
A Study of Text Mining Framework  

for Automated Classification of Software Requirements  

in Enterprise Systems  

by 

Japa Swadia 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment  

of the Requirements for the Degree  

Master of Science  

 

 

 

 

 

 

 

 

 

 

Approved April 2016 by the 

Graduate Supervisory Committee:  

 

Arbi Ghazarian, Chair 

Ashraf Gaffar 

Srividya Bansal 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

May 2016  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/79584423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  i 

ABSTRACT  

   

Text Classification is a rapidly evolving area of Data Mining while Requirements 

Engineering is a less-explored area of Software Engineering which deals the process of 

defining, documenting and maintaining a software system's requirements. When 

researchers decided to blend these two streams in, there was research on automating the 

process of classification of software requirements statements into categories easily 

comprehensible for developers for faster development and delivery, which till now was 

mostly done manually by software engineers - indeed a tedious job. However, most of the 

research was focused on classification of Non-functional requirements pertaining to 

intangible features such as security, reliability, quality and so on. It is indeed a 

challenging task to automatically classify functional requirements, those pertaining to 

how the system will function, especially those belonging to different and large enterprise 

systems. This requires exploitation of text mining capabilities. This thesis aims to 

investigate results of text classification applied on functional software requirements by 

creating a framework in R and making use of algorithms and techniques like k-nearest 

neighbors, support vector machine, and many others like boosting, bagging, maximum 

entropy, neural networks and random forests in an ensemble approach. The study was 

conducted by collecting and visualizing relevant enterprise data manually classified 

previously and subsequently used for training the model. Key components for training 

included frequency of terms in the documents and the level of cleanliness of data. The 

model was applied on test data and validated for analysis, by studying and comparing 

parameters like precision, recall and accuracy.  
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CHAPTER 1 

INTRODUCTION 

"The hardest single part of building a software system is deciding precisely what 

to build. No other part of the conceptual work is as difficult as establishing the detailed 

technical requirements . . . No other part of the work so cripples the resulting system if 

done wrong. No other part is as difficult to rectify later" [1]. 

In simple terms, ‘Requirements’ of a software system basically ‘tell’ the builders 

of that software what is to be incorporated in the software, as per the needs and 

expectations of the stakeholders. 

Requirements engineering is an evolving branch of Software Engineering which 

deals with the process of defining, documenting and maintaining a software system’s 

requirements. It emphasizes the use of systematic and repeatable techniques that ensure 

the completeness, consistency, and relevance of the system requirements [3]. 

Specifically, requirements engineering encompasses feasibility study, requirements 

elicitation, analysis, specification, verification, and management. It also demands 

knowledge of the specific domain the system belongs to.  

There are two main types of requirements. Functional requirements define the 

capabilities that a product must provide to its users, such as feeding name and email 

address as input, getting a password as output, updating/inserting in the database, etc. 

while Non-functional requirements describe quality attributes, design and 

implementation constraints and external interfaces that the product must have, such as 
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security, reliability, stability, etc. The current study focuses on Functional Requirements 

in particular. 

Requirements constitute the primary steps in building any software system, and as 

entailed in this comprehensive study, are realized as one of the most pertinent aspects of 

software development. Generally, a detailed Software Requirements Specification 

(SRS) document is published, which acts as a bible for developing, maintaining and 

rebuilding a software product. It is a complex process leading up to a fundamental 

communication problem amongst many others, only because it involves three parties – 

the user of the system, the developer, and the documenter of system requirements. 

Efficient Requirements Management makes way for increased productivity, 

reduced cost of software product and improves workability of a system, in a way that 

provides for less amount of rework, that is, work done again to correct the previously 

wronged work. Industry statistics point that 50% of software project failures are caused 

due to lack of proper Requirements Engineering practices [1]. It is a known fact that 

Natural language requirements specifications are the most commonly used form, 

accounting for up to 90% of all specifications [1]. However, natural language 

requirements specifications are prone to a number of errors and flaws, in particular due 

to the ambiguity inherent in natural language. Moreover, there is a dearth of available 

methods and tools to aid software engineers in managing requirements. As the 

requirements are written in informal natural language, they cannot be easily analyzed for 

defects, such as inconsistency or ambiguity. [10] 
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Although a relatively new domain, Requirements Engineering has gained a lot of 

momentum in the past decade, and has become an indispensable process for developing 

a piece of software. Moreover, it is a continuous process during the life-cycle of a 

software, and ultimately provides an insight into the technicalities of the same.   

In particular, the area Requirements Classification holds prime importance, and is 

gaining popularity amongst researchers and data scientists who are aiming to make this 

tedious process simpler. Requirements Classification essentially involves documenting 

or specifying the needs and constraints of user in a clear and precise manner. 

Requirements statements need to be classified in order to provide clarity to developers 

who are working to build the software. Although the classification process itself aims to 

make the job easier for developers, in reality that’s not the case. High amount of manual 

labor and time are involved in sifting through requirements documents and classifying 

requirements statements into categories comprehensible to developers for building 

pieces of the system. Moreover, there is always room for doubt and variance in 

judgement as a result of many persons involved in this cumbersome task, who might 

think differently while putting each statement into a particular category. Previously, 

requirements engineering required a lot of manual efforts since it involved changing 

user needs, specifications and documentation of minute system details. As extensive 

research is taking place in this area, more advanced tools and techniques are being 

developed in order to make the entire process of classifying requirements much simpler 

and less-intensive.  Since the generation is at a point in the technology era where 

everything is beginning to get automatic, then why leave behind requirements 

classification? 
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Nowadays there are several commercial tools available for efficient requirements 

management, which automate many tasks such as document scanning, classification, 

storage, configuration, etc., but however these are not even remotely capable of 

processing free-form textual requirements documents which are likely to vary from one 

stakeholder to another. 

Although not too widespread till date, the research work related to requirements 

classification is gaining momentum. Especially, with rapid advances in scientific areas 

like Machine Learning, Data Mining and Natural Language Processing the future of our 

goal looks promising. This study explores the usage of above techniques in all the 

research that has taken place till date. However, the goal of this study aims at 

incorporating Data and Text mining techniques in particular. Other techniques 

belonging to Machine Learning, NLP, and so on without a doubt play an integral role in 

automating the entire classification process. The study also primarily focuses on 

Enterprise Systems belonging to different industries out there for applying these 

techniques. Enterprise Systems basically include software belonging to different sectors 

of industry that support large-scale business processes and organizational workflows; 

for instance- enterprise systems pertaining to healthcare, banking, consulting, education, 

so on and so forth. As mentioned earlier, the study is concentrated upon Functional 

Requirements only. This study selects the science Text Mining to be the predominant 

technology associated with developing the framework. The availability of different 

types of documents during the software life-cycle fosters this idea of applying Text 

Mining (TM) techniques in order to perform an intelligent analysis of the written text 

with the goal of automating or assisting classification. Text mining involves a set of 
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techniques to organize, classify and extract relevant information from text collections. 

These practices are part of a much general process of Knowledge Discovery in 

Databases (KDD), which is the semi-automated process of extracting relevant 

knowledge from databases (that may be textual), aiming to discover valid knowledge, 

previously unknown and potentially useful [22 ]. 

Chapter 2 presents the background and related work in the area of requirements 

classification using text mining methods; the research done thus far in automating the 

process of classification of software requirements. It mainly discusses the different 

techniques, tools and algorithms employed to classify textual data. I specifically discuss 

the inner working of the framework and the experiments conducted, along with the 

algorithm in detail. I would like to point out here that most of the research till now is 

focused on non-functional requirements, potentially because NFRs deal with intangible 

features of a software system like quality, security, etc. It becomes easier and faster to 

mine standard terms associated with these attributes, consequently producing accurate 

results. On the other hand, it is a bit more difficult to process and classify functional 

requirements since the manner in which they are written may differ from system to 

another. This chapter is ultimately concluded with the Problem Statement for this thesis. 

Problem Statement 

 Using data analysis techniques and text classification algorithms to classify 

functional software requirements of enterprise applications into their respective 

categories, in order to make the entire process smooth and less laborious. 
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CHAPTER 2 

BACKGROUND LITERATURE 

 The study ideally requires to start with a groundwork for the classification model 

to be based upon. This chapter discusses in depth the research conducted thus far in this 

area. 

