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ABSTRACT

Information divergence functions, such as the Kullback-Leibler divergence or the

Hellinger distance, play a critical role in statistical signal processing and information

theory; however estimating them can be challenge. Most often, parametric assump-

tions are made about the two distributions to estimate the divergence of interest.

In cases where no parametric model fits the data, non-parametric density estimation

is used. In statistical signal processing applications, Gaussianity is usually assumed

since closed-form expressions for common divergence measures have been derived for

this family of distributions. Parametric assumptions are preferred when it is known

that the data follows the model, however this is rarely the case in real-word scenar-

ios. Non-parametric density estimators are characterized by a very large number of

parameters that have to be tuned with costly cross-validation. In this dissertation

we focus on a specific family of non-parametric estimators, called direct estimators,

that bypass density estimation completely and directly estimate the quantity of in-

terest from the data. We introduce a new divergence measure, the Dp-divergence,

that can be estimated directly from samples without parametric assumptions on the

distribution. We show that the Dp-divergence bounds the binary, cross-domain, and

multi-class Bayes error rates and, in certain cases, provides provably tighter bounds

than the Hellinger divergence. In addition, we also propose a new methodology

that allows the experimenter to construct direct estimators for existing divergence

measures or to construct new divergence measures with custom properties that are

tailored to the application. To examine the practical efficacy of these new methods,

we evaluate them in a statistical learning framework on a series of real-world data

science problems involving speech-based monitoring of neuro-motor disorders.
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Chapter 1

INTRODUCTION

This dissertation will focus on the task of estimating the difference, or diver-

gence, between two multivariate probability distributions. Historically, estimation of

information-theoretic quantities, including information divergence, has relied on plug-

in estimators (methods that first estimate the probability density function, then plug

it in to the desired formula). However, [56] explains the problems of plug-in estimators

thusly: “on the one hand parameterizing the divergence and entropy functionals with

infinite dimensional density function models is a costly over-parameterization, while

on the other hand artificially enforcing lower dimensional density parametrization can

produce significant bias in the estimator” [56].

In this dissertation, we investigate direct estimation of information divergence

measures. Direct estimators, methods which bypass density estimation completely,

offer an appealing alternative to plug-in estimators, particularly in scenarios where

the high dimensionality of the data exacerbates the aforementioned problems. To

date, most of the work in direct estimation has focussed on single distribution mea-

sures from information theory, e.g., entropy [direct estimation of entropy citations];

however direct estimates of information divergence has been under-explored [direct

estimates of divergence]. These methods exploit the relationship between the conver-

gence properties of minimal graphs and information theory. This approach enjoys a

number of desirable properties: including faster asymptotic convergence rates (partic-

ularly for non-smooth densities in high-dimensional spaces), and the ability to bypass

the parameter tuning required for density estimation [57]. In this Dissertation, we

aim to extend methods of direct estimation to a wider range of information diver-

1



Non-parametric
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Plug-In Estimators
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Estimators

Non-
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Density 
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Direct 
Estimators

Figure 1.1: Estimation methods for information theoretic quantities.

gence functions, and to allow experimenters the freedom to design their own direct

estimators for existing or new divergences.

1.1 Parametric Vs. Non-Parametric Vs. Direct Estimation

In this Section, we provide a general overview of the three different approaches of

estimation in order to provide important context for the remainder of the dissertation.

Figure 1.1 provides an overview of the three methods. Plug-in estimators function

by first estimating the underlying density functions, then plugging them into the

appropriate formula to estimate the desired quantity. Parametric plug-in methods,

assume that the data fits a parametric model (such as a Gaussian), then estimate the

parameters of the chosen model to characterize the distribution. Alternatively, non-

parametric plug-in methods estimate the density without using a parametric model

e.g., kernel density estimators. Direct methods estimate the quantity of interest

2



directly from the data without performing density estimation.

In comparing these three estimation methods, it is important to note up front,

that in the scenario where an accurate parametric model of the data is known, there

is little motivation to employ non-parametric estimators. In these scenarios, their

1/
√
N RMS convergence properties [77] will outperform those of non-parametric es-

timators, and assuming that an analytical expression for the desired information

theoretic quantity can be derived the challenges of high-dimensional integration can

be avoided as well.

Where this estimation problem gets interesting is the scenario where no accu-

rate parametric model is available, and it is worth accepting the limitations of non-

parametric [10, 56, 57, 77, 88] estimation methods in order to avoid the bias of an in-

accurate parametric model. In general, this dissertation will focus on scenarios where

no accurate parametric model for the data is available. In this Section, we will look

at a few academic examples illustrating the perils of plug-in estimators when a flawed

parametric model is used and insufficient data exists for a robust non-parametric

estimate of the density function.

As an illustrative example, let us consider a sample of data (xi, yi) for i ∈ [1, ..., n],

representing n = 200 samples drawn from one of two different class distributions

(f0(x) and f1(x)) in R3, where f0(x) and f1(x) are each bimodal Gaussian distribu-

tions with unique parameters. Suppose that in this example, we wish to estimate

bounds on the Bayes risk,the theoretically optimal performance for a classifier con-

structed on this dataset, but we have no prior knowledge of the underlying distribu-

tions f0(x) and f1(x).

If in order to estimate the bounds, we choose to utilize a plug-in estimator, the

first step is to form density estimates f̂(x) and ĝ(x) for each of the underlying distri-

butions. Considering first the task of estimating f0(x), a graphical representation of

3



(a) True Distriution (b) 1 Gaussian

(c) 2 Gaussians (d) 10 Gaussians

Figure 1.2: Parametric density estimation using Gaussian mixture models.

this distribution can be found in Figure 1.2a. In this scenario the optimal parametric

model is a mixture of two Gaussians, and as a result attempting to model this dis-

tribution using a GMM with two mixtures will achieve a relatively accurate fit (see

Figure 1.2c). If however we attempt to model the distribution using only a single

Gaussian, as seen in Figure 1.2b, we end up with a heavily biased solution that places

the center of the distribution as the empty space between the two modes of the true

density function. If, on the other hand, we attempt to model the distribution using

4



(a) True Distriution (b) Kernel density estimate

Figure 1.3: True distribution and KDE using Gaussian kernel.

an excessive number of Gaussians, the GMM will overfit the data and end up with a

heavily distorted solution.

Now suppose that perform non-parametric estimation of the density function using

Kernel density estimation. Using implement non-parametric density estimation using

Gaussian kernels [67]. Kernel density estimation resemble a mixture density that

allows for one mixture for every data point in the data set, as a result they suffer from

the same overfitting problems yielded shown in the previous example, and typically

yield a high-variance estimate. The density estimate yielded by this approach is

shown in Figure 1.3b. In this case the selected bandwidth appears to be too small,

and the resulting density estimate assigns near zero probabilities to anywhere outside

immediate vicinity of points in the sample data.

As you can see, the limited number of samples provided combined with the lack of

prior knowledge regarding the underlying distributions leads to major challenges in

density estimation. And, unfortunately, without an accurate estimate of the under-

lying densities, our ability to accurately information divergence functions is severely

5



Table 1.1: Parameters of f0(x) and f1(x).

f0(x) f1(x)

Gaussian 1 Gaussian 2 Gaussian 1 Gaussian 2

µ [−2.25 − 2.25 − 2.25] [.75 .75 .75] [−.75 − .75 − .75] [2.25 2.25 2.25]

Σ I3 I3 I3 I3

inhibited. In these scenarios, graph-based (or direct) estimation becomes a very ap-

pealing alternative to the traditional plug-in estimators. To illustrate this, we consider

the challenge of estimating the Dp-divergence [16], a directly estimable divergence

function which we will discuss further in Chapter 3. Consider two 3-dimensional dis-

tributions f0(x) and f2(x), each composed of 2 Gaussians with properties described

in Table 1.1. Figure 1.4 illustrates how each of the previously described methods

functions in estimating the Dp-divergence for sample sizes varying from N = 50 to

N = 500 averaged across 100 Monte-Carlo trials. As expected, when the parametric

does not fit the data, it’s prediction is highly biased, and doesn’t converge to the

correct value. The non-parametric method converges to the ground truth, but con-

tains a large amount of finite sample bias, and converges rather slowly with N . The

direct estimate however, contains little finite sample bias, and converges rapidly to

the correct solution. Comparison between plug-in and direct estimation methods will

be explored in greater detail in Chapter 2.

