
A Study of Text Mining Framework

for Automated Classification of Software Requirements

in Enterprise Systems

by

Japa Swadia

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2016 by the

Graduate Supervisory Committee:

Arbi Ghazarian, Chair

Ashraf Gaffar

Srividya Bansal

ARIZONA STATE UNIVERSITY

May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/79584423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ABSTRACT

Text Classification is a rapidly evolving area of Data Mining while Requirements

Engineering is a less-explored area of Software Engineering which deals the process of

defining, documenting and maintaining a software system's requirements. When

researchers decided to blend these two streams in, there was research on automating the

process of classification of software requirements statements into categories easily

comprehensible for developers for faster development and delivery, which till now was

mostly done manually by software engineers - indeed a tedious job. However, most of the

research was focused on classification of Non-functional requirements pertaining to

intangible features such as security, reliability, quality and so on. It is indeed a

challenging task to automatically classify functional requirements, those pertaining to

how the system will function, especially those belonging to different and large enterprise

systems. This requires exploitation of text mining capabilities. This thesis aims to

investigate results of text classification applied on functional software requirements by

creating a framework in R and making use of algorithms and techniques like k-nearest

neighbors, support vector machine, and many others like boosting, bagging, maximum

entropy, neural networks and random forests in an ensemble approach. The study was

conducted by collecting and visualizing relevant enterprise data manually classified

previously and subsequently used for training the model. Key components for training

included frequency of terms in the documents and the level of cleanliness of data. The

model was applied on test data and validated for analysis, by studying and comparing

parameters like precision, recall and accuracy.

 ii

DEDICATION

There are a number of people whom I wish to attribute my accomplishments till

date. I would like to dedicate my work to my parents, Charvi and Nimish Swadia, and my

brother, Dhiman for their unconditional love, patience and support throughout my

graduate study; and most importantly for having faith in my capabilities. I would also like

to thank my dear friend, Akshay, for being a constant source of encouragement and for

always being at my side, through thick and thin. And finally, a big shout of thank-you to

all my close friends at Arizona State University, with whom there are the good times and

without whom this grueling endeavor of MS in Software Engineering would not have

been so memorable to cherish.

 iii

ACKNOWLEDGMENTS

I would sincerely like to thank my thesis advisor, Dr. Arbi Ghazarian for not only

introducing and steering me towards my area of interest but also for the continual

guidance throughout the period of this Thesis. I also acknowledge the prior research

made by him which subsequently helped me lay the groundwork for this thesis.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION 1

Problem Statement ... 5

2 BACKGROUND LITERATURE .. 6

Groundwork and Requirements Classification Taxonomy 6

Automated Classification and their various approaches 9

Performance Measures ... 11

Works focused on Requirements Management 12

A Natural Language Processing Approach ... 14

An Extensive Approach to NFR Classification 15

An Ontology Model ... 17

A Semi-Supervised Approach ... 19

Another Variant of NLP Approach ... 21

Other Related Works .. 24

3 METHODOLOGY 27

Data ... 27

Categories ... 28

Algorithms and Classifiers ... 20

Language and Development environment... 30

 v

CHAPTER Page

Packages and Tools .. 32

Data Preparation and Preprocessing .. 33

Training and Testing .. 35

4 DATA ANALYSIS AND RESULTS ... 38

Analysis of kNN classifier ... 38

Analysis of Ensemble classifier ... 41

Comparison .. 46

5 DISCUSSION 47

Summary .. 47

Challenges .. 47

Conclusion, Recommendations and Future Scope 49

REFERENCES...... .. 51

 vi

LIST OF TABLES

Table Page

1. Performance Measures of KNN Classifier Methods ... 38

2. Frequencies of Requirements Statements ... 38

3. Ensemble Summary ... 41

4. Ensemble Algorithm Performance Summary ... 41

3. Label Summary ... 44

 vii

LIST OF FIGURES

Figure Page

1. Classification Process Methodology Block-Diagram 26

2. Number and Percentage Distribution of Requirements over Categories 34

3. Loading and Preprocessing Data in Ensemble Approach............................. 35

4. Training Data in Ensemble Approach ... 35

5. Loading and Preprocessing Data in KNN Approach 36

6. Training Data in KNN Approach .. 36

7. Analysis of KNN Classifier ... 39

8. Analysis of Ensemble Approach ... 42

9. Cross Validation Results .. 43

10. Cross Validation Results .. 43

11. Cross Validation Results .. 44

 1

CHAPTER 1

INTRODUCTION

"The hardest single part of building a software system is deciding precisely what

to build. No other part of the conceptual work is as difficult as establishing the detailed

technical requirements . . . No other part of the work so cripples the resulting system if

done wrong. No other part is as difficult to rectify later" [1].

In simple terms, ‘Requirements’ of a software system basically ‘tell’ the builders

of that software what is to be incorporated in the software, as per the needs and

expectations of the stakeholders.

Requirements engineering is an evolving branch of Software Engineering which

deals with the process of defining, documenting and maintaining a software system’s

requirements. It emphasizes the use of systematic and repeatable techniques that ensure

the completeness, consistency, and relevance of the system requirements [3].

Specifically, requirements engineering encompasses feasibility study, requirements

elicitation, analysis, specification, verification, and management. It also demands

knowledge of the specific domain the system belongs to.

There are two main types of requirements. Functional requirements define the

capabilities that a product must provide to its users, such as feeding name and email

address as input, getting a password as output, updating/inserting in the database, etc.

while Non-functional requirements describe quality attributes, design and

implementation constraints and external interfaces that the product must have, such as

 2

security, reliability, stability, etc. The current study focuses on Functional Requirements

in particular.

Requirements constitute the primary steps in building any software system, and as

entailed in this comprehensive study, are realized as one of the most pertinent aspects of

software development. Generally, a detailed Software Requirements Specification

(SRS) document is published, which acts as a bible for developing, maintaining and

rebuilding a software product. It is a complex process leading up to a fundamental

communication problem amongst many others, only because it involves three parties –

the user of the system, the developer, and the documenter of system requirements.

Efficient Requirements Management makes way for increased productivity,

reduced cost of software product and improves workability of a system, in a way that

provides for less amount of rework, that is, work done again to correct the previously

wronged work. Industry statistics point that 50% of software project failures are caused

due to lack of proper Requirements Engineering practices [1]. It is a known fact that

Natural language requirements specifications are the most commonly used form,

accounting for up to 90% of all specifications [1]. However, natural language

requirements specifications are prone to a number of errors and flaws, in particular due

to the ambiguity inherent in natural language. Moreover, there is a dearth of available

methods and tools to aid software engineers in managing requirements. As the

requirements are written in informal natural language, they cannot be easily analyzed for

defects, such as inconsistency or ambiguity. [10]

 3

Although a relatively new domain, Requirements Engineering has gained a lot of

momentum in the past decade, and has become an indispensable process for developing

a piece of software. Moreover, it is a continuous process during the life-cycle of a

software, and ultimately provides an insight into the technicalities of the same.

In particular, the area Requirements Classification holds prime importance, and is

gaining popularity amongst researchers and data scientists who are aiming to make this

tedious process simpler. Requirements Classification essentially involves documenting

or specifying the needs and constraints of user in a clear and precise manner.

Requirements statements need to be classified in order to provide clarity to developers

who are working to build the software. Although the classification process itself aims to

make the job easier for developers, in reality that’s not the case. High amount of manual

labor and time are involved in sifting through requirements documents and classifying

requirements statements into categories comprehensible to developers for building

pieces of the system. Moreover, there is always room for doubt and variance in

judgement as a result of many persons involved in this cumbersome task, who might

think differently while putting each statement into a particular category. Previously,

requirements engineering required a lot of manual efforts since it involved changing

user needs, specifications and documentation of minute system details. As extensive

research is taking place in this area, more advanced tools and techniques are being

developed in order to make the entire process of classifying requirements much simpler

and less-intensive. Since the generation is at a point in the technology era where

everything is beginning to get automatic, then why leave behind requirements

classification?

 4

Nowadays there are several commercial tools available for efficient requirements

management, which automate many tasks such as document scanning, classification,

storage, configuration, etc., but however these are not even remotely capable of

processing free-form textual requirements documents which are likely to vary from one

stakeholder to another.

