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ABSTRACT

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around

1952. He defined the n-th Tamari lattice Tn on bracketings of a set of n + 1 objects, with a cover relation

based on the associativity rule in one direction. Despite their interesting aspects and the attention they have

received, a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of

this thesis is to convey my results on progress toward the solution of this problem and to discuss future work.

A few years ago, Bergeron and Préville-Ratelle generalized the Tamari lattices to the m-Tamari lattices.

The original Tamari lattices Tn are the case m = 1. I establish a bijection between maximum length chains

in the m-Tamari lattices and standard m-shifted Young tableaux. Using Thrall’s formula, I thus derive the

formula for the number of maximum length chains in Tn.

For each i ≥ −1 and for all n ≥ 1, I define Ci(n) to be the set of maximal chains of length n+ i in Tn. I

establish several properties of maximal chains (treated as tableaux) and identify a particularly special property:

each maximal chain may or may not possess a plus-full-set. I show, surprisingly, that for all n ≥ 2i+4, each

member of Ci(n) contains a plus-full-set. Utilizing this fact and a collection of maps, I obtain a recursion for

#Ci(n) and an explicit formula based on predetermined initial values. The formula is a polynomial in n of

degree 3i+ 3. For example, the number of maximal chains of length n in Tn is #C0(n) =
(
n
3

)
.

I discuss current work and future plans involving certain equivalence classes of maximal chains in the

Tamari lattices. If a maximal chain may be obtained from another by swapping a pair of consecutive edges

with another pair in the Hasse diagram, the two maximal chains are said to differ by a square move. Two

maximal chains are said to be in the same equivalence class if one may be obtained from the other by making

a set of square moves.
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Chapter 1

INTRODUCTION

1.1 Posets

The following can be found in Stanley 2012, Chapter 3.

A partially ordered set, or poset, is a set P together with a binary relation ≤ such that for all x, y, z ∈ P ,

1. (reflexivity) x ≤ x,

2. (antisymmetry) x ≤ y and y ≤ x implies x = y,

3. (transitivity) x ≤ y and y ≤ z implies x ≤ z.

If x ≤ y but x ̸= y, we say that x is strictly less than y and denote x < y or y > x. If x < y and there

does not exist z such that x < z < y, then we say that x is covered by y or y covers x and denote xl y or

ym x. The Hasse diagram of a finite poset P is a graph of the vertices of P with edges the cover relations in

P , such that if xl y then x is drawn below y. Figure 1 is the poset of positive divisors of 120, where x ≤ y

if and only if x is a divisor of y.

Figure 1: The Hasse Diagram of the Poset of Positive Divisors of 120

If Q is a subset of a poset P and there is a partial ordering on Q such that x ≤ y in Q implies that x ≤ y

in P , then Q is called a weak subposet of P . If P also agrees with Q as sets, then P is called a refinement

or extension of Q.

If Q is a subset of a poset P and there is a partial ordering on Q such that for x, y ∈ Q, x ≤ y in Q if

and only if x ≤ y in P , we call Q an induced subposet of P . A subposet of P implicitly means an induced
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subposet. If x ≤ y in P , the subposet [x, y] = {z ∈ P | x ≤ z ≤ y} of P is called a (closed) interval. The

number of intervals in a poset P is simply the number of pairs x, y ∈ P satisfying x ≤ y.

If x ≤ y or y ≤ x, we say that x and y are comparable; otherwise they are incomparable. A subset of a

poset in which any two elements are comparable is called a chain. A maximal chain is a chain that cannot be

extended to a larger chain by adding any other element of the poset. A chain C of a poset P is saturated if

there does not exist z ∈ P −C such that x < z < y for some x, y ∈ C and such that C∪{z} is a chain. The

length of a finite chain C is l(C) = #C − 1. In Figure 1, 2 < 12 is a chain but is not saturated, 2l 4l 12

is saturated but is not maximal, and 1l 3l 6l 12l 60l 120 is a maximal chain of length 5.

An element x in a poset P satisfying x ≤ y for all y ∈ P is called a 0̂. Similarly, an element x in a poset

P satisfying x ≥ y for all y ∈ P is called a 1̂. The poset in Figure 1 has a 0̂ and a 1̂, where 0̂ = 1 and

1̂ = 120.

In the event that every maximal chain of a poset P has the same length n, we say that the poset is graded

of rank n. In this case, P is equipped with a unique rank function ρ : P → {0, 1, . . . , n} such that ρ(x) = 0

for each minimal element x ∈ P and ρ(y) = ρ(x) + 1 whenever x l y in P . An element x ∈ P such that

ρ(x) = i is said to have rank i. The poset in Figure 1 is graded of rank 5.

Two posets P and Q are isomorphic if there exists a bijection ϕ : P → Q such that for all x, y ∈ P ,

x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in Q. The dual of a poset P is the poset P ∗ defined on the same set

as P such that x ≤ y in P if and only if x ≥ y in P ∗. P is called self-dual if P is isomorphic to P ∗.

Let P be a poset and x, y ∈ P . If x, y ≤ z for some z ∈ P then we call z an upper bound of x and y. A

least upper bound of x and y is an upper bound u ∈ P of x and y such that every upper bound z ∈ P of x

and y satisfies u ≤ z. If a least upper bound of x and y exists, it is denoted x ∨ y, called the join of x and

y. Similarly, a lower bound and the greatest lower bound of x and y are defined. If a greatest lower bound

of x and y exists, it is denoted x ∧ y, called the meet of x and y. In the event that each pair of elements in

P have a least upper bound and a greatest lower bound then P is called a lattice. The poset in Figure 1 is a

lattice. The join and meet of any two elements is their least common multiple and greatest common divisor,

respectively.

A lattice P is distributive if it satisfies the distributive laws: for all x, y, z ∈ P ,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

(Each of these laws implies the other.) Every finite distributive lattice is graded.

2



1.2 Young Diagrams and Tableaux

A partition of a positive integer n is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of positive

integers summing to n. A Young diagram of shape λ is a left-justified collection of boxes having λj boxes in

the j-th row. We adopt the English notation where rows are indexed downward. The empty partition λ = (0)

is associated with the null diagram having no boxes.

A Dyck path of length 2n is a path on the square grid of north and east steps from (0, 0) to (n, n) which

never goes below the line y = x. Necessarily, every Dyck path begins with a north step and ends with an

east step, and has an equal number of both types of steps. The number of Dyck paths of length 2n is the

n-th Catalan number Cn = 1
n+1

(
2n
n

)
.

There is a natural bijective correspondence between Dyck paths of length 2n and Young diagrams con-

tained in the Young diagram of staircase shape (n − 1, . . . , 1). Roughly speaking, a Dyck path gives the

silhouette of the Young diagram. The Dyck path that starts with n north steps followed by n east steps corre-

sponds to the null diagram. The Dyck path that alternates between north and east steps corresponds to the

Young diagram of staircase shape (n− 1, . . . , 1). Figure 2 is the set of C4 = 14 Dyck paths of length 8 and

corresponding Young diagrams.

Figure 2: Bijective Correspondence of Dyck Paths and Young Diagrams

A filling of a Young diagram with letters from some alphabet is called a Young tableau or tableau for short.

A standard Young tableau, abbreviated SYT, is a filling from a totally ordered set such that rows and columns

are strictly increasing. A semistandard Young tableau, abbreviated SSYT, is a filling from a totally ordered

set such that rows are weakly increasing and columns are strictly increasing. There are deep ties of SYT and

SSYT to the study of the Schur functions, symmetric group, and representation theory. See Fulton and Harris

1991, Fulton 1997, Stanley 1999, Sagan 2001, Björner and Stanley 2010.

The 16 SYT of shape (3, 2, 1) are shown in Figure 3. There is a simple method used to enumerate SYT of

a given shape (Frame, Robinson, and Thrall 1954). The hook length of a box b in a Young diagram is defined
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to be

=number of boxes in the row to the right of b

+ number of boxes in the column below b

+ 1.

The formula for the number of SYT of shape λ is n!/Hλ, where Hλ is the product of hook lengths over all

boxes in the Young diagram of λ and n is its number of boxes. The hook graph H[λ] is the filling of the

Young diagram of shape λ of hook lengths. Figure 4 is H[3, 2, 1], from which the number of standard fillings

of shape (3, 2, 1) is 6!/45 = 16.

Figure 3: SYT of Shape (3, 2, 1) Figure 4: H[3, 2, 1]

Figure 5: Standard Shifted Tableaux of Shape (3, 2, 1) Figure 6: G[3, 2, 1]

A shifted Young diagram of shape λ = (λ1, λ2, . . . , λk) is a diagram of distinct parts λ1 > λ2 > · · · > λk

such that each successive row begins one cell to the right of the row above. A shifted tableau is a filling of

a shifted Young diagram. The 2 standard shifted tableau for λ = (3, 2, 1) are shown in Figure 5. There is

a similar method used to enumerate standard shifted tableaux (Knuth 1973; Thrall 1952). The generalized

hook length of a box b in a shifted Young diagram is defined to be

=number of boxes in the row to the right of b

+ number of boxes in the column below b

+ number of boxes in the row just below the bottom box in the column of b

+ 1.
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The formula for the number of standard shifted tableaux of shape λ is n!/Gλ, where Gλ is the product

of generalized hook lengths over all boxes in the Young diagram of λ and n is its number of boxes. The

generalized hook graphG[λ] is the filling of the shifted Young diagram of shape λ of generalized hook lengths.

Figure 6 is G[3, 2, 1], from which the number of shifted standard tableaux of shape (3, 2, 1) is 6!/360 = 2.

1.3 The Tamari Lattices

Figure 7: Tamari’s Original Representation of T4 with Cover Relation (xy)zlx(yz) (to the left), and Knuth’s
Representation by Forests and Scope Sequences (to the right)

Tamari 1962 introduced the poset Tn on bracketings of a set of n+1 objects, with a cover relation based

on the associativity rule in one direction. Figure 7 (to the left) is the Hasse diagram of T4, based on his original

interpretation. Friedman and Tamari 1967 proved the lattice property for this family of posets in 1967.

The number of vertices in Tn is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
. Triangulations of a convex

(n+2)-gon, noncrossing partitions of [n] and Dyck paths of length 2n are examples of over 200 combinatorial

structures counted by the Catalan sequence (Stanley 2008). Because of the many combinatorial structures

that are counted by the Catalan sequence, the Tamari lattice is studied in various representations. Huang and

Tamari 1972 describe Tn as the poset of of n-tuples a1, . . . , an satisfying i ≤ ai ≤ n and i ≤ j ≤ ai implies

aj ≤ ai, ordered coordinatewise. They gave a considerably simpler proof of the lattice property of Tn than

in Friedman and Tamari 1967.

Knuth 2006 describes Tn as the set of forests on n nodes. As a forest is traversed from left to right as

depicted in Figure 8 (to the left), the order in which nodes are encountered is called preorder, and the nodes
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are labeled as such. Each forest is assigned a scope sequence s1, . . . , sn such that node k in preorder has sk

descendants. If two forests F, F ′ ∈ Tn have scope sequences s1, . . . , sn and s′1, . . . , s
′
n, respectively, then

F ≤ F ′ if and only if sj ≤ s′j for all 1 ≤ j ≤ n. See Figure 7 (to the right) for T4 by forests and their scope

sequences.

Figure 8: A Forest on 6 Nodes with Scope Sequence 300010 Corresponds to Well Formed Parentheses and a
Dyck Path

Each n-node forest corresponds uniquely to a string of well formed parentheses and vice versa. This is

a string of n pairs of left and right parentheses such that any left subset of the string never has more right

parentheses than left parentheses. As the forest is traversed in Figure 8, write a left (respectively, right)

parenthesis when a node is encountered on its left (respectively, right) side. In this manner, each node in

the forest is matched to a pair of left and right parentheses. In turn, the correspondence between n pairs of

well formed parentheses and Dyck paths of length 2n is bijective. As the parentheses string is read from left

to right, take a north (respectively, east) step when encountering a left (respectively, right) parenthesis to

obtain the Dyck path.

If P is a Dyck path and L is the line segment (of slope one) that joins the endpoints of P , then P is said

to be prime (Bernardi and Bonichon 2009) if P intersects L only at the endpoints of P . Of the Dyck paths

in Figure 2, only the last five in the second row are prime, corresponding to the Young diagrams contained in

the Young diagram of shape (2, 1). A Dyck path of length 2n has exactly n prime Dyck subpaths (Bernardi

and Bonichon 2009), each uniquely determined by its beginning north step. In Figure 9, for the given Dyck

path of length 8, its 4 prime Dyck subpaths are accentuated. The line segment joining the end points of each

of the prime subpaths is shown.

Figure 9: Prime Dyck Subpaths

Bernardi and Bonichon 2009 represent Tn as the set of Dyck paths of length 2n, and express the covering

relations in these terms. Let P and P ′ be two Dyck paths. Then P ′ covers P if and only if there exists an
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east step e in P , followed by a north step, such that P ′ is obtained from P by swapping e and the prime Dyck

subpath following it. In the examples of Figure 10, the east step of P referenced is grayed and the prime

Dyck subpath following it is accentuated.

P P ′ P P ′

Figure 10: The Covering Relation in the Tamari Lattices: Dyck Paths

In a very slight twist from Bernardi and Bonichon 2009, I view the elements of Tn as Young diagrams

contained in the Young diagram of staircase shape (n− 1, . . . , 1). In this way, maximal chains may be easily

identified as Young tableaux, which are well suited for my purposes. The Hasse diagrams for T3 and T4 in

terms of Young diagrams are shown in Figure 11.

T3

T4

Figure 11: Hasse Diagrams for T3 and T4 by Young Diagrams

Tn is also represented as triangulations of an (n+2)-gon (Edelman and Reiner 1996), or binary trees on

n nodes (Châtel and Pons 2015), and may be represented on virtually any Catalan set of objects.

Recently Bergeron and Préville-Ratelle 2012, while working on higher dimensional Catalan polynomials,

generalized the Tamari posets to the m-Tamari posets T (m)
n (the case m = 1 is the original Tamari lattice

Tn). Shortly after, Bousquet-Mélou, Fusy, and Préville-Ratelle 2011 proved them-Tamari posets are lattices.
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They define vertices of T (m)
n as paths on the square grid consisting of north and east steps, starting at (0, 0)

and ending at (mn,n). In addition, each path lies strictly above (but may touch) the line y = x
m . For my

purposes (through the natural correspondence), the vertices of T (m)
n are the Young diagrams which fit inside

the Young diagram of shape (m(n− 1),m(n− 2), . . . ,m). Figure 12 is T (2)
3 . In Chapters 2 and 3, I relate

the covering relation for T (m)
n and Tn, respectively.

Figure 12: The 2-Tamari Lattice T (2)
3

Figure 13: The 3-dimensional Associahedron K5

The Hasse diagram of Tn is the 1-skeleton of the (n−1)-dimensional associahedron (or Stasheff polytope)

Kn+1 (Devadoss and Read 2001; Björner and Wachs 1997; Reading 2006). See Figure 13 for K5. A k-

dissection, 0 ≤ k ≤ n − 1, of an (n + 2)-gon is a partition of the (n + 2)-gon into k + 1 polygons by k

non-crossing diagonals. An (n − 1)-dissection of an (n + 2)-gon is a triangulation. The vertices of Kn+1

(and often in the literature Tn, see Reading 2012) correspond to the triangulations of an (n+2)-gon. Edges

in Kn+1 are determined by the ability to obtain one triangulation from another by a single diagonal flip. In

general, the k-dissection of an (n+ 2)-gon corresponds to an (n− 1− k)-dimensional face of Kn+1.

I close this section by recording some properties satisfied by the family of Tamari lattices. For many other

interesting properties, see Geyer 1994, Knuth 2006, Markowsky 1992.

• Tn is not graded, so not a distributive lattice (n ≥ 3) (Markowsky 1992; Knuth 2006).

• Tn is semidistributive (Knuth 2006; Urquhart 1978). A lattice P is called join semidistributive if for all

x, y, z ∈ P ,

x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z),
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and is called meet semidistributive if for all x, y, z ∈ P ,

x ∧ y = x ∧ z implies x ∧ y = x ∧ (y ∨ z).

When both of these properties are satisfied, the lattice is called semidistributive.

• Tn is self-dual (Knuth 2006).

• Tn is extremal in the sense of Markowsky 1992 (a lattice is extremal if the number of join-irreducibles,

number of meet-irreducibles and length of the longest maximal chain are equal). A join-irreducible

element x ̸= 0̂ in a lattice is an element that cannot be written x = y∨z for y, z < x. Ameet-irreducible

element x ̸= 1̂ in a lattice is an element that cannot be written x = y∧z for y, z > x. In a finite lattice,

join-irreducible (respectively, meet-irreducible) elements are the ones covering (respectively, covered

by) exactly one element (Stanley 2012, Chapter 3).

• Tn is complemented (Grätzer 2003). A lattice P having a 0̂ and a 1̂ is complemented if for each x ∈ P ,

there exists y ∈ P (y may depend on x) such that x ∨ y = 1̂ and x ∧ y = 0̂ (Stanley 2012, Chapter

3).

• The Hasse diagram of Tn is an (n− 1)-regular graph. (When Tn is viewed on triangulations, there are

n− 1 diagonal flips available at each vertex.)

1.4 Related Lattices to the Tamari Lattices

Kreweras Tamari Stanley

Figure 14: Hasse Diagrams for Kreweras, Tamari and Stanley Lattices of Order 3

The Kreweras and Stanley lattices are two other noted families of lattices defined on Catalan sets of objects.