1.2 Problem Statement

This dissertation is motivated by the research task of non-invasive monitoring

of neurological health through speech data, particularly for individuals with a set of

motor-speech disorders known as Dysarthria. Data collected in this domain is high di-

mensional, non-Gaussian and plagued with complex interdependencies amongst seem-
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Figure 1.4: Parametric, non-parametric, and direct estimates of the Dp-divergence

plotted as a function of sample size (N).

ingly unrelated features. These features make density estimation highly challenging,

and thus limit the accuracy of divergence estimates which rely on them. While there

currently exist some methods of directly estimating information divergence functions,

the set of divergence functions that can be estimated is profoundly limited. This dis-

sertation aims to expand this methodology to a larger family of divergences, and to

create a framework which will enable non-expert users to construct new divergences.

1.3 Contributions Of This Dissertation

The contributions of this dissertation include:

1. A new divergence measure that is directly estimable using minimum spanning

trees (MSTs) is introduced [16, 118] (Chapter 3).
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2. Using this divergence measure we introduce bounds on the Bayes risk for binary

classification, and show these bounds to be provably tighter than the commonly

used Bhattacharyya bounds [16, 118] (Chapter 3.2).

3. Extend proposed binary classification bounds to

• Domain adaptation problems [16, 118] (Chapter 3.3).

• Multi-class problems [120] (Chapter 4.1 ).

• Regression problems [119] (Chapter 4.2).

4. We introduce a set of fitting rules that can be used to directly estimate any

unknown information-theoretic quantity (Chapter 5).

1.4 Outline Of Dissertation

Chapter 2 surveys the relevant literature in information theory and machine learn-

ing. Chapter 3 introduces a directly estimable divergence measure from which we

develop bounds on the Bayes error in single-domain and cross-domain learning prob-

lems. Chapter 4 extends the bounds from the previous Chapter to multi-class and

regression problems. Chapter 5 introduces a procedure for constructing new directly

estimable quantities. Finally Chapter 6 uses the bounds from the previous Chap-

ters to develop preprocessing algorithms for machine learning problems and evaluates

their utility on some health analytics problems in the speech domain.
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Chapter 2

LITERATURE SURVEY

In this chapter, we will review the relevant literature on a number of informa-

tion divergence measures, the methods by which they can be estimated, and their

applications in the field of machine learning.

2.1 Measures Of Entropy And Divergence

Information theoretic measures, such as entropy and divergence, play a key role in

a number of problems throughout the fields of signal processing and machine learning.

They have been extensively used in many signal processing applications involving clas-

sification [85], segmentation [48], source separation [59], indexing [56], clustering [6],

and other domains. Information divergences can be simply thought of as a measure of

how different two distributions are. While there exist a number of different divergence

measures of varying properties, they all share the characteristic of increasing as the

two measure distributions “move apart” [2].

A common class of divergence functions are known as f -divergences, which were

introduced independently by Csiszar [27] and Ali and Silvey[2]. Any f -divergence can

be represented in the form

Dφ(f0||f1) =

∫
f1(x)φ

(f0(x)

f1(x)

)
dx, (2.1)

for measured distributions f0(x) and f1(x), where φ(t) is a generating function of the

likelihood ratio t unique to a each f -divergence. Additionally, all f -divergences have

the following properties (see [3, 24])

• Non-Negativity: D(f0||f1) ≥ φ(1) = 0

9



Table 2.1: Table of common f -divergence measures.

f -divergence φ(t) D(f0||f1)

KL-Divergence t log(t)
∫
f0(x) log

(
f0(x)
f1(x)

)
dx

Hellinger Distance (
√
t− 1)2 1

2

∫
(
√
f0(x)−

√
f1(x))2dx

α-Divergence 4
1−α2 (1− t 1+α2 ) 4

1−α2

(
1−

∫
f

1−α
2

0 (x)f 1+α
1 (x)dx

)
TV-Divergence 1

2
|t− 1| 1

2

∫
|f0(x)− f1(x)|dx

• Convexity: φ(t) is convex on t > 0

• Monotonicity: For an arbitrary transform x′ = T (x),

Dφ(f0||f1) ≥ D(f0T
−1||f1T

−1)

• Scaling:For any positive constant c

cDφ(f0||f1) = Dcφ(f0||f1)

This family of f -divergences have become increasingly popular in the field of

machine learning where they are frequently used in the development of surrogate

loss functions for the probability of error. Since it is computationally intractable to

minimize the probability of error directly, we often employ surrogate loss functions.

f -divergences have become a common choice for this task in large part due to Black-

wells theorem [19], which states that if procedure A has a greater f -divergence than

procedure B, then there exists a set of prior probabilities such that A will have lower

error probability than B. Table 2.1 introduces the functional representations for a

few divergence measures that are found to be most relevant in the machine learning

literature. In the following sections, we will discuss these divergences and the problem

of estimating them in high dimensional spaces.
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2.1.1 Rényi Entropy And Divergence

The Rényi entropy is a generalized measure of entropy which can be defined as

Hα =
1

1− α
log

∫
fα(x)dx. (2.2)

for distribution f(x) and parameter α. The Rényi entropy represents a generalization

of the well known Shannon entropy (α = 1). Among other interesting special cases

of the Rényi entropy are the Hartley entropy (α = 0), collision entropy (α = 2), and

the min entropy (α =∞)[26].

The Rényi α-divergence was proposed by Alfred Rényi [97] as a general dissimi-

larity measure between distributions f0(x) and f1(x):

Dα(f0||f1) =
1

1− α
log

∫
f1(x)

(
f0(x)

f1(x)

)α
dx. (2.3)

where α ∈ (0, 1). Although the α-divergence can specialized to numerous forms de-

pending on the choice of α, the two most popular cases are the Hellinger dissimilarity,

which is attained when α = 1
2
, and can be related to the Hellinger distance by

DHellinger(f0||f1) =

∫ (√
f0(x)−

√
f1(x)

)2

dx

= 2

(
1− exp

(1

2
D 1

2
(f0||f1)

))
.

(2.4)

The Bhattacharyya coefficient, introduced by Bhattacharyya [17], represents a

measure of similarity between distributions defined by

BC(f0, f1) =

∫ √
f0(x)f1(x)dx. (2.5)

Both the Hellinger distance [51], also known as the Matusita measure [82],

DHellinger(f0||f1) = 1−BC(f0, f1) (2.6)

and the Bhattacharyya distance

DB(f0, f1) = − log(BC(f0, f1)) (2.7)
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can be represented in terms of the Bhattacharyya coefficient. Whereas the Hellinger

distance represents a special case of the α-divergence, the Bhattacharyya distance

represents a special case of the Chernoff distance [7].

Similarly, we can represent the KL-divergence as the limit of the α-divergence as

α→∞

DKL(f0||f1) = lim
α→1

log

∫
f1(x)

(
f0(x)

f1(x)

)α

dx =

∫
f1(x) log

(
f1(x)

f0(x)

)
. (2.8)

The Kullback-Leibler (KL) divergence was originally proposed in [70], and has

become a widely used criteria in variable selection and decision tree construction.

Part of the reason for the popularity of the KL-divergence is that it is the only case

of the α-divergence in which the chain rule of conditional probability holds exactly.

The KL-divergence is an f -divergence with the function f(t) = t log(t). The KL

divergence can be viewed in terms of the information entropy as

DKL(f0‖f1) = H(f0, f1)−H(f0), (2.9)

where H(f0) entropy in f0(x) and H(f0, f1) represents the cross entropy between

f0(x) and f1(x), defined as

H(f0) = −
∫
f0(x) ln[f0(x)]dx (2.10)

and

H(f0, f1) = −
∫
f0(x) ln[f1(x)]dx. (2.11)

The information gain criteria was originally proposed for feature selection in [60].

In addition to its widespread use in feature selection, it is also used as the primary

criteria for building decision trees in the extremely popular Iterative Dichotomiser 3

(ID3) algorithm introduced in [93].
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2.1.2 The α-Jensen Difference

The Jensen-difference is a method of deriving distance measures from entropy func-

tionals, and can be applied to the α-entropy to form the α-Jensen dissimilarity mea-

sure. While the α-Jensen dissimilarity does not meet the properties of f -divergences,

it can be represented in terms of the entropy of the underlying distributions and is

therefore directly estimable using minimal graphs.

