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ABSTRACT 

Magnetic resonance spectroscopic imaging (MRSI) is a valuable technique for 

assessing the in vivo spatial profiles of metabolites like N-acetylaspartate (NAA), 

creatine, choline, and lactate. Changes in metabolite concentrations can help identify 

tissue heterogeneity, providing prognostic and diagnostic information to the clinician. 

The increased uptake of glucose by solid tumors as compared to normal tissues and its 

conversion to lactate can be exploited for tumor diagnostics, anti-cancer therapy, and in 

the detection of metastasis. Lactate levels in cancer cells are suggestive of altered 

metabolism, tumor recurrence, and poor outcome. A dedicated technique like MRSI 

could contribute to an improved assessment of metabolic abnormalities in the clinical 

setting, and introduce the possibility of employing non-invasive lactate imaging as a 

powerful prognostic marker. 

However, the long acquisition time in MRSI is a deterrent to its inclusion in 

clinical protocols due to associated costs, patient discomfort (especially in pediatric 

patients under anesthesia), and higher susceptibility to motion artifacts. Acceleration 

strategies like compressed sensing (CS) permit faithful reconstructions even when the k-

space is undersampled well below the Nyquist limit. CS is apt for MRSI as spectroscopic 

data are inherently sparse in multiple dimensions of space and frequency in an 

appropriate transform domain, for e.g. the wavelet domain. The objective of this research 

was three-fold: firstly on the preclinical front, to prospectively speed-up spectrally-edited 

MRSI using CS for rapid mapping of lactate and capture associated changes in response 

to therapy. Secondly, to retrospectively evaluate CS-MRSI in pediatric patients scanned 

for various brain-related concerns. Thirdly, to implement prospective CS-MRSI 



ii 
 

acquisitions on a clinical magnetic resonance imaging (MRI) scanner for fast 

spectroscopic imaging studies. Both phantom and in vivo results demonstrated a 

reduction in the scan time by up to 80%, with the accelerated CS-MRSI reconstructions 

maintaining high spectral fidelity and statistically insignificant errors as compared to the 

fully sampled reference dataset. Optimization of CS parameters involved identifying an 

optimal sampling mask for CS-MRSI at each acceleration factor. It is envisioned that 

time-efficient MRSI realized with optimized CS acceleration would facilitate the clinical 

acceptance of routine MRSI exams for a quantitative mapping of important biomarkers. 
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CHAPTER 1 

MAGNETIC RESONANCE SPECTROSCOPIC IMAGING 

 

1.1   Introduction 

Magnetic resonance spectroscopic imaging (MRSI, also known as chemical shift 

imaging or CSI), which was first introduced by Brown et al [1] and later developed 

further by Maudsley et al [2], is a key non-invasive imaging technique for measuring and 

monitoring metabolic profiles in vivo in conjunction with other anatomical and functional 

sequences [3, 4]. MRSI can identify and quantify the metabolic differences between 

healthy and diseased tissue, thus, providing prognostic and diagnostic information to the 

clinician that could improve treatment strategies. Proton (1H) MR spectroscopy has been 

extensively employed to probe tissue metabolism in tumor models of the brain, breast and 

prostate over the last couple of decades [5-14]. For example, increased levels of choline 

and reduced NAA (N-acetyl aspartate) are typically seen in brain tumors [7, 8, 12], while 

malignant breast lesions express raised concentrations of total choline [5, 6, 9, 10]. 

Cancers of the prostate are associated with decreased citrate levels along with an increase 

in choline, phosphocholine, lactate, and phosphoethanoamine [11, 13, 14].  

MRSI can also establish direct correlations with anatomical imaging and can be 

linked to physiological measurements such as perfusion and diffusion imaging [15]. 

While in vivo MRSI has been demonstrated with other nuclei, 1H MRSI is the 

spectroscopic imaging technique of choice for imaging in the clinic because of greater 

hydrogen abundance and commercially available equipment, as compared to 13C, 31P, and 

23Na MRSI. Nevertheless, these other nuclei are also very useful in investigating specific 
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metabolic processes [16-20]. Although MRSI can monitor clinically relevant 

biomolecules, its clinical use is limited by the extremely long acquisition time, limited 

spatial coverage, and low signal-to-noise ratio (SNR). 

 

1.2   Localization Techniques in MRS 

Localization methods in MR spectroscopy utilize reference anatomical images 

from MRI to define the desired volume of interest (VOI) for spatially selective 

acquisition of spectra [21]. Ideal MRS pulse sequences should acquire good quality 

spectra from within the VOI, with minimal interference from unwanted signals outside 

the desired volume. However, the in vivo detection and accurate quantification of 

metabolites is complicated by several factors such as the presence of huge resonances 

from water and lipid, low spectral resolution due to heterogeneity in the B0 field 

distribution, and low signal to noise ratio (SNR). MRS localization techniques in the 

clinic rely on the B0 gradients (phase encoding and slice selection) employed in MRI to 

achieve spatial selectivity, along with spatial saturation bands and signal cancellation 

procedures for effective outer volume suppression [21]. 

 

1.2.1 Single Voxel Spectroscopy 

In single voxel spectroscopy (SVS), the desired tissue VOI is defined by the 

gradient selection of three orthogonal planes or slices. A single spectrum is then acquired 

from the selected VOI. This localization along three dimensions can be achieved using 

the point resolved spectroscopy (PRESS) and stimulated echo acquisition mode 

(STEAM) pulse sequences. Both techniques use three frequency selective radio 
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frequency (RF) pulses to excite the volume of interest, as depicted in Figure 1.1. 

However, the timing diagram of the two sequences, along with the flip angles of the RF 

pulses and placement of the spoiler gradients are different, even though both share the 

principles of volume selection [21]. The two sequences also differ in the achievable SNR 

(SNRSTEAM = SNRPRESS/2), the minimum TE that can realized, water suppression, 

artifacts resulting from chemical shift, and sensitivity to motion. Additional chemical 

shift selective saturation (CHESS) pulses are employed to suppress the huge interfering 

signals from water and lipid.  

 

 
Figure 1.1 SVS localization sequences. (a) The PRESS MRS sequence timing diagram. 

Both the 90o excitation pulse and the two 180o refocusing pulses are slice-selective and 

are applied in orthogonal directions to achieve spatial localization.  (b) The STEAM 

sequence that uses three 90o slice-selective pulses for spatial localization. Reproduced 

from [22].  

 

SVS pulse sequences are currently employed in the clinic since a single averaged 

spectrum can be quickly acquired from the desired VOI, such as from a region containing 

a tumor. Depending on the selected sequence parameters such as the repetition time (TR), 

number of averages, and the volume size, the scan time can be as less as a few seconds to 
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acquire a quantitatively good spectrum. Furthermore, SVS is popular due to its ease of 

implementation and simplicity, better water suppression, more homogeneous B0 

shimming achievable on smaller voxels, lack of artifacts from voxel-to-voxel bleed, and 

immediate analysis and interpretation of the spectra. However, as only a single spectrum 

can be obtained at a time from the defined volume, multiple measurements might be 

necessary when evaluating several regions of the anatomy [21]. This limits the benefit of 

SVS in accessing voxel-to-voxel variations in metabolite concentrations in a single 

measurement. 

 

1.2.2 Chemical Shift Imaging 

CSI combines the features of both spectroscopy and imaging by acquiring 

multiple spectra from adjacent voxels in a single scan. There is no readout gradient 

applied in MRSI during data collection, and phase encoding gradients are applied in 

either one (1D), two (2D), or three (3D) directions to achieve spatial localization [21]. A 

three dimensional fast Fourier transform (FFT) is then applied to reconstruct the MRSI 

data. Following reconstruction, the acquired spectral data is post processed and displayed 

as spectra or metabolite maps overlaid on the anatomical reference image. Figure 1.2 

illustrates a conventional volume-selective 2D MRSI pulse sequence based on the PRESS 

excitation scheme, along with representative spectra and metabolite maps from a clinical 

MRSI dataset. The PRESS volume is excited using three slice-selective RF pulses and 

gradients Gx, Gy, and Gz. The second half of the echo produced at TE2 is sampled. A 3D 

(kx, ky, t) matrix is generated by applying phase encoding gradients along the x and y 

directions to spatially encode the echo. 
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Due to the availability of spectra from multiple contiguous voxels, MRSI aids the 

comparison of metabolic profiles from different types of tissues. For e.g. in cancer 

patients, spectra from normal and tumor tissue can be simultaneously acquired to 

evaluate heterogeneity in metabolite concentrations. Multiple voxels acquired from 

within the tumor region can also be used to assess whether there is any heterogeneity in 

metabolite distributions in the same lesion [21]. Multiple adjacent voxels can also be 

combined to replicate the shape of the tumor and subsequently combine the 

corresponding spectra.  

However, MRSI has its share of problems, the primary one being the long scan 

time even when acquiring a low resolution spectroscopic grid, for e.g. a 16 x 16 matrix 

with a TR of 1.5 s and one signal average would require a scan time of 6.4 minutes. A 

long TR > 1 s is required since most metabolites have long T1 recovery times. Multiple 

averages are often required in regions that are inherently SNR limited, causing a further 

increase in the acquisition time. Variations in magnetic susceptibility are encountered 

since a relatively large excitation volume is selected in MRSI, leading to non-uniform 

water suppression and poor shimming. This in turn affects the point spread function 

(PSF), giving rise to spectral contamination from the resulting voxel bleed that could give 

rise to errors in spectral interpretation [21]. Furthermore, the complete analysis of MRSI 

data requires several processing steps that might also vary between different data types 

[23]. A lack of standardization in MRSI acquisition protocols and non-availability of 

common processing and analysis tools for a simple and quick evaluation of metabolite 

concentrations makes this technique less appealing to the radiologist for routine clinical 

investigations.     
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Figure 1.2 Conventional MRSI data acquisition. (a) A PRESS-based volume selective 

2D MRSI pulse sequence. The second half of the second echo at time TE2 is sampled. 

The total acquisition time in 2D MRSI for a slice in the z direction would be Nx x Ny x 

Navg x TR, where, Nx and Ny are the number of phase encodes along the x and y 

directions, respectively, Navg is the number of signal averages, and TR is the repetition 

time of the pulse sequence. (b) Representative metabolite maps of the major brain 

metabolites NAA, creatine (Cr), choline (Cho), and lactate seen in a brain tumor patient 

with spectra from normal and tumor voxels.  
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1.3   Key Metabolites Observed in 1H MRS/MRSI 

1.3.1 N-acetylaspartate 

The methyl (CH3) group of N-acetylaspartate (NAA) gives rise to a prominent 

singlet at 2.01 ppm in the proton spectrum observed in MRS/MRSI. Three doublet-of-

doublets are also found centered at 2.49 ppm, 2.67 ppm, and 4.38 ppm (from the CH2 and 

CH groups), with a broad temperature-sensitive resonance at 7.82 ppm (from the 

exchangeable amide NH proton). NAA is found exclusively in the peripheral and central 

nervous systems, with different parts of the brain showing varied concentrations [4, 21, 

24]. Higher concentrations are found in gray matter (~8-11 mM) as compared to that 

found in white matter (~6-9 mM). NAA has been found to play an important role in (1) 

fatty acid and myelin synthesis, (2) osmoregulation, and (3) in being the break down 

product of the neurotransmitter NAAG. NAA does not play a vital role in the energy 

metabolism of glucose in the resting brain as evidenced by the slow NAA turnover 

observed in 13C NMR spectroscopy. The average concentration of NAA in the normal 

adult brain varies between 7.5 – 17.0 mM/L [4, 21, 24], while that in the rat brain is in the 

range of 4.5 – 9 mmol/L [4, 21, 24]. 

The NAA resonance is primarily viewed as a marker of neuronal density. 

Dynamic changes in NAA concentrations are suggestive of neuronal dysfunction as 

opposed to neuronal loss. Several brain disorders like stroke, temporal lobe epilepsy, 

multiple sclerosis, and hypoxic encephalopathy exhibit a decrease in NAA levels [25]. In 

multiple sclerosis, both visible lesions as well as normal appearing regions of while 

matter show reduced NAA concentration [26]. NAA loss is also observed in malignant 

brain tumors due to destruction of neurons, particularly in extra-axial meningiomas [25]. 
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Brain abscesses and secondary (metastatic) neoplasms may show reduced or completely 

absent signal from NAA [26]. In ischemia or hypoxia, NAA is used as a concentration 

maker, as the acute metabolic disturbances in these diseases do not significantly alter its 

concentration [24].    

 

1.3.2 Creatine 

The methyl and methylene protons of Cr and phosphorylated creatine (PCr) give 

rise to singlet resonances at 3.03 ppm and 3.93 ppm, respectively. Both glial and neuronal 

cells in the brain contain Cr and PCr. Creatine is mostly synthesized in the liver and 

kidneys. Total creatine (tCr), which is the sum of Cr and PCr, plays an important role in 

the energy metabolism of tissues, along with adenosine triphosphate (ATP) [4, 24]. PCr, 

in combination with creatine kinase, plays two major roles: (1) maintains constant ATP 

levels via the creatine kinase reaction, serving as an energy buffer, and (2) it functions as 

an energy shuttle by diffusing from energy producing regions like the mitochondria to 

energy consumption sites like the muscle and brain. The concentration of Cr and PCr in 

the normal human brain has been reported to be 4.5 – 6.0 mM and 4.0 – 5.5 mM, 

respectively [4, 24]. Lower levels are found in white matter (5.2 – 5.7 mM) as compared 

to that in gray matter (6.4 – 9.7 mM) [4, 24].  

TCr is frequently employed as an internal concentration reference as levels 

remain relatively constant in various diseases, with no changes being observed even with 

age. However, any internal concentration reference must be used with caution as regional 

and individual variations in concentration are likely. Chronic phases of various tumors 

and stoke have displayed a decrease in Cr levels. Increased metabolic activity in certain 
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high-grade gliomas may reduce the total creatine concentration [25]. As Cr is not 

generated in the brain, other diseases like renal diseases may affect creatine levels in the 

brain [25]. Reduced or absent creatine signal has been observed in various conditions like 

seizures, brain abscesses, AIDS, autism, and mental retardation [27]. Prostate cancers 

have shown higher creatine levels as compared to normal prostate tissue [28].   

 

1.3.3 Choline 

The methyl protons of choline-containing compounds give rise to a prominent 

singlet at 3.2 ppm in the 1H MRS spectrum. This peak is the signal from ‘total choline’ 

(tCho), which contains contributions from free choline, phosphorylcholine (PC), and 

glycerophosphorylcholine (GPC). The peak at 3.2 ppm has a significant contribution 

from betaine in tissues present outside the central nervous system (CNS). In the normal 

adult human brain, the concentration of total choline is approximately 1 – 2 mM, with a 

non-uniform distribution in the brain [24]. Choline-containing compounds are reflective 

of membrane turnover, as they are involved in the phospholipid synthesis and 

degradation pathways [24].  

Fluctuations in the levels of the tCho peak have been seen in various diseases. 

Increased choline concentration has been observed in various brain, breast, and prostate 

cancers, in Alzheimer’s disease, and in demyelinating autoimmune diseases like multiple 

sclerosis [24]. On the other hand, reduced choline signal has been detected in stroke and 

liver disease [24]. Multiple contributions to the observed total choline signal tend to 

complicate an accurate interpretation of changes in tCho. In malignant tumors and 

(primary and secondary/metastatic) neoplasms, increased cellularity causes an increase in 
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the total choline concentration [25]. Various factors at the cellular level contribute to an 

elevated choline signal, such as destruction of normal cells or increased cell membrane 

turnover due to tumor growth. The choline signal has been found to be absent in brain 

abscesses, while a very prominent choline peak has been reported in the lymphoma in 

AIDS [25]. 

 

 

Figure 1.3 Chemical structure of major metabolites observed in the 1H MRS/MRSI 

spectrum [29]. 

 

1.3.4 Lactate 

The three equivalent methyl (CH3) protons of the lactate molecule produce a 

doublet at 1.31 ppm, while the single methine (CH) group gives rise to a quartet at 4.10 

ppm. Large resonances from the lipid molecules tend to overlap with the lactate doublet, 
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particularly in regions with poor localization. Under such circumstances, specialized 

spectral editing techniques need to be employed for improved detection of the lactate 

peak [24]. Lactate is present in very low concentrations (~0.5 ppm) in normal resting 

tissues and is the end-product of anaerobic glycolysis. According to the astroglial-

neuronal lactate shuttle (ANLS) hypothesis, neurotransmitter cycling and metabolism is 

linked to astroglial glucose uptake and metabolism via the lactate molecule [24].  

High lactate concentrations have been found in various diseases like brain 

abscesses, brain ischemia, primary and secondary neoplasms, seizures, and in regions of 

acute inflammation, as signified by macrophage accumulation [25]. In all the above 

mentioned conditions, a failure in the aerobic oxidation process leads to an increased 

uptake and conversion of glucose to lactate by the Warburg effect, leading to increased 

lactate accumulation [30]. Furthermore, poor washout mechanisms in cystic and necrotic 

tumors lead to higher lactate levels in malignant lesions. Functional activation and 

hyperventilation in the human brain has also been found to cause a transient increase in 

the lactate signal [24]. 

 

1.3.5 Other Important Metabolites 

A detailed description of NAA, creatine, choline, and lactate was provided in the 

previous sections as these metabolites were observed and quantified in the studies 

presented in Chapters 3, 4, and 5 of this dissertation. Other metabolites that are key 

biomarkers in various diseases are also observed in the MRS spectrum, such as alanine, 

citrate, γ-Aminobutyric Acid (GABA), glutamate, glutamine, glycine, and myo-Inositol. 

An increase in alanine levels has been found in ischemia and in meninigiomas [24], while 
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in prostate cancer, increased oxidation due to a drop in zinc levels leads to a significant 

decrease in the citrate concentration [24]. Altered concentrations of GABA are have been 

detected in several psychiatric and neurological disorders, such as depression and 

epilepsy [24]. Both glutamate and glutamine play an important role in the 

neurotransmitter cycle, while glycine functions as an antioxidant and inhibitory 

neurotransmitter [24]. Variations in myo-Inositol levels have been detected in brain 

injury and Alzheimer’s disease, with osmotic regulation being another role played by this 

metabolite in the kidney [24]. Figure 1.4 shows the metabolites that can be detected in the 

1H MRS spectrum. 

 

Figure 1.4 Metabolites seen in the 1H MRS spectrum in the (a) 0.75 – 2.85 ppm range, 

and (b) 2.85 – 4.45 ppm range. Reproduced from [29].  

 



13 

 

1.4   Data Processing in MRS/MRSI 

The acquired MRSI data are processed and analyzed in order to determine 

absolute/relative metabolite concentrations, and to present the metabolic information in 

an easily interpretable format to the radiologist. Various processing steps that can be 

applied to manipulate the MRSI data in either the time or frequency domain are briefly 

outlined below [21]. 

(1) DC Offset Correction 

A DC offset present in the FID signal will produce a spike at zero frequency (0 

Hz/ppm) in the corresponding spectrum. The offset is estimated from the baseline of the 

FID data and subtracted before applying the Fourier transform to eliminate the spike.  

(2) Zero-filling 

The FID can be zero-filled in order to improve the spectral resolution, thus, 

facilitating a better discrimination of various spectral features, like peak positions and 

amplitudes. Zero-filling should be applied with caution, as this might lead to baseline 

artifacts in the resulting spectrum when the FID has not completely decayed to the noise 

floor.   

(3) Apodization 

The FID signal is usually multiplied with a filter function to improve the SNR and 

reduce any truncation artifacts. For e.g. a decaying exponential filter like the Gaussian 

filter suppresses the noise at the end of the FID. This helps in improving the SNR while 

causing a broadening of the spectral peaks (which depends on the line broadening 

constant of the applied filter). Step-like signal discontinuities are also eliminated as the 
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filter smooths the FID signal decay to zero, removing sinc-like side lobes in the resulting 

spectrum. 

(4) Phase Correction 

Prior to quantification, the real and imaginary components of the complex 

spectrum need to be accurately determined from the pure absorption and dispersion 

modes. A constant or zero-order phase correction φ0 is applied when all signal 

components experience the same phase shift, for e.g. if the transmitted and received RF 

signals have a fixed phase difference. A linear or first-order phase correction φ1 is 

required when various signal components experience different phase shifts. Both φ0 and 

φ1 are varied independently to get the best separation between the absorption and 

dispersion modes. 

(5) Baseline Correction 

The baseline of a MR spectrum should be flat and free of distortions for accurate 

estimation of peak areas. Baseline distortions are more pronounced in spectra obtained at 

short TE, especially when the residual water signal is not properly subtracted during post 

processing. Other distortions are introduced by immobile nuclei such as macromolecules, 

which give rise to broad plateaus in the MRS spectrum. Polynomial or cubic-spline based 

fitting is used to approximate and correct for any distortions in the baseline.  

(6) Removal of Residual Water 

A significant residual water peak remains in the spectrum in regions where the 

localization and OVS suppression was poor, for e.g. in the peripheral regions of the brain 

where the magnetic field may not be homogeneous. This residual water peak has to be 

eliminated prior to metabolite fitting and quantification. Techniques like the singular 
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value decomposition (SVD) and the Hankel-Lanczos variant (HLSVD) [31] allow 

reliable automatic suppression of any residual water, with little to no user input required. 

(7) Spectral Fitting & Quantification 

The final step in the processing and analysis of MRS/MRSI data involves fitting 

the various peaks of interest in the spectrum to known line shape functions such as the 

Gaussian (more common for solids), Lorentzian, or a combination of two or more 

functions [21]. Spectral components can be estimated using various quantification 

algorithms such as AMARES (Advanced Method for Accurate, Robust and Efficient 

Spectral fitting) [32], HLSVD [31], HTLS [33], and QUEST (QUantitation based on 

QUantum ESTimation) [34, 35]. A priori information like the frequency range, full width 

at half maximum (FWHM), peak positions and amplitudes can be specified to obtain a 

good peak fit. The best fit between the measured and theoretical curves is then 

determined using an iterative curve fitting algorithm. Curve fitting techniques can be 

applied in either the frequency or time domain. After post processing, results are 

displayed either as an individual spectrum (in case of SVS), or as individual metabolite 

maps overlaid/co-registered on the anatomical reference image in MRSI. 
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CHAPTER 2 

FAST DATA ACQUISITION STRATEGIES IN MRSI 

 

Fast scan strategies could potentially facilitate increased adoption of MRSI into 

routine clinical protocols with minimal addition to the current acquisition times. Not 

surprisingly, a lot of effort has been devoted to the development of faster MRSI 

techniques that aim to capture the same amount and quality of information as 

conventional MRSI in greatly reduced time. This chapter examines the current techniques 

and advances in high-speed MRSI in 2- and 3-dimensions and their applications. Since 

encoding of position in conventional MRSI itself is an extension of that in MRI, most of 

these acceleration techniques are not MRSI-specific. All discussed acceleration 

approaches have initially been applied and tested in MRI before their adoption in MRSI. 

However, each acceleration technique has been suitably modified to accurately capture 

the challenges and nuances of spectroscopic imaging. The advantages and limitations of 

each state-of-the-art technique have been reviewed in detail, concluding with a note on 

future directions and challenges in the field of fast spectroscopic imaging. 

 

2.1   Conventional MRSI 

A PRESS-based volume selective conventional 2D MRSI sequence has 

previously been described in Chapter 1. The data acquisition process in conventional 

MRSI is tedious, which is a deterrent for its integration into current clinical protocols. A 

large number of phase encoding gradients need to be played out to sample all points in k-

space, leading to long scan times. Parameters like the TR of the MRSI pulse sequence, 
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size of the spectroscopic imaging grid, and the number of signal averages required to 

achieve good SNR determine the total acquisition time. For e.g. for a TR of 1.5 s and one 

signal average, the clinical acquisition of a 16 x 16 x 2048 spectroscopic imaging grid 

would require a scan time of 6 min 24 s. While on the other hand, one can realize a 

shorter scan time in MRI by applying frequency encoding along one direction, with phase 

encoding along the remaining dimensions.  

There is often a further increase in the scan time due to the need for higher signal 

averaging to ensure acceptable SNR and/or when high resolution MRSI data are 

acquired. 3D MRSI datasets cannot be acquired in patients, especially in the pediatric 

setting, due to the prohibitive scan time. E.g. the acquisition of a 16 x 16 x 16 spatial 

matrix would require a scan time of ~ 1.14 hours, considering one signal average and a 

TR of 1 s. The total imaging time is further increased as it is also necessary to collect 

reference anatomical information in every study. Another limitation to be considered in 

MRSI is the inherent low SNR, which arises from the MR visible metabolites having low 

concentrations in the range of <0.1 to 16.6 mM [29], as compared to 55 M of water in the 

human body. One can potentially lower the resolution and utilize the time gained to 

increase the SNR. This would, however, cause a volume averaging of the voxels and 

potentially lower the contrast to noise ratio (CNR) of the target metabolite with respect to 

the other metabolites. On the other hand, higher averages at the same resolution would 

lead to a further increase in the scan time. 

