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ABSTRACT 

Software engineering education today is a technologically advanced and rapidly 

evolving discipline. Being a discipline where students not only design but also build new 

technology, it is important that they receive a hands on learning experience in the form 

of project based courses. To maximize the learning benefit, students must conduct 

project-based learning activities in a consistent rhythm, or cadence. Project-based 

courses that are augmented with a system of frequent, formative feedback helps students 

constantly evaluate their progress and leads them away from a deadline driven approach 

to learning.  

One aspect of this research is focused on evaluating the use of a tool that tracks 

student activity as a means of providing frequent, formative feedback. This thesis 

measures the impact of the tool on student compliance to the learning process. A 

personalized dashboard with quasi real time visual reports and notifications are 

provided to undergraduate and graduate software engineering students. The impact of 

these visual reports on compliance is measured using the log traces of dashboard activity 

and a survey instrument given multiple times during the course. 

A second aspect of this research is the application of learning analytics to 

understand patterns of student compliance. This research employs unsupervised 

machine learning algorithms to identify unique patterns of student behavior observed in 

the context of a project-based course. Analyzing and labeling these unique patterns of 

behavior can help instructors understand typical student characteristics. Further, 

understanding these behavioral patterns can assist an instructor in making timely, 

targeted interventions. In this research, datasets comprising of student’s daily activity 

and graded scores from an under graduate software engineering course is utilized for the 

purpose of identifying unique patterns of student behavior. 
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Chapter 1 

INTRODUCTION 

Software engineering education today is a technologically advanced and a rapidly 

evolving discipline. Being a discipline where students not only design but also build new 

technology, it is important that they develop a hands on or applied learning experience 

via a project centric course. Research has shown that such a hands on approach to 

learning produces more engaged learners compared to traditional, lecture based courses 

(Sproull, 2005). Project-based learning in this context refers to a pedagogical tool where 

students working in small teams may leverage an industry-practiced software process 

methodology to define, design, construct, and validate a quality software product. In a 

project based environment, students learn both technical competencies in the face of a 

complex scalable problem, but also contextual knowledge of how process mechanisms 

help manage that complexity. 

In any learning environment, it is not only sufficient that a student learns new 

concepts but also that they learn it the “right way”. It is important to augment a project 

centric course with a system of formative feedback (Crisp, 2007) so students can 

evaluate their learning consistently. This however, is in stark contrast to the inherent 

nature of student behavior. Students tend to be deadline driven with a majority of their 

work being completed only towards the project due date. This approach has an adverse 

impact as students that defer work to the last minute usually shortchange the concepts 

they are to discover and apply in favor of just “getting it done”. Frequent, formative 

feedback (Trotter, 2006) has been shown to have positive impact on a student’s learning 

behavior and can be used to provide regular “course corrections” to steer students away 

from this deadline driven model. A project centric course that incorporates frequent, 
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formative feedback creates a system of student learning, practice and continuous 

evaluation which makes for a well-rounded learning experience. 

Project-based courses are typically designed in a predictive, forward engineered 

manner with a predefined process model where in the steps of the process are elaborated 

and arranged using tools such as task activity networks. Students in the process execute 

the scheduled tasks, and the output is obtained when the tasks are completed within the 

specified constraints. In contrast, agile learning methods (Schwaber & Beedle, 2001) 

utilize empirical process control theory which suggests that complex processes are not 

amenable to a predefined set of scheduled steps, as the environment is too fluid. Instead, 

the process should be driven by a feedback loop where small adjustments are constantly 

made based on continuous feedback. Popular agile software engineering process models 

are based on this principle of empirical process control. Agile is best characterized as a 

mindset, focused on learning and discovery. In contrast to traditional engineering 

process models, Agile methods embrace change by assuming that outcomes are not 

completely known in advance and these outcomes must be discovered through a learning 

process that iteratively refines the team’s understanding through concepts of 

transparency, visibility, continuous feedback, and adjustments using empirical process 

control. 

Irrespective of the nature (traditional or agile) of the project based course, it is 

imperative that the learning model is supported by a system of frequent, formative 

feedback ensuring that students constantly evaluate their learning process, making 

corrective changes and are continually aligned with the learning process. This can be 

achieved using continuous assessment. Continuous assessment in the field of 

educational research is defined as the practice of performing frequent assessment in the 

context of a course in order to ensure that student learning is continually aligned with 
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the learning expectations (Ghiatău, 2011). Recent studies (Lopez, 2007) have indicated 

to the positive impact of continuous assessment on improving the student learning 

experience. The goal of continuous assessment is to ensure that students are provided 

with frequent, formative feedback and are motivated to develop a rhythm of consistent 

working. Performing continuous assessment using a dashboard of visual reports holds 

tremendous promise as it provides a convenient and straight forward medium for 

students to self-assess and also contrast their progress against that of their peers. An 

objective of this research is to evaluate the use of visual reports as a means for providing 

continuous assessment (frequent, formative feedback) for students in a project-based 

course and to analyze the impact of these visual reports on student’s compliance to the 

learning protocol (learning expectations). Compliance in this context is related to the 

clinical concept of “protocol compliance”, where adherence to a protocol is essential to 

achieving the protocol's benefits. We employ quasi real time visual reports and 

notifications of student’s activity on online tools via a personalized dashboard. This 

dashboard is provided to students in three different software engineering courses and 

the impact of these visual reports on student compliance is measured using surveys and 

logs of dashboard activity.  

Analyzing the data gathered to power these quasi real-time visual reports can be 

beneficial as it provides insights about the daily activity patterns of student’s 

contribution on these online tools. Learning analytics is an emerging field that is devoted 

to utilizing data science in the area of educational research. Applying machine learning 

algorithms on this dataset of daily activity can help cluster unique patterns of student 

behavior. As classroom sizes grow, it becomes increasingly difficult for instructors to 

keep track of individual student behavior in class. Providing instructors with these 

unique patterns of student behavior obtained by using learning analytics can help them 
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tailor the course to better suit the changing needs of students. Further, clustering various 

patterns of student behavior has the added benefit of helping instructors understand 

which cluster of students are in need of greater attention. This helps them make targeted 

interventions and the ability to perform well-timed intervention ties back to concept of 

continuous assessment where students receive timely feedback and are encouraged to 

develop a rhythm of consistent working and refrain from being deadline driven (Figure 

1). This research is devoted to using machine learning algorithms on student activity 

datasets to identify unique patterns of student behavior in a project-based environment. 

We evaluate two different formats of datasets (daily activity data and student graded 

scores data) and identify unique patterns of behavior displayed by students in the 

context of the course. These patterns are labelled based on the observed behavior and a 

unique profile is generated for students in each of these clusters.  

        

In summary, this inter-disciplinary research work is based on the hypothesis that 

a project based course supported by a system of frequent, formative feedback, provides 

students in a software engineering discipline with a well-rounded learning experience. 

The goal of this research is to explore novel and innovative ways of providing students 

with frequent, formative feedback so they develop a rhythm of consistent working. We 

experiment by providing students with a personalized dashboard of visual reports and 
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notifications as a means of providing continuous assessment. Although promising, we do 

not find conclusive evidence that points to the impact of these visual reports on student’s 

compliance to the learning protocol. Further, we employ machine learning algorithms on 

student activity data and successfully identify distinct patterns of student behavior 

observed in the context of the course. These patterns are labeled and subsequently a 

profile is created with the intention of helping instructors perform targeted and timely 

interventions. 

The rest of this thesis work is divided as follows. Chapter 2 describes literature 

review. Chapter 3 sets the context for this research by discussing the need and methods 

involved in performing continuous assessment using visual reports and learning 

analytics. Chapter 4 describes the implementation steps for creating the dashboard and 

to analyze student activity datasets. Chapter 5 details the various experiments conducted 

using the visual reports and an analysis of the results. Chapter 6 discusses the 

experiments conducted to identify patterns of student behavior using machine learning 

algorithms and the subsequent results. Chapter 7 concludes with the lesson learnt and 

the scope for future work in this area 
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Chapter 2 

LITERATURE REVIEW 

This chapter discusses various literature that served as inspiration to the 

research.  Since this thesis is focused on identifying novel ways to provide continuous 

assessment for students, the first section will discuss the various studies that shed light 

on the importance of providing timely and quantitative feedback. Subsequently, related 

work in the field of learning analytics and application of machine learning algorithms is 

discussed. Finally, various studies that prompted our exploration into the area of 

learning analytics; supervised learning algorithms applied to student datasets is 

discussed in order to define the context for this research work. 

2.1 FREQUENT, FORMATIVE FEEDBACK AND CONTINUOUS ASSESSMENT 

 How important is it for students to be provided with feedback on their activity? 

(Crisp, 2007) used data from a Bachelor of Social Work class called “Introduction to 

Social Work”, where students were required to submit two 1750 word essays during the 

course of the semester. The aim of the study is to observe if there was a change in score 

between the first and second essay based on the feedback provided on the first paper. 

The experiment was conducted on a class of 51 students over the course of the semester. 

Surprisingly, the author noted that there were no significant changes in the marks 

awarded to students between essays one and two. While the author attributes the small 

sample size as a possible reason for the unexpected results, she concludes that a greater 

focus is needed on the methodology employed to provide feedback and that it is 

important to provide students with useful feedback and is worth the extra effort 

involved. (Trotter, 2006) studied the use of tutorial files as a medium for continuous 

feedback. Tutorial files are files consisting of answers to tutorial and workshop questions 

(tutorial questions are short numerical or theoretical questions). Students are required 
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to turn in their tutorial files three times a semester and are graded and provided with 

feedback. The experiment is conducted on a business taxation module taken by around 

45 students in the final year of a three year degree. Students are provided with a 

questionnaire regarding the effectiveness of tutorial files in improving the student 

learning environment.  The results of the research are highly motivating since a majority 

of those interviewed admitted to having altered their behavior based on the feedback 

provided for the first tutorial file. Students who had not performed well were motivated 

to improve while those who had a good score were encouraged to continue the form. 

(Aljohani, 2013) stressed on the importance of immediacy in feedback provided for 

academic performance by combining learning analytics and formative assessment. They 

proposed the implementation of a system called “Quiz my Class Understanding” 

(QMCU), built as a cross platform mobile web application. The application is based on a 

quiz that is conducted post every class session on the content taught in the particular 

class. The results of the quiz is then immediately uploaded on the QMCU application in 

the form of a dashboard which also includes charts of how well the student has 

performed on the quizzes in comparison to the rest of the class. The experiment for this 

study was conducted in a course with a total of 72 students. The students were then 

provided with a questionnaire about the effectiveness and utilization of the dashboard. 

The results were positive. 84% of the students agreed that the dashboard was useful and 

80% of the students felt that the ease of access to the dashboard helped them discuss 

their results with their peers. 

 All the three papers discussed above are highly insightful to this particular 

research as they emphasize the importance of feedback; timely feedback and also the 

utility of a dashboard to help students understand how they are performing in class in 

comparison to their peers. Although the Trotter study involved only 45 students, the 
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results were overwhelming since a majority of students admitted to having a positive 

change when provided with a feedback on their activity. Likewise over 80% of the 

students surveyed found a dashboard with visualizations of their performance useful. 

These results were highly motivating for this study as it emphasizes on the utility of a 

dashboard with real time visualizations and the importance of feedback in impacting 

positive change in student behavior and also compliance to the course expectations. 