Rao introduced the Jensen difference

J(p0, f0, f1) = H(f0, f1)− p0H(f0)− (1− p0)H(f1)) (2.12)

as a general measure of the entropic difference between two functions f0 and f1, with

prior probabilities p0 and p1 = (1− p0) respectively [94]. When the Rényi entropy is

used, this becomes the α-Jensen dissimilarity measure

Jα(p0, f0, f1) = Hα(f0, f1)− p0Hα(f0)− (1− p0)Hα(f1))

=
1

1− α

[
log

∫
[p0f0(x) + (1− p0)f1(x)]αdx− p0

∫
fα0 (x)dx− (1− p0)

∫
fα1 (x)dx−

]
.

(2.13)

The α-Jensen dissimilarity measure has been used for image registration problems

[54, 77] and was originally proposed for assessing the complexity of time-frequency

distribution images [83].

2.2 Estimation Of Information Divergence Functions

There are three general approaches for estimating information divergence func-

tions: parametric estimation, non-parametric estimation, and direct estimation. The

first two approaches [56] are often referred to as plug-in estimators, since they involve

first estimating the density function for each random variable, then plugging them

into the divergence formula (2.1), and only vary in the manner in which the density
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function is estimated. Parametric estimation assumes that the underlying distribu-

tion fits a particular parametric model and estimates the parameters of this model.

Though parametric methods have a number of desirable properties when an accurate

model can be chosen, their solution can be heavily biased if the model doesn’t ac-

curately fit the true distribution. Non-parametric methods employ non-parametric

density estimation. While these methods avoid the pitfalls of model-dependent es-

timates, non-parametric density estimators are generally high variance, subject to

outliers, and perform poorly without stringent smoothness conditions. Additionally,

without a parametric model for the underlying distributions, (2.1) must be calcu-

lated numerically, a task which can be difficult in the high-dimensional spaces found

in many practical applications. The third method which is of growing interest due to

its ability to combat the limitations of plug-in estimators is direct estimation. Direct

estimation, or graph-based estimation, employs the asymptotic properties of minimal

graphs to directly estimate information-theoretic quantities without the need to ever

estimate the underlying densities.

2.2.1 Plug-In Estimation : Parametric

Parametric methods are the simplest and most popular way of estimating in-

formation divergence functions. Parametric estimation assumes that the underlying

distribution fits a predefined parametric model. Using this approach, we are able to

model the underlying density simply by estimating a few necessary parameters. The

ease of computation and high convergence rate [77], make parametric estimation ap-

pealing for a variety of practical applications. In addition, when there is an analytical

solution for the desired parametric model, we can calculate the desired quantity with-

out the challenges of integration, which can be infeasible in high-dimensional spaces.

Table 2.2 displays analytical solutions for some of the common divergence measures
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Table 2.2: Analytical solutions for divergence functions of multivariate normal distri-

butions f0(x) and f1(x) with mean and covariance matrices µ0, µ1 and Σ0,Σ1 respec-

tively where ∆ = µ1 − µ0.

f -divergence Analytical Solution

KL-Divergence 1
2

[
log
(det(Σ0)
det(Σ1)

− d+ tr(Σ−1
1 Σ0) + ∆TΣ−1

1 ∆
)]

Hellinger Distance 1−
√
| 1
2

(Σ0+Σ1)|√
|Σ0||Σ1|

exp{1
8
∆T
(

Σ0+Σ1

2

)−1

∆}

α-Divergence −1
2

log
(
|Σ0|α|Σ1|1−α
|αΣ0+(1−α)Σ1|

)
+ α(1−α)

2
∆T (αΣ0 + (1− α)Σ1)−1∆

discussed in this Dissertation.

The fundamental drawback of parametric estimates is that they depend on the

data fitting correct parametric form in order to be asymptotically unbiased. In general

these approaches perform very well when there basic assumptions hold, however when

these assumptions are violated the performance can significantly degrade. This will

be observed in several simulations throughout this dissertations where parametric

methods are used as a baseline for comparison. Because we will rarely find data that

exactly fits any common parametric model this drawback presents a major concern

in applying parametric estimation to real world problems.

2.2.2 Plug-In Estimation : Non-Parametric

Non-parametric estimation offers an appealing alternative to parametric methods

in scenarios where no accurate parametric model is available. Parametric estimates

will generally converge faster than non-parametric estimates, however if the para-

metric model does not fit the data the solution that it converges to could be heavily

biased [102]. In general, relative to parametric methods, these methods offer us uni-

versal consistency in exchange for slower convergence rates and the computational
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challenges that come with non-parametric density estimation.

The performance of non-parametric plug-in estimators is dependent on the meth-

ods used for density estimation and integral estimation. In density estimation, we face

the problem of estimating an underlying distribution f(x) given a set of data points

X = x1,x2, ...,xN that are drawn from it. Histograms, kernel density estimators,

k-NN density estimators and projection pursuit density estimators are all popular

choices for this problem. Histograms partition the range of data set into a predefined

number of bins, then predict the density in each bin to equal the number of points

in that range divided by the total number of points in the dataset. Histograms are

the simplest solution however they are highly sensitive to the choice of origin and bin

width parameters. For example a histogram estimate will assign zero probability to a

point if there exist no samples from X in the bin it falls in. This is true even if there

exist several samples nearby that fall into adjacent bins, thus the assigned density

estimate is highly sensitive to the size and location of each of the bins.

Alternatively, kernel density estimation provides a smooth density estimation,

without endpoints. Kernel density estimators function by placing some kernel, such

as the Gaussian kernel, on each of the data points x1,x2, ...,xN in X. This can be

calculated by

f̂K(x) =
1

nh

N∑
i=1

K

(
x− xi
h

)
(2.14)

where K represents the kernel function and h represents the kernel bandwidth. Kernel

density estimators offers a smoothed density estimate free of the discontinuities found

in histogram estimates, but are still dependent on the choice of kernel and kernel

bandwidth [110]. Utilizing KDE in higher dimensions typically relies on the product

kernel and assumes each of the dimensions to be uncorrelated [102].

The method of k-NN density estimation attempts to estimate the density at any

point in space x by assessing the distance to the kth nearest neighbor from that point
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Dk(x). Because we know that therer are k points points within the hypersphere of

radius Dk(x), the density f̂(x) can be estimated by

f̂(x) =
k

Nvolk(x)
(2.15)

where volk(x) represents the volume of said hypersphere. This approach can be a

powerful tool for estimating the density at a particular point, it is not particularly

successful for estimating the entire density function [62].

For the task of estimating entropy in a non-parametric fashion Berilant suggests

there are four general classes of non-parametric integral estimators 1) Integral esti-

mates 2) resubstitution estimates 3) splitting data estimates and 4) cross-validation

estimates [10]. While all of these methods follow the basic procedure of first estimat-

ing the density, then utilizing the density estimate to calculate the entropy, the way

in which the second step is performed varies across the four different approaches.

Integral estimates utilize a given set of data X = x1,x2, ...,xN to form a non-

parametric estimate f̂(x) of the underlying distribution f(x) and estimate the entropy

using

Ĥ(f) = −
∫
A

f̂(x) log[f̂(x)]dx, (2.16)

where A represents the region of integration which typically excludes small or tail

values of f̂(x). This process was originally proposed in [31], and is perhaps the most

straight forward approach to non-parametric entropy estimation. The fundamental

limitation to this approach lies in the calculations of (2.16), which presents a major

challenge in higher dimensions. While both the KDE and k-NN methods are, in gen-

eral, more easily extended to higher dimensions than histograms, their convergence in

higher dimensions is often glacially slow and on the order of O(N−
γ
d ), where γ > 0 is

a rate parameter [104]. As a result, some methods such as projection pursuit density

estimation, which attempts to estimate the distributions structure based on ”inter-
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esting” low-dimensional projections [37]. Ensemble methods have been proposed to

achieve the dimension invariant rate of O(N−1)

Resubstitution estimates once again form an estimate f̂(x) of the underlying dis-

tribution f(x) using the dataset X, however instead of integrating across an entire

region of space, it is evaluated at all of the points in the data set using

Ĥ(f) = − 1

N

N∑
i=1

log[f̂(xi)]. (2.17)

These methods have shown mean square consistency ( lim
N→∞

E[(Ĥ(f) − H(f))2] = 0)

and avoid much of the computational challenges of integral estimates [1].