The above discussed limitations do not make conventional MRSI a feasible option 

to the clinician for regular in vivo investigations. Increased volume coverage at 

acceptable SNR and imaging speed are critical to the incorporation of MRSI in the clinic. 
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To this end, numerous fast imaging strategies that have been developed to achieve 

acceleration in MRI have been accordingly modified and applied to MRSI to shorten the 

scan time. Acceleration techniques will facilitate the evaluation of serial changes in 

metabolite distributions and heterogeneity in spatial profiles in a clinically viable time 

frame [15]. Such innovative pulse sequences will not only reduce the scan time, but will 

ensure best use of the available magnetization to simultaneously achieve/preserve good 

SNR and spatial resolution. Parallel advances in the design of efficient gradients, 

multichannel RF coils, sophisticated reconstruction algorithms and post processing 

routines, and high field scanners will make a significant contribution to realizing these 

goals.  

 

2.2   Fast MRSI with More Efficient K-space Traversal 

A major approach to achieve acceleration in MRSI data acquisition is to traverse 

the k-space in a more time efficient manner i.e. effectively cover more k-space locations 

within the chosen TR. This includes novel k-space sampling schemes like non-Cartesian 

trajectories (spiral, radial, rosette, etc) and pulse sequences that acquire multiple lines of 

k-space within the same TR. Techniques that fall under this category usually gain speed 

at the cost of SNR loss and resulting coherent artifacts.  

 

2.2.1 Turbo MRSI 

One of the first acceleration techniques to accelerate MRSI data, particularly in 

the brain [36, 37], was multi-echo imaging. Duyn et al developed a multi-echo, multi-

slice MRSI technique that enabled the acquisition of multiple spin echoes within the 
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same TR [36]. In conventional spectroscopic imaging, there is pronounced attenuation of 

the fat and water resonances arising from T2 decay, as a single spin echo signal is 

commonly sampled at long echo time (TE). The metabolites of interest, such as NAA, 

creatine, and choline experience greater signal decay from intra voxel susceptibility 

effects as compared to T2 decay. Thus, multiple spin echoes were acquired in the same 

TR to increase the efficiency of data collection, leading to a decrease in the scan time. An 

echo train length of 4 was used to achieve a 4X decrease in the acquisition time as 

compared to the single echo technique [36]. A fast spin echo based spectroscopic imaging 

sequence is illustrated in Figure 2.1.  

 

Figure 2.1 A turbo or fast spin echo spectroscopic imaging sequence. This sequence 

generates and acquires slice-selective spin echoes at echo times TE1, TE2, …,TEX, in 

intervals between the 180o RF pulses. Gx, Gy, and Gz depict the gradient channels. Phase 

encoding gradients encode each individual echo in the acquisition interval. Crusher 

gradients (indicated by the diagonally shaded gradient pulses) around the 180o pulses 

suppress any unwanted signals. Any other unwanted coherences are suppressed with the 

help of phase encoding rewinders. Gradient pulses depicted by the solid gray boxes 

represent slice-selective gradients. Additional outer volume suppression (OVS) and water 

suppression modules can be added before the 90o pulse. Adapted from [36]. 
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However, this technique does have several limitations. The data acquisition 

readout for spectroscopic imaging needs to be of the order of 0.3–1 s to maintain 

reasonable spectral resolution, and significant T2 decay would have already occurred by 

the time the subsequent echoes are encountered [37]. Consequently, metabolites with 

short T2 cannot be observed using this technique. This may force one to accept limited 

spectral resolution due to fewer echoes and smaller acquisition windows to gain speed. 

There is also considerable T2 weighting of different echoes, and metabolites like lactate 

need to be imaged carefully taking into account the fact that the choice of TE modulates 

the signal appearance of these metabolites [37]. Also, for long echo train lengths, the 

minimum TR often needs to be increased to accommodate the long readout window 

required, which tends to offset the time gained in multi-echo encoding. 

Other related multi-echo based fast MRSI techniques include the spectroscopic 

ultrafast low-angle rapid acquisition with relaxation enhancement (UFLARE) [38, 39], 

and the spectroscopic gradient and spin echo (GRASE) [40] imaging techniques (Figure 

2.2). Spectroscopic UFLARE acquires “slices” of  k-space by measuring all data points in 

the kx-ky plane at a given value kω after each signal excitation, i.e. within the TR using 

the fast imaging method UFLARE [41]. There are two different ways to encode the 

chemical shift.  In the first approach, the beginning of the imaging sequence is shifted 

with respect to the RF excitation in subsequent measurements. Alternately, the time 

interval between the 90° excitation pulse and the imaging sequence is kept constant and 

the position of a refocusing 180° pulse, applied within that interval, is incremented to 

encode the chemical shift. In spectroscopic GRASE, after each signal excitation, all data 

points from NGE gradient echoes kx-ky slices are acquired at different kω-values by using a 
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GRASE imaging sequence [42]. The delay between consecutive gradient echoes, which 

are measured with uniform phase encoding between consecutive refocusing pulses, is the 

inverse of the spectral width (SW). A refocusing 180° pulse, which is applied within a 

constant delay between excitation and the GRASE sequence, is shifted for subsequent 

measurements by an increment NGE/(2*SW) to cover the whole kω-kx-ky-space. 

 
 

Figure 2.2 Spectroscopic (a) U-Flare and (b) GRASE imaging pulse sequences with a 

pre-saturation period (A), excitation and evolution (B), an optional localization period 

(C), and readout (D). Spoiler gradients are denoted by diagonally shaded gradient pulses, 

while solid gray and white boxes depict slice-selective and read-out gradients, 

respectively. The alternate phase-encoding scheme was employed for signal acquisition. 

Spectroscopic GRASE enables effective homonuclear decoupling, while achieving a 

lower minimum acquisition time (Tmin) as compared to the spectroscopic U-Flare 

sequence. Adapted from [38] and [40]. 
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2.2.2 Echo Planar Spectroscopic Imaging 

EPSI (proton echo planar spectroscopic imaging or PEPSI in 1H MRSI, Figure 

2.3) was initially proposed by Mansfield [43], and further developed by Posse and co-

workers [44-46]. The echo-planar imaging (EPI) method [43] was adapted by Mansfield 

in CSI to facilitate echo planar shift mapping (EPSM), which was faster than previously 

employed techniques like the 3D/4D Fourier transform [47] and the point-by-point 

topical magnetic resonance method [48]. The EPSI technique was later extended to 3D 

for spectroscopic imaging in the human brain at very short echo times (13 ms) [44, 46]. 

This resulted in acquisition times as low as 64 s, while maintaining an SNR that was 

comparable to that obtained using conventional MRSI techniques [44].  

 

Figure 2.3 A PEPSI pulse sequence with a spin echo excitation section, and an echo-

planar spectral readout. Additional outer volume suppression (OVS) and water 

suppression modules can be added before the 90o pulse. Adapted from [49]. 

 

The EPSI technique accelerates the filling of k-space (up to 3 spatial frequencies 

kx, ky, kz, and time) by acquiring 2 (any one spatial frequency and time ) of the possible 4 

dimensions with each readout [50]. A frequency encoding gradient is rapidly switched 

during readout to acquire both spectroscopic and spatial data from any one k-space 



23 

 

dimension, which can subsequently be separated and re-gridded [50]. The acquired 

echoes can be separated into odd and even echoes, and each even (or odd) echo can be 

time-reversed and re-gridded to recover the free induction decays (FIDs) from the 

dimension that the echo planar readout was applied to. Information from the remaining 

two spatial dimensions can then be acquired using conventional phase encoding. Using 

EPSI acquisition in 3D, the time required to collect a 16x16x16 spectroscopic grid is only 

16x16 s (assuming one second per signal acquisition and one average), reducing the scan 

time from 1 hr 16 min to approximately 4 min 16 s. 

However, EPSI has its share of technical limitations. The use of rapidly 

oscillating read out gradients places high hardware demands on the gradient system, 

while the spectral bandwidth is limited by the gradient strength and slew rate [51]. 

Furthermore, only half the spectral bandwidth is used in conventional EPSI as the even 

and odd readout echoes are utilized separately during reconstruction. Limited spectral 

bandwidth is particularly a problem at higher magnetic field strengths (> 3 T) as chemical 

field dispersion effects increase leading to spectral aliasing [51]. Metabolic images tend 

to exhibit ghosting artifacts due to the off resonance effects, also commonly seen in echo 

planar imaging (EPI). This can be compensated for by using a cyclic unwrapping method, 

wherein the aliased portion of the spectrum is cyclically shifted and the region downfield 

is filled with zeros to obtain a modified spectral distribution [51].  

There is a drop in the SNR during data acquisition due to the readout gradient and 

the associated short dwell times (resulting in increased bandwidth and hence noise) as 

compared to conventional MRSI [50]. Due to the stated limitations, increased averaging 

may be required to improve the SNR, which may neutralize the speed gain.  



24 

 

Nevertheless, EPSI may be useful in specific applications where loss of SNR is 

acceptable in favor of faster imaging, for e.g. in imaging hyperpolarized probes where 

one battles dynamic signal loss due to T1 [52]. Over the last couple of decades, EPSI has 

been employed in numerous preclinical and clinical studies, also involving non proton 

nuclei such as 13C and 31P [52, 53]. 

 

2.2.3 Non-Cartesian MRSI 

K-space is traversed in a rectilinear manner in conventional MRSI by the choice 

of phase encoding gradients, leading to long acquisition times. Non-Cartesian trajectories 

like the spiral, radial, and less common ones like the rosette, traverse k-space more 

efficiently enabling faster scans. Therefore, non-Cartesian k-space sampling has gained 

increased attention over the years in accelerating MRSI. Spiral MRSI, originally 

developed by Adalsteinsson et al [54] traverses the (kx, ky) space in a spiral trajectory by 

applying gradient waveforms along the x and y axes. The (kx, ky, kω) space is traversed 

by these gradients with the evolution of time. Rewinding gradient lobes are added 

immediately after the spiral gradients to facilitate return to the k-space origin, as depicted 

in Figure 2.4.  

Multiple spiral shots can be employed to map out the entire k-t space and collect 

all data points. The collected data are then interpolated onto a Cartesian k-space grid by 

employing a regridding algorithm for the use of conventional Fourier reconstruction 

techniques [54]. The SNR of the spectra reported by Adalsteinsson et al was found to be 

comparable to that from conventional MRSI techniques using long echo times and 
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inversion recovery pulses for lipid suppression, demonstrating the value of spiral 

trajectories for rapid volumetric spectroscopic imaging. 

 

Figure 2.4 The spiral trajectory in k-space. (a) Trajectory with a rewinding path back to 

the origin, (b) the path traced by the trajectory in (kx, ky, kf) space during the readout 

time, (c) phase encoding used to cover the kz dimension (spherical or ellipsoidal 

coverage), (d) the gradient waveforms over one period, and (e) a pulse sequence diagram 

employing spiral gradients on Gx and Gy to simultaneously encode the x, y, and f 

dimensions. Reproduced from reference [54].  

 

Spiral MRSI has similar constraints and limitations as PEPSI as discussed in the 

previous section, since it applies a readout gradient during data acquisition similar to that 

used in PEPSI. The spiral trajectory tends to be less demanding on the gradient system as 

compared to the EPI waveform. Artifacts can be minimized by carefully calibrating the 

gradient system [37]. The need for sophisticated reconstruction software and lack of 

widespread availability has resulted in limited application of spiral MRSI in the clinic as 

compared to EPSI. Nevertheless, MRSI sequences employing spiral k-space trajectories 

have found numerous applications over the years and continue to be researched and 

developed further. 

Apart from spiral MRSI, there is also potential for developing different novel 

trajectories for the undersampling of k-space [55-58]. Concentrically circular [58], rosette 
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[56], and various other arbitrary k-space sampling trajectories have been investigated [55, 

57] that can be adopted for MRSI. 

 

2.3   Fast MRSI with Undersampling 

The second major approach undertaken to speed-up MRSI data involves acquiring 

fewer points in k-space and subsequently recreating the complete spatial-spectral 

information either by zero-filling or by employing more advanced non-linear iterative 

reconstruction algorithms. This approach includes techniques like parallel imaging, 

compressed sensing, wavelet encoding, and elliptical sampling. These techniques are able 

to implement sparser sampling as the rectangular extent of the k-space and the properties 

of the Fourier transform allow accurate reconstructions even when certain regions of the 

k-space are not acquired [59]. The reconstructed data from these techniques can be 

viewed as an approximation to the “true” data acquired from transforming the full k-

space. However, the fidelity of such approaches is validated by extensive statistical 

analyses of equivalence up to acceleration factors permitted by the inherent SNR of the 

data under consideration.  

 

2.3.1 Circular & Elliptical Sampling 

The circular sampling technique only measures and samples a circular region in k-

space; the remaining points that have not been collected are zero-filled to produce a 

Cartesian grid for reconstruction using the fast Fourier transform (FFT) [3, 59]. Such a 

technique not only reduces the scan time, but also improves the profile of the point spread 

function (PSF). While circular sampling schemes slightly broaden the main lobe of the 
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PSF, a considerable reduction in the number of side lobes can be achieved by density 

weighting, thus, improving the PSF profile and reducing voxel bleeding [60]. However, 

this technique has its share of limitations. The spatial resolution essentially deteriorates 

and circular sampling creates a highly isotropic PSF, wherein the side lobes of the PSF 

are mainly propagated along the principle axis [3, 60]. Elliptical sampling provides better 

k-space coverage compared to circular sampling, particularly in cases where the spatial 

frequency extent is anisotropic. Spectral definition is accurately maintained, although 

there is a drop in the spatial resolution, similar to circular sampling.   

 

2.3.2 Fast MRSI with Parallel Imaging 

Parallel imaging utilizes multiple receiver coil arrays to permit k-space 

undersampling for accelerating data acquisition [61-63]. Reconstruction of raw 

undersampled k-space data into meaningful images in parallel imaging requires accurate 

knowledge of the coil sensitivities, and can be performed in either the image domain, as 

in sensitivity encoding (SENSE), or in k-space, as in simultaneous acquisition of spatial 

harmonics (SMASH) and generalized autocalibrating partially parallel acquisitions 

(GRAPPA) [63]. In parallel imaging, a typical tradeoff between data acceleration rate and 

the robustness of data reconstruction is an inherent loss in SNR dependent on the 

reduction factor R. An additional potential penalty is the geometry, or g-factor, which 

characterizes the ability of the measured coil sensitivity profiles to reconstruct the 

undersampled k-space raw data. Extensive details on the concepts and principles of 

parallel imaging can be found in the cited literature, and all these parallel imaging 

techniques can be used to speed up MRSI as well. 
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The application of SENSE to spectroscopic imaging is similar to anatomical 

imaging.  In 2D SENSE MRSI, each k-space direction can be undersampled by Rx or Ry, 

resulting in a final undersampling factor of Rx x Ry [62]. This results in an effective n/Rx 

x n/Ry matrix from an originally n x n matrix, resulting in a reduced FOV. Because the 

effective FOV in SENSE MRSI is smaller than the true FOV, the reconstructed image is 

aliased (Figure 2.5) [62]. As in anatomical imaging, the unfolding process requires the 

collection of an accurate sensitivity map from each coil to determine the different weights 

in the superposed signal. Each voxel in the final image is a summation of signals from 

each coil multiplied by the sensitivity of that coil [62, 63]. In the spectral dimension, an 

aliased image at each sampling frequency needs to be unfolded. Using the notation 

followed in reference [61], if S denotes the sensitivity matrix, then the unfolding equation 

described by Pruessmann et al is given by: 

                                                        � = �����	�
�	����	                                                   �2.1
 

Where, U is the unfolding matrix, ψ is the receiver noise matrix, and H is the 

transposed complex conjugate. The different weights derived from inaccurate coil 

sensitivity profiles would result in spurious signal artifacts [63].  

In SENSE spectroscopic imaging, the loss in SNR is directly related to the 

reduction factor: the SNR drops by a factor of two when R = 4. The SNR is also affected 

by 1/g, where g is the local geometry factor and is a function of the reduction factor as 

well as coil configuration. Optimal placement of the coils, which in turn is effected by 

trade-offs between single channel noise levels, coil coupling, and geometric and absolute 

sensitivity relations, can help ensure that g is almost close to 1. The SENSE technique is 

not applicable to a single channel coil, and the SNR usually drops for a lower number of 
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coil elements. SENSE encoding can be extended to the third dimension in 3D MRSI to 

obtain further decrease in the scan time. SENSE can also be combined with other high 

speed MRSI techniques like multi-echo MRSI to facilitate very fast imaging times. 

 

 

Figure 2.5 The basic principle behind SENSE MRSI. As an example, the object depicted 

contains two different metabolites as indicated by the color scheme (white and gray 

regions) in (a). A SENSE acquisition of a 16x16 grid shown in (b) results in a 4X 

decrease in the scan time as compared to a conventional 32x32 MRSI grid as only every 

fourth point in k-space is sampled. The resulting aliasing artifacts from Fourier 

reconstruction can be seen in (c). The SENSE reconstruction unfolds the data from voxel 

A, which is a weighted sum of the signal contributions from the four voxels highlighted 

in figure (b) into its components to obtain true signal C at that location. (e) 

Representative in vivo scout (A) and metabolite maps of NAA (B,C), Cr (D, E), and Cho 

(F, G) from conventional (left column, 26 min) and SENSE (right column 6.5 min) MRSI 

for a 32x32 spatial grid. The black voxel depicted in (e) was chosen for SNR 

comparisons between conventional and SENSE spectroscopic imaging. Adapted from 

reference [62]. 
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GRAPPA requires the acquisition of the auto-calibration signal (ACS), which is 

essentially an additional calibration line that is collected along with the reduced data from 

each coil [64]. The data from multiple lines from all coils can be fit to the ACS line from 

a single coil, to generate the reconstruction weights that are used to estimate the missing 

lines. GRAPPA (Figure 2.6) has been tested in 2D and 3D in both 1H and 31P MRSI by 

various groups [65, 66]. 

 

Figure 2.6 Fast MRSI acquisition using GRAPPA. (a) A schematic of the basic 

GRAPPA algorithm. In this example, a single ACS line in coil #4 is fitted using four 

acquired lines. In the GRAPPA technique, a single acquired line along with the missing 

lines present next to that line constitutes a block. A block has been depicted here for an 

acceleration factor of two. (b) An illustration of the application of GRAPPA to 

spectroscopic imaging in a glioma patient. Figure depicting spectra from the tumor region 

of the chosen PRESS volume of interest for (A) a 12x12x8 fully-sampled elliptical 

acquisition, and (B) a 16x16x8 elliptical GRAPPA acquisition. Reproduced from 

references [64] and [67]. 
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2.3.3 Wavelet Encoded MRSI 

The wavelet encoding technique employs prototype wavelet functions (the 

discrete wavelet transform, DWT) to identify defined regions in localized space using 

translations and dilations [68, 69]. The slice selective RF pulse profile is matched to a 

group of dilated and translated wavelets in MRSI. The spin echo sequence in 2D MRSI 

wavelet encoding has single and dual band slice selective excitation and refocusing 

pulses that have profiles similar to the Haar wavelets [68]. The dilations correspond to 

increases in the localization gradients, and translations correspond to the frequency shift 

of the RF pulses, which are represented using the Haar wavelets. The desired resolution 

can be achieved by employing a proportional number of dilations and translations. 

Successive MR signals are acquired from different locations housing regions of variable 

size, without the TR waiting time requirement between successive acquisitions, thus, 

reducing the total scan time [68]. The correct spatial distribution of the MR signal is 

subsequently obtained using an inverse wavelet transform. 

Wavelet encoding permits the imaging of only a selected portion of the FOV in a 

noncontiguous manner. Different subspaces can be excited with no TR waiting time, 

accelerating data collection. As the excitation profiles of the RF pulses are modulated to 

resemble wavelet shapes, there is reduced pixel bleed in the spatial dimensions, which 

can be observed in the corresponding metabolite maps. The SNR in wavelet encoding is 

lower than that in Fourier encoding by almost a factor of two as this technique is limited 

by the length of the wavelet support [68]. In 2D wavelet MRSI, the SNR drops by a 

factor of ( ((N2 + 2)/6)2 ) * (4/N2) for an image of size N x N [68]. More averaging and/or 

less spatially localized wavelets can be employed to achieve a SNR comparable to that 
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found in conventional Fourier encoding. The wavelet encoding technique has also been 

extended to three spatial dimensions in MRSI by Young et al [69].  

 

2.3.4 Compressed Sensing MRSI 

CS is a novel approach that exploits the inherent sparsity of medical images in an 

appropriate transform domain to effectively undersample k-space. This in turn reduces 

the number of samples that are required for reconstruction in MRI and MRSI [70-72]. 

The CS theory successfully predicts that signals can be accurately recovered even when 

sampling well below the established Nyquist rate, if the signals under consideration are 

sparse in some transform domain (not just in the time or frequency domains) [73]. Data 

tend to be sparse in multiple dimensions of space and frequency in the wavelet transform 

domain, thus, making this technique particularly suitable for MRSI. Wavelets have been 

employed to achieve a sparse representation of MRSI data in both the spatial and spectral 

domains, facilitating the application of CS acquisitions in MRSI. 

The CS based reconstruction of undersampled data has to fulfill three main 

requirements, namely, data sparsity, the implementation of pseudo-random 

undersampling, and a non-linear reconstruction algorithm for accurate recovery of the 

signals under consideration. 

 

2.3.4.1 Transform Sparsity 

A ‘sparse’ vector contains all information in a few non-zero coefficients, with all 

other coefficients being zero. ‘Strong’ sparsity is encountered when very few coefficients 

contain all the information in the signal. Most practical applications tend to exhibit 
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‘weak’ sparsity as a transition band exists been the few high-valued coefficients and the 

numerous non-zero coefficients. Most of the signal energy is restricted to these few non-

zero coefficients, while the remaining measurements are essentially zero or close to zero 

[74]. A sparsifying transform operator can be applied to map the image vector under 

consideration to a sparse vector. For e.g. the Fourier transform of a direct current signal is 

a delta function in the frequency domain, which contains all the signal information. Thus, 

a sparse representation of a signal can be obtained by applying the appropriate transform 

operator. Similarly, most MR images tend to be sparse in some transform domain. For 

e.g. angiograms tend to be sparse in the finite differences domain as most of the 

important information is contained in the boundaries [70, 74]. Many sparsifying 

transforms have been developed over the years to facilitate sparse representations of 

different kinds of images [75]. Two particular transforms of interest are the wavelet 

transform and the discrete cosine transform (DCT), which provide a sparse representation 

of several real life images [76]. These transforms have been extensively employed in the 

field of image compression. A multi-scale representation of the image can be obtained 

using the wavelet transform. Fine-scale wavelet coefficients correspond to the high 

resolution image components while coarse-scale wavelet coefficients represent the low 

resolution components [70]. It is important to determine the minimum number of sparse 

coefficients that are required to obtain an accurate reconstruction of the MRSI data [74].  

 

2.3.4.2 Pseudo-random Undersampling of MRSI Data 

The second essential criterion in CS requires the random undersampling of the 

MRSI k-space in order to produce incoherent artifacts that resemble noise [70, 74]. 
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Uniform k-space undersampling violates the Nyquist criterion producing coherent 

artifacts such as aliasing. While the random selection of k-space samples also violates the 

Nyquist limit, the resulting artifacts are sufficiently incoherent that they can be removed 

by denoising techniques. In the case of MRI/MRSI, the k-space is pseudo-randomly 

undersampled i.e. a certain fraction of the samples are placed at the center of k-space, 

while the remaining samples are randomly distributed in the peripheral k-space region. 

This is necessary as all the information and SNR is confined to the low frequency 

components, which are located at the k-space center. A truly random undersampling of 

the k-space also necessitates rapid gradient switching, which is constrained by the 

hardware and artifacts like eddy currents [71]. The number of required samples depends 

on the level of data sparsity and is usually five to eight times the number of sparse 

coefficients in the transformed data [71, 73]. Thus, identifying the number of sparse 

coefficients is critical to determining the acceleration limit of the CS reconstruction 

algorithm. Finding the ‘optimal’ sampling mask in MRSI continues to be an area of 

research and various approaches to identify the ‘best’ mask at a particular acceleration 

factor will be discussed in detail in Chapter 5 of this thesis. 

