths themselves, assuming no frequent updates to

the entries in a given DHT ring are made, thus possibly moving directly to the path

traversal phase when provisioning attributes.

With this in mind, a federated attribute reachability process may take place as

follows: in an initial step, peers locate the set of federated attributes within a given

federation that are more likely to be provisioned at runtime by the entities, e.g.,

end-users, within they own local domain. Next, peers can locate the set of federated

policies devised for the collaborations they take place in, and query the AD-Graph

defined for such federation in a periodical way to retrieve all the paths leading to the

attributes defined for such policies. Finally, such paths can be located and stored in

a local repository for faster retrieval in the future. Such a process may also allow for

peers to ensure their local attributes can be effectively transformed into the federated

ones required for inter-organizational policies, thus avoiding further trouble that may

arise in case no effective provisioning can take place at runtime.

Resource Allocation. As mentioned before, the approach proposed in this

dissertation relies heavily in the successful implementation of our propose attribute

provisioning scheme, as depicted in Chapter 5.2. Following the trust management

scheme introduced in Chapter 7, some peers may become highly-trusted within the

context of a given federation, thus possibly luring other peers to leverage the AD-Rules
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they provide in a more frequent way than the ones provided by other less-trusted

peers. In such a context, popular highly-trusted peers may introduce a resource

allocation mechanism to allow for the AD-Rule they provide to handle an increasing

number of requests in an efficient and timely way.

Delegation. Besides supporting resource sharing by means of attribute provi-

sioning, we believe our approach provides support for delegation, privacy, and the

outsourcing of access control mechanisms. As an example, end-users may delegate

their access rights over resources they own by composing AD-Rules that take the

local credentials from both the owner and the delegatee, producing a proper feder-

ated attribute as a result. Federated peers may also be relieved from implementing

local AD-Rules by themselves by allowing other peers to produce federated attributes

on their behalf, following an outsourcing approach based on a previously established

trust relationship. In this way, domains need not implement a complete implementa-

tion mechanism for joining a given federation, thus encouraging the introduction of

new federated peers.

Privacy. A basic privacy model may be implemented on top of our approach

by allowing for sensitive information contained in locally-defined attributes not to

be revealed to other organizational peers when producing federated attributes. For

instance, in Fig. 4.7, sensitive information in attribute Ce, e.g., a user’s full name,

may be replaced by a pseudonym in the L attribute produced by the AD-Rule labeled

as r3, following an approach similar to the one depicted by (Iwaihara et al. (2008)).

In such a setting, the local security domain (Net 1) may want to keep track of this

process for accountability purposes. An alternative approach may allow for end-users

to hide sensitive attributes at request time by incorporating techniques such as the

privacy-preserving attribute-based credentials (PABC) proposed by (Camenisch et al.

(2014)).
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Policy Indexing and Conflict Resolution. Efficient discovery and retrieval of

policies (as shown in Chapter 5.1.2) may benefit from the use of indexing techniques

based on both policies and attributes on each federated peer, following an approach

similar to the one presented by (Marouf et al. (2011)). In addition, a comprehensive

policy specification framework is critical to detect and resolve conflicts that may arise

between federated and local policies, or the intersection of the two, e.g., contradictory

rules, following an approach similar to the one proposed by (Hu et al. (2012)) and

(Ahn et al. (2010)).

Attribute-based Encryption. Recently, the introduction of attribute-based en-

cryption (ABE) (Sahai and Waters (2005)) has provided confidentiality guarantees

over fine-grained data. In ABE, attributes are defined over a protected resource, e.g.,

a text file F, and the set of cryptographic keys used to manage F. Later on, an ac-

cess structure, e.g., an access tree, is constructed by leveraging the aforementioned

attributes as leaf nodes and threshold gates, e.g., and, or, as the interior nodes. A

user may be allowed to use a given key k to access a the protected resource, e.g.,

to decrypt F, if the set of attributes defined in k match the ones defined for F as

depicted in the aforementioned access structure. Using ABE, different attributes may

be leveraged to produce customized access structures . This way, different users de-

picting such attributes may be allowed access to protected data with different levels

of granularity.