Data splitting estimates begin by partitioning the data into two groups Xa =

x1,x2, ...,xl and Xb = xl+1,xl+2, ...,xN . First Xa is used to estimate f(x), then the

entropy of this estimate is evaluated across all of the points in Xb via

Ĥ(f) = − 1

N − l

N∑
i=l+1

I[xi∈A] log f̂(xi). (2.18)

Finally, cross-validation estimates function similarly to the data splitting esti-

mates, however rather than splitting the data single time, this approach forms N

different estimates f̂ (i)(x) of the underlying distribution f(x) each calculated on the

set X \ xi. The entropy is then estimated using

Ĥ(f) = − 1

N

N∑
i=1

I[xi∈A] log[f̂ (i)(xi)], (2.19)

thus evaluating each density estimate f̂ (i)(x) on the sample that was excluded in its

estimation procedure. Ivanov and Rozhkova originally proposed this approach for

kernel density estimators and showed it to be strongly consistent [61].

As a simple illustration of how each of these methods each of these methods

work, we consider a simple univariate standard normal distribution, and evaluate

the performance of each of the previously described integral estimation methods
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Figure 2.1: Histogram estimates of the entropy of the standard normal distribution

for various integral estimators.

based on a histogram density estimation. The sample size is then varied across

N = 100, 200, ..., 2000 and the simulation is repeated across a 100000 iteration Monte

Carlo simulation. The large number of iterations chosen for this particular simulation

is necessary in order to detect the small differences in the error of each method and

possible due to the ease of computation in the 1-dimensional case. The performance

of each of estimator is displayed in terms of its mean squared error (MSE) in Figure

2.1. In this scenario, the cross-validation estimate consistently outperforms the other

approaches, and even approaches the performance of the baseline parametric estimate

at higher samples. This comes at the cost of significantly greater computational costs

than resubstitution and data splitting estimates. The integral and resubstitution es-

timates, which are equivalent for histograms, outperform the data splitting estimate

at lower samples, but inferior at higher samples.

Now to better understand how the performance of the different density estima-

tors varies with dimension, we will evaluate several different non-parametric density
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estimation methods when applied to two different multivariate normal distributions

N(0d, Id) and N(0d,Σd) where

Σd =



σ1,1 σ1,2 . . . σ1,d

σ2,1 σ2,2 . . . σ2,d

...
...

. . .
...

σd,1 σd,2 . . . σd,d


(2.20)

for σi,j = 0.9|i−j| and Id is the d-dimensional identity matrix. We evaluate both

kernel and k-NN density estimation methods where the integral is approximated by

resubstitution and vary dimension from 1 − 10. In order to compute the kernel

density estimate in higher dimensions, it is necessary to assume that all dimensions are

independent and that the the multivariate density at any point can be calculated by

the product of the univariate density estimates for each dimension. We also compute

two parametric estimates, one estimate based on a general multivariate Gaussian

model along with a naive parametric estimator that similarly to the kernel estimate

assumes each of the dimensions to be independent. Estimates are made for N = 100

samples, and results are averaged across a 100 iteration Monte-Carlo simulation.

Results for distributions N(0d, Id) and N(0d,Σd) are displayed in Figures 2.2 and 2.3

respectively.

In the first case, we find that the naive parametric estimates yields the best per-

formance for all dimensions. The general parametric model performs similarly to

the naive model in lower dimensions (identical for d = 1), however it’s performance

deteriorates in higher dimensions. The k-NN density estimate performs the worst

in general, however from dimensions 5 − 8 it performs relatively strong as the finite

sample bias switches from negative to positive. The kernel estimate performs slightly

worse than the parametric estimates for lower dimensions, however it eventually out-

performs the general parametric model in higher dimensions where the difficulty of
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Figure 2.2: Substitution estimates for entropy of distribution N(0d, Id) plotted across

dimension.

parameterizing a d × d covariance matrix exceeds that of non-parametric density

estimation.

In the second case when there is some degree of dependency across the various

dimensions, the performance of both the kernel estimate and naive parametric es-

timate deteriorate rapidly with dimension, since their failed assumption leads to an

increasingly large asymptotic bias. While the k-NN estimate has a rather large bias in

the higher dimensions due to the small sample size, its finite sample performance still

greatly exceeds the two previous estimates in this scenario. The general parametric

estimate expectedly yields the best overall performance. While these results are based

on one specific scenario, and we cannot generalize these findings to any distribution,

they illustrate how rapidly the violation of any of the assumptions used in parametric

and even non-parametric estimators can deteriorate a models performance. While

non-parametric estimates may not converge as fast as parametric models, they will

often far outperform a parametric model when fundamental assumptions are violated.
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Figure 2.3: Substitution estimates for entropy of distribution N(0d,Σd) plotted across

dimension.

2.2.3 Review Of Graph Theory

In order to understand some of the concepts related to minimal graphs which

will be used in the following section, and throughout the rest of this Dissertation, we

provide a brief review of some relevant concepts in graph theory. For a more thorough

review of concepts related to graph theory see [115]. To begin let us introduce some

relevant vocabulary:

• Graph:A graph G is a triple containing

– a vertex set V (G)

– an edge set E(G)

– a relation that associates each edge with two vertices vi, vj ∈ V (G)

• Tree: A connected acyclic simple graph.
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• Subgraph: A subgraph H, of a graph G, is a graph whose vertices V (H) are

a subset of V (G) and whose edges E(H) are a subset of E(G).

• Spanning Subgraph: A subgraph H, that contains the same vertex set as G,

V (H) = V (G).

• Spanning Tree: A Spanning subgraph H that is acyclic and connected.

• Minimum Spanning Tree: Spanning subgraph H that is acyclic and con-

nected, that minimizes the total weight of the edge set W (E(H)).

In the next Section, we will discuss minimum spanning trees in more depth and

their use in direct estimation.

2.2.4 Direct Estimation

The convergence properties of minimal graphs have been studied extensively in

past years [9, 96, 106, 125]. In some cases, we can exploit knowledge of these conver-

gence properties to directly estimate known quantities without the need for density

estimation.

Consider some data set X which defines N points within a d-dimensional space.

We can define some graph G = (V,E), that minimizes the length function

Lγ(G) =
∑
e∈E

‖ei,j‖γ (2.21)

where ‖ei,j‖ represents the euclidean distance between instances i and j in X, and

γ is a power weighting constant 0 < γ < d, and meets dome desired properties (e.g.

spanning, connected).

Assume that the points in X are i.i.d. samples drawn from a Lebesgue multivariate

density f(x) and that Lγ is continuous quasi additive, then Lγ will converge in the
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following manner

lim
n→∞

Lγ(G)/n
(d−γ)
d = βd,γ

∫
f

(d−γ)
d (x)dx, (2.22)

where α = (d − γ)/d and βd,γ is a constant independent of f . Now suppose that we

want to estimate the Rényi entropy:

Hα =
1

1− α
log

∫
fα(x)dx. (2.23)

We can rearrange (2.22) to attain

Ĥα =
1

1− α

[
log
(Lγ(G)

nα

)
− log(βd,γ)

]
(2.24)

where Ĥα is a direct estimate of Rényi entropy that will be asymptotically consistent.

Because βd,γ doesn’t depend on the underlying distribution f , it can be estimated

offline. A simple method of doing so is to estimate the limit of Lγ(G)/nα as n→∞

by using a Monte Carlo simulation for a large number of samples drawn from a

d-dimensional unit cube.

Ĥα can be calculated for any value of α ∈ [0, 1], however γ must be adjusted

accordingly. While this requires a recalculation of the bias term and the length

functional, reconstruction of the minimal graph is unnecessary.

2.2.4.1 Minimum Spanning Trees Estimators

Minimum spanning trees, are a useful tool in direct estimation. Due in large part to

the study of the asymptotic graph length [53, 106].