 

2.3.4.3 Non-linear Iterative Reconstruction 

The reconstruction of the acquired CS-MRSI data can be formulated as a 

constrained optimization problem, as illustrated in equation 2.2 below [70, 74]: 

                                                                 ��������   ‖��‖	                                                    �2.2
 

                                                    ���ℎ �ℎ��    ‖��� − �‖� <                                                  



35 

 

Where, m is the desired MRSI data to be reconstructed, y is the acquired k-space 

data from the scanner, Fu is the undersampled Fourier operator, ψ is the transform 

operator that provides a sparse representation of the data, and the parameter ε controls the 

tolerance error of the reconstruction. || ||1 and || ||2 are essentially operators representing 

the l1 norm and l2 norm, respectively. Minimizing ‖��‖	 enforces sparsity, while the 

data consistency constraint is enforced via ‖��� − �‖� <   . A total variation (TV) 

penalty is often included in the objective function in addition to a specific sparsifying 

transform operator. In such cases, the objective function ensures that the MRSI data has a 

sparse representation from both the specific transform as well as from finite differences. 

Equation 2.2 can then be reformulated to include the TV operator as follows [70]: 

                                                   ��������   ‖��‖	 +  "#$��
                                           �2.3
 

                                           ���ℎ �ℎ��    ‖��� − �‖� <                                                 
Wherein the operator α trades the sparsity from the finite differences and the ψ 

operator. Employing the Lagrange method, Equation 2.3 can recast as an unconstrained 

optimization problem that involves minimizing the following equation [70, 74]: 

                                       �&'���  ‖��� − �‖�� + (	‖��‖	 + (�#$��
                           �2.4
 

Where, (	 and (� are regularization parameters that need to balance the data 

consistency and sparsity terms. An iterative non-linear reconstruction algorithm such as 

the steepest descent method or the non-linear conjugate gradient technique can be 

employed to solve for the desired MRSI data m in Equation.  For e.g. in the conjugate 

gradient algorithm, Equation is differentiated to determine the direction of the gradient 

each time. A line-search parameter is incorporated to evaluate the step-length to be 

advanced in the gradient direction. Convergence in the iterations is obtained when a) 
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there is negligible difference in the tolerance parameter values between successive 

iterations, and b) the tolerance parameter value is lower than the selected ε value. The 

total number of iterations required to obtain convergence in the cost function is 

dependent on problem at hand and the type of data being evaluated. 

 

Figure 2.7 (a) An illustration of pseudo-random undersampling in CS. (b) various 

domains and operators in CS. 

 

The first application of CS to MR imaging was by Lustig et al [70]. The 

application of CS to 1H MRSI was investigated by Geethanath et al for various 

acceleration factors, retrospectively [71]. Sampling masks were generated for various 

acceleration factors, namely, two, three, four, five, and ten using variable density random 

undersampling. A two dimensional probability density function was used to select the 

random samples, ensuring a denser sampling at the center of k-space and sparser 

sampling of points towards the periphery [71]. The reconstructions at various acceleration 
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factors preserved the fidelity of the metabolite spectrum when compared with the fully 

sampled conventional MRSI datasets. The algorithm broke down at an acceleration factor 

of ten, wherein the metabolite peaks began to show increased signal intensities when 

compared to the conventional MRSI datasets. The reconstruction, thus, faithfully 

preserved the prognostic and diagnostic value of the metabolite maps up to an 

acceleration factor of five; this retrospective study was an important first step that 

demonstrated the feasibility of the approach (Figure 2.7) [71].  

CS has been employed to accelerate multidimensional spectroscopic imaging in 

recent clinical studies [77-79]. A 4D echo planar imaging sequence based on J-resolved 

spectroscopy was implemented using CS to achieve a high acceleration in vivo, 

demonstrating the utility of multidimensional MRSI [77-79]. The CS technique has also 

been applied to 13C 3D MRSI, in the design and testing of a CS based new EPSI sequence 

[80, 81]. Hyperpolarized 13C data are well suited for CS applications due to the 

fundamentally sparse spectrum and high SNR resulting from hyperpolarization [80, 81]. 

The T1 decay of the hyperpolarized signal restricts the amount of time available for signal 

acquisition in the time-window when SNR is high, thus, necessitating the use of 

accelerated imaging techniques for optimal spatial coverage and speed. The sequence 

proposed by Hu et al achieves an acceleration factor of up to 7.53, and minimal artifacts 

in the reconstruction for 3D MRSI [81]. A time-resolved 3D MRSI technique has been 

developed by Larson et al [82] for monitoring the dynamics of pyruvate conversion to 

alanine and lactate in a mouse model. This method effectively utilizes the magnetization 

through the use of multiband excitation pulses in combination with CS for increased 

acceleration [82].  



38 

 

 

Figure 2.8 The retrospective application of CS-MRSI demonstrated in a brain tumor 

patient. Representative metabolite maps of NAA, creatine (Cr), choline (Cho), and 

choline to NAA index (CNI) for various acceleration factors. Reproduced from reference 

[71]. 

 

The CS technique has also been applied to 31P MRSI of the human brain by Askin 

et al [83]. The long scan times associated with 31P MRSI restrict its widespread use in the 

clinic. Furthermore, 31P MRSI requires larger voxels and increased signal averaging to 

obtain adequate SNR as the signal from 31P is approximately 15 times less MR sensitive 

than that from protons. In this study, a higher SNR was observed in the CS reconstructed 

data, while the peak height ratios of the original and CS datasets were comparable [83]. 
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Recent promising preclinical applications of CS MRSI in vivo include 19F 3D 

spectroscopy in mice [84] wherein the non-existent background signal in 19F MRSI 

makes it particularly suited to satisfy the sparsity constraint that is integral to CS. 

Exogenously administered 19F MRSI has several markers with unique spectral signals 

that can be well detected in the presence of a negligible background signal. Kampf et al 

demonstrated the retrospective application of CS based 19F MRSI both in vitro and in 

vivo, with the CS reconstructions preserving the fidelity of the data up to an acceleration 

factor of 8 [84]. The first application of high resolution 23Na spectroscopic imaging in 

mouse hearts was recently demonstrated by Maguire et al [85]. The 23Na MRSI data from 

in vivo mouse hearts were prospectively undersampled by 3X and reconstructed using the 

CS algorithm previously described in [71], to yield undersampled reconstructions that 

preserved the fidelity of the data. 

 

2.3.5 Hybrid Fast MRSI & Other Contributions 

The two major categories of MRSI acceleration techniques are not exclusive and 

various novel combinations can be implemented to gain more speed, as has been the case 

in MRI. Various methods have been broadly classified into the discussed two main 

categories according to the dominant effect and there are no efforts to suggest exclusivity 

of these two categories when describing any technique. Various studies have focused on 

combining acceleration techniques to further reduce scan times and overcome some of 

the limitations of individual high-speed techniques in MRSI [86-91]. All these hybrid 

techniques try to achieve the best trade-off between gain in speed and optimal SNR, 

resolution, and resulting artifacts. 
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2.4   Implications of Accelerated MRSI & Future Directions 

The future holds promise for the development of various hybrid techniques, 

particularly those involving CS, parallel imaging, and novel k-space trajectories, to 

achieve further reduction in scan times and better image quality in terms of the SNR, 

spatial and temporal resolution, and artifact reduction. CS based pulse sequence design 

has several potentially beneficial implications in the clinical scenario. Larger matrices 

offer more sparsity to exploit and the increased room for undersampling could lead to 

even higher acceleration factors. This technique could also be used to cover larger FOVs 

in the clinical setting. Gradient amplitude constraints would not impose a limitation on 

the design as the FOVs in clinical applications tend to be at least an order of magnitude 

higher than those typically used in preclinical studies. CS reconstructions can be used to 

further accelerate scan times when datasets of higher order dimensions are collected. The 

inherent sparsity along an increased number of dimensions can be fully exploited by only 

collecting specific phase encode values along each additional spatial dimension. 

Furthermore, a key point to be noted is that the benefits of under-sampling along the 

temporal dimension are not as significant as those along the phase encode dimensions 

due to the nature of MR signal acquisition. One exception is the EPSI approach, which 

(even under fully sampled conditions) does not sample the time dimension continuously 

and hence lends itself to temporal under-sampling quite well [50]. However, more 

sophisticated reconstruction routines could be developed even for conventional readouts 

to exploit sparsity along the spectral dimension, with a goal of improving SNR or further 

reducing the scan time. 
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All discussed high-speed MRSI techniques have been extensively employed in 

studies of the brain and to a large extent in the prostate. However, there is limited 

research in other organs like the breast, abdomen, etc. The application of MRSI to many 

other organ systems is often limited by low SNR, contamination from peripheral lipid 

signals (in turn restricting short TE acquisitions), higher field inhomogeneity, and motion 

artifacts. With increasing acceleration, a drop in SNR is observed when employing fast 

techniques, except in CS where denoising leads to improved SNR at higher acceleration 

factors. Other aspects to be considered include eddy current artifacts, the achievable 

spatial resolution, and the need for fast gradient systems that are often not implementable 

due to hardware limitations. Non-proton MRSI is also limited by very low MR signal 

sensitivity, making its clinical translation difficult. 

Several processing steps are usually required for the complete analysis of MRSI 

data, and the processing methods vary for different data types as well [23]. This 

technique is less appealing to the radiologist due to a lack of standardization in MRSI 

acquisition protocols, and the non-availability of common processing and analysis tools 

for a quick and simple representation of metabolite concentration maps. Automation and 

quality control are of critical importance in accelerated MRSI techniques that frequently 

experience poor spectral quality due to SNR losses, lipid contamination, hardware 

limitations, and miscellaneous other artifacts. Ultra-fast CSI acquisition techniques also 

necessitate the use of more sophisticated reconstruction algorithms and complex spatial-

spectral analysis to minimize the reconstruction errors from the sparse acquisitions. 

Implementation of advanced algorithms and routines on the scanner for ‘on the fly’ 

reconstruction and complex spectral analysis is not a trivial task. One must also take into 



42 

 

account the additional time required for reconstruction, post processing, and display of 

metabolite maps. Furthermore, it is important to note that high-speed MRSI techniques 

are only acceptable in applications wherein conventional phase-encoded MRSI is itself 

not SNR limited at the desired spatial resolution. The SNR penalty in conventional MRSI 

is often large to begin with, particularly when imaging difficult regions, which tends to 

get further aggravated when employing accelerated CSI techniques. 

Another concern in spectroscopic imaging is the effect of the acceleration 

technique on the PSF and cross-contamination of information between neighboring 

voxels. For e.g. in turbo MRSI, the reduced echo duration caused a broadening of the 

spectral PSF, with phase distortions leading to further PSF degradation [36]. Variable 

density-weighted trajectories tend to suppress the side lobes of the PSF as compared to 

uniformly-weighted/non-weighted acquisition schemes. Spiral sampling trajectories also 

tend to have reduced ringing and a narrower central PSF lobe as compared to the 

elliptical sampling scheme; variable-density spirals can be employed to further reduce the 

side lobes and ringing [92]. In SENSE spectroscopic imaging, the spatial response 

function (SRF) tends to slightly vary between voxels and is affected by the sensitivity 

relations [62]. In wavelet-encoded MRSI, the PSF is a function of the wavelet shape, and 

in turn of the RF pulse profile [69]. In fast techniques like CS, a coherent broadening of 

the PSF is avoided due to the incoherent nature of undersampling, resulting in noise-like 

artifacts [70, 71]. On the other hand, high-speed techniques can help in reducing blurring 

and streaking artifacts, especially while imaging organ systems that are susceptible to 

motion. Fast MRSI will also aid in higher volume coverage, incorporation of specialized 

techniques like spectral editing for mapping metabolites like lactate and gamma-amino-
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butyric acid (GABA) that typically require more averaging to obtain optimal SNR. Other 

techniques like J-resolved spectroscopy and correlation spectroscopy (COSY) could also 

be incorporated into current clinical protocols to obtain high resolution spectroscopy data 

[77, 79, 93].  

Thus, the acceleration offered by high-speed techniques can either be employed to 

decrease the scan time, leading to reduced motion sensitivity and patient discomfort, or 

the time-saving can traded for higher SNR/resolution and/or for imaging a larger volume 

of interest. The reconstruction and quantification of sparsely-sampled spectroscopic data 

on the scanner immediately following data acquisition will also help establishing the need 

for inclusion of fast MRSI techniques into current imaging protocols. 

  

(Note: Chapter 2 is based on the paper – “Fast Data Acquisition Techniques in Magnetic 

Resonance Spectroscopic Imaging”, R. Vidya Shankar, J. C. Chang, H. H. Hu, and V. D. 

Kodibagkar, Submitted to NMR in Biomedicine, under review.) 
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CHAPTER 3 

PRE-CLINICAL APPLICATIONS OF CS-MRSI 

 

MRSI has several applications in the preclinical setting for a non-invasive 

mapping of biochemistry in vivo. The objective of this study was to accelerate spectrally-

edited MRSI on a preclinical MRI scanner to achieve rapid spectroscopic imaging of 

lactate levels in solid tumors and evaluate subsequent changes in response to therapy. 

 

3.1   Lactate-selective CS MRSI 

3.1.1 Why Image Lactate? 

Lactate plays a critical role in the development and metastasis of cancer, and its 

accumulation is readily seen in solid tumors [30, 94]. Under normoxic conditions, 

glucose metabolism is a highly energy efficient process, producing 38 adenosine 

triphosphate (ATP) molecules on the complete oxidation of one glucose molecule, along 

with water and CO2 [95]. In differentiating cells, glucose is converted to lactate (via 

pyruvate, Figures 3.1 and 3.2) when oxygen is limited to produce 2 ATP 

molecules/glucose molecule. However, even in the presence of ample oxygen, cancer 

cells tend to preferentially metabolize glucose by aerobic glycolysis, which is a less 

efficient pathway for ATP production, generating only 4 ATP molecules/glucose 

molecule as compared to oxidative phosphorylation [30, 94-96]. This phenomenon is 

known as the Warburg effect [96], wherein glucose is preferentially catabolized to lactate 

in the presence of adequate oxygen. Thus, the build-up of lactate in solid tumors is 

suggestive of altered metabolism and possibly indicates the presence of hypoxia. 
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Lactic acid has also been found to stimulate angiogenesis, promote inflammation, 

and contribute to the immune escape [30, 94]. The elevated lactate levels seen in biopsy 

samples have been suggestive of an increased risk of tumor metastasis, recurrence, and 

radio resistance leading to poor therapeutic outcomes in cancers of the head and neck, 

breast, and cervix, while cancer response to chemotherapy has indicated a decrease in the 

steady-state tumor lactate levels [97-102]. A dedicated technique like magnetic resonance 

spectroscopic imaging (MRSI) can be employed for mapping the spatial distribution of 

lactate in solid tumors in vivo. This could potentially lead to improved cancer targeting 

and therapy, and the possibility of employing non-invasive lactate imaging as a 

prognostic marker in the clinic to monitor the dynamic changes in lactate concentration 

both pre- and post-therapy [103-105]. 

 

 

Figure 3.1 An illustration of cellular energy processes, namely, oxidative 

phosphorylation, anaerobic glycolysis, and aerobic glycolysis (also called the Warburg 

effect). Reproduced from [96]. 
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Figure 3.2 The role played by lactate in various cancer pathways and processes. 

Reproduced from [94]. 

 

3.1.2 Lactate Detection in Proton MRSI 

As previously discussed in Chapter 1 section 1.3.4, lactate is essentially a J-

coupled metabolite, with the methine (-CH) and methyl groups (-CH3) forming an A3X 

spin system [29]. Even at low magnetic fields, the scalar-coupled spin system of lactate is 

considered to be weakly coupled [24]. The -CH3 moiety is responsible for the doublet 

located at 1.31 ppm in the NMR spectrum, while the –CH moiety is responsible for the 

quartet at 4.1 ppm (Figure 3.3). The doublet is more commonly acquired but accurate 

detection and quantification are often complicated by the presence of macromolecules 

and huge overlapping resonances from lipid in the 0.8 – 1.3 ppm range. It is often 

difficult to detect the quartet at 4.1 ppm in vivo due to its proximity to water. To 
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overcome the above limitations, several spectral editing techniques have been developed 

for accurate acquisition of the lactate resonance [106-108]. Longer echo times (TE) are 

usually employed when acquiring the lactate peak to minimize contamination from the 

lipid resonances.   

 

Figure 3.3 An illustration of the lactate molecule and its corresponding NMR spectrum. 

The CH3 group produces the doublet at 1.31 ppm, while the CH moiety is responsible for 

the quartet located at 4.1 ppm. 

  

3.1.3 The Sel-MQC Sequence 

Spectral editing techniques seek to separate the overlapping resonances and 

quantify the harder to detect metabolites like lactate, citrate, GABA (γ-Aminobutyric 

acid), and 2-hydroxyglutarate (2HG) to name a few. Such low concentration metabolites 

can be selectively recorded with specific acquisition schemes that retain only the 

metabolite peaks of interest, while eliminating any interfering resonances particularly 

those from water and fat [109]. Pulse sequence optimization and a strict assessment of the 

specificity achieved by the editing technique will ensure a more reliable detection of 

these smaller metabolites [109]. 

The selective multiple-quantum coherence transfer (Sel-MQC) sequence 

developed by He et al [106] is one such spectral editing sequence that achieves selective 
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excitation of the lactate doublet, while effectively suppressing the peaks from lipid and 

water. A 2D MRSI implementation of the Sel-MQC sequence is depicted in Figure 3.4 

(adapted from [106]), and involves the three distinct stages elucidated below for lactate 

excitation, selection, and detection. 

(a) Preparation 

The first part of the pulse sequence involves converting the lactate resonance into 

the multiple quantum coherence (MQC) state. A frequency-selective 90o RF pulse 

is applied to excite fat and the CH3 moiety corresponding to the lactate doublet. 

Scalar coupling (J), chemical shifts (ω0), and B0 field inhomogeneity effects 

contribute to the evolution of these single quantum coherences (SQCs). Following 

time τ = 1/2J, where J = 6.93 Hz for lactate, a second 900 pulse is applied at the -

CH peak frequency to convert the lactate magnetization into the MQC (zero and 

double quantum coherences, ZQ and DQ) mode, while all other resonances 

remain in the SQC mode.  

(b) Gradient Selection & Labeling 

A set of coherence selection gradients, namely g1, g2, and g3, are applied in a 

specific ratio to select either the ZQ � DQ (0:-1:2) or DQ � ZQ (1:0:2) pathway 

of lactate. These coherence selection gradients act as a multiple quantum filter 

allowing only the MQCs from lactate to pass through, while at the same time 

dephasing all resonances in the SQ mode. The CH3-selective 180o pulse applied in 

the middle of the gradient labeling period helps to refocus the B0 inhomogeneity 

and chemical shift, and eliminate J-modulation effects.   

(c) Detecting the lactate doublet 
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The final stage of the pulse sequence involves acquiring the lactate doublet. A 

CH-selective 90o ‘read’ pulse applied at the beginning of the detection period 

converts the MQCs of lactate back into the SQ mode. This is necessary as the 

final signal can only be detected and acquired when in the SQ mode. The gradient 

g3 applied during the time interval τ’ = τ – t1 (for the chosen ZQ → DQ pathway, 

figure not to scale) refocuses the pathway selected during the prior gradient 

labeling period.        

 

Figure 3.4 A 2D MRSI pulse sequence with lactate-specific editing based on the Sel-

MQC technique. Adapted from [106]. 

 

Selection of either the ZQ � DQ or DQ � ZQ pathway allows a 50% recovery 

of the lactate signal intensity. Both pathways need to be refocused simultaneously to 

obtain complete recovery of the lactate signal. All other resonances experience a set of 

unbalanced gradients and are completely dephased.  
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3.1.4 Key Aspects to Fast Lactate Imaging 

The aim of this study was to achieve rapid imaging of the lactate resonance by 

implementing a 2D MRSI version of the Sel-MQC sequence, with pseudo-random 

undersampling of the phase encodes Gx and Gy (shown in Figure 3.4) to facilitate CS 

acquisition and reconstruction. A schematic of the proposed fast lactate imaging method 

is depicted in Figure 3.5.  

 

Figure 3.5 An illustration of the two key aspects in fast lactate imaging, namely lactate-

selective spectral editing (SelMQC [106], SS-SelMQC [107]) and CS acquisition and 

reconstruction [70, 110].   

 

The objective of this study was to incorporate spectral editing components for the 

selective excitation of the lactate resonance along with prospective undersampling of the 

k-space to facilitate rapid CS accelerated MRSI of lactate in vivo. The nuisance signals 

are filtered out by spectral editing leading to a reliable detection of the lactate peak. 

Combined with CS acquisitions, the developed sequence, referred to henceforth as the 

lactate-CS-MRSI sequence, with enable the high-speed detection of lactate with finer 
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precision. The implementation of the proton lac-CS-MRSI sequence and its applications 

both in vitro and in vivo will be elucidated in the following sections. 

 

3.1.5 Materials & Methods 

MRSI Pulse Sequence for Rapid Lactate Mapping 

The lactate-CS-MRSI pulse sequence, depicted in Figure 3.4, was developed in 

the Bruker ParaVision 5.1 environment. Two key modifications were made to a 

conventional MRSI pulse sequence: (1) Spectral editing components based on the 

SelMQC technique [106] were added to enable selection of the ZQ � DQ pathway of 

lactate. (2) Pseudo-random undersampling patterns that were generated ‘on the fly’ on the 

scanner (based on the acceleration factor input by the user) were employed to 

undersample the phase encodes Gx and Gy depicted in Figure 3.4 to facilitate prospective 

CS acquisitions. 

 

MRSI Data Acquisition 

All experiments were conducted on a Bruker BioSpec® 7 Tesla (7T) preclinical 

magnetic resonance imaging (MRI) scanner. The developed lactate-CS-MRSI sequence 

was initially tested and optimized on phantoms containing deionized water/oil/lactate (5 

mM). MR acquisition parameters were as follows: 16 x 16 x 4096 matrix, 40 x 40 mm2 

FOV, TE/TR = 144/1500 ms, 2 mm slice thickness, number of averages = 1, spectral 

width = 4006.41 Hz, dwell time = 249.6 µs. In vivo studies involved cohorts of nude mice 

subcutaneously implanted with H1975 (non-small cell lung cancer, nsclc) tumors in the 

right thigh. All animal studies were approved by the Institutional Animal Care and Use 
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Committee. A cohort of n = 6 nu/nu tumor mice was employed for testing and optimizing 

the lactate-CS-MRSI sequence in vivo. Tumors were allowed to grow to 1 cm3 prior to 

conducting MRSI experiments. Animals were passively restrained throughout the 

experiment and were anesthetized via isoflurane gas inhalation (1.5 %). In vivo 

experiments were conducted using a surface receive coil combined with a 72 cm volume 

transmit coil. The subcutaneous thigh tumor was carefully placed under the surface coil 

and the animals were positioned on a warm heating pad connected to a circulating water 

bath set to operate at 37 oC, to keep them warm during the experiment. The fully sampled 

reference MRSI acquisition (1X), along with datasets corresponding to various 

acceleration factors, namely 2X-5X and 10X, were acquired for each experiment. MR 

scan parameters: 16 x 16 x 2048 matrix, 27.2 x 27.2 x 3 mm3 FOV, TE/TR = 144/1500 

ms, number of averages = 8, spectral width = 4006.41 Hz, dwell time = 249.6 µs. 

 

CS-MRSI Reconstruction 

A custom non-linear iterative reconstruction based on the conjugate gradient 

algorithm was implemented in Matlab (The Mathworks Inc., MA) to reconstruct all the 

lactate-CS-MRSI datasets. The CS-MRSI reconstruction was formulated as a convex 

optimization problem, which involved minimizing the following cost function [71]: 

                                  Є��
 = ‖��� − �‖� + (+	‖,�‖	 + (-.#$��
                            �3.1
 

where, y is the measured k-space data, m is the desired MRSI data, Fu, W, and TV 

are the Fourier transform, wavelet transform, and total variation operators, respectively, 

||.||1 and ||.||2 are the /	 and /� norm operators, respectively, and, λLI and λTV are the 

corresponding regularization parameters for the L1 norm and TV operator, respectively. 
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The kx - t matrix was encoded along each of the two dimensions using the Daubechies 

wavelet transform at all points in ky. The regularization terms λTV and λLI were 

experimentally determined to be 0.005 and 0.001, respectively. Eight iterations were 

found to be optimal to obtain convergence of the cost function.  