2.2 CLUSTERING STUDENT DATA USING MACHINE LEARNING ALGORITHMS 

The next two sections describe the utility of unsupervised machine learning 

algorithms in order to cluster unique patterns of student behavior and analyze how 

supervised machine learning algorithms can be used in order predict behavior of 

students in a class. Machine learning algorithms are broadly classified as being either 

supervised or unsupervised in nature. Supervised learning algorithms refer to those class 

of problems that involve understanding a dataset to make predictions about the behavior 

or value of a target variable. Regression (linear and logistic), support vector machines, 

neural networks are examples of commonly used supervised learning algorithms. 

Unsupervised machine learning algorithms are those that are used to identify patterns or 

describe structure to a dataset that is generally unlabeled. Pattern identification and 

clustering (K-means, hierarchical) are examples of unsupervised machine learning 

algorithms.  

(Oyelade 2010) discussed the application of a clustering technique on the 

academic result of students for one semester. The authors elaborate on the importance of 

mining student data for patterns of behavior instead of assigning pre-defined labels. The 

experiment used the K-means clustering algorithm on a dataset of 79 students. The 

clustering was conducted with clusters of sizes 3-5 in order to identify those clusters that 

had the most refined values. The experiment showed that students could be classified as 
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“Good”, “Very Good” or “Fair”. While the results aren’t overwhelmingly surprising it is 

highly helpful since it indicates that there are patterns that can be mined from student 

data. Randomly classifying students as either good or bad would be a very poor reflection 

of this dataset. (Bindiya, 2011) utilized the K-means clustering and fuzzy c-means 

algorithms in order to cluster student behavior and identify patterns on the student 

dataset of 8000 records gathered over a period of five years. The dataset included 

features such as attendance, internal assessment scores, seminar assessment, class 

assignment assessment and university marks scored. The results of the experiment 

throw enormous light on the scope of clustering algorithms in revealing hidden patterns. 

The study showed that all final university scores were equal to or just below the first 

semester scores of students. This implies that the first semester scores can be considered 

as an indicator of what can be expected of a student in further semesters. The study 

concludes by adding that the results of the clustering experiment helped instructors take 

remedial actions. Since the first semester scores were found to be a direct reflection of 

the final university scores, extra effort was made to ensure students performed well 

during the first semester of the course. (Arora, 2013; Jamesmanoharan, 2013) both 

discuss a similar study based on the utilization of K-means clustering in order to identify 

patterns of student behavior in student test scores data. The clustering reveals unique 

classes of student behavior displayed in tests over the course of a semester. 

The above papers shed light on the utility of unsupervised machine learning 

algorithms in its ability to identify unique patterns of student behavior that may not be 

necessarily evident. (Bindiya 2011) described how clustering student records reveals the 

significance of a student’s first semester scores on the overall university score. In this 

research, since student activity data on agile tools is gathered every day, we have access 

to a large dataset that describes students’ contribution through the course of the 
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semester. If machine learning clustering algorithms are applied to this dataset, it can 

help reveal unique patterns of student behavior throughout the entire semester. Analysis 

of these clusters can then aid an instructor in tailoring or modifying the course to better 

suit the rapidly changing needs of students. 

2.3 MACHINE LEARNING ALGORITHMS TO PREDICT FUTURE BEHAVIOR 

 (Petkovic, 2014) gathered student team activity data and applied machine 

learning algorithms in order to predict which team had a higher probability of 

performing poorly so as to provide timely intervention. The experiment is conducted in a 

software engineering class involving 140 students split into teams of 5-6 members each, 

all working on the same project. The study only gathered data which was quantitative in 

nature such as counts of emails sent to team members, number of issues raised, events 

etc. Activity data is collected from logs of activity and also based on instructor’s 

evaluation of each project. The Random Forest (Wiener, 2002) machine learning 

algorithm is used in order to classify a student project into predefined labels of A (at or 

above expectation) and F (needing attention). The results of the random forest algorithm 

was validates using the precision attribute which measured a value of 90% precision in 

classifying teams as F (needing attention).  

(Cummings 2013)  utilized process-level information data of student activity in a 

traditional classroom setup in order to use machine learning algorithms to address the 

usefulness of process-level information in machine learning prediction models and also 

to understand which machine learning algorithm is best fit to deal with this form of data. 

The study covered multiple machine learning algorithms for both classification (artificial 

neural networks, support vector machines, logistic regression) and regression tasks 

(linear regression and artificial neural networks). Regression was performed on the 

process level data to predict a numeric final grade. Classification is performed on the 
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same dataset to classify students into groups of A, B and C. The study included data from 

scores assigned to online quizzes, problem sets, tests and project activity (process level 

data). For regression, the linear regression model was picked while logistic regression 

was the choice for classification. The results of the study conclude that process-level 

information may be very useful to educators to make targeted intervention. It also 

concludes that simpler machine learning algorithms like linear regression and logistic 

regression are better suited for this form of data in comparison to other complex 

techniques.  

(Ozaltin, 2015) uses a machine learning algorithm (Bayesian networks) in order 

to predict if an under graduate student project can be classified as innovative or not. The 

study collected data from 26 teams working on similar projects to design a biomedical 

device. Students were grouped into teams of 3-5 and were surveyed twice every week to 

understand what the student had worked on. The student can pick an answer from one 

of 89 activities listed. These 89 activities are classified into eight different categories and 

based on the design activities that a team engages in, and in particular their usage levels, 

the model allows instructors to predict as well as positively impact the innovativeness of 

the team’s final product. Although the experiment was conducted on a relatively small 

dataset (26 teams), the results are highly insightful because if a team is doing “poorly” in 

terms of product innovation the instructor can advise the team on how to redirect its 

efforts (timely intervention).  

(Kim, 2013) utilizes support vector machines to classify if a student is being 

attentive or not based on the data received from sensors. Although the area of our study 

is not focused on attentiveness, the ability to predict a student’s behavior based on 

available data is highly significant. (Fang, 2013) gathered scores of student performance 

on a prerequisite course and applied four different prediction techniques in order to 
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predict the performance of students on a current course. The study used multiple 

regression, support vector machines and two flavors of neural networks (multilayer 

perception and radial basis function). The conclusions, although surprising, stated that 

the choice of mathematical model had a slight effect on the average prediction accuracy 

and the percentage of accurate predictions and concluded that support vector machines 

had the better accuracy of all the other models. 

The results and conclusions of the above discussed papers describe the efficacy of 

using supervised machine learning algorithms in order to make timely predictions and 

targeted interventions. The data gathered from student activity on agile tools can be used 

to predict future student behavior. However, unlike the papers above, this research 

believes that labels for future classification should not be predefined but instead must be 

derived from an analysis of the dataset available to us. Attempting to classify a student as 

being “good” or “average” does not paint the “right picture” of the students’ behavior in 

an agile context. Detailed labels such as “start slow ends well”, “more code, less scrum” 

would better describe students activity and thus help instructors understand typical 

student behavior in the context of the course. However, the methodology utilized in the 

above papers is of great significance in understanding the future scope and possibilities 

of this research project. 

In summary, this chapter reviews literature that signifies the importance of 

frequent, formative feedback on the student learning experience. Visualizations of 

student progress and peer comparison have been shown to have greater acceptance. The 

finding of these literature hold special significance as this research is dedicated to 

identifying innovative ways of providing students with frequent, formative feedback in a 

project based course. Visualizations and notifications are provided via a personalized 

dashboard. Using unsupervised learning algorithms to cluster unique patterns of student 
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behavior helps instructors understand typical characteristics displayed in class 

prompting them to modify/ tailor the course to suit these changing needs and also pay 

close attention to those students who may be in most need of it. This approach is a 

manifestation of continuous assessment model where students receive timely feedback 

encouraging them to alter their learning process. Further, if a label can be assigned 

based on the observed behavior, a profile can be created using which supervised learning 

algorithms can be utilized to predict what label best describes a student in the future 

instance of the course. This again allows an instructor to make timely interventions to 

ensure a better learning experience for the student. 

The next chapter sets the context for this research. It outlines the research 

questions that drive this thesis work and describes a project-based environment that is 

conducive for performing continuous assessment using visual reports and learning 

analytics. It highlights the motivation for using visual reports as a means for providing 

continuous assessment and how student activity data can be clustered to identify unique 

patterns of student behavior in the context of a course. 
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Chapter 3 

RESEARCH CONTEXT 

In the software engineering discipline, project-based courses offer students an 

opportunity to develop a hands on, applied learning experience. It is important that 

students in these project based courses are provided with frequent, formative feedback 

(Crisp, 2007) to ensure that they continually evaluate their learning process and are 

aligned with the expectations of the course. However, this is in contrast to the inherent 

nature of students. Students are generally deadline driven with a majority of their work 

being completed only towards the project due date. This deadline driven behavior can 

have a negative impact as students who tend to complete their work at the last moment 

miss out on the valuable learning experience in favor of simply completing the task. One 

of the biggest challenges for educators is motivating students to forego this deadline 

driven behavior in exchange for developing a rhythm or cadence of consistent working. 

Providing frequent, formative feedback (Trotter, 2008) allows students to make regular 

adjustments in the learning process thereby ensuring that they are continually aligned 

with the expectations of the course. Continuous assessment in educational research is 

defined as the process of performing frequent assessment. Continuous assessment in this 

context can be used as a mechanism for providing students in a project-based course 

with frequent, formative feedback. The focus of this research then is to identify novel 

ways of performing continuous assessment for students in a project-based course so they 

develop a habit of consistent working and not succumb to a deadline driven model. 

We explore the use of quasi real time visual reports and notifications as a means 

of providing continuous assessment. The premise for this method, is that, continuous 

assessment, where the student always has visibility into her/his activity, will motivate 

students to adhere to the “consistent work rhythm” expectation, thereby increasing the 
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student’s ability to learn in context. We measure the impact of these visual reports on 

student’s compliance to the expectations of the course (learning protocol). Compliance in 

this context is related to the clinical concept of protocol compliance, where adherence to 

a protocol is essential to achieving the protocol's benefits.  

In a small classroom setting, an instructor often develops an understanding of the 

distinct learning behavior displayed by students in the class. This understanding aids an 

instructor to direct their attention to students who may be in most need of it. However, 

as classroom sizes grow it becomes increasingly difficult for instructors to identify these 

distinct patterns of learning behavior. Machine learning algorithms can be used to 

cluster students based on their learning behavior and provide guidance on strategies for 

improvement. An instructor’s understanding of these behavioral patterns helps them 

understand typical student characteristics allowing them to adjust their teaching process 

to better suit the needs of these students. Additionally, understanding clusters of 

learning patterns in a course helps instructors provide timely interventions for those 

clusters of students who may be at risk of not complying with the learning protocol. In 

this research, we explore the use of unsupervised machine learning algorithms to cluster 

distinct patterns of student behavior in a project based course. Each of these unique 

patterns are assigned a label based on the behavior observed and subsequently a profile 

is created of student activity for each of these clusters.  

It is important to note that the use of visualizations and machine learning 

algorithms to provide continuous assessment for students is applicable to any project 

based course. However, in this research, we discuss the methods of performing 

continuous assessment in an agile learning context. The rest of this chapter is divided as 

follows. We first explore the research questions that define the goals and scope of this 

research. Subsequently, we discuss the agile learning approach to set the context for a 
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project-based course. We then detail the methods used to perform continuous 

assessment using visual reports and machine learning algorithms in an agile learning 

environment. Finally, we talk about the Software Enterprise; an agile learning pedagogy 

and how it serves as an ideal test bed to experiment with continuous assessment 

methods deliberated in this research. 