Note that in this case (and all future cases discussed in this dissertation) T is

a subgraph of the complete graph on X and the length function we are trying to

minimize is the euclidean distance across all edges e ∈ E(T ). Figure 2.4 illustrates

what a minimum spanning tree on a set of uniformly distributed points in R2 would

look like.
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(a) Data (b) MST

Figure 2.4: Scatter plot of 100 uniformly distributed data points in R2 and the cor-

responding euclidean MST.

One simple application of MSTs that we discussed in Section 2.2.4, is the esti-

mation of the Rényi entropy. This idea, which is based on the works of Steele [106]

and Redmond et al. [96] and has been extensively investigated by [56, 57, 77, 88],

relies on the fact that the length function of some minimal graphs, such as MSTs,

will converge to a known function of the underlying distribution (2.22) that can be

related to entropy.

We illustrate the convergence of the graph length function and the normalized

graph length functions of both uniformly and normally distributed distributions in

Figure 2.5. One important observation that can be made from this figure is that

while the normalized graph lengths for both distributions asymptotically converge to

a constant value, their rates of convergence are noticeably different. In particular, we

note that the length function converges faster in the uniformly distributed points. It is

also worth noting that while the uniform distribution exhibits a positive finite sample

bias for the mean length function, the bias for the normal distribution is negative.
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Figure 2.5: Mean length Lγ(T ) of minimum spanning trees constructed on X.

Because of this, any bias resulting from error in estimating the bias constant βd,γ, will

compound the bias when applied to normally distributed data, but will reduce the bias

when applied to uniformly distributed data. This illustrates that despite our desire to

view these estimates as independent of the underlying distribution, their finite sample

properties still depend to some degree on the underlying distributions, and it is only

in the asymptotic regime can we create estimates that are truly independent of the

parameters of the underlying distribution.

To better understand the effectiveness of this approach relative to some other para-

metric and non-parametric estimators, we have plotted the entropy, bias, variance,

and MSE as a function of sample size for several different estimators. In addition

to the previously described direct estimation, we test two parametric plug-in estima-

tors, one which correctly assumes that the data is uniformly distributed and another

that incorrectly assumes that the data belongs to the exponential family of distribu-

tions. The parametric model operates on the assumption that the data is uniformly

distributed across a [a, b]d hypercube and identifies a and b as the minimum and
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maximum respectively of the points found in the data, then calculates the entropy

as d log(b̂ − â). The exponential model forms a maximum likelihood estimate of the

exponential model and plugs the model into the analytical solution in [90].

To run this experiment, we vary the sample size incrementally across N = 50, 100,

150,..., 1000. For each sample size, we run a 100 iteration Monte-Carlo simulation and

compare the estimates to the theoretical ground truth to assess each estimate in terms

of bias, variance, and mean squared error (MSE). This experiment is run in 2 and

10 dimensions, and the results are displayed in Figures 2.6 and 2.7 respectively. In

both simulations we find, not surprisingly, that the parametric model which correctly

assumes that the data is distributed uniformly across the d-dimensional hypercube

performs the best in terms of bias, variance, and MSE. In this experiment the direct

estimate outperforms the exponential parametric and non-parametric plug-in estima-

tors. While the non-parametric estimator vastly outperforms the exponential model

in the 2-dimensional case, it is outperformed in the 10-dimensional simulation for

low sample sizes. Thus if our data is sparse enough, an obviously flawed parametric

model can outperform a non-parametric model. Since the finite-sample bias of the

flawed parametric model works against its asymptotic bias its performance declines

with additional samples, while the other three approaches all appear to asymptote

towards the ground truth though their rates of convergence vary.

Prior to this point we have focused on estimating entropy. Now, let us consider

that we have two sets of data X0 = (x1,x2, ...,xnf ) and X1 = (x1,x2, ...,xng), sampled

from distributions f0(x) and f1(x) respectively. Along with the Reńyi entropy of the

individual data sets, MSTs can be used to directly estimate the both the α-divergence

and the α-Jensen divergence between the two underlying distributions. The approach

to estimate the α-divergence relies on transforming the coordinates of the feature

vectors in order to ”flatten” the reference density f0(x). Since f0(x) is uniform in the
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(a) Entropy Plot (b) Bias Plot

(c) Variance Plot (d) MSE Plot

Figure 2.6: Plots illustrating the convergence properties of direct and plug-in esti-

mates of the entropy for points distributed uniformly within square [0, 3]2.

new coordinate space, the α-divergence between f0(x) and f1(x), can be estimated

by measuring the α-entropy of f1(x) in the transformed coordinate space [55]. The

α-Jensen divergence can be estimated by applying the following formula

Ĵ(p0, f0, f1) = Ĥα(X0

⋃
X1)− p0Ĥα(X0)− (1− p0)Ĥα(X1) (2.25)

where p0 = nf/(nf + ng) and Ĥα(X0

⋃
X1) is an estimate of the joint α-entropy
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(a) Entropy Plot (b) Bias Plot

(c) Variance Plot (d) MSE Plot

Figure 2.7: Plots illustrating the convergence properties of direct and plug-in esti-

mates of the entropy for points distributed uniformly within a d-dimensional hyper-

cube [0, 3]10.

between f0(x) and f1(x).

2.2.4.2 Nearest Neighbor Graphs

Nearest neighbor graphs, much like the MST’s discussed in the previous section,

can be used to directly estimate a number of information-theoretic quantities. As
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minimal graphs, k-nearest neighbor (k-NN) graphs have many of the same properties

as MSTs. For example, the length function of k-NN graphs can be used to directly

estimate the Rényi entropy in the same manner as was previously described for MSTs

[18, 88]. However they also offer a number of unique properties that can be exploited

to develop more robust and diverse estimators.

The use of nearest neighbor graphs as a non-parametric classification algorithm

was first proposed by Fix and Hodges[35], and later popularized by the work of

Cover and Hart [25]. The its asymptotic properties have been very well defined.

In particular, we know that the asymptotic error rate of any k-NN classifier will

never exceed two times the Bayes risk regardless of the underlying distributions. To

illustrate this, consider a single point xi ∈ X and its nearest neighbor xj. In this

scenario, there are two possible errors that the classifier can make: A) the classifier

assigns ŷi a value of 0, when yi = 1 and B) the classifier assigns ŷi a value of 1, when

yi = 0. For a 1-NN classifier it is easy to see that the probability of the first error

is equal to P [yi = 1 ∩ yj = 0] and the probability of the second error is equal to

P [yi = 0 ∩ yj = 1]. Since

P [y = 0] = η0(x) =
pf0(x)

pf0(x) + (1− p)f1(x)
(2.26)

and

P [y = 1] = η1(x) =
(1− p)f1(x)

pf0(x) + (1− p)f1(x)
(2.27)

where η0(x) and η1(x) are the posterior distributions for each class, the probability

of misclassifying xi can be simplified to

ε(xi) = η1(xi)η0(xj) + η0(xi)η1(xj). (2.28)

Now, since xj is the nearest neighbor to xi, we can represent it as xj = xi + δ. We
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can also observe that δ → 0 as N →∞. Substituting this into (2.28) yields

lim
N→∞

ε(xi) = lim
δ→0

η1(xi)η0(xi + δ) + η0(xi)η1(xi + δ) = 2η0(xi)η1(xi). (2.29)

Thus by integrating over all possible xi, the asymptotic error rate for the 1-NN

classifier is found to be

εNN1 = E[2η0(x)η1(x)] =

∫
ε(x)Pr(x) =

∫
2η0(x)η1(x)(pf0(x) + (1− p)f1(x))dx.

(2.30)

For comparison, the Bayes risk (R∗) conditioned on a single point x can be defined

as

r∗ = min[η0, η1] = min[η0, 1− η0]. (2.31)

By exploiting the symmetry of r∗ w.r.t. η0 we find that

r∗(x)(1− r∗(x)) = η0(x)(1− η0(x)). (2.32)

Using this we can rewrite (2.30) as

εNN1 = E[2r∗(x)(1− r∗(x))]

= 2(E[r∗]− E[(r∗)2])

(2.33)

and since E[r∗] = R∗, this can be simplified to

= 2R∗ − (var(r) +R∗2)

= 2R∗(1−R∗)− var(r∗).
(2.34)

Therefore the asymptotic error rate (AER) for the 1-NN classifier can be bounded

by

R∗ ≤ εNN1 ≤ 2R∗(1−R∗) ≤ 2R∗ (2.35)

These guarantees on the asymptotic performance of the 1-NN classifier that Cover

and Hart introduced [25] were instrumental in making the k-NN algorithm one of the
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most widely used classification algorithms in existence. Now if we consider the more

general case, when k 6= 1, a similar approach to that employed for the k = 1 case can

be used to show that the AER for a traditional k-NN classifier can be expressed as

εNNk = E

[
k∑

i=d k
2
e

(
k

i

)(
ηi(x)(1− η(x))k−i+1 + ηk−i+1(x)(1− η(x))i

)]

=

∫ k∑
i=d k

2
e

(
k

i

)(
ηi(x)(1− η(x))k−i+1 + ηk−i+1(x)(1− η(x))i

)
(pf0(x) + (1− p)f1(x))dx.