In the context of collaborations between independently-run organizations, ABE

may be leveraged in order to provide confidential access to shared encrypted data,

allowing for the creation of dedicated inter-organizational groups that share a com-

mon predefined set of attributes, following an approach similar to the one presented

by (Li et al. (2013)). In addition, our proposed attribute derivation features could

be also used to allow for members of a certain collaborative group to transform their
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locally-issued credentials into the set of attributes depicted within a given ABE set-

ting, such that further access to encrypted data can be successfully achieved. As an

example, in Fig. 4.7 the locally-issued credential Ce can be potentially transformed

into the federated attribute G , which depicts membership to a given collaborative

inter-organizational group. A similar setting may allow for locally-issued attributes

to be transformed into ABE attributes in an automated way by crafting dedicated

AD-Rules that can perform such derivations within the context of each participant

organization.

9.2 Assurance-based Models and Construction

9.2.1 Addressing Challenges

Table 9.3 presents a summary of how the approach we have presented in Chap-

ter 6.1 provides a solution to the challenges discussed in Chapter 3.4.1. We believe

the different features contained within our proposed assertion-based security models

may solve the aforementioned issues as follows: first, our proposed structural and

compositional specifications provide a convenient way to precisely describe how an

independent implementation of our approach should be constructed, as it was shown

in Chapter 6.4. In addition, our model data structures and the specifications for

method customizations also provide a well-defined approach for supporting not only

customized functionality that is to be added to the basic functionality intended for

our approach, but also the integration of existing in-house systems, as it has been also

discussed in Chapter 6.1. Finally, our client-based invariants and contracts may also

support the development and reuse of customized implementations by precisely defin-

ing how already-existing components, which may implement security functionality as

well, are to be leveraged by other software modules when an integrated system-wide
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Table 9.3: Addressing the Challenges Devised for Assurance and Conformance.
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Supporting Independent Implementations
√ √ √ √ √

Supporting Customized Functionality
√ √ √

Integration of In-House Systems
√ √ √

implementation is constructed, thus potentially preventing the problems for system

integration, e.g., API reutilization, described in the introductory text of Chapter 6.1.

9.2.2 Future Work

Extended Testing Procedure. As mentioned at the end of Chapter 6.4, an ex-

tended testing procedure may be required to further explore the capabilities of our

proposed assertion-based security model to detect existing security vulnerabilities at

the source code level. Following the approach presented by (Rubio-Medrano et al.

(2013a)), a combination of both dynamic techniques, e.g., automated testing, as well

as static ones, e.g., theorem proving (Flanagan et al. (2002)), may allow for further

vulnerabilities to be detected. In addition, future work may also focus on leveraging

our proposed assertion-based models along with well-established techniques for data
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flow analysis, such as the ones presented by (Harrold and Rothermel (1994)), who

strove to provide testing procedures that can take into account the way data is pro-

cessed by a certain source code under test. As an example, an in-deep analysis may

take into account the different values depicted by attributes in an effort to assess the

proper implementation of customized AD-Rules, following the approach depicted in

Fig. 6.8.

Refining DBC/JML Specifications. As it was also mentioned during the de-

scription of our conformance testing procedure in Chapter 6.4, resolving discrepancies

between the observed behavior of our proposed implementation and its corresponding

DBC/JML specifications allowed us to engage in a very productive reasoning process,

which ultimately resulted in our specifications getting updated to better reflect the

desired behavior for modules implementing our FAM approach. With this in mind, we

believe our assertion-based models may provide a convenient framework for different

actors within the software development process, e.g., architects, designers, coders and

testers, to fully engage into discussions on expected security-related runtime behavior,

in such a way that our assertion-based models can be further refined over time, al-

lowing for more effective descriptions to be created as a result. Future work may then

focus on providing a methodology for different actors to leverage, extend, modify and

test changes in assertion-based models, such that refinements can be introduced, ver-

ified and validated without breaking any existing functionality or introducing newer

vulnerabilities not previously identified.

Supporting Other Specification Languages. Finally, we believe our proposed

assertion-based security models should be extended to include specification languages

other than JML, which is mostly designed to work with the Java programming lan-
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guage. As an example, the object constraint language (OCL) (Warmer and Kleppe

(1998)), has been extensively explored in the literature for providing well-defined de-

scriptions of software structures and runtime behavior. Future work may then strive

to provide an OCL framework in such a way that software architects and designers

can produce assertion-based security models than can be leveraged for verification

and validation in other programming languages, in an approach similar to the one we

have described in Chapter 6.4.