Although not too widespread till date, the research work related to requirements

classification is gaining momentum. Especially, with rapid advances in scientific areas

like Machine Learning, Data Mining and Natural Language Processing the future of our

goal looks promising. This study explores the usage of above techniques in all the

research that has taken place till date. However, the goal of this study aims at

incorporating Data and Text mining techniques in particular. Other techniques

belonging to Machine Learning, NLP, and so on without a doubt play an integral role in

automating the entire classification process. The study also primarily focuses on

Enterprise Systems belonging to different industries out there for applying these

techniques. Enterprise Systems basically include software belonging to different sectors

of industry that support large-scale business processes and organizational workflows;

for instance- enterprise systems pertaining to healthcare, banking, consulting, education,

so on and so forth. As mentioned earlier, the study is concentrated upon Functional

Requirements only. This study selects the science Text Mining to be the predominant

technology associated with developing the framework. The availability of different

types of documents during the software life-cycle fosters this idea of applying Text

Mining (TM) techniques in order to perform an intelligent analysis of the written text

with the goal of automating or assisting classification. Text mining involves a set of

 5

techniques to organize, classify and extract relevant information from text collections.

These practices are part of a much general process of Knowledge Discovery in

Databases (KDD), which is the semi-automated process of extracting relevant

knowledge from databases (that may be textual), aiming to discover valid knowledge,

previously unknown and potentially useful [22].

Chapter 2 presents the background and related work in the area of requirements

classification using text mining methods; the research done thus far in automating the

process of classification of software requirements. It mainly discusses the different

techniques, tools and algorithms employed to classify textual data. I specifically discuss

the inner working of the framework and the experiments conducted, along with the

algorithm in detail. I would like to point out here that most of the research till now is

focused on non-functional requirements, potentially because NFRs deal with intangible

features of a software system like quality, security, etc. It becomes easier and faster to

mine standard terms associated with these attributes, consequently producing accurate

results. On the other hand, it is a bit more difficult to process and classify functional

requirements since the manner in which they are written may differ from system to

another. This chapter is ultimately concluded with the Problem Statement for this thesis.

Problem Statement

 Using data analysis techniques and text classification algorithms to classify

functional software requirements of enterprise applications into their respective

categories, in order to make the entire process smooth and less laborious.

 6

CHAPTER 2

BACKGROUND LITERATURE

 The study ideally requires to start with a groundwork for the classification model

to be based upon. This chapter discusses in depth the research conducted thus far in this

area.

Groundwork and Requirements Classification Taxonomy

A classification taxonomy was proposed by Ghazarian [2] in his work. The paper

studied characterization of different types of requirements into specific categories for

Enterprise Systems. It lead to a finding that on an average, 85% of the functionalities in

such Enterprise-based systems in a particular domain can be specified using a set of 5

types of requirements categories, although a wider pool of 9 classes were established for

depicting requirements of Enterprise Systems. From this, Ghazarian [2] uncovered a

taxonomical law, which stated that the emergence of classes in a requirements

taxonomical scheme for a particular domain, independent of the order in which

specifications of requirements in that domain are analyzed, includes a rapid initial

growth phase, where majority of requirements are classified, followed by a rapid

slowdown phase with periods of no growth, which is the stabilization phase. The

research also lead to the finding that the functional requirements space in a particular

domain of business can be effectively characterized by its requirement types and

frequency distributions. This extensive work can make the entire process of

classification very efficient, in a way that it becomes less time-intensive and labor-

intensive. The research addressed some relevant questions appearing in the classification

process, such as which are these types of classes that are generic for different enterprise

 7

domains? What are the frequency distributions of the same? That is which types occur

the most. Can we infer from the frequency distributions the industry trends in

requirements? Are there any phenomena related to the functional requirements space

that are consistently observed in systems belonging to the same domain or across

multiple domains? The experiment was furthered taking into account some 15 systems

belonging to different domains and studying their requirements statements after

decomposing them into atomic ones. A new approach was followed for classification,

and it included data extraction and preparation – where in functional requirements were

studied and analyzed, and later decomposed into atomic requirements statements, ready

to be classified. Second step involved taxonomy development and classification, where

in all statements were studied and clustered into different standard categories for

establishing a new taxonomy. The taxonomy that emerged from this study resulted into

following classes of functional requirements:

i. Data Input: description of the data items that are to be inputted into the software

system.

ii. Data Output: the intermediate or final results of the system operations outputted to

a device, including the contents of the outputs and the rules for displaying those contents.

iii. Data Persistence: descriptions of all the database related operations including

reading, updating, inserting and deleting from/to a database.

iv. Data Validation: description of the validation rules required to ensure the

correctness of the inputted data items in terms of the permissible domain of values, the

value ranges, and their correct formats.

 8

v. Business Logic: description of the application or business rules including

workflows and calculations that define and govern the operations in a particular

application area.

vi. Communication: description of the rules and the contents for electronic

communication, such as email communication, between a system and an outside party.

vii. Event Trigger: description of the stimulating actions, such as clicking on a menu

item, link, or button, that trigger system operations.

viii. User Interface Navigation: description of the flow of the screens (i.e. the rules for

transition between screens) that make up an application.

ix. User Interface: description of the static layout of the pages and screens that make

up a system’s user interface.

x. External Call: description of the function calls between two systems including the

description of the parameters used to make such calls and their expected values or

responses.

xi. User Interface Logic: - description of the dynamic behavior of a system’s User

interface (i.e., how the user interface interacts with its users).

xii. External Call: description of the behavior of an operation or function in an

external component or system.

During the case study process, the extracted atomic requirements were recorded in

a Requirements Research Repository (RRR), whose relational database schema was

specifically designed to support this study. It provided complete traceability from each

target system to its use cases and from each use case to its corresponding atomic

 9

functional requirement. This is a classic case of efficient Requirements Management as

discussed in previous section.

After frequency distributions for each of the above functional requirements

classes were studied across different business systems and as a consequence, it was

observed that only 5 of the 11 classes occurred most frequently in any system: Data

Input, Data Output, Data Validation, Data Persistence, Business Logic and Event

Trigger. From the graphs that were plotted, the law of taxonomic classification of

functional requirements was also verified, by employing rigorous study and random

ordering of specifications. Graphs of systems studied and number of classified

requirements studied versus the requirements classes led to discovery of patterns which

showed that the emergence of classes increases at first and after a certain slow-down

phase, it remains constant and stabilizes. This study provides valuable insight into

requirements classification and from the graph trends, decisions can be taken for

classifying incoming requirements of other software systems, leading to ease of

requirements management, improved efficiency, traceability and reduced costs.

Therefore this study provides the necessary basis for the current study to build upon.

Automated Classification and their various approaches

Moving forward, there is another important piece of work by Slankas & Williams

[8] on Automated Extraction of Non-Functional Requirements from Requirements

documents using NLP and Data Mining techniques. Although the study focuses

explicitly on NFRs as supposed to FRs, it provides significant insight into the automated

processing in general. The goal of their research was to aid analysts in more effectively

 10

extracting relevant non-functional requirements in available unconstrained natural

language documents through automated natural language processing [8]. The

researchers used different techniques like K-nearest neighbors, Support Vector Machine

and Naive Bayes classifiers to extract and classify NFRs from documents into 14

different categories and evaluated the performances of each. They addressed four

important questions in the study as follows - 1) what document types contain NFRs in

each of the 14 different categories? 2) What characteristics, such as keywords or entities

(time period, percentages, etc.), do sentences assigned to each NFR category have in

common? 3) What machine learning classification algorithm has the best performance to

identify NFRs? 4) What sentence characteristics affect classifier performance? The

research contributed to developing a tool for identifying NFRs into their respective

categories and evaluating frequency of occurrence of each kind in the document.