(2.36)

Perhaps the most important attribute of the k-NN classifier, is it was the first classifier

proven to be universally consistent with the Bayes risk, in other words

lim
k,N→∞, k

N
→0
εNNk = R∗. (2.37)

Stone showed that when n and k approach infinity as k/n→ 0, the expected risk of

a k-NN classifier approaches the Bayes risk [107]. While this is a powerful property

as it guarantees the optimality of the k-nearest neighbor classifier given enough data,

it tells us little about what performance can be expected in the finite sample regime.

In fact, Devroye showed [30] that for any integer N and classification rule gN , there

exists a distribution of (X, y) with Bayes risk R∗ = 0 in which

E[ε
(
gN(X)

)
] ≥ 1

2
− δ (2.38)

where δ > 0 represents an arbitrarily small constant. In other words, even though

a classifier may be proven to perform optimally in the asymptotic regime, it’s con-

vergence for a particular distribution may be arbitrarily slow and we cannot provide

any distribution-free guarantees on performance in the finite sample regime. The

strong asymptotic performance guarantees of the nearest neighbor classifier com-

bined with the observably poor performance in many finite sample problems has

32



led to a large amount of interest in identifying distance metrics [103, 113, 114], de-

cision rules [29, 33, 52, 84, 108], ensemble methods [8, 32] and editing techniques

[30, 34, 46, 58, 66, 109, 117] that can achieve superior finite-sample performance. In

some cases, particularly within the editing techniques and decision rules [52, 117],

these variations will affect the asymptotic performance of the classifier, however in

general this work is targeted at improving the rate at which the k-NN classifier conver-

gences to it’s asymptotic performance. In addition to its primary benefit, improving

the finite-sample performance of these classifiers can also improve their viability as

non-parametric estimators of unknown information-theoretic quantities, such as in

the scenario in which the nearest neighbor error rate is used to bound the Bayes risk

[25, 40, 41, 42]. The importance of this will become clearer in Section 5.1, when we

introduce the concept of directly estimable basis functions.

2.3 Information Theory In Machine Learning

Machine learning is important to a number of disciplines ranging from health and

wellness to finance. At its core machine learning is about learning from data. Infor-

mation theory plays a key role in a number of machine learning problems including

feature selection [123], classification [85, 93], and clustering [55]. For the purposes of

this dissertation, we will be primarily talking about supervised learning, which re-

flects the scenario in which we have access to some sample data for the variable that

we are trying to predict (outcome variable). Figure 2.8 depicts the basic components

of a traditional supervised learning system. Given some raw data, we first attempt

to extract features that we believe contain important information about the variable

of interest. We then use machine learning to attempt and find some hypothesized

mapping h(x) between the feature data x and the outcome variable y. This mapping

h(x) is called a classifier, and we consider any occurrence in which h(x) 6= y a classi-
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Figure 2.8: Supervised learning classifier block diagram.

fication error. We thus evaluate the viability of a classifier in terms of the frequency

of error

ε[h] = P [h(x) 6= y]. (2.39)

Since no approach in machine learning can be universally optimal [121], our ability to

construct successful classification models in a particular domain is dependent on our

ability to accurately evaluate those models within that domain. Let us consider two

classifiers h1 and h2. It is easy then to see that if ε[h1(x)] < ε[h2(x)] for some dataset

(x, y), then h1 is the superior classifier to h2 in this domain, however this tells us little

about the performance of h1 relative to the unlimited set of potential classifiers that

could be applied to this problem. As a results h1 may look good against the finite set

of alternatives that are considered, while remaining a highly suboptimal choice for

this particular problem. This illustrates the need for accurate measures of optimal

performance such as the Bayes risk, which will be discussed in the following Section.

2.3.1 Bayes Error Rate

Define the conditional density functions as f0(x) = fx(x|y = 0) and f1(x) =

fx(x|y = 1) and the prior probabilities are given by p0 = P [y = 0] and p1 = P [y =

1], respectively. Given complete knowledge of the underlying distributions f0(x)

and f1(x) the optimal classifier will assign class ŷ(xi) = 0 only when the posterior

distribution for class 0 η0 = p0f0(x)
p0f0(x)+p1f1(x)

≥ 0.5. This classifier is referred to as the
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Bayes classifier, and the error rate of this classifier is the Bayes risk and can be

described by:

R∗ =

∫
pf0(x)≤qf1(x)

pf0(x)dx +

∫
qf1(x)≤pf0(x)

qf1(x)dx. (2.40)

The Bayes risk is useful not only for assessing the performance of specific classifiers,

but also as a criteria in data modification algorithms [22] and in the development of

the classification algorithms themselves [45].

While the Bayes risk is a useful benchmark, we are never given complete knowledge

of the underlying distributions in practical scenarios, and the Bayes risk cannot be

calculated, only estimated. This is a variation of the problem described in Section

2.2 and a detailed overview of approaches to Bayes risk estimation can be found in

[49].

While estimation of the Bayes risk is useful in its own right, the Bayes risk is

a non-convex function of the posterior distributions and as a result it is difficult to

build algorithms that minimize the risk directly. As a result, there has been significant

research interest in forming convex bounds on the Bayes risk that can be represented

using estimable measures of distance between probability functions [5, 23, 50, 63].

The total variation (TV) distance is closely related to the Bayes error rate [63],

as illustrated in Figure 2.9. A number of bounds exist in the literature relating the

KL divergence and the TV distance. The well-known Pinsker inequality provides a

bound on the total variation distance in terms of the KL divergence [27]. Sharpened

inequalities that bound the KL divergence in terms of a polynomial function of the

TV distance were derived in [69]. One drawback of the Pinsker-type inequalities is

that they become uninformative for completely separable distributions where the KL

divergence goes to ∞ (since the TV distance is upper bounded). Vajda’s refinement

to these bounds addresses this issue [112].
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Figure 2.9: Relationship between BER & TV-distance.

For classification problems, the well-known upper bound on the probability of

error based on the Chernoff α-divergence has been used in a number of statistical

learning applications [23]. The tightest bound is determined by finding the value of α

that minimizes the upper bound. The Bhattacharya (BC) divergence, a special case

of the Chernoff α-divergence for α = 1
2
, upper and lower bounds the BER [17, 63].

The BC bounds are often used as motivation for algorithms in the statistical learning

literature because these bounds have closed form expressions for many commonly

used distributions. In addition, for small differences between the two classes, it has

been shown that, for the class of Chernoff α-divergence measures, α = 1
2

(the BC

divergence) results in the tightest upper bound on the probability of error [56].

Beyond the bounds on the BER based on the divergence measures, a number of

other bounds exist based on different functionals of the distributions. In [50], the

authors derive a new functional based on a Gaussian-Weighted sinusoid that yields

tighter bounds on the BER than other popular approaches. Avi-Itzhak proposes

arbitrarily tight bounds on the BER in [5].
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2.3.2 Domain Adaptation

Traditional machine learning problems such as those described previously in this

Section rely on the assumption that the data used to train the algorithm and the data

it will be tested on are generated by the same set of underlying density functions.

The field of transfer learning is based upon the idea of generalizing knowledge found

in one domain to make predictions in a slightly adjacent domain. Pan defines domain

adaptation as a subproblem in this field which occurs when no labeled data exists in

the domain of interest.

In domain adaptation problems, we are attempting to train our system for a

domain adjacent to the one it is being designed for. As a result, we expect that

the density functions in the training set or source domain fS,0(x) and fS,1(x) will

be slightly different from those in the test set or target domain fT,0(x) and fT,1(x).