3.1 RESEARCH QUESTIONS 

This research is focused on identifying various methods of providing continuous 

assessment in a project based course and the subsequent impact of these methods on 

student’s compliance to the learning protocol. 

RQ 1. Does a personalized dashboard with visual reports of learning activity, peer              

comparison and real time feedback have an impact on adherence/compliance to 

the learning protocol? 

RQ 2. Can historical activity data be used to cluster students based on behavior? 

Can these clusters be assigned a label to be used in subsequent models to make 

predictions of future student behavior? 

3.2 AGILE LEARNING 

Project based courses in the software engineering discipline are typically 

designed in a forward engineered manner with a sequence of predefined tasks and 

milestones. Students in this environment execute these predefined tasks and the process 

is completed when the milestone is achieved within the expected constraints. In contrast, 

agile methods based on the empirical process control theory (Schwaber & Beedle, 2001), 

suggests that complex processes are not amenable to a predefined set of scheduled steps, 

as the environment is too fluid. Instead, the process should be driven by a feedback loop 

where small adjustments are constantly made based on continuous feedback. Popular 

agile software engineering process models are based on this principle of empirical 



17 
 

process control. Agile methods are the fastest rising software lifecycle process methods 

in software engineering today owing to its iterative nature, feedback loop and high 

tolerance to change (Agile Manifesto, 2001). While engineers adopt agile methods due its 

iterative nature and feedback loop, educators stress on the importance of providing 

frequent formative feedback to improve the learning experience. Agile learning refers to 

a learning model that combines these two features by implementing a learning cycle that 

is highly iterative and is driven by a loop of continuous feedback. In an agile learning 

environment, students develop a rhythm or cadence of consistent working where 

continuous feedback prompts constant modifications or “tweaks” in the learning process 

leading them away from a deadline driven model. The key feature of agile learning is the 

focus on building and maintaining a sense of rhythm in the learning process. However, 

getting students to sustain this rhythm can be an enormous challenge as students 

generally are deadline driven. It is thus imperative that we explore various modes of 

providing frequent, formative feedback; continuous assessment. 

3.3 CONTINUOUS ASSESSMENT 

Continuous assessment as mentioned in chapter 2 is the practice of performing 

frequent assessments in a course context. This frequent assessment provides a feedback 

mechanism ensuring students are properly aligned with the learning process. 

Continuous assessment holds particular promise for project-based learning as it is 

difficult to provide consistent and timely feedback when employing this pedagogy (e.g. 

student progress may be obscured in a team setting; students may not make timely 

progress toward project milestones). In continuous assessment, a continuous stream of 

learning activity data is collected for the purposes of providing continuous formative 

feedback and analyzing compliance to a learning protocol. Continuous assessment 

interpreted from an agile software engineering perspective is closely related to the 
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practice of continuous integration and testing (Fowler, 2006). This practice is 

fundamental to agile software engineering in that it supports transparency, visibility, 

continuous feedback, and adjustments based on the empirical process control. We 

borrow from the concept of continuous integration and testing (CI & Test) in agile 

software engineering. CI & Test promotes continual integration and verification of 

software by performing a software build and regression test for each commit to a 

software repository, or at least on a nightly basis. This practice avoids the problem of 

infrequent integration testing and long build processes. CI & Test dashboards (Figure 2) 

in tools such as TravisCI (travisci.org), Cdash (cdash.org), or Jenkins (jenkins-ci.org) 

provide visibility of product quality status. Used in conjunction with a scrum board and a 

mature source code control platform like GitHub (github.com), the project team and all 

stakeholders have full visibility into the rate of product development, project activity 

toward requirements, and product quality.  

 

3.4 CONTINUOUS ASSESSMNENT USING VISUAL REPORTS 

A motivation to use visual reports to perform continuous assessment is drawn 

from CI & Test dashboards (Figure 2) that use traffic light and weather metaphors to 

provide short-term and long-term feedback mechanism. Visualizations of student 
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activity provided via a dashboard provides for easy access and encourages students to 

discuss their progress with their peers (Aljohani, 2013). In this research we use an agile 

learning course to performing continuous assessment by providing student with visual 

reports of their activity on online agile tools. Agile learning courses use Scrum (Schwaber 

& Beedle, 2001) to conduct their projects since it embodies a philosophy of establishing a 

rhythm to weekly and even daily activities. One of the appealing features of Scrum is not 

only its emphasis on implementing iterative development using sprints but also the 

significance it lays on team communication. In Scrum, teams conduct daily, short (five 

minute long) meetings to discuss progress and hurdles to success. Agile learning courses 

that utilize Scrum expect students to develop a rhythm of consistent working by making 

regular updates on their scrumboards (e.g. Scrumwise, Taiga), contribute code on a 

source code control tool (e.g. GitHub) and conduct frequent stand up meetings. One goal 

of this research project is to create a dashboard similar to CI & Test platforms (Figure 2) 

showing the continuous assessment view of a student’s activity on these online agile 

tools.  

We create a web-based dashboard (CAssess) that retrieves student contribution 

data from online agile tools, performs basic statistical analysis and displays 

visualizations in the form of charts and graphs. The dashboard also provides dynamic 

notifications or “call to action” based on a student’s activity over a time period. The goal 

of CAssess is to leverage the transparency of the dashboard with the use of notifications 

to provide timely formative feedback, so students have the ability to immediately correct 

behaviors. A sample visual report showing student’s contribution on the source code 

control tool (GitHub) is described in Figure 3. To understand whether students are 

utilizing the tool and are compliant in their learning process, a logging mechanism is 

implemented in CAssess. This helps us understand how frequently students visit the 
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dashboard, duration of their visit, tabs visited and notifications viewed. Real time 

analysis of this log data provides instructors with a temporal view of dashboard 

utilization by students in class. The aim of performing continuous assessment using 

visual reports is to ensure that these visual reports motivate students to develop a 

rhythm of consistent working and adhere to the learning expectations of the class. The 

impact of these visual reports on student compliance to the learning protocol is analyzed 

by conducting end of semester surveys and also using the log of dashboard activity. If 

progress is observed in a student’s behavior that is proportional to their visits to the 

dashboard, then a causality can be established linking the dashboard to the improvement 

observed in student behavior. The experiments using CAssess and the subsequent results 

are discussed in chapter 5. 

      

3.5 CONTINUOUS ASSESSMENT USING LEARNING ANALYTICS 

Learning analytics is an emerging field that is devoted to collecting student data 

to analyze behavioral patterns in the context of a course. Learning analytics holds 
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particular promise in project based courses as identification and analysis of student 

behavior can help instructors tailor their courses to suit the changing needs and also 

perform timely interventions to ensure students are “steered in the right direction”. In 

this research, we integrate principles of software engineering and learning analytics to 

support continuous assessment in an agile learning environment. Agile methods connect 

to learning analytics through empirical process control; a data-driven, feedback-oriented 

approach to process enactment. We utilize machine learning algorithms to cluster 

distinct patterns of student behavior in the course. Through this research work, we seek 

to incorporate these patterns of behavior into continuous formative feedback to cause 

behavior change.  

In a project centric course based on agile learning, students use online agile tools 

(scrumboards, source code control, CI & Test, stand up meetings) to conduct their 

projects. Gathering data of student activity data on all these tools and subjecting the 

resultant dataset to unsupervised machine learning algorithms can help understand the 

nature of student’s contribution. Clustering algorithms such as K-means clustering can 

be used to group unique patterns of student activity. Once unique clusters are generated, 

each of these clusters can be assigned a label based on the behavior observed. This 

method of labelling (“Consistently Compliant”, “Code Centric”) based on the behavior 

observed in the cluster helps understand student activity patterns better in contrast to 

creating predefined labels such as “good”, “poor” or “average”. Subsequently, a profile 

can be created for each of these labels. Creating profiles has dual advantages. First, it 

serves to explain student activity in each of these clusters. For example, a profile created 

for the those students who were clustered as being “Code Centric” describes how all 

students in the particular cluster contribute on each of the agile tools on a daily basis. 

Second these profiles act as ideal training datasets to apply supervised machine learning 
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algorithms. Supervised algorithms refer to those class of problems that involve 

understanding a dataset to make predictions about the behavior or value of a target 

variable. Supervised learning algorithms applied to this training set can help predict 

what label/ cluster describes a student in the future instance of the class. This process of 

predicting future behavior is beneficial as it helps instructors make targeted 

interventions and ties back to the concept of performing continuous assessment in order 

to ensure that students develop a rhythm of constant working and not succumb to a 

deadline driven model. 

3.6 THE SOFTWARE ENTERPRISE 

This thesis is devoted to exploring novel and innovative ways of performing 

continuous assessment for students in a project-based environment. To this end we 

evaluate the utility of a personalized dashboard containing visual reports and 

notifications of student activity on online agile tools. Further, we use learning analytics 

on student activity datasets to identify distinct patterns of student behavior with the 

expectation that early identification of these behaviors can help instructors tailor the 

course to suit the needs of students and also perform targeted and timely interventions. 

Although these methods can be applied to any project-based course, in this research we 

use an agile learning pedagogy, the Software Enterprise (Gary, 2007), as a testbed to 

experiment with visual reports and learning analytics as a means to perform continuous 

assessment. The Software Enterprise is based on the Kolb’s learning cycle (Kolb, 1998). 

Kolb’s learning cycle describes the significance of a continuous loop of knowledge 

dissemination, knowledge comprehension and application to enhance the learning 

experience. A project centric course based on Kolb’s learning cycle can help a student 

learn (knowledge absorption) in a traditional classroom setting (face to face or online), 

comprehend what’s being taught and practice the same within the framework of an 
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applied project. A visual representation of the Software Enterprise pedagogy based on 

Kolb’s learning cycle is as shown in Figure 4. 

  The Software Enterprise forms a project spine (Gary, 2013) wherein software 

engineering concepts are broken into discrete modules and sequenced over the course of 

a semester to synch up with project activities. In this just-in-time approach, students are 

exposed to a concept, practice it, apply it on a scalable project, and then evaluate the 

applied technique. In this research I specifically use two courses both of which conduct 

their projects using Scrum. Scrum is an excellent process model for the Enterprise as it 

embodies a philosophy of establishing a rhythm to weekly and even daily activities. 

Students are assessed after each sprint (4 times per semester) on their process-related 

activities (updating a scrum board and participating in standup meetings), code-related 

activity (frequency and significance of commits to the source code repository), 

integration of modules into the project, and team process activities (story development, 

sprint reviews and retrospectives). A key principle of the Software Enterprise is the focus 

on developing a rhythm or cadence of consistent working and students are discouraged 

from making last minute or even excessive contributions. The Software Enterprise 

provides a good vehicle for continuous assessment due to its highly modularized 

curricular organization, emphasis on highly iterative software development and 

expectation of continuous, consistent work on the project. 
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In summary, this research explores different means of providing continuous 

assessment to students in a project-based course so as to encourage them to develop a 

habit of consistent working and refrain from a deadline driven approach. We utilize 

visual reports and notifications and measure the impact of these reports on student 

compliance to the learning protocol. Further, we use machine learning algorithms to 

identify distinct patterns of student behavior in a project-based course in order to assist 

an instructor in tailoring the course to suit the needs of the students and also perform 

timely and targeted interventions. We use the Software Enterprise pedagogy as a 

medium to conduct our experiments and validate the results. 