A set partition of [n] is noncrossing if for all i < j < k < l ∈ [n], if i, k are in a block together and j, l are in

a block together then i, j, k, l are all in the same block. For example, in the set partitions of [4], 13 | 24 is the

only one that is not noncrossing. Traditionally, the Kreweras lattice of order n is defined on the noncrossing

set partitions of [n] (of which there are Cn) ordered by refinement (Kreweras 1972; Knuth 2006; Fomin and
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Reading 2007). A partition π is a refinement of a partition π′ if each block in π is a subset of some block in

π′. Of the set partitions of [n], the minimal and maximal elements in the Kreweras lattice are 1 | 2 | · · · | n

and 12 · · ·n, respectively. The Stanley lattice of order n is the set of Dyck paths of length 2n where P ≤ P ′

if and only if P ′ lies above P (Bernardi and Bonichon 2009). When considered on the same Catalan set of

objects as in Figure 14, the Stanley lattice is a refinement of the Tamari lattice, which is a refinement of the

Kreweras lattice (Knuth 2006; Bernardi and Bonichon 2009).

The simple transpositions S in the symmetric group Sn are the adjacent transpositions si = (i i + 1),

i ∈ [n− 1]. Each permutation in Sn can be written as a word in S. I adopt the convention that multiplication

happens from right to left. For example, the permutation 321, in one-line notation, can be written in various

ways as 321 = s1s2s1 = s1s1s1s2s1 = s2s1s2. A word which is minimum in length over all words for

w ∈ Sn is called a reduced word (or reduced decomposition or reduced expression) for w. The length of

w ∈ Sn, denoted l(w) is the length of a reduced word for w. The (right) weak (Bruhat) order on Sn is the

transitive closure of the covering relation: w l u if and only if u = ws for some s ∈ S and l(u) = l(w) + 1.

The minimum element 0̂ is the identity permutation e = 12 · · ·n and the maximum element 1̂ is nn−1 · · · 1.

The permutations in Sn together with the weak order form a lattice which is also denoted Sn.

Figure 15: The Hasse Diagram of S3

Figure 15 is the Hasse diagram for S3, where the edge from w to ws is labeled with s. Björner and

Wachs 1997 showed that Tn is a sublattice of Sn of 312-avoiding permutations and that there is an order

preserving projection from Sn to Tn. Reading 2006 generalized this projection by defining the Cambrian

lattices as quotients of the weak order. The sudden outcropping of Catalan related lattices which stem from

the single pre-Cambrian example of the Tamari lattice is the analogy he uses in naming the Cambrian lattices,

identifying with the sudden increase in the fossil record of the Cambrian layer of rocks.
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1.5 Related Enumeration Results

The search for enumeration formulas, whether for maximal chains or intervals, etc., are traditional prob-

lems for any family of posets. The pursuit of solutions often leads to relationships with other combinatorial

structures and a better understanding of the poset at hand.

1.5.1 Chain and Antichain Enumeration

Theorem 1.1 (Dilworth 1950) Define a subset S of a poset P as independent if every two distinct elements of

S are non-comparable, and define S to be dependent if it contains two distinct elements which are comparable.

Let every set of k+1 elements of a partially ordered set P be dependent while at least one set of k elements

is independent. Then P is a set sum of k disjoint chains.

Now suppose P is a finite poset. Let A be an antichain and C be a partition of P into chains. Notice that any

antichain may have at most one vertex from each chain in C, thus #A ≤ #C. Thus for a finite poset P , an

equivalent way of stating Theorem 1.1 is that the size of the largest antichain in P is the minimum number

of chains that cover P .

Mirsky derived the dual form of Theorem 1.1 (allowing for the empty set to be both a chain and an

antichain).

Theorem 1.2 (Mirsky 1971) Let P be a partially ordered set, and m a natural number. If P possesses no

chain of cardinal m+ 1, then it can be expressed as the union of m antichains.

Similarly, for a finite poset P , an equivalent way of stating Theorem 1.2 is that the size of the largest chain

in P is the minimum number of antichains that cover P .

Greene and Kleitman 1976 showed that for any finite poset P , there exists a partition λ(P ) =

(λ1(P ), λ2(P ), ...) such that the sum of the first k parts of λ(P ) equals the maximum size of a union of

k chains of P . In fact, remarkably, the sum of the first k parts of the conjugate of λ(P ) equals the maximum

size of a union of k antichains of P (Greene 1976). Note λ1(P ) equals the length of the longest maximal

chain plus one in P .

Early, a student of Stanley, deduced formulas for λ2(Tn), λ3(Tn). He studied vertices of Tn as in Huang

and Tamari 1972.

Theorem 1.3 (Early 2004) For n > 5, λ2(Tn) = λ1(Tn)− 4. For n > 6, λ3(Tn) = λ2(Tn)− 2.
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1.5.2 Number of Intervals

Intervals in the Kreweras lattice are in bijection to ternary trees (Kreweras 1972; Edelman 1982), while

those in the Stanley lattice are pairs of noncrossing Dyck paths (Sainte-Catherine and Viennot 1986).

Not too long ago, Chapoton enumerated the number of intervals in Tn, finding this to be the number of

planar triangulations (i.e., maximal planar graphs).

Theorem 1.4 (Chapoton 2005/07) The number of intervals in the Tamari lattice Tn is

2(4n+ 1)!

(n+ 1)!(3n+ 2)!
.

Subsequently, Chapoton’s result was generalized to the m-Tamari lattices.

Theorem 1.5 (Bousquet-Mélou, Fusy, and Préville-Ratelle 2011) The number of intervals in T (m)
n is

m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
.

Very recently, Châtel and Pons 2015 introduced new combinatorial objects, the interval posets, and Chapoton,

Chatel, and Pons n.d. described new bijections of intervals in the Tamari lattice.

1.5.3 Maximal Chain Enumeration

Maximal chains in Sn are in bijective correspondence with the reduced words of the permutation 1̂ =

nn − 1 · · · 1. Stanley 1984 showed that the number of these is the number of SYT of staircase shape

(n− 1, . . . , 1), which is (
n
2

)
!

1n−13n−2 · · · (2n− 5)2(2n− 3)1
(1.1)

by applying the hook length formula.

When the Stanley lattice of order n is considered on Young diagrams contained in the Young diagram of

staircase shape (n−1, . . . , 1), the order is by containment as seen in Figure 14. This gives a simple bijection

between its maximal chains and SYT of staircase shape (n−1, . . . , 1), the number of which is again equation

(1.1) (Knuth 2006).

Maximal chains in the Kreweras lattice on noncrossing partitions of [n], are in bijection with factorizations

of an n-cycle as the product of n − 1 transpositions (Knuth 2006; Kreweras 1972), the number of which is

nn−2 (Dénes 1959). This is also the number of parking functions of length n − 1 (Foata and Riordan 1974;

Stanley 1997), and the number of trees on n labeled vertices (Cayley 1889).
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1.6 Maximal Chain Enumeration in the Tamari Lattices

A natural question arises: What is the number of maximal chains in the Tamari lattices? Although in

related lattices the number of maximal chains is known, quoting Knuth, “The enumeration of such paths in

Tamari lattices remains mysterious.” Despite their interesting aspects and the attention they have received,

a formula for the number of maximal chains in the Tamari lattices is still unknown. The purpose of this thesis

is to convey my results on progress toward the solution of this problem and to discuss future work. The

complexity of this problem is largely due to the fact that the Tamari lattices are not graded, i.e., they have

maximal chains of varying lengths. The unique shortest maximal chain in Tn has length n − 1, while the

longest ones have length
(
n
2

)
(Markowsky 1992; Knuth 2006). Besides what is written in this dissertation, I

am unaware of any results pertaining to the enumeration of maximal chains in the Tamari lattices.

Keller 2011 introduced green mutations and maximal sequences of such mutations, called maximal green

sequences. In certain cases, maximal green sequences are in bijection with maximal chains in the Tamari

lattice or the Cambrian lattice (a generalization of the Tamari lattice; see Reading 2006) (Keller n.d.; Garver

and Musiker n.d.). Garver and Musiker n.d. list several applications of maximal green sequences to represen-

tation theory and physics, and the problems of enumeration and classification of such sequences are noted

interests.

Chapter 2 is my paper “Chains of maximum length in the Tamari lattice”, coauthored with Susanna Fishel

(Fishel and Nelson 2014). Here I present what I envision as first steps towards the enumeration of maximal

chains. Our work suggests not only that the original problem is not intractable, but that its solution may have

an interpretation in terms of representation theory. This chapter is an offshoot of a long-standing project of

Fishel, along with Grojnowski, on the combinatorics of higher dimensional Catalan polynomials. As mentioned,

Bergeron and Préville-Ratelle 2012, also while working on higher dimensional Catalan polynomials, generalized

the Tamari lattices to the m-Tamari lattices T (m)
n . The original Tamari lattices are the case m = 1. Some of

the results in the first part of this chapter concern the generalized lattice, whereas the results in the second

half are for them = 1 case. Part of our strategy for finding the number of maximal chains is to focus on each

length separately. Here, we determine the number of chains in the Tamari lattice Tn of maximum length. We

do this using a simple bijection to shifted tableaux, then use Thrall’s formula (Knuth 1973) to count those.

Chapter 3 is my paper “A recursion on maximal chains in the Tamari lattices” (Nelson n.d.). The subject

here pertains to the following definition. For each i ≥ −1 and for all n ≥ 1, Ci(n) is the set of maximal chains

of length n + i in Tn. I establish several properties of maximal chains (treated as tableaux) and identify a
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particularly special property: each maximal chain may or may not possess a plus-full-set. I show, surprisingly,

that for all n ≥ 2i + 4, each member of Ci(n) contains a plus-full-set. Utilizing this fact and a collection of

maps, which take maximal chains in Ci(n) to Ci(n+1), I obtain a recursion for#Ci(n) and an explicit formula

based on predetermined initial values. The formula is a polynomial in n of degree 3i + 3. For example, the

numbers of maximal chains of lengths n − 1, n and n + 1 in Tn are #C−1(n) = 1, #C0(n) =
(
n
3

)
and

#C1(n) = 2
(
n+1
5

)
+ 10

(
n+1
6

)
, respectively. This result is a considerable generalization of results in Knuth

2006 and Markowsky 1992, where it is shown that there is one maximal chain of shortest length n− 1.

In Chapter 4, I discuss current work and future plans in collaboration with Susanna Fishel, Kevin Treat

and Mahir Can. We are investigating equivalence classes of maximal chains in the Tamari lattices and exciting

new posets which arise. Preliminary findings suggest that these posets have many wonderful properties. This

approach provides for alternative tools in which to study the Tamari lattices and corresponding associahedra.

Our hope is that studying these new posets will lend insight to the enumeration of maximal chains in Tn.
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Chapter 2

CHAINS OF MAXIMUM LENGTH IN THE TAMARI LATTICE

In this chapter, we focus on the chains with maximum length in the Tamari lattices. We establish a

bijection between the maximum length chains in the Tamari lattice and the set of standard shifted tableaux

of staircase shape. We thus derive an explicit formula for the number of maximum length chains, using the

Thrall formula for the number of shifted tableaux. We describe the relationship between chains of maximum

length in the Tamari lattice and certain maximal chains in weak Bruhat order on the symmetric group, using

standard Young tableaux. Additionally, recently Bergeron and Préville-Ratelle introduced a generalized Tamari

lattice. Some of the results mentioned above carry over to their generalized Tamari lattice.

2.1 Background

The Tamari lattice is both a quotient and a sublattice of the weak order on the symmetric group (Björner

and Wachs 1997; Reading 2006). The study of maximal chains in the weak order on Sn has proven to be

extremely fruitful. The Stanley symmetric functions, balanced labelings, and dual equivalence arose from

work on the weak order on Sn (Stanley 1984; Edelman and Greene 1987; Haiman 1992). It was with

this rich history in mind that we began our investigation of the maximal chains in the Tamari lattices. The

work of Stanley and Edelman-Greene shows that the chains in weak order have a meaning in representation

theory: they index a basis for an irreducible representation of the symmetric group. We hope for a similar

interpretation here, and the appearance of shifted tableaux supports this. To this end, we begin the study of

the relationship between the maximal chains in the weak order and the maximal chains in the Tamari lattice.

We seek to understand the interplay between the modified Robinson-Schensted algorithm of Edelman and

Greene 1987 and the Tamari order, via c-sorting.

The outline of this chapter follows. In Section 2.2 we review the definition of the Tamari lattice, using

them-Tamari generalization in Bergeron and Préville-Ratelle 2012. We do not discuss the relationship of this

definition to the original definition in terms of bracketings (Tamari 1962). We describe how to assign a tableau

to each maximal chain in the lattice in Section 2.3. It is this correspondence which allows us to enumerate the

chains of maximum length. In Section 2.4 we relate the Edelman-Greene bijection between maximal chains

in weak order on the symmetric group and standard Young tableaux of staircase shape (Edelman and Greene
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1987) to our work. We characterize the maximal chains in Sn which are maximum length chains in Tn when

we view Tn as an induced subposet of Sn, in order to show that the Edelman-Greene bijection encodes the

Tamari order in this case.

2.2 The Tamari Lattice and its Covering Relation

Figure 16: The Hasse Diagram of the Poset T3

A partially ordered set, or poset, is a lattice if every pair of elements has a least upper bound, the join,

and a greatest lower bound, the meet. We consider the Tamari lattice here; the Tamari lattice of order n

is denoted Tn. See Figure 16 for T3. Tn has several equivalent definitions. In Tamari 1962, the vertices

are proper bracketings of n+ 1 symbols and the cover relation is given by the associative rule. Knuth 1973

describes Tn as a poset of forests on n nodes, Björner and Wachs 1997 give the definition in terms of the

scope sequences of these forests, and Bernardi and Bonichon 2009 phrases the definition in terms of Dyck

paths. It is this last form of the definition that Bergeron and Préville-Ratelle 2012 generalizes. We make a

very slight change and give their generalized definition in terms of certain partitions, which are better for our

purposes.

Definition 2.1 An (m,n)-Dyck partition λ = (λ1, λ2, . . . , λn) is an integer sequence such that

1. λ1 ≥ λ2 ≥ . . . ≥ λn = 0 and

2. for each i, we have λi ≤ m(n− i).

It is well-known (Dvoretzky and Motzkin 1947) that there are them-Catalan number 1
nm+1

(
(m+1)n

n

)
of these

partitions. The (m,n)-Dyck partitions are the vertices for them-Tamari lattice; the casem = 1 is the original

Tamari lattice.
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Definition 2.2 (Bergeron and Préville-Ratelle 2012). Let λ = (λ1, λ2, . . . , λn) be an (m,n)-Dyck partition.

For each i between 1 and n, there is a unique k = k(λ, i) ≤ i such that

1. λj − λi < m(i− j) for j = k, . . . , i− 1 and

2. either k = 1 or λk−1 − λi ≥ m(i− k + 1).

Suppose λi > λi+1 and k = k(λ, i). Set λlµ, where µ = (λ1, . . . , λk−1, λk−1, . . . , λi−1, λi+1, . . . , λn).

The m-Tamari lattice T (m)
n is the set of (m,n)-Dyck partitions, together with the transitive closure of this

covering relation λl µ.

Friedman and Tamari 1967 and also Huang and Tamari 1972 showed that Tn = T (1)
n is a lattice. Bousquet-

Mélou, Fusy, and Préville-Ratelle 2011 showed that T (m)
n is a lattice and is in fact isomorphic to a sublattice

of Tnm. At the top of the lattice is the empty partition and at the bottom is the partition ((n− 1)m, . . . ,m).

If a poset has an element x with the property that y ≤ x for all y in the poset, we denote that element by

1̂. Similarly, 0̂ is the element below all others if such an element exists. In a poset with 0̂ and 1̂, a maximal

chain is a sequence of elements 0̂ = x0 l x1 l · · ·l xN−1 l xN = 1̂.

Let λ = (λ1, . . . , λr) be an integer partition. Its Young diagram is an array of boxes, where there are λi

boxes in row i. The (n,m)-Dyck partitions are the partitions whose Young diagram fits inside the diagram of

(m(n−1),m(n−2), . . . ,m). A tableau of shape λ is a filling of the Young diagram of λ by positive integers,

where the entries strictly increase along rows and weakly along columns. It is a standard Young tableau if

there are no repeated entries.

2.3 Maximum Length Chains in T (m)
n and Tableaux

To each maximal chain C in T (m)
n , we associate a tableau Ψ(C) of shape (m(n− 1), . . . ,m).

Definition 2.3 Let C = {1̂ = xr m . . .m x1 m x0 = 0̂} be a maximal chain. As the chain is traversed from

top to bottom, boxes are added. Fill the boxes added in moving from xj to xj−1 with r− j+1. The resulting

tableau is Ψ(C).

Every maximal chain is assigned a tableau and those of maximum length a standard Young tableaux. See

Figure 17. Ψ is injective. For the rest of this chapter, we focus on chains of maximum length.
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Figure 17: The tableau on the left corresponds to the chain on the left in Figure 16, and the tableau on the
right to the chain on the right. The tableau on the left can be shifted by one, the one on the right cannot.

Definition 2.4 Let m be a positive integer and λ = (λ1, . . . , λk) be a partition such that λi − λi+1 ≥ m,

for i from 1 to k− 1. Then them-shifted diagram of λ is obtained from the usual diagram of λ by moving the

i-th row m(i− 1) boxes to the right, for i > 1. An m-shifted tableau of shape λ is a filling of the m-shifted

diagram of λ by positive integers such that the entries strictly increase along rows and weakly along columns.

It is standard if no entry is repeated and the entries are from {1, 2, . . . , | λ |}.

The case m = 1 is the usual shifted tableau.

Theorem 2.5 The number of chains of maximum length in them-Tamari lattice T (m)
n is equal to the number

of standard m-shifted tableaux of shape (m(n− 1),m(n− 2), . . . ,m).