This approach particularly useful for problems in which labeled data in the domain

of interest is either unavailable or expensive to acquire.

In addition to work on bounding the Bayes error rate, recently there have been a

number of attempts to bound the error rate in cross-domain learning challenges (see

Section 2.3.2. In [11, 12], Ben-David et al. relate the expected error on the test data

to the expected error on the training data, for a given classifier h as

εT (h) ≤ εS(h)+DTV (fS, fT )+min
[
EfS [|θS(x)−θT (x)|], EfT [|θS(x)−θT (x)|]

]
(2.41)

where θS(x) and θT (x) represent oracle labeling functions for the source and target

domain respectively. Since our knowledge of θT (x) is limited, particularly in the

scenario where no labeled data is available in the target domain, it is not uncommon

in domain adaptation problems to make the assumption that θS(x) = θT (x). This is

known as the covariate shift assumption, and we can use it to simplify (2.41)

εT (h) ≤ εS(h) +DTV (fS, fT ). (2.42)
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The ability to bound the target domain error by the sum of the source domain error

and a measure of the divergence between the underlying distributions of the two

domains is a profoundly useful tool which we will study in greater detail in Chapter

3.3 In [11, 12], Ben-David et al. showed that the error in the target domain for a given

hypothesis can be bounded by its error in the source domain the expected error on

the test data to the expected error on the training data, for the case when no labeled

test data is available. In [20], the authors derive new bounds for the case where a

small subset of labeled data from the test distribution is available. In [79], Mansour

et al. generalize these bounds to the regression problem. In [80], the authors present

a new theoretical analysis of the multi-source domain adaptation problem based on

the α-divergence.

38



Chapter 3

DIRECTLY ESTIMABLE DIVERGENCE MEASURE

Information-theoretic quantities have played a key role in the development of bounds

and algorithms in machine learning. However much of this work is reliant on paramet-

ric assumptions, and not robust to the varying types of data that may be encountered.

In this section, we will introduce a divergence measure that can be directly estimated

from data without prior knowledge of the underlying probability density functions.

We investigate some of the properties of this divergence measure and show how it can

be used to form more reliable bounds on the BER for binary classification problems.

In Section 3.1 we introduce a non-parametric divergence measure which can be

directly estimated from data using minimum spanning trees. Section 3.2 shows how

this divergence measure can be used to bound the Bayes risk for binary classification

problems. In Section 3.3 we use this divergence measure to form an upper bound on

the Bayes risk for domain adaptation problems.

3.1 A Nonparametric Divergence Measure

For probability density functions f0(x) and f1(x) with prior probabilities p0 ∈

(0, 1) and p1 = 1−p0 respectively in domain IRd, we can define the following divergence

function:

Dp0(f0, f1) =
1

4p0p1

[∫
(p0f0(x)− p1f1(x))2

p0f0(x) + p1f1(x)
dx− (p0 − p1)2

]
. (3.1)

The divergence in (3.1), first introduced in [14], has the remarkable property that

it can be estimated directly without estimation or plug-in of the densities f0(x) and

f1(x) based on an extension of the Friedman-Rafsky (FR) multi-variate two sample
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test statistic [38]. Let us consider sample realizations from f0(x) and f1(x), denoted

by X0 ∈ IRN0×d, X1 ∈ IRN1×d. The FR test statistic, C(X0,X1), is constructed by first

generating a Euclidean minimal spanning tree (MST) on the concatenated data set,

X0 ∪X1, and then counting the number of edges connecting a data point from f0(x)

to a data point from f1(x). The test assumes a unique MST for X0∪X1 - therefore all

inter-point distances between data points must be distinct. However, this assumption

is not restrictive since the MST is unique with probability one when f0(x) and f1(x)

are Lebesgue continuous densities. In Theorem 1, we present an estimator that relies

on the FR test statistic and asymptotically converges to Dp0(f0, f1). Note that this

theorem combines the results of Theorem 1 and equations (3) and (4) in [14]. The

proof of this theorem can be found in Appendix A.

Theorem 1 As N0 → ∞ and N1 → ∞ in a linked manner such that N0

N0+N1
→ p0

and N1

N0+N1
→ p1,

1− C(X0,X1)
N0 +N1

2N0N1

→ Dp0(f0, f1).

almost surely.

In Figure 3.1a and 3.1b we show two numerical examples in order to visualize

the results of Theorem 1 - we plot samples from two distributions, X0 ∼ f0(x) and

X1 ∼ f1(x), and evaluate the value of C(X0,X1). In Figure 3.1a, both data sets

are drawn from the same distribution, f0(x) = f1(x) = N ([0, 0]T, I). In Figure 3.1b,

we plot data drawn from f0(x) = N ([−
√

2
2
,−
√

2
2

]T, I) and f1(x) = N ([
√

2
2
,
√

2
2

]T, I).

I is the identity matrix. For both data sets, an equal number of points are drawn,

therefore N0 = N1 = N and p = p0 = p1 = 1
2
. The dotted line in each figure

represents the Euclidean MST associated with X0 ∪ X1. The green lines represent

the edges of the MST connecting points from f0(x) to points from f1(x), C(X0,X1).

We can use this to estimate Dp(f0, f1) using the results of Theorem 1. It is clear from
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(a) f0(x) = f1(x) (b) f0(x) 6= f1(x)

Figure 3.1: Estimation of the Dp-divergence for the case when (a) f = g and (b)

f 6= g.

the figures that this value is much smaller for overlapping distributions (Figure 3.1a)

than for separable distributions (Figure 3.1b). Indeed, as Theorem 1 suggests, in the

limit, this statistic converges to the integral used in the divergence measure in (3.1).

In the ensuing sections we outline some important properties of this divergence

measure and develop new bounds for classification using this distance function be-

tween distributions.

3.1.1 Properties Of The Dp-Divergence

The divergence measure in (3.1) exhibits several properties that make it useful for

statistical analysis. It is relatively straightforward to show that the following three

properties are satisfied.

1. 0 ≤ Dp0(f0, f1) ≤ 1

2. Dp0(f0, f1) = 0 ⇐⇒ f0(x) = f1(x).

3. Dp0(f0, f1) = Dq(g, f).
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The lower bound in the first property follows from the fact that when f0 = f1

and p0 = p1, the minimum value of Dp0 is 0. To show that the divergence measure is

upper bounded by 1, we first note that∫
(p0f0(x)− p1f1(x))2

p0f0(x) + qg(x)
dx = 1− 4p0p1Ap0(f0, f1), (3.2)

where

Ap(f0, f1) =

∫
f0(x)f1(x)

p0f0(x) + p1f1(x)
dx.

The function Ap(f0, f1) attains its minimum value of 0, when f0(x) and f1(x) have

no overlapping support (since f0(x) > 0 and f1(x) > 0 for all x); therefore Dp0 =

1
4p0p1

[1 − (p0 − p1)2] = 1. The second property is closely related to the first: the

minimum value Dp0 = 0 only when f0 = f1 and p0 = p1. The third property follows

from commutativity.

The divergence measure in (3.1) belongs to the class of f -divergences. Every f -

divergence can be expressed as an average of the ratio of two distributions, weighted by

some function φ(t): Dφ(f0, f1) =
∫
φ(f(x)

g(x)
)g(x)dx. For Dp0(f0, f1), the corresponding

function φ(t) is,

φ(t) =
1

4p0p1

[
(p0t− p1)2

p0t+ p1

− (2p0 − 1)2

]
. (3.3)

Furthermore, φ(t) is defined for all t > 0, is convex - φ′′(t) = 2p0p1
(p0t+p1)3

> 0, and

φ(1) = 0. This is consistent with the requirements of the definition of an f -divergence

[28]. Indeed, for the special case of α = 1
2
, the divergence in (3.1) becomes the

symmetric χ2 f -divergence in [21] and is similar to the Rukhin f -divergence in [99].

3.2 Bounds On Bayes Classification Error

In this section, we show how Dp in (3.1) can be used to bound the Bayes error

rate (BER) for binary classification. Further, we show that, under certain conditions,
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this bound is tighter than the well-known Bhattacharya bound commonly used in the

machine learning literature and can be empirically estimated from data.