 In the next chapter, we explore the steps involved in implementing a dashboard 

that provides continuous assessment to students in a project-based course using visual 

reports. The dashboard with notifications are provided to students in three different 

software engineering courses and their activity on the dashboard is monitored. Further, 
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we gather a dataset comprising of grades assigned to students across all sprints of a 

project-based course to discover distinct patterns of student behavior. Finally, a dataset 

comprising of a student’s daily contribution on online agile tools is subjected to an 

unsupervised machine learning algorithm to identify similar patterns of behavior. 
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CHAPTER 4 

Continuous Assessment Platform 

 This thesis is based on the premise that a project-based course supplemented by 

a system of frequent, formative feedback provides students with well-rounded, hands-on 

learning experience. To that end, we first explore the use of a dashboard that provides 

visual reports and notifications of student activity and measure the impact on protocol 

compliance using logs of dashboard activity and surveys. Subsequently, we explore the 

use of learning analytics in helping instructors understand typical student activity 

characteristics in class so as to provide timely and targeted interventions. This chapter 

describes the implementation steps involved in designing and building a dashboard with 

visual reports and notifications. Further, it discusses the implementation of learning 

analytics on student activity datasets using unsupervised machine learning algorithms to 

identify unique patterns of student behavior in the context of a course.  

 Although, continuous assessment can be performed in any project-based course, 

in this research we use a graduate (SER515) and an under graduate (CST316) course in 

the Software Enterprise as a testbed to conduct our experiments using visual reports and 

learning analytics. Students in these courses use Scrum in order to conduct their projects 

as it embodies a philosophy of establishing a rhythm to weekly and even daily activities. 

In a typical software enterprise course, students are given the directive to work on their 

projects for a fixed number of hours per week, and save 1 hour out of class for 

preparation activities. Students are asked not to go beyond these specified hours even if 

their project is falling behind, as the intent is to have the students rely on a team process, 

not heroic efforts, to complete the sprint goal. Students are assessed after each sprint 

based on their process-related activities, code-related activity, integration of modules 

into the project, and team process activities. Individual process activities include 
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updating a scrum board and participating in standup meetings (at least 3 times per 

week). Code activities relate to individual velocity and are measured by frequency and 

significance of commits to the source code repository. Module integration is determined 

by a student journaling evidence and presenting it as part of a sprint individual 

reflection. Team process activities are based on adherence to Scrum principles such as 

user story development, estimation and tracking on burndown charts, and sprint reviews 

and retrospectives. A student’s final grade is the aggregation of each of the sprint grades 

plus a percentage reserved for the end-of-semester product deliverables. Due to its 

highly modularized curricular organization, emphasis on highly iterative software 

development and expectation of continuous, consistent work on the project, the Software 

Enterprise provides a good vehicle for performing continuous assessment. 

4.1 VISUAL REPORTS 

The dashboard of visual reports codenamed “CAssess” (short for Continuous 

Assessment) was employed in three Software Enterprise based courses: two junior level 

Software Construction course (CST 316 during Spring 2015 and Spring 2016 which had 

two sections; online and face-to-face) and a graduate level course (SER515 during Fall 

2015).  

 Students in the Spring 2015 batch of CST 316 were provided with the first version 

of CAssess (CAssess v1) in the final sprint of the course. CAssess v1 was a web-based 

platform that supports the integration of two tools: Scrumwise (scrumboard- 

www.scrumwise.com/) and GitHub (source code control tool- www.github.com). The 

platform is created using JAVA, JavaScript and extracts student activity data using open 

APIs exposed by these two tools. The API response is parsed by an appropriate library, 

transformed and stored in an array list. An authenticated request by the user prompts 

CAssess to retrieve student data in the form of an array list which is then visualized using 

http://www.scrumwise.com/
http://www.github.com/
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the C3JS JavaScript library. Data extracted from Scrumwise includes team statistics such 

as number of tasks owned by a team in the current sprint, the corresponding status and 

the remaining hours for completion of these tasks. Similarly, the data retrieved from 

GitHub includes individual team member statistics such as number of code commits and 

corresponding lines of code added and deleted over the period of a week. The visual 

reports are simple charts and graphs that provide students with a relatable and effective 

medium to analyze their progress on the project.  Based on the results of a survey 

conducted at the end of the course, enhancements to CAssess v1 were envisioned that 

improved personalization (Chapter 5) and handling of real time data: CAssess v2. 

CAssess v2 was provided to 90 graduate students in the SER 515 course during 

the Fall 2015 semester. CAssess v2 was employed as a personalized dashboard that 

supported a scrumboard (Taiga- https://taiga.io/) and a source code control tool 

(GitHub). The dashboard was created using the R programming language (www.r-

project.org), which allows for efficient data collection, analysis and visualization. 

Utilizing the httr package in R, CAssess makes a GET call to the REST APIs exposed by 

each of these online tools (Taiga, Git Hub) on a daily basis. The data retrieved for each 

student is transformed by converting it into a data frame and stored in a local database. 

The data retrieved by CAssess v2 includes number of tasks owned by a student 

corresponding status and remaining time for completion. Likewise, it gathers statistics 

such as number of code commits, corresponding lines of code and deleted on a daily 

basis. At the end of every week, CAssess v2, analyzes a student’s contribution for the 

week against the rubrics defined by the instructor. For example, students in the 

graduate-level project course are told that they must perform 3 significant code commits 

per week, and work on at least 2 tasks on the scrum board. Based on these rubrics 

defined and data collected by CAssess v2, it computes a score for each student and 

https://taiga.io/
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generates a notification or a call to action based on their activity over the week. Every 

authenticated student request on CAssess v2 provides access to a dashboard containing 

visual reports using charts, graphs and a notification feature. Although CAssess v2 

provided personalization and quasi real time visual reports. However, initializing student 

information on the dashboard and provisioning student accounts on online tools 

continued to be an onerous task, especially with increasing classroom sizes. This 

difficulty was resolved through the introduction of the third version of CAssess. 

 

The Continuous Assessment Platform (CAP) is designed to support adaptive 

interfaces to any tool of a given category. The vision for CAP is to extend the capability of 

dynamically integrating tools for generating learning activity streams via the “TinCan 

API” (also known as the Experience API  or xAPI, https://tincanapi.com). The objective 

of the CAP is to gauge project activity and provide real time, formative feedback to 

enhance learning experience and ensure compliance in project-based courses. The 

current version of the CAP supports the integration of 3 tools: GitHub for source code 

management, and Scrumwise, Taiga for scrum boards. The current platform is a web-

https://tincanapi.com/
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based integration platform (Figure 10) composed of two subsystems, each with its own 

user-facing components. The primary component, CAssess v2 (here on referred to as 

CAssess) provides features for 1) integrating data streams from open tool APIs, 2) 

performing basic statistical analysis, and 3) displaying visualizations and notifications to 

students and instructors. The second and supporting system is called Nicest (Nicely 

Integrating Complex Education Software Together), and has primarily responsibilities 

for user and team management, and for provisioning the various tools being integrated 

into CAssess, again via open APIs.  

 Nicest (Murphy, 2016) is a tool integration platform for educators. Nicest (Figure 

5) allows for provisioning of tools using “recipes”. Recipes are lightweight workflows 

modeled as an ordered list of steps (or tasks) that produce a type of project setup. For 

example, the “Code Project” recipe allows for configuration of GitHub (source code 

control), Taiga (scrum board), and CAssess for individual or team projects. Nicest 

divides recipes into extensible plugins that can be added, removed, or modified without 

affecting the core functionality or functioning of other plugins. However, plugins can 

optionally depend on another plugin to provide functionality, allowing plugins to serve 

as reusable sources of functionality for recipes to operate. Additionally, Nicest is 

designed to be able to pass project configuration information to CAssess so that 

dashboard knows what tools to pull from for student activity data. Passing details on 

tools that have been setup allows external systems to directly access those tools, in turn 

allowing instructors to provide qualitative analysis of student engagement. 
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 CAssess receives student and course information from Nicest, retrieves data from 

agile tools, analyzes student performance against instructor-defined rubrics, and 

provides visualizations and notifications via a personalized dashboard. The objective of 

CAssess is to leverage the transparency of the dashboard with the use of notifications to 

provide timely formative feedback, so students have the ability to immediately correct 

behaviors. The dashboard in its current version includes visualizations of daily activity 

on Taiga and GitHub, a peer comparison radial chart and a notification widget with 

directed feedback. Once Nicest (Chapter 5) provisions a course and the associated 

students into the online tools, it notifies CAssess by pushing this information to a local 

database. This prompts CAssess to generate a membership table linking a student with 

their accounts on these particular tools. Using the details of these accounts, CAssess 

makes GET calls to the API exposed by these tools, transforms the retrieved data and 

stores it into the same database. This data is then utilized by CAssess to power the 

various visual reports on the dashboard. To understand whether the students are 

utilizing the tool and are compliant in their learning process, a logging mechanism is 

implemented in CAssess. This helps understand how frequently students visit the 

dashboard, duration of their visit, tabs visited and notifications viewed.  
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4.2 LEARNING ANALYTICS USING MACHINE LEARNING ALGORITHMS 

A significant amount of research is being conducted today in the field of learning 

analytics that is focused on collecting student data and performing continuous analysis 

to improve the learning experience. As discussed in chapter 2, (Petkovic, 2014) and 

(Ozatlin, 2015) describe how machine learning algorithms can be used to predict the 

outcome of student projects as being successful or innovative. However, classifying 

students into predefined labels such as “successful”, “not successful”, ”good”, “bad” does 

not provide insights about a student behavior during the period of the course. One aspect 

of this research work is focused on using machine learning algorithms to identify unique 

patterns of student behavior in class such that suitable labels can be assigned in order to 

help instructors understand typical student behavior in class. Understanding these 

unique patterns can help instructors make interventions for those clusters of students 

who may be in most need of it. In this section we explore the implementation of two 

unsupervised machine learning algorithms (K-means clustering, Hierarchical clustering) 

that can be utilized to identify patterns in student activity datasets. 

K-means (Hartigan, 1979) clustering is a commonly used yet simplistic algorithm 

that efficiently groups data into a predefined number of clusters. The algorithm begins 

by creating K centroids where K is the number of clusters specified by the user. Every 

new instance of the dataset is then compared to these K centroids and assigned to the 

one that is closest to it. The distance between a new observation and the centroids is 

calculated using the Euclidean distance between the two. On addition of a new 

observation to an existing cluster, the centroid is recalculated and if needed the 

observations are redistributed to other clusters based on their proximities to the newly 

created centroid. The in-cluster variance is calculated by computing the mean of those 

observations which produce the least within-cluster sum of squares. The other 
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observations are then shuffled across the remaining clusters. This process repeats until 

no observations are found to be switching between clusters. A pseudocode for the K-

means clustering is described below:  

Repeat until no observations switch clusters 

1. Initialize K observations as cluster centroids 

2. Assign new observation to a cluster based on the shortest Euclidean distance 

to its centroid 

3. Recalculate centroid value based on mean of within-cluster sum of squares, 

move other observations to the next cluster. 