 

Post processing, Error Metric and Statistical Analysis 

All reconstructed lactate CS-MRSI datasets were quantitatively compared with 

the 1X fully sampled reference dataset by evaluating metrics like the SNR, lactate peak 

amplitude, and the total acquisition time. In each case, the error in reconstruction, as 

defined by the root mean square error (RMSE) metric was calculated as: 

                                                     01�2 =  314 5��6 − �67
�                          8
69	

                      �3.2
 

Where, N is the total number of points in the MRSI dataset, y is the reconstructed 

data from the fully-sampled (1X) k-space, and y’ is the data reconstructed from 

undersampled k-space. The RMSE defined here can be considered to be equivalent to the 

normalized RMSE as the data range was normalized from 0 to 1. The jMRUI [111] 

software package was employed to apply the following minimal post-processing 

operations to all the reconstructed MRSI datasets: (a) apodization to eliminate any 

truncation artifacts, (b) automatic/manual zero and first order phase correction, and (c) 

Generation of lactate maps using AMARES [111]. 

A voxel-wise 2-tailed paired t-test was applied to the lactate maps generated from 

each reconstructed dataset with the fully sampled reference dataset using the GraphPad 
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Prism (San Diego, CA, USA) scientific software. A p-value < 0.05 was considered 

statistically significant and indicative of an incorrect reconstruction. 

 

3.1.6 Results 

Figure 3.6 shows results from the phantom experiments. The lactate-CS-MRSI 

sequence was able to eliminate the water and fat resonances, while enabling selection of 

lactate from the innermost tube of the phantom. Undersampled MRSI datasets 

corresponding to acceleration factors 1X – 10X were prospectively acquired and 

reconstructed using the procedures outlined previously.  

 

Figure 3.6 The water/oil/lactate (5 mM) phantom. An illustration of reconstructed MRSI 

datasets corresponding to different undersampling factors (from left to right): 1, 0.5, 0.33, 

0.25, 0.2, 0.17, 0.14, 0.12, 0.11, and 0.1, respectively.  
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Total acquisition time – 6 min 30 s (1X), 3 min 18 s  (2X), 2 min 7 s (3X), 1 min 

36 s (4X), 1 min 17 s (5X), 1 min 6 s (6X), 54 s (7X), 47 s (8X), 42 s (9X), and 38 s 

(10X). As can be seen from the figure, the CS-MRSI reconstructions of the lactate peak 

maintain good fidelity even up to 10X, with no statistical significance seen between the 

fully sampled 1X reference and undersampled reconstructions (i.e. p > 0.05).  

The developed sequence was subsequently tested in vivo in a cohort of nu/nu mice 

(n = 6) subcutaneously implanted with H1975 (non-small cell lung cancer, nsclc) tumors 

in the right thigh. The results from the in vivo experiments are depicted in Figures 3.7 - 

3.9. In Figure 3.7, all reconstructions 1X – 5X show the same distribution of lactate and 

no statistically significant differences were observed expect between 1X and 4X (p < 

0.05). Figure 3.9 shows additional results from the in vivo cohort (same acquisition 

parameters), with 2X – 5X lactate reconstructions maintaining high accuracy with the 1X 

reference.     

The RMSEs from the phantom experiment are shown in Figure 3.8 (a). The 

RMSE remains below 5% for accelerations up to 6X, with increasing deviations seen 

with increasing acceleration. However, even between 7X – 10X, the RMSE was found to 

be under 8%, with high accuracy in the reconstruction of the lactate peak. Figure 3.8 (b) 

depicts the mean nRMSE ± standard deviation for the in vivo cohort of H1975 mice. As 

seen in the figure, reconstruction errors are between 2% - 6% for reconstructions 2X – 

5X. The low standard deviation values, particularly at 3X and 4X indicate consistent 

reconstruction errors in the entire cohort of n = 6 animals. 
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Figure 3.7 Reconstructed MRSI datasets showing the distribution of lactate in a H1975 

tumor implanted subcutaneously on a mouse thigh. Total acquisition time – 51 min 12 s 

(1X), 25 min 36s (2X), and 10 min 24 s (5X). The p-value for the 1X vs 2X case is 0.26, 

while that for the 1X vs 5X case is 0.49, indicating no statistically significant differences 

(p>0.05) between the undersampled and fully-sampled reference reconstructions. 

 

 
Figure 3.8 RMSEs from the in vitro and in vivo experiments. (a) The normalized RMSEs 

from the phantom experiment for acceleration factors 2X – 10X. (b) The mean nRMSEs 

± standard deviation for the H1975 cohort.  
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Figure 3.9 Lactate-CS-MRSI datasets from the in vivo cohort. High fidelity can be seen 

between the 1X and 2X – 5X reconstructions of the lactate peak (p > 0.05). 
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3.2   Assessment of Lactate Changes using Combretastatin A4 Phosphate 

3.2.1 CA4P 

The lactate-CS-MRSI sequence was also used to assess the dynamic changes in 

cancer metabolism in response to therapy using the prodrug combretastatin A4 phosphate 

(CA4P) [112-114]. CA4P is essentially a tubulin-binding agent that rapidly disrupts and 

shuts down the tumor vasculature upon administration. The vascular endothelium of the 

tumor is an important target in cancer therapeutics as the continued growth and survival 

of solid tumors is heavily dependent on the vasculature, which sustains malignant growth 

by supplying oxygen and nourishment [114]. Thus, disrupting the vascular functionality 

of cancer cells is a key approach to a quick and catastrophic destruction of the tumor, by 

inducing nutrient deprivation and hypoxia [113, 114]. CA4P belongs to the class of 

compounds isolated from the South African tree Combretum caffrum [113], and is 

responsible for causing fast and prolonged interruption of blood flow leading to extensive 

necrosis in the tumor cells within 24 hours of administration (Figure 3.10).   

Various qualitative and quantitative techniques have been employed to capture the 

rapid changes in solid tumors induced by CA4P treatment [115-123]. Modalities like 

positron emission tomography (PET) measure changes in tumor perfusion and blood 

volume using 15O-labeled water (H2
15O) and carbon monoxide (C15O) [117]. The 

increased glucose uptake by solid tumors as compared to normal tissues can be exploited 

for tumor diagnostics, anti-cancer therapy, and in the detection of metastasis using FDG-

PET. Other imaging modalities include in vivo near infrared spectroscopy (NIR) 

combined with diffusion weighted (DW) MRI to monitor changes in vascular perfusion, 

tumor oxygenation (pO2) and necrosis in response to CA4P treatment [121], NIR 
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combined with laser Doppler flowmetry to assess variations in blood flow and perfusion 

[116], fluorescence and bioluminescence imaging (BLI) to measure light emission 

kinetics [123], and dynamic contrast enhanced (DCE) computed tomography (CT) for a 

quantitative evaluation of the spatial heterogeneity in tumor vascularity as a marker of 

angiogenesis over the entire tumor volume [119]. Various MRI techniques have also been 

implemented to capture tumor dynamics upon CA4P administration, such as DCE MRI to 

study vascular permeability and perfusion [118], dynamic bioluminescence imaging 

(BLI) combined with MRI to examine changes in tumor growth and pO2 [120], and MRS 

[124, 125] to map key metabolite concentrations (for e.g. lactate, choline, and citrate). 

 

Figure 3.10 The mechanism of action of a vascular disrupting agent such as CA4P 

depicted in (a) and the CA4P molecule in (b). Results from DCE MRI both pre- and 24 

hours post CA4P injection illustrated in (c), indicating a significant decrease in tumor 

perfusion. Reproduced from [126] and [118].    
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3.2.2 Methods 

MRSI Experiments 

Additional in vivo experiments were conducted to assess the effects of CA4P in 

altering the lactate metabolism of H1975 tumors. The lactate-CS-MRSI sequence was 

used to assess pre- and post CA4P treatment lactate levels for various acceleration 

factors. A cohort of n = 5 nu/nu tumor mice was treated with the CA4P prodrug (83 

mg/kg body weight) and spectroscopic data was acquired using the lactate-CS-MRSI 

sequence both pre- and post-therapy. The general imaging sequence that was adopted 

while imaging each mouse is as follows: Baseline lactate-CS-MRSI scan (1X and 2X, 

5X) – Inject CA4P – lactate-CS-MRSI scan (5X) – wait 24 hours – lactate-CS-MRSI 

scan (1X and 2X, 5X). A second cohort of n = 5 nu/nu tumor mice was injected with 

dextrose and served as the control cohort. The same general imaging sequence described 

above was also adopted for the control cohort, and the lactate-CS-MRSI sequence was 

employed to acquire dynamic MRSI data both pre- and post-injection of dextrose.  

 

3.2.3 Results 

The results from the CA4P experiments are depicted in Figures 3.11 – 3.13. In 

each of the illustrated figures, the top panel shows the baseline lactate maps (1X, 2X, and 

5X) from day zero i.e. prior to the injection of CA4P, while the bottom panel shows the 

corresponding lactate maps (1X, 2X, and 5X) from the same tumor cross-section 24 

hours post the injection of the prodrug. All MRSI datasets were acquired with the 

following scan parameters: 16 x 16 x 2048 matrix, TE/TR = 144/1500 ms, 3 mm slice, 

Navg = 4, FOV 3 x 3 cm2, 1X scan time = 25 min 36 s. In four of the five animals of the 
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CA4P cohort, a decrease in total lactate levels was quantitatively measured 24 hours after 

the injection of CA4P, as can be observed from the lactate maps and the total integrated 

intensity of the lactate peak collated in Table 3.1. An increase in lactate was measured in 

one animal from the cohort 24 hours post administration as seen in Figure 3.13 (mouse 5 

in Table 3.1).  

A second cohort of nu/nu mice (n = 5) subcutaneously implanted with H1975 

tumors in the right thigh served as the control cohort and were injected with dextrose. 

Figure 3.14 shows the results from the control cohort acquired with the same scan 

parameters listed earlier. The top panel shows the baseline lactate maps (1X, 2X, and 5X) 

from day zero i.e. pre dextrose injection, while the bottom panel shows the corresponding 

lactate distribution (1X, 2X, and 5X) measured from the same tumor cross-section 24 

hours after the administration of dextrose. As expected, no significant changes were seen 

the total lactate distribution 24 hours post dextrose injection in the control cohort. The 

lactate maps from both the CA4P and control cohorts also indicate that the prospectively 

acquired accelerated reconstructions 2X and 5X maintain high fidelity with the 1X fully 

sampled reference MRSI dataset in each animal, as can be observed in Figures 3.11 – 

3.14. Table 3.1 summarizes the lactate integrated intensities and pre/post ratios for 

accelerations 1X and 5X from both the CA4P and control cohorts. 

The mean nRMSEs ± standard deviations from the CA4P and control cohort both 

pre and post injection in each case are depicted for accelerations 2X and 5X in Figure 

3.15 (a) and (b), respectively. In both cohorts, the reconstruction error remains below 3% 

for the 2X, while the error does not exceed 5% in case of the 5X reconstructions.  
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Figure 3.11 Lactate distribution as mapped by MRSI in a H1975 tumor (CA4P M1, 

Table 3.1) in response to CA4P treatment. Top panel: lactate maps before CA4P 

injection, lower panel: lactate distribution in the same tumor cross-section 24 hours post 

CA4P injection. 1X pre/post = 295/206 a.u. and 5X pre/post = 311/201 a.u., mean 

integrated intensity (scale bar 0 – 4 a.u.). 

 

 

Figure 3.12 Lactate distribution in a second H1975 tumor (CA4P M3, Table 3.1) pre and 

post injection of CA4P. 1X pre/post = 473/446 a.u. and 5X pre/post = 466/427 a.u., mean 

integrated intensity. 
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Figure 3.13 Lactate distribution in a third H1975 tumor (CA4P M5, Table 3.1) pre and 

post injection of CA4P. 1X pre/post = 428/476 a.u. and 5X pre/post = 413/465 a.u., mean 

integrated intensity. 

 

 

Figure 3.14 Lactate distribution as mapped by MRSI in a H1975 tumor in response to 

injection of dextrose. Top panel: lactate maps before dextrose injection. Lower panel: 

lactate maps 24 hours post dextrose injection. 1X pre/post = 278/263 a.u. and 5X pre/post 

=269265 a.u. mean integrated intensity. 
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Table 3.1 Lactate integrated intensities (arbitrary units) and ratios for the CA4P and 

control cohorts (Ratio = Pre/Post). 

 

Cohort 1X 5X 

Pre Post Ratio Pre Post Ratio 

 

 

CA4P 

M1 295 206 0.7 311 201 0.65 

M2 507 461 0.9 529 448 0.85 

M3 473 446 0.94 466 427 0.92 

M4 513 450 0.88 504 462 0.92 

M5 428 476 1.11 413 465 1.13 

 

 

Control 

M1 475 481 1.01 454 469 1.03 

M2 278 263 0.95 293 261 0.89 

M3 239 218 0.91 225 221 0.98 

M4 379 386 1.02 390 394 1.01 

M5 327 339 1.04 311 322 1.04 

 

 
Figure 3.15 The normalized RMSEs corresponding to accelerations 2X and 5X, both pre 

and post injection of the probe, for the (a) CA4P and (b) control cohorts. 
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The low standard deviation values also indicate very less variation in the nRMSE 

across a particular cohort as seen in Figure 3.15 and the trend seen is as expected. 

Additional statistical analysis was performed on the datasets from both the CA4P and 

control cohort, as depicted in Figure 3.16. In the first instance, only four mice from the 

CA4P cohort that showed a decrease in the total lactate integrated intensity post 24 hours 

injection were included in the analysis, excluding the mouse (Figure 3.13) that showed 

the opposite trend. As seen from Figure 3.16 (a), a statistically significant (p < 0.05) 

difference is seen in the lactate levels pre and 24 hours post CA4P injection, in both the 

1X and 5X reconstructions.  

On the other hand, no statistical significance is seen (p > 0.05) between the 1X 

and 5X reconstructions, both pre and post injection, indicating high fidelity between the 

reference and accelerated datasets. When all five mice were included in the analysis, no 

statistical significance (p > 0.05) in the paired t-test was observed between the measured 

tumor lactate levels, pre and 24 hours post administration of CA4P as illustrated in Figure 

3.16 (b). However, the reconstruction accuracy between the 1X and 5X was still 

preserved with p > 0.05. 

All five mice were included for analysis in the control cohort. As seen in Figure 

3.16 (c), no statistically significant differences (p > 0.05) were found in the tumor lactate 

levels prior to and 24 hours after the injection of dextrose, as expected. Similarly, the 1X 

and 5X reconstructions were found to be statistically similar (p > 0.05), indicating high 

fidelity and negligible loss of information between the reference and accelerated 

reconstructions. 
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Figure 3.16: Statistical analysis on the CA4P and control cohorts (* indicates p < 0.05). 

(a) The CA4P cohort considering n = 4. Statistical significance found in measured lactate 

levels measured prior to and 24 hours post CA4P injection. (b) The CA4P cohort 

considering n = 5. No statistical significance found between pre and post tumor lactate 

integrated intensities. (c) The control cohort considering n = 5. No statistical significance 

found in tumor lactate pre and post dextrose injection. P > 0.05 between all 1X and 5X 

datasets. 

 

3.3   Discussion & Conclusions 

A CS accelerated lactate-selective MRSI pulse sequence was implemented in the 

Bruker 7 T ParaVision 5.1 environment to facilitate fast MRSI acquisitions of lactate in 
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the preclinical setting. The developed sequence achieved the prospective pseudo-random 

undersampling of the k-space ‘on the fly’ to facilitate CS acquisitions and reconstruction. 

The lactate-selective CS-MRSI sequence achieved high-speed mapping of the lactate 

peak both in vitro and in vivo in solid tumors and could potentially save 80% of the 

acquisition time.  

As previously discussed, lactate is a key player in cancer. The increased glucose 

uptake by cancer cells as compared to normal tissues can be exploited for tumor 

diagnostics, anti-cancer therapy, and in the detection of metastasis using 2-[18F]Fluoro-2-

deoxyglucose positron emission tomography (FDG-PET) [127]. Both hexokinase activity 

and glucose transporter expression tend to regulate the update of FDG in cells [127, 128]. 

FDG-PET thus enables a non-invasive visualization of the Warburg effect, which is a 

fundamental property of neoplasia [128], and has been widely utilized in oncology as a 

staging/restaging tool and biomarker of cancer progression and prognosis. However, this 

technique does have its pitfalls and is not able to capture glucose activity in all types of 

cancers, such as those of the prostate, pancreas, and liver [127]. Other concerns like the 

presence of a strong background signal, inability of the probe to sufficiently perfuse the 

tumor, and efflux of FDG from certain types of cancer cells may hinder the imaging 

process [127].  

The ability to directly measure the lactate distribution in solid tumors can prove to 

be significantly beneficial as this metabolite is a key marker of altered metabolism, 

possible malignancy, and tumor hypoxia. As previously discussed, tumor metastasis and 

recurrence have been linked to elevated lactate concentrations, while variations during 

radiotherapy and treatment can provide insights into the efficacy of a particular 
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therapeutic strategy. While various MRI sequences are capable of measuring tumor 

characteristics such as the perfusion, apparent diffusion coefficient (ADC), and pO2, 

MRSI is the only technique that can map the spatial heterogeneity of lactate in cancer. 

The developed 1H lactate-CS-MRSI sequence offers the possibility of employing fast 

non-invasive lactate imaging as a powerful prognostic marker in the clinic. 

Hyperpolarized 13C MRSI is currently the only other competing technique for [1-

13C] lactate measurements [129-131]. Hyperpolarization offers a 10,000 – 100,000 fold 

increase in the signal intensity [132] and is useful for capturing the pathways of 

endogenous biomolecules [129, 130] upon intravenous injection of the hyperpolarized 

solution that is generated external to the subject. Various acceleration strategies have 

been applied to 13C MRSI [15] (including CS, as reviewed in detail in Chapter 2 of the 

thesis) as the rapid enhancement decay, determined by the T1 of the agent injected (~30 – 

60 s for the agents considered to date [15]), necessitates a rapid acquisition of the data 

following dissolution. This also places a restriction on the type of compounds that can be 

hyperpolarized as the rate of signal relaxation must be slow enough to enable in vivo 

administration and subsequent imaging of metabolism. Other regulatory aspects like the 

integrity of the agent also need to be taken into consideration [15]. The other main 

challenge is the clinical translation of 13C MRI/MRSI due to the need for additional 

hardware, specialized equipment for a sterile preparation of the agent, rapid 

administration of the agent to the patient, and routine quality control checks [133]. 

Human trials have been few [133] and the above mentioned challenges still need to be 

addressed for safe routine clinical scans. Under these circumstances, the developed 1H 
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lactate-CS-MRSI sequence could potentially be beneficial for a regular assessment of 

lactate changes in the clinic, particularly to assess and personalize therapeutic outcomes. 

The later section of this chapter demonstrated the application of the lactate-CS-

MRSI sequence in evaluating changes in lactate levels in response to therapy using 

CA4P. The sequence was used to monitor baseline lactate levels and subsequent changes 

24 hours post the injection of the prodrug. The CS reconstructions maintained high 

fidelity with the 1X reference even at 80% undersampling. Four of the five tumor mice in 

the cohort showed a decrease in the total integrated intensity of lactate within the tumor 

volume when measured 24 hours after CA4P injection, while one mouse from the cohort 

showed a tumor lactate increase 24 hours post CA4P administration. This study 

demonstrated, for the first time, a reduction in lactate levels of H1975 tumors 24 hours 

following a vascular targeting agent, CA4P. To the best of my knowledge, 1H MRSI 

measurement of lactate changes upon CA4P administration has not been documented in 

the literature to date.  

The initial hypothesis for this study was that an increase in tumor lactate levels 

would be observed upon treatment using CA4P. This is based on the fact that CA4P-

induced vascular shutdown would lead to more hypoxia or acidosis, causing higher 

glycolysis rates to produce more lactate. A poorly perfused tumor vasculature may also 

not be able to clear the accumulated lactate efficiently. However, previous studies have 

demonstrated an improvement in the tumor pO2 and vascular perfusion 24 hours post 

CA4P administration, suggesting that there is recovery in the vasculature particularly in 

the rim of the tumor [118, 121, 125]. This would potentially result in improved blood 

flow and lead to either an increase in lactate clearance or decreased production of lactate, 
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or possibly both. This might explain why a decrease in tumor lactate levels was measured 

24 hours post injection of CA4P. Previous studies have also observed that there is 

heterogeneity in the restoration of perfusion within the tumor, with lower lactate levels 

detected in the better perfused regions [125]. The study by Bohndiek et al demonstrated a 

34% decrease in the rate constant corresponding to 13C hyperpolarized labeled flux 

between [1-13C] pyruvate and lactate [125] 6 hours after CA4P injection, and continued 

to be at that lower level even after 24 hours. However, no significant change in lactate 

concentrations in tumor extracts was detected 24 hours later in this study [125]. Other 

VDAs like ZD6126 have also been employed to probe tumor dynamics [134] using a 

MQC spectral editing sequence wherein no significant change in lactate was found in 

response to the prodrug. Another aspect to take into consideration would be the type of 

tumor being investigated as response to targeting agents and therapeutics may be varied 

among different types of solid tumors.  

In conclusion, fast lactate MRSI was implemented in the preclinical setting with a 

reduction in the acquisition time by up to 80% in vivo. This study also offered a first 

insight into H1975 tumor lactate dynamics in response to treatment using CA4P, wherein 

a decrease in tumor lactate levels was measured 24 hours after administration of the 

prodrug. Future studies could further investigate the CA4P-induced dynamics of tumor 

lactate metabolism in different types of cancers in vivo using MRSI. 

(Note: Certain sections of Chapter 3 are based on the paper – “Compressed Sensing 

Accelerated MR Spectroscopic Imaging of Lactate”, R. Vidya Shankar, S. Agarwal, and 

V. D. Kodibagkar, in preparation for submission to Magnetic Resonance in Medicine for 

review.)  
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CHAPTER 4 

2D CS-MRSI OF THE PEDIATRIC BRAIN 

 

The advantages offered by MRSI in the non-invasive, quantitative mapping of 

important biomarkers have been documented in Chapters 1, 2, and 3 of this dissertation. 

The objective of this study was to retrospectively evaluate the feasibility of scan time 

reduction using compressed sensing (CS) based MRSI in pediatric patients undergoing 

routine brain exams. 

4.1   Background 

Various MRI sequences are routinely employed in pediatric neuroimaging studies 

for longitudinal investigations of brain development and function in children. 

Spectroscopic imaging techniques like single voxel spectroscopy (SVS) and MRSI/CSI 

can be employed to assess the concentrations of various metabolites in the pediatric brain. 

For e.g. rapid neurochemical changes in brain structure and content have been observed 

at various stages of brain development [135, 136], with an increase in NAA, creatine, and 

glutamate accompanied with a decrease in the concentrations of choline and myo-inositol 

(mI) [137]. Vital biochemical information can be extracted in numerous pathological 

conditions and diseases such as in neuro oncology and brain tumors [138-143], 

neurofibromatosis [144], tuberous sclerosis [145], epilepsy and other related seizures 

[146], neurodegenerative, neuropsychiatric, and mitochondrial disorders [135, 137, 143], 

and in the evaluation of hypoxia/ischemia and stroke in the pediatric brain [147]. 

 The basic principles of SVS and MRSI along with their respective 

merits/demerits have previously been discussed in Chapters 1 and 2 and will not be 
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elaborated here. The long scan times encountered in MRSI are not desirable when 

imaging pediatric patients as children are more likely to move or not cooperate during the 

examination window. This could also have added implications like increasing the 

sedation time for patients under anesthesia, such as in infants and in the elderly. Thus, it 

is crucial to devise and implement fast imaging techniques for the benefit of the pediatric 

patient population.  

However, very few studies have sought to investigate and validate the feasibility 

of fast imaging techniques in pediatric patients in both MRI and MRSI [148-153]. The 

fast MRSI study by Kim et al using dual band RF pulses and a spiral k-space readout 

focused on the rapid extraction of metabolic profiles from the corticospinal tract in the 

pediatric brain [148], while the study in children by Vasanawala et al investigated the 

application of fast CS-MRI combined with parallel imaging in various anatomies like the 

abdomen, cardiac, and knee [149]. The clinical performance of rapid acquisition using 

compressed sensing (CS) and parallel imaging in contrast enhanced abdominal pediatric 

MRI has been assessed by Zhang et al and Cheng et al [152, 153]. A fast pediatric 

cardiac study by Hsiao et al focused on the application of parallel imaging and CS for the 

evaluation of ventricular volume and blood flow in volumetric phase contrast MRI [150]. 