9.3 Trust Management Framework

9.3.1 Addressing Challenges

Table 9.4 presents a summary on how the approach presented in Chapter 7 pro-

vides a solution to the challenges for trust management as depicted in Chapter 3.4.2.

Initially, we believe the different features presented for our trust management frame-

work support the challenge of providing a way to trust participant peers with whom

no previous interaction has been recorded. In addition, our approach strives to in-

fluence security-related functionality by assigning and calculating trust scores to the

process of path discovery, as shown in Chapter 7.2. In addition, the introduction

of our XACML-based recommendation policies, as well as their inclusion within our

distributed architecture based on DHTs may also allow for peers to share trust scores

at finer levels of granularity, which may be extremely convenient as newer and more

advance collaboration settings are introduced within peers. In a similar context, fed-

erated peers may also leverage our mathematical-based approach for combining trust

scores, as introduced in Definitions 1, 2 and 3. Finally, our approach may also allow

for peers to leverage the experience collected at the community scale by leveraging

our proposed recommendation system, which may also allow them to exchange rec-
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Table 9.4: Addressing the Challenges Devised for a Trust Management System.
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Trusting Unknown Participants
√ √ √ √ √

Incorporating Security-based Functionality
√ √ √

Supporting Fine-grained Trust Relationships
√ √ √ √

Providing a Mathematical Foundation
√ √

Leveraging Previous Community-wide Experience
√ √

Providing a Decentralized Approach
√ √ √

ommendations in a decentralized way by means of the support for the use of the DHT

structures as we have detailed in Chapter 5.2 and Chapter 7.3.

9.3.2 Future Work

Supporting Additional Dimensions. As detailed during the description of re-

lated work on trust management presented in Chapter 8.4, previous approaches in the

literature have considered different dimensions when it comes to calculating a unified

trust score in the context of a given community. With this in mind, future work
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may focus on allowing for federations to define their own customized dimensions to

be included within trust calculations. As an example, a given federation may define

resource sharing and implementation of AD-Rules as the most important dimensions

to consider, and may also give an specific calculation weights to each of them, in such

a way that future trust calculations such as the one presented in Definition 1 can take

such dimensions into account. In addition, extra dimensions may also need to be

supported within our proposed recommendation policies. As an example, the format

for our XACML recommendation policies as shown in Fig. 7.10 can be updated to

define different trust dimensions and allow for mapping them to attribute values as

well.

Transitive Trust. As shown in Chapter 8.4, our model for recommendations allow

for peers to leverage the recommendations issued by other trusted peers within a

given federation. As our proposed federations grow with respect to the number of

participants, direct one-to-one recommendations may be difficult to find in the first

place. As a solution, transitive recommendations may be introduced allowing for

peers to follow a friends of my friends approach similar to the model depicted in

popular social networks, e.g., Facebook (Facebook Inc. (2015)). This way, federated

peers may implement schemes in which different trust scores are assigned according

to the number of friend hops a given recommendation has been passed upon.

Leveraging History of Transactions. In the approach for trust management we

have presented in Chapter 7, participant peers are allowed to maintain their own local

scores on the level of trust assigned to other peers within a given federation. However,

such scores may evolve over time as a response to a history of shared transactions. As

an example, trust scores may need to be updated to reflect an improved perception
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on the behavior of a given peer, which whom several successful interactions involving

resource sharing may have been carried on in the past. Conversely, the perception of

misbehavior may cause the score assigned to a given peer to be decreased as a conse-

quence. With this in mind, future work may focus on allowing for peers to leverage

a history of past transactions, as well as a history of the received recommendations

involving a certain peer, in order to suggest possible updates to the local trust score

that is to be used for future calculations.

Supporting Different Policy Formats. As noticed in the experimental results

depicted in Fig. 7.12 and Fig. 7.14, the process of parsing an evaluating our proposed

recommendation policies based on the XACML language has a noticeable impact on

runtime performance. As such policies become more detailed over time, e.g., provid-

ing richer descriptions of the mapping between attributes and trust scores, processing

policies containing a large number of XACML rules may become a performance bot-

tleneck, which may ultimately affect the adoption of such a schema in production

environments. With this in mind, future work may provide alternative represen-

tations of our XACML recommendation policies, following an approach as the one

discussed by (Milutinovic (2008)), in such a way that federated peers may be able to

effectively parse, evaluate and retrieve trust scores at runtime in a faster way, thus

alleviating the performance detriments just described as a result.