One of the characteristics of the K-means clustering algorithm is that the user 

needs to have prior knowledge of the number of clusters required. This can often pose a 

difficulty while using datasets such as the ones in our research. Fortunately, there are 

several methods available that provides an approximation of the number of clusters in a 

given dataset. In the elbow method (Hothorn, 2014), we plot a chart of within-cluster 

sum of squares against a sequential number of clusters and look for an “elbow” in the 

chart giving us an approximation of the number of clusters to use for the dataset. Figure 

6 describes the within-cluster sum of squares plot for a student activity dataset. In the 

plot there is a slight elbow at cluster 5, so we experiment with values of k between 4 and 

6 until a stable pattern is observed in each cluster. 
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In order to compare the results of the clusters generated by the K-means 

clustering algorithm, we explore another unsupervised learning algorithm: Hierarchical 

clustering. The hierarchical clustering technique begins by creating an individual cluster 

(singletons) for every element of the input dataset. This is followed by the agglomeration 

phase wherein all the clusters are merged together until only a single cluster exists. The 

input to the agglomeration phase is a distance matrix and in the smallest two clusters are 

combined into one. The next step is to identify a suitable criterion that can combine the 

other singleton clusters. There are several methods that can be used for this process. One 

commonly used technique is the Ward’s method of minimum variance (Ward, 1963). 

This method combines only those clusters where there is a minimum increase to the 

overall within-cluster variance. The variance is simply a measure of the weighted square 

distance between two cluster centers. Once all the clusters have been successfully 

merged, a tree like structure called a dendogram is generated that details the entire 

merging process (Figure 7).  

The clusters generated by hierarchical clustering and K-means clustering 

algorithms were compared and it was observed that K-means clustering generated 

better, finer clusters in comparison to the hierarchical clustering method and thus, 
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subsequent experiments in this thesis were conducted using the K-means clustering 

algorithm. 

 

 

In conclusion, this chapter describes the details of implementation for a 

dashboard (CAP) that is designed to integrate tools of any given category and provide 

visual reports and notifications to students in order to help them develop a rhythm of 

consistent working. Further, this chapter also describes the working of unsupervised 

machine learning algorithms that is used to cluster student activity datasets in order to 

obtain distinct patterns of student behavior. We explore two unsupervised learning 

algorithms and shortlist one of them (K-means clustering) in order to conduct further 

experiments. The next two chapters describe the experiments, results and interpretation 

of visual reports and learning analytics. 
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CHAPTER 5 

VISUAL REPORTS 

 One purpose of this thesis (as described in RQ1) is to evaluate the use of visual 

reports as a means of providing continuous assessment for students in a project-based 

course and to measure the impact of these visual reports on student’s compliance to the 

learning protocol. Students are provided with quasi real-time visual reports and 

notifications via a personalized dashboard and the impact of these reports on student’s 

compliance is measured through surveys and logs of dashboard activity. These visual 

reports (CAssess v1, v2, v3) were provided to students in three different courses (both 

graduate and undergraduate). This chapter analyzes the experiments that were 

conducted using these visual reports, the results of the experiments and the limitations 

observed with scope for future improvement. 

5.1 CAssess v1 

5.1.1 Experimental Context 

 CAssess v1 was provided to 42 students in the junior level Software Construction 

course (CST 316) during the Fall 2015 semester. CAssess v1 was deployed in Sprint 4 (the 

last full project sprint) of the course and it included visual reports represented using 

charts and graphs. Figure 8 describes all the visual reports provided to students as part 

of CAssess v1. Figure 8a shows team process progress. A data point on this chart 

represents the number of tasks owned by a team for a particular day. It measures, as a 

stacked area chart, the number of To-Do, In Progress, To Test, and Done tasks per day 

on the team’s scrumboard. This particular chart shows good team progress over the 

sprint, as the tasks are getting moved across the states of the scrum board at a fairly 

consistent rate. Figure 8b is a view of an individual’s code activity. The grouped bar 

charts show frequency and significance of commits normalized to a common visual scale 
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with a double y-axis chart. This particular student shows decent behavior, though in 

several cases there a number of insignificant commits, as shown by the blue bar being 

higher than the orange (commits outweighing code addition, meaning several trivial 

commits performed). The most important chart however, is Figure 8c, as it shows a view 

of the four components of the sprint grade, laid out on a radial chart. Further, the 

individual student’s component scores (shown in the small dark area) are overlaid with 

the team’s average component scores, and then the component scores of the entire class. 

The student can view immediately, her/his performance with respect to the rest of the 

class. These charts are worthwhile in that they show a rate of progress (Figure 8a, 8b) 

and instant comparison (Figure 8c) to cohorts within the class. They are easily 

interpreted by the student, and are rendered in one place. A survey was conducted at the 

end of the course to understand the impact of CAssess v1 on improving the student 

learning behavior. 22 students responded to the survey. The students were asked to rate 

how helpful they found each of the charts and if the stacked area chart of activity on the 

scrum board allowed students to understand team progress. 

5.1.2 Results and Interpretation 

 Of the 22 students who responded to the survey, 15 students indicated that the 

stacked area chart (Figure 8a) helped them understand team progress, while 1 said it did 

not help and the other 6 remained neutral. For the individual chart of code activity 

(Figure 8b), 10 students indicated it helped, while 8 said it did not help and 4 were 

neutral. Finally, for the peer comparison chart (Figure 8c), 7 students said it helped, 5 

said it did not, and surprisingly 10 were neutral. While the results overall were positive, 

particularly for Figure 8a, it was disappointing to note that the radial chart (Figure 8c) 

did not generate stronger opinions among the students. Off course this was an ad-hoc 

survey and the visual reports were only provided to students in sprint 4. We did not have 
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the time to determine if availability of this data on a daily basis during the entire 

semester would incur a change in results.  

 One of the limitations of CAssess v1 is that it lacked real time data. The stacked 

bar chart of student contribution on the source code control tool described student 

contribution on a weekly basis and not daily while the radial charts were powered with 

data from the sprint grading sheet (Figure 14) which is generated only at the end of each 

sprint. Further, the stacked area chart of activity on the scrumboard detailed a team’s 

progress and did not highlight an individual’s contribution. These factors meant that 

CAssess v1 lacked real time data and personalization. 

In conclusion, while CAssess v1 provided visual reports that were easy to 

interpret and relatable, it lacked in personalization and real time data. These two 

limitations of CAssess v1 were addressed by CAssess v2 which created a personalized 

dashboard with individual progress charts and notifications.       

     

 



39 
 

 

5.2 CAssess v2 

5.2.1 Experimental Context 

CAssess v2 was provided to 90 students in a graduate Software Enterprise course 

during the Fall 2015 semester. Unlike v1, CAssess v2 was provided during the second 

sprint of the course so students could utilize the dashboard for a major period of the 

course. CAssess v2 addressed the limitation observed in v1 via a personalized dashboard 

equipped with quasi real time visual reports and notifications. The dashboard contained 

individual tabs that provided visual reports of a student’s daily contribution on their 

scrum board and source code control tool. The dashboard also generates a notification or 

“call to action” every week based on a student’s contribution against the learning 

expectations defined in class. Based on their contribution during a week, CAssess also 

generates a score for each tool and powers the radial chart which contrasts a student’s 

weekly activity against that of their peers. Figure 9 describes the visual reports as part of 

the CAssess v2 dashboard. The notification feature (Figure 9a) in CAssess v2 is an 

attempt to personalize the dashboard and provide students with frequent formative 
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feedback. Figure 9b describes a stacked column chart on the dashboard that indicates 

the number of tasks owned by a student on a daily basis. This particular chart shows 

consistent activity on the scrum board as the student updates his/ her task status 

frequently. Figure 9c describes a stacked column chart detailing a student’s contribution 

on the source code control tool daily. A radar chart (Figure 9a) is updated every week 

with axes for frequency and impact (normalized to a common scale). The radar chart 

allows the student to compare her/his contributions to other populations, which by 

default are the student’s team and the entire class. As observed in Figure 9a, the 

personalized notifications and charts of individual contribution supported by quasi real 

time visual reports allows CAssess v2 overcome the drawbacks in CAssess v1.      
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5.2.2 Results and Interpretation 

An end of class survey was conducted to understand the impact of the visual 

reports on improving student behavior. The aim of the survey was to understand how 

frequently students visited the dashboard, if they liked the concept of a dashboard and 

the effect of notifications on improving student learning pattern. Students were also 

asked if the dashboard accurately reflected their individual contribution and if they 

wanted more tools such as stand up meetings logs, CI & Test tools integrated into the 

dashboard. 56 out of 90 students responded to the survey that included a multi-part 5-

response Likert scale (“Strongly Disagree”, to “Strongly Agree”). The results of the survey 

are tabulated as shown in Table 1. 
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Question 
Strongly 
Disagree 

Disagree 

Neither 
Agree 
nor 
Disagree 

Agree 
Strongly 
Agree 

Total 
Response 

Mean 

I frequently 
checked the 
tool to verify 
my activity 

1 6 13 27 9 56 3.66 

I thought the 
tool gave 
accurate 
feedback on my 
project activity 

7 19 13 14 2 55 2.73 

I liked the tool 3 9 21 19 4 56 3.21 

I wish more 
tools, like 
burndowns, CI 
&Test, and 
Google site 
activity were in 
the tool 

1 5 17 22 11 56 3.66 

The 
notifications 
feature help me 
know what I 
needed to do 
on the project 
(answer only if 
you had 
Notifications) 

1 8 16 11 0 36 3.03 

Table 1: Student survey response to CAssess Version 2 
 

A majority of the students admit to having visited the dashboard frequently and 

also indicate that they would like to see more tools integrated into the dashboard. 

However, it is interesting to note that a significant amount of students specify that the 

dashboard did not accurately reflect their contribution on the online tools. This can be 

attributed in part to the limitation of CAssess v2 to only consider student code activity on 

the master branch of their source code control tool (GitHub). As discussed in chapter 4, 

an alternative option of using an online GitHub statistical tool, GItInspector was also 

explored, however GitInspector too provides statistics of student contribution only in the 

recently checked out branch and not the activity across all the branches. 
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The process of initializing student information on CAssess v2 and provisioning of 

student accounts on online tools (Taiga, GitHub) is an onerous task especially if the size 

of the class increases. CAssess v2 does not have a feature to provision student accounts 

and basic student information needs to entered manually into the system so CAssess v2 

can retrieve student activity data via open APIs. This is another limitation of CAssess v2. 