In all the above mentioned studies, a significant reduction in the acquisition time was 

achieved with preservation of anatomic detail, and spatial and spectroscopic image 

quality.      

The objective of this study was to test the application of CS accelerated MRSI in 

pediatric patients undergoing routine MRI scans for various brain-related concerns. The 

theory and principles underlying CS have been discussed in previous chapters and will 
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not be elaborated here. The retrospective application of CS-MRSI is evaluated in both 

healthy brain tissue and in a few tumor cases for accelerations up to five-fold, with a 

quantitative evaluation of the accuracy and fidelity of the reconstructed spectra in 

comparison with the fully-sampled 1X reference MRSI datasets.   

 

4.2   Materials and Methods 

This study was approved by the local institutional review board and was 

compliant with the Health Insurance Portability and Accountability Act (HIPAA). 

Informed consent was obtained for acquiring the MRSI data, wherein a stock 

spectroscopic imaging pulse sequence provided by the MRI manufacturer was employed. 

The retrospective evaluation of 2D 1H CS accelerated MRSI was performed on 20 

pediatric brain cases, which included 11 male and 9 female patients in the age range 3 

days to 16 years. Tables B.1 and B.2 (Appendix B) summarize the demographic details 

and various MRI/MRSI parameters related to the patient group under consideration. 

 

4.2.1 MRSI Data Acquisition and Undersampling 

All MRSI data was acquired on a Philips 3 T Ingenia MRI scanner using a 

standard point resolved spectroscopy (PRESS) based MRSI pulse sequence. A 13-

channel head coil array was employed for all experiments. Initial studies involved testing 

the CS-MRSI reconstruction algorithm on phantom (metabolite solution -12 mM NAA, 

10 mM creatine, 3 mM choline) and volunteer MRSI datasets. In the patient studies, 

general anesthesia was administered to the patients for their routine brain MRI exam. 

Fully sampled MRSI data was collected on patients in the age range 3 days - 16 years 
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with the following acquisition parameters: TE/TR = 46/1500 ms, 16x16x2048 grid, 10 

mm slice thickness, 1 average, total acquisition time for the fully sampled 1X reference 

dataset = 9 min. The variable density sampling mask for different acceleration factors, 

illustrated in Figure 4.1, was generated as previously described in [70, 71]. The k-space 

was pseudo-randomly undersampled along the phase encode directions to generate 

datasets that represented 2X (50%), 3X (33%), 4X (25%), and 5X (20%) acceleration. 

 

 4.2.2 CS-MRSI Reconstruction 

A custom non-linear iterative reconstruction based on the conjugate gradient 

algorithm was implemented in Matlab (Mathworks Inc., MA) to reconstruct all the 

retrospectively undersampled MRSI datasets. The CS-MRSI reconstruction was 

formulated as a convex optimization problem, which involved minimizing the cost 

function [71], previously detailed in Chapter 3. 

 

4.2.3 Post Processing and Error Metric 

All reconstructed CS-MRSI datasets were subjected to a quantitative comparison 

with the fully sampled 1X reference dataset using the metrics discussed in Chapter 3. In 

each case, the root mean square error (RMSE) metric was used to compute the 

reconstruction error for each individual metabolite (NAA, creatine, choline, and lactate), 

as previously employed in Chapter 3. The RMSE can be interpreted as being equivalent 

to the normalized RMSE (nRMSE) since the range of each dataset was normalized to 

vary from 0 to 1. Standard post-processing steps were applied to all the reconstructed 

MRSI datasets using the jMRUI [111]  software package. Detailed analysis was 



75 

 

performed on the voxels located in the region interior to the brain for all the twenty MRSI 

datasets under consideration. A total of 957 voxels were analyzed across all the pediatric 

brain MRSI datasets.  

 

4.2.4 Statistical Analysis 

A voxel-wise 2-tailed paired t-test was performed on the metabolite intensity and 

ratio maps (NAA/Cr, NAA/Cho, and Cho/Cr) from each reconstructed dataset with the 

corresponding 1X reference dataset using the GraphPad Prism (San Diego, CA, USA) 

scientific software. A p-value < 0.05 was considered to be statistically significant and 

indicative of an inaccurate reconstruction. Voxels with a denominator value of zero (lack 

of deterministic fit) in the 1X or accelerated reconstructions were set to zero for the ratio 

calculations. In addition, the fidelity of the reconstructions was assessed by determining 

the magnitude of correlation between the 1X fully sampled reference and the accelerated 

reconstructions using the Origin® 8.1 software package. Correlation graphs were 

generated for individual mean metabolite intensities collated from all twenty datasets and 

evaluated against the 1X fully sampled reference as a function of acceleration. The 

accelerated reconstructions were considered quantitatively equivalent to the 1X reference 

if the magnitude of coherence was close to one, using a 95% confidence interval. 

 

4.3   Results 

The retrospective evaluation of CS-MRSI was initially conducted on phantom and 

human volunteer MRSI datasets from the 3 T Philips Ingenia MRI scanner. Variable 

density undersampling masks for acceleration factors 2X – 5X that were simulated in 



76 

 

MatlabTM are depicted in Figure 4.1. Figures 4.2 and 4.3 depict the results from the 

phantom experiments, wherein mean metabolite intensities are accurately reconstructed 

up to five-fold acceleration, with high spectral fidelity and negligible information loss. 

Figure 4.3 shows the nRMSEs for each individual metabolite and for the full spectrum. 

The normalized metabolite RMSEs remain below 3% up to 5X for each individual 

metabolite, while the nRMSE for the entire spectrum is slightly above 1% at five-fold 

acceleration. 

 
Figure 4.1 Variable density under-sampling masks simulated in MatlabTM for various 

acceleration factors – 16x 16 matrix (total 256 samples 1X). 

 

Figure 4.2 Metabolite maps of NAA (12 mM), creatine (10 mM), and choline (3mM) at 

acceleration factors 1X, 2X, and 5X (16x16x2048 grid, TR/TE = 2000/46 ms, 20 mm 

slice thickness, 1 average). 
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Figure 4.3 The nRMSEs for the phantom dataset at acceleration factors 2X – 5X. (a) the 

full spectrum, (b) NAA, (c) Creatine, and (d) Choline. 

 

A retrospective evaluation of CS-MRSI was also conducted in 3 normal human 

volunteers, with results depicted in Figures 4.4 and 4.5. This study was approved by the 

local institutional review board and informed consent was obtained for acquiring the 

MRSI data. Figure 4.4 depicts select voxels from a volunteer brain MRSI dataset, with 

spectral fidelity maintained up to 5X.  
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Figure 4.4 Spectra from select voxels of a volunteer MRSI dataset. MRSI scan 

parameters: 16x16x2048 matrix, TR/TE = 1500/46 ms, 1 average, 1 cm slice thickness, 

FOV 24 x 24 cm2, total scan time for the 1X = 9 min. The y-axis limits are from -0.1 to 1 

for all illustrated spectra.  
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Figure 4.5 Mean nRMSEs ± standard deviations for the 3 volunteer MRSI datasets for 

(a) the full spectrum, (b) NAA, (c) creatine, and (d) choline. 

 

Figure 4.5 shows the mean normalized RMSEs for the 3 volunteers at 2X-5X 

accelerations. The nRMSE at 5X for the full spectrum is (1.6 ± 0.26) %, while that for the 

individual metabolites is (2.96 ± 0.39) % for NAA, (2.6 ± 0.45) % for creatine, and (2.49 

± 0.34) % for choline. The reconstruction error remains below 3.5% up to 5X when 

considering individual metabolites, with a low and consistent standard deviation across 

the 3 volunteers for accelerations 2X – 5X. Mean metabolite ratios NAA/Cr, Cho/NAA, 

and Cho/Cr ± standard deviations have been collated in Table 4.1 for the three volunteers. 
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Table 4.1 Mean metabolite ratios ± standard deviations for the 3 volunteer MRSI datasets 

for 1X – 5X acceleration factors. (NAA: N-acetylaspartate, Cr: creatine, Cho: choline, M: 

male, F: female, SD: standard deviation) 

Volunteer NAA/Cr 

(mean ± SD) 

Cho/NAA 

(mean ± SD) 

Cho/Cr 

(mean ± SD) 

 

 

1 

(M) 

1X 2.58 ± 1.04 0.43 ± 0.14 0.98 ± 0.17 

2X 2.61 ± 1.11 0.43 ± 0. 16 0.98 ± 0.16 

3X 2.62 ± 1.07 0.43 ± 0.14 0.99 ± 0.15 

4X 2.73 ± 1.08 0.47 ± 0.15 0.99 ± 0.15 

5X 2.79 ± 1.07 0.49 ± 0.14 1.1 ± 0.15 

 

 

2 

(M) 

1X 2.46 ± 1.1 0.46 ± 0.16 1 ± 0.22 

2X 2.49 ± 1.16 0.46 ± 0.17 1 ± 0.23 

3X 2.44 ± 1.15 0.47 ± 0.16 1 ± 0.19 

4X 2.5 ± 1.23 0.47 ± 0.17 1.03 ± 0.2 

5X 2.52 ± 1.26 0.48 ± 0.16 1.2 ± 0.19 

 

 

3 

(F) 

1X 2.44 ± 0.77 0.39 ± 0.09 0.91 ± 0.16 

2X 2.44 ± 0.84 0.4 ± 0.1 0.99 ± 0.14 

3X 2.5 ± 0.79  0.45 ± 0.09 1.02 ± 0.16 

4X 2.4 ± 0.69 0.48 ± 1.05 1.15 ± 0.14 

5X 2.31 ± 0.69 058 ± 0.09 1.17 ± 0.15 

 

The retrospective evaluation of CS-MRSI was subsequently performed on 

pediatric MRSI datasets. Demographics of the pediatric patients scanned, the reason for 

MRI, and metabolite ratios from MRSI have been collated in Tables B.1 and B.2 
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(Appendix B). The patient population consisted of 11 male and 9 female patients that 

included healthy, tumor (also post-surgery) and non-tumor cases, and a few with brain 

development concerns. The corresponding metabolite ratios from MRSI for all 

accelerations 1X – 5X have also been documented, with expected variations seen in 

normal and tumor voxels. Table B.1 lists all parameters from the non-tumor cases, while 

Table B.2 has parameters corresponding to the patients with brain tumors. 

Figures 4.6 and 4.7 depict the MRSI reconstruction results for various 

acceleration factors from a nine year old female patient scanned for seizures (case 6 in 

Table B.1). Figure 4.6 shows the PRESS volume of interest (VOI) selected for MRSI 

overlaid on the T1 anatomical scout from MRI, with the corresponding spectroscopic 

imaging grids for acceleration factors 2X - 5X. The CS-MRSI reconstructions displayed 

spatial distributions that were very similar to that of the 1X reference dataset, with no 

spurious signals outside the selected VOI. An expanded view of the 1X and 5X 

spectroscopic grids is depicted in Figure 4.7.  

Within the VOI, select voxels were examined to assess the reconstruction quality 

of individual spectra. Figure 4.8 highlights the spectra from two voxels (blue and green) 

in the VOI and one (red) located exterior to but close to the periphery of the brain. The 

CS reconstructions preserve the line shape of the each individual metabolite, with good 

agreement observed in the peak amplitudes for various accelerations up to 5X. Gradual 

smoothing of the spectra can be seen with increasing acceleration, which can be 

attributed to the denoising effects of the wavelet and total variation terms in the CS 

reconstruction. The difference spectra computed at each acceleration factor also indicate 

a high fidelity in the CS reconstructions with respect to the 1X fully sampled reference. 
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The corresponding metabolite maps (obtained after spectral fitting of the peak amplitudes 

in jMRUI) of NAA, creatine, and choline have been illustrated in Figure 4.9 for the 1X-

5X MRSI datasets. Similar spatial distributions can be observed with increasing 

acceleration for each metabolite. 

 

Figure 4.6 MRSI data from a nine year old female patient scanned for seizures and 

diagnosed with a 2x2 cm2 arachnoid cyst in the anterior right temporal lobe. The figure 

depicts the anatomical scout MRI with the PRESS VOI, along with the spectroscopic 

imaging grids corresponding to the VOI for acceleration factors 2X – 5X. 

 

 Figure 4.10 displays the metabolite maps of NAA, creatine, choline, and 

lactate for a pediatric patient diagnosed with a brain tumor. Figure 4.10 depicts the fully 

sampled and accelerated metabolite maps for a MRSI dataset collected from a 10 year old 
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male diagnosed with two intra-axial masses of metastatic Ewing’s sarcoma, one each in 

the right temporal and right parietal lobes (case 1 listed in Table B.2). In this case, the 

spatial distribution of all metabolic profiles is accurately preserved for acceleration 

factors up to 5X, including the voxels covering the tumors. Distinct variations can be 

observed between the metabolite distributions in the normal and cancerous tissue regions, 

as expected. The presence of lactate, an important marker of anaerobic glycolysis in solid 

tumors, is readily seen in the lesion. Both the spatial spread and spectral line profile of 

the lactate peak maintains high fidelity with the 1X for CS reconstructions 2X – 5X. 

 

Figure 4.7 An expanded view of the 1X and 5X MRSI grids from Figure 4.6. 
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Figure 4.8 Select voxels in blue, green, and red from the representative MRSI dataset in 

Figure 4.6 for acceleration factors 2X – 5X, 7X, and 10X. The major metabolite peaks 

NAA, creatine, and choline seen in normal brain voxels are depicted, along with a select 

voxel located outside but close to the periphery of the brain. The y-axis limits are from -

0.3 to 1 for all illustrated spectra. The CS-MRSI reconstructions display high accuracy 

even at an acceleration of five. 

 

Figures 4.11 and 4.12 show a few select reconstructed voxels from two tumor 

MRSI datasets. The MRSI dataset illustrated in Figure 4.12 is from a 1.5 year old male 



85 

 

patient with a large contrast enhancing lesion in the right posterior lateral basal 

ganglia/thalamus, as detected by MRI (case 2 from Table B.2). Figure 4.11 shows spectra 

corresponding to the dataset in Figure 4.10 for the original and CS-accelerated MRSI 

data. The reconstruction quality was evaluated for one voxel each selected from the 

normal and tumor regions. The distinct spectral profiles of the metabolites that help 

distinguish between normal and cancerous tissue have been accurately maintained for the 

CS-MRSI datasets 2X-5X, as compared to the 1X reference. The same trend is observed 

in the second brain tumor spectra depicted in Figure 4.12, with faithful CS 

reconstructions even at higher undersampling factors (up to 5X), and evident differences 

in the metabolite peak amplitudes in the illustrated normal and tumor tissue voxels.  

 

Figure 4.9 Metabolite maps showing the distribution of NAA, creatine, and choline for 

acceleration factors 1X - 5X in a nine year old female patient scanned for seizures. The 

mean metabolite ratios for the 1X are given by NAA/Cr = 2.4 ± 1.17, Cho/Cr = 1.0 ± 

0.25, and Cho/NAA = 0.47 ± 0.18. The mean metabolite ratios for the 5X are given by 

NAA/Cr = 2.83 ± 2.26, Cho/Cr = 0.92 ± 0.2, and Cho/NAA = 0.43 ± 0.19. 
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The RMSE metric was employed to quantify the error in reconstruction (2X - 5X, 

7X, 10X) for all 20 pediatric CS-MRSI datasets and is depicted in Figure 4.13. Figures 

4.13 (a) - (d) show the individual metabolite RMSEs for NAA, lactate, creatine, and 

choline respectively. Figure 4.13 (e) shows the RMSE for the entire spectrum. In each 

dataset, the error increases with increasing acceleration as expected, but does not exceed 

3% at 5X for the full spectrum in any of the reconstructed datasets. The RMSEs for the 

individual metabolites remained below 5% even at an acceleration of 5X, as illustrated in 

Figure 4.13 (a) – (d).  

 

Figure 4.10 Representative metabolite maps of NAA, creatine, choline, and lactate for 

acceleration factors 1X – 5X. MRSI data was collected from an 11 year old male patient 

diagnosed with two intra-axial masses of metastatic Ewing’s sarcoma, one in the right 

temporal lobe, and the other in the right parietal lobe. High lactate distribution was found 

in the tumor region with very low concentrations of the other major brain metabolites.  
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Figure 4.11 Spectra from select voxels of the pediatric brain tumor MRSI dataset 

previously depicted in Figure 4.10. A huge lactate peak is seen in the tumor voxel 

indicated in red. The normal and tumor voxels also show variations in the peak 

amplitudes of choline and NAA. The y-axis limits are from -0.3 to 1 for all illustrated 

spectra. All accelerations 2X – 5X show good fidelity with the 1X reference. 
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Figure 4.12 Spectra from select voxels of a second pediatric brain tumor MRSI dataset. 

Lactate is seen in the tumor voxel indicated in red. The normal and tumor voxels also 

show variations in the peak amplitude of choline, with higher concentration seen in the 

tumor as expected. The y-axis limits are from -0.3 to 1 for all illustrated spectra. All 

accelerations 2X – 5X show good fidelity with the 1X reference. 
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Figure 4.13 Normalized RMSEs of all 20 pediatric MRSI datasets that were evaluated 

using CS undersampling and reconstruction for up to 90% reduction in the scan time. 

Individual metabolite RMSEs are depicted in (a)–(d), full spectrum in (e). The RMSE 

increases with higher acceleration and stays below 5% when computed for the individual 

metabolites, and overall below 3% (when considering the complete spectrum) up to 5X.  
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Figure 4.14 Correlation plots (1X vs 2X – 5X) of mean NAA intensities from the 20 

pediatric brain MRSI datasets. 

 

 
Figure 4.15 Correlation plots (1X vs 2X – 5X) of mean creatine intensities from the 20 

pediatric brain MRSI datasets. 
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Figure 4.16 Correlation plots (1X vs 2X – 5X) of mean choline intensities from the 20 

pediatric brain MRSI datasets. 

  

Correlation graphs for the metabolites NAA, creatine, and choline are depicted in 

Figures 4.14, 4.15, and 4.16 respectively. Mean metabolite intensities were computed for 

each of the 20 pediatric MRSI datasets and plotted against the corresponding 1X 

reference metabolite intensities as a function of acceleration (2X – 5X). As seen from the 

plots, a very high magnitude of correlation (with the slope close to one in each case) 

exists between the 1X and 2X-5X reconstructions, for each individual metabolite within a 

95% confidence interval. Although deviations from the gold standard increase with 

increasing acceleration, no metabolite data point lies outside the confidence interval 

represented by the ellipse, with very few instances in which the points are located close to 

or at the boundary of the ellipse. This indicates that even individual metabolite intensities 
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in the CS-MRSI reconstructions maintained high fidelity with the 1X fully sampled 

reference, for acceleration factors 2X – 5X, with insignificant loss of information.  

Tables B.1 and B.2 show the means ± standard deviations of three different 

metabolite ratios for acceleration factors of 1X – 5X for the each individual pediatric 

MRSI dataset. The 20 datasets that were analyzed were divided into two main categories, 

namely, tumor cases (6, includes resected tumors) and non-tumor (14) datasets. Only 

voxels from the interior of the brain (corresponding to the selected VOI during imaging) 

were chosen and analyzed in both the above mentioned categories. In both groups, the 

mean metabolite ratios for accelerations 2X – 5X are comparable and have a strong 

correlation with the 1X values, with no statistically significant differences seen (p > 

0.05). The lack of any significant differences/variations indicates that the accelerated 

reconstructions of these critical biomarkers in both tumor and non-tumor datasets is 

faithfully preserved and comparable to the 1X even at an acceleration factor of five. 

 

4.4   Discussion & Conclusions 

In this study, the in vivo application of compressed sensing to pediatric MRSI 

demonstrates that a quantitatively accurate reconstruction can be achieved by sampling 

only 20% of the k-space, thus, significantly reducing the scan time in spectroscopic 

imaging. This will facilitate the integration of MRSI in clinical protocols, leading to a 

more comprehensive evaluation of metabolite maps that contain vital prognostic and 

diagnostic information. The inclusion of MRSI scans can prove critical in children as one 

can monitor the spatial changes in these important biomarkers, particularly in the 

developing and diseased brain. It could also help identify specific markers in common 
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childhood cancers of the brain and central nervous system that have an incidence of 5.3 

per 100,000 in the 0 – 19 years age group [154].  

The CS accelerated reconstructions maintained high spectral accuracy for up to 

80% under sampling for each of the 20 pediatric brain MRSI datasets that were analyzed, 

with overall reconstruction errors that were lower than 3% (and individual metabolite 

errors that were less than 5%). This clearly demonstrates the feasibility and repeatability 

of our approach to produce consistently faithful results in a varied group of clinical MRSI 

datasets. The previous study from our group focused on the evaluation of the in house 

developed reconstruction algorithm in adult patients, including both normal and tumor 

cases [71]. In the current study, we wanted to further validate the reproducibility of our 

approach in pediatric patients as only a handful of studies have investigated the 

possibility of fast imaging in pediatric MRI and MRSI datasets [148-153], as previously 

discussed. This study, thus, presents a more detailed analysis of the application of CS-

MRSI in the pediatric brain.    

Apart from the qualitative inspection of the metabolite maps and spectra, the CS-

MRSI reconstructions for various accelerations and the reference 1X dataset are 

statistically comparable, as indicated by the p-values generated from a series of voxel-

wise paired t-tests. Derived parameters, like metabolite ratios, are also accurately 

reconstructed up to an acceleration factor of five. A p-value threshold of 0.05 was 

considered optimal as in this study we were testing for non-significant differences and 

assessing spectral and spatial fidelity in the reconstruction. A p-value < 0.05 was 

considered to indicate a statistically significant difference between the reference and 

accelerated dataset, and thus, suggestive of a failed reconstruction. 
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The reconstructions at 7X and 10X were found to be statistically different from 

the 1X for most metabolite ratios, indicating increased deviation and higher 

reconstruction errors. Our ongoing work focuses on identifying the optimal acceleration 

factor between 5X and 10X that would result in a statistically comparable reconstruction 

for all considered datasets. Another area that requires further investigation is the selection 

of an optimal undersampling mask that produces the least errors and is tailored to the CS-

MRSI reconstruction at hand, particularly at higher accelerations (> 4X). A bad 

undersampling mask, as previously discussed by Lustig et al [70] and in more recent 

studies [155, 156], might result in a poor reconstruction. 

Furthermore, certain user-dependent factors like inconsistent post processing and 

spectral fitting of the MRSI datasets can also contribute to differences between the 

original and undersampled datasets. Increased deviations (in either direction) in the 

metabolite peak amplitudes have been observed with higher under sampling. Various 

contributing factors to the reconstruction error include the VOI that was selected, size of 

the MRSI grid, SNR of the original k-space data acquired, along with a sub-optimal 

choice of regularization parameters for the reconstruction algorithm. The errors can be 

particularly significant when there is a huge SNR penalty to begin with in MRSI (for e.g. 

when imaging difficult regions), causing the CS reconstruction to break down.  

The metabolic changes measured by MRS(I) can aid in the characterization of 

numerous neurological disorders. It is critical to estimate the sensitivity and specificity of 

changes in metabolite concentrations associated with each disease prior to the application 

of any acceleration technique. For e.g. MRS(I) has been found to be highly sensitive and 

specific to identifying metabolic changes in Alzheimer’s disease and mild cognitive 
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impairment, wherein NAA, choline, and myo-inositol (mI)/creatine ratios are assessed 

[157-159]. In a clinical study by Moats et al [158], a receiver operating characteristic 

(ROC) of mI/Cr and NAA/Cr ratios was employed to make a diagnosis. A decrease in 

NAA concentration has direct correlation with the severity of neuropathological findings 

[159] along with an increase in mI levels, establishing the NAA/mI index as a sensitive 

marker of abnormalities in cognitive function. In epileptic seizures, MRS(I) has been 

found to be highly sensitive to a decrease in NAA levels in the epileptogenic focus, even 

when no abnormality was detected in the accompanying MR scans in a majority of 

patients [160]. Cerebral lactate has also been detected in patients with seizures as 

compared to the control group [160, 161].  