Groundwork and Requirements Classification Taxonomy 

A classification taxonomy was proposed by Ghazarian [2] in his work. The paper 

studied characterization of different types of requirements into specific categories for 

Enterprise Systems. It lead to a finding that on an average, 85% of the functionalities in 

such Enterprise-based systems in a particular domain can be specified using a set of 5 

types of requirements categories, although a wider pool of 9 classes were established for 

depicting requirements of Enterprise Systems. From this, Ghazarian [2] uncovered a 

taxonomical law, which stated that the emergence of classes in a requirements 

taxonomical scheme for a particular domain, independent of the order in which 

specifications of requirements in that domain are analyzed, includes a rapid initial 

growth phase, where majority of requirements are classified, followed by a rapid 

slowdown phase with periods of no growth, which is the stabilization phase. The 

research also lead to the finding that the functional requirements space in a particular 

domain of business can be effectively characterized by its requirement types and 

frequency distributions. This extensive work can make the entire process of 

classification very efficient, in a way that it becomes less time-intensive and labor-

intensive. The research addressed some relevant questions appearing in the classification 

process, such as which are these types of classes that are generic for different enterprise 
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domains? What are the frequency distributions of the same? That is which types occur 

the most. Can we infer from the frequency distributions the industry trends in 

requirements? Are there any phenomena related to the functional requirements space 

that are consistently observed in systems belonging to the same domain or across 

multiple domains? The experiment was furthered taking into account some 15 systems 

belonging to different domains and studying their requirements statements after 

decomposing them into atomic ones. A new approach was followed for classification, 

and it included data extraction and preparation – where in functional requirements were 

studied and analyzed, and later decomposed into atomic requirements statements, ready 

to be classified. Second step involved taxonomy development and classification, where 

in all statements were studied and clustered into different standard categories for 

establishing a new taxonomy. The taxonomy that emerged from this study resulted into 

following classes of functional requirements:  

i. Data Input: description of the data items that are to be inputted into the software 

system. 

ii. Data Output: the intermediate or final results of the system operations outputted to 

a device, including the contents of the outputs and the rules for displaying those contents. 

iii. Data Persistence: descriptions of all the database related operations including 

reading, updating, inserting and deleting from/to a database. 

iv. Data Validation: description of the validation rules required to ensure the 

correctness of the inputted data items in terms of the permissible domain of values, the 

value ranges, and their correct formats. 
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v. Business Logic: description of the application or business rules including 

workflows and calculations that define and govern the operations in a particular 

application area. 

vi. Communication: description of the rules and the contents for electronic 

communication, such as email communication, between a system and an outside party. 

vii. Event Trigger: description of the stimulating actions, such as clicking on a menu 

item, link, or button, that trigger system operations. 

viii. User Interface Navigation: description of the flow of the screens (i.e. the rules for 

transition between screens) that make up an application. 

ix. User Interface: description of the static layout of the pages and screens that make 

up a system’s user interface. 

x. External Call: description of the function calls between two systems including the 

description of the parameters used to make such calls and their expected values or 

responses. 

xi. User Interface Logic: - description of the dynamic behavior of a system’s User 

interface (i.e., how the user interface interacts with its users). 

xii. External Call: description of the behavior of an operation or function in an 

external component or system. 

During the case study process, the extracted atomic requirements were recorded in 

a Requirements Research Repository (RRR), whose relational database schema was 

specifically designed to support this study. It provided complete traceability from each 

target system to its use cases and from each use case to its corresponding atomic 
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functional requirement. This is a classic case of efficient Requirements Management as 

discussed in previous section.  

After frequency distributions for each of the above functional requirements 

classes were studied across different business systems and as a consequence, it was 

observed that only 5 of the 11 classes occurred most frequently in any system: Data 

Input, Data Output, Data Validation, Data Persistence, Business Logic and Event 

Trigger. From the graphs that were plotted, the law of taxonomic classification of 

functional requirements was also verified, by employing rigorous study and random 

ordering of specifications. Graphs of systems studied and number of classified 

requirements studied versus the requirements classes led to discovery of patterns which 

showed that the emergence of classes increases at first and after a certain slow-down 

phase, it remains constant and stabilizes. This study provides valuable insight into 

requirements classification and from the graph trends, decisions can be taken for 

classifying incoming requirements of other software systems, leading to ease of 

requirements management, improved efficiency, traceability and reduced costs. 

Therefore this study provides the necessary basis for the current study to build upon.  

Automated Classification and their various approaches 

Moving forward, there is another important piece of work by Slankas & Williams 

[8] on Automated Extraction of Non-Functional Requirements from Requirements 

documents using NLP and Data Mining techniques. Although the study focuses 

explicitly on NFRs as supposed to FRs, it provides significant insight into the automated 

processing in general. The goal of their research was to aid analysts in more effectively 
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extracting relevant non-functional requirements in available unconstrained natural 

language documents through automated natural language processing [8]. The 

researchers used different techniques like K-nearest neighbors, Support Vector Machine 

and Naive Bayes classifiers to extract and classify NFRs from documents into 14 

different categories and evaluated the performances of each. They addressed four 

important questions in the study as follows - 1) what document types contain NFRs in 

each of the 14 different categories? 2) What characteristics, such as keywords or entities 

(time period, percentages, etc.), do sentences assigned to each NFR category have in 

common? 3) What machine learning classification algorithm has the best performance to 

identify NFRs? 4) What sentence characteristics affect classifier performance? The 

research contributed to developing a tool for identifying NFRs into their respective 

categories and evaluating frequency of occurrence of each kind in the document.  

As a part of their background study, Slankas & Williams [3] compared three 

machine learning techniques - K- nearest neighbors, Naive Bayes classifier and Support 

Vector Machine algorithm, to determine which would suit their purpose the best. They 

needed flexible, yet effective classification methods to handle different documents 

written in different ways with multiple ways of expressing similar concepts. Machine 

learning and Data Mining are very closely associated in a way that makes them 

complementary to each other. There are two types of categories in both fields for 

obtaining actionable information out of data - Supervised learning and Unsupervised 

learning. In supervised learning, people train classifiers with labeled data. People and 

systems then use these classifiers to decide in which class a previously unseen instance 

belongs. In contrast, unsupervised learning algorithms search data for common patterns 
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(clusters). The data is not directly labeled, but rather groups of common instances are 

created [3]. The k- Nearest neighbors scheme is a kind of supervised learning, where the 

output is a class membership, determined by calculating ‘distance’ between the 

incoming data and the existing data. Based on majority vote of ‘neighbors’ around that 

data point, it is then classified to be in the cluster that it was closest to. Advantages of k-

NN classifiers include ability to incrementally learn as new items are classified, to 

classify multiple types of data, and to handle large number of item attributes. The 

primary drawback to k-NN classifiers is that if they have n items stored, classification 

takes time [3]. Slankas & Williams evaluated other machine learning algorithms 

including naïve Bayes and Support Vector Machine (SVM). A naïve Bayes classifier 

works by selecting a class with the highest probability from a set of trained data sets 

given a specific document. It falls under the supervised learning category. 

Fundamentally, it assumes that each feature of a class exists independently of other 

features. Despite such an oversimplification, the approach performs effectively in real 

world problems. Naïve Bayes classifiers typically require fewer trained instances than 

other classifiers. SVM classifiers work by finding the optimal separator between two 

classes [8]. 

Performance measures  

So when these three algorithms were evaluated, researchers found k-NN to be the 

most efficient in this particular case. The comparison results were based on three vital 

measures called Precision, Recall and F-measure. These three parameters and generally 

used everywhere in the domains of machine learning and data science in order to 

measure the performance and efficiency of a technique applied on the given set of data.  
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To compute these values, the classifier’s predictions are divided into three 

categories for each classification value: 

1) True positives (TP) are correctly predicted values.  

2) False positives (FP) are predictions in which the sentence of another classification is 

classified as the one under evaluation.  

3) False negatives (FN) are predictions in which a sentence of the same classification 

under evaluation is placed into another classification [8]. 