As a part of their background study, Slankas & Williams [3] compared three

machine learning techniques - K- nearest neighbors, Naive Bayes classifier and Support

Vector Machine algorithm, to determine which would suit their purpose the best. They

needed flexible, yet effective classification methods to handle different documents

written in different ways with multiple ways of expressing similar concepts. Machine

learning and Data Mining are very closely associated in a way that makes them

complementary to each other. There are two types of categories in both fields for

obtaining actionable information out of data - Supervised learning and Unsupervised

learning. In supervised learning, people train classifiers with labeled data. People and

systems then use these classifiers to decide in which class a previously unseen instance

belongs. In contrast, unsupervised learning algorithms search data for common patterns

 11

(clusters). The data is not directly labeled, but rather groups of common instances are

created [3]. The k- Nearest neighbors scheme is a kind of supervised learning, where the

output is a class membership, determined by calculating ‘distance’ between the

incoming data and the existing data. Based on majority vote of ‘neighbors’ around that

data point, it is then classified to be in the cluster that it was closest to. Advantages of k-

NN classifiers include ability to incrementally learn as new items are classified, to

classify multiple types of data, and to handle large number of item attributes. The

primary drawback to k-NN classifiers is that if they have n items stored, classification

takes time [3]. Slankas & Williams evaluated other machine learning algorithms

including naïve Bayes and Support Vector Machine (SVM). A naïve Bayes classifier

works by selecting a class with the highest probability from a set of trained data sets

given a specific document. It falls under the supervised learning category.

Fundamentally, it assumes that each feature of a class exists independently of other

features. Despite such an oversimplification, the approach performs effectively in real

world problems. Naïve Bayes classifiers typically require fewer trained instances than

other classifiers. SVM classifiers work by finding the optimal separator between two

classes [8].

Performance measures

So when these three algorithms were evaluated, researchers found k-NN to be the

most efficient in this particular case. The comparison results were based on three vital

measures called Precision, Recall and F-measure. These three parameters and generally

used everywhere in the domains of machine learning and data science in order to

measure the performance and efficiency of a technique applied on the given set of data.

 12

To compute these values, the classifier’s predictions are divided into three

categories for each classification value:

1) True positives (TP) are correctly predicted values.

2) False positives (FP) are predictions in which the sentence of another classification is

classified as the one under evaluation.

3) False negatives (FN) are predictions in which a sentence of the same classification

under evaluation is placed into another classification [8].

From these values, precision (P) is defined as the proportion of corrected predicted

classifications against all predictions against the classification under test: P = TP/(TP +

FP). Recall is defined as the proportion of classifications found for the current

classification under test: R = TP/(TP+FN). F-measure is the harmonic mean of precision

and recall, giving an equal weight to both elements: F = 2 x (P x R)/(P + R).

For the study by Slankas & Williams, as well as the current research topic in

question Recall is a more important measure than the other two as it gives the number of

statements correctly classified by the classification model. However, as per [8],

Precision should not be ignored as it gives the accuracy of the classification model.

Works focused on requirements management

Cybulski and Reed [6] focused their work on the early phases of software

development which include requirements engineering and management. They stressed on

the importance of ‘reuse’ of software requirements in a common domain and

consequently proposed a RARE (Reuse Assisted Requirements Elicitation) model

making use of semi-automated tools like CASE. It uses IDIOM (Informal Document

 13

Interpreter, Organizer and Manager) for processing an SRS document. The concept of

reuse is directly linked to traceability of requirements - an essential detail for our current

study which is domain-specific and intends to provide better performance for particular

domains using requirements classified in preceding projects.

Researchers and students at Concordia University studied ways to employ text

mining assistants in order to improve the quality of SRS [5]. Although it doesn’t hold

direct relevance to the research topic in question, it sheds some light on important facets

of Requirements engineering that can serve as a basis on which certain rules can be

formulated in order to develop an efficient text mining framework for automated

requirements classification.

The study investigated whether text mining tools could help reduce defects like

ambiguity, inconsistency, omission, and redundancy [5]; addressing concerns about i)

technical integration (how can text mining tools be introduced into RE tools?), (ii)

adoption (can software engineers, who are typically not trained in NLP methods, easily

use these tools?), and (iii) effectiveness (can the NLP tools indeed help to improve the

quality of a specification?). Sateli, et al. developed ReqWiki, a collaborative, wiki-based

platform customized for RE that allows (i) capturing of SRS content into several artifact

templates, (ii) formally representing and reasoning over the populated SRS knowledge in

an embedded ontology, (iii) applying specialized NLP services to all or parts of artifacts,

and (iv) generating query-based, revision and domain-specific traceability links. It

incorporated features like writing quality assessment, readability assessment, information

extractor, requirements QA, and document indexer. Coming back to our topic, with

 14

refined quality of documents and lesser ‘noise’, the framework may perform its analysis

more efficiently and give better results in terms of precision and recall factors.

A Natural Language Processing approach

Vlas, et al. [7] ventured into the domain of open-source projects to apply NL

techniques to unstructured requirements documents belonging to Open Source projects in

order to improve the quality of such software. They developed a system RCNL -

Requirements Classifier for Natural Language. It used a pattern-based approach. A key

element in the study was its multi-level ontology, in which the lower levels were

grammar-based while the upper levels were requirements-based. The RCNL ontology

implementation used a multi-level GATE parser. GATE is an open-source software for

text processing. An ontology was created for RCNL by dividing types of text into six

categories - from L0 to L5, each representing a class of natural language. First two

contained common NL grammar concepts, next three contained concepts of logical

statements and the final level contained classification statements. The GATE parser then

implemented this ontology for classifying statements.

GATE provides JAPE (Java Annotation Pattern Engine), a rule-based text-

engineering engine that supports Java and regular expressions. GATE also provides an

annotation indexing and search engine with an advanced graphical user interface called

ANNIC (Annotations in Context). RCNL makes use of both of these functionalities for

rule-based matching of text with ontologies.

For all the 16 projects experimented upon by RCNL [7], they achieved 56%

precision and 56% recall values. When these results were compared with those resulting

 15

from manual classification by experts, using a plugin provided by GATE, the results were

promising - giving 94% precision and 64% recall. Vlas, et al. [7] reasoned that if parsing

rules are enriched, quality of classification could be improved. This study also provides a

structural and technical insight into developing an automated classifier model for

functional requirements. It also imparts useful information about GATE and its

functionality which could be used as a reference for developing a text mining

classification framework.

An extensive approach to NFR classification

The research paper by Cleland-Huang, et al. [9] is an exhaustive study about the

practical approaches to automating requirements classification. It goes into finer details

about classifying each NFR into its appropriate category and discusses methods to

accomplish the same. Although the techniques were targeted towards NFRs and the

results achieved were not perfect and not completely automated as well, it is a significant

step towards building an automatic classifier model for FRs and serves a good crux for

the current topic at hand. It is also imperative to note that this study was used by many

researchers as a solid reference to develop their own classification models, and compare

their results with the same.

This paper first describes the classification algorithm and then evaluates its

effectiveness through reporting a series of experiments based on 30 requirements

specifications developed as term projects by MS students at DePaul University. A new

and iterative approach is then introduced for training or retraining a classifier to detect

and classify non-functional requirements (NFR) in datasets dissimilar to the initial

training sets.

 16

Although the classifier was trained to detect and classify general NFRs, this study

emphasized on the necessity of training the model because of the disparity in

requirements documents in terms of writing styles, domain-specific terminologies,

company standards and so on. The study described experiments conducted to train the

model in its initial phase and then went on to present an iterative approach for retraining

the model which could be then used across different document types and domains. The

classifier made use of information retrieval techniques to find distinct keywords called

‘indicator terms’ that most-closely related to each NFR type. The process was composed

of three phases - training, classification and application.

In the training phase, the system was trained to identify requirements. This

required a requirements engineer or analyst to manually classify several structured

requirements specifications beforehand. These pre-classified documents were then fed

into the classifier system, which mined the document for indicator terms pertaining to

specific NFR types (security, performance, availability, extensibility, etc.). After

identifying a set of indicator terms, each term was given a probabilistic weight for every

NFR type. This weight was based on how strongly it correlated with a given NFR type. It

was studied that some indicator terms might correlate to multiple NFR types, so every

indicator term was given separate weights for each NFR type. In the classification phase,

the system used the set of indicator terms to detect and classify NFRs from unclassified

requirements specifications and other documents. One requirement, be it sentence or

phrase, might have contained indicator terms related to different NFR types. The

probabilistic weights for each indicator term related to one requirement determine which

 17

type it should be classified as. For each requirement, the weights of all corresponding

NFR types were summed, and these sums were called the classification score.