MRS(I) can identify marked NAA reduction and lactate increase in stoke/cerebral 

ischemia, while inconsistent changes have been measured in the peaks from choline and 

creatine [162]. MRS(I) has also proven beneficial in differentiating brain tumors from 

non-neoplastic lesions (72% sensitivity, 92% specificity [163]), and evaluating low grade 

vs high grade gliomas (93% sensitivity, 60% specificity [164]). Various pediatric specific 

neurological abnormalities like inherited metabolic disorders, hypoxia ischemia, and 

traumatic brain injury (TBI) can be assessed with 1H spectroscopy [165]. In all the 

discussed neurological conditions, MRS(I) shows high sensitivity and specificity to the 

detection of major metabolites like NAA, creatine, and choline. Other metabolites such 

glutamate, glutamine, GABA, alanine, and lactate are in a majority of cases not reliably 

detected owing to their low concentration and considerable spectral overlap with stronger 

resonances in the MRS spectrum. In such instances, specialized pulse sequences that 

permit selective excitation of these hard to detect metabolites [106, 107, 166-171] can be 
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combined with acceleration techniques to increase the sensitivity and specificity of 

MRSI. For e.g. the lactate specific CS-MRSI sequence that was discussed in Chapter 3 

could prove very useful in the enhanced detection of lactate metabolism in solid tumors. 

Specialized editing sequences have also been developed for the improved detection of 

metabolites such as γ-Aminobutyric acid (GABA) [169, 171], 2-hydroxyglutarate (2HG) 

[166, 167], glutamine and glutamate [170], and glycine [168]. These sequences can be 

combined with fast acquisition strategies like CS for a precise, high-speed detection of 

these smaller biomarkers.    

   The retrospective application of CS under sampling to MRSI was the main 

limitation of this study. However, we believe our work is an important step in the 

validation of CS-MRSI reconstructions in pediatric brain datasets, with future studies 

focusing on the prospective implementation.   Another limitation of the study was that we 

did not test CS in conjunction with 3D MRSI datasets, which cannot be acquired in 

patients due to the prohibitive scan time. For e.g. considering one signal average and a 

TR of 1 s, a 16x16x16 spectroscopic grid would require the acquisition of 4096 signals, 

leading to a total scan time of approximately 1 hour and 8 mins, which is prohibitive 

where patients are under general anesthesia. 

In conclusion, it has been demonstrated that 2D MRSI can be accelerated by 80% 

using compressed sensing in the pediatric clinical setting, with minimal loss in spectral 

fidelity and accuracy in metabolite quantification.  This methodological advancement has 

the potential to increase the utility of MRSI in routine clinical evaluation of brain 

morphology and function, as well as in other organs.  
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(Note: Chapter 4 is based on the paper – R. Vidya Shankar, H. H. Hu, J. C. Chang, and 

V. D. Kodibagkar, “2D MR Spectroscopic Imaging of the Pediatric Brain Using 

Compressed Sensing”, in preparation for submission to Radiology.) 
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CHAPTER 5 

CLINICAL IMPLEMENTATION OF CS-MRSI & OPTIMIZATION OF CS 

UNDERSAMPLING 

 

5.1   Prospective CS-MRSI 

The objective of this study was to implement CS acquisitions prospectively on a 

GE Discovery 3 T clinical MRI scanner and assess the fidelity of the CS-MRSI 

reconstructions. Pseudo-random undersampling masks [70] designed to skip phase 

encodes, corresponding to acceleration factors 2X, 3X, 4X, and 5X were incorporated 

into the GE ‘presscsi’ pulse sequence via the EPIC programming environment. The CS-

MRSI sequence was tested on the ‘braino’ metabolite phantom (12.5 mM NAA, 10 mM 

creatine, 3 mM choline)  by prospectively acquiring the 1X – 5X MRSI datasets, with the 

following acquisition parameters: 16x16x2048 grid, TE/TR = 144/2000 ms, 1 average, 10 

mm slice thickness, total acquisition time 8 min 40 s (1X), 4 min 20 s (2X), 2 min 54 s 

(3X), 2 min 20 s (4X), and 1 min 44 s (5X). All CS-MRSI datasets were reconstructed 

and post processed using the procedures outlined previously in Chapters 3 and 4 to 

generate the final metabolite maps at each acceleration factor.  

Figure 5.1 shows the acquired k-space maps of the 1X reference and 2X – 5X CS-

MRSI datasets as an illustration of the prospective undersampling on the scanner. The 

metabolite maps of NAA, creatine, and choline for each acceleration factor are illustrated 

in Figure 5.2. As seen from the figure, the integrated metabolite intensities maintain high 

fidelity with the 1X reference, with negligible loss of information. No statistically 

significant differences were seen between the 1X reference and CS-MRSI reconstructions 
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for up to 80% undersampling. A decrease in the peak amplitudes was observed with 

increasing acceleration; this can be attributed to a sub-optimal choice of parameters in the 

iterative reconstruction algorithm along with slight differences in the prospectively 

acquired signal intensities at each acceleration factor as compared to the 1X reference. 

The normalized RMSEs at all acceleration factors are depicted in Figure 5.3(a), wherein 

the reconstruction error remains below 3.5 % for up to an acceleration of 5X.  

 

Figure 5.1 K-space map (kx, ky, kt=0) from a prospectively under-sampled 2D PRESS-

MRSI dataset (3T, TR/TE= 1200/35 ms, 16X16X1028) acquired on a metabolite 

phantom. 

 

Figure 5.3 (b) lists statistical comparisons between the 1X and accelerated 

datasets. As seen from the table, the p-values indicate a strong correlation between 

accelerations 1X – 4X. The p-values for the 1X vs 5X case are weaker, but not 

statistically different (p > 0.05) from the ground truth. 
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Figure 5.2 GE ‘braino’ metabolite phantom - 16x16x2048 matrix, TE = 144 ms, TR = 

2000ms, 1 average, 10 mm slice thickness, total acquisition time 8 min 40 s (1X). 

Metabolite maps of NAA (12.5 mM), creatine (10 mM), and choline (3 mM) for various 

acceleration factors (2X-5X). 
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Figure 5.3 (a) The normalized RMSEs from the ‘braino’ phantom for acceleration factors 

2X – 5X. (b) Statistical comparisons with the 1X reference dataset.  

 

 

5.2   Optimal Mask for CS-MRSI 

Random undersampling, or pseudo-random undersampling when considering 

MRI/MRSI, is a key CS requirement, as previously discussed in Chapter 2. A random 

selection of sampling locations ensures incoherent aliasing artifacts, which can 

subsequently be removed by signal denoising procedures [70]. A pseudo-random mask 

undersamples the peripheral regions of k-space more as compared to the center. This is 

preferred as most of the signal energy is in the low frequency components that are located 

at the k-space origin.  However, the choice of an optimal sampling mask (along with the 

type of sparsifying transform) is critical for obtaining an accurate reconstruction. Not all 

pseudo-random sampling patterns achieve a sufficient degree of incoherence required in 

CS for accurate signal recovery. The key requirement to determining an optimal mask is 
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to examine the point spread function (PSF), which is a useful tool to measure 

incoherence, as discussed by Lustig et al [70]. Pixels do not display any interference 

when sampling under the Nyquist criterion i.e. the non-diagonal terms of the PSF are 

essentially zero :����, <
6=> = 0. Interference between pixels is caused when the Nyquist 

limit is violated, with the emergence of non-zero off-diagonal terms. The degree of 

incoherence can be measured by calculating the maximum value of the side lobe-peak 

ratio (SPR) when undersampling below the Nyquist limit [70]. The sampling pattern at a 

particular acceleration with the least peak interference can be considered a good 

candidate for an optimal mask. 

Various methods have been suggested to identify the optimal mask for a particular 

application in MRI [57, 155, 156, 172, 173]. In the study by Knoll et al, a fully sampled 

template image was employed to formulate the probability density function (PDF) to be 

equal to the normalized k-space power spectrum [155]. This ensured that the locations 

with highest energy in k-space were more likely to be sampled. Approaches by Liu et al 

and Ravishankar et al sought to determine the best mask based on errors in k-space 

following a CS reconstruction [172, 173]. Either an existing sampling pattern was 

modified [173], or one was built from scratch [173] by determining the k-space 

coefficients with the highest reconstruction errors and subsequently sampling that 

location [156]. All the above described approaches have been used to determine an 

optimal mask for CS-MRI. However, there is no literature on finding a mask suited to CS 

accelerated proton MRSI. The following sub-section of this chapter seeks to identify an 

optimal sampling mask at a certain acceleration factor using both in vitro and in vivo 1H 

MRSI data.   
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5.3.1 Methods and Sampling Pattern Design 

Phantom (metabolite solution – 12 mM NAA, 10 mM creatine, 3 mM choline) 

MRSI data was acquired on a Philips 3 T Ingenia scanner with the following scan 

parameters – TR/TE = 1500/48 ms, 16x16x2048 matrix, 1 average, 10 mm slice. 

Acquisition parameters for the corresponding T1 anatomical scout were – TR/TE = 83/7 

ms, 128 x128 matrix, 5 mm slice, 1 average. Four different types of masks were 

evaluated at accelerations 2X – 5X in this study, namely, the low resolution, variable 

density (VD), iterative design, and a priori sampling strategies. The number of k-space 

sampling locations for a 16x16x2048 grid at each acceleration factor are as follows: 128 

(2X), 84 (3X), 64 (4X), 51 (5X), 38 (7X), and 26 (10X). In the low resolution mask, all 

samples at each acceleration factor were placed at the center of k-space. The pseudo-

random undersampling strategy described by Lustig et al [70] that was adopted in 

Chapters 3 and 4 of this dissertation was employed to generate the VD mask. 

In the iterative design approach, the k-space locations with the highest 

reconstruction errors were identified and sampled, as proposed by Liu et al [172]. An 

initial mask ‘M’ containing a certain percentage of samples at the k-space center (derived 

from the probability density function (pdf) employed in the pseudo-random 

undersampling design) was used to retrospectively undersample and reconstruct the test 

MRSI dataset. Subsequently, the k-space location with the highest error was identified 

and that location in the mask ‘M’ was then sampled. This procedure, which is similar to a 

brute-force implementation, was repeated till the mask ‘M’ had enough samples to justify 

the chosen undersampling rate. The a priori mask was derived from the k-space of the 

anatomical reference scout acquired using the same field of view (FOV) as the MRSI 
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dataset. The scout k-space was cropped to match the corresponding MRSI spatial grid 

size (16x16). Intensity thresholding was applied to select the highest energy locations of 

k-space to form the mask at a certain acceleration factor. 

 

5.3.2 Simulation Results 

Figures 5.4 – 5.6 depict the simulation results for the phantom MRSI data. At 2X, 

all four undersampling patterns resulted in quantitatively comparable results, with no 

statistically significant differences between the 1X fully sampled reference and the CS-

MRSI reconstructions corresponding to each type of mask. At 3X, increasing deviations 

from the ground truth were found in the low resolution CS-MRSI reconstructions. 

 

Figure 5.4 Reconstruction (mean integrated intensity) results at 2X and 3X using the 4 

types of masks (* indicates p < 0.05). 
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At the 4X and 5X acceleration factors shown in Figure 5.5, the low resolution CS-

MRSI reconstructions continued to show increasing deviations from the 1X reference. 

The iterative design reconstruction broke down at 4X, whereas both the VD and a priori 

masks maintained statistical similarity (p > 0.05) with the 1X up to five-fold acceleration. 

The reconstruction results at 7X and 10X are illustrated in Figure 5.6, wherein the 

reconstructions from all four masks fail. 

 

Figure 5.5 Reconstruction (mean integrated intensity) results at 4X and 5X using the 4 

types of masks (* indicates p < 0.05). 

 

The normalized RMSEs (nRMSE) from all the reconstructed CS-MRSI datasets 

corresponding to each of the four types of masks at 2X – 5X, 7X, and 10X acceleration 

factors have been depicted in Figures 5.7 and 5.8. Figure 5.7 shows the nRMSE that was 
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computed considering the entire MRSI dataset, while in the Figure 5.8 only the voxels 

containing the phantom were considered when computing the nRMSE. The nRMSEs 

from the phantom dataset are comparable for the low resolution, VD, iterative design and 

a priori undersampling, with no significant differences in the reconstruction error 

between the four sampling designs. These results suggest that the nRMSE might not be 

the best metric to employ when evaluating different undersampling patterns and CS-

MRSI reconstruction accuracy. 

 

Figure 5.6 Reconstruction (mean integrated intensity) results at 7X and 10X using the 4 

types of masks (* indicates p < 0.05). All reconstructions fail at 7X and 10X. 

 

Table 5.1 lists the mean metabolite ratios ± standard deviations for the CS 

reconstructions obtained using the four sampling masks for the phantom MRSI dataset.  
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Figure 5.7 The normalized root mean square errors (nRMSEs) for accelerations 2X - 5X, 

7X, and 10X corresponding to each type of mask. The nRMSE was computed for the 

entire MRSI dataset. (LR- low resolution, VD – variable density) 

 

 

Figure 5.8 The nRMSEs for accelerations 2X - 5X, 7X, and 10X corresponding to each 

type of mask. Only the voxels containing the phantom were considered when computing 

the nRMSE. (LR- low resolution, VD – variable density) 
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Table 5.1 Mean metabolite ratios ± standard deviations for the phantom MRSI dataset 

corresponding to low resolution, VD, iterative design, and a priori undersampling at 1X – 

5X, 7X, and 10X accelerations (*p < 0.05 as compared to the 1X). 

 

(LR – Low Resolution, VD – Variable Density, NAA – N-acetylaspartate, Cr – creatine, 

Cho – choline) 

 
Phantom Dataset LR VD Iterative A priori 

 

 

 

 

NAA/Cr 

(Mean ± SD) 

 

1X 2.48 ± 0.56 2.48 ± 0.56 2.48 ± 0.56 2.48 ± 0.56 

2X 2.37 ± 0.67 2.36 ± 0.70 2.38 ± 0.64 2.43 ± 0.94 

3X 2.21 ± 0.36 (*) 2.36 ± 0.71 2.37 ± 0.73 2.38 ± 0.90 

4X 2.17 ± 0.32 (*) 2.31 ± 0.37 2.42 ± 0.75 2.31 ± 0.40 

5X 2.26 ± 0.37 (*) 2.40 ± 1.05 2.29 ± 0.33 (*) 2.42 ± 0.86 

7X 2.29 ± 0.30 (*) 2.27 ± 0.29 (*) 2.22 ± 0.25 (*) 2.25 ± 0.28 (*) 

10X 2.30 ± 0.38 (*) 2.26 ± 0.26 (*) 2.23 ± 0.26 (*) 2.29 ± 0.57 (*) 

 

 

 

 

Cho/NAA 

(Mean ± SD) 

 

1X 0.66 ± 0.11 0.66 ± 0.11 0.66 ± 0.11 0.66 ± 0.11 

2X 0.68 ± 0.14 0.68 ± 0.13 0.67 ± 0.12 0.69 ± 0.13 

3X 0.68 ± 0.12 0.64 ± 0.14 0.65 ± 0.12 0.67 ± 0.14 

4X 0.68 ± 0.11 0.68 ± 0.11 0.68 ± 0.12 0.66 ± 0.16 

5X 0.68 ± 0.10 0.70 ± 0.07 0.65 ± 0.12 0.66 ± 0.13 

7X 0.7 ± 0.09 0.62 ± 0.10 0.65 ± 0.10 0.67 ± 0.12 

10X 0.73 ± 0.07 (*) 0.65 ± 0.12 0.66 ± 0.09 0.72 ± 0.11 (*) 

 

 

 

 

Cho/Cr 

(Mean ± SD) 

 

1X 1.62 ± 0.42 1.62 ± 0.42 1.62 ± 0.42 1.62 ± 0.42 

2X 1.56 ± 0.29 1.53 ± 0.24 1.54 ± 0.23 1.61 ± 0.39 

3X 1.47 ± 0.20 1.48 ± 0.21 1.50 ± 0.24 1.53 ± 0.35 

4X 1.46 ± 0.22 (*) 1.56 ± 0.23 1.57 ± 0.32 1.48 ± 0.30 

5X 1.53 ± 0.20 1.53 ± 0.16 1.46 ± 0.26 (*) 1.50 ± 0.21 

7X 1.43 ± 0.18 (*) 1.46 ± 0.16 (*) 1.41 ± 0.23 (*) 1.49 ± 0.19 (*) 

10X 1.60 ± 0.43 1.46 ± 0.28 (*) 1.42 ± 0.22 (*) 1.58 ± 0.40 
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Figure 5.9 The PSFs of the four types of masks at each acceleration factor. (LR – Low 

Resolution, VD – variable density) 
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As seen from Table 5.1, at 2X acceleration there are no statistically significant 

differences between the metabolite ratios from each sampling scheme and the 1X fully 

sampled reference. Significant differences in the metabolite ratios are seen between the 

1X and (3X – 5X, 7X, 10X) datasets reconstructed using the low resolution sampling 

mask. Both a priori and VD undersampling show no statistical significance (p > 0.05) up 

to 5X, while the iterative design reconstructions show fidelity up to 4X when compared 

with the 1X reference. All reconstructions from the four sampling schemes fail at 7X and 

10X.   

 

5.3.3 Discussion & Conclusions 

A preliminary study was conducted to assess the effect of different undersampling 

masks on the CS-MRSI reconstruction quality. Four sampling schemes, namely low 

resolution, VD, iterative design, and a priori were retrospectively evaluated on a 

phantom MRSI dataset. The a priori and VD undersampling masks can be considered 

equivalent to the ‘Key-thresh’ and ‘CS-points’ masks previously employed by our group 

for fast acquisitions in dynamic contrast enhanced (DCE) MRI [174], with 

reconstructions maintaining high statistical fidelity up to 5X acceleration. All 

retrospectively generated CS-MRSI datasets were reconstructed using the algorithm 

described in [71], which was previously employed in Chapters 3, 4, and 5 of this 

dissertation. Reconstruction parameters were kept the same across the board to ensure 

that any resulting differences can be attributed to the type of mask being employed. 

Simulation results indicate that both the a priori and VD undersampling masks maintain 

high fidelity with the 1X reference up to 5X acceleration. The low resolution 

reconstructions showed statistically significant differences from the 1X with increased 
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undersampling. The breakdown in reconstruction even at a relatively lower acceleration 

such as 3X can be attributed to the placement of all samples at the k-space center, which 

does not satisfy the random undersampling criterion necessary in CS.  

The iterative sampling method was quantitatively comparable to the a priori and 

VD undersampling schemes even at higher accelerations. In this experiment, no 

distinction was made between the low and high frequency locations of k-space when 

selecting the points with maximum error, contrary to that employed previously by Liu et 

al [172]. This approach was chosen to ensure a brute-force evaluation of the k-space error 

locations since the computational complexity of evaluating a low resolution 16 x 16 

spatial grid in MRSI is comparatively low as compared to the matrix sizes employed in 

MRI. In the test datasets, the iterative design approach showed a tendency towards 

sampling the center more densely as compared to the peripheral regions of k-space (as 

can be seen from the masks in Figures 5.4 – 5.6), indicating that a sampling of lower 

frequencies reduces the reconstruction error more than the higher frequencies. A similar 

result has been found in a recent study conducted by Zijlstra et al [156]. Future work 

could involve partitioning the k-space into high and low frequency regions while 

checking for the maximum error, in order to ensure an optimal ratio of low/high 

frequency sampled locations. The iterative design method is tailored to each specific 

dataset, is retrospective in application, and can be computationally expensive, particularly 

when using larger grid sizes. More extensive simulations are required to determine 

whether the same mask can be employed for a particular anatomy for e.g. in brain MRSI.  

VD undersampling suggested by Lustig et al has shown high reconstruction 

fidelity in the datasets evaluated in various published CS-MRSI studies [71, 72, 85] as 
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well as those included in this thesis. While the VD method satisfies the CS requirement 

of pseudo-random undersampling, not all masks might be good candidates to achieve an 

accurate reconstruction. Furthermore, for low resolution MRSI datasets, only assessing 

the PSF (and degree of incoherence) of a sampling pattern may not be the only major 

criterion in determining an optimal mask. An observation along these lines has previously 

been made while investigating undersampling patterns in MRI [57, 156]. Due to the 

limited number of sampling points in MRSI, a less than optimal placement of even a few 

samples might lead to an inaccurate reconstruction. 

The a priori mask was extracted from the k-space of the anatomical scout that 

was acquired using the same FOV as the MRSI data. The k-space was cropped to match 

the size of the MRSI grid (16x16) and the highest energy locations were selected to 

design a mask at the desired undersampling factor. The a priori mask is simple to 

implement as an accompanying anatomical reference is always acquired prior to the 

MRSI scan. Thus, this mask can be prospectively implemented on the scanner and offers 

the added advantage of being tailored to the acquired MRSI data.  

In conclusion, a preliminary attempt was made to identify an optimal sampling 

mask in MRSI. More extensive simulations and quantitative comparisons could help 

determine a library of masks best suited to a particular application/dataset/anatomy. Other 

factors such as optimizing the regularization coefficients and the reconstruction 

algorithm, along with identifying an optimal sampling density for each data type could 

improve reconstruction accuracy in CS-MRSI. 
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CHAPTER 6 

CONCLUSIONS & FUTURE DIRECTIONS 

 

The development of fast data acquisition strategies can contribute to the 

availability of more diagnostic information in healthcare as it could help accommodate 

more MR sequences and protocols within the current clinical examination window. On 

the other hand, rapid exam protocols could potentially offer other benefits like reduced 

costs, increased patient throughput, less patient discomfort, and lower susceptibility to 

motion artifacts. The advancement of fast imaging techniques is, thus, critical for the 

establishment of sophisticated yet affordable patient care. This dissertation primarily 

focused on accelerating magnetic resonance spectroscopic imaging (MRSI) using 

compressed sensing (CS). CS-MRSI sequences were implemented on both preclinical 

and clinical scanners and both fully-sampled and accelerated MRSI data was acquired 

(prospective) or simulated (retrospective) in phantoms, small animals (mice), human 

volunteers, and patients using three different MRI scanner platforms. Both prospectively 

and retrospectively undersampled MRSI datasets were reconstructed offline in Matlab 

using a convex optimization algorithm to obtain the best estimate of the accelerated 

MRSI data in comparison with the fully-sampled 1X reference. The reconstruction 

accuracy and spectral fidelity of all CS-MRSI datasets was further assessed by making 

quantitative comparisons between the 1X and undersampled datasets in terms of the peak 

metabolite amplitudes, relative metabolite ratios, the normalized root mean square error 

(nRMSE), and the total acquisition time. A pilot test was also conducted to identify an 

optimal sampling mask for CS-MRSI at each acceleration factor. 
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6.1   Preclinical CS-MRSI 

CS was employed to speed-up spectroscopic imaging on the Bruker 7 T small 

animal MRI scanner, as detailed in Chapter 3. The lactate-CS-MRSI sequence achieved 

rapid mapping of the lactate peak both in vitro and in vivo in mice subcutaneously 

implanted with H1975 tumor cells. In the phantom, accelerations up to 10X showed no 

statistically significant differences from the gold standard, while prospectively 

undersampled MRSI acquisitions in tumor mice demonstrated negligible information loss 

and high fidelity even when only 20% of the k-space space locations were sampled (5X 

acceleration). In all experiments, it was demonstrated that CS can accelerate MRSI by 

five-fold, with negligible reconstruction errors and having statistical equivalence (p > 

0.05) with the 1X fully sampled reference data.   

Preclinical imaging is more SNR limited as compared to clinical imaging as the 

acquisition parameters such as the field of view (FOV) and slice thickness are often an 

order of magnitude lower than those employed while imaging humans. This leads to 

smaller voxel sizes, thus, reducing the SNR particularly in hard to image areas that are 

more prone to motion or susceptibility artifacts. Higher averages are commonly required, 

especially in vivo, to achieve adequate SNR. For e.g. the acquisition of a 16 x 16 x 2048 

spectroscopic grid in the mouse MRSI datasets illustrated in Chapter 3 necessitated at 

least 4 signal averages to obtain adequate SNR, which resulted in a total scan time of 25 

min 36 s with a TR = 1500 ms at 7 T for the fully sampled 1X MRSI dataset. The 

selected FOV of 27.2 x 27.2 mm2 and slice thickness of 3 mm resulted in voxels that 

were 1.7 mm x 1.7 mm x 3 mm. On the other hand, an in vivo clinical scan of the adult 

brain would for e.g. cover a FOV 100 x 100 x 15 mm3, and for the same 16 x 16 spatial 
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grid result in voxels that are 6.25 mm x 6.25 mm x 15 mm, ~4X larger than those in small 

animals. Often a single signal average would suffice to achieve optimal SNR (6 min 24 s 

with TR = 1500 ms) for e.g. when scanning the brain, although longer scan times may be 

necessary in SNR limited organs such as the prostate. 

Such lengthy scan times are not desirable when imaging animals that are typically 

anesthetized during the experiment. Particular care also needs to be taken when 

performing repeated measurements on the same animal at different time points. 