In conclusion, while CAssess v2 improved personalization through notifications, 

individual progress charts, quasi real time visual reports and faster loading times, it did 

have drawbacks in accurate data reporting (GitHub) and the process of student 

information initialization. These drawbacks of CAssess v2 was addressed through the 

introduction of the Continuous Assessment Platform (CAP) 

5.3 CAssess v3 

5.3.1 Experimental Context 

While CAssess v2 addressed the limitations of v1, it had several drawbacks of its 

own. Primarily in the area of accurate data reporting and student information 

initialization. CAssess v3 addresses the issue of data accuracy observed in v2 via an R 

script that gathers statistics of code activity across all branches in the source code control 

tool (GitHub). Further, it integrates with another open source system, Nicest (Chapter 4) 

in order to remedy the issue of student account provisioning and student information 

initialization in CAssess. The instructor provisions student accounts on Nicest and this 

information is provided to CAssess v3 via a shared database. CAssess v3 utilizes this 

information to retrieve student activity data via open APIs and powers the visual reports 

on the dashboard. In addition a logging feature was implemented in CAssess v3 to track 

student activity on the dashboard. This feature helps keep a track of how long students 

visit the dashboard, tabs visited and notifications viewed. The visual reports provided in 

CAssess v3 are similar to the reports in CAssess v2 with the exception of a spline chart 
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that contrasts an individual’s progress against the learning protocol. The additional 

charts observed in CAssess v3 in comparison to v2 are as seen in Figure 11a and Figure 

11b. Figure 11a describes a student’s code contributions displaying inconsistent activity 

patterns with unusual spikes observed during certain weeks of the sprint. Figure 11b 

shows the scrum board contribution of another student who is consistently compliant 

with the expectations of the course. The dashboard was provided to 62 students in the 

face-to-face class of the CST 316 batch of 2016 and 53 students in the online version of 

the same class. Students in the online class were provided access to the dashboard in the 

second and third sprints (out of three total sprints). However, these students were not 

trained on using the dashboard and only 16 out of 53 students visited the dashboard on 

their own accord. However, in the face-to-face class, the dashboard was introduced in 

the second sprint (out of four sprints) and students were provided with classroom 

training on how to utilize the dashboard.    
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5.3.2 Results and Interpretations 

 An end of semester survey was conducted in order to understand the impact of 

CAssess v3 in improving student behavior in the project-based course. Separate surveys 

were provided to the online and face-to-face classes including how often students visited 

the dashboard, the accuracy, the need for more tools, impact of notifications and finally 

if the students liked the concept of a personalized dashboard. A detailed analysis of 

student response on the survey to each question (in the online and face-to-face class), 

coupled with results of the logging feature of CAssess v3 is described below. 

A visual representation of the survey results from the online class is as observed 

in Figure 12. Although 52 students responded to the survey, we only consider and 

analyze the responses of those 16 students who visited the dashboard on their own 

accord without any training. 
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“Frequency”: 4/ 16 (25%) students said that they did not check the dashboard 

frequently. The log of their dashboard activity concurs with their response. 8/ 16 (50%) 

students said they checked the dashboard frequently of which 1 student has only visited 

the dashboard once. The rest have visited the dashboard more than 5 times post the 

introduction of the dashboard. The remaining students were neutral. “Accuracy”: 5 out of 

16 (31%) said that the dashboard did not accurately reflect their contribution on Taiga or 

GitHub while 8 out of 16 (50%) agreed/ strongly agreed that the dashboard accurately 

reflected their contribution. 4 of these students visited the dashboard less than 5 times. 

“Like the tool”: only 1 of 16 (6%) students said that they did not like the tool while 9/ 16 

(56%) said that agree/ strongly agree that they liked the tool. “Need more tools in the 

dashboard”: Only 1 of 16 (6%) said that they do not agree with more tools being added to 

the dashboard while 10/16 (62%) said that they agree/ strongly agree with the addition 

of more tools in the dashboard. “Notifications were helpful”: 4 out of 16 (25%) said that 

the notification did not help them in understanding what they needed to do in the 

project while only 3 (19%) said that they agree/ completely agree that the notifications 

helped them understand what they needed to do in the project. The rest were neutral. 
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Almost half of the online class students responded positively regarding the 

accuracy, frequency of dashboard visit, needing more tools and liking the dashboard. 

Surprisingly, only 3 of the 16 students admitted to finding the notification feature useful. 

While overall the results of the survey of the online class shows an improvement from 

the results observed in the SER 515 class of 2015, we need to assess why the notification 

feature does not seem to have the impact that was expected in this research. 

Students in the face-to-face class of CST 316 (Spring 2016) were provided with 

training on using the dashboard and all 62 students in class responded to the end of 

semester survey. A visual representation of the responses is described in Figure 13. 

 

 “Frequency”: 17 out of 62 (27%) said that they did not check the tool frequently. 

The dashboard activity log concurs with this observation. However there are 3 students 

in this group who have visited the dashboard more than 15 times in the semester. 35/62 

(56%) said that they visited the dashboard frequently. However 6 out of these students 

have only visited dashboard less than 10 times in the entire semester. The remaining 18 

students said they neither agree nor disagree. It is interesting to note that of the 18, 6 

students have visited the tool more than 10 times in the semester. “Accuracy”: 22 out of 
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62 (35%) said that the dashboard did not accurately reflect their contribution on Taiga or 

GitHub. Of the 17, 9 students have visited the dashboard less than 10 times. Only 26 out 

of 62 (42%) agree/ strongly agree that the dashboard accurately reflected their 

contribution on both the tools- out of which 18 students have visited the dashboard more 

than 15 times in the entire semester. “Like the tool”: Only 7 of the 62 (11%) students said 

that they disliked the tool while 34/ 62 (55%) agreed/ strongly agreed that they liked the 

tool. The remaining students remained neutral. “Need more tools in the dashboard: Only 

4 students out of 62 (6%) said that they wouldn’t want more tools to be incorporated into 

the dashboard. While 43 /62 (69%) said that they agree/ strongly agree that they would 

like it if more tools were incorporated. The remaining students were neutral. 

Notifications were helpful: 20 /62 (32%) said that the notification feature did not help 

them know that they needed to do in the project while 22/ 62 (35%) agreed/ strongly 

agreed that the tool helped them to know what they needed to do in the project. The 

remaining students remained neutral. 

 A distinctly similar pattern is observed in the response to the survey questions 

between the face-to-face and online classes. A vast majority of students responded 

positively to the questions regarding frequency of dashboard visit, need for more tools 

and liking the dashboard. However, when it comes to accuracy, although a large number 

of students agree that the dashboard accurately reflects their contribution, surprisingly, a 

significant number of students remained neutral. With regard to the effect of 

notifications on improving student learning behavior, the responses were almost equally 

split. This can be attributed to several factors. It has been observed that students tend to 

misinterpret the visual reports; e.g. students are expected to develop a rhythm of 

consistent working and to that end it is expected that they make frequent updates to the 

status of their tasks on the scrum board based on regular code commits. However, 
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students who do not follow the concept of consistent working and complete tasks in 

bursts expect positive notifications since they “manage to get it all done”. Another factor 

that affects the accuracy of the reports is that students tend to not follow guidelines and 

commit code on their repository under different user ids. This impacts the data collected 

by CAssess and subsequently the visual reports displayed on the dashboard. 

 Overall, the Continuous Assessment Platform addresses the drawbacks observed 

in CAssess v2 using Nicest and an R script that fetches statistics from every branch in the 

source code control repository. However, CAP in its current form has certain limitations 

as well. The vision for the CAP is to support adaptive interfaces to any tool of a given 

category. In the current version, CAP only supports the integration of 2 types of tools 

(scrum board and source code control) while students in the project are expected to 

utilize more tools such as Slack (stand up meetings), Jenkins (CI & Test) and Qualtrics 

(peer review). Providing visual reports of activity on only two tools does not entirely 

reflect a student’s contribution on their project and is currently the biggest limitation of 

CAssess. This limitation provides scope for further improvement of the dashboard and 

this is discussed in chapter 7. 

 In conclusion, while the results of these three experiments are promising, it does 

not provide sufficient evidence to conclude that these visual reports have a significant 

impact in improving student compliance to the learning protocol. It is an onerous task to 

get students to believe the data captured by CAP and is even more challenging to get 

students to use another website to view their progress in addition to the online tools they 

already utilize. This research work takes on the challenge of getting students to use a 

dashboard that prompts students to change their deadline driven behavior in exchange 

for a habit of consistent working. Although we try, we do not receive the expected 
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response to the dashboard and thus more challenging questions need to be tackled in 

order to make the dashboard of visual reports more effective.  

 The next chapter discusses an alternative form of performing continuous 

assessment; using learning analytics. Unsupervised machine learning algorithms are 

used to identify distinct patterns of student behavior so instructors can understand 

typical characteristics displayed by students in the context of the course and make 

targeted and timely interventions. 
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CHAPTER 6 

LEARNING ANALYTICS USING MACHINE LEARNING ALGORITHMS 

 This research is devoted to identifying novel and innovative means of providing 

continuous assessment to students in a project-based course. To this end, we explore the 

use of learning analytics and machine learning algorithms to identify distinct patterns of 

student behavior to help instructors perform targeted and timely interventions. As 

discussed in chapter 4, we use the K-means clustering algorithm to identify patterns of 

student activity in two different datasets; dataset of sprint grades, dataset of daily 

activity on online tools. 

6.1 CLUSTERING GRADED SCORES DATA 

6.1.1 Experimental Context 

 In this research, we use the Software Enterprise as a test bed to conduct 

experiments using learning analytics and machine learning algorithms. We hypothesize 

that an unsupervised machine learning algorithm (K-means clustering) can be used to 

identify unique patterns of student behavior in a project-based course. The first set of 

experiments to test this hypothesis was conducted on a simple dataset obtained from the 

sprint grading sheets for the CST 316 course of 2014 and 2015. Students in the Software 

Construction course use Scrum to conduct their projects. Students are graded after every 

sprint based on their process activity (scrum board updates, stand-up meeting 

participation), code activity (frequency and significance of commits), module activity 

(integrating software engineering modules into the project) and delivery of working 

software. A sample sprint grading sheet assigning scores for Process Activity (PA), code 

activity (CA) and module activity (M), agile project management (APM) and delivery of 

working software (DWS) is shown in Figure 14. Students are graded on a scale of 5 based 
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on contribution and consistency of their contribution during the sprint and the 

instructor or the grader assigns these grades. 

 The Code Activity, Process Activity and Module Activity scores (see Chapter 4) 

are extracted separately and subjected to the K-means clustering algorithm. We 

extracted each activity separately because clustering on the overall scores may not reveal 

smaller facets of student behavior. For example, we observe students who write excellent 

code but do not partake equally well in the process activity. The elbow method discussed 

in chapter 4 is utilized to evaluate the estimated value of K and the experiment is 

repeated several times using multiple values of K. This experiment is conducted 

separately on the sprint grades dataset for the 2014 and 2015 classes. 

 

 

6.1.2 Results and Interpretations 

 This section describes the results of applying K-means clustering algorithm to the 

dataset of sprint grades assigned to students in the 2014 and 2015 batch of the Software 

Construction course. The result of clustering each dimension of activity (code, process 

and module) can be summarized as observed in Table 2.  
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Code 2014 (43) 2015 (41) Process 2014 2015 Module 2014 2015 

Excellent 19 17 Excellent 8 13 Excellent 20 9 

Good 6 4 Good 16 12 Good 7 N/A 

Incline 3 4 Incline N/A 6 Incline N/A 5 

Decline 8 6 Decline 9 5 Decline 5 9 

Poor 7 4 Inconsistent 8 5 Inconsistent N/A 14 

Exception N/A 6 Poor 2 N/A Exception 11 3 

Table 2: Cluster Information for the 2014 and 2015 graded dataset 

 

Table 2 shows the number of data points per each cluster per each dimension. 