Comparison with Existing Trust Languages. As it was also mentioned in

Chapter 8.4, several languages tailored for specifying trust relationships have been

proposed in the literature. In our approach, we have chosen XACML to serve as a

language for communicating trust scores rather than a language for specifying the

different trust relationships that may arise in the context of our proposed FAM ap-
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proach, e.g., the ones defined in Chapter 7. Future work may then focus on exploring

the suitability of such languages for the purposes of federated access management,

and evaluating their suitability to serve as a media for the communication of richer

trust relationships among participants, so that not only trust scores can be commu-

nicated, but also extra information on trust settings that may help peers to decide

what other peers are to be trusted within the context of a given federation.

Enhancing Attribute Discovery with Game Theory. Finally, as our proposed

federations for FAM increase in the number of participating peers, we also expect

the number of AD-Rules provide to increase as a consequence. In such a setting,

many different options may be available to peers when constructing attribute pro-

visioning paths by means of the process described in Chapter 5.2.1. As defined in

Chapter 7, not all peers in large federations may be fully-trusted, therefore, peers

may be presented with several competing options for constructing AD-Graphs for

attribute provisioning. With this in mind, future work may implement an approach

based on game theory (Aumann (1989)), which has been also explored in the context

of computer security (Roy et al. (2010)) (Manshaei et al. (2013)). This way, peers

may leverage an extended approach that may better help them to evaluate different

options when it comes to constructing attribute paths, which, as mentioned before

in this dissertation, has an important influence in the process of mediating access to

resources as proposed in our approach.
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Chapter 10

CONCLUSIONS

In this dissertation, we have presented an hypothesis based on the use of security-

related properties, a.k.a., attributes, for the convenient, flexible, efficient and effective

access mediation to resources being shared between independently-run collaborating

organizations. For such a purpose, we have provided theoretical as well as experi-

mental evidence that supports the main contributions introduced in Chapter 1: first,

we have provided a well-defined theoretical model for attribute-based access media-

tion based on allowing participants to engage in federations. Also, we have included

a precise description on how attributes from different organizations can be trans-

formed (derived) into other ones, referred as federated attributes, which are to be

commonly understood and implemented by all participants, providing solid ground

for inter-organizational exchange of security-related information.

In addition, we have described an approach that allows for participants to publish,

discover, derivate and communicate attributes that will be later used for specifying,

evaluating and enforcing policies relevant both in the local and in the federated con-

text. For such a purpose, we have proposed a distributed setting based on the concept

of DHT rings and a client-server architecture, thus allowing for newer participants

to fully leverage existing in-house security-related systems at the same time a timely

integration into a given federation implementing our approach is favored.

Also, in order to support correct implementations of our approach, we have in-

troduced our so-called assertion-based security models, which leverage software spec-

ifications depicting assertions and the DBC programming paradigm to provide rich

and concise descriptions of the most important modules and functionalities intended
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for our approach. In addition, we have provided evidence showing how our assertion-

based models can be leveraged for the purposes of conformance testing as well as

for locating and later correcting non-trivial security vulnerabilities that may exists in

customized implementations of our approach due to source-code-related pitfalls.

As our proposed federations are expected to accommodate for increasing num-

bers of participants and collaborative projects, we have also introduced an approach

for trust management that allows peers to exchange recommendations on perceived

trust scores in a fine-grained detail. For such a purpose, we have also provided a

mathematical foundation for combining scores obtained from different peers and have

shown how a combined result can be used when performing attribute provisioning

and resource sharing duties. Also, we have provided experimental evidence showing

that the execution time overhead introduced by trust-related operations remains un-

der manageable means and can be successfully used at runtime when interacting with

unknown and possibly untrusted peers.

Finally, for each of the contributions provided in this dissertation, we have pre-

sented comparisons detailing the way our proposals solve the problems discussed in

Chapter 3. In addition, we have provided a comprehensive review of related work, and

have detailed the influences, similarities and differences between our approach and

the ones found in the literature, in such a way that the contributions and relevance of

our work can be better explained and understood. With the same purpose, we have

presented a discussion on the topics addressed in this dissertation and presented sev-

eral lines of future work, which is intended to address observed shortcomings in our

approach at the same time it enhances its suitability for being successfully deployed

in practice.
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