Furthermore, it is not possible to perform dynamic imaging studies and capture the subtle 

changes for e.g. in tumor metabolism using such lengthy acquisition protocols. In view of 

the above, CS accelerated MRSI can help achieve rapid mapping of important biomarkers 

with high fidelity. The time gained from CS-MRSI can also be utilized to improve 

detection of the smaller metabolites like 2-hydroxyglutarate (2HG), glycine, alanine, and 

glutamate, which have proven to be important markers in various malignant tumors [167, 

168, 175, 176]. These harder to detect metabolites typically require increased averaging 

to achieve sufficient SNR, due to their relatively smaller amplitudes as compared to the 

standard metabolites like choline, creatine and NAA. On the other hand, the improved 

detection of smaller metabolites that are amenable to spectral editing using an accelerated 

editing sequence (e.g. the lactate-CS-MRSI sequence) may not require higher averages. 

This would thus, not offset the time gained from CS-MRSI. The lactate-CS-MRSI 

sequence can be employed to capture the changes in tumor lactate metabolism in 

response to an imaging probe or therapy, as demonstrated in Chapter 3.  

Preclinical MRI scanners facilitate non-invasive imaging at the molecular and 

cellular level, which is a critical tool in cancer pharmacology studies. Probing cellular 
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activity and dysfunction, particularly in cancer metabolism, can aid in the testing and 

development of new drugs and treatment strategies. Preclinical trials offer greater insights 

as compared to in vitro studies and can help in tumor phenotyping and longitudinal 

evaluations of disease progression and therapeutic outcomes. Fast data acquisition 

techniques have the potential to play a pivotal role in realizing the goals of preclinical 

imaging. 

 

6.2   Clinical CS-MRSI 

The clinical applications of CS-MRSI were detailed in Chapters 4 and 5. The 

retrospective application of CS to MRSI was demonstrated in 20 pediatric patients 

scanned for various brain related concerns, in Chapter 4. The undersampled 

reconstructions maintained high fidelity and statistical similarity (p > 0.05) with the 1X 

reference even at 80% undersampling, similar to that seen with the preclinical CS-MRSI 

datasets. The main limitation of this study was that it was performed retrospectively using 

the fully sampled 1X MRSI data for each patient. Future work could involve 

implementing a library of the best pseudo-random undersampling masks corresponding to 

each acceleration factor on the Philips 3 T Ingenia scanner to enable prospective CS 

acquisitions. More in vitro and in vivo clinical applications of CS-MRSI were discussed 

in Chapter 5, including phantom results from the prospective k-space undersampling 

implemented on the GE Discovery 3 T MRI scanner. Other aspects involved determining 

the best pseudo-random undersampling mask tailored to MRSI at each acceleration 

factor, identifying the acceleration factor at which the reconstruction algorithm failed, 

and optimization of the CS-MRSI reconstruction algorithm. Future work in these areas 
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would require testing more methods to determine the ‘most optimal’ mask for CS-MRSI 

depending on the application/type of dataset along with improving the cost 

function/functional of the non-linear iterative reconstruction algorithm, to better exploit 

the CS sparsity criterion. 

The primary objective of this thesis was to establish the utility of fast MRSI, in 

particular CS accelerated MRSI, in order to make a strong case for routine MRSI exams 

in the clinic. Determination of the most optimal parameters for prospective CS-MRSI and 

extensive validation of the reconstruction accuracy would give the clinician confidence to 

exclude the 1X fully sampled MRSI scan. Extension of CS-MRSI to three spatial 

dimensions would enable one to exploit the sparsity along the slice direction, leading to 

potentially higher acceleration factors and corresponding reduction in the scan time. 

However, as previously discussed in Chapter 4, acquisition of 3D fully-sampled MRSI 

datasets in patients is not possible due to the prohibitive scan time. Prospective 3D CS-

MRSI scans can, however be tested in patients if the reconstruction fidelity has been 

sufficiently validated in human volunteers.  

Furthermore, the acquisition of MRSI data involves complicated steps like B0 

shimming and water/lipid suppression, which play a critical role in determining the 

quality of MRSI data. This would require specialized operator training as in most cases a 

manual optimization of the above parameters is required to achieve the desired spectral 

quality. Another aspect to be considered is the implementation of CS reconstruction 

routines on the scanner for immediate viewing of the spectroscopic data. This is 

essentially complicated by the fact that a CS reconstruction takes ~ 4 min for a 2D MRSI 

dataset on a 3 GHz computer (for the 16 x 16 x 2048 datasets illustrated in this thesis), 
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with larger grid sizes and datasets of higher dimensionality requiring more computation 

time [72, 78, 93]. Reconstructed MRSI data also requires a series of post-processing 

operations that need to be applied before presenting the final metabolite maps/spectra for 

interpretation. Such long processing times are not practical for routine clinical use and 

would necessitate high speed computing routines that are compatible with the scanner 

software. 

The non-linear iterative CS reconstruction preserves the spectral line shapes but at 

the same time causes a gradual smoothing of the spectra with increasing acceleration. 

This is due to the denoising introduced by the wavelet and total variation terms in the 

functional of the CS reconstruction algorithm. CS denoising could lead to a smoothing of 

smaller metabolites that are close to the noise floor in the MRS spectrum, thus, presenting 

the disadvantage of missing these less prominent signals altogether. This dissertation 

focused on the larger metabolites, namely, NAA, creatine, choline, and lactate, which 

appear as prominent peaks in the MRS spectrum. However, there are other smaller 

metabolites such as alanine, glycine, glutamate, 2HG, and myo-inositol that are important 

biomarkers and relatively hard to detect. In such cases, the reconstruction algorithm 

would need to be tailored to ensure a reliable representation of low concentration 

metabolites at higher accelerations, especially when the acquired MRSI data is SNR 

limited.  

In studies involving these smaller metabolites, one could also choose to offset the 

time gained by employing increased signal averaging to boost the SNR. Future studies 

could focus on investigating the true sensitivity of metabolite detection as a function of 

scan time to optimize various parameters in the CS reconstruction algorithm. 
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Furthermore, smaller metabolites that are amenable to spectral editing can be selectively 

acquired when their detection and quantification is critical. While this approach removes 

all other metabolite peaks in the spectrum, the biomarker of interest (for e.g. lactate) can 

be reliably captured with a corresponding gain in time when combined with CS 

acceleration. This would, however, require the development and implementation of 

specialized pulse sequences tailored to the metabolite of interest.     

 

6.3   Future Directions: Multi-parametric Assessment of Cancer 

Inclusion of MRSI in scan protocols is essential for a true multi-parametric 

assessment of cancer, on both the clinical and preclinical fronts. The information from 

various MRI sequences like diffusion weighed imaging (DWI), dynamic contrast 

enhanced imaging (DCE), and MRSI would enable the clinician to assess different 

parameters and variations from voxel-to-voxel, leading to potentially improved diagnosis 

and treatment strategies. The non-invasive extraction of various quantitative parameters 

like the tumor perfusion, pO2, apparent diffusion coefficient (ADC), and metabolite 

concentrations necessitates a multi-modality approach that achieves a differential gain in 

information from different techniques that probe cancer metabolism. An optimal trade-off 

between various parameters like the resolution, SNR, sensitivity, penetration depth, 

artifacts, imaging speed, and costs will facilitate a more comprehensive multi-parametric 

assessment in cancer targeting and therapeutics.   
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APPENDIX A 

A FASTER PISTOL FOR 1H MR-BASED QUANTITATIVE TISSUE OXIMETRY 
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This section is based on the paper – “A Faster PISTOL for 1H MR-based 

quantitative tissue oximetry”, R. Vidya Shankar and V. D. Kodibagkar, in submission to 

NMR in Biomedicine. 

 

A.1   Introduction 

The normal functioning of various tissues and organs in the human body is 

dependent on the efficient delivery of oxygen. Tissue oximetry techniques are 

increasingly playing an important role in the assessment and monitoring of various 

pathologies such as in traumatic brain injury [177-179], ischemic stroke [180-186], 

wound healing [187], in cellular tracking and imaging the health of labeled cells [188-

192], resuscitation approaches in critical organ beds [193], and for monitoring oxygen 

dynamics in cancer [194-196]. Numerous factors can cause tissue to develop hypoxic 

(low oxygen tension, pO2) regions such as impaired perfusion, breakdown in diffusion 

processes, reduced oxygen transport functionality of blood in conditions like anemia, 

increased cellular cytotoxicity, and low blood oxygen tension commonly seen in 

pulmonary diseases [197, 198]. Solid tumors tend to have hypoxic foci that contribute to 

malignant progression and poor therapeutic response [199]. Histological studies have 

revealed extensive hypoxic regions in various tumors of the brain, breast, and prostate 

[200-202], with very high resistance to radiotherapy identified in severely hypoxic 

tumors [203-205]. The mapping of tissue pO2 in vivo may be critical in furthering 

investigations of the mechanisms that underlie tissue function, particularly in predicting 

therapeutic outcomes for individual patients as well as in the design of efficacious 

therapeutic combinations [206, 207]. Furthermore, fast routine tissue oxygenation 
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measurements in individual organs will enable the clinician to evaluate and prescribe 

defined endpoints for medical interventions, along with an optimized use of hyperoxic 

oxygen in various medical therapies. 

PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) is a 

recently developed oximetry technique in proton MRI that is based on the relaxometry of 

siloxanes such as hexamethyldisiloxane (HMDSO) [208]. HMDSO has been identified as 

a promising 1H pO2 reporter molecule as its spin-lattice relaxation rate R1 tends to exhibit 

a linear dependence on the pO2, particularly in the temperature range 26 – 46 oC [209]. 

The PISTOL sequence has been designed to selectively excite and map the T1 of the 

siloxane 1H resonance (~ 0 ppm), while simultaneously suppressing the peaks from water 

and fat. One can subsequently use PISTOL to map the tissue pO2 at various locations 

where siloxanes (neat or emulsified) have been exogenously administered or accumulated 

after endogenous administration. This sequence can also be used to record the dynamic 

changes in the tissue pO2 in response to intervention [208, 210] or for imaging and 

oximetry of siloxane labelled cells [190, 191].  

The PISTOL sequence requires 3 minutes 45 seconds to map the T1, and hence 

pO2, of exogenously administered HMDSO at 7 T. A faster oximetry sequence could be 

particularly useful in studies where dynamic changes in the tissue pO2 need to be rapidly 

recorded in response to gas intervention. Hence the primary objective of this study was to 

develop a faster siloxane-selective relaxometry sequence and to compare it, in vitro and 

in vivo, with the PISTOL sequence using metrics such as the total imaging time and 

fidelity of the acquired relaxometry data. 
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A.2   Materials and Methods 

PISTOL-LL Pulse Sequence for pO2 measurement  

A new oximetry sequence, henceforth referred to as PISTOL-LL (Figure A.1), 

was developed by modifying the PISTOL pulse sequence [208] where the ARDVARC 

magnetization preparation scheme was replaced by a frequency-selective version of the 

Look-Locker [211, 212] approach. The PISTOL-LL sequence, depicted in Figure A.1, 

consists of a frequency-selective π inversion recovery preparation pulse, followed by a 

sequence of 55 low flip-angle αo pulses, with a delay τ between two successive pulses. 

The small flip angle α pulses are also frequency selective for the HMDSO resonance. 

Each α pulse is immediately followed by an EPI readout/module, thus, enabling multiple 

(in this case 55) image acquisitions within the same TR. An excitation angle of α = 5o 

was employed. The magnetization recovery curve was sampled linearly using 55 equally 

spaced αo pulses, with the spacing between two subsequent αo pulses being τ = 1000 ms 

(TR = 55 s). Thus, the PISTOL-LL sequence enabled T1 mapping of HMDSO in ~55s. 

For the PISTOL acquisitions, the T1 measurements were obtained using the 

ARDVARC (alternating relaxation delays with variable acquisitions for reduction of 

clearance effects) protocol, as employed previously [208]. The total scan time for each T1 

map acquired using PISTOL was 3 minutes 45 seconds. PISTOL and PISTOL-LL were 

implemented on a horizontal-bore Bruker BioSpec® 7 T preclinical MRI scanner with 

actively shielded gradients and all in vitro and in vivo experiments were conducted on 

this scanner. An HMDSO-selective chemical-shift selective spin-echo sequence was 

initially used to locate the HMDSO resonance. Both PISTOL and PISTOL-LL were 

subsequently run to measure the T1 of HMDSO at the chosen slice location. 
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Figure A.1 Pulse sequence diagram for HMDSO-selective oximetry using PISTOL-LL. 

The sequence consists of a frequency-selective π inversion recovery preparation pulse, 

followed by N = 55 α = 5o pulses (also HMDSO selective), with a delay τ = 1s between 

two successive αo pulses. An EPI readout follows each αo pulse, enabling a linear 

sampling of the magnetization recovery curve within the same TR (55 s). 

 

Both the PISTOL and PISTOL-LL datasets were processed offline using home-

built algorithms in Matlab to compute T1, R1 (=1/T1), and pO2 maps using calibration 

curves corresponding to PISTOL and PISTOL-LL at 7 T, respectively (Figure A.2 (a)) on 

a voxel-by-voxel basis. For the PISTOL measurements, the T1 values were computed for 

each voxel by appling a three-parameter least-squares curve fit to the measured signal 

intensities from 16 τ values using the Levenberg-Marquardt algorithm.  

For the PISTOL-LL measurements, the curve-fitting procedure corresponding to 

inversion recovery was applied to the measured signal intensities from 55 τ values, for 

each voxel. A three parameter fit was applied to the recovery curve 1��
 = @ −
A�BC�−� #	∗⁄ 
 to obtain A, B, and T1*. It is difficult to directly obtain T1  from T1*  as the 

RF coil profile and B1 field inhomogeneities lead to imperfections in the flip angle α at 

each pixel location, causing it to differ within the sample [213, 214]. When α is small (5o 

in our experiments), #	 =  #	∗�A @F − 1
 can be employed to correct for the longitudinal 
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relaxation time [214]. Lastly, the R1 maps from both sequences were then converted into 

pO2 maps using the calibration curves for HMDSO at 7 T.   

 

In Vitro Calibration and Phantom Experiments 

For the calibration experiments, a second phantom consisting of four gas-tight 

John Young NMR tubes (Wilmad Labglass, Buena, NJ, USA) was constructed. Each of 

these four tubes housed 1 ml of HMDSO bubbled with different concentrations of oxygen 

(0%, 5%, 10%, and 21% calibrated gases). The phantom was placed on a warm heating 

pad connected to a circulating water bath and the temperature was monitored using a 

fiber-optic temperature probe (FISO Technologies Inc., Quebec City, Quebec, Canada). 

Both the PISTOL and PISTOL-LL sequences were run to obtain the calibration constants 

for HMDSO at 7 T. Mean T1 values were measured from the region of interest 

corresponding to each tube. Mean R1 values were obtained from repeated measurements 

and plotted versus pO2 to generate the calibration curve for HMDSO. 

A test phantom was constructed to evaluate and optimize the PISTOL-LL 

oximetry sequence. The phantom consisted of three tubes containing HMDSO, mineral 

oil (to represent fat), and water. A 5 mm NMR tube containing HMDSO was placed 

inside a 15 mm tube containing mineral oil, and this setup was in turn placed inside a 

larger 50 ml tube housing deionized (DI) water; all three tubes were tightly sealed to 

ensure no leakage. Both the PISTOL and PISTOL-LL oximetry sequences were tested on 

the phantom to compare the ability to selectively excite the HMDSO resonance, while 

suppressing the peaks from water and fat. R1 maps were generated from the T1 maps that 

were obtained by fitting the data on a pixel-by-pixel basis as described previously. The 
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mean T1 (and R1) values over the region of interest were obtained and the pO2 values 

over the selected region were subsequently calculated using the calibration constants 

obtained as described above. 

 

In Vivo Experiments  

Approval was obtained from the Institutional Animal Care and Use committee of 

Arizona State University for all in vivo experiments. A cohort of six (n = 6) healthy 

Fischer F344 rats was used for the pO2 experiments. The rats were anesthesized via 

isoflurane gas inhalation (air and 2% isoflurane) and remained passively restrained 

during the imaging experiment. 30-50 µL of HMDSO was injected along two to three 

directions in the same plane into the left thigh muscle of each rat for the in vivo pO2 

measurements. A 72 mm volume transmit coil combined with a surface receive coil was 

employed for the in vivo studies. The rats were placed in a prone position inside the 

magnet and the left thigh muscle along with the hind leg was carefully positioned under 

the surface coil. The rats were kept warm by placing them on a heating pad connected to 

a circulating water bath operating at 37o C.  

A siloxane-selective echo planar imaging (EPI) sequence was initially used to 

locate the reporter molecule and a cross section through the thigh at the desired slice 

location was subsequently imaged. The rats were subjected to respiratory challenge by 

supplying air (~20 min) – oxygen (~30 min) – air (~30 min), as employed previously 

[208], to introduce modulation in the tissue oxygenation. A set of T1 datasets was 

collected every 5 min by running both the PISTOL (3 min 45 s) and PISTOL-LL imaging 

(55 s) sequences in an interleaved manner. The datasets were processed offline using in 



149 

 

house Matlab fitting routines to generate pO2 maps from the R1 values. Sixteen pO2 maps 

were obtained for each of the PISTOL and PISTOL-LL oximetry sequences over a time 

interval of ~80 minutes. 

 

A.3   Results 

Phantom Experiments 

Figures A.2 and A.3 illustrate the results from the phantom experiments. The 

PISTOL-LL sequence was able to successfully eliminate the signals from water and 

mineral oil as well as the siloxane-selective spin-echo and PISTOL sequences. A linear 

fit to the pO2 calibration phantom data from the PISTOL sequence generated a calibration 

curve R1 = (0.125 ± 0.001) + (0.109 ± 0.002)X10-2 x pO2 while that from the PISTOL-LL 

sequence generated a calibration curve R1 = (0.124 ± 0.002) + (0.113 ± 0.004) X10-2  x 

pO2 at 37 oC at 7 T, as illustrated in Figure A.2 (a).  

As seen from the figure, both sequences generate similar calibration constants for 

neat HMDSO at 7 T. In Figures A.2 (c), A.2 (d), and A.2 (e), the SNR of HMDSO was 

356.96 (siloxane-selective spin echo sequence), 1600 (PISTOL at TR = 55 s), and 88.59 

(PISTOL-LL at TR = 55 s), respectively. The CNR for the frequency selective images in 

Figures A.2 (c), A.2 (d), and A.2 (e) with respect to water was calculated to be 343.29, 

1597.4, and 85.16, respectively, while that with respect to fat was determined to be 

337.17, 1573.7, and 83.78, respectively. 
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Figure A.2 Comparison of calibration curves and siloxane selectivity between PISTOL 

and PISTOL-LL. (a) The calibration curve obtained from a linear fit of the PISTOL data 

is given by R1 = (0.125 ± 0.001) + (0.00109 ± 0.00002) x pO2, while that from the 

PISTOL-LL sequence is given by R1 = (0.124 ± 0.002) + (0.00113 ± 0.00004) x pO2 at 

37 oC and 7 T. (b) Phantom consisting of sealed tubes of water/oil/HMDSO. HMDSO 

images from the (c) frequency-selective spin-echo sequence, (d) PISTOL (TR=55s), and 

(e) PISTOL-LL (TR=55s) show complete fat and water suppression.  



151 

 

 

Figure A.3 PISTOL and PISTOL-LL sequences run on the water/oil/HMDSO phantom: 

T1 maps in (a) and (e), and T1 error maps in (b) and (f) for the PISTOL and PISTOL-LL 

sequences, respectively. Figures (c) and (g) depict the corresponding pO2 maps and the 

pO2 error maps for (d) PISTOL and (h) PISTOL-LL, respectively. The magnetization 

recovery curves from the two sequences are depicted in (i) and (j) for PISTOL 

(saturation-recovery) and PISTOL-LL (inversion recovery), respectively. 

 

PISTOL and PISTOL-LL sequences were both run on the water/mineral 

oil/HMDSO phantom described earlier to map the T1 of HMDSO and the results obtained 

at 7 T are as illustrated in Figure A.3. The mean T1 of HMDSO in air i.e. 21% oxygen 

concentration at 7 T determined from the PISTOL sequence is 3.47 ± 0.12 s, while that 
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from the PISTOL-LL sequence is 3.61 ± 0.29 s. The mean T1 error from the PISTOL fit 

routine is 0.41 ± 0.05 s, while that from PISTOL-LL is 0.46 ± 0.13 s. The mean pO2 as 

determined from the PISTOL sequence is 150.6 ± 8.8 torr, while that from the PISTOL-

LL sequence is 145.6 ± 22.7 torr. The resulting pO2 error from the PISTOL fit was found 

to be 31.43 ± 2.62 torr, while that from the PISTOL-LL sequence was 30.09 ± 2.62 torr. 

 

In Vivo Studies 

HMDSO was readily detected by both the PISTOL and PISTOL-LL sequences, 

along with complete fat and water suppression in vivo, as seen in Figure A.4. Frequency-

selective spin-echo and EPI sequences were initially employed to identify the distribution 

of the HMDSO reporter molecule, as seen in Figure A.4 (b). In Figures A.4 (b), A.4 (c), 

and A.4 (d), the SNR of HMDSO was 541.31 (siloxane-selective spin echo sequence), 

407.98 (PISTOL at TR = 55 s), and 23.37 (PISTOL-LL at TR = 55 s), respectively. The 

T1 and pO2 maps generated from the data acquired by the PISTOL and PISTOL-LL 

sequences show the same distribution of HMDSO, as illustrated in Figure A.5. The effect 

of breathing oxygen on the changes in the muscle pO2 was evaluated during the in vivo 

experiments for both the sequences under consideration. In the rat thigh muscle (n = 6), 

the baseline pO2 value for the imaging data recorded using the PISTOL sequence ranged 

from 41 to 78 torr (mean 58 ± 10 torr), while the baseline pO2 value for the data acquired 

by the PISTOL-LL sequence ranged from 40 to 76 torr (mean 59 ± 9 torr) within the 

pooled cohort.  

A significant increase (p < 0.05, compared to baseline) in the pO2 values was 

recorded by the first measurement (5 min) after the gas inhaled by the rats was switched 
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to 100% oxygen breathing; the pO2 values continued to rise over a 30 minute time 

interval during which pure oxygen was supplied. At the end of 30 minutes of oxygen 

breathing, the pO2 values ranged from 112 to 284 torr (mean 192 ± 66 torr) as recorded 

by the PISTOL sequence, while those for the PISTOL-LL sequence ranged from 86 to 

277 torr (mean 184 ± 67 torr). When the inhaled gas was switched back to air, a rapid 

drop in the pO2 values was observed (as expected), with the detected values settling down 

to near baseline measurements after approximately 30 minutes of switching back to air 

breathing. At the end of the last 30 minute interval, the pO2 values recorded by the 

PISTOL sequence ranged from 63 to 82 torr (mean 74 ± 8 torr), while the pO2 

measurements mapped by the PISTOL-LL sequence ranged from 70 to 86 torr (mean 76 

± 6 torr). Figure A.6 shows the mean pO2 values mapped from the PISTOL and PISTOL-

LL sequences for the entire time course of air – oxygen - air breathing over a time 

interval of ~80 minutes. 

 

 

Figure A.4 HMDSO-selective oximetry in vivo (a) T2-weighted image of a representative 

rat thigh muscle, (b) Frequency-selective spin-echo image of the HMDSO injected into 

the thigh muscle, (c) PISTOL image at TR = 55s, and (d) PISTOL-LL image at TR = 

55s. 
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Figure A.5 T1 and pO2 maps from PISTOL and PISTOL-LL. Time course PISTOL (a, b, 

c) and PISTOL-LL (d, e, f) T1 maps, respectively, in response to gas intervention: 

baseline air breathing (a, d), after 30 mins of oxygen breathing (b, e), and 30 mins after 

returning to breathing air (c, f). Corresponding time course PISTOL (g, h, i) and 

PISTOL-LL (j, k, l) pO2 maps, respectively, in response to gas intervention: baseline air 

breathing (g, j), after 30 mins of oxygen breathing (h, k), 30 mins after returning back to 

breathing air (i. l). 
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Figure A.6 Dynamic changes in the rat thigh muscle pO2 values in response to gas 

intervention – (a) From PISTOL, and (b) From the PISTOL-LL sequence. The three time 

points depicted correspond to the start of air breathing, 30 mins after switching to oxygen 

breathing, and 30 mins after switching back to air. (c) Mean pO2 values for all the rats 

(n=6) over the time course air-O2-air. The two methods give similar results (p > 0.05) 

when compared under air and oxygen. (d) Mean pO2 values for all the rats (n=6) over the 

entire 80 min time course air (20 min) - O2 (30 mins) – air (20 mins). (* = p < 0.05 

between PISTOL and PISTOL-LL measurements). 