Requirements receiving classification scores above a certain threshold for a given NFR

type were classified into that type. Any requirements that did not reach this threshold for

any NFR type were assumed to be functional requirements, and were classified as such.

This finding can be used as an important aspect in our topic, by mirroring the steps for

FR instead of NFRs.

The result of this activity was a list of classified requirements. In the application

phase, the classified requirements were used in subsequent software engineering

activities such as requirements prioritization, architectural design, and so on. In their

paper, the authors offered very little attention to the application phase. Their method was

mainly concerned with automating the classification of requirements, and so is ours.

An ontology model

A similar and interesting ontology-based study conducted by Rashwan, et al. [10]

was aimed at using a Support Vector Machine (SVM) based classifier for automated

requirements classification. The researchers developed a whole new ‘gold standard’

corpus containing annotations for different NFR types. Although this is again a case

where the focus was on NFRs, the study nevertheless is technically relevant for

classifying FRs as well, which could essentially involve a different ontology based on

their gold corpus.

Although there existed an ontology-based requirements elicitation approach for assisting

analysts [8], making use of knowledge repositories that capture requirements categories

 18

from elicitation interviews, it is based on specific ontologies that vary over different

domains. However, this SVM base classifier is a generic approach - independent of the

context in which requirements are specified. The main goal of this study was to

incorporate semantic analysis methods to automatically extract requirements written in

natural language in order to make requirements machine-process able using ontological

representation, then applying QA methods to analyze them for detecting defects like

ambiguities and finally attempting to establish traceability links between NFRs and FRs

for creating estimation models. For their analysis, the study made use of SRS documents

belonging to the PROMISE corpus [9] which consists of 15 SRS documents, developed

as term projects by MSc students at DePaul University. These specifications contain a

total of 326 nonfunctional requirements and 358 functional requirements. One important

observation in this study was that one requirement statement could be classified into

more than one type of category. This point will play an important role in our research

topic as well.

The requirements ontology was modeled using OWL (Web Ontology Language)

by limiting the categories to those majorly occurring in the SRS. Initially, a manual

annotation was done by analysts who analyzed each statement in the documents and

classified requirements into their respective types, which could be more than one. After

the corpus was defined with four main classes, each containing a set of categories and

compared with manual annotation, an average of 78.36% was found which showed a high

level of agreement between annotators. A gold standard was then established for each

document based on group discussions. The NFR classifier was implemented using GATE

by first preprocessing the documents and then training SRS data. It extracts features from

 19

documents and parses them using machine learning components. It uses ANNIE for

finding tokens, splitting sentences and stemming relevant wordings. Rashwan, et al. used

SVM algorithm with third-order polynomial kernel which gave best performance.

After all sentences had been classified, they populated the ontology with OWL using

OwlExporter plugin of GATE and linking sentences to their source documents with

corresponding classes. This enabled rich querying using SPARQL and OWL-DL

reasoner tools for developing a knowledge base.

The model was evaluated using precision, recall and F-measure metrics. When the

algorithm was applied to PROMISE corpus using Weka, the performance of SVM based

classifier was compared with that of Cleland-Huang et al. [17]. Both approaches were

roughly equal in Precision - 77% and 76% respectively, but this approach showed a

significantly higher Recall - 60% as compared to 14%. In the final analysis phase,

confusion matrices were created, that showed the false positives and false negatives of

the classifier outcomes. The confusion matrix of the Functional Requirement (FR)

Classifier shows that 76 sentences are classified as false positive, and 4 sentences as false

negative. This meant that there is still a room for improvement in FR category and it

could be achieved by increasing the amount of training data.

A semi-supervised approach

The study by Casamayor, et al. proposed a recommender system based on a semi-

supervised learning approach for assisting analysts in the detection and classification of

NFRs from textual requirements descriptions. The main goal was to provide suggestions

to the analyst about candidate NFRs and their corresponding categories. That is, the

 20

classifier would automatically recognize a given requirement from the requirements

document written in natural language and suggest suitable category. Later the results

would be presented to an analyst for inspecting the results and who would give feedback

for successive iterations.

The approach used here was a semi-supervised approach as opposed to supervised

techniques like Bayesian methods, K-nearest neighbors, etc. with contain labeled training

examples for analyzing the incoming unlabeled data. The semi-supervised approach

makes use of learning from both labeled and unlabeled data. The Expectation-

Maximization algorithm is one of such kind, as is used in this study for developing a

recommender system. It basically consists of two steps, the Expectation step (E-step) and

the Maximization step M-step). The E-step fills in missing data based on an estimation of

parameters while the M-step re-estimates the parameters to maximize or increase the

likelihood of those parameters. The parameters that EM estimates in this case are the

probability of each word given a class and the class prior probabilities.

Initially, the documents in the labeled set L have class labels, whereas the

documents in the unlabeled set U have missing class labels. EM algorithm is used to

estimate these missing class labels based on current labels that is by assigning

probabilities to class labels in each document belonging to U. This 2-step process was

reiterated until the probability parameters became stable.

Nigam et al. [21] proposed the EM algorithm for LU learning with Naive Bayes

classification, which was hence used in this study. For experimenting this approach,

Casamayor, et al. used the PROMISE repository. The collection was split into 468

requirements as training set, and remaining 156 as the test set for applying EM. When

 21

compared with classical algorithms like Naive-Bayes and k-NN, and text mining

algorithm like TF-IDF on same data, EM outperformed these in terms of accuracy, as

unlabeled documents provided some good insights such as words which tend to appear

together in a specific type of document. Even when the training data was increased, it

gave similar accurate results. As a parting note on empirical analysis of this model, the

researchers pointed out that performance could be improved if documents belonging to a

single software project are considered during learning.

Since this was a semi-supervised approach as opposed to fully supervised

techniques discussed before, the authors pointed out that the main drawback of applying

supervised methods to requirements detection is the amount of pre-categorized

requirements needed to reach good levels of precision in the classification process.

However, the use of distinctive vocabulary, domain terminology and writing styles across

different projects as well as requirement elicitation process could tend to hinder the

application of the current method. A substantial concluding point was that semi-

supervision involves less human effort in labeling the requirements, including manual

revision and classification of textual requirements statements than fully supervised

methods thereby saving time and labor resources, and most importantly taking a step

towards automated classification of requirements.

Another variant of NLP approach

Hussain, et al. [12] focused on natural-language processing tools to extract,

differentiate FRs and NFRs, and classify NFR statements from SRS documents. They

proposed a text-classifier model equipped with a POS (part-of-speech) tagger which

resulted into very high accuracy of 95.86% when applied to data same as that used by

 22

Cleland-Huang, et al. [9]. They used the same corpus as before - PROMISE repository

SRS documents [19], with the Stanford Parser for stemming grammatical words and

extracting 5 syntactic features from each of the training sentences from the documents.

These features were Number of Adjectives, Number of Adverbs, and Number of Adverbs

that modify Verbs, Number of Cardinals, and Number of degree Adjectives/Adverb, and

were identified as candidate terms that influence the process of classifying NFRs the

most. To determine and automatically select which of these features were valid for

detecting NFRs, a probabilistic ranking measure was used based on higher probabilities

of occurrences in the training set. A cutoff threshold value of 0.8 was then selected

manually and all features exceeding this value were selected as valid. Now the study by

Cleland-Huang, et al. [9] identified specific keywords, but not in context of their parts-of-

speech group. After analyzing types of most probable words used in NFR, as described in

[12], they considered keywords of 9 different parts-of-speech groups separately. After

repeating the ranking process on these groups using two different methods - Unsmoothed

and Smoothed Probability Measures. To classify the sentences, they developed a feature-

extraction program in Java that parses the sentences from the corpora, and extracts the

values of all the features mentioned above. It used Weka to train the decision-tree

algorithm. The results came out to be exceptionally well when using the whole dataset for

training and testing. Since the dataset was not very large, they also used 10-fold cross

validation, and the results were as satisfactory. On creation of its confusion matrix, the

study reaped a precision of 97.8% and a recall of 100% with no false negatives. Even the

standard deviation was pretty low during each iteration of cross-validation in the entire

process.