Cluster labels correspond to the instructor’s assessment of individual student activity in 

each dimension over the course of all sprints in that semester. Excellent means the 

student demonstrated consistently high frequency and significance of the activity over all 

sprints. Good means the students demonstrated consistently above average evaluation 

but not high enough to be in the Excellent cluster. Incline means the student scored 

poorly in the initial sprint but then demonstrated increased scores thereafter; whereas 

Decline suggests the opposite, scoring well in the first sprint but then performing poorly 

by the end of the project. Inconsistent means that the student demonstrated variations 

between high and low scores in consecutive sprints. Poor is for students that 

demonstrated consistently low scores. Exception implies a form of outlier, usually a 

single sprint that shows a dramatically different behavior than the others. We did not 

discern any causality to the outliers, specifically looking for when in the semester the 

outliers occur. 

 The number of unique clusters in each dimension varied between 5 and 6 

depending on year, though differences exist in the set of clusters. The size of each cluster 

is reasonably consistent across dimensions and years when reading them in rank order 

(top to bottom). While we have not accounted for bias in the preliminary analysis, we 

note the same instructor was responsible for assigning scores in both classes, and the 

course and project requirements stayed essentially the same, as did the class size. 
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 While the differences between years in each dimension are interesting 

(particularly for process and module), we find it more interesting that there is a 

similarity between the identified clusters that relates to a pattern of behavior. This is 

especially clear in the code dimension. If the set clusters remain stable over time, it 

represents an expected set of student behaviors for which interventions may be designed. 

The most exciting result however, is to consider the relationship between dimensions. 

Intuitively one might expect that the rows in Table 2 align; that is, a student with 

Excellent code activity also has Excellent process and module activity. This is often but 

not always the case. For example, closer examination of the 2015 dataset shows that 

students in Decline in the code dimension are counter-intuitively usually in the Excellent 

or Incline clusters of process activity though they are in Decline or Inconsistent for 

modules. 

 The distinct clusters created and labeled above indicate to the success of the 

generic version of the K-means clustering algorithm in identifying distinct patterns of 

behavior in the sprint grades dataset. However, this dataset comprises of an indirect 

measure (a score on a scale of 5) assigned to a student by the instructor. Since the aim of 

the research is to encourage students to develop a rhythm of consistent working, 

analyzing sprint grades may not accurately explain student contribution patterns. This is 

primarily because our research is focused on changing student behavioral patterns and 

these indirect measures are not entirely reflective of a student’s contribution. Further, 

this research is devoted to providing frequent and timely feedback to motivate a rhythm 

of constant changes to the learning process. The nature of sprint grades make it 

infrequent and delayed and there exists a need to explore another level of granularity, a 

direct measure of student contribution; the daily activity dataset. 
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 In conclusion, applying K-means clustering on the dataset of student sprint grade 

scores has been insightful in establishing the ability of the algorithm to identify distinct 

patterns of student activity. However, for the purpose of this research, sprint grades are 

an indirect measure and do not entirely reflect a student’s contribution on the project. 

This prompts the need for apply K-means clustering algorithm on a dataset that 

describes the daily contribution of students on online agile tools.  

6.2 CLUSTERING ON DAILY ACTIVITY DATASET 

6.2.1 Experimental Context 

 The K-means clustering algorithm applied to the sprint grades dataset reveals 

distinct patterns of student behavior observed in the context of the course. However, 

these results are based on a dataset containing scores that were assigned by a grader or 

the instructor. These indirect measure of evaluation do not necessarily reflect the extent 

of a student’s contribution and we wish to drive the feedback period to zero. Thus the 

second phase of our experiments based on the student’s activity on online agile tools 

(scrum board and source code control) on a daily basis. These set of experiments are 

conducted on a dataset obtained from student activity in the online (53 students) and 

face-to-face version (62 students) of CST 316 course of 2016. Data is collected daily 

based on the number of tasks owned and its corresponding status on the scrumboard 

(Taiga), and the number of significant code commits made to the source code control 

tool (GitHub). Data collection is performed through CAssess by making GET calls to the 

open APIs exposed by each of these tools. The retrieved data is transformed and stored 

in a local database. An extract of the daily activity dataset is as shown in Figure 15.  
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The base dataset used for the experiment is the database of daily student activity 

on Taiga and GitHub. The base dataset is then converted to a binary format where the 

ones represent student activity for a particular day on a particular tool and the zeroes 

represent no activity for the day. Since the purpose of the experiment is to analyze 

compliance patterns among students and enforce the habit of consistent working, the 

binary representation of the data would be beneficial in understanding how frequently a 

student contributed on the tool. Summation of all the ones in every row (for each week) 

indicates the number of days in the week that the student was active on the said tool. The 

learning protocol defined for the course expects students to contribute significant code 

on their source code control tool (GitHub), at least twice every week and a corresponding 

number of task updates is expected on their scrumboard. Using the weekly summation 

dataset of each sprint for GitHub and Taiga as source, the K-means clustering algorithm 

is applied to identify unique patterns of student activity. Each cluster is then assigned a 

label based on the distinctive behavior observed in the cluster. The experiment is 

repeated for all the sprints to identify progressive behavior of each student for the 

entirety of the course. Further, the experiment is repeated on the combined dataset of 
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GitHub and Taiga activity to identify patterns of behavior in each sprint across the two 

tools. On completion, we analyze the statistics obtained from this experiment including 

the number of students in each cluster for each of the sprints, the migratory patterns and 

finally discuss if each student can be assigned a distinct label based on their compliance 

behavior on both the tools during the entire semester.  

6.2.2 Results and Interpretations 

The K-means clustering algorithm is applied on the daily student activity datasets 

of the online and face-to-face class of CST 316 course during Spring 2016. The same 

number of distinct clusters has been observed in both versions of the class. Each of these 

clusters are labeled based on the behavior observed in each cluster. The labels assigned 

to each cluster and their description is as describe below.  

i. Poor: Students in this cluster display very low signs of compliance by getting on 

each tool not more than 2-3 times during the course of the entire sprint. 

ii. FinalWeek: Students in these cluster displayed activity on both the tools- GitHub 

and Taiga only during the final week of the sprint. 

iii. ScrumCentric: Students in this cluster displayed significantly more contribution 

on Taiga in comparison to their activity on GitHub. 

iv. CodeCentric: Students in this cluster displayed more activity on GitHub 

compared to their activity on Taiga. 

v. Inconsistent: Students in this cluster displayed wavering activity on both the 

tools during the course of the sprint. These are students who contribute on both the tools 

more than a student who is classified as poor does but less than the class expectation. 

vi. Compliant: Students in this cluster displayed consistent activity over the entire 

period of the sprint period on both the tools. 
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 The numeric distribution of students in each cluster for the face-to-face and 

online class is described in Figure 16 and Figure 17. 

 

 

Comparing the student distribution of students in each cluster for both versions 

of the course offers interesting insights. As observed, there exists similar pattern of 

transition in the last two sprints for the Compliant, Inconsistent and CodeCentric 

clusters. In the face-to-face version of the course, there is marginal difference in the 

number of students in the Poor and ScrumCentric clusters. This however is not the case 
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in the case with the online class, which shows a significant drop in the numbers between 

the last two sprints. The only significant difference in student transition patterns are 

observed only in the FinalWeek cluster which shows an increase in number in the online 

version while the number of student in the cluster drops significantly in the face-to-face 

version of the course. 

Analysis of the results of the clustering algorithm reveals a stable number (6) of 

clusters in both versions of the class (online and face-to-face). While analyzing the 

number of students in each cluster for both versions of the class provides insights into 

how the population of clusters vary between the sprints, the focus however must be on 

individual student patterns. In this research we are focused on identifying those group of 

students who display a change in behavior during the period of the course. A change in 

cluster indicates a change in behavior and it is important to understand the factors that 

impacted this change. These factors can include grades, class break, personal or team 

issues. Analyzing these factors that prompt a change in student behavior for both the 

online and face-to-face medium is crucial in providing personalized, formative feedback. 

This process of analyzing change in behavior by a student who migrates between clusters 

is referred to as “migration analysis” and is visually represented as shown below. 

We first discuss the migration analysis in the face-to-face class that describes how 

students in each cluster migrate over the course of the semester. Table 3 provides a 

tabular version of students in each cluster. 

Cluster Name Sprint1 Sprint2 Sprint3 Sprint4 

Compliant 11 22 22 26 

Inconsistent 14 22 15 19 

CodeCentric 2 6 5 2 

ScrumCentric 8 4 5 4 

Poor 24 11 13 11 

FinalWeek 3 6 2 0 
   Table 3: Student Distribution in each cluster (face-to-face) 
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Poor: Of the 24 students who were classified as being poor in compliance for 

sprint 1, only 2 of them continued the same behavior in sprint 4. 10 students were 

classified as being compliant in sprint 4. However only 4 of those students showed a 

steady improvement in compliance. The remaining 6 displayed traits of consistency only 

in the final sprint. Figure 18 describes the migration patterns of all students who were 

classified as being poor in sprint 1. The orange arrows indicate those students who 

display a significant change in their migration patterns. (e.g. students who move all from 

the poor cluster all the way to compliant post the first sprint)In this case students 

highlighted in orange display traits of progress by migrating from the poor cluster in 

sprint 1 to the compliant and inconsistent clusters in subsequent sprints and continue 

that pattern of compliance.  

   

FinalWeek: All the 3 students who were classified into this cluster for 

contributing on the scrum board and source code control tool only in the last week of the 

sprint eventually wound up in the poor cluster. Figure 19 displays the migratory patterns 

of all students in this cluster.  
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ScrumCentric: Of the 8 students in sprint 1 who contributed more on their scrum 

board than on their source code control tool, only 2 continued that behavior in sprint 4. 

However, students who start their sprint in this cluster do not indicate signs of 

consistency across the sprints. Most students who were classified into the compliant 

cluster at some stage of the course, could not manage to continue that behavior in 

subsequent sprints. Figure 20 describes the transition pattern of students who make up 

for low code contribution by making excessive contribution on their scrum boards. The 

arrows marked in orange highlight those students who make drastic changes in their 

compliance patterns during the course of the semester. In this particular case students 

who start out as being classified as ScrumCentric progress to the Compliant cluster. It is 

important to observe that students in this cluster do not display consistent progress 

through sprints. 
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CodeCentric: An assumption of students in this cluster was that students who 

contribute more code in comparison to their scrum board activity, generally tend to 

continue that behavior across sprints. However, in this case all students who displayed 

behavior of contributing more code than their scrum board activity ended up in the poor 

cluster at the end of the sprint (Figure 21). 
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Inconsistent: Of the 14 students who were classified as being inconsistent with 

their compliance to the learning protocol, a majority of the students continued that 

behavior or displayed signs of decline in compliance. However, of all the students who 

improve their performance and are grouped as being compliant, most of them have 

continued the behavior of compliance into subsequent sprints except for one student. 

(Figure 22). The orange arrows indicate those students who display significantly varying 

patterns of behavior between sprints. In this particular case a student who continues in 

the Inconsistent cluster till sprint 3 drops to the Poor cluster in sprint 4. Likewise the 

black arrows indicate those group of students who migrate from the Inconsistent cluster 

to the Poor cluster and back to Inconsistent. 

  

Compliant: A vast majority of the students who start out as being compliant, 

continue that behavior across the subsequent sprints. It is interesting to note that 

students who show signs of decline in behavior, eventually end up being compliant in the 

final sprint except for one student. (Figure 23)  
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 The section below describes the migration analysis of students in each cluster of 

the online class. The tabular representation of students in each cluster is described in 

Table 4. 