Proof. Tn has a chain of length
(
n
2

)
, and this is the maximum length (Markowsky 1992). In T (m)

n , consider

the chain whose vertex xi is the (m,n)-Dyck partition λ = (λ1, . . . , λn), where

λj =


m(n− j) if m

(
n
2

)
− i ≥

∑j
h=1m(n− h),

m
(
n
2

)
− i−

∑j−1
h=1m(n− h) otherwise.

This is a chain of length m
(
n
2

)
and there can be no longer ones.

Let N denote m
(
n
2

)
. A maximum length chain C = {0̂ = x0 l x1 l · · · l xN−1 l xN = 1̂} in T (m)

n

is one where the Young diagram for xj has exactly one square more than the Young diagram for xj+1, for

j from 0 to N − 1. This is only possible if k(λ, i) = i in Definition 2.2 whenever xj = (λ1, . . . , λn) and

xj+1 = (λ1, . . . , λk(λ,i)−1, λk(λ,i) − 1, . . . , λi − 1, λi+1, . . . , λn). Thus for each cover in the maximum

length chain, when a box is removed from row i of xj , we have i = 1 or λi−1 − λi ≥ m. To express this in

terms of the entries of the tableau Ψ(C), let bgh denote the entry in row g and column h. Then the condition

i = 1 or λi−1 − λi ≥ m becomes i = 1 or bi,h > bi−1,h+m.

This is exactly the property that the entries in a tableau must have if we are to be able to shift that tableau

by m.

Conversely, given such a tableau, the conditions on the entries guarantee that it represents a maximum

length chain in T (m)
n . �
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Corollary 2.6 The number of chains of length
(
n
2

)
in Tn is(

n

2

)
!
(n− 2)!(n− 3)! · · · 1!
(2n− 3)!(2n− 5)! · · · 1!

.

Proof. Use the Thrall formula (Thrall 1952) for the number of shifted tableaux of shape (n− 1, n− 2, . . . , 1).

�

There are 2n−1 partitions with distinct parts whose Young diagram is contained within the Young diagram

for (n− 1, . . . , 1). These partitions label the vertices which appear in a chain of maximum length.

2.4 Maximal Chains in Weak Bruhat Order

Let Sn be the symmetric group, with simple transpositions S. Each w in Sn can be written as a word

in S, and any word for w which is minimal in length among words for w is called a reduced expression

for w. The length of w is the length of any reduced expression for w and is denoted ℓ(w). To define the

support of w, written Sup(w), let si1 · · · sil(w)
be any reduced word for w. Then Sup(w) ⊆ S is the set

{si1 , si2 , . . . , siℓ(w)
}. Any reduced expression for w can be transformed into any other by a sequence of

braid relation transformations, which means that Sup(w) is independent of the reduced expression for w.

The (right) weak (Bruhat) order on Sn is the transitive closure of the cover relation wlws whenever s ∈ S

and ℓ(w) < ℓ(ws). See Figure 18. The identity permutation is the minimum element 0̂, and the maximum

element 1̂ is w0, where w0(i) = n − i + 1. The symmetric group, together with the weak order, form a

lattice, which we also denote by Sn.

Figure 18: The Hasse Diagram of the Poset S3, with Edge from w to ws Labeled by s.

All maximal chains in Sn have the same length, N =
(
n
2

)
. Stanley 1984 conjectured and proved using

symmetric functions that the number of maximal chains in Sn is the number of standard Young tableaux of
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shape (n−1, n−2, . . . , 1). Edelman and Greene 1987 re-proved this result using a bijection, described here

in Section 2.4.1. On the other hand, Björner and Wachs 1997 and later Reading 2006 showed that Tn can be

considered as a sublattice of Sn and that there is an order preserving projection from Sn to Tn. We describe

Reading’s approach in Section 2.4.2. In Section 2.4.3, Theorem 2.12, we describe how the Edelman-Greene

bijection is related to the function Ψ from Section 2.3 by the inclusion of Tn in Sn. Note that the Stanley

lattice refines Tn (Bernardi and Bonichon 2009) and has the same number of maximal chains as Sn. However,

we are interested in comparing Tn to Sn, instead of to the Stanley lattice, because of the algebraic structure

inherent to Sn.

2.4.1 Maximal Chains in Sn and Standard Young Tableaux

A maximal chain in Sn is of the form C = {0̂ = x0 lx1 l · · ·lxN−1 lxN = 1̂}, where xk−1sik = xk

and ℓ(xk−1) + 1 = ℓ(xk), for 1 ≤ k ≤ N . Each maximal chain can be seen as a reduced word si1 · · · siN

for w0, and we will use both ways of indicating a chain.

Edelman and Greene 1987 defines a bijection between maximal chains in Sn and standard Young tableaux

of shape (n − 1, . . . , 1). The authors define an analog of the Robinson-Schensted-Knuth correspondence

for reduced expressions. Here we assume the reader is familiar with the usual Robinson-Schensted-Knuth

insertion and review the Coxeter-Knuth insertion from Edelman and Greene 1987.

Definition 2.7 (Edelman and Greene 1987, Definition 6.20, Coxeter-Knuth insertion). Suppose that T is a

tableau with rows T1, T2, . . . , Tj and x0 is to be inserted into T1. For each i ≥ 0 add xi to row Ti+1, bumping

(perhaps) xi+1 to the next row, using the usual Robinson-Schensted-Knuth insertion, except in the following

special case. If xi bumps xi+1 from row Ti+1, xi+1 = xi + 1, and xi is already present in Ti+1, the value

of xi in Ti+1 is changed from xi to xi+1.

Also in their words, if x is inserted into a row containing x x+ 1, a copy of x+ 1 is bumped to the next

row, but the original x x+ 1 remains unchanged.

For the bijection: begin with a maximal chain in Sn, written as a reduced expression si1 · · · siN for w0.

Coxeter-Knuth insert its indices in reverse into the empty tableau to obtain a pair (P,Q) of tableaux of shape

(n− 1, n− 2, . . . , 1). The Edelman-Greene bijection matches the chain with the standard Young tableau Q.

See Figure 19.
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Figure 19: The tableau on the left corresponds to the chain s1s2s1 on the left in Figure 18, and the tableau
on the right to the chain s2s1s2 on the right. The tableau on the left can be shifted by one, the one on the
right cannot.

2.4.2 c-Sorting

Björner and Wachs 1997 show that Tn is induced by weak order on a certain set of permutations, 312-

avoiding permutations, and is also a quotient of weak order. For the latter, they give a projection from Sn

to Tn. Reading 2006 introduced c-sorting words, which generalize the 312-avoiding permutations. He used

them to define Cambrian lattices and thereby generalized the Tamari lattice to any Weyl groupW and Coxeter

word w ∈ C. He defined a projection which generalizes the Björner-Wachs projection. The Tamari lattice

is the case c = s1s2 · · · sn−1 Cambrian lattice. We use the Reading description of Tn as a sublattice of Sn,

although in some sense it is more general than we need, because it explicitly describes the Tamari lattice in

terms of elements of S, the simple transpositions.

Throughout this chapter, c will be the Coxeter word s1s2 . . . sn−1. For a set K = {a1 < a2 < . . . <

ar} ⊂ [n], let cK denote sa1sa2 . . . sar . There may be many different ways to write w ∈ Sn as a reduced

subword of c∞ = ccccc . . . . The c-sorting word of w ∈ Sn is the reduced subword of c∞ for w which

is lexicographically first, as a sequence of positions in c∞. The c-sorting word for w can be written as

cK1cK2 · · · cKp , where p is minimal for the property

w = cK1cK2 · · · cKp and ℓ(w) =

p∑
i=1

|Ki|.

An element w ∈ Sn with c-factorization cK1cK2 · · · cKp is called c-sortable if Kp ⊂ Kp−1 ⊂ . . . ⊂ K1.

Example 2.8 In S4, letw = 3241 and v = 4132. w has the three reduced expressions: s1s2s3s1, s1s2s1s3,

and s2s1s2s3. Its c-sorting word is s1s2s3s1 = c{1,2,3}c{1} and it is c-sortable. v also has three reduced

expressions: s3s2s3s1, s2s3s2s1, and s3s2s1s3. Its c-sorting word is s2s3s2s1 = c{2,3}c{2}c{1} and it is

not c-sortable.

Reading 2006 defines the map πc
↓, which takes a element w of Sn to the maximal c-sortable word below

w. See Figure 20. In the case c = s1s2 . . . sn−1, this map is used to show that the Tamari lattice Tn is a

lattice quotient of Sn. Reading considers Tn as an induced sublattice of Sn and labels the elements of Tn by

c-sortable words. Maximum length chains in Tn can be identified with certain maximal chains in Sn.
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Figure 20: The Hasse Diagrams of the Posets S3 and T3, with Vertices Now Labeled by c-sorting Words. Under
πc
↓, the vertices s2 and s2s1 are both mapped to the same vertex in T3, the vertex labeled with s2.

We will need the following lemma to characterize reduced expressions for w0 in Sn coming from maximal

length chains in Tn. It is a very slightly modified version of a lemma from Hohlweg, Lange, and Thomas 2011.

Lemma 2.9 (Hohlweg, Lange, and Thomas 2011, Lemma 2.6) Suppose w and wsk are both c-sortable and

ℓ(wsk) = ℓ(w) + 1. Suppose w’s c-factorization is cK1 · · · cKp . Then the c-factorization of wsk is either

cK1 · · · cKpc{k} or cK1 · · · cKi∪{k} · · · cKp .

If wsk = cK1 · · · cKi∪{k} · · · cKp , then i is uniquely determined and sk commutes with every sh for

h ∈ Ki+1 ∪M , whereM = {m ∈ Ki|m > k}.

Proof. We include, almost verbatim, the proof from Hohlweg, Lange, and Thomas 2011 for completeness.

If k ∈ Kp, the c-factorization of wsk is simply cK1 · · · cKpc{k}, so assume k ̸∈ Kp. Let cL1 · · · cLq be

the c-factorization of wsk. Since ℓ((wsk)sk) < ℓ(wsk), by the exchange property (see Björner and Brenti

2005) there is a unique i, 1 ≤ i ≤ q and r ∈ Li, such that w = cL1 · · · cLi\{r} · · · cLq .

Case 1. Suppose i = 1; that is, 1 is the unique index such that

w = cL1\{r}cL2 · · · cLq . (2.1)

First we show that r is not a member of K1. Suppose, for a contradiction, that r ∈ K1 = Sup(w). Since

cL1\{r}cL2 · · · cLq is reduced and L2 ⊇ · · · ⊇ Lq is nested, we have r ∈ L2. Hence

K1 = Sup(w) = (L1 \ {r}) ∪ L2 = L1 ∪ L2 = L1.

Thus cL2 · · · cLq and cK2 · · · cKqsk are reduced expressions for some ŵ ∈ W and ℓ(ŵsk) < ℓ(ŵ). The

exchange condition implies the existence of a unique index j, 2 < j < q and t ∈ Lj such that

ŵ = cL2 · · · cLj\{t} · · · cLq .
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In other words,

w = cL1ŵ = cL1cL2 · · · cLj\{t} · · · cLq

is reduced. But this contradicts the uniqueness of i = 1 in equation (2.1). So r ̸∈ K1. Since r ̸∈ K1, we

know r ̸∈ Sup(w) and r ∈ Sup(wsk), which shows that k = r. Because sk ̸∈ Sup(w), in order to rewrite

swk in its c-sorting form, we must have commuted sk from the right to the left; i.e. sk commutes with sh

for all h ∈ K2 ∪M .

Case 2. Suppose i > 1. Then K1 = Sup(w) = L1. Set ν := min(p, i− 1) and iterate the argument for

cL1
−1, cL2

−1cL1
−1w, . . . to conclude Lj = Kj for 1 ≤ j ≤ ν. If ν = p then i = q = p+1 and Li\{r} = ∅.

So Li = {j} ⊆ Li−1 = Kp, which contradicts k ̸∈ Kp. Thus ν = i − 1 for some i ≤ p and Lj = Kj for

1 ≤ j ≤ i− 1. Thus, we may assume i = 1, and we are done by Case 1. �

In a chain of maximum length in Tn, the factorizations change by exactly one transposition as we move

up the chain. Thus Lemma 2.9, combined with the fact that sj and sj−1 do not commute, has the following

corollary.

Corollary 2.10 Let v be a vertex in a chain of maximum length in Tn and c = s1s2 . . . sn−1. Suppose that

v’s c-factorization is cK1 · · · cKp . Then if j is a member of Ki, either j − 1 ∈ Ki or j = 1. Additionally, if

j ≤ n− i and j ̸∈ Ki, then j − 1 ̸∈ Ki+1.

Let λ be a partition. A lattice permutation of shape λ is a sequence a1a2 . . . aN in which i occurs λi times

and such that in any left factor a1 . . . aj , the number of i’s is at least as great as the number of i+ 1’s. See

Stanley 1999. We combine Lemma 2.9 with Corollary 2.10 to obtain Corollary 2.11.

Corollary 2.11 Let si1 . . . siN be a reduced word for w0 coming from a maximum length chain in Tn. Let

C = i1i2 . . . iN and CR = iN . . . i1. Then both C and CR are lattice permutations for the partition λ =

(n− 1, n− 2, . . . , 1).

2.4.3 Maximal Length Chains in Tamari Order and Weak Bruhat Order

Theorem 2.12 and the results from Section 2.4 explain that the modified Robinson-Schensted algorithm

encodes the Tamari order when used on certain chains in the weak Bruhat order on Sn.

Theorem 2.12 Let C = {0̂ = x0 l x1 l · · ·l xN−1 l xN = 1̂} be a maximum length chain in Tn. Each

xi is c-sortable, so it may also be considered as a chain in Sn. As a chain in Tn, C maps to a standard Young
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tableau T as in Section 2.3. As a chain in Sn, it maps to a standard Young tableau T ′ as in Section 2.4. Then

we have T = T ′.

Proof. First we will define a bijection p between c-sortable words and (m,n)-Dyck partitions for m = 1

and show that it respects the covering relation in Tn. We then show that if w l wsik , then p(wsik) is the

partition p(w) with column ik shortened by 1. Lastly we show that if we insert ik into the tableau produced

by siN . . . sik+1
, we lengthen column ik by 1. See Figure 21.

Figure 21: On the left is the single maximum length chain in T3, and on the right is the maximum length chain
in S3 that it corresponds to under p. If 121 is inserted into ∅ using Coxeter-Knuth insertion, the sequence of
shapes we obtain is the same as those in the chain on the left.

Given a c-sortable word w, with c-factorization cK1 . . . cKp , let p(w) be the partition where column

i has length n − i − # of occurrences of i in w’s factorization. See also Bandlow and Killpatrick 2001,

Krattenthaler 2001, Fulmek 2003. The partition p(w) can also been described as follows. Let X be the

partition (n− 1, n− 2, . . . , 1), the minimal element of Tn. The k-th diagonal of X is the set of boxes (i, j)

such that i+ j − 1 = k. Label the boxes in column i by i. Then p(w) is the partition X with the box labeled

i in diagonal k removed if and only if i ∈ Kk. Then since Kp ⊂ Kp−1 ⊂ . . . ⊂ K1, p(w) is a partition.

If w l wsj , then by Lemma 2.9 and the definition of p, we have that p(wsj) is the partition p(w) with

column j shortened by 1. Write p(w) = (a1, . . . , an) and p(wsj) = (a1, . . . , ai−1, ai − 1, ai+1, . . . , an),

where ai = j. The box removed from the diagram of p(w)was on diagonal i+j−1. Since this box was present

in p(w), we know that j ̸∈ cKi+j−1 in the c-factorization of w. Thus by Corollary 2.10, j + 1 ̸∈ cKi+j−1 , so

that ai−1 > ai and p(w)l p(wsj) according to Definition 2.2.

Let C = si1 . . . siN be a maximal chain in Sn which is also a maximal length chain in Tn. Suppose
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siN , . . . , sik+1
have been inserted as in Section 2.4 to form a tableau P of shape λ. For ease of notation,

write j for sj . Let x, y, and z be the number of occurrences of ik − 1, ik, and ik + 1,respectively, in

siN . . . sik−1
. Since both C and CR are lattice words and j appears a total of N − j times in C, we have

that x = y + 1 and y = z. Thus, by induction, column ik − 1 has length x and both column ik and ik + 1

have length x − 1. In row h of P , we have ik + h − 2, ik + h − 1, and ik + h in columns ik − 1, ik, and

ik + 1, respectively. Again, by induction, when ik + h − 1 is inserted into row h, for h < x, ik + h will be

bumped into row h+ 1. Finally, at row x, ik + x− 1 will settle in column ik, finishing the proof. �
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Chapter 3

A RECURSION ON MAXIMAL CHAINS IN THE TAMARI LATTICES

The Tamari lattices have been intensely studied since their introduction by Dov Tamari around 1960.

However oddly enough, a formula for the number of maximal chains is still unknown. This is due largely to

the fact that maximal chains in the n-th Tamari lattice Tn range in length from n−1 to
(
n
2

)
. We treat vertices

in the lattice as Young diagrams and identify maximal chains as certain Young tableau. For each i ≥ −1,

we define Ci(n) as the set of maximal chains in Tn of length n + i. We give a recursion for #Ci(n) and an

explicit formula based on predetermined initial values. The formula is a polynomial in n of degree 3i+3. For

example, the number of maximal chains of length n in Tn is #C0(n) =
(
n
3

)
. The formula has a combinatorial

interpretation in terms of a special property of maximal chains.

3.1 Background

In this chapter, our focus pertains to the following definition.

Definition 3.1 For each i ≥ −1 and for all n ≥ 1, Ci(n) is the set of maximal chains of length n+ i in Tn.

Some values of #Ci(n) are given in Table 1. The main result of this chapter is Theorem 3.32: we

give a recursion for #Ci(n) and an explicit formula based on predetermined initial values. The formula is

a polynomial in n of degree 3i + 3. For example, the number of maximal chains of length n − 1 in Tn is

#C−1(n) = 1, while the number of length n is #C0(n) =
(
n
3

)
. For a given n, a column of the table lists the

numbers of maximal chains in Tn by length. In the column indexed by n = 4, the numbers of maximal chains

of lengths 3, 4, 5 and 6 in T4 are #C−1(4) = 1, #C0(4) = 4, #C1(4) = 2 and #C2(4) = 2, respectively.