 23

When compared with the work of Cleland-Huang, et al. [9], this study showed

significant improvement - by a large margin in terms of overall accuracy, precision and

recall. In conclusion, this research is based on linguistic tools for classifying

requirements. Although it does not make use of data mining or machine learning

paradigms per se, it definitely gives an insight into the performance gain of such a system

as compared to other techniques.

Hussain, et al. [16] developed a tool for annotation of software requirements,

which basically extracted textual statements and classified them by assigning appropriate

labels. They showed the importance of annotation of requirements in practical use by

stating the need to build annotated sets of such documents that are used in number of

recent projects that attempt to learn the workings of the human brain behind different

requirements analysis tasks like classification and automate these tasks by using

supervised or semi- supervised learning techniques. This could come in handy for our

approach which is targeting domain-specific software projects that can make use of

annotated corpora like these to train the model. The tool - LASR (Live Annotation of

Software Requirements) is a client-server based web application with a rich UI built upon

the CakePHP framework and makes use of lightweight NLP tools like sentence delimiter

and a noun-phrase chunker, that can automatically extract requirements instances at the

levels of passages, sentences and noun-phrases from the requirements documents and

save them to the backend. The results were compared with statements manually

annotated by expert students as well as students having no prior experience or

background in annotating statements, and were found pretty reliable. LASR attempts to

 24

compute the annotation for each instances, by first assigning a custom score to each of

the annotation labels based on the level of confidence submitted by the annotators. Thus,

the annotation label with the highest score, and that is also greater than some threshold,

was selected as the gold-standard annotation. They aim to reduce manual efforts in their

future work.

Other related works

Raamesh and Uma [4] attempted to automatically generate through their study,

test cases from SRS documents using data mining techniques for facilitating automated

or better manual software testing. They used Weka data mining tool for classifying

functional and nonfunctional requirements. The study followed a rather circuitous

approach wherein the model first created UML state diagrams out of textual sentences

and then proceeded to apply data mining tools to classify requirements statements. It

started by generating classification rules, selecting a predicate on state diagram

transition, which was then transformed into a predicate function. Finally mining

techniques like association mining and clustering are applied to determine categories of

FRs and NFRs. As stated earlier, it turned out to be complicated manner of classifying

requirements out of use-cases, and using unsupervised methods are not recommended

for the current study in question. Supervised text classification algorithms would give

better results in context of this study.

Ko et al. (2000) [13] proposed a Web-based analysis-supporting system. For

automatically classifying the collected informal requirements into several views or topics,

the system required as input a set of words representing the viewpoint of each analyst.

They used similarity matching techniques, frequency of words and part-of -speech

 25

tagging to expand the initial data set and find co-occurrence of words. The main

shortcoming of this method was its reliance on analysts for extracting keywords

for different views of the software to be developed. Again, this was not a fully automated

method and such studies shed more light on the need for automatic classification system

that requires minimum manual effort. In 2007, they went ahead to develop a

bootstrapping framework for classifying requirements based upon their previous study

[23]. Each statement was separated, and keywords were extracted for each topic. A

centroid-sentence was derived for each topic that is the sentence that defines the core

meaning of that topic. It was also a topic-keyword statement which included topic

keyword or any word or a requirement statement as a whole, possessing high similarity to

the topic category obtained using a similarity-matching technique. A Naive-Bayes

classifier was then applied to train this topical data. This system does reduce manual

effort and analysts can easily detect the structure of collected requirements by inputting

topic words only. However the same drawback applies to this as of the previous work

[13].

Palmer and Liang [20] proposed a Two-tiered clustering algorithm for indexing

and clustering requirement specifications by functionality. This study is an example of

utilization of unsupervised methods as opposed to supervised technique of classification.

Hussain, et al. [17] further ventured into developing an annotated text classification

system for assessing quality of requirements statements and detecting ambiguities

automatically, again using a similar technique as described in the previous section. Park

et al. [21] proposed a requirement support system that evaluated the resemblance of

requirement sentences using similarity measures by using Information Retrieval methods

 26

to identify possible redundancies and inconsistencies as well as to detect potentially

ambiguous requirements.

These studies can aid in smoothing of input data to the framework visualized in

the current topic. As obvious it can be, such enriched data with no defects can enable the

model to work efficiently, giving high precision and recall.

 27

CHAPTER 3

METHODOLOGY

This chapter discusses in depth the methods and techniques as well as the data and

tools that were used to conduct the study of text classification and categorization of

software requirements. Figure 1 below shows a block diagram representation of

methodology employed in this study.

Figure 1. Classification process methodology block-diagram

Data

For mining and extracting actionable information, data is everything. It is highly

influential for the results produced and analysis of the same. As the study deals with

requirements data pertaining to different enterprise systems, data is variable for achieved

results. For this project, I used the requirements dataset belonging to domain of

mathematical software systems. It consisted of 1495 requirements statements that were

 28

already classified into respective categories as a part of a prior research in requirements

engineering. However, the size of data set was refined and reduced to 672 statements for

applying kNN classifier by further distilling it to carefully include non-redundant

statements, sufficient to be trained upon. The collection of statements was derived from

the following mathematical systems - Geogebra 4, Graph, wxMaxima, MS Excel 2007,

Mathcad 14.0, Mathematica 8.0, Stata 12, Minitab 15, CPMP Tools and Maple. As these

requirements come from verified software systems, it is safe to assume that they are

authentic. This dataset, in form of a comma separated (csv) file served as an input for the

classification model, and was sampled into two parts for training and testing of the

framework during the course of text classification process. Throughout the thesis, we

sometimes refer to these statements as documents, as it conforms to the terminologies

used in Text mining. There are three columns in the set - ID, Requirement.Statement and

Requirement.Type. The first is simply a numerical ordering of statements while the

second column actually holds all atomic sentences of requirements; third column being

the type or category of corresponding statement in column 2, which is discussed next.

Categories

In the dataset, the column Requirement.Type contains the 12 categories in which

the textual statements are and will be classified into. As discussed in Chapter 2 -

Background study, the different categories of classification determined by Dr.

Ghazarian’s research on requirements taxonomy [2] were used in this study. The

description of each of the 12 categories is briefly described below, in context of

mathematical enterprise software.

1. Data Input: Description of data items that serve as input to the software system.

 29

2. Data Output: The intermediate or final results of the system operations output to a

device, including the contents of the outputs and the rules for displaying those

contents.

3. Data Persistence: Descriptions of all database related operations including

reading, updating, inserting and deleting from/to a database.

4. Data Validation: Description of the validation rules required to ensure the

correctness of the inputted data items in terms of the permissible domain of

values, the value ranges, and their correct formats.

5. Event Trigger: Description of the stimulating actions, such as clicking on a menu

item, link, or button, that trigger system operations.

6. User Interface Navigation: Description of flow of the screens (i.e. the rules for

transition between screens) that make up an application.

7. User Interface: Description of the static layout of the pages and screens that make

up a system’s user interface.

8. User Interface Logic: Description of the dynamic behavior of a system’s User

interface (i.e., how the user interface its users).

9. Application Logic: Description of the application or business rules including

workflows and calculations that define and govern the operations in a particular

application area.

10. External Call: Description of function calls between two systems and the expected

value of the calls, such as ‘system uses OS’s file browser for navigation’.

11. Mathematical Algorithm/Procedure: Description of a specific function performed

mathematically, such as 'system then calculates area of triangle'.

 30

12. Mathematical Rule/Principle: Description of a specific rule, such as 'area cannot

be negative'.

Algorithms and Classifiers

Text categorization is the process of grouping text documents into one or more

predefined categories based on their content. In supervised learning, a number of

statistical classification and machine learning techniques have been applied to text

categorization, including regression models, Bayesian classifiers, decision trees, nearest

neighbor classifiers, neural networks, and support vector machines [24]. This section

describes them in context of the model developed.