From these values, precision (P) is defined as the proportion of corrected predicted 

classifications against all predictions against the classification under test: P = TP/(TP + 

FP). Recall is defined as the proportion of classifications found for the current 

classification under test: R = TP/(TP+FN). F-measure is the harmonic mean of precision 

and recall, giving an equal weight to both elements: F = 2 x (P x R)/(P + R).  

For the study by Slankas & Williams, as well as the current research topic in 

question Recall is a more important measure than the other two as it gives the number of 

statements correctly classified by the classification model. However, as per [8], 

Precision should not be ignored as it gives the accuracy of the classification model.  

Works focused on requirements management 

 

Cybulski and Reed [6] focused their work on the early phases of software 

development which include requirements engineering and management. They stressed on 

the importance of ‘reuse’ of software requirements in a common domain and 

consequently proposed a RARE (Reuse Assisted Requirements Elicitation) model 

making use of semi-automated tools like CASE. It uses IDIOM (Informal Document 
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Interpreter, Organizer and Manager) for processing an SRS document. The concept of 

reuse is directly linked to traceability of requirements - an essential detail for our current 

study which is domain-specific and intends to provide better performance for particular 

domains using requirements classified in preceding projects.  

 

Researchers and students at Concordia University studied ways to employ text 

mining assistants in order to improve the quality of SRS [5]. Although it doesn’t hold 

direct relevance to the research topic in question, it sheds some light on important facets 

of Requirements engineering that can serve as a basis on which certain rules can be 

formulated in order to develop an efficient text mining framework for automated 

requirements classification.  

The study investigated whether text mining tools could help reduce defects like 

ambiguity, inconsistency, omission, and redundancy [5]; addressing concerns about i) 

technical integration (how can text mining tools be introduced into RE tools?), (ii) 

adoption (can software engineers, who are typically not trained in NLP methods, easily 

use these tools?), and (iii) effectiveness (can the NLP tools indeed help to improve the 

quality of a specification?). Sateli, et al. developed ReqWiki, a collaborative, wiki-based 

platform customized for RE that allows (i) capturing of SRS content into several artifact 

templates, (ii) formally representing and reasoning over the populated SRS knowledge in 

an embedded ontology, (iii) applying specialized NLP services to all or parts of artifacts, 

and (iv) generating query-based, revision and domain-specific traceability links. It 

incorporated features like writing quality assessment, readability assessment, information 

extractor, requirements QA, and document indexer.  Coming back to our topic, with 
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refined quality of documents and lesser ‘noise’, the framework may perform its analysis 

more efficiently and give better results in terms of precision and recall factors.  

A Natural Language Processing approach 

 

Vlas, et al. [7] ventured into the domain of open-source projects to apply NL 

techniques to unstructured requirements documents belonging to Open Source projects in 

order to improve the quality of such software. They developed a system RCNL - 

Requirements Classifier for Natural Language. It used a pattern-based approach. A key 

element in the study was its multi-level ontology, in which the lower levels were 

grammar-based while the upper levels were requirements-based. The RCNL ontology 

implementation used a multi-level GATE parser. GATE is an open-source software for 

text processing. An ontology was created for RCNL by dividing types of text into six 

categories - from L0 to L5, each representing a class of natural language. First two 

contained common NL grammar concepts, next three contained concepts of logical 

statements and the final level contained classification statements. The GATE parser then 

implemented this ontology for classifying statements. 

GATE provides JAPE (Java Annotation Pattern Engine), a rule-based text-

engineering engine that supports Java and regular expressions. GATE also provides an 

annotation indexing and search engine with an advanced graphical user interface called 

ANNIC (Annotations in Context). RCNL makes use of both of these functionalities for 

rule-based matching of text with ontologies. 

 

For all the 16 projects experimented upon by RCNL [7], they achieved 56% 

precision and 56% recall values. When these results were compared with those resulting 
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from manual classification by experts, using a plugin provided by GATE, the results were 

promising - giving 94% precision and 64% recall. Vlas, et al. [7] reasoned that if parsing 

rules are enriched, quality of classification could be improved. This study also provides a 

structural and technical insight into developing an automated classifier model for 

functional requirements. It also imparts useful information about GATE and its 

functionality which could be used as a reference for developing a text mining 

classification framework. 

An extensive approach to NFR classification 

The research paper by Cleland-Huang, et al. [9] is an exhaustive study about the 

practical approaches to automating requirements classification. It goes into finer details 

about classifying each NFR into its appropriate category and discusses methods to 

accomplish the same. Although the techniques were targeted towards NFRs and the 

results achieved were not perfect and not completely automated as well, it is a significant 

step towards building an automatic classifier model for FRs and serves a good crux for 

the current topic at hand. It is also imperative to note that this study was used by many 

researchers as a solid reference to develop their own classification models, and compare 

their results with the same. 

This paper first describes the classification algorithm and then evaluates its 

effectiveness through reporting a series of experiments based on 30 requirements 

specifications developed as term projects by MS students at DePaul University. A new 

and iterative approach is then introduced for training or retraining a classifier to detect 

and classify non-functional requirements (NFR) in datasets dissimilar to the initial 

training sets.  
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Although the classifier was trained to detect and classify general NFRs, this study 

emphasized on the necessity of training the model because of the disparity in 

requirements documents in terms of writing styles, domain-specific terminologies, 

company standards and so on. The study described experiments conducted to train the 

model in its initial phase and then went on to present an iterative approach for retraining 

the model which could be then used across different document types and domains. The 

classifier made use of information retrieval techniques to find distinct keywords called 

‘indicator terms’ that most-closely related to each NFR type. The process was composed 

of three phases - training, classification and application.  

 

In the training phase, the system was trained to identify requirements. This 

required a requirements engineer or analyst to manually classify several structured 

requirements specifications beforehand. These pre-classified documents were then fed 

into the classifier system, which mined the document for indicator terms pertaining to 

specific NFR types (security, performance, availability, extensibility, etc.). After 

identifying a set of indicator terms, each term was given a probabilistic weight for every 

NFR type. This weight was based on how strongly it correlated with a given NFR type. It 

was studied that some indicator terms might correlate to multiple NFR types, so every 

indicator term was given separate weights for each NFR type. In the classification phase, 

the system used the set of indicator terms to detect and classify NFRs from unclassified 

requirements specifications and other documents. One requirement, be it sentence or 

phrase, might have contained indicator terms related to different NFR types. The 

probabilistic weights for each indicator term related to one requirement determine which 
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type it should be classified as. For each requirement, the weights of all corresponding 

NFR types were summed, and these sums were called the classification score. 

Requirements receiving classification scores above a certain threshold for a given NFR 

type were classified into that type. Any requirements that did not reach this threshold for 

any NFR type were assumed to be functional requirements, and were classified as such. 

This finding can be used as an important aspect in our topic, by mirroring the steps for 

FR instead of NFRs.  

The result of this activity was a list of classified requirements. In the application 

phase, the classified requirements were used in subsequent software engineering 

activities such as requirements prioritization, architectural design, and so on. In their 

paper, the authors offered very little attention to the application phase. Their method was 

mainly concerned with automating the classification of requirements, and so is ours. 

 

An ontology model 

A similar and interesting ontology-based study conducted by Rashwan, et al. [10] 

was aimed at using a Support Vector Machine (SVM) based classifier for automated 

requirements classification. The researchers developed a whole new ‘gold standard’ 

corpus containing annotations for different NFR types. Although this is again a case 

where the focus was on NFRs, the study nevertheless is technically relevant for 

classifying FRs as well, which could essentially involve a different ontology based on 

their gold corpus.  

Although there existed an ontology-based requirements elicitation approach for assisting 

analysts [8], making use of knowledge repositories that capture requirements categories 
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from elicitation interviews, it is based on specific ontologies that vary over different 

domains. However, this SVM base classifier is a generic approach - independent of the 

context in which requirements are specified. The main goal of this study was to 

incorporate semantic analysis methods to automatically extract requirements written in 

natural language in order to make requirements machine-process able using ontological 

representation, then applying QA methods to analyze them for detecting defects like 

ambiguities and finally attempting to establish traceability links between NFRs and FRs 

for creating estimation models. For their analysis, the study made use of SRS documents 

belonging to the PROMISE corpus [9] which consists of 15 SRS documents, developed 

as term projects by MSc students at DePaul University. These specifications contain a 

total of 326 nonfunctional requirements and 358 functional requirements. One important 

observation in this study was that one requirement statement could be classified into 

more than one type of category. This point will play an important role in our research 

topic as well. 

The requirements ontology was modeled using OWL (Web Ontology Language) 

by limiting the categories to those majorly occurring in the SRS. Initially, a manual 

annotation was done by analysts who analyzed each statement in the documents and 

classified requirements into their respective types, which could be more than one. After 

the corpus was defined with four main classes, each containing a set of categories and 

compared with manual annotation, an average of 78.36% was found which showed a high 

level of agreement between annotators. A gold standard was then established for each 

document based on group discussions. The NFR classifier was implemented using GATE 

by first preprocessing the documents and then training SRS data. It extracts features from 
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documents and parses them using machine learning components. It uses ANNIE for 

finding tokens, splitting sentences and stemming relevant wordings. Rashwan, et al. used 

SVM algorithm with third-order polynomial kernel which gave best performance.  

 

After all sentences had been classified, they populated the ontology with OWL using 

OwlExporter plugin of GATE and linking sentences to their source documents with 

corresponding classes. This enabled rich querying using SPARQL and OWL-DL 

reasoner tools for developing a knowledge base.  

The model was evaluated using precision, recall and F-measure metrics. When the 

algorithm was applied to PROMISE corpus using Weka, the performance of SVM based 

classifier was compared with that of Cleland-Huang et al. [17]. Both approaches were 

roughly equal in Precision - 77% and 76% respectively, but this approach showed a 

significantly higher Recall - 60% as compared to 14%. In the final analysis phase, 

confusion matrices were created, that showed the false positives and false negatives of 

the classifier outcomes. The confusion matrix of the Functional Requirement (FR) 

Classifier shows that 76 sentences are classified as false positive, and 4 sentences as false 

negative. This meant that there is still a room for improvement in FR category and it 

could be achieved by increasing the amount of training data.  

A semi-supervised approach 

The study by Casamayor, et al. proposed a recommender system based on a semi-

supervised learning approach for assisting analysts in the detection and classification of 

NFRs from textual requirements descriptions. The main goal was to provide suggestions 

to the analyst about candidate NFRs and their corresponding categories. That is, the 
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classifier would automatically recognize a given requirement from the requirements 

document written in natural language and suggest suitable category. Later the results 

would be presented to an analyst for inspecting the results and who would give feedback 

for successive iterations.  

The approach used here was a semi-supervised approach as opposed to supervised 

techniques like Bayesian methods, K-nearest neighbors, etc. with contain labeled training 

examples for analyzing the incoming unlabeled data. The semi-supervised approach 

makes use of learning from both labeled and unlabeled data. The Expectation-

Maximization algorithm is one of such kind, as is used in this study for developing a 

recommender system. It basically consists of two steps, the Expectation step (E-step) and 

the Maximization step M-step). The E-step fills in missing data based on an estimation of 

parameters while the M-step re-estimates the parameters to maximize or increase the 

likelihood of those parameters. The parameters that EM estimates in this case are the 

probability of each word given a class and the class prior probabilities.  

Initially, the documents in the labeled set L have class labels, whereas the 

documents in the unlabeled set U have missing class labels. EM algorithm is used to 

estimate these missing class labels based on current labels that is by assigning 

probabilities to class labels in each document belonging to U. This 2-step process was 

reiterated until the probability parameters became stable.  

Nigam et al. [21] proposed the EM algorithm for LU learning with Naive Bayes 

classification, which was hence used in this study. For experimenting this approach, 

Casamayor, et al. used the PROMISE repository. The collection was split into 468 

requirements as training set, and remaining 156 as the test set for applying EM. When 
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compared with classical algorithms like Naive-Bayes and k-NN, and text mining 

algorithm like TF-IDF on same data, EM outperformed these in terms of accuracy, as 

unlabeled documents provided some good insights such as words which tend to appear 

together in a specific type of document. Even when the training data was increased, it 

gave similar accurate results. As a parting note on empirical analysis of this model, the 

researchers pointed out that performance could be improved if documents belonging to a 

single software project are considered during learning.  

Since this was a semi-supervised approach as opposed to fully supervised 

techniques discussed before, the authors pointed out that the main drawback of applying 

supervised methods to requirements detection is the amount of pre-categorized 

requirements needed to reach good levels of precision in the classification process. 

However, the use of distinctive vocabulary, domain terminology and writing styles across 

different projects as well as requirement elicitation process could tend to hinder the 

application of the current method. A substantial concluding point was that semi-

supervision involves less human effort in labeling the requirements, including manual 

revision and classification of textual requirements statements than fully supervised 

methods thereby saving time and labor resources, and most importantly taking a step 

towards automated classification of requirements. 

Another variant of NLP approach 

Hussain, et al. [12] focused on natural-language processing tools to extract, 

differentiate FRs and NFRs, and classify NFR statements from SRS documents. They 

proposed a text-classifier model equipped with a POS (part-of-speech) tagger which 

resulted into very high accuracy of 95.86% when applied to data same as that used by 
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Cleland-Huang, et al. [9]. They used the same corpus as before - PROMISE repository 

SRS documents [19], with the Stanford Parser for stemming grammatical words and 

extracting 5 syntactic features from each of the training sentences from the documents. 

These features were Number of Adjectives, Number of Adverbs, and Number of Adverbs 

that modify Verbs, Number of Cardinals, and Number of degree Adjectives/Adverb, and 

were identified as candidate terms that influence the process of classifying NFRs the 

most. To determine and automatically select which of these features were valid for 

detecting NFRs, a probabilistic ranking measure was used based on higher probabilities 

of occurrences in the training set. A cutoff threshold value of 0.8 was then selected 

manually and all features exceeding this value were selected as valid. Now the study by 

Cleland-Huang, et al. [9] identified specific keywords, but not in context of their parts-of-

speech group. After analyzing types of most probable words used in NFR, as described in 

[12], they considered keywords of 9 different parts-of-speech groups separately. After 

repeating the ranking process on these groups using two different methods - Unsmoothed 

and Smoothed Probability Measures. To classify the sentences, they developed a feature-

extraction program in Java that parses the sentences from the corpora, and extracts the 

values of all the features mentioned above. It used Weka to train the decision-tree 

algorithm. The results came out to be exceptionally well when using the whole dataset for 

training and testing. Since the dataset was not very large, they also used 10-fold cross 

validation, and the results were as satisfactory. On creation of its confusion matrix, the 

study reaped a precision of 97.8% and a recall of 100% with no false negatives. Even the 

standard deviation was pretty low during each iteration of cross-validation in the entire 

process. 
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When compared with the work of Cleland-Huang, et al. [9], this study showed 

significant improvement - by a large margin in terms of overall accuracy, precision and 

recall. In conclusion, this research is based on linguistic tools for classifying 

requirements. Although it does not make use of data mining or machine learning 

paradigms per se, it definitely gives an insight into the performance gain of such a system 

as compared to other techniques.  

 

Hussain, et al. [16] developed a tool for annotation of software requirements, 

which basically extracted textual statements and classified them by assigning appropriate 

labels. They showed the importance of annotation of requirements in practical use by 

stating the need to build annotated sets of such documents that are used in number of 

recent projects that attempt to learn the workings of the human brain behind different 

requirements analysis tasks like classification and automate these tasks by using 

supervised or semi- supervised learning techniques. This could come in handy for our 

approach which is targeting domain-specific software projects that can make use of 

annotated corpora like these to train the model. The tool - LASR (Live Annotation of 

Software Requirements) is a client-server based web application with a rich UI built upon 

the CakePHP framework and makes use of lightweight NLP tools like sentence delimiter 

and a noun-phrase chunker, that can automatically extract requirements instances at the 

levels of passages, sentences and noun-phrases from the requirements documents and 

save them to the backend. The results were compared with statements manually 

annotated by expert students as well as students having no prior experience or 

background in annotating statements, and were found pretty reliable. LASR attempts to 
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compute the annotation for each instances, by first assigning a custom score to each of 

the annotation labels based on the level of confidence submitted by the annotators. Thus, 

the annotation label with the highest score, and that is also greater than some threshold, 

was selected as the gold-standard annotation. They aim to reduce manual efforts in their 

future work. 

Other related works 

Raamesh and Uma [4] attempted to automatically generate through their study, 

test cases from SRS documents using data mining techniques for facilitating automated 

or better manual software testing. They used Weka data mining tool for classifying 

functional and nonfunctional requirements. The study followed a rather circuitous 

approach wherein the model first created UML state diagrams out of textual sentences 

and then proceeded to apply data mining tools to classify requirements statements. It 

started by generating classification rules, selecting a predicate on state diagram 

transition, which was then transformed into a predicate function. Finally mining 

techniques like association mining and clustering are applied to determine categories of 

FRs and NFRs. As stated earlier, it turned out to be complicated manner of classifying 

requirements out of use-cases, and using unsupervised methods are not recommended 

for the current study in question. Supervised text classification algorithms would give 

better results in context of this study. 

Ko et al. (2000) [13] proposed a Web-based analysis-supporting system. For 

automatically classifying the collected informal requirements into several views or topics, 

the system required as input a set of words representing the viewpoint of each analyst. 

They used similarity matching techniques, frequency of words and part-of -speech 
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tagging to expand the initial data set and find co-occurrence of words. The main 

shortcoming of this method was its reliance on analysts for extracting keywords 

for different views of the software to be developed. Again, this was not a fully automated 

method and such studies shed more light on the need for automatic classification system 

that requires minimum manual effort. In 2007, they went ahead to develop a 

bootstrapping framework for classifying requirements based upon their previous study 

[23]. Each statement was separated, and keywords were extracted for each topic. A 

centroid-sentence was derived for each topic that is the sentence that defines the core 

meaning of that topic. It was also a topic-keyword statement which included topic 

keyword or any word or a requirement statement as a whole, possessing high similarity to 

the topic category obtained using a similarity-matching technique. A Naive-Bayes 

classifier was then applied to train this topical data. This system does reduce manual 

effort and analysts can easily detect the structure of collected requirements by inputting 

topic words only. However the same drawback applies to this as of the previous work 

[13]. 

Palmer and Liang [20] proposed a Two-tiered clustering algorithm for indexing 

and clustering requirement specifications by functionality. This study is an example of 

utilization of unsupervised methods as opposed to supervised technique of classification. 

Hussain, et al. [17] further ventured into developing an annotated text classification 

system for assessing quality of requirements statements and detecting ambiguities 

automatically, again using a similar technique as described in the previous section. Park 

et al. [21] proposed a requirement support system that evaluated the resemblance of 

requirement sentences using similarity measures by using Information Retrieval methods 
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to identify possible redundancies and inconsistencies as well as to detect potentially 

ambiguous requirements.  

These studies can aid in smoothing of input data to the framework visualized in 

the current topic. As obvious it can be, such enriched data with no defects can enable the 

model to work efficiently, giving high precision and recall. 
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CHAPTER 3 

METHODOLOGY 

This chapter discusses in depth the methods and techniques as well as the data and 

tools that were used to conduct the study of text classification and categorization of 

software requirements. Figure 1 below shows a block diagram representation of 

methodology employed in this study. 

 

Figure 1. Classification process methodology block-diagram 

 

Data 

For mining and extracting actionable information, data is everything. It is highly 

influential for the results produced and analysis of the same. As the study deals with 

requirements data pertaining to different enterprise systems, data is variable for achieved 

results. For this project, I used the requirements dataset belonging to domain of 

mathematical software systems. It consisted of 1495 requirements statements that were 
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already classified into respective categories as a part of a prior research in requirements 

engineering. However, the size of data set was refined and reduced to 672 statements for 

applying kNN classifier by further distilling it to carefully include non-redundant 

statements, sufficient to be trained upon. The collection of statements was derived from 

the following mathematical systems - Geogebra 4, Graph, wxMaxima, MS Excel 2007, 

Mathcad 14.0, Mathematica 8.0, Stata 12, Minitab 15, CPMP Tools and Maple. As these 

requirements come from verified software systems, it is safe to assume that they are 

authentic. This dataset, in form of a comma separated (csv) file served as an input for the 

classification model, and was sampled into two parts for training and testing of the 

framework during the course of text classification process. Throughout the thesis, we 

sometimes refer to these statements as documents, as it conforms to the terminologies 

used in Text mining. There are three columns in the set - ID, Requirement.Statement and 

Requirement.Type. The first is simply a numerical ordering of statements while the 

second column actually holds all atomic sentences of requirements; third column being 

the type or category of corresponding statement in column 2, which is discussed next.  

Categories 

In the dataset, the column Requirement.Type contains the 12 categories in which 

the textual statements are and will be classified into. As discussed in Chapter 2 - 

Background study, the different categories of classification determined by Dr. 

Ghazarian’s research on requirements taxonomy [2] were used in this study. The 

description of each of the 12 categories is briefly described below, in context of 

mathematical enterprise software. 

1. Data Input: Description of data items that serve as input to the software system. 
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2. Data Output: The intermediate or final results of the system operations output to a 

device, including the contents of the outputs and the rules for displaying those 

contents. 

3. Data Persistence: Descriptions of all database related operations including 

reading, updating, inserting and deleting from/to a database. 

4. Data Validation: Description of the validation rules required to ensure the 

correctness of the inputted data items in terms of the permissible domain of 

values, the value ranges, and their correct formats. 

5. Event Trigger: Description of the stimulating actions, such as clicking on a menu 

item, link, or button, that trigger system operations. 

6. User Interface Navigation: Description of flow of the screens (i.e. the rules for 

transition between screens) that make up an application. 

7. User Interface: Description of the static layout of the pages and screens that make 

up a system’s user interface. 

8. User Interface Logic: Description of the dynamic behavior of a system’s User 

interface (i.e., how the user interface its users). 

9. Application Logic: Description of the application or business rules including 

workflows and calculations that define and govern the operations in a particular 

application area. 

10. External Call: Description of function calls between two systems and the expected 

value of the calls, such as ‘system uses OS’s file browser for navigation’. 

11. Mathematical Algorithm/Procedure: Description of a specific function performed 

mathematically, such as 'system then calculates area of triangle'. 
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12. Mathematical Rule/Principle: Description of a specific rule, such as 'area cannot 

be negative'. 

Algorithms and Classifiers 

Text categorization is the process of grouping text documents into one or more 

predefined categories based on their content. In supervised learning, a number of 

statistical classification and machine learning techniques have been applied to text 

categorization, including regression models, Bayesian classifiers, decision trees, nearest 

neighbor classifiers, neural networks, and support vector machines [24]. This section 

describes them in context of the model developed.  

In its first version, the model used the k-Nearest Neighbors (kNN) classification 

algorithm. To classify a class-unknown document X, the k-Nearest Neighbor classifier 

algorithm ranks the document's neighbors among the training document vectors, and uses 

the class labels of the ‘k’ most similar neighbors to predict the class of the new 

document. The classes of these neighbors are weighted using the similarity of each 

neighbor to X, where similarity is measured by Euclidean distance or the cosine value 

between two document vectors. The kNN classifier is based on the assumption that the 

classification of an instance is most similar to the classification of other instances that are 

nearby in the vector space. The knn function in R applies the algorithm using the 

Euclidean distance, which is a distance measure is based on the Pythagorean formula in a 

2-dimensional vector space. Compared to other text categorization methods such as 

Bayesian classifier, kNN does not rely on prior probabilities, and it is computationally 

efficient. The main computation is the sorting of training documents in order to find the k 

nearest neighbors for the test document. 
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In its second version, the model used several other algorithms, all at once. This 

approach is referred to as ensemble learning and is a popular technique in machine 

learning. Ensemble methods basically aim to obtain better predictive performance than 

could be obtained from any of the constituent learning algorithms. I have used 8 

algorithms in my ensemble - Support Vector Machine (SVM), Generalized Linear Model 

Network (GLMNET), Maximum Entropy (MAXENT), Boosting, Bagging, Random 

Forests, Neural Network and Decision Trees. 

A Support Vector Machine (SVM) is a supervised, discriminative classifier 

defined by a separating hyperplane, and given labeled training data the algorithm outputs 

an optimal hyperplane for classifying incoming (test) data. The GLMNET is an 

extremely fast algorithm that uses fitted generalized linear models via maximum 

likelihood techniques for classifying sparse data. The Maximum Entropy classifier is a 

probabilistic classifier which belongs to the class of exponential models. Unlike the 

Naive Bayes classifier, the Max Entropy does not assume that the features are 

conditionally independent of each other. The MaxEnt is based on the Principle of 

Maximum Entropy and from all the models that fit the training data, selects the one 

which has the largest entropy. Bagging and boosting are meta-algorithms that pool 

decisions from multiple classifiers. Boosting involves incrementally building an 

ensemble by training each new model instance to emphasize the training instances that 

previous models misclassified. 

Bootstrap aggregating, often abbreviated as bagging, and involves having each 

model in the ensemble vote with equal weight. In order to promote model variance, 

bagging trains each model in the ensemble using a randomly drawn subset of the training 

http://blog.datumbox.com/machine-learning-tutorial-the-naive-bayes-text-classifier/
http://en.wikipedia.org/wiki/Principle_of_maximum_entropy
http://en.wikipedia.org/wiki/Principle_of_maximum_entropy
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set [26]. Random forests is an extremely accurate classifier that works by constructing a 

multitude of decision trees at training time and outputting the class that is the mode of the 

classes of individual trees. A neural network consists of units (neurons), arranged in 

layers, which convert an input vector into some output.  Each unit takes an input, applies 

a (often nonlinear) function to it and then passes the output on to the next 

layer.  Generally the networks are defined to be feed-forward: a unit feeds its output to all 

the units on the next layer, but there is no feedback to the previous layer.  Weightings are 

applied to the signals passing from one unit to another, and it is these weightings which 

are tuned in the training phase to adapt a neural network to the particular problem at hand 

[27]. The decision tree classifier organizes the training set into a series of test questions 

and conditions in form of a tree structure and makes decisions based on answers 

traversed. 

Language and development environment 

For developing and studying the classification model, I used R - a language and 

environment for statistical computing and data analysis [28]. It is available on the 

Comprehensive R Archive Network (CRAN). I used the RStudio IDE for writing and 

executing code. The version I employed is R 3.2.3 Wooden Christmas Tree. RStudio 

provides a set of integrated tools to make most out of the language R. It includes a 

console, syntax-highlighting editor that supports direct code execution, as well as tools 

for plotting, history, debugging and workspace management [29]. 

Packages and tools 

One of the packages used here was the Text Mining (tm) package, a framework in 

R built specially for text mining applications. It is feature-rich in a way that incorporates 
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text pre-processing functions for loading, cleaning and exploring text data. Activities like 

corpus creation, text preprocessing and document term matrix creation were performed 

using tm package.  

Another very useful text mining package called RTextTools was also used in this 

study to exploit its functionalities in comparison to tm. This package specifically serves 

text classification for machine learning in R. It allows use of combination of algorithms 

for classification and includes nine algorithms for ensemble classification (svm, slda, 

boosting, bagging, random forests, glmnet, decision trees, neural networks, maximum 

entropy), 8 of which I applied to the current model.  

Other packages used for singular functionalities in this project were class - for 

generating kNN classifier; SnowballC - for word stemming and ggplot2 - for data 

visualization and plotting results. 

Data Preparation and Preprocessing  

At the start, data was loaded from the csv file into the R script in form of a data 

frame, which is an efficient matrix-like data structure in R for holding any-dimensional 

data. Next, the libraries discussed in previous section were loaded to perform text 

cleaning and preprocessing. A corpus, which is a structured collection for managing 

documents in text mining, was then created for holding the text from 

Requirements.Statement column of the data frame. This corpus was then cleaned up 

using tm_map function of tm package in order to make it easier for the model to train 

upon it over for classification. Cleaning the corpus involved removing whitespaces, 

numbers, punctuations and stop words (unimportant words like is, the, for, etc.); 

transforming text to lowercase and stemming words - converting them all into their root 
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words. These text terms would be used for training the model. Next task was to put these 

training terms into a Document Term Matrix, a matrix containing frequencies of 

occurrence of all training terms from the corpus. This enables training model in way that 

helps it decide classification criteria based on frequency of each term in the training text. 

This DTM was made sparse with a factor of 0.97, that is, with lowest frequency terms 

eliminated the matrix then contained terms that were present in 97% of the documents. 

After this step, the DTM was loaded into a data frame and the Requirements.Type 

column was bound to it for training the data over already classified documents. The data 

in data frame was then partitioned into two samples - training data and test data. The 

training set contains 765 statements while the test set contains 735 statements. The 

classifier column renamed as ‘Category’ was isolated into a vector as required by the 

kNN function for training.  

As interpretation of data analytics is rather a cumbersome task for those not 

experienced it, data visualization practice helps depict raw data or results in form of 

graphs, charts and diagrams. For visualizing data graphically in terms of frequency and 

percentage distribution, I used the ggplot package to create histograms for training and 

test data sets. The following figure represent a pictorial view of requirements in the data 

set and their prevalence or frequency of occurrence in the system. 
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Figure 2. Number and percentage distribution of requirements over categories 

 

Training and testing 

Once the data was prepared for training, I conducted two versions or approaches 

of classifying text as discussed previously. I first applied the kNN classification 

technique using its function knn which takes training sample, test sample and the 

classifier as its arguments. The output of this classifier was then bound to the category 

column and stored in a data frame; and subsequently written to a csv file. In its second 

version I applied ensemble techniques by first training them each over the training set 

using train_model functions, and then using the classify_model function to test the model 

over the test set. I also used 4-fold cross-validation to check and try to improve accuracy 

of results. Figures 3 and 5 represent the source code from preprocessing till training 
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stages in ensemble approach while figures 4 and 6 represent the same for kNN approach. 

The results and discussion on analysis parameters is carried forward in the next chapter. 

 

 

Figure 3.  Loading and preprocessing data in ensemble approach. 

 

Figure 4. Loading and preprocessing data in kNN approach. 
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Figure 5. Training in ensemble approach 

 

Figure 6. Preprocessing data and training in kNN approach 
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

This chapter discusses the results of analytics obtained after applying techniques 

for classification of requirements as specified in the preceding chapter. It explains the 

analysis parameters and the effect of each algorithm used in classification.  

Analysis of kNN classifier 

After applying the kNN function for classification, a confusion matrix was created 

to study and obtain analysis results. A confusion matrix, or contingency table, is a matrix 

representation of an algorithm’s accuracy of classification and is formed by drawing up 

the actual or expected outcomes against the classified or predicted outcomes, as rows and 

columns. By looking at this matrix and examining it, one can discern whether or not a 

document or statement was classified correctly or not, and if it was classified at all then 

as what it was classifies as. From this matrix I calculated values like True Positives, False 

Positives, True Negatives and False Negatives; followed by performance measures like 

Precision, Recall, F-measure and Accuracy. These parameters have been discussed in 

detail in Chapter 2.  Precision answers the following question - ‘Out of all the statements 

the classifier labeled as belonging to a particular category (say Data Input), what fraction 

were correct?’ On the other hand recall answers the question - ‘Out of all the (say Data 

Input) requirements statements that were there, what fraction did the classifier pick up? 

The answers to these questions have been summarized into Table 1 below. It can 

be observed that the Euclidean similarity measure obtained using 1 nearest neighbor 

(knn1) function gave better results than the knn function which assumes value of k 

automatically. Precision values of 61% and 86% were achieved respectively, while recall 
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values of 77% and 76% were achieved respectively for knn and knn1 classifier 

functions.  The overall accuracy of the model came up to 52% from 50%. This result 

shows that precision greatly improved when the number of nearest neighbors was fixed at 

1. A larger value of k produces a smoother boundary for classes and reduces noise. 

 kNN (k=auto) kNN (k=5) kNN1 (k=1) 

Precision (%) 61 95 86 

Recall (%) 77 80 76 

F-measure (%) 68 87 78 

Accuracy (%) 50 52 52 

Table 1. Performance measures of kNN classifier methods. 

 Using a useful table function in R, we could summarize the original test data and 

compare it with the kNN-classified data. The table below shows frequency of statements 

in original test data and classified test data. This also provides an overview of how the 

model performed. However, this does not give an idea about whether these were correctly 

classified. 

Category Frequency in original test 

data 

Frequency in kNN-classified test 

data 

Application Logic 32 35 

Data Input 71 50 

Data Output 18 23 

Data Persistence 15 13 

Data Validation 22 23 

Event Trigger 56 64 

External Call 3 7 
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Math 

Algorithm/procedure 

37 31 

Mathematical 

principle/rule 

16 41 

User Interface 40 25 

User Interface Logic 27 25 

User Interface Navigation 3 3 

Table 2. Frequencies of requirements statements 

Figure 7 below depicts the source code for determining the performance measures 

discussed above using a confusion matrix. 

 

Figure 7. Analysis of kNN classifier 
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Analysis of ensemble classifier 

 The algorithms applied in ensemble learning method were evaluated differently 

than kNN using powerful tools available in the RTextTools package of R. The 

create_analytics() function rendered all performance measures relevant to the test data 

classified by an ensemble of algorithms - SVM, MaxEnt, GLMNET, Random Forests, 

Neural Networks, Boosting, Bagging and Decision Trees. The function returns a 

container with four different summaries: by label (e.g., topic), by algorithm, by 

document, and an ensemble summary. In this case, as all data in the training and testing 

sets have corresponding labels, create_analytics() will check the results of the learning 

algorithms against the true values to determine the accuracy of the process [28]. 

The label summary provides statistics on each of the requirement categories in the 

classified data. It includes number of documents classified into each label by the 

ensemble method as well as their probabilities. The algorithm summary provides 

performance values: Precision and Recall, provided by each of the algorithm used in the 

ensemble. The document summary provides statistics on each document (statement here) 

classified and includes each algorithm’s prediction, the algorithm’s probability score, the 

number of algorithms that agreed on the same label, which algorithm had the highest 

probability score for its prediction, and the original label of that statement. Finally, the 

ensemble summary provides details on the ensemble classifier as a whole (Table 3), 

also including coverage for an n-ensemble agreement. For this model, n=8 as 8 

algorithms were employed. Coverage simply refers to the percentage of documents that 

meet the recall accuracy threshold [25]. For example, if there are 10 statements and only 

two statements meet the eight ensemble agreement threshold, then our coverage is 20%. 
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It is mathematically defined as k/n, where k is the percentage of cases that meet the 

ensemble threshold, and n represents total cases. Table 2 reports the coverage and recall 

accuracy for different levels of ensemble agreement. The general trend is for coverage to 

decrease while recall increases. In the current model, just 18% of the requirements have 

eight algorithms that agree. However, recall accuracy is 96% for these when the 8 

algorithms do agree.  

 

n n-ensemble coverage n-ensemble recall 

n  >= 1 1.00 0.67 

n  >= 2 1.00 0.67 

n  >= 3 0.99 0.68 

n  >= 4 0.93 0.69 

n  >= 5 0.77 0.75 

n  >= 6 0.63 0.79 

n  >= 7 0.49 0.84 

n  >= 8 0.18 0.96 

Table 3. Ensemble Summary 

Algorithm Precision Recall F-measure 

SVM 0.63 0.54 0.56 

GLMNET 0.57 0.60 0.58 

MaxEnt 0.63 0.64 0.59 

Boosting 0.62 0.59 0.58 

Bagging 0.65 0.59 0.59 

Random Forest 0.69 0.63 0.63 
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Neural Network 0.17 0.21 0.17 

Tree 0.45 0.49 0.44 

Table 4. Ensemble algorithm performance summary 

Figure 8 below presents the source code for obtaining all summaries and 

parameters discussed above using create_analytics() method. 

 

Figure 8. Analysis of ensemble approach 

I also attempted to apply 5-fold cross-validation for the ensemble in order to 

improve performance as can be seen from Figure 8. For a data set of medium size as this 

one, 5 is a good number for cross-validation. For larger datasets one can use a number 

like 10. The accuracy after every fold for each algorithm can be seen from Figures 9, 10 

and 11 below.   
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Figure 9. Cross-validation results 

From above, it can be seen that on applying 5-fold cross validation to the 

ensemble, the Max Entropy algorithm yielded an accuracy value of 82% which is 

notable. 

 

Figure 10. Cross-validation results 
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From above it can be noted that Boosting also improved the accuracy to almost 

80% using 5-fold cross-validation. As expected from summary values, Neural Network 

and trees did not do any good to the accuracy of the model. 

 

Figure 11. Cross-validation results 

From the label summary discussed before, we obtained an important result on the 

percentage of documents correctly classified by the ensemble method. The table below 

shows number of statements classified by the ensemble method and the percentage of 

them which were correctly classified. It can be seen that for the label ‘External Call’ over 

92% of the statements were correctly classified and for ‘User Interface Navigation’ all of 

them were correctly classified, while only 5% were correctly classified for ‘Mathematical 

principle/rule’. 

Category Number of statements 

classified 

Percentage of statements correctly 

classified 

Application Logic 154 57.14 

Data Input 63 58.66 

Data Output 62 60 

Data Persistence 3 42.85 

Data Validation 65 100 
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Event Trigger 166 92.14 

External Call 2 66.67 

Math 

Algorithm/procedure 

38 78.78 

Mathematical 

principle/rule 

8 5.45 

User Interface 92 62.79 

User Interface Logic 84 69 

User Interface Navigation 4 100 

Table 5. Label Summary 

Comparison  

  From the analyses above, it can be observed that the kNN approach clearly 

outperformed the ensemble approach in terms of performance measures – Precision and 

Recall. 
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CHAPTER 5 

DISCUSSION 

The final chapter in the thesis summarizes the work performed and provides 

conclusion and future scope for the study conducted. It also discusses challenges faced 

throughout this project. 

Summary 

The first chapter introduced readers to the subject of this thesis, highlighting the 

importance of requirements management and need to automate classification to ease out 

the subsequent phases of development. It also talked about the role of machine learning 

and text mining in requirements engineering and provided an insight into how data 

analytics works in context of textual statements of software requirements. 

The second chapter discussed background work in the core area of classification 

of software requirements using text mining, machine learning and NLP. It explained and 

compared different prior research works conducted and using the insights gained, 

ultimately charted a route for the current work to proceed. 

The third chapter explained in detail the methodology employed in conducting the 

study and creation of classifier model, including the language and platform; data, tools, 

technologies and packages; and the classification algorithms hence used. 

The fourth chapter dealt with analysis of performance measures of individual and 

ensemble algorithms and drew comparisons amongst them in terms of those measures. 

Challenges  

In text mining, it is always a challenge working with free-form text data. 

Naturally, it was quite challenging to work with data containing all text and refining it to 
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extract relevant terms on which the model can be trained. Another issue arises from the 

complexity of natural language itself. Although in enterprise systems, requirements are 

clearly specified the language and style of writing them may differ from person to person. 

Therefore it is a huge challenge to unify different styles of writing or established common 

format for them. In addition to this, one word may have more than one meanings. It is a 

challenge to determine semantics of each text. In many approaches like this one, the 

model is trained using document frequencies - the frequencies of occurrence of terms in 

the text. However the semantic aspect of text should also be taken into consideration by 

the model to effectively train over it, along with the causal relationships between words. 

There is also the issue of the model getting ‘confused’. In this case, there were many 

statements which a human could possibly classify into more than one labels depending on 

the context in which it appeared in the system. Therefore, domain knowledge integration 

is of utmost importance here. Lastly, there is the issue of memory. With large size of text 

data the memory requirement becomes large. This requires high RAM machines with 

high processing powers. 

There were no major impediments faced in this project than the ultimate question 

of improving the efficiency of classifier model. Data cleaning was one minor obstacle 

faced in the creation of classifier model in this study. When data was less cleaned or 

uncleaned it resulted in memory requirement being very high for a relatively less number 

of documents/statements. Another issue was selection of classification algorithm that 

would serve best for the task at hand. However, with the help of ensemble learning this 

challenge was overcome. Lastly, there was the problem of context, wherein there were 

many statements that could very well be classified into category other than the one it was 
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classified manually. For instance the statement ‘The user then clicks on the formula 

button present in the toolbar’ appeared as Event Trigger category but could also be 

classified as User Interface Navigation if the context is unknown. 

Conclusion, recommendations and future scope 

In a nutshell, this thesis aimed to study and apply text classification over 

functional software requirements belonging to enterprise applications using different 

algorithms and determine how accurately the classifier was able to predict requirement 

type for each statement presented to it. However, one limitation of this study was the 

mediocre value of precision obtained. There is a potential to improve this value by 

training more data - meaning, consolidating requirements from more enterprise 

applications of a particular type. To be on a neutral front so as to avoid potential 

confusion during manual classification, an approach of crowd-sourcing could be 

followed, where in paid surveys or activities are conducted for masses all over the world 

to contribute to the classification, thereby improving the quality of training data. As 

discussed previously there are some factors which affect the accuracy of classifier, such 

as semantics and word relationships and context. To avoid the model from getting 

confused, validity of training data is of high significance. The future scope can also take 

in the approach of a weighted-kNN, where in the number of neighbors are determined 

based on weighing of terms in training data, which in this case could be the terms 

associated with the enterprise domain. R project recently launched a knn function called 

kknn for the same.  

Overcoming these issues in future could significantly take up the accuracy of such 

classifiers. In addition to this the label summary showed a very small percentage of 
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statements correctly classified as ‘Mathematical principle/rule’. This category 

corresponds to a specific application of domain of applications in enterprise systems. In 

this case, it would be best to accumulate such domain rules or subject-matter expertise to 

train over them in order to improve accuracy of the model. Again this leads us to realize 

the importance of having historical data for training effectively. A data warehouse would 

serve the purpose for large-scale enterprise applications. 

 



  51 

REFERENCES 

[1] Software Engineering Institute, Carnegie Mellon University 

http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm. 

 

[2] Ghazarian, A. (2012, September). Characterization of functional software 

requirements space: The law of requirements taxonomic growth. In Requirements 

Engineering Conference (RE), 2012 20th IEEE International (pp. 241-250). IEEE. 

 

[3] Sommerville, I., Software Engineering, 9th Edition, Addison-Wesley, ISBN-13: 978-

0-13-703515-1, 2011. 

 

[4] Raamesh, L., & Uma, G. V. (2010). Reliable Mining of Automatically Generated 

Test Cases from Software Requirements Specification (SRS). arXiv preprint 

arXiv:1002.1199. 

 

[5] Sateli, B., Angius, E., Rajivelu, S. S., & Witte, R. (2012). Can text mining assistants 

help to improve requirements specifications? Mining Unstructured Data (MUD 

2012), Canada. 

 

[6] Cybulski, J. L., & Reed, K. (1998, December). Computer-assisted analysis and 

refinement of informal software requirements documents. In Software Engineering 

Conference, 1998. Proceedings. 1998 Asia Pacific (pp. 128-135). IEEE. 

 

[7] Vlas, R., & Robinson, W. N. (2011, January). A rule-based natural language 

technique for requirements discovery and classification in open-source software 

development projects. In System Sciences (HICSS), 2011 44th Hawaii International 

Conference on (pp. 1-10). IEEE. 

 

[8] Slankas, J., & Williams, L. (2013, May). Automated extraction of non-functional 

requirements in available documentation. In Natural Language Analysis in Software 

Engineering (NaturaLiSE), 2013 1st International Workshop on (pp. 9-16). IEEE. 

 

[9] Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated 

classification    of non-functional requirements. Requirements Engineering, 12(2), 

103-120. 

 

[10] Rashwan, A., Ormandjieva, O., & Witte, R. (2013, July). Ontology-based 

classification of non-functional requirements in software specifications: a new corpus 

http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm


  52 

and svm-based classifier. In Computer Software and Applications Conference 

(COMPSAC), 2013 IEEE 37th Annual (pp. 381-386). IEEE. 

 

[11] Casamayor, A., Godoy, D., & Campo, M. (2009). Semi-Supervised Classification 

of Non-Functional Requirements: An Empirical Analysis.Inteligencia Artificial, 

Revista Iberoamericana de Inteligencia Artificial, 13(44), 35-45. 

 

[12] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using linguistic knowledge to 

classify non-functional requirements in SRS documents. In Natural Language and 

Information Systems (pp. 287-298). Springer Berlin Heidelberg. 

 

[13] Ko, Y., Park, S., & Seo, J. (2000). Web-based requirements elicitation supporting 

system using requirements categorization. In Proceedings of Twelfth International 

Conference on Software Engineering and Knowledge Engineering (SEKE 2000), 

Chicago, USA (pp. 344-351). 

 

[14] van Lamsweerde, A. (2009). Reasoning about alternative requirements options. In 

Conceptual Modeling: Foundations and Applications (pp. 380-397). Springer Berlin 

Heidelberg. 

 

[15] Luisa, M., Mariangela, F., & Pierluigi, N. I. (2004). Market research for 

requirements analysis using linguistic tools. Requirements Engineering, 9(1), 40-56. 

 

[16] Hussain, I., Ormandjieva, O., & Kosseim, L. (2012, September). Lasr: A tool for 

large scale annotation of software requirements. In Empirical Requirements 

Engineering (EmpiRE), 2012 IEEE Second International Workshop on (pp. 57-60). 

IEEE. 

 

[17] Ormandjieva, O., Hussain, I., & Kosseim, L. (2007, September). Toward a text 

classification system for the quality assessment of software requirements written in 

natural language. In Fourth international workshop on Software quality assurance: 

in conjunction with the 6th ESEC/FSE joint meeting (pp. 39-45). ACM. 

 

[18] Al Balushi, T. H., Sampaio, P. R. F., Dabhi, D., & Loucopoulos, P. (2007). ElicitO: 

a quality ontology-guided NFR elicitation tool. In Requirements Engineering: 

Foundation for Software Quality (pp. 306-319). Springer Berlin Heidelberg. 

 



  53 

[19] Menzies, T., Krishna, R., Pryor, D. (2015). The Promise Repository of Empirical 

Software Engineering Data; http://openscience.us/repo. North Carolina State 

University, Department of Computer Science. 

 

[20] Palmer, J. D., & Liang, Y. (1992). Indexing and clustering of software requirements 

specifications. Information and decision Technologies, 18(4), 283-299. 

 

[21] Park, S., & Palmer, J. D. (1994, June). Automated support to system modeling from 

informal software requirements. In SEKE (pp. 86-93). 

 

[22] Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996, August). Knowledge 

Discovery and Data Mining: Towards a Unifying Framework. In KDD (Vol. 96, pp. 

82-88). 

 

[23] Ko, Y., Park, S., Seo, J., & Choi, S. (2007). Using classification techniques for 

informal requirements in the requirements analysis-supporting system.Information 

and Software Technology, 49(11), 1128-1140.  

 

[24] Aas, K., Eikvil, L. (1999). Text Categorisation: A Survey.  

 

[25] Jurka, T. P., Collingwood, L., Boydstun, A. E., Grossman, E., & van Atteveldt, W. 

(2013). RTextTools: A supervised learning package for text classification. The R 

Journal, 5(1), 6-12. 

 

[26] Ensemble Learning. (n.d.). Retrieved March 20, 2016, from 

https://en.wikipedia.org/wiki/Ensemble_learning. 

 

[27] Neural Network Classifier. (n.d.). Retrieved March 20, 2016, from 

http://www.robots.ox.ac.uk/~dclaus/digits/neural.htm. 

 

[28] The R Project for Statistical Computing. (n.d.). Retrieved March 20, 2016, from 

https://www.r-project.org/. 

 

[29] Herbert Julius Garonfolo. (n.d.). Retrieved October 25, 2015, from 

http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-

model/. 

 

https://en.wikipedia.org/wiki/Ensemble_learning
http://www.robots.ox.ac.uk/~dclaus/digits/neural.htm
https://www.r-project.org/
http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-model/
http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-model/