 

A.4   Discussion & Conclusions 

PISTOL-LL, enables T1 and subsequently pO2 mapping of the HMDSO 1H 

resonance in under one minute at 7 T. This results in the speeding-up of 1H MR tissue 

oximetry by ~4X compared to PISTOL. The new oximetry technique could be 

particularly useful as the T1 of HMDSO ranges from ~2.5 s (160 torr, hyperoxic 
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conditions) to ~11 s (0 torr, anoxic conditions). This results in relatively long scan times 

in MR oximetry as the minimum TR for the pulse sequence has to be chosen to equal at 

least five times the T1 of the reporter molecule under investigation. PISTOL-LL will also 

further accelerate the mapping of tissue pO2 changes when using siloxanes with T1 

recovery times that are shorter than HMDSO. 

The results demonstrate that both the PISTOL and PISTOL-LL sequences give 

statistically similar (p > 0.05) results during baseline air breathing and at the end of the 

30 minute interval after switching the inhaled gas back to air. The mean pO2 values 

recorded by both these sequences were slightly different in the 30 minute time interval 

when the rats were subjected to 100% oxygen breathing. This difference in mean pO2 

values is expected as both sequences were run in an interleaved manner and the dynamic 

changes in the muscle pO2 at any particular instant cannot be captured by both sequences 

simultaneously. However, it is fair to expect comparable mean pO2 values from the two 

sequences at the beginning (during 20 minutes of baseline air breathing) and end (30 

minutes after return to air breathing) of the experiment. This is indeed the case as 

discussed before and is illustrated in Figures A.6 (a) – A.6 (d). 

There are minor differences in the T1 values measured by the two sequences 

under consideration also due to the fact that the data is acquired using two separate 

sequences that employ two different recovery mechanisms - PISTOL is essentially a 

saturation recovery T1 mapping sequence while PISTOL-LL samples the inversion 

recovery curve using small flip angle pulses to achieve T1 mapping. The datasets 

acquired by the two sequences differ in SNR with the PISTOL-LL sequence having 

lower SNR due to the low tip angle excitation pulses (α = 90o for PISTOL and a series of 
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α = 5o pulses for PISTOL-LL). The PISTOL-LL selective images at TR = 55s (Figures 

A.2 (e) and A.4 (d)) have a SNR that is ~18x lower than that of the corresponding 

PISTOL images (Figures A.2 (d) and A.4 (c)). Different fit routines employed to post 

process the datasets from the two sequences also contribute to minor differences in the 

reported T1, R1, and pO2 values. However, the T1 values from both fit routines are very 

similar, with only minor differences even in the curve fit errors, as noted previously in 

the results. This suggests that the PISTOL-LL sequence achieves accurate T1 (and pO2) 

mapping that is comparable to the PISTOL sequence, in spite of having an ~18x lower 

SNR. 

It has been demonstrated that the new oximetry sequence PISTOL-LL has an 

improved performance with the PISTOL sequence; PISTOL-LL preserves the fidelity of 

the acquired relaxometry data, while accelerating data acquisition by ~4X. PISTOL-LL 

could be employed to image other siloxanes [215] that offer superior performance and 

have shorter T1 relaxation times as compared to HMDSO, thus, resulting in even faster 

acquisition times in MR oximetry. This sequence also has applications for in vivo tumor 

hypoxia imaging using nitromidazole-based T1 contrast agents like GdDO3NI [216, 217] 

to aid in validation. This technique could potentially be translated to the clinic, given the 

availability of state-of-the-art MR hardware and excellent fat and water suppression 

routines in clinical scanners. 

Furthermore, PISTOL-LL can also be adopted in 19F tissue oximetry [195, 196, 

218-222] with minor modifications. Perfluorocarbons (PFCs) have been employed in 19F 

NMR to quantitate the pO2, using the reporter molecule hexaflurobenzene (HFB) [195, 

218, 223, 224], wherein the R1 of these PFC nano emulsions exhibits a linear dependence 
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on the pO2. Cell labeling and tracking in the past few years has also been successfully 

achieved using PFC nano emulsions [192, 225-228]. PISTOL-LL can thus facilitate fast 

and dynamic pO2 mapping in various tracking and cellular labeling applications, such as 

those in neural stem cells, in both 19F and 1H oximetry studies involving dual-modality 

MRI-fluorescence probes [190, 191, 229]. Given the speed of acquisition, the PISTOL-

LL sequence can be easily incorporated into existing clinical protocols, thus, providing a 

valuable tool for fast quantitative oximetry. 

In summary, a fast MRI pulse sequence based on the Look-Locker approach was 

presented for accelerating the acquisition of T1 datasets in 1H MR tissue oximetry. The 

new oximetry sequence, PISTOL-LL, enables rapid T1 and pO2 mapping of the HMDSO 

reporter molecule in less than one minute, resulting in a four-fold acceleration as 

compared to PISTOL. The PISTOL-LL technique can serve as a faster tool for probing 

oxygen dynamics in tissue oximetry studies.     
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APPENDIX B 

TABLES FROM CHAPTER 4



 

This section includes tables containing patient demographic information and MRI/MRSI parameters for the 20 pediatric brain 

MRSI cases discussed in Chapter 4. 

Table B.1 Patient demographics and related information from MRI and MRSI for 14 non-tumor pediatric cases, scanned for other 

brain related concerns. (WM - white matter, NAA – N-acetyl aspartate, Cr – creatine, Cho – choline, Lac – lactate)  

 

Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

1 

 

 

 

M 

 

 

 

 

5 

 

optic atrophy, 

hypoplasia of anterior 

corpus callosum and 

optic nerves 

 

1X: 1.85 ± 1.30 

2X: 1.88 ± 1.78 

3X: 1.84 ± 1.17 

4X: 1.90 ± 1.23 

5X: 1.95 ± 1.42 

 

 

1X: 0.40 ± 0.34 

2X: 0.40 ± 0.35 

3X: 0.44 ± 0.54 

4X: 0.40 ± 0.35 

5X: 0.36 ± 0.15 

 

 

1X: 0.55 ± 0.14 

2X: 0.55 ± 0.15 

3X: 0.54 ± 0.15 

4X: 0.55 ± 0.15 

5X: 0.59 ± 0.14 

 

 

 

 

2 

 

 

 

M 

 

 

 

 

 

1 

 

 

 

seizures 

 

 

1X: 2.44 ± 1.74 

2X: 2.45 ± 1.85 

3X: 2.56 ± 2.36 

4X: 2.46 ± 1.83 

5X: 2.60 ± 2.20 

 

 

1X: 0.55 ± 0.42 

2X: 0.54 ± 0.46 

3X: 0.57 ± 0.54 

4X: 0.59 ± 0.59 

5X: 0.57 ± 0.52 

 

 

1X: 0.91 ± 0.24 

2X: 0.87 ± 0.20 

3X: 0.89 ± 0.22 

4X: 0.91 ± 0.27 

5X: 0.98 ± 0.26 

 

 

 

 

3 

 

 

 

F 

 

 

 

 

 

16 

 

 

 

concussion 

 

 

1X: 1.80 ± 1.43 

2X: 1.91 ± 1.90 

3X: 1.80 ± 1.39 

4X: 2.00 ± 1.84 

5X: 1.71 ± 1.10 

 

 

1X: 0.61 ± 0.41 

2X: 0.62 ± 0.40 

3X: 0.60 ± 0.39 

4X: 0.64 ± 0.40 

5X: 0.61 ± 0.37 

 

 

1X: 0.72 ± 0.15 

2X: 0.76 ± 0.24 

3X: 0.76 ± 0.23 

4X: 0.81 ± 0.30 

5X: 0.77 ± 0.24 
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Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

4 

 

 

 

M 

 

 

 

 

4 

 

 

Rathke's cleft cyst or 

pituitary 

macroadenoma 

 

 

1X: 2.25 ± 2.00 

2X: 2.48 ± 2.31 

3X: 2.62 ± 2.87 

4X: 2.55 ± 2.50 

5X: 2.45 ± 2.13 

 

 

1X: 0.40 ± 0.19 

2X: 0.36 ± 0.14 

3X: 0.35 ± 0.14 

4X: 0.35 ± 0.14 

5X: 0.34 ± 0.15 

 

 

1X: 0.67 ± 0.19 

2X: 0.67 ± 0.22 

3X: 0.65 ± 0.16 

4X: 0.65 ± 0.17 

5X: 0.65 ± 0.16 

 

 

 

 

5 

 

 

 

F 

 

 

 

 

3 

 

 

neurofibromatosis 

type 1 

and lesion in optic 

pathway/chiasm 

 

1X: 2.79 ± 1.19 

2X: 2.84 ± 1.19 

3X: 2.82 ± 1.16 

4X: 2.81 ± 1.13 

5X: 2.80 ± 1.07 

 

1X: 0.55 ± 0.69 

2X: 0.53 ± 0.62 

3X: 0.47 ± 0.32 

4X: 0.46 ± 0.33 

5X: 0.63 ± 0.47 

 

1X: 1.10 ± 0.39 

2X: 1.12 ± 0.44 

3X: 1.12 ± 0.48 

4X: 1.10 ± 0.41 

5X: 1.12 ± 0.42 

 

 

 

 

6 

 

 

 

F 

 

 

 

 

9 

 

 

seizures, temporal 

arachnoid cyst 

 

1X: 2.40 ± 1.17 

2X: 2.47 ± 1.47 

3X: 2.44 ± 1.36 

4X: 2.60 ± 1.76 

5X: 2.83 ± 2.26 

 

 

1X: 0.47 ± 0.18 

2X: 0.46 ± 0.19 

3X: 0.47 ± 0.20 

4X: 0.45 ± 0.19 

5X: 0.43 ± 0.19 

 

 

1X: 1.00 ± 0.25 

2X: 0.95 ± 0.25 

3X: 0.96 ± 0.25 

4X: 0.93 ± 0.20 

5X: 0.92 ± 0.20 

 

 

 

 

7 

 

 

 

F 

 

 

 

 

 

10 

 

 

 

encephalopathy 

 

1X: 2.49 ± 1.33 

2X: 2.70 ± 1.70 

3X: 2.69 ± 1.46 

4X: 2.70 ± 1.62 

5X: 2.65 ± 1.35 

 

1X: 0.44 ± 0.46 

2X: 0.38 ± 0.19 

3X: 0.37 ± 0.14 

4X: 0.37 ± 0.14 

5X: 0.38 ± 0.14 

 

1X: 0.87 ± 0.33 

2X: 0.84 ± 0.25 

3X: 0.84 ± 0.20 

4X: 0.85 ± 0.20 

5X: 0.83 ± 0.20 
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Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

8 

 

 

 

M 

 

 

 

 

 

4 

 

 

neurofibromatosis 

type 1 - von 

Recklinghausen's 

disease 

 

1X: 2.58 ± 1.91 

2X: 2.82 ± 2.40 

3X: 2.95 ± 2.73 

4X: 2.87 ± 2.30 

5X: 2.83 ± 2.37 

 

 

1X: 0.34 ± 0.17 

2X: 0.33 ± 0.18 

3X: 0.35 ± 0.17 

4X: 0.40 ± 0.16 

5X: 0.38 ± 0.19 

 

 

1X: 0.66 ± 0.11 

2X: 0.66 ± 0.13 

3X: 0.63 ± 0.14 

4X: 0.60 ± 0.11 

5X: 0.55 ± 0.12 

 

 

 

 

9 

 

 

 

F 

 

 

 

 

 

3 

 

 

incomplete whitel 

matter myelination in 

subcortical areas 

 

1X: 1.90 ± 0.65 

2X: 1.89 ± 0.64 

3X: 1.89 ± 0.63 

4X: 1.91 ± 0.64 

5X: 1.89 ± 0.61 

 

 

1X: 0.49 ± 0.14 

2X: 0.48 ± 0.15 

3X: 0.47 ± 0.15 

4X: 0.47 ± 0.14 

5X: 0.47 ± 0.15 

 

 

1X: 0.85 ± 0.16 

2X: 0.83 ± 0.16 

3X: 0.82 ± 0.15 

4X: 0.83 ± 0.13 

5X: 0.82 ± 0.12 

 

 

 

 

10 

 

 

 

F 

 

 

 

 

 

1.1 

 

 

 

Moyamoya disease 

 

 

1X: 1.57 ± 0.33 

2X: 1.61 ± 0.35 

3X: 1.63 ± 0.32 

4X: 1.63 ± 0.32 

5X: 1.66 ± 0.34 

 

 

1X: 0.62 ± 0.15 

2X: 0.62 ± 0.14 

3X: 0.61 ± 0.12 

4X: 0.60 ± 0.11 

5X: 0.56 ± 0.09 

 

 

1X: 0.93 ± 0.13 

2X: 0.95 ± 0.13 

3X: 0.96 ± 0.13 

4X: 0.86 ± 0.14 

5X: 0.90 ± 0.12 

 

 

 

 

11 

 

 

 

F 

 

 

 

 

 

7 

 

 

 

Rathke's cleft cyst 

near the pituitaries 

 

1X: 3.06 ± 2.66 

2X: 3.12 ± 3.08 

3X: 3.17 ± 2.59 

4X: 3.42 ± 3.04 

5X: 3.42 ± 3.35 

 

 

1X: 0.41 ± 0.39 

2X: 0.39 ± 0.38 

3X: 0.40 ± 0.41 

4X: 0.38 ± 0.26 

5X: 0.37 ± 0.26 

 

 

1X: 0.89 ± 0.16 

2X: 0.88 ± 0.21 

3X: 0.88 ± 0.22 

4X: 0.85 ± 0.19 

5X: 0.78 ± 0.20 
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Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

12 

 

 

 

M 

 

 

 

 

 

0.5 

 

 

 

Tuberous sclerosis 

 

 

1X: 2.07 ± 1.04 

2X: 2.20 ± 1.38 

3X: 2.34 ± 1.77 

4X: 2.45 ± 2.21 

5X: 2.45 ± 2.16 

 

 

1X: 0.89 ± 1.19 

2X: 0.80 ± 0.82 

3X: 0.71 ± 0.41 

4X: 0.72 ± 0.52 

5X: 0.71 ± 0.41 

 

 

1X: 1.24 ± 0.17 

2X: 1.27 ± 0.21 

3X: 1.28 ± 0.22 

4X: 1.28 ± 0.23 

5X: 1.29 ± 0.24 

 

 

 

 

13 

 

 

 

M 

 

 

 

 

 

2.5 

 

 

decreased WM 

volume, 

demyelination 

 

1X: 1.33 ± 0.42 

2X: 1.33 ± 0.40 

3X: 1.31 ± 0.39 

4X: 1.31 ± 0.37 

5X: 1.31 ± 0.36 

 

 

1X: 0.69 ± 0.22 

2X: 0.69 ± 0.23 

3X: 0.70 ± 0.24 

4X: 0.69 ± 0.22 

5X: 0.70 ± 0.22 

 

 

1X: 0.84 ± 0.12 

2X: 0.85 ± 0.13 

3X: 0.84 ± 0.12 

4X: 0.84 ± 0.11 

5X: 0.84 ± 0.13 

 

 

 

 

14 

 

 

 

M 

 

 

 

 

 

3 day 

 

 

posterior parietal 

cephalohematoma 

 

1X: 1.54 ± 1.80 

2X: 1.45 ± 2.21 

3X: 1.32 ± 1.51 

4X: 1.26 ± 1.12 

5X: 1.36 ± 1.47 

 

 

1X: 2.01 ± 2.62 

2X: 2.25 ± 3.15 

3X: 2.28 ± 3.47 

4X: 2.26 ± 3.48 

5X: 2.28 ± 3.13 

 

 

1X: 1.55 ± 0.63 

2X: 1.67 ± 1.09 

3X: 1.66 ± 0.91 

4X: 1.65 ± 0.90 

5X: 1.58 ± 0.72 
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Table B.2 Patient demographics and related information from MRI and MRSI for 6 pediatric cases with brain tumors (includes 

resected cases). (NAA – N-acetyl aspartate, Cr – creatine, Cho – choline, Lac – lactate) 

 

Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

1 

 

 

 

M 

 

 

 

 

10 

 

 

 

Ewing’s sarcoma 

 

1X: 1.73 ± 0.55 

1.48 ± 0.41 (Tumor) 

3.37 ± 2.87 (Lac/Cr) 

2X: 1.73 ± 0.6 

1.53 ± 0.51 (Tumor) 

3.48 ± 3.21 (Lac/Cr) 

3X: 1.71 ± 0.52 

1.62 ± 0.45 (Tumor) 

4.05 ± 3.38 (Lac/Cr) 

4X: 1.7 ± 0.51 

1.62 ± 0.44 (Tumor) 

4.09 ± 4.08 (Lac/Cr) 

5X: 1.71 ± 0.48 

1.45 ± 0.25 (Tumor) 

2.87 ± 2.25 (Lac/Cr) 

 

 

1X: 0.60 ± 0.58 

0.77 ± 0.39 (Tumor) 

2.31 ± 1.95 (Lac/NAA) 

2X: 0.60 ± 0.38 

0.79 ± 0.40 (Tumor) 

2.23 ± 1.88 (Lac/NAA) 

3X: 0.58 ± 0.46 

0.81 ± 0.31 (Tumor) 

2.23 ± 2.00 (Lac/NAA) 

4X: 0.57 ± 0.38 

0.81 ± 0.30 (Tumor) 

2.23 ± 2.03 (Lac/NAA) 

5X: 0.53 ± 0.26 

0.83 ± 0.33 (Tumor) 

2.11 ± 1.68 (Lac/NAA) 

 

 

1X: 0.82 ± 0.25 

1.06 ± 0.36 (Tumor) 

3.00 ± 2.49 (Lac/Cho) 

2X: 0.84 ± 0.30 

1.12 ± 0.43 (Tumor) 

2.88 ± 2.68 (Lac/Cho) 

3X: 0.90 ± 0.48 

1.37 ± 0.86 (Tumor) 

2.72 ± 2.30 (Lac/Cho) 

4X: 0.89 ± 0.49 

1.38 ± 0.88 (Tumor) 

2.36 ± 1.40 (Lac/Cho) 

5X: 0.85 ± 0.32 

1.19 ± 0.49 (Tumor) 

2.17 ± 1.12 (Lac/Cho) 

 

 

 

2 

 

 

 

M 

 

 

 

 

 

13 

 

 

 

meningioma 

 

1X: 2.73 ± 2.44 

2X: 2.29 ± 2.48 

3X: 3.22 ± 3.13 

4X: 3.17 ± 3.90 

5X: 3.28 ± 3.95 

 

 

1X: 0.71 ± 0.79 

2X: 0.68 ± 0.80 

3X: 0.62 ± 0.60 

4X: 0.57 ± 0.34 

5X: 0.53 ± 0.35 

 

 

1X: 1.08 ± 0.35 

2X: 1.12 ± 0.49 

3X: 1.10 ± 0.35 

4X: 1.10 ± 0.38 

5X: 1.20 ± 0.40 
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Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

3 

 

 

 

M 

 

 

 

 

1.5 

 

 

 

hemophagocytic 

lymphohistiocyto

sis 

 

1X: 1.72 ± 0.47 

1.42 ± 0.45 (Tumor) 

0.80 ± 0.36 (Lac/Cr) 

2X: 1.72 ± 0.48 

1.41 ± 0.43 (Tumor) 

0.76 ± 0.32 (Lac/Cr) 

3X: 1.81 ± 0.52 

1.40 ± 0.38 (Tumor) 

0.78 ± 0.22 (Lac/Cr) 

4X: 1.83 ± 0.51 

1.39 ± 0.40 (Tumor) 

0.75 ± 0.19 (Lac/Cr) 

5X: 1.82 ± 0.52 

1.38 ± 0.40 (Tumor) 

0.73 ± 0.29 (Lac/Cr) 

 

 

1X: 0.64 ± 0.30 

1.20 ± 0.50 (Tumor) 

0.63 ± 0.42 (Lac/NAA) 

2X: 0.66 ± 0.32 

1.23 ± 0.47 (Tumor) 

0.59 ± 0.32 (Lac/NAA) 

3X: 0.63 ± 0.32 

1.25 ± 0.47 (Tumor) 

0.60 ± 0.24 (Lac/NAA) 

4X: 0.61 ± 0.31 

1.24 ± 0.44 (Tumor) 

0.59 ± 0.25 (Lac/NAA) 

5X: 0.63 ± 0.32 

1.23 ±  0.44 (Tumor) 

0.53 ± 0.24 (Lac/NAA) 

 

1X: 1.02 ± 0.32 

1.60 ± 0.47 (Tumor) 

0.49 ± 0.14 (Lac/Cho) 

2X: 1.03 ± 0.31 

1.61 ± 0.45 (Tumor) 

0.46 ± 0.10 (Lac/Cho) 

3X: 1.03 ± 0.29 

1.61 ± 0.30 (Tumor) 

0.49 ± 0.11 (Lac/Cho) 

4X: 1.02 ± 0.29 

1.58 ± 0.30 (Tumor) 

0.47 ± 0.07 (Lac/Cho) 

5X: 1.03 ± 0.30 

1.57 ±  0.29 (Tumor) 

0.47 ± 0.24 (Lac/Cho) 

 

 

 

 

4 

 

 

 

F 

 

 

 

 

5 

 

 

 

neurofibromatosis 

1 and astrocytoma 

 

1X: 1.36 ± 0.71 

0.55 ± 0.38 (Lac/Cr) 

2X: 1.32 ± 0.56 

0.51 ± 0.35 (Lac/Cr) 

3X: 1.32 ± 0.55 

0.52 ± 0.41 (Lac/Cr) 

4X: 1.35 ± 0.58 

0.52 ± 0.43 (Lac/Cr) 

5X: 1.27 ± 0.62 

0.52 ± 0.47 (Lac/Cr) 

 

1X: 1.29 ± 0.79 

0.44 ± 0.26 (Lac/NAA) 

2X: 1.19 ± 0.57 

0.39 ± 0.18 (Lac/NAA) 

3X: 1.18 ± 0.52 

0.38 ± 0.17 (Lac/NAA) 

4X: 1.16 ± 0.52 

0.39 ± 0.28 (Lac/NAA) 

5X: 1.10 ± 0.50 

0.37 ± 0.28 (Lac/NAA) 

 

1X: 1.33 ± 0.30 

0.43 ± 0.34 (Lac/Cho) 

2X: 1.32 ± 0.28 

0.40 ± 0.29 (Lac/Cho) 

3X: 1.32 ± 0.27 

0.37 ± 0.17 (Lac/Cho) 

4X: 1.30 ± 0.27 

0.40 ± 0.29 (Lac/Cho) 

5X: 1.25 ± 0.21 

0.39 ± 0.25 (Lac/Cho) 
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Case Gender 

 

Age 

(years) 

 

Reason for MRI NAA/Cr 

(Mean ± SD) 

Cho/NAA 

(Mean ± SD) 

Cho/Cr 

(Mean ± SD) 

 

 

 

5 

 

 

 

F 

 

 

 

 

10 

 

 

 

left optic nerve 

glioma 

 

1X: 1.56 ±1.73 

2X: 1.42 ± 1.23 

3X: 1.35 ± 0.70 

4X: 1.45 ± 0.94 

5X: 1.38 ± 0.62 

 

 

 

1X: 0.66 ± 0.58 

2X: 0.73 ± 0.67 

3X: 0.77 ± 0.79 

4X: 0.74 ± 0.85 

5X: 0.76 ± 1.06 

 

 

1X: 0.70 ± 0.18 

2X: 0.70 ± 0.20 

3X: 0.69 ± 0.19 

4X: 0.67 ± 0.18 

5X: 0.68 ± 0.14 

 

 

 

 

6 

 

 

 

M 

 

 

 

 

 

3 

 

 

 

grade 2 

astrocytoma 

 

1X: 2.18 ± 1.49 

2X: 2.31 ± 1.95 

3X: 2.19 ± 1.55 

4X: 2.16 ± 1.54 

5X: 2.18 ± 1.52 

 

 

1X: 0.49 ± 0.18 

2X: 0.48 ± 0.20 

3X: 0.50 ± 0.25 

4X: 0.51 ± 0.23 

5X: 0.50 ± 0.24 

 

 

1X: 0.86 ± 0.17 

2X: 0.84 ± 0.17 

3X: 0.83 ± 0.16 

4X: 0.84 ± 0.20 

5X: 0.82 ± 0.17 
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