In its first version, the model used the k-Nearest Neighbors (kNN) classification

algorithm. To classify a class-unknown document X, the k-Nearest Neighbor classifier

algorithm ranks the document's neighbors among the training document vectors, and uses

the class labels of the ‘k’ most similar neighbors to predict the class of the new

document. The classes of these neighbors are weighted using the similarity of each

neighbor to X, where similarity is measured by Euclidean distance or the cosine value

between two document vectors. The kNN classifier is based on the assumption that the

classification of an instance is most similar to the classification of other instances that are

nearby in the vector space. The knn function in R applies the algorithm using the

Euclidean distance, which is a distance measure is based on the Pythagorean formula in a

2-dimensional vector space. Compared to other text categorization methods such as

Bayesian classifier, kNN does not rely on prior probabilities, and it is computationally

efficient. The main computation is the sorting of training documents in order to find the k

nearest neighbors for the test document.

 31

In its second version, the model used several other algorithms, all at once. This

approach is referred to as ensemble learning and is a popular technique in machine

learning. Ensemble methods basically aim to obtain better predictive performance than

could be obtained from any of the constituent learning algorithms. I have used 8

algorithms in my ensemble - Support Vector Machine (SVM), Generalized Linear Model

Network (GLMNET), Maximum Entropy (MAXENT), Boosting, Bagging, Random

Forests, Neural Network and Decision Trees.

A Support Vector Machine (SVM) is a supervised, discriminative classifier

defined by a separating hyperplane, and given labeled training data the algorithm outputs

an optimal hyperplane for classifying incoming (test) data. The GLMNET is an

extremely fast algorithm that uses fitted generalized linear models via maximum

likelihood techniques for classifying sparse data. The Maximum Entropy classifier is a

probabilistic classifier which belongs to the class of exponential models. Unlike the

Naive Bayes classifier, the Max Entropy does not assume that the features are

conditionally independent of each other. The MaxEnt is based on the Principle of

Maximum Entropy and from all the models that fit the training data, selects the one

which has the largest entropy. Bagging and boosting are meta-algorithms that pool

decisions from multiple classifiers. Boosting involves incrementally building an

ensemble by training each new model instance to emphasize the training instances that

previous models misclassified.

Bootstrap aggregating, often abbreviated as bagging, and involves having each

model in the ensemble vote with equal weight. In order to promote model variance,

bagging trains each model in the ensemble using a randomly drawn subset of the training

http://blog.datumbox.com/machine-learning-tutorial-the-naive-bayes-text-classifier/
http://en.wikipedia.org/wiki/Principle_of_maximum_entropy
http://en.wikipedia.org/wiki/Principle_of_maximum_entropy

 32

set [26]. Random forests is an extremely accurate classifier that works by constructing a

multitude of decision trees at training time and outputting the class that is the mode of the

classes of individual trees. A neural network consists of units (neurons), arranged in

layers, which convert an input vector into some output. Each unit takes an input, applies

a (often nonlinear) function to it and then passes the output on to the next

layer. Generally the networks are defined to be feed-forward: a unit feeds its output to all

the units on the next layer, but there is no feedback to the previous layer. Weightings are

applied to the signals passing from one unit to another, and it is these weightings which

are tuned in the training phase to adapt a neural network to the particular problem at hand

[27]. The decision tree classifier organizes the training set into a series of test questions

and conditions in form of a tree structure and makes decisions based on answers

traversed.

Language and development environment

For developing and studying the classification model, I used R - a language and

environment for statistical computing and data analysis [28]. It is available on the

Comprehensive R Archive Network (CRAN). I used the RStudio IDE for writing and

executing code. The version I employed is R 3.2.3 Wooden Christmas Tree. RStudio

provides a set of integrated tools to make most out of the language R. It includes a

console, syntax-highlighting editor that supports direct code execution, as well as tools

for plotting, history, debugging and workspace management [29].

Packages and tools

One of the packages used here was the Text Mining (tm) package, a framework in

R built specially for text mining applications. It is feature-rich in a way that incorporates

 33

text pre-processing functions for loading, cleaning and exploring text data. Activities like

corpus creation, text preprocessing and document term matrix creation were performed

using tm package.

Another very useful text mining package called RTextTools was also used in this

study to exploit its functionalities in comparison to tm. This package specifically serves

text classification for machine learning in R. It allows use of combination of algorithms

for classification and includes nine algorithms for ensemble classification (svm, slda,

boosting, bagging, random forests, glmnet, decision trees, neural networks, maximum

entropy), 8 of which I applied to the current model.

Other packages used for singular functionalities in this project were class - for

generating kNN classifier; SnowballC - for word stemming and ggplot2 - for data

visualization and plotting results.

Data Preparation and Preprocessing

At the start, data was loaded from the csv file into the R script in form of a data

frame, which is an efficient matrix-like data structure in R for holding any-dimensional

data. Next, the libraries discussed in previous section were loaded to perform text

cleaning and preprocessing. A corpus, which is a structured collection for managing

documents in text mining, was then created for holding the text from

Requirements.Statement column of the data frame. This corpus was then cleaned up

using tm_map function of tm package in order to make it easier for the model to train

upon it over for classification. Cleaning the corpus involved removing whitespaces,

numbers, punctuations and stop words (unimportant words like is, the, for, etc.);

transforming text to lowercase and stemming words - converting them all into their root

 34

words. These text terms would be used for training the model. Next task was to put these

training terms into a Document Term Matrix, a matrix containing frequencies of

occurrence of all training terms from the corpus. This enables training model in way that

helps it decide classification criteria based on frequency of each term in the training text.

This DTM was made sparse with a factor of 0.97, that is, with lowest frequency terms

eliminated the matrix then contained terms that were present in 97% of the documents.

After this step, the DTM was loaded into a data frame and the Requirements.Type

column was bound to it for training the data over already classified documents. The data

in data frame was then partitioned into two samples - training data and test data. The

training set contains 765 statements while the test set contains 735 statements. The

classifier column renamed as ‘Category’ was isolated into a vector as required by the

kNN function for training.

As interpretation of data analytics is rather a cumbersome task for those not

experienced it, data visualization practice helps depict raw data or results in form of

graphs, charts and diagrams. For visualizing data graphically in terms of frequency and

percentage distribution, I used the ggplot package to create histograms for training and

test data sets. The following figure represent a pictorial view of requirements in the data

set and their prevalence or frequency of occurrence in the system.

 35

Figure 2. Number and percentage distribution of requirements over categories

Training and testing

Once the data was prepared for training, I conducted two versions or approaches

of classifying text as discussed previously. I first applied the kNN classification

technique using its function knn which takes training sample, test sample and the

classifier as its arguments. The output of this classifier was then bound to the category

column and stored in a data frame; and subsequently written to a csv file. In its second

version I applied ensemble techniques by first training them each over the training set

using train_model functions, and then using the classify_model function to test the model

over the test set. I also used 4-fold cross-validation to check and try to improve accuracy

of results. Figures 3 and 5 represent the source code from preprocessing till training

 36

stages in ensemble approach while figures 4 and 6 represent the same for kNN approach.

The results and discussion on analysis parameters is carried forward in the next chapter.

Figure 3. Loading and preprocessing data in ensemble approach.

Figure 4. Loading and preprocessing data in kNN approach.

 37

Figure 5. Training in ensemble approach

Figure 6. Preprocessing data and training in kNN approach

 38

CHAPTER 4

DATA ANALYSIS AND RESULTS

This chapter discusses the results of analytics obtained after applying techniques

for classification of requirements as specified in the preceding chapter. It explains the

analysis parameters and the effect of each algorithm used in classification.

Analysis of kNN classifier

After applying the kNN function for classification, a confusion matrix was created

to study and obtain analysis results. A confusion matrix, or contingency table, is a matrix

representation of an algorithm’s accuracy of classification and is formed by drawing up

the actual or expected outcomes against the classified or predicted outcomes, as rows and

columns. By looking at this matrix and examining it, one can discern whether or not a

document or statement was classified correctly or not, and if it was classified at all then

as what it was classifies as. From this matrix I calculated values like True Positives, False

Positives, True Negatives and False Negatives; followed by performance measures like

Precision, Recall, F-measure and Accuracy. These parameters have been discussed in

detail in Chapter 2. Precision answers the following question - ‘Out of all the statements

the classifier labeled as belonging to a particular category (say Data Input), what fraction

were correct?’ On the other hand recall answers the question - ‘Out of all the (say Data

Input) requirements statements that were there, what fraction did the classifier pick up?