Bernardi and Bonichon 2009 rewrote the covering relation in Tn in terms of Dyck paths. We find it useful

to work mainly from the perspective of Young diagrams, but rely on properties of both sets. We present basic

terminology and the covering relation in Section 3.2.

We rely on two maps: ψ and ϕri,n. We use ψ to identify maximal chains in Tn with certain Young tableaux.

We obtain an expression for the number of maximal chains using ϕri,n, which takes a maximal chain in Ci(n)

to one in Ci(n + 1). Because of ψ, we may express ϕri,n as a map on tableaux. Sections 3.3 and 3.4 are

devoted to ψ and ϕri,n, respectively. In Section 3.3, after defining ψ and establishing basic properties, we

26



enter into more technical material, which plays a role in verifying properties of ϕri,n. A maximal chain in the

image of ψ may or may not possess a “plus-full-set”; see Definition 3.16. In Section 3.4, we define ϕri,n

where r determines the domain and codomain in terms of plus-full-sets. The focus of this section and a key

ingredient leading up to our main objective is the fact that ϕri,n is bijective (Theorem 3.22).

Table 1: #Ci(n): Number of Maximal Chains in Tn of Length n+ i

In Section 3.5, we gather more on properties and consequences of ϕri,n and tie our results together to write

a recursive formula for #Ci(n). ϕri,n takes a maximal chain to one with one more plus-full-set (Proposition

3.24). This enables us to write every maximal chain, which has a plus-full-set, uniquely in terms of one

with one less plus-full-set. This may be extended to a unique representation in terms of a maximal chain

with no plus-full-sets (Corollary 3.26). By relating this unique representation for a maximal chain to specific

plus-full-sets that it contains (Proposition 3.28), we obtain an expression for #Ci(n); see equation (3.5). For

each i ≥ −1, there exists a maximal chain in Ci(2i + 3) containing no plus-full-sets (Lemma 3.30), but

surprisingly, for all n ≥ 2i + 4, each maximal chain in Ci(n) has a plus-full-set (Theorem 3.31). We utilize

these latter two facts to refine our expression for #Ci(n) and achieve our main objective in Theorem 3.32.
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3.2 Preliminaries

In this section, we present basic terminology of Young diagrams and Dyck paths and the covering relation

in the Tamari lattice.

A partition of a positive integer l is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of positive integers

summing to l. A Young diagram of shape λ is a left-justified collection of boxes having λj boxes in the j-th

row. Rows and columns of the diagram begin with an index of one. We adopt the English notation, in which

rows are indexed downward. The empty partition λ = (0) is associated with the null diagram, having no

boxes. λ is of staircase shape if each successive part in the partition is one less than the previous, ending

with the last part equal to one. A Young tableau or tableau for short is obtained by filling a Young diagram,

typically with a set (or multiset) of positive integers. In a Young diagram or tableau, we denote the box in

the x-th row and y-th column by (x, y). In a tableau T we denote its label by T (x, y).

A Dyck path of length 2n is a path on the square grid of north and east steps from (0, 0) to (n, n) which

never goes below the line y = x. Necessarily, every Dyck path begins with a north step and ends with an

east step, and has an equal number of both types of steps. The height of a Dyck path is its number of north

steps. In Bernardi and Bonichon 2009, vertices in Tn are interpreted as the set of Dyck paths of length 2n,

the number of which is the n-th Catalan number Cn = 1
n+1

(
2n
n

)
.

There is a natural bijective correspondence between the set of Dyck paths of length 2n and a set of Young

diagrams, to which we identify the set of vertices in Tn: roughly speaking, a Dyck path gives the silhouette of

the Young diagram. For n ≥ 2, this is the set of Young diagrams contained in the Young diagram of staircase

shape (n − 1, . . . , 1). T1 is comprised of a single vertex, the null diagram. Figure 22 is the set of C4 = 14

Dyck paths of length 8 and corresponding Young diagrams.

Figure 22: The Vertices of T4 in Terms of Dyck Paths and Young Diagrams

Remark 3.2 Let Y ∈ Tn be a Young diagram. For each m ≥ n, Y ∈ Tm and Y corresponds to exactly one
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Dyck path of length 2m. In the other direction, any Dyck path (regardless of length) corresponds to exactly

one Young diagram.

Definition 3.3 If P is a Dyck path and L is the line segment (of slope one) that joins the endpoints of P ,

then P is said to be prime if P intersects L only at the endpoints of P . (We word the definition of prime Dyck

paths differently than in Bernardi and Bonichon 2009, but our definition has the same meaning.)

Of the Dyck paths in Figure 22, only the last five in the second row are prime, corresponding to the Young

diagrams contained in the Young diagram of shape (2, 1). A Dyck path of length 2n has exactly n prime Dyck

subpaths, each uniquely determined by its beginning north step. In Figure 23, for the given Dyck path of

length 8, its 4 prime Dyck subpaths are accentuated. The line segment joining the end points of each of the

prime subpaths is shown. As required in Proposition 3.12, we characterize pairs of prime Dyck subpaths as

follows.

Proposition 3.4 If Q and R are two distinct prime Dyck subpaths of a Dyck path, then exactly one of the

following characterizes Q and R:

1. Q ∩R = ∅, i.e., Q and R have no common points.

2. Q and R intersect in a single point.

3. Q ( R, i.e., Q is a proper subpath of R.

4. R ( Q.

Figure 23: Prime Dyck Subpath Examples

For an example of (1), take Q and R to be the prime Dyck subpaths in the first and third examples of

Figure 23, respectively. For (2), let Q and R be the subpaths in the first and second examples, respectively.

For (3), let Q and R be the subpaths in the third and second examples, respectively.

The notion of prime is intimately tied to the covering relation in the Tamari lattices. We need to extend

this notion.

Definition 3.5 Let Y be a Young diagram and P a corresponding Dyck path. If B is a box of Y , whose right

vertical edge e lies on P , the prime path of B is the prime Dyck subpath of P beginning with e. We call a

box of Y , whose bottom horizontal edge and right vertical edge lie on P , a corner box.

29



Figure 24 shows two examples of Definition 3.5, each with the prime path ofB drawn. In the second example,

B is a corner box.

Figure 24: Prime Path of a Box B Examples

We give two versions of the covering relation. The second, in terms of Young diagrams, follows from the

correspondence of Dyck paths. If x and y are two elements of a poset, we denote x is covered by y (or y

covers x) as xl y.

Proposition 3.6 (Bernardi and Bonichon 2009, Proposition 2.1) Covering relation in the Tamari lattices, Dyck

paths. Let P and P ′ be Dyck paths. Then P ′ covers P if and only if there exists an east step e in P , followed

by a north step, such that P ′ is obtained from P by swapping e and the prime Dyck subpath following it.

P P ′ P P ′

Figure 25: The Covering Relation in the Tamari Lattices: Dyck Paths

Proposition 3.7 Covering relation in the Tamari lattices, Young diagrams. Let Y and Y ′ be Young diagrams.

Then Y ′ covers Y if and only if there exists a corner boxB in Y , such that Y ′ is obtained from Y by removing

each box whose right vertical edge lies on the prime path of B.

Y Y ′ Y Y ′

Figure 26: The Covering Relation in the Tamari Lattices: Young Diagrams

Examples of the covering relation for Dyck paths in Figure 25 correspond to the examples for Young

diagrams in Figure 26. For the Dyck paths, the east step of P referenced in the proposition is grayed and the

prime Dyck subpath following it is accentuated. For the Young diagrams, the prime path of the corner box B

in Y is drawn.

30



The Hasse diagrams for T3 and T4 are shown in Figure 27. The maximal element 1̂ in Tn is the null

diagram. For n ≥ 2, the minimal element 0̂ has staircase shape (n− 1, . . . , 1).

T3

T4

Figure 27: Hasse Diagrams for T3 and T4 in Terms of Young Diagrams

3.3 Representation of Maximal Chains

In this section, we relate an efficient approach to work with maximal chains (or saturated chains) in the

Tamari lattices, through the map ψ. In particular, ψ assigns a maximal chain in Tn uniquely to a tableau. We

establish basic properties, then enter into more technical material which plays an important role in verifying

properties of the map ϕri,n defined in Section 3.4.

Definition 3.8 Let C = (1̂ = Y0 m Y1 m · · · m Yl) be a saturated chain under the Tamari order, whose

maximal element is the null diagram. As C is traversed upwards in the Hasse diagram, boxes are removed in

each transition. For each r ∈ [l], label the boxes of Yl corresponding to the boxes removed in the transition

Yr−1 m Yr with r. The resulting tableau, of the same shape as Yl, is ψ(C). A ψ-tableau is an element in the

image of ψ. The length of a ψ-tableau is the number of its distinct entries.

Examples of ψ-tableaux are shown in Figure 28. The nine maximal chains of T4 are shown in Figure 29. We

defined ψ on maximal chains in Definition 2.3.

31



Figure 28: ψ-tableaux

Figure 29: The Nine Maximal Chains of T4 via ψ

Remark 3.9 Let T be a ψ-tableau of length l. Then, T = ψ(C) for some C = (1̂ = Y0 m Y1 m · · · m Yl).

The length of T is the length of C. For each r ∈ {0, 1, . . . , l}, Yr is the Young diagram of boxes (x, y) of T ,

satisfying T (x, y) ≤ r. Thus ψ is injective.

Moreover, for each n ≥ 1 and for each Young diagram Y ∈ Tn, ψ extends to a bijection of sets between

saturated chains in Tn of length l whose minimal element is Y and maximal element is 1̂, and ψ-tableaux of

length l and of the same shape as Y .

Since we identify vertices in Tn, n ≥ 2, as Young diagrams contained in the Young diagram of staircase shape

(n− 1, . . . , 1), ψ induces the following examples of bijective correspondences between:

• maximal chains in Tn of length n+ i, i.e., Ci(n), and ψ-tableaux of length n+ i and of staircase shape

(n− 1, . . . , 1),

• maximal chains in Tn and ψ-tableaux of staircase shape (n− 1, . . . , 1),

• saturated chains in Tn ending with 1̂ and ψ-tableaux which fit in the Young diagram of staircase shape

(n− 1, . . . , 1).

Note, T1 has exactly one maximal chain, its length being zero. This is the unique maximal chain of C−1(1),

corresponding to the ψ-tableau of zero length, i.e., the null diagram. We move forward now to relate basic

properties of ψ-tableaux.

Definition 3.10 Let T be a ψ-tableau of length l > 0 and let r ∈ [l]. We call the boxes labeled with r

an r-set. We say the r-set begins in its box of minimum row index and ends in its box of maximum row

index. (This is well-defined since each row of labels of T is strictly increasing.) The minor diagonal of a Young

diagram of staircase shape (n− 1, . . . , 1), n ≥ 2, is the set of boxes (j, n− j), j ∈ [n− 1].
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Proposition 3.11 Basic properties of ψ-tableaux. Let T be a ψ-tableau of length l > 0 and let ψ−1(T ) =

(1̂ = Y0 m Y1 m · · · m Yl). Let r ∈ [l] and suppose the r-set ends in (x, y) of T . Let k be the number of

boxes in the r-set.

1. The r-set in T corresponds to the boxes removed from Yr in the transition Yr−1 m Yr (Definition 3.8),

those boxes in Yr whose right vertical edges lie on the prime path of the corner box (x, y) (Proposition

3.7), and consist of the last box in each j-th row where x− k + 1 ≤ j ≤ x.

2. The height of the prime path of the corner box (x, y) in Yr equals k.

3. If (a, b) is a box of T labeled with r, then in Yr, the prime path of (a, b) is a subpath of the prime path

of (x, y) (Proposition 3.4).

4. k > 1 if and only if r = T (x, y) = T (x− 1, y).

5. Each row of labels of T is strictly increasing when read left to right, and each column is weakly increasing

when read top to bottom.

6. If T is of staircase shape, then there are no repeat labels in the minor diagonal of T .

We reference statements in Proposition 3.11 frequently in upcoming material. They follow immediately from

basic definitions and the covering relation. The remaining material of this section is more technical and is

necessary to verify properties of the map ϕri,n defined in the next section.

Proposition 3.12 Let C = (1̂ = P0 mP1 m · · ·mPl) be a saturated chain in Tn whose maximal element is

1̂, where the Pj are Dyck paths of length 2n. Fix an integer k ∈ [n]. Let hj , 0 ≤ j ≤ l, be the height of the

prime Dyck subpath which begins with the k-th north step of Pj . Then, h0 ≥ h1 ≥ · · · ≥ hl.

Proof. By induction on l, it suffices to show hl−1 ≥ hl. Let Q be the prime Dyck subpath of Pl, beginning

with the k-th north step. LetR be the prime Dyck subpath of Pl that shifts to the left one unit in the transition

Pl−1 m Pl (see Proposition 3.6). We have a few cases to check as outlined in Proposition 3.4. If Q = R or

Q ( R or R ( Q or Q ∩ R = ∅, then hl−1 = hl. We’re left with the case where Q ∩ R is a single point.

If R ends at the same point where Q begins, then hl−1 = hl. On the other hand, if Q ends at the same

point where R begins, then the trailing east step of Q swaps with R in the transition Pl−1 mPl. In this case,

hl−1 > hl. �

Figure 30 is an example of a maximal chain in terms of Dyck paths Pj of length 8. As referenced in Proposi-

tion 3.12, the sequences (h0, h1, h2, h3, h4) for k ∈ {1, 2, 3, 4} are (4, 4, 2, 1, 1), (3, 1, 1, 1, 1), (2, 2, 2, 2, 1),

(1, 1, 1, 1, 1), respectively.
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P0 P1 P2 P3 P4

Figure 30: Decreasing Heights Example

Theorem 3.13 Let T be a ψ-tableau in which its d-th row has a nonzero total number of boxes b. Suppose

that the height of the prime path of (d, b) is d. Obtain T ′ from T by shifting any rows of index greater than

d down one row and repeating the d-th row in the (d+ 1)-th row. Then T ′ is a ψ-tableau.

Proof. Let ψ−1(T ) = (1̂ = Y0 m Y1 m · · ·m Yl) and let r = T (d, b).

Suppose there is an s-set in T such that s > r. By property (5) of Proposition 3.11, since s > r = T (d, b),

the s-set does not contain a box in the d-th row of T , and by property (1), there are two cases. If the s-set

in T ends in a row of index less than d, it has the same positioning as the s-set in T ′. Otherwise, if the s-set

in T begins in a row of index greater than d, it has the same orientation relative to (d, b) as the s-set in T ′

relative to (d + 1, b). By nature of the covering relation, the collection of j-sets in T ′, j > r, has a valid

labeling as inherited from T .

We now show that the r-set in T ′ has a valid labeling. Obtain U and U ′ from T and T ′, respectively, by

removing any j-sets , j > r. Note U is a ψ-tableau. Let B and B′ be the corner boxes in which the r-set

ends in U and U ′, respectively. B′ has one greater row index than B, which has that at least d. B′ and

B share the same column index. By assumption, the height of the prime path of (d, b) in Yl is d, and since

U has the same shape as Yr, the height of the prime path of (d, b) in U is d (Proposition 3.12). The prime

path of (d, b) is a subpath of the prime path of B in U (property (3) of Proposition 3.11), thus the r-set in

U begins in its first row. By property (5) of Proposition 3.11 and our construction, the last box in each row

of index less than or equal to that of B and B′, in U and U ′, respectively, is labeled with r. The height of

the prime path of (d, b) in U ′ is d, as U has this property. In U ′, the prime path of (d, b) is a subpath of

the prime path of (d+ 1, b) and the prime path of (d+ 1, b) is a subpath of the prime path of B′. The latter

follows because in U , the prime path of (d, b) is a subpath of the prime path of B. These observations imply

that the r-set in U ′ is precisely those boxes whose right vertical edges lie on the prime path of B′. Therefore,

the r-set in U ′ (and thus in T ′) has a valid labeling.

Further alter U and U ′ by removing the r-set from each. U is a ψ-tableau. If b = 1, U = U ′ and thus

T ′ is a ψ-tableau; otherwise, suppose b > 1. Again by Proposition 3.12, the height of the prime path of

(d, b− 1) in U is d, and furthermore, U ′ is obtained from U as described in the theorem. By induction, U ′ is

a ψ-tableau. Thus also T ′ is a ψ-tableau. �
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Figure 31 illustrates an example of Theorem 3.13 for d = 5 and b = 2. The prime path of (d, b) in T is

drawn.

T T ′

Figure 31: Repeating a Row Example: d = 5, b = 2

Lemma 3.14 Let T be a ψ-tableau in which its d-th and (d+1)-th rows have the same nonzero total number

of boxes b. Then, for each y satisfying 1 ≤ y ≤ b, T (d, y) = T (d+ 1, y).

Proof. We show that T (d, b) = T (d+1, b), then are done by induction. Let ψ−1(T ) = (1̂ = Y0mY1m· · ·mYl)

and let r = T (d, b). For each Young diagram Yj which contains (d + 1, b), Yj must contain (d, b), and the

prime path of (d, b) is a proper subpath of the prime path of (d+1, b). This implies that (d+1, b) and (d, b)

are removed in the same transition, i.e., Yr−1 m Yr. �

Theorem 3.15 (Converse of Theorem 3.13) Let T be a ψ-tableau in which its d-th and (d+1)-th rows have

the same nonzero total number of boxes b. Suppose that the height of the prime path of (d, b) is d. Obtain

T ′ from T by deleting the (d+1)-th row and shifting any rows of index greater than d+1 up one row. Then

T ′ is a ψ-tableau. Moreover, T ′ has the same length as T .