          Cluster Name      Sprint 2       Sprint 3 

Compliant 10 13 

Inconsistent 13 20 

CodeCentric 3 1 

ScrumCentric 12 6 

Poor 13 6 

FinalWeek 3 8 
         Table 4: Student Distribution in each cluster (Online) 

 

Poor: Of the 13 students who were classified into the poor cluster in sprint 2, only 

4 of these students continued displaying poor behavior in sprint 3. The others however 

displayed only marginal progress- 3 students moved into the Inconsistent and 

FinalWeek clusters and 1 each to the remaining 3 clusters. Figure 24 shows a pie chart 

describing the transition of student population in the poor cluster from sprint 2 to 

sprint3. 
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FinalWeek: Students in this cluster displayed any activity on GitHub and Taiga 

only in the last 4 days of the sprint. Of the 3 students who were classified into this 

cluster, one continued this behavior into sprint 3, while the other 2 were classified into 

the Poor and Inconsistent clusters.  

Inconsistent: 13 of the 54 students in the online class were classified into this 

cluster in sprint 2. Of which, a majority of them, 6 continued similar behavior in sprint 3 

as well. 4 students in this cluster displayed an improvement and moved into the 

consistent cluster, while the remaining 3 displayed behavior of last minute activity by 

being classified into the FinalWeek cluster (Figure 25).  

 



66 
 

ScrumCentric: Out of the 12 students who were classified as displaying more 

Taiga activity in sprint 2, 5 students continued the same in sprint 3.  2 students from this 

cluster moved into the FinalWeek cluster and 3 students were classified into the 

Inconsistent cluster. It is encouraging to note that 2 students from this cluster eventually 

moved into the compliant cluster in sprint 3.         

CodeCentric: Similar to the online class, only a few students were observed to be 

displaying significant GitHub activity in comparison to their Taiga activity. All the 3 

students from this cluster wound up into the Inconsistent cluster in sprint 3.   

Compliant: Of the 10 students who displayed consistent activity on both the tools 

in sprint 2, a majority, 6 of them continued the same into sprint 3. However all the 

remaining 4 students were classified as being inconsistent in Week2.5 (Figure 26) 

 

 An interesting pattern observed in the face-to-face class is the factor of 

consistency. A sizeable number of students who start out as being classified compliant 

continue that behavior into subsequent sprints while students in the other cluster do not 

show signs of significant improvement with the exception of the “poor” cluster. This can 

be attributed to the fact that several students admit to not being able to take off as 

expected in sprint 1 and end up being classified as being poor with regard to compliance. 
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The number of students in each cluster remains fairly constant post the second sprint. 

This however is in contrast to the behavior observed in the online class. Part of the 

reason can be attributed to the online class having shorter (2 week) sprints. Data of 

student activity on the online tools was collected starting sprint 2. Based on the results of 

the migration analysis, we can observe that there are a few patterns that stand out. 

Particularly, the students whose behavior remains static (poor, consistent or inconsistent 

throughout all the sprints), students who display an incline (move from the 

poor/inconsistent clusters to the consistent cluster), decline (students who start out 

being consistent but eventually display a dip in performance), students whose activity on 

one tool outweighs their contribution on another (CodeCentric or ScrumCentric through 

all the sprints). These patterns incidentally are similar to the patterns observed in the 

analysis of the graded scores dataset from the 2014 and 2015 classes. This finding 

validates the patterns observed in the initial analysis and lends weight to the 

presumption that there are distinct, repeatable patterns of student behavior observed in 

a class over multiple years. Providing instructors with the knowledge of these patterns of 

student behavior can assist them in tailoring the course to suit the needs of these clusters 

of students and also paying closer attention to students who may be clustered as being 

“poor” or “inconsistent” in regard to their compliance to the learning protocol. 

 The experiment of applying the K-means clustering algorithm on the dataset of 

daily student activity is overall successful with stable clusters observed in both versions 

of the course. However, this daily activity dataset comprises only of student contribution 

data on the scrum board and source code control tool and does not include the student’s 

activity on other tools (scrum meetings, continuous integration etc.). Clustering student 

activity datasets that includes all their contribution activity can help identify interesting 

patterns. (e.g. students who only contribute on the “easy tools”- scrum meetings, scrum 
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board and not on their source code, continuous integration tools). This limitation implies 

that the experiments conducted in this research do not entirely account for all 

contributions made by a student in the course. Irrespective of this limitation, this thesis 

validates the hypothesis that student activity patterns can be observed using 

unsupervised machine learning algorithms and future instances of the experiment can 

include student contribution on more tools. 

 In conclusion, subjecting the dataset of daily student activity on online tools to an 

unsupervised machine learning algorithm (K-means clustering) generates stable and 

consistent clusters in two versions (face-to-face, online) of the CST 316 course. 

“Migration Analysis” of these clusters provides insight into student behavior transition 

through the course of the semester. Understanding these migration patterns are crucial 

to identifying factors that influence these migration patterns. Instructors can utilize this 

information to make targeted and timely interventions for those group of students who 

may be in most need of it.  

 The next chapter reviews the problem statement, experiments conducted and 

details the conclusions of this thesis work. Using these conclusions it also sets context for 

future scope of this research project. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

 This research is based on the premise that a project-based course supplemented 

by a system of frequent, formative feedback provides students in the software 

engineering discipline with a well-rounded learning experience. Continuous assessment 

is an excellent medium for delivering frequent, formative feedback and in this research 

we evaluate novel methods of performing continuous assessment in an agile learning, 

project-based course. An objective of this research then is to provide continuous 

assessment to students in order to help them develop a rhythm of consistent working in 

exchange for the inherent, deadline driven approach. To that end, the first part of this 

research work explores the use of visual reports and notifications as a means of 

providing continuous assessment and to measure the impact of these visual reports on 

student’s compliance to the learning protocol. The second half of this research focuses on 

the use of learning analytics and machine learning algorithms to identify patterns of 

student activity in order to help instructors make targeted and timely interventions. All 

experiments in this research are conducted in an agile learning, project-based platform: 

The Software Enterprise.  

 Students in two undergraduate and one graduate software engineering courses in 

the Software Enterprise are provided with visual reports and notifications of their project 

activity via a dashboard. Students in the CST 316 course of 2015 were provided with 

visual reports in their final sprint while students in the graduate class of 2015 and the 

junior class of 2016 were provided these reports into their second sprint. Surveys were 

conducted at the end of each course to understand the impact of these visual reports in 

helping students comply with the expectations of the class. As detailed in chapter 5, more 
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than half the students in all the classes surveyed agree that they “liked the dashboard” 

and would like to see more tools incorporated into the dashboard. However, the goal of 

this thesis is to understand the impact of these visual reports on student’s compliance to 

the learning protocol (RQ1, Chapter 3). Although the results of this research work are 

promising, the results obtained from three different experiments do not provide 

sufficient evidence to conclude that the visual reports have a significant impact on 

improving compliance to the learning protocol. The reasons for this can be attributed to 

several factors including students not trusting the data displayed on the dashboard, 

misinterpretation of the visual reports and inaccuracies observed in visual reports due to 

incorrect ids used by students while contributing on online tools. An enhanced version of 

the dashboard that accounts for student’s contribution on multiple tools and addresses 

these issues can provide an holistic view of student’s activity. The scope for future work 

in this research area is detailed in the next section. 

 In this research, we gather data of student sprint grades from two Software 

Enterprise courses and subject this dataset to an unsupervised machine learning 

algorithm (K-means clustering) in order to identify distinct patterns of student activity. 

The results discussed in chapter 5 describe how unique patterns are observed in student 

sprint grade scores and how each of these patterns are appropriately labeled based on 

the observed behavior in each cluster. Following the success of this experiment on 

student sprint grades, we gather a dataset of student activity on online agile tools daily 

and subject the same to the K-means clustering algorithm. Yet again, we successfully 

observe distinct patterns of student activity in both the online and face-to-face versions 

of the class. Each of these patterns are labeled to help instructors understand typical 

student characteristics displayed in class. These observations help us successfully 

conclude that the generic version of the K-means clustering algorithm can be utilized to 
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identify patterns of student behavior in a project-based course. These findings validate 

the hypothesis established in research question 2 (RQ2, Chapter 3). The conclusions of 

this research highlights the significance of learning analytics and machine learning 

algorithms in improving the student learning experience. This interdisciplinary research 

work is currently in its infancy and there exists tremendous scope for future work as 

detailed in the next section.  

 This chapter describes the conclusions that can be drawn from the results of the 

experiments conducted in this thesis. Although the findings of this research work are 

significant, there exists vast scope for future work in the same area. The next chapter 

explores the various limitations of this research work and describes alternatives for 

future improvements. It discusses the future scope in the area of continuous assessment 

using visual reports and learning analytics based on the results observed in this thesis.  

7.2 FUTURE WORK 

 This section explores the scope of future work in the area of using visual reports 

as a form of providing continuous assessment and learning analytics to analyze and 

improve student behavior. The continuous assessment platform (CAP) serves as the 

latest version of the tool that provides visual reports and notifications to students in a 

project-based course via a dashboard. Currently, CAP supports the integration of only 

two online tools (scrum board, source code control), Students in a project-based course 

engage in a wide variety of activities including stand up meetings, continuous integration 

and so. The vision for the CAP is to support adaptive interfaces to any tool of a given 

category. The future scope for this research project targets integrations with tools that 

support Agile “daily standup” meetings, peer reviews, sprint retrospectives, and issue 

(defect) trackers. These tools can be integrated in future versions of CAssess to provide 

students an all-round view of their contribution on the project. Adding all these tools as 
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axes on the radial chart (Figure 6) can help students compare their activity against their 

peers on all the agile tools used in the project providing for an enhanced feedback 

mechanism. CAP currently employs a notification feature that is updated every week 

based on student’s contribution against the learning protocol. In its current form, 

students need to log on the dashboard frequently in order to view these notifications. 

However we acknowledge that students need to be nudged into visiting the dashboard 

often and thus propose a system of email /text notifications. Although further research is 

required to understand effectiveness and impact of these email/ text notifications, this 

feature allows students to receive quasi real time feedback on their progress with regard 

to the learning protocol. 

 Learning analytics is an emerging area in the field of educational research with 

tremendous scope and potential to help instructors better understand student behavior 

and improve their learning experience. In this thesis, we use an unsupervised machine 

learning algorithm to identify patterns of student activity behavior based on their sprint 

grades and daily contribution on online agile tools. Although the findings of this research 

work are insightful there exists great room for future work. The logical next step is to use 

supervised machine learning algorithms that “learn” from these labelled clusters and 

utilize the same in order to make predictions of students in future instances of the 

course. 

The ability to predict future behavior of students is beneficial to the instructor as 

this helps them perform continuous assessment by providing timely interventions to 

steer students in the right direction. The big picture envisioned in the long term plan of 

this research is to enable instructors to understand the size and nature of distinct 

clusters of student behavior displayed in any class. This understanding coupled with 

tailored course work provides students with a hands on, well-rounded, comprehensive 



73 
 

learning experience. Apart from making future predictions, the results of this thesis can 

also be used to understand patterns of team activity. Analyzing the transitional behavior 

of all members of a team during the period of the course provides insights into team 

dynamism. Understanding these dynamics helps instructors with better team formation 

skills which is a vital aspect of any project-based course. As mentioned earlier, this 

research project is currently in its early phase with remarkable scope for future work so 

as to make a significant impact in the field of educational research. 
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