The answers to these questions have been summarized into Table 1 below. It can

be observed that the Euclidean similarity measure obtained using 1 nearest neighbor

(knn1) function gave better results than the knn function which assumes value of k

automatically. Precision values of 61% and 86% were achieved respectively, while recall

 39

values of 77% and 76% were achieved respectively for knn and knn1 classifier

functions. The overall accuracy of the model came up to 52% from 50%. This result

shows that precision greatly improved when the number of nearest neighbors was fixed at

1. A larger value of k produces a smoother boundary for classes and reduces noise.

 kNN (k=auto) kNN (k=5) kNN1 (k=1)

Precision (%) 61 95 86

Recall (%) 77 80 76

F-measure (%) 68 87 78

Accuracy (%) 50 52 52

Table 1. Performance measures of kNN classifier methods.

 Using a useful table function in R, we could summarize the original test data and

compare it with the kNN-classified data. The table below shows frequency of statements

in original test data and classified test data. This also provides an overview of how the

model performed. However, this does not give an idea about whether these were correctly

classified.

Category Frequency in original test

data

Frequency in kNN-classified test

data

Application Logic 32 35

Data Input 71 50

Data Output 18 23

Data Persistence 15 13

Data Validation 22 23

Event Trigger 56 64

External Call 3 7

 40

Math

Algorithm/procedure

37 31

Mathematical

principle/rule

16 41

User Interface 40 25

User Interface Logic 27 25

User Interface Navigation 3 3

Table 2. Frequencies of requirements statements

Figure 7 below depicts the source code for determining the performance measures

discussed above using a confusion matrix.

Figure 7. Analysis of kNN classifier

 41

Analysis of ensemble classifier

 The algorithms applied in ensemble learning method were evaluated differently

than kNN using powerful tools available in the RTextTools package of R. The

create_analytics() function rendered all performance measures relevant to the test data

classified by an ensemble of algorithms - SVM, MaxEnt, GLMNET, Random Forests,

Neural Networks, Boosting, Bagging and Decision Trees. The function returns a

container with four different summaries: by label (e.g., topic), by algorithm, by

document, and an ensemble summary. In this case, as all data in the training and testing

sets have corresponding labels, create_analytics() will check the results of the learning

algorithms against the true values to determine the accuracy of the process [28].

The label summary provides statistics on each of the requirement categories in the

classified data. It includes number of documents classified into each label by the

ensemble method as well as their probabilities. The algorithm summary provides

performance values: Precision and Recall, provided by each of the algorithm used in the

ensemble. The document summary provides statistics on each document (statement here)

classified and includes each algorithm’s prediction, the algorithm’s probability score, the

number of algorithms that agreed on the same label, which algorithm had the highest

probability score for its prediction, and the original label of that statement. Finally, the

ensemble summary provides details on the ensemble classifier as a whole (Table 3),

also including coverage for an n-ensemble agreement. For this model, n=8 as 8

algorithms were employed. Coverage simply refers to the percentage of documents that

meet the recall accuracy threshold [25]. For example, if there are 10 statements and only

two statements meet the eight ensemble agreement threshold, then our coverage is 20%.

 42

It is mathematically defined as k/n, where k is the percentage of cases that meet the

ensemble threshold, and n represents total cases. Table 2 reports the coverage and recall

accuracy for different levels of ensemble agreement. The general trend is for coverage to

decrease while recall increases. In the current model, just 18% of the requirements have

eight algorithms that agree. However, recall accuracy is 96% for these when the 8

algorithms do agree.

n n-ensemble coverage n-ensemble recall

n >= 1 1.00 0.67

n >= 2 1.00 0.67

n >= 3 0.99 0.68

n >= 4 0.93 0.69

n >= 5 0.77 0.75

n >= 6 0.63 0.79

n >= 7 0.49 0.84

n >= 8 0.18 0.96

Table 3. Ensemble Summary

Algorithm Precision Recall F-measure

SVM 0.63 0.54 0.56

GLMNET 0.57 0.60 0.58

MaxEnt 0.63 0.64 0.59

Boosting 0.62 0.59 0.58

Bagging 0.65 0.59 0.59

Random Forest 0.69 0.63 0.63

 43

Neural Network 0.17 0.21 0.17

Tree 0.45 0.49 0.44

Table 4. Ensemble algorithm performance summary

Figure 8 below presents the source code for obtaining all summaries and

parameters discussed above using create_analytics() method.

Figure 8. Analysis of ensemble approach

I also attempted to apply 5-fold cross-validation for the ensemble in order to

improve performance as can be seen from Figure 8. For a data set of medium size as this

one, 5 is a good number for cross-validation. For larger datasets one can use a number

like 10. The accuracy after every fold for each algorithm can be seen from Figures 9, 10

and 11 below.

 44

Figure 9. Cross-validation results

From above, it can be seen that on applying 5-fold cross validation to the

ensemble, the Max Entropy algorithm yielded an accuracy value of 82% which is

notable.

Figure 10. Cross-validation results

 45

From above it can be noted that Boosting also improved the accuracy to almost

80% using 5-fold cross-validation. As expected from summary values, Neural Network

and trees did not do any good to the accuracy of the model.

Figure 11. Cross-validation results

From the label summary discussed before, we obtained an important result on the

percentage of documents correctly classified by the ensemble method. The table below

shows number of statements classified by the ensemble method and the percentage of

them which were correctly classified. It can be seen that for the label ‘External Call’ over

92% of the statements were correctly classified and for ‘User Interface Navigation’ all of

them were correctly classified, while only 5% were correctly classified for ‘Mathematical

principle/rule’.

Category Number of statements

classified

Percentage of statements correctly

classified

Application Logic 154 57.14

Data Input 63 58.66

Data Output 62 60

Data Persistence 3 42.85

Data Validation 65 100

 46

Event Trigger 166 92.14

External Call 2 66.67

Math

Algorithm/procedure

38 78.78

Mathematical

principle/rule

8 5.45

User Interface 92 62.79

User Interface Logic 84 69

User Interface Navigation 4 100

Table 5. Label Summary

Comparison

 From the analyses above, it can be observed that the kNN approach clearly

outperformed the ensemble approach in terms of performance measures – Precision and

Recall.

 47

CHAPTER 5

DISCUSSION

The final chapter in the thesis summarizes the work performed and provides

conclusion and future scope for the study conducted. It also discusses challenges faced

throughout this project.

Summary

The first chapter introduced readers to the subject of this thesis, highlighting the

importance of requirements management and need to automate classification to ease out

the subsequent phases of development. It also talked about the role of machine learning

and text mining in requirements engineering and provided an insight into how data

analytics works in context of textual statements of software requirements.

The second chapter discussed background work in the core area of classification

of software requirements using text mining, machine learning and NLP. It explained and

compared different prior research works conducted and using the insights gained,

ultimately charted a route for the current work to proceed.

The third chapter explained in detail the methodology employed in conducting the

study and creation of classifier model, including the language and platform; data, tools,

technologies and packages; and the classification algorithms hence used.

The fourth chapter dealt with analysis of performance measures of individual and

ensemble algorithms and drew comparisons amongst them in terms of those measures.

Challenges

In text mining, it is always a challenge working with free-form text data.

Naturally, it was quite challenging to work with data containing all text and refining it to

 48

extract relevant terms on which the model can be trained. Another issue arises from the

complexity of natural language itself. Although in enterprise systems, requirements are

clearly specified the language and style of writing them may differ from person to person.

Therefore it is a huge challenge to unify different styles of writing or established common

format for them. In addition to this, one word may have more than one meanings. It is a

challenge to determine semantics of each text. In many approaches like this one, the

model is trained using document frequencies - the frequencies of occurrence of terms in

the text. However the semantic aspect of text should also be taken into consideration by

the model to effectively train over it, along with the causal relationships between words.

There is also the issue of the model getting ‘confused’. In this case, there were many

statements which a human could possibly classify into more than one labels depending on

the context in which it appeared in the system. Therefore, domain knowledge integration

is of utmost importance here. Lastly, there is the issue of memory. With large size of text

data the memory requirement becomes large. This requires high RAM machines with

high processing powers.