Before deriving the error bounds, for notation convenience, we introduce a slightly

modified version of the divergence measure in (3.1),

up0(f0, f1) = 1− 4p0p1

∫
f0(x)f1(x)

p0f0(x) + p1f1(x)
dx (3.4)

=

∫
(pf(x)− p1f1(x))2

pf(x) + p1f1(x)
dx.

It is easy to see that Dp0 =
up0

4p0p1
− (p0−p1)2

4p0p1
and when p = q = 0.5, Dp0 = up0 .

While this function no longer satisfies up0(f0, f1) = 0, for f = g, and therefore is no

longer a valid divergence measure, it greatly simplifies the notation of the ensuing

error bounds. As with Dp, w can estimate this quantity using the FR test statistic

since, under the same conditions as those in Theorem 1,

1− 2
C(X0,X1)

N0 +N1

→ up0(f0, f1). (3.5)

Given a binary classification problem with binary labels y ∈ {0, 1} and x drawn

from fS(x), we denote the conditional distributions for both classes as f0(x) =

fS(x|y = 0) and f1(x) = fS(x|y = 1). We draw samples from these distributions

with probability p0 and p1 = 1 − p0, respectively, and formulate two data matrices

denoted by X0 ∈ IRN0×d and X1 ∈ IRN1×d. The Bayes error rate associated with this

problem is given in (2.40). In Theorem 2 below, we show that we can bound this

error from above and below using the divergence measure introduced in the previous

section. The proof of this theorem can be found in Appendix B.

Theorem 2 For two distributions, f0(x) and f1(x), with prior probabilities p and q

respectively, the Bayes error rate, εBayes, is bounded above and below as follows:

1

2
− 1

2

√
up(f0, f1) ≤ εBayes ≤ 1

2
− 1

2
up(f0, f1).
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Combining the results from Theorem 1 with the results of Theorem 2, we see that

we can approximate the upper and lower bounds on the BER from the data matrices

X0 and X1 as

1

2
− 1

2

√
up(f0, f1) ≈ 1

2
− 1

2

√
1− 2

C(X0,X1)

N0 +N1

,

and

1

2
− 1

2
up(f0, f1) ≈ C(X0,X1)

N0 +N1

.

The derived bound is tight for the case p0 = p1 = 1
2
. For f0(x) = f1(x), the BER

is 0.5. Under these conditions, up0(x) = 0, and both the upper and lower bound in

Theorem 2 go to 0.5. For the case where f0(x) and f1(x) are completely separable,

the BER is 0, up(x) = 1, and both the upper and lower bound go to 0.

3.2.1 Relationship To The Chernoff Information Bound

Here we compare the tightness of the bounds on the Bayes error rate based on Dp

to the bounds based on the Chernoff information function (CIF) [56], defined as

Iα(f0, f1) =

∫
pαfα0 (x)q1−αf 1−α

1 (x)dx.

In Theorem 3, we derive an important relationship between the affinity measure,

Ap(f0, f1), and a scaled version of the CIF. The proof of this theorem can be found

in Appendix C.

Theorem 3 The affinity measure, Ap(f0, f1), is a lower bound for a scaled version

of the Chernoff information function:

Ap(f0, f1) ≤
∫
f q0 (x)fp1 (x)dx.

44



It is important to note that the second term in Theorem 3 is exactly equal to the

CIF for α = p0 = p1 = 1/2. For this special case, the Chernoff bound reduces to

the Bhattacharyya (BC) bound, a widely-used bound on the Bayes error in machine

learning that has been used to motivate and develop new algorithms [63, 100, 122].

The popularity of the BC bound is mainly due to the the fact that closed form

expressions for the bound exist for many of the commonly used distributions. Let us

define the Bhattacharya coefficient as:

BC(f0, f1) = 2

∫ √
pqf0(x)f1(x)dx. (3.6)

The well-known Bhattacharya bound on the BER is given by

1

2
− 1

2

√
1−BC2(f, g) ≤ εBayes ≤ 1

2
BC(f, g). (3.7)

In Theorem 4 below, we show that, for equiprobable classes, theDp bound provides

tighter upper and lower bounds on the BER when compared to the bound based on

the BC coefficient under all separability conditions. The proof of this theorem can

be found in Appendix D.

Theorem 4 For p0 = p1 = 1
2
, the Dp upper and lower bounds on the Bayes error

rate are tighter than the Bhattacharyya bounds:

1

2
− 1

2

√
1−BC2(f0, f1) ≤1

2
− 1

2

√
u 1

2
(f0, f1)

≤ εBayes ≤ 1

2
−1

2
u 1

2
(f0, f1) ≤ 1

2
BC(f0, f1).

Using asymptotic analysis of the Chernoff exponent, for small differences between

the two classes, it was shown that α = 1
2

results in the tightest bound on the prob-

ability of error - this corresponds to the bound in (3.7) [56]. Using a variant of this
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analysis, we derive a local representation of the CIF and relate it to the divergence

measure proposed here. In particular, if we let

pf0(x) =
1

2
(pf0(x) + p1f1(x)) +

1

2
(pf0(x)− p1f1(x))

= f 1
2
(x)(1 +

1

2
∆x),

where f 1
2
(x) = 1

2
(pf0(x) + p1f1(x)) and ∆x = (pf0(x)− p1f1(x))/f 1

2
(x). Similarly,

p1f1(x) = f 1
2
(x)(1− 1

2
∆x).

As in [56], after a Taylor series expansion around pαfα0 (x) and q1−αf 1−α
1 (x), the

Chernoff information function can be expressed as (see proof of Proposition 5 in

[56]):

Iα(f0, f1) =

∫
f 1

2
(x)

[
1− (2α− 1)

∆x

2

− α(1− α)

(
∆x

2

)2

+ o(∆3
x)

]
dx

=

∫
f 1

2
(x)dx− (2α− 1)

∫
f 1

2
(x)

∆x

2
dx

− α(1− α)

∫
f 1

2
(x)

(
∆x

2

)2

+ o(∆2)

=
1

2
− (2α− 1)(2p− 1)/2

− α(1− α)

2

∫
(pf0(x)− p1f1(x))2

pf0(x) + p1f1(x)
dx + o(∆2)

= (p+ α)− 2αp− α(1− α)

2
up(f0, f1) + o(∆2).

The local equivalence of Dp and Iα is not surprising since all f -divergences are

locally equivalent (they induce the same Riemann-Fisher metric on the manifold of

densities) [28]. This useful property allows us to estimate the CIF for small differences

between f0 and f1 using the MST procedure in Section 3.1. Further, we can express

the BER in terms of the CIF:

εBayes ≤ Iα ≈ (p+ α)− 2αp− α(1− α)

2
up(f0, f1).

46



For p0 = p1 = 1
2
, this bound reduces to εBayes ≤ 1

2
− α(1−α)

2
u 1

2
(f0, f1). This is very

similar to the upper bound in Theorem 2, differing only in the scale of the second

term. Further, it is easy to see from this that the bound in Theorem 2 is tighter than

the Chernoff bound since α(1−α)
2

< 1
2

for all α. This is not surprising since, locally,

α = 0.5 yields the tightest bounds on the BER [56]. This corresponds to the BC

bound in (3.7) and we have already shown that new bound is tighter than the BC

bound in Theorem 4. This analysis further confirms that result.

In addition to providing tighter bounds on the BER, we can estimate the new Dp

bound without ever explicitly computing density estimates. We provide a numerical

example for comparison. We consider two data samples from two classes, each of

which comes from a normally distributed bivariate distribution with varying mean

and spherical unit variance. The separation in means between the two class distribu-

tions is increased incrementally across 150 trials. The two distributions completely

overlap initially, and are almost entirely separated by the final trial. In each trial we

calculate the BER analytically using (2.40), as well as the upper and lower bounds

introduced in Theorem 2. We calculate the bounds both analytically (through nu-

merical integration) and empirically (using the results from Theorem 1). In order to

demonstrate the tightness of this bound we also plot it against the upper and lower

Bhattacharyya error bounds for Gaussian data (the closed form expression of the

bound for Gaussian data is known) [63]. Figure 3.2 displays the true BER along with

both error bounds as a function of the Euclidean separation between the means of two

bivariate normal distributions of unit variance. We see in this plot that the proposed

error bounds are noticeably tighter than the Bhattacharyya error bounds and are well

correlated with the true BER. Although the analytically calculated Dp bound never

crosses the BC