Proof. Let ψ−1(T ) = (1̂ = Y0mY1m · · ·mYl) and let r = T (d, b). By Lemma 3.14, the d-th and (d+1)-th

rows of T have identical labels. Thus, T ′ has the same length as T .

Suppose there is an s-set in T such that s > r. If the s-set in T ends in a row of index less than d, it

has the same positioning as the s-set in T ′. Otherwise, if the s-set in T begins in a row of index greater than

d+ 1, it has the same orientation relative to (d+ 1, b) as the s-set in T ′ relative to (d, b). The collection of

j-sets in T ′, j > r, has a valid labeling as inherited from T .

We now show that the r-set in T ′ has a valid labeling. Obtain U and U ′ from T and T ′, respectively, by

removing any j-sets, j > r. Note U is a ψ-tableau. Let B and B′ be the corner boxes in which the r-sets

end in U and U ′, respectively. B′ has one less row index than B, which has that at least d+ 1. B′ and B

share the same column index. As in the proof of Theorem 3.13, U has the same shape as Yr, the height of

the prime path of (d, b) in U is d, and the prime path of (d, b) is a subpath of the prime path of B in U . Thus
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the r-set in U begins in the first row. The last box in each row of index less than or equal to that of B and

B′, in U and U ′, respectively, is labeled with r. The height of the prime path of (d, b) in U ′ is d, as U has

this property. In U ′, the prime path of (d, b) is a subpath of the prime path of B′. This follows because in U ,

the prime path of (d+ 1, b) is a subpath of the prime path of B. These observations imply that the r-set in

U ′ is precisely those boxes whose right vertical edges lie on the prime path of B′. Therefore, the r-set in U ′

(and thus in T ′) has a valid labeling.

The rest of the proof follows exactly the last paragraph in the proof of Theorem 3.13. �

Going forward, we identify chains by corresponding ψ-tableaux.

3.4 Plus-full-sets and the Map ϕri,n

This section is devoted to ϕri,n. A maximal chain in the image of ψ may or may not possess a “plus-full-

set”. ϕri,n takes a maximal chain in Ci(n) to one in Ci(n+1), where r determines the domain and codomain

in terms of plus-full-sets. Because of ψ, we may express ϕri,n as a map on tableaux. The main focus of this

section and a key ingredient leading up to Theorem 3.32 is the fact that ϕri,n is bijective (Theorem 3.22).

Definition 3.16 Let C be a maximal chain in Tn, n ≥ 2. Let l be its length and let r ∈ [l]. If the r-set

begins in the first row and ends in the minor diagonal of C, then we call the r-set an r-full-set, or more

generally a full-set. In this case, there is a unique box in the minor diagonal of C labeled with r (property

(6) of Proposition 3.11), i.e., there is a unique k ∈ [n− 1] satisfying C(k, n− k) = r. We call the r-set an

r+-full-set, or more generally a plus-full-set, if each of the following is met:

1. The r-set in C is a full-set.

2. The box (k, n − k) in which the r-set ends, is such that k = n − 1, or the southwest neighbor of

(k, n− k) has a label less than r, i.e., k ∈ [n− 2] and C(k + 1, n− k − 1) < C(k, n− k) = r.

The number of full-sets in a maximal chain C of length l ≥ 0 is #{j ∈ [l] | the j-set in C is a full-set} (the

null diagram has zero full-sets).

Definition 3.17 For each r ∈ [n+ i], Sr
i (n) is the set of C ∈ Ci(n) satisfying:

1. the r-set in C is a plus-full-set, and

2. for each j ∈ [r − 1], the j-set in C is not a plus-full-set.
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Remark 3.18 Condition (2) ensures that the Sr
i (n), r ∈ [n+ i], are disjoint subsets of Ci(n). We denote a

disjoint union of sets with
⊎
.

Figure 32: C0(3) Figure 33: C0(4) =
⊎

r∈[4] Sr
0 (4)

C0(3) consists of a single maximal chain, call it C, shown in Figure 32. Each of the 1-set and 3-set in

C is not a full-set, so is not a plus-full-set. The 2-set is a full-set, but is not a plus-full-set (3 = C(2, 1) >

C(1, 2) = 2). It follows that each of the subsets S1
0 (3), S2

0 (3) and S3
0 (3) of C0(3) is the empty set.

Each of the subsets S1
0 (4), S2

0 (4), S3
0 (4), S4

0 (4) of C0(4), consists of exactly one maximal chain, listed

respectively in Figure 33. The plus-full-set that qualifies each maximal chain is grayed. C0(4) is the disjoint

union of its subsets Sr
0 (4), r ∈ [4]. In Theorem 3.31, we show that for all n ≥ 2i + 4, Ci(n) is the disjoint

union of nonempty subsets Sr
i (n), r ∈ [3i+ 4].

Definition 3.19 For each triple i, n and r, satisfying i ≥ −1, n ≥ 1 and 0 ≤ r ≤ n+ i, we define the map

ϕri,n : {C ∈ Ci(n) | ∀j ∈ [r], C /∈ Sj
i (n)} → Sr+1

i (n+ 1)

as follows. Suppose C is an element of the domain. If there exists k ∈ [n − 1] such that C(k, n − k) ≤ r,

then let d be minimal for k; otherwise, set d = n. Perform the following iterative steps on C to obtain

ϕri,n(C):

1. In each row of index less than d, shift boxes with labels greater than r to the right by one box (leaving

one unlabeled box in that row to the left of shifted boxes).

2. If d ∈ [n − 1], shift any rows of index greater than d down one row and repeat the d-th row in the

(d+ 1)-th row.

3. Add the unlabeled box (d, n− d+ 1) to the diagram.

4. Increment any labels greater than r by one.

5. Label the unlabeled boxes with r + 1.

It’s not clear that ϕri,n maps into the range as defined, but the main focus of this section is to show that

ϕri,n is actually bijective. For a particular maximal chain C ∈ C1(5), examples of ϕr1,5(C) are shown in Figure

34. C has no plus-full-sets, so for each r satisfying 0 ≤ r ≤ 6, C is an element of the domain of ϕr1,5. So
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we compute ϕr1,5(C) for each r in the noted range. The columns show the resulting diagram after each step,

the last being ϕr1,5(C). Boxes shifted in step (1) are grayed under Step 1 in the examples. Boxes shifted

in step (2) are grayed and the borders of repeated rows are accentuated under Step 2. The border of the

unlabeled box added in step (3) is accentuated under Step 3. Boxes whose labels are incremented in step (4)

are grayed under Step 4. Boxes labeled with r + 1 in step (5) are grayed under Step 5.

Remark 3.20 The condition on the domain of ϕri,n, ∀j ∈ [r], C /∈ Sj
i (n), is equivalent to the condition,

∀j ∈ [r], the j-set in C is not a plus-full-set.

Theorem 3.21 If C is in the domain of ϕri,n, then ϕ
r
i,n(C) ∈ Sr+1

i (n+ 1).

Proof. Let ϕ denote ϕri,n, and suppose C is in the domain of ϕ. We first show ϕ(C) ∈ Ci(n + 1). By our

choice of d, each box of row index less than d in the minor diagonal of C has a label greater than r. Thus,

steps (1)-(3) ensure that ϕ(C) has the staircase shape (n, . . . , 1). Additionally, steps (3)-(5) result in ϕ(C)

having length n+ 1 + i, thus we only need to show that ϕ(C) is a ψ-tableau.

Suppose there is an s-set in C such that s > r. If d = n, the s-set ends in a row of index less than

d. If d ∈ [n − 1], then since C(d, n − d) ≤ r < s, the s-set does not contain a box in the d-th row of C.

Thus we obtain the following two cases. If the s-set in C ends in a row of index less than d, it has the same

orientation relative to (1, n − 1) as the (s+ 1)-set in ϕ(C) relative to (1, n), due to steps (1) and (4) (see

the grayed boxes under Step 1 in the examples). Otherwise, if the s-set in C begins in a row of index greater

than d, it has the same orientation relative to (d, n− d) as the (s+1)-set in ϕ(C) relative to (d+1, n− d),

due to steps (2) and (4) (for r = 3 see the 4-set under C and the 5-set under Step 4, also for r = 5 see the

6-set under C and the 7-set under Step 4 in the examples). The collection of j-sets in ϕ(C), j > r+ 1, has

a valid labeling as inherited from C.

Next, we look at the (r + 1)-set in ϕ(C). Obtain C ′ from the transformed diagram after step (4) is

completed, by removing any j-sets, j > r + 1. No boxes in C ′ are labeled with r + 1. By our choice of d,

for each j ∈ [d − 1], C(j, n − j) > r. Thus, due to steps (1) and (4), for each j ∈ [d − 1], C ′ does not

have the box (j, n − j + 1) and the last box in the j-th row of C ′ is unlabeled. (d, n − d + 1) is the only

other unlabeled box in C ′. These observations, by Definition 3.3, imply that the height of the prime path of

(d, n−d+1) in C ′ is d and the unlabeled boxes in C ′ are precisely those whose right vertical edges lie on the

prime path of (d, n− d+ 1). Thus, the boxes labeled with r + 1 in step (5) have valid labels. Furthermore,

the (r + 1)-set in ϕ(C) is a plus-full-set as follows. It begins in the first row of ϕ(C). If d = n, it ends in
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(n, 1). If d ∈ [n− 1], it ends in (d, n− d+ 1) and by way of steps (2)-(5),

ϕ(C)(d+ 1, n− d) = ϕ(C)(d, n− d) = C(d, n− d) < r + 1 = ϕ(C)(d, n− d+ 1).

C Step 1 Step 2 Step 3 Step 4 Step 5: ϕr1,5(C)

Figure 34: Examples of ϕr1,5

Obtain T from C and T ′ from ϕ(C) by removing any j-sets, j > r. (In the last six examples, T and T ′

are the accentuated bordered areas under C and ϕ(C), respectively.) T is a ψ-tableau, and if we show that

T ′ is a ψ-tableau, then we have proved that ϕ(C) is a ψ-tableau. If r = 0, then each of T and T ′ is the null

diagram (as in the first example). More generally, if d = n (as in the first three examples), then T = T ′, so

assume d ∈ [n − 1]. By our choice of d, T has the box (d, n − d), but for each j ∈ [d − 1], does not have

the box (j, n − j). By Definition 3.3, the height of the prime path of (d, n − d) in T is d. T satisfies the

conditions of Theorem 3.13, and T ′ is obtained here as it is obtained in the theorem. Thus T ′ is a ψ-tableau.
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Furthermore, for d ∈ [n − 1], the d-th row of C agrees with the (d + 1)-th row of ϕ(C), and any entry in

such rows is an entry in the first row of both C and ϕ(C).

To prove ϕ(C) ∈ Sr+1
i (n + 1), it remains to show that for each j ∈ [r], ϕ(C) has no j+-full-set. So

assume r ≥ 1 and let j ∈ [r]. We claim that C has a j-full-set if and only if ϕ(C) has a j-full-set as

follows. Each box in the minor diagonal of C and ϕ(C) of row index less than d and d+ 1, respectively, has

a label greater than r, which restricts where a j-full-set may end. For d ≤ a ≤ n− 1, step (2) implies that

C(a, n − a) = j if and only if ϕ(C)(a + 1, n − a) = j. In that case, if C has a j-full-set or if ϕ(C) has

a j-full-set, then j must be an entry in the d-th row of C or the (d + 1)-th row of ϕ(C), respectively, and

by the last sentence of the previous paragraph, j is an entry in the first row of both C and ϕ(C). Thus our

claim is settled. So suppose ϕ(C) has a j-full-set such that ϕ(C)(a + 1, n − a) = j and d ≤ a ≤ n − 1.

Then C has a j-full-set such that C(a, n − a) = j which, by Remark 3.20, is not a plus-full-set. Therefore,

a ∈ [n − 2] and C(a + 1, n − a − 1) > C(a, n − a) = j. If C(a + 1, n − a − 1) > r, then steps (2)

and (4) imply that ϕ(C)(a + 2, n − a − 1) = C(a + 1, n − a − 1) + 1; otherwise, step (2) implies that

ϕ(C)(a+ 2, n− a− 1) = C(a+ 1, n− a− 1). In either case

ϕ(C)(a+ 2, n− a− 1) ≥ C(a+ 1, n− a− 1) > C(a, n− a) = ϕ(C)(a+ 1, n− a) = j,

thus the j-full-set in ϕ(C) is not a plus-full-set. �

Theorem 3.22 For each triple i, n and r, satisfying i ≥ −1, n ≥ 1 and 0 ≤ r ≤ n+ i, ϕri,n is bijective.

Proof. Let ϕ denote ϕri,n. Suppose ϕ(C1) = ϕ(C2) = C ∈ Sr+1
i (n + 1). Let the d-values in the definition

of ϕ for C1 and C2 be d1 and d2, respectively. Then C(d1, n − d1 + 1) = r + 1 = C(d2, n − d2 + 1), as

seen in steps (3) and (5) of Definition 3.19. However, as noted in Definition 3.16, there is exactly one box

in the minor diagonal of C labeled with r + 1, thus d1 = d2. Furthermore, with knowledge of d satisfying

r + 1 = C(d, n− d+ 1), the steps of ϕ are invertible. Therefore, C1 = C2 and ϕ is injective.

To prove ϕ is surjective, suppose C ∈ Sr+1
i (n+1). Ascertain the unique d ∈ [n] satisfying C(d, n− d+

1) = r + 1 and perform the following iterative steps on C to obtain ϕ−1(C):

1. Erase labels of r + 1 (leaving unlabeled boxes).

2. Decrement any labels greater than r + 1 by one.

3. Remove the box (d, n− d+ 1) from the diagram.

4. If d ∈ [n− 1], delete the (d+ 1)-th row and shift any rows of index greater than d+ 1 up one row.

5. In each row of index less than d, shift boxes with labels greater than r to the left by one box (overlaying

the unlabeled box in that row).
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We first show ϕ−1(C) ∈ Ci(n). The (r + 1)-full-set in C is a set of d boxes, one in each j-th row, j ∈ [d],

ending in (d, n − d + 1). Any boxes in the same row as one in the (r + 1)-set, positioned to the left have

labels r or less, while those positioned to the right have labels greater than r + 1. Thus, each box of row

index less than d, in the minor diagonal of C, has a label greater than r+ 1. The steps involved in ϕ−1 then

ensure that ϕ−1(C) has one less box in each row than C. Moreover, there are no unlabeled boxes in ϕ−1(C)

due to step (1) because of steps (3) and (5). It remains to show that ϕ−1(C) is a ψ-tableau of length n+ i.

Suppose there is an s-set in C such that s > r + 1. If d = n, then C(n, 1) = r + 1 and the s-set

ends in a row of index less than d. If d ∈ [n − 1], by condition (2) of Definition 3.16, C(d + 1, n − d) <

C(d, n − d + 1) = r + 1, thus neither the d-th nor (d + 1)-th rows of C contains a box in the s-set. We

obtain the following two cases. If the s-set in C ends in a row of index less than d, it has the same orientation

relative to (1, n) as the (s− 1)-set in ϕ−1(C) relative to (1, n− 1), due to steps (2) and (5). Otherwise, if

the s-set in C begins in a row of index greater than d+1, it has the same orientation relative to (d+1, n−d)

as the (s − 1)-set in ϕ−1(C) relative to (d, n − d), due to steps (2) and (4). The collection of j-sets in

ϕ−1(C), j > r, has a valid labeling as inherited from C.

Obtain T from C and T ′ from ϕ−1(C) by removing any j-sets, j > r. T is a ψ-tableau, and if we show

that T ′ is a ψ-tableau of the same length as T , then we have proved that ϕ−1(C) is a ψ-tableau of length n+i.

If d = n, then T = T ′, so assume d ∈ [n− 1]. As noted above, C(d+1, n− d) < C(d, n− d+1) = r+1,

thus the last box in the d-th row of T is (d, n − d) and the last box in the (d + 1)-th row is (d + 1, n − d).

The height of the prime path of (d, n − d) in T is d, which follows by Proposition 3.12 and the fact that the

(r + 1)-full-set in C ends in (d, n − d + 1). T satisfies the conditions of Theorem 3.15, and T ′ is obtained

here as it is obtained in the theorem. Thus, T ′ is a ψ-tableau having the same length as T . Furthermore, for

d ∈ [n− 1], the d-th row of ϕ−1(C) agrees with the (d+ 1)-th row of C, and any entry in such rows is an

entry in the first row of both ϕ−1(C) and C.

It remains to show, by Remark 3.20, that for each j ∈ [r], ϕ−1(C) has no j+-full-set. So assume r ≥ 1

and let j ∈ [r]. We claim that ϕ−1(C) has a j-full-set if and only if C has a j-full-set as follows. Each box in

the minor diagonal of ϕ−1(C) and C of row index less than d and d+1, respectively, has a label greater than

r, which restricts where a j-full-set may end. For d ≤ a ≤ n−1, the last sentence of the previous paragraph

and step (4) imply that ϕ−1(C)(a, n−a) = j if and only if C(a+1, n−a) = j. In that case, if ϕ−1(C) has a

j-full-set or if C has a j-full-set, then j must be an entry in the d-th row of ϕ−1(C) or the (d+1)-th row of C,

respectively, and by the last sentence of the previous paragraph, j is an entry in the first row of both ϕ−1(C)

and C. Thus our claim is settled. So suppose ϕ−1(C) has a j-full-set such that ϕ−1(C)(a, n− a) = j and
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d ≤ a ≤ n−1. Then C has a j-full-set such that C(a+1, n−a) = j which, by Definition 3.17, is not a plus-

full-set. Therefore, a+1 ∈ [n−1] andC(a+2, n−a−1) > C(a+1, n−a) = j. IfC(a+2, n−a−1) > r+1,

then steps (2) and (4) imply that ϕ−1(C)(a+1, n− a− 1) = C(a+2, n− a− 1)− 1 > r; otherwise, step

(4) implies that ϕ−1(C)(a+ 1, n− a− 1) = C(a+ 2, n− a− 1) > j. In either case

ϕ−1(C)(a+ 1, n− a− 1) > j = ϕ−1(C)(a, n− a),

thus the j-full-set in ϕ−1(C) is not a plus-full-set. �

Corollary 3.23 For each triple i, n and r, satisfying i ≥ −1, n ≥ 1 and 0 ≤ r ≤ n+ i,

#Sr+1
i (n+ 1) = #Ci(n)−

r∑
j=1

#Sj
i (n).

Proof. This is a direct implication of Theorem 3.22, recalling Remark 3.18. �

3.5 A Formula for the Number of Maximal Chains of Length n+ i in Tn

The technical work in verifying the bijectivity of ϕri,n is complete! In this section, we gather more on

properties and consequences of this map and tie our results together to write a recursive formula for #Ci(n).

ϕri,n takes a maximal chain to one with one more plus-full-set (Proposition 3.24). This enables us to write

every maximal chain which has a plus-full-set, uniquely in terms of one with no plus-full-sets (Corollary 3.26).

By relating this unique representation for a maximal chain to specific plus-full-sets that it contains (Proposition

3.28), we obtain an expression for #Ci(n); see equation (3.5). For each i ≥ −1, there exists a maximal

chain in Ci(2i + 3) containing no plus-full-sets (Lemma 3.30), but surprisingly, for all n ≥ 2i + 4, each

maximal chain in Ci(n) has a plus-full-set (Theorem 3.31). We utilize these latter two facts to refine our

expression for #Ci(n) and show that it is a polynomial of degree 3i+ 3 in Theorem 3.32.

Proposition 3.24 Each C in the domain of ϕri,n has one less plus-full-set than its image has, and for j > r,

C has a j+-full-set if and only if ϕri,n(C) has a (j + 1)
+-full-set.

Proof. By definition, if C is in the domain of ϕri,n, then for each k ∈ [r], neither C nor ϕri,n(C) has a k
+-full-

set. Of course, ϕri,n(C) has the (r + 1)+-full-set. So suppose there is j > r such that C has a j+-full-set.

Then for a unique b ∈ [n − 1], C(b, n − b) = j. By Definition 3.16, either b = n − 1, or b ∈ [n − 2] and

C(b+1, n− b− 1) < C(b, n− b) = j. Each box of row index less than b, in the minor diagonal of C, has a

label greater than j. By our choice of d in Definition 3.19, always d > b.
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If b = n−1 then d = n. Otherwise, suppose b ∈ [n−2]. If C(b+1, n− b−1) ≤ r then d = b+1, else

if C(b+1, n− b− 1) > r then d > b+1. Regardless of whether b = n− 1 or b ∈ [n− 2], steps (1) and (4)

of Definition 3.19 imply that the j-full-set in C maps to a (j +1)-full-set in ϕri,n(C) ending in (b, n− b+1).

Furthermore, ϕri,n(C)(b+ 1, n− b) < ϕri,n(C)(b, n− b+ 1) = j + 1 so that the (j + 1)-full-set in ϕri,n(C)

is a (j + 1)+-full-set. Since ϕri,n is bijective, this correspondence is bijective. �

Definition 3.25 Ni(n) is the subset of maximal chains in Ci(n) having no plus-full-sets.

Ci(n) is a disjoint union of the n+ i+ 1 subsets, Ni(n) and Sj
i (n), j ∈ [n+ i], i.e.,

Ci(n) = Ni(n)
⊎ ⊎

j∈[n+i]

Sj
i (n)

 . (3.1)

Corollary 3.26 Suppose the number of plus-full-sets of some C ∈ Ci(n) is t > 0. Then, there exists a

unique C̃1 ∈ Ci(n − 1) and a unique r1, such that C = ϕr1i,n−1(C̃1). This representation may be extended

to obtain unique representations

C = ϕr1i,n−1(C̃1)

= ϕr1i,n−1(ϕ
r2
i,n−2(C̃2))

...

= (ϕr1i,n−1 ◦ ϕ
r2
i,n−2 ◦ · · · ◦ ϕ

rt
i,n−t)(C̃t),

until we arrive at C̃t ∈ Ni(n− t).

Proof. The codomain of ϕri,n−1 is Sr+1
i (n). As r varies, 0 ≤ r ≤ n− 1+ i, the Sr+1

i (n) are disjoint subsets

of Ci(n). C is an element of exactly one of the Sr+1
i (n), so there exists a unique r1, such that ϕr1i,n−1 has C

in its codomain. Since ϕr1i,n−1 is bijective, there exists a unique C̃1 ∈ Ci(n− 1), such that C = ϕr1i,n−1(C̃1).

By the proposition, the number of plus-full-sets in C̃1 is t − 1. If t = 1, then C̃1 ∈ Ni(n − 1); otherwise,

t− 1 > 0, and we may repeat until we arrive at C̃t ∈ Ni(n− t) ⊆ Ci(n− t). �

Remark 3.27 A maximal chain in Tn has at most n − 1 plus-full-sets, as bounded by the n − 1 strictly

increasing labels in the first row of its ψ-tableau.

By Corollary 3.26, the number of maximal chains in Ci(n) with exactly t plus-full-sets, 1 ≤ t ≤ n− 1, is

the number of representations

(ϕr1i,n−1 ◦ ϕ
r2
i,n−2 ◦ · · · ◦ ϕ

rt
i,n−t)(C̃) (3.2)
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over t-tuples (r1, r2, . . . , rt) and over C̃ ∈ Ni(n− t). Each t-tuple (r1, r2, . . . , rt) must satisfy restrictions

imposed on the rj in Definition 3.19:

Proposition 3.28 Suppose that C̃ ∈ Ni(n − t) for some n and t, satisfying 1 ≤ t ≤ n − 1. A t-tuple

(r1, r2, . . . , rt) for the representation (3.2), must only satisfy 0 ≤ r1 ≤ r2 ≤ · · · ≤ rt ≤ n − t + i. The

number of these, hence the number of representations (3.2), is
(
n+i
t

)
.

For a t-tuple (r1, r2, . . . , rt) which satisfies the criteria, let C = (ϕr1i,n−1 ◦ϕ
r2
i,n−2 ◦ · · · ◦ϕ

rt
i,n−t)(C̃). The

set of specific plus-full-sets in C is

{j | C has a j+-full-set} = {r1 + 1, r2 + 2, . . . , rt + t},

which is a t-element subset of [n+ i] unique to (r1, r2, . . . , rt).

Proof. Consider a t-tuple (r1, r2, . . . , rt) for the representation (3.2). By Definition 3.19, since C̃ ∈ Ni(n−t),

rt for ϕ
rt
i,n−t must only satisfy 0 ≤ rt ≤ n− t+ i. We obtain ϕrti,n−t(C̃) ∈ Srt+1

i (n− t+1). The (rt+1)-set

in ϕrti,n−t(C̃) is its only plus-full-set. By definition, rt−1 for ϕrt−1

i,n−(t−1) must only satisfy 0 ≤ rt−1 ≤ rt.

Continuing in this manner, we find that (r1, r2, . . . , rt) must only satisfy 0 ≤ r1 ≤ r2 ≤ · · · ≤ rt ≤ n− t+ i.

The standard trick is to make the substitution rk = uk − k, obtaining 0 < u1 < u2 < · · · < ut ≤

n + i. The t-tuples (u1, u2, . . . , ut) which satisfy this are the t-element subsets of [n + i]. Moreover, by

Proposition 3.24, {u1, u2, . . . , ut} = {r1 + 1, r2 + 2, . . . , rt + t} is the set {j | C has a j+-full-set} for

C =
(
ϕr1i,n−1 ◦ ϕ

r2
i,n−2 ◦ · · · ◦ ϕ

rt
i,n−t

)
(C̃). �

Corollary 3.29 There is equal representation in Ci(n) over equal size subsets of [n+ i] in terms of specific

plus-full-sets found in maximal chains: For each t-element subset U ⊆ [n+ i], such that 0 ≤ t ≤ n− 1,

#{C ∈ Ci(n) | U = {j | C has a j+-full-set}} = #Ni(n− t), (3.3)

#{C ∈ Ci(n) | U ⊆ {j | C has a j+-full-set}} = #Ci(n− t). (3.4)

Proof. The case t = 0 is trivial so assume 1 ≤ t ≤ n− 1.

For equation (3.3), let S1 = {C ∈ Ci(n) | U = {j | C has a j+-full-set}}. Suppose U =

{u1, u2, . . . , ut}, where 0 < u1 < u2 < · · · < ut ≤ n + i. By Corollary 3.26 and Proposition 3.28,

each C ∈ S1 has the representation

(
ϕu1−1
i,n−1 ◦ ϕ

u2−2
i,n−2 ◦ · · · ◦ ϕ

ut−t
i,n−t

)
(C̃),

for a unique C̃ ∈ Ni(n− t), and this is an element of S1 for every C̃ ∈ Ni(n− t).
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For equation (3.4), let S2 = {C ∈ Ci(n) | U ⊆ {j | C has a j+-full-set}}. Because of equation (3.3),

#S2 depends only on #U = t. It suffices to consider U = [t]. Suppose C ∈ S2 has exactly s ≥ t plus-

full-sets. Again by Corollary 3.26 and Proposition 3.28, there exists a unique C̃s ∈ Ni(n − s) and a unique

s-tuple (r1, r2, . . . , rs), such that

C =
(
ϕr1i,n−1 ◦ ϕ

r2
i,n−2 ◦ · · · ◦ ϕ

rs
i,n−s

)
(C̃s),

where 0 ≤ r1 ≤ r2 ≤ · · · ≤ rs ≤ n − s + i and [t] ⊆ {r1 + 1, r2 + 2, . . . , rs + s}. For each k ∈ [t], we

must have rk = 0. Thus, each C ∈ S2 has the representation

(
ϕ0i,n−1 ◦ ϕ0i,n−2 ◦ · · · ◦ ϕ0i,n−t

)
(C̃),

for a unique C̃ ∈ Ci(n− t), and this is an element of S2 for every C̃ ∈ Ci(n− t). �

An expression for#Ci(n) is acquired from equation (3.3). (Note, the expression may be obtained directly

from Proposition 3.28.)

#Ci(n) =
n−1∑
t=0

(
n+ i

t

)
#Ni(n− t) =

n∑
t=1

(
n+ i

t+ i

)
#Ni(t). (3.5)

The second expression follows from the first by reindexing and is refined in Theorem 3.32.

An expression for #Ni(n) is obtained from equations (3.3), (3.4) and the principle of inclusion and

exclusion.

#Ni(n) =
n−1∑
t=0

(−1)t
(
n+ i

t

)
#Ci(n− t) =

n∑
t=1

(−1)n−t

(
n+ i

t+ i

)
#Ci(t). (3.6)

The second expression follows from the first by reindexing.

In Theorem 3.31, the surprising fact is that for all n ≥ 2i + 4, every maximal chain in Ci(n) has a

plus-full-set. For this condition on Ci(n), we can do no better (the following lemma). These facts enable us

to reach our main objective in Theorem 3.32.

Lemma 3.30 For each i ≥ −1, #Ni(2i+ 3) > 0.

Proof. For i = −1, C−1(1) consists of only the null diagram, so assume i ≥ 0. A qualifying maximal chain in

Tn, n = 2i + 3, will have the staircase shape (n − 1, . . . , 1) = (2i + 2, . . . , 1) and length n + i = 3i + 3.

Let C be a Young diagram of the desired shape.

For each k, satisfying 0 ≤ k ≤ i, let C(n − (2k + 1), 2k + 1) = n + i − k. Each r-set, where r

is in the interval [n, n + i], is labeled here and consists of a single box in the minor diagonal. Specifically,

C(n − 1, 1) = n + i and C(2, n − 2) = n, and every other box between (n − 1, 1) and (2, n − 2) gets a

label.
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For each k, satisfying k ∈ [n− 1], label the remaining unlabeled boxes in the k-th column with k. Each

r-set, where r ∈ [n− 1], is labeled here and is a vertical column of boxes.

The resulting diagram is a ψ-tableau of the desired shape and length. Moreover, the full-sets of C end

in the boxes (n − (2k + 2), 2k + 2), 0 ≤ k ≤ i, and for each k as specified, C(n − (2k + 1), 2k + 1) >

C(n− (2k + 2), 2k + 2), so that each full-set is not a plus-full-set. �

Examples of maximal chains for Lemma 3.30, for i ∈ {0, 1, 2, 3}, are shown respectively in Figure 35.

Figure 35: Examples of Maximal Chains in Ni(2i+ 3)

Theorem 3.31 For each i ≥ −1 and for all n ≥ 2i+ 4,

1. #Ci(n) > 0,

2. every element of Ci(n) has a plus-full-set, i.e., #Ni(n) = 0,

3. Ci(n) =
⊎

j∈[3i+4] S
j
i (n), where each Sj

i (n) is nonempty.

Proof. (1) Since maximal chains in Tn range in length from n − 1 to
(
n
2

)
, it suffices to show that n − 1 ≤

n+ i ≤
(
n
2

)
. Since i ≥ −1, n− 1 ≤ n+ i. Since n ≥ 2i+ 4 ≥ 2,

n+ i ≤
(
n

2

)
⇐⇒ 0 ≤ n2 − 3n− 2i,

and

n2 − 3n− 2i ≥ n2 − 3n+ 4− n = (n− 2)
2 ≥ 0.

(2) Let C ∈ Ci(n). Since n ≥ 2, C is not the null diagram. Suppose n = 2i + 4 + l for some l ≥ 0.

The length of C, i.e., the number of its distinct entries, is n+ i = 3i+ 4 + l. There are no repeat labels in

the first row of n − 1 = 2i + 3 + l boxes of C. Likewise, there are no repeat labels in the n − 1 boxes in

the minor diagonal. Let x be the number of full-sets in C and note that (1, n− 1) constitutes a full set. The

combined number of distinct labels in the first row and minor diagonal is x+ 2(n− 1− x) ≤ n+ i, thus

x ≥ n− 2− i = i+ 2 + l.

Suppose two full-sets end in boxes in adjacent columns, say in (k, n − k) and (k + 1, n − k − 1). Then

C(k + 1, n− k − 1) < C(k, n− k), and thus C has an r+-full-set for r = C(k, n− k). On the other hand

46



suppose no two full-sets end in adjacent columns. Then we require at least (i+2+l)+(i+1+l) = 2i+3+2l

boxes in the minor diagonal. Thus, l = 0, n = 2i+4, and of the 2i+3 boxes in the minor diagonal, full-sets

end in i+ 2 of them. But then one must end in (n− 1, 1), resulting in an r+-full-set for r = C(n− 1, 1).

(3) Let n = 2i + 4 + l for some l ≥ 0. Let C ∈ Ci(n) and suppose its number of plus-full-sets is

t. By Corollary 3.26, there exists a unique C̃ ∈ Ni(n − t) and a unique t-tuple (r1, r2, . . . , rt), such that

C =
(
ϕr1i,n−1 ◦ ϕ

r2
i,n−2 ◦ · · · ◦ ϕ

rt
i,n−t

)
(C̃). By (2), n − t ≤ 2i + 3, thus t ≥ l + 1. Since the length of C

is n + i = 3i + 4 + l, there exists a j+-full-set in C satisfying j ≤ 3i + 4. Thus, C ∈ Sr
i (n) for some

r ≤ j ≤ 3i + 4. We show by induction on n, that for each j ∈ [3i + 4], Sj
i (n) is nonempty. For the base

case, n = 2i + 4, let C ∈ Ni(2i + 3). Then, for each r (as in Definition 3.19), satisfying 0 ≤ r ≤ 3i + 3,

ϕri,2i+3(C) ∈ Sr+1
i (2i + 4). Now suppose the statement is true for n. By the inductive hypothesis, there

exists C ∈ S3i+4
i (n). We may choose any value of r (as in Definition 3.19), satisfying 0 ≤ r ≤ 3i + 3, to

obtain ϕri,n(C) ∈ Sr+1
i (n+ 1). �

Theorem 3.32 For each i ≥ −1 and for all n ≥ 1, the number of maximal chains in Tn of length n+ i is

#Ci(n) =
2i+3∑
t=1

(
n+ i

t+ i

)
#Ni(t), (3.7)

a polynomial in n of degree 3i+ 3. The initial values of #Ni(n), n ∈ [2i+ 3], are

#Ni(n) =
n∑

t=1

(−1)n−t

(
n+ i

t+ i

)
#Ci(t). (3.8)

Proof. If n ≥ 2i + 4, then for all t satisfying 2i + 4 ≤ t ≤ n, #Ni(t) = 0, thus equation (3.5) reduces

to equation (3.7). On the other hand, suppose 1 ≤ n ≤ 2i + 3. Then for all t satisfying n < t ≤ 2i + 3,(
n+i
t+i

)
= 0, thus equation (3.7) reduces to equation (3.5). Equation (3.8) is equation (3.6).

The summand for t = 2i+3 in equation (3.7) is the one containing the term with the largest power of n,

the term being
n3i+3

(3i+ 3)!
#Ni(2i+ 3).

By Lemma 3.30, this term is nonzero, thus #Ci(n) is a polynomial of degree 3i+ 3. �

The problem of enumerating Ci(n) is reduced to computing #Ni(n), n ∈ [2i + 3]. Values of #Ni(n),

for an index of i up to 5, are given in Table 2. For example, the number of maximal chains of length 14 in

T11 is

#C3(11) = 18

(
14

8

)
+ 220

(
14

9

)
+ 1464

(
14

10

)
+ 9240

(
14

11

)
+ 15400

(
14

12

)
,

= 18

(
14

6

)
+ 220

(
14

5

)
+ 1464

(
14

4

)
+ 9240

(
14

3

)
+ 15400

(
14

2

)
. (3.9)
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According to Theorem 3.31, for all n ≥ 2i + 4 = 10, each maximal chain in C3(n) has a plus-full-set, so

this follows for n = 11. The interpretation for equation (3.9) is that in C3(11), the numbers of maximal

chains having exactly 2, 3, 4, 5 and 6 plus-full-sets are 15400
(
14
2

)
, 9240

(
14
3

)
, 1464

(
14
4

)
, 220

(
14
5

)
and 18

(
14
6

)
,

respectively. Moreover, in each subset of C3(11) containing exactly j plus-full-sets, 2 ≤ j ≤ 6, there is an

equal number of maximal chains over all j-elements subsets of [14] of particular sets of plus-full-sets.

Table 2: #Ni(n): Number of Maximal Chains in Tn of Length n+ i with No Plus-full-sets

Interpreting maximal chains in the Tamari lattice as ψ-tableaux has proven an efficient method of study.

The pursuit of the formula for #Ci(n) led to the plus-full-set property and some interesting combinatorics.

Based on numerical evidence, we conclude this paper with a conjecture.

Conjecture 3.33 For all i ≥ −1,

#Ni(2i+ 3) =
i+1∏
j=1

(
3j − 1

2

)
,

and for all i ≥ 0,

#Ni(2i+ 2) =
i

5

i+1∏
j=1

(
3j − 1

2

)
.
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Chapter 4

THE TAMARI BLOCK POSET

4.1 Background

In this chapter, I discuss current work and future plans in collaboration with Susanna Fishel, Kevin Treat

and Mahir Can.

Recall, a partition of a positive integer n is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of positive

integers summing to n. In certain situations, I relax the condition of positive integers to nonnegative integers.

But it is understood that a partition having trailing zeros is the same as the one obtained by omitting those

trailing zeros. A Young diagram of λ or of shape λ is a left-justified collection of boxes having λj boxes in the

j-th row. The empty partition (0) is associated with the null diagram ∅ having no boxes. Often times which

will be clear by the context, I abuse notation by identifying a partition λ with its associated Young diagram

also denoted λ or vice versa. So for example, I often identify the shape of a maximal chain with a Young

diagram.

Work involved in this chapter pertains to pentagon and square intervals in the Tamari lattice Tn (see

Figure 36). As in the previous chapters, I treat vertices in Tn as the Young diagrams contained within the

Young diagram of staircase shape (n− 1, . . . , 1), and maximal chains are identified as Young tableaux.

Figure 36: Hasse Diagrams of Pentagon and Square Intervals in the Tamari Lattice

Definition 4.1 A saturated chain M whose maximal element is the null diagram under the Tamari order is

called a top chain. Again, I abuse notation by identifyingM with its associated ψ-tableau also denotedM or

vice versa (see Definition 3.8). The length and shape ofM are denoted as l(M) and sh(M), respectively.

Definition 4.2 Mλ is the set of top chains of shape λ. Mn is the set of maximal chains in Tn, so Mn =

M(n−1,...,1). SupposeM1 andM2 are top chains inMλ. IfM1 andM2 agree except on a pentagon interval

49



(respectively, square interval), where they differ, thenM1 has a pentagon move (respectively, square move)

to M2. If M1 has a pentagon move to M2 and l(M1) < l(M2) (respectively, l(M1) > l(M2)), then M1

has a pentagon move up (respectively, pentagon move down) toM2.

A square move sends a top chain to one of equal length, whereas a pentagon move increases or decreases

the length by one. This is easily seen by inspecting the sides that make up the square and pentagon inter-

vals. Any two maximal chains in the Tamari lattice are connected by a sequence of maximal chains, where

consecutive ones differ by a pentagon or square move (Barad 2008; Garver and McConville n.d.). This is

similar to the weak order on Sn where maximal chains differ by hexagon or square moves, determined by

braid and commuting relations (Björner et al. 1999; Williams n.d.), and intimately related to the subject of

dual equivalence (Haiman 1992; Roberts 2014; Assaf 2015).

Definition 4.3 The top chain graph TGλ is a simple graph whose vertices are elements of Mλ. Two top

chains are adjacent if and only if one may be obtained from the other by making a pentagon or square move.

Edges are labeled with P or S accordingly.

Figure 37 is the top chain graph TG4 = TG(3,2,1).

Figure 37: The Top Chain Graph TG4 of Maximal Chains in T4

Definition 4.4 There is an equivalence relation on Mλ byMi ≡Mj if and only ifMj can be obtained from

Mi through a sequence of square moves. The equivalence classes are called blocks. The blocks of Mλ form

a poset, called the Tamari Block Poset T Bλ (T Bn is the Tamari Block Poset for Mn). A block is covered by

another if and only if there is a pentagon move that sends a top chain in the former block to a longer one in

the latter block. The length of a block B, denoted l(B), is the length of a top chain contained in B.
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Since square moves preserve length, every element in a given block B has the same length, thus l(B) is

well-defined. Since a pentagon move up increases the length by one, if B1 and B2 are two blocks such that

B1 is covered by B2, i.e., B1 lB2, then l(B2) = l(B1) + 1.

T B4

T B5

Figure 38: Hasse Diagrams of the Tamari Block Posets Associated to T4 and T5

Examples of Tamari Block Posets are shown in Figure 38, where sizes of the blocks are noted. There are

9 maximal chains in T4 (see Figure 37) which are partitioned into the 6 blocks of T B4. The unique minimum

block of T B4 contains the unique shortest maximal chain in T4, while the unique maximum block contains

the two longest maximal chains. There are 98 maximal chains in T5 which are partitioned into the 25 blocks

of T B5. Similarly, there are unique minimum and maximum blocks of T B5, containing the unique shortest

and longest maximal chains in T5, respectively.

After first analyzing the structure in several cases of T Bn, we conjectured the following.

Conjecture 4.5 For each n ≥ 1,
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1. T Bn is graded of rank
(
n−1
2

)
with the rank function ρ(B) = l(B)− (n− 1), and has elements 0̂ and

1̂.

2. T Bn is a lattice.

3. T Bn has vertical symmetry due to self-duality in the Tamari lattices. The “dual” of a block is a block.

4. #T Bn is isomorphic to the higher Stasheff-Tamari posets on triangulations of the cyclic 3-polytope

C(n+ 2, 3) (Edelman and Reiner 1996).

Conjecture 4.6 For each i ≥ 0, the number of blocks in T Bn of rank i (consisting of maximal chains of

length n− 1 + i) is a polynomial in n of degree i.

I address our work on Conjectures 4.5(1) and 4.5(2) in Sections 4.2 and 4.3, respectively. I discuss future

plans in Section 4.4.

4.2 Conjecture 4.5(1)

In this section, I provide an overview of our proof of Conjecture 4.5(1).

Definition 4.7 Let Y ̸= ∅ be a Young diagram. Let m be the maximum of {i+ j | (i, j) ∈ Y }. We call the

set of boxes {(i, j) ∈ Y | i + j = m} the set of boxes in the outer diagonal of Y . (Note, each box in the

outer diagonal is a corner box; see Definition 3.5.)

Recall that for a top chainM , the r-set ofM is its set of boxes labeled with r (see Definition 3.10). The

length of an r-set is its number of boxes.

Remark 4.8 There are no repeat labels in the boxes in the outer diagonal of a top chain. This is a property

of boxes in the outer diagonal, but is not true for corner boxes in general. Furthermore, for each box in the

outer diagonal of a top chain, there is an r-set which ends in that box.

Definition 4.9 LetM be a top chain. Record the entries in the boxes in the outer diagonal ofM as read in

the northeast direction, enclosed in parentheses. This is the first word of the diagonal sentence ofM . Repeat

this process with the rest of the diagonals working inward so that each diagonal represents a word, and so

that each element of [l(M)] appears only once in the diagonal sentence (the first time encountered).

For each shape λ, no two chains in Mλ have the same diagonal sentence. Diagonal sentence examples are

shown in Figure 39.
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Figure 39: Diagonal Sentence Examples

Proposition 4.10 LetM be a top chain, say with t > 0 boxes in its outer diagonal. Then there is a top chain

M ′ obtained fromM through a sequence of square moves, such that the largest t entries inM are contained

in the first word of the diagonal sentence of M ′. Since the tableau obtained by removing the t r-sets which

end in boxes in the outer diagonal ofM ′ is a top chain, this process may be repeated.

Figure 40: Placing Largest Entries of a Top Chain in its Outer Diagonal through a Sequence of Square Moves

The first top chain of Figure 40 has 5 boxes in its outer diagonal. The first word of its diagonal sentence

(11 5 10 7 9) is missing the entry 8. Through a series of square moves, the first word is transformed to

(11 7 10 8 9) in the final top chain.

Corollary 4.11 In T Bλ, there is a unique block which contains the maximum length top chains and a unique

block which contains the minimum length ones.

Proof. In minimum (respectively, maximum) length elements of Mλ, each word of the diagonal sentence

is strictly increasing (respectively, decreasing). This implies that over all minimum (respectively, maximum)

length top chains we arrive at the same minimum (respectively, maximum) length chain by repeating the

process described in the proposition. �

Top chains of minimum and maximum lexicographic diagonal sentence over all top chains in a block of

T Bλ have special properties as follows.

Proposition 4.12 The top chains of minimum and maximum lexicographic diagonal sentence over all top

chains in a block of T Bλ have a pentagon move down (if not a chain of minimum length) and a pentagon

move up (if not a chain of maximum length), respectively.
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Theorem 4.13 T Bλ is graded with rank function ρ(B) = l(B)−m, where m is the minimum length over

top chains in Mλ, and has elements 0̂ and 1̂.

Proof. Corollary 4.11 and Proposition 4.12 imply this. �

Conjecture 4.5(1) is a special case of Theorem 4.13. The block of T Bn containing the unique shortest

maximal chain, of length n− 1, has rank 0. The block containing the longest maximal chains, of length
(
n
2

)
,

has rank
(
n
2

)
− (n− 1) =

(
n−1
2

)
, which is the length of every maximal chain in T Bn.

4.3 Conjecture 4.5(2)

In this section, I provide an overview of our proof of Conjecture 4.5(2), assuming Conjecture 4.23.

A milestone in our work, key to understanding properties of T Bλ, was the characterization of blocks by a

new statistic on Mλ. This was accomplished by examining the particular makeup of maximal chains within

blocks.

Definition 4.14 The r-stat of a top chainM , denoted π(M), is an array such that the i-th row of π(M) is

the sequence of lengths of the r-sets ofM that end in its i-th row. The shape of an r-stat π, denoted sh(π),

is the shape of a top chain whose r-stat is π (this is well-defined).

If two top chains have different shapes, then they have different r-stats. Thus sh(π) is well-defined. In fact,

given an r-stat π, it is a trivial task to construct its underlying Young diagram whose shape is sh(π).

Figure 41 is an example of the construction of the r-stat π(M) from a top chainM . For example, notice

that the 2-set (of length 3) and the 7-set (of length 2) are the only r-sets in M which end in its 3-rd row.

The 3-rd row of π(M) consists of those lengths.

M π(M)

Figure 41: Example of the r-stat

Theorem 4.15 Two top chains in Mλ are in the same block if and only if they have the same r-stat.

Thus we obtain an encoding of T Bλ in terms of r-stats. Figure 42 is T B5.
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Figure 42: Hasse Diagram of T B5 in Terms of r-stats

In a top chain having its largest entries in its outer diagonal, the associated r-sets may be “peeled” to

obtain a new top chain. Because of Proposition 4.10, there exists such a top chain in every block of T Bλ

(λ ̸= ∅). It follows that the “outer diagonal” entries of an r-stat may also be “peeled” to obtain a new r-stat.

See Figure 43. This is formalized as follows.

“Peeling” a Top Chain “Peeling” an r-stat

Figure 43: ”Peeling” a Top Chain and an r-stat: the r-stats on the Right Correspond to the Top Chains on the
Left.

Definition 4.16 Let π be an r-stat of shape λ. Let r1 < r2 < · · · < rn be the row indexes of the boxes in

the outer diagonal of λ.

1. Define the outer peel of π as the n-tuple p(π) = (p1, . . . , pn) such that pi is the last nonzero entry in

the ri-th row of π. (If λ = ∅, then p(π) = (), i.e., the 0-tuple.)

2. Define πP as the r-stat obtained from π by removing said entries. (If λ = ∅, then πP = π.)
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3. Define the set Pλ = {p(π) | π is an r-stat of shape λ}. (Note, Pλ = {p(π(M)) |M is a top chain of

shape λ}.)

Figure 44: Example of Outer Peels

In Figure 44 there are 6 repeats of the Young diagram of shape (4, 2, 2, 1), which has 3 boxes in its outer

diagonal. If only top chains (of this shape) having their largest entries in their outer diagonals are considered,

then there are 3! = 6 possibilities in which to remove the 3 boxes. l denotes the length of the top chains, so

l, l − 1 and l − 2 label the 6 possible orientations of the 3 r-sets which end in boxes in the outer diagonal.

The lengths of those r-sets are listed to the right of each Young diagram. The second and fifth diagram result

in the same set of lengths. The number of 3-tuples of the lengths of the r-sets that result is the 3-rd Catalan

number C3 = 5. By inspection,

P(4,2,2,1) = {(1, 2, 1), (1, 3, 1), (1, 2, 4), (1, 2, 3), (1, 3, 4)}.

Proposition 4.17 Let r0 = 0. Let r1 < r2 < · · · < rn be the row indexes of the boxes in the outer diagonal

of a Young diagram λ ̸= ∅. Then,#Pλ is the n-th Catalan numberCn = 1
n+1

(
2n
n

)
, and (p1, p2, . . . , pn) ∈ Pλ

if and only if for each i ∈ [n],

1. pi ∈ {ri − rj | 0 ≤ j < i}, and

2. if pi = ri − rj , then pk ≤ rk − rj for j < k < i.

Proof. The proof is by induction on n. For the base case n = 1, conditions (1) and (2) provide for exactly one

1-tuple which is (p1) = (r1), from which it’s clear that Pλ = {(r1)} and #Pλ = 1 = C1.

For the inductive step suppose n > 1. Let Bi = (ri, ci), i ∈ n, denote the boxes in the outer diagonal of

λ. Let C be a top chain of shape λ. Let π = π(C) and let (p1(π), . . . , pn(π)) = p(π). The r-set in C that

ends in Bn must begin in one of the l-th rows where l ∈ {rj + 1 | 0 ≤ j < n}. Thus rn − pn(π) + 1 ∈

{rj +1 | 0 ≤ j < n} from which pn(π) ∈ {rn−rj | 0 ≤ j < n}. As the Hasse diagram of the Tamari lattice

is traversed upwards on C, we consider the order in which the n boxes in its outer diagonal are removed.

Suppose pn(π) = rn − r0 = rn. This is the case if and only if Bn is removed only after removing every

Bt where t ∈ [n− 1]. Let Y be the Young diagram of the first rn−1 rows of λ. By the inductive hypothesis,
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PY is the set of (n− 1)-tuples as specified by conditions (1) and (2) for i ∈ [n− 1]. Thus

{(p1, p2, . . . , pn) ∈ Pλ | pn = rn} = {(p1, p2, . . . , pn) | (p1, p2, . . . , pn−1) ∈ PY , pn = rn},

which agrees with the subset of n-tuples obtained from the proposition when pn = rn. Futhermore, by the

inductive hypothesis, #{(p1, p2, . . . , pn) ∈ Pλ | pn = rn} = Cn−1.

Suppose pn(π) = rn − rn−1. This is the case if and only if Bn is removed prior to removing Bn−1. As

above, let Y be the Young diagram of the first rn−1 rows of λ. By the inductive hypothesis, PY is the set of

(n− 1)-tuples as specified by conditions (1) and (2) for i ∈ [n− 1]. Thus

{(p1, p2, . . . , pn) ∈ Pλ | pn = rn − rn−1}

= {(p1, p2, . . . , pn) | (p1, p2, . . . , pn−1) ∈ PY , pn = rn − rn−1},

which agrees with the subset of n-tuples obtained from the proposition when pn = rn − rn−1. Furthermore,

#{(p1, p2, . . . , pn) ∈ Pλ | pn = rn − rn−1} = Cn−1.

Finally suppose pn(π) = rn − rs for some s ∈ [n− 2]. This is the case if and only if Bn is removed prior

to removing Bs and only after removing every Bt where s < t < n. Let Y1 be the Young diagram of the

first rs rows of λ. Let Y2 be the Young diagram of all rows of index l of λ such that rs < l ≤ rn−1. By the

inductive hypothesis, PY1 is the set of s-tuples as specified by conditions (1) and (2) for i ∈ [s], and PY2 is

the set of (n− s− 1)-tuples (ps+1, ps+2, . . . , pn−1) such that for each i ∈ [s+ 1, s+ 2, . . . , n− 1],

pi ∈ {ri − rj | s ≤ j < i}, and

if pi = ri − rj , then pk ≤ rk − rj for j < k < i.

Thus

{(p1, p2, . . . , pn) ∈ Pλ | pn = rn − rs}

= {(p1, p2, . . . , pn) | (p1, p2, . . . , ps) ∈ PY1
, (ps+1, ps+2, . . . , pn−1) ∈ PY2

, pn = rn − rs},

which agrees with the subset of n-tuples obtained from the proposition when pn = rn − rs. Furthermore,

#{(p1, p2, . . . , pn) ∈ Pλ | pn = rn − rs} = CsCn−s−1.

Summing over all cases, by the well known recurrence for Catalan numbers,

#Pλ = Cn−1 + Cn−1 +

n−2∑
i=1

CiCn−i−1 =

n−1∑
i=0

CiCn−i−1 = Cn.

�
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Corollary 4.18 Let λ = (n, n − 1, . . . , 1), n ≥ 1, be the staircase shape. Then, (p1, p2, . . . , pn) ∈ Pλ if

and only if for each i ∈ [n],

1. 1 ≤ pi ≤ i, and

2. if pi = l, then pi−r ≤ l − r for 1 ≤ r ≤ l − 1.

Proof. The set of boxes in the outer diagonal of λ is {(i, n− i+1) | i ∈ [n]}. Substitute rt = t in Proposition

4.17 to obtain the equivalent statements. �

Proposition 4.17 provides for an inductive characterization of the r-stat. The set of n-tuples in Corollary 4.18

is a set of objects enumerated by the Catalan numbers (Stanley 1999, Exercise 6.19 (z)).

Figure 45 is meant to be a continuation of the example in Figure 44. There is a bijective correspondence

between the 3-tuples of the lengths of the r-sets that arise and Young diagrams (shown below) that result

from “peeling” the associated r-sets. This is Corollary 4.21.

Figure 45: Example of Outer Peels and Corresponding Shapes

Definition 4.19 Let π be an r-stat of shape λ = (λ1, λ2, . . . , λt) and let (λ̃1, λ̃2, . . . , λ̃t) = sh(πP ).

1. Define the t-tuple q(π) = (q1, . . . , qt) such that qi = λi − λ̃i. (If λ = ∅, then q(π) = (), i.e., the

0-tuple.)

2. Define the set Qλ = {q(π) | π is an r-stat of shape λ}.

Proposition 4.20 Let r0 = 0. Let r1 < r2 < · · · < rn be the row indexes of the boxes in the outer diagonal

of a Young diagram λ ̸= ∅ of shape (λ1, λ2, . . . , λt). The map

f : Pλ → Qλ

(p1, p2, . . . , pn) 7→ (q1, q2, . . . , qt)

defined by

qk = #{j ∈ [n] | rj − pj + 1 ≤ k ≤ rj} (4.1)
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is bijective, thus #Qλ = Cn. Furthermore, (q1, q2, . . . , qt) ∈ Qλ if and only if each of the following is met:

1. qrn = 1.

2. for each i ∈ [n− 1], 1 ≤ qri ≤ qri+1 + 1.

3. for each i ∈ [n], qk = qri for ri−1 < k < ri.

4. qk = 0 for rn < k ≤ t.

Proof. We first show that f is bijective. Let Bi = (ri, ci), i ∈ n, denote the boxes in the outer diagonal of

λ. Let C be a top chain of shape λ such that as the Hasse diagram of the Tamari lattice is traversed upwards

on C, the n boxes on its outer diagonal are the first n removed. Let π = π(C), (p1(π), . . . , pn(π)) = p(π),

and (q1(π), . . . , qn(π)) = q(π). Let CP be the top chain obtained by removing every r-set from C which

ends in a box in its outer diagonal. Then sh(CP ) = sh(πP ). Let (λ̃1, λ̃2, . . . , λ̃t) = sh(πP ). The number of

boxes removed from each k-th row of C to obtain CP is the number of r-sets ending in boxes in the outer

diagonal of C which have a box in the k-th row, i.e.,

qk(π) = λk − λ̃k = #{j ∈ [n] | rj − pj(π) + 1 ≤ k ≤ rj}. (4.2)

Thus, f is surjective. In particular, for each i ∈ [n],

qri(π) = #{j ∈ [n] | rj − pj(π) + 1 ≤ ri ≤ rj}

= #{j ∈ [i, n] | rj − pj(π) + 1 ≤ ri}. (4.3)

To show that f is injective, suppose C1 and C2 are top chains of shape λ with the additional criteria described

above. Let π1 = π(C1) and π2 = π(C2). Let (p1, p2, . . . , pn) = p(π1) and (t1, t2, . . . , tn) = p(π2) and

suppose p(π1) ̸= p(π2). Then ps ̸= ts for some s ∈ [n]. Choose s such that pj = tj for all j > s, and

without loss of generality, suppose ps > ts. The r-set in C2 that ends in Bs begins in an (rl + 1)-th row

where 0 < l < s, so rs − ts + 1 = rl + 1. By condition (2) of Proposition 4.17,

ts = rs − rl ⇒ tk ≤ rk − rl for l < k < s⇒ rk − tk + 1 > rl for l < k < s.

We obtain by equation (4.3)

qrl(π2) = #{j ∈ [l, n] | rj − tj + 1 ≤ rl}

= 1 +#{j ∈ [l + 1, s] | rj − tj + 1 ≤ rl}+#{j ∈ [s+ 1, n] | rj − tj + 1 ≤ rl}

= 1 +#{j ∈ [s+ 1, n] | rj − tj + 1 ≤ rl}
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and

qrl(π1) = #{j ∈ [l, n] | rj − pj + 1 ≤ rl}

= 1 +#{j ∈ [l + 1, s] | rj − pj + 1 ≤ rl}+#{j ∈ [s+ 1, n] | rj − pj + 1 ≤ rl}.

Since pj = tj for all j > s,

#{j ∈ [s+ 1, n] | rj − tj + 1 ≤ rl} = #{j ∈ [s+ 1, n] | rj − pj + 1 ≤ rl},

thus

qrl(π1)− qrl(π2) = #{j ∈ [l + 1, s] | rj − pj + 1 ≤ rl}.

The r-set in C1 that ends in Bs begins in an (rm+1)-th row where 0 ≤ m < l. Thus rs−ps+1 = rm+1 <

rl + 1, i.e., rs − ps + 1 ≤ rl, and therefore qrl(π1) − qrl(π2) > 0, whereby f is injective. This completes

the proof that f is bijective.

Now suppose (q1(π), q2(π), . . . , qt(π)) ∈ Qλ for some r-stat π of shape λ. Let (p1(π), . . . , pn(π)) =

p(π). We show that conditions (1) thru (4) are satisfied utilizing equations (4.2) and (4.3). For condition (1),

qrn(π) = #{n} = 1. For condition (2), suppose i ∈ [n− 1]. We obtain

qri(π) = #{j ∈ [i+ 1, n] | rj − pj(π) + 1 ≤ ri}+ 1,

qri+1(π) = #{j ∈ [i+ 1, n] | rj − pj(π) + 1 ≤ ri+1}.

Thus 1 ≤ qri(π), and since

{j ∈ [i+ 1, n] | rj − pj(π) + 1 ≤ ri} ⊆ {j ∈ [i+ 1, n] | rj − pj(π) + 1 ≤ ri+1},

it follows that qri(π) ≤ qri+1(π) + 1. For condition (3), suppose i ∈ [n] and ri−1 < k < ri. Then

qri(π) = #{j ∈ [i, n] | rj − pj(π) + 1 ≤ ri},

qk(π) = #{j ∈ [n] | rj − pj(π) + 1 ≤ k ≤ rj}

= #{j ∈ [i, n] | rj − pj(π) + 1 ≤ k}.

Since k < ri, qk(π) ≤ qri(π). Now suppose rj − pj(π) + 1 ≤ ri. Then, since rj − pj(π) + 1 ∈ {rl + 1 |

0 ≤ l < j}, rj − pj(π) + 1 ≤ ri−1 + 1. Thus

{j ∈ [i, n] | rj − pj(π) + 1 ≤ ri} ⊆ {j ∈ [i, n] | rj − pj(π) + 1 ≤ ri−1 + 1},
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and since k ≥ ri−1 + 1,

{j ∈ [i, n] | rj − pj(π) + 1 ≤ ri−1 + 1} ⊆ {j ∈ [i, n] | rj − pj(π) + 1 ≤ k},

whereby qri(π) ≤ qk(π). Condition (4) is clear.

We’ve shown that Qλ is a subset of the set of t-tuples defined by conditions (1) thru (4). The number

of such t-tuples is the number of n-tuples (qr1 , qr2 , . . . , qrn) which satisfy conditions (1) and (2). For each

(qr1 , qr2 , . . . , qrn), obtain the n-tuple (a1, a2, . . . , an) by letting aj = qrn−j+1
− 1, j ∈ [n]. The set of

n-tuples obtained in this manner is the set of (a1, a2, . . . , an) that satisfy

a1 = 0, and

0 ≤ aj+1 ≤ aj + 1,

which is a set of objects enumerated by the Catalan numbers (Stanley 1999, Exercise 6.19 (u)). This completes

our proof since also #Qλ = Cn. �

Corollary 4.21 Suppose π, π̃ ∈ T Bλ. Then p(π) = p(π̃) if and only if sh(πP ) = sh(π̃P ).

Proof. This follows immediately since the map defined in the proposition is bijective. �

Corollary 4.22 Let λ = (n, n− 1, . . . , 1), n ≥ 1, be the staircase shape. Then {sh(πP ) | π is an r-stat of

shape λ} is the set of Young diagrams which fit in the Young diagram of staircase shape (n− 1, . . . , 1).

Proof. This also follows immediately since #{sh(πP ) | π is an r-stat of shape λ} = #Qλ = Cn and each

element of this set is a Young diagram which fits in the Young diagram of staircase shape (n−1, . . . , 1). (The

number of the latter is also Cn.) �

We may form a partition of T Bλ by associating to each r-stat π ∈ T Bλ its outer peel p(π). By way

of Corollary 4.21, we obtain the same partition by associating to each r-stat π the Young diagram of shape

sh(πP ). Figure 46 is the partition of T B5 in terms of Young diagrams. Notice by Corollary 4.22 that we

obtain every Young diagram which fits in the staircase shape (3, 2, 1), which gives a partition of the r-stats

into C4 = 14 equivalence classes.

Our method of proof of the lattice property of T Bλ depends on the validity of the following conjecture.

Conjecture 4.23 Each equivalence class of the r-stats in T Bλ forms an interval in T Bλ. The induced poset

on the equivalence classes of r-stats in T Bn is isomorphic to the Tamari lattice Tn−1.
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Remark 4.24 Actually, the induced poset of the equivalence classes of r-stats in T B5 is isomorphic to the

dual of T4, but recall Tn is self-dual.

I outline a proof of the lattice property of T Bn assuming this conjecture as follows. Because T Bn is finite

and has a unique minimum element, to prove the lattice property, it suffices to show that any two elements

have a join. (If any two elements have a join in a finite poset with unique minimum element, the meet of say

x and y is the join of the set of all lowerbounds to both x and y, which is nonempty and finite.)

Figure 46: Hasse Diagram of T B5 in Terms of r-stats and Associated Young Diagrams

Suppose first that two r-stats x and y are in the same equivalence class. By an inductive argument, the

join of x and y exists in the interval of that class. There is a technical proof to show that the join within the

interval is the join in the whole poset.

Now suppose that two r-stats x and y in T Bn are in differing equivalence classes; see Figure 47. Since the

induced poset of equivalence classes of r-stats is isomorphic to the dual of Tn−1, we know the “equivalence

class” join exists. Thus, if x and y have a join, it must be in the equivalence class which is the meet of their

equivalence classes in Tn−1, call this meet class Z. In the example, the meet of x = (2, 1, 1) and y = (1, 1)

in T4 is Z = (3, 2, 1). Consider the shortest paths from x and y up to their respective vertices in Z. The two

end points in Z are well defined: there is a lemma that says that any pair of shortest paths from a vertex

up to another equivalence class must end at the same vertex. In the example, there are two shortest paths
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from y to Z, but by the lemma they end at the same point. Again by induction, the join of x and y is the join

of those two end points in the interval of Z. (Employ the proof which shows that the join within the interval

is the join in the whole poset.)

Figure 47: Lattice Property Example in T B5

4.4 Future Plans

It appears that T Bn is isomorphic to the higher Stasheff-Tamari posets on triangulations of the cyclic

3-polytope C(n + 2, 3) (Edelman and Reiner 1996), which are already known to be graded lattices; see

Conjecture 4.5(4). Establishing a connection would provide for a more geometric view of T Bn. The number

of triangulations of C(n+ 2, 3) is listed as an open problem in Rambau and Reiner 2012.

It is well known that the Tamari lattices are self-dual (Knuth 2006; Markowsky 1992). Each vertex in

the Tamari lattice is associated to a dual vertex and this property extends to maximal chains. The notion of

duality appears to extend further to certain statistics of maximal chains. For example, in Conjecture 4.5(3),

the “dual” of a block is the set of maximal chains dual to the ones it contains, which we conjecture is the entire

makeup of another block (the dual may be itself). This implies that the notion of dual extends to the r-stat (at

least for the staircase shape). It appears that the dual vertex in the examples of Figure 38 is the one obtained
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by reflecting about the vertical line drawn down the middle of the Hasse diagram. I noticed similar patterns

when working with the plus-full-set statistic in Chapter 3. The triangulations in Reading 2012, Figure 1, as

a medium for studying the Tamari lattice, best portray the self-dual property. The dual of a triangulation in

this particular style is obtained simply by rotating it 180 degrees on the vertical axis. I plan to study the dual

map in terms of statistics it preserves, as I believe that it will play a role in enumeration.

Conjecture 4.6 bears a mysterious resemblance to my main result in Chapter 3: for each i ≥ 0, the

number of maximal chains of length n− 1 + i in Tn is a polynomial in n of degree 3i. I plan to address this

by utilizing methods in that chapter and expect more to follow as this connection unfolds. My hope is that

knowledge of the r-stat will lead to an explicit formula for #T Bn (through a recursion, generating function,

etc.) and lend insight to the enumeration of maximal chains in Tn. As a further note, for each i ≥ 0, the

number of blocks in T Bn of rank
(
n−1
2

)
− i (consisting of maximal chains of length

(
n
2

)
− i), also appears to

be a polynomial of degree i.

The 2-dimensional faces of the associahedron are 4-gons and 5-gons, which are the square and pentagon

intervals, respectively, in the Tamari lattices. (The Hasse diagram of Tn is the 1-skeleton of the associahe-

dron.) There is an explicit formula for the number of them (Devadoss and Read 2001). Aspects of our work

should translate to properties of the associahedron.

I plan to construct an associated block poset for the weak order on Sn and relate it to T Bn. Since Tn is

both a quotient and a sublattice of the weak order on Sn (where maximal chains in the weak order differ by

squares or hexagons), I believe this could lead to some interesting results.

I plan to extend this work to them-Tamari (see Bergeron and Préville-Ratelle 2012) and Cambrian lattices,

and generalized permutohedra (see Postnikov 2009). I feel that there is a deeper meaning behind Conjecture

4.23 that may be abstracted to one or more of these other lattices.
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Chapter 5

CONCLUSION

The Tamari lattices have been intensely studied since they first appeared in Dov Tamari’s thesis around

1952. He defined the n-th Tamari lattice Tn on bracketings of a set of n + 1 objects, with a cover relation

based on the associativity rule in one direction. The number of vertices in Tn is the n-th Catalan number

Cn = 1
n+1

(
2n
n

)
. Tn is both a quotient and a sublattice of the weak order on the symmetric group Sn, and its

Hasse diagram is the 1-skeleton of the associahedron (or Stasheff polytope). Despite their interesting aspects

and the attention they have received, a formula for the number of maximal chains in the Tamari lattices is

still unknown. It is mainly this problem which I addressed in this dissertation. I reviewed terminology and

discussed history and my motivation in Chapter 1. I conveyed my results on progress toward the solution of

this problem in Chapters 2 and 3. I discussed current work and future plans in Chapter 4.

Because of the many combinatorial structures counted by the Catalan sequence, the Tamari lattices are

studied in numerous equivalent representations. Throughout this dissertation, I interpret the set of vertices

in Tn as the set of Young diagrams contained in the one of staircase shape (n − 1, . . . , 1). This approach

provides for a method in which maximal chains are identified as Young tableaux, where I am better equipped

to obtain results on enumeration.

I counted maximum length chains in Chapter 2, which is my paper “Chains of maximum length in the

Tamari lattice”, coauthored with Susanna Fishel (Fishel and Nelson 2014). I received permission to include

this paper as indicated in the Appendix. I established a bijection between maximum length chains in T (m)
n

and standard m-shifted Young tableaux of shape (m(n − 1),m(n − 2), . . . ,m). Using Thrall’s formula, I

thus derived the formula for the number of maximum length chains in Tn as(
n

2

)
!
(n− 2)!(n− 3)! · · · (2)!(1)!
(2n− 3)!(2n− 5)! · · · (3)!(1)!

.

In addition, I characterized the maximal chains in Sn, which are maximum length chains in Tn, when Tn is

viewed as an induced subposet of Sn.

I obtained recursive formulas for the number of maximal chains by length in Chapter 3, which is my paper

“A recursion on maximal chains in the Tamari lattices” (Nelson n.d.). For each i ≥ −1 and for all n ≥ 1,

I defined Ci(n) as the set of maximal chains of length n + i in Tn. I established properties of maximal

chains (treated as tableaux) and identified a particularly special property: each maximal chain may or may

not possess a plus-full-set. I showed that for all n ≥ 2i + 4, each member of Ci(n) contains a plus-full-set.
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Utilizing this fact and a collection of maps which take maximal chains in Ci(n) to Ci(n + 1), I obtained a

recursion for #Ci(n) and an explicit formula based on predetermined initial values. For each i ≥ −1 and for

all n ≥ 1, the number of maximal chains in Tn of length n+ i is

#Ci(n) =
2i+3∑
t=1

(
n+ i

t+ i

)
#Ni(t),

a polynomial in n of degree 3i+ 3, where Ni(t) is the subset of Ci(t) having no plus-full-sets. This result is

a considerable generalization of results of Knuth and Markowsky, where they show that there is one maximal

chain of shortest length n− 1.

Finally in Chapter 4, in collaboration with Susanna Fishel, Kevin Treat and Mahir Can, I discussed current

work and future plans involving certain equivalence classes of maximal chains in the Tamari lattices and new

posets which arise. I related many wonderful properties of these posets. My hope is that studying these new

posets will lend insight to the enumeration of maximal chains in Tn.
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