There were no major impediments faced in this project than the ultimate question

of improving the efficiency of classifier model. Data cleaning was one minor obstacle

faced in the creation of classifier model in this study. When data was less cleaned or

uncleaned it resulted in memory requirement being very high for a relatively less number

of documents/statements. Another issue was selection of classification algorithm that

would serve best for the task at hand. However, with the help of ensemble learning this

challenge was overcome. Lastly, there was the problem of context, wherein there were

many statements that could very well be classified into category other than the one it was

 49

classified manually. For instance the statement ‘The user then clicks on the formula

button present in the toolbar’ appeared as Event Trigger category but could also be

classified as User Interface Navigation if the context is unknown.

Conclusion, recommendations and future scope

In a nutshell, this thesis aimed to study and apply text classification over

functional software requirements belonging to enterprise applications using different

algorithms and determine how accurately the classifier was able to predict requirement

type for each statement presented to it. However, one limitation of this study was the

mediocre value of precision obtained. There is a potential to improve this value by

training more data - meaning, consolidating requirements from more enterprise

applications of a particular type. To be on a neutral front so as to avoid potential

confusion during manual classification, an approach of crowd-sourcing could be

followed, where in paid surveys or activities are conducted for masses all over the world

to contribute to the classification, thereby improving the quality of training data. As

discussed previously there are some factors which affect the accuracy of classifier, such

as semantics and word relationships and context. To avoid the model from getting

confused, validity of training data is of high significance. The future scope can also take

in the approach of a weighted-kNN, where in the number of neighbors are determined

based on weighing of terms in training data, which in this case could be the terms

associated with the enterprise domain. R project recently launched a knn function called

kknn for the same.

Overcoming these issues in future could significantly take up the accuracy of such

classifiers. In addition to this the label summary showed a very small percentage of

 50

statements correctly classified as ‘Mathematical principle/rule’. This category

corresponds to a specific application of domain of applications in enterprise systems. In

this case, it would be best to accumulate such domain rules or subject-matter expertise to

train over them in order to improve accuracy of the model. Again this leads us to realize

the importance of having historical data for training effectively. A data warehouse would

serve the purpose for large-scale enterprise applications.

 51

REFERENCES

[1] Software Engineering Institute, Carnegie Mellon University

http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm.

[2] Ghazarian, A. (2012, September). Characterization of functional software

requirements space: The law of requirements taxonomic growth. In Requirements

Engineering Conference (RE), 2012 20th IEEE International (pp. 241-250). IEEE.

[3] Sommerville, I., Software Engineering, 9th Edition, Addison-Wesley, ISBN-13: 978-

0-13-703515-1, 2011.

[4] Raamesh, L., & Uma, G. V. (2010). Reliable Mining of Automatically Generated

Test Cases from Software Requirements Specification (SRS). arXiv preprint

arXiv:1002.1199.

[5] Sateli, B., Angius, E., Rajivelu, S. S., & Witte, R. (2012). Can text mining assistants

help to improve requirements specifications? Mining Unstructured Data (MUD

2012), Canada.

[6] Cybulski, J. L., & Reed, K. (1998, December). Computer-assisted analysis and

refinement of informal software requirements documents. In Software Engineering

Conference, 1998. Proceedings. 1998 Asia Pacific (pp. 128-135). IEEE.

[7] Vlas, R., & Robinson, W. N. (2011, January). A rule-based natural language

technique for requirements discovery and classification in open-source software

development projects. In System Sciences (HICSS), 2011 44th Hawaii International

Conference on (pp. 1-10). IEEE.

[8] Slankas, J., & Williams, L. (2013, May). Automated extraction of non-functional

requirements in available documentation. In Natural Language Analysis in Software

Engineering (NaturaLiSE), 2013 1st International Workshop on (pp. 9-16). IEEE.

[9] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated

classification of non-functional requirements. Requirements Engineering, 12(2),

103-120.

[10] Rashwan, A., Ormandjieva, O., & Witte, R. (2013, July). Ontology-based

classification of non-functional requirements in software specifications: a new corpus

http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm

 52

and svm-based classifier. In Computer Software and Applications Conference

(COMPSAC), 2013 IEEE 37th Annual (pp. 381-386). IEEE.

[11] Casamayor, A., Godoy, D., & Campo, M. (2009). Semi-Supervised Classification

of Non-Functional Requirements: An Empirical Analysis.Inteligencia Artificial,

Revista Iberoamericana de Inteligencia Artificial, 13(44), 35-45.

[12] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using linguistic knowledge to

classify non-functional requirements in SRS documents. In Natural Language and

Information Systems (pp. 287-298). Springer Berlin Heidelberg.

[13] Ko, Y., Park, S., & Seo, J. (2000). Web-based requirements elicitation supporting

system using requirements categorization. In Proceedings of Twelfth International

Conference on Software Engineering and Knowledge Engineering (SEKE 2000),

Chicago, USA (pp. 344-351).

[14] van Lamsweerde, A. (2009). Reasoning about alternative requirements options. In

Conceptual Modeling: Foundations and Applications (pp. 380-397). Springer Berlin

Heidelberg.

[15] Luisa, M., Mariangela, F., & Pierluigi, N. I. (2004). Market research for

requirements analysis using linguistic tools. Requirements Engineering, 9(1), 40-56.

[16] Hussain, I., Ormandjieva, O., & Kosseim, L. (2012, September). Lasr: A tool for

large scale annotation of software requirements. In Empirical Requirements

Engineering (EmpiRE), 2012 IEEE Second International Workshop on (pp. 57-60).

IEEE.

[17] Ormandjieva, O., Hussain, I., & Kosseim, L. (2007, September). Toward a text

classification system for the quality assessment of software requirements written in

natural language. In Fourth international workshop on Software quality assurance:

in conjunction with the 6th ESEC/FSE joint meeting (pp. 39-45). ACM.

[18] Al Balushi, T. H., Sampaio, P. R. F., Dabhi, D., & Loucopoulos, P. (2007). ElicitO:

a quality ontology-guided NFR elicitation tool. In Requirements Engineering:

Foundation for Software Quality (pp. 306-319). Springer Berlin Heidelberg.

 53

[19] Menzies, T., Krishna, R., Pryor, D. (2015). The Promise Repository of Empirical

Software Engineering Data; http://openscience.us/repo. North Carolina State

University, Department of Computer Science.

[20] Palmer, J. D., & Liang, Y. (1992). Indexing and clustering of software requirements

specifications. Information and decision Technologies, 18(4), 283-299.

[21] Park, S., & Palmer, J. D. (1994, June). Automated support to system modeling from

informal software requirements. In SEKE (pp. 86-93).

[22] Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996, August). Knowledge

Discovery and Data Mining: Towards a Unifying Framework. In KDD (Vol. 96, pp.

82-88).

[23] Ko, Y., Park, S., Seo, J., & Choi, S. (2007). Using classification techniques for

informal requirements in the requirements analysis-supporting system.Information

and Software Technology, 49(11), 1128-1140.

[24] Aas, K., Eikvil, L. (1999). Text Categorisation: A Survey.

[25] Jurka, T. P., Collingwood, L., Boydstun, A. E., Grossman, E., & van Atteveldt, W.

(2013). RTextTools: A supervised learning package for text classification. The R

Journal, 5(1), 6-12.

[26] Ensemble Learning. (n.d.). Retrieved March 20, 2016, from

https://en.wikipedia.org/wiki/Ensemble_learning.

[27] Neural Network Classifier. (n.d.). Retrieved March 20, 2016, from

http://www.robots.ox.ac.uk/~dclaus/digits/neural.htm.

[28] The R Project for Statistical Computing. (n.d.). Retrieved March 20, 2016, from

https://www.r-project.org/.

[29] Herbert Julius Garonfolo. (n.d.). Retrieved October 25, 2015, from

http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-

model/.

https://en.wikipedia.org/wiki/Ensemble_learning
http://www.robots.ox.ac.uk/~dclaus/digits/neural.htm
https://www.r-project.org/
http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-model/
http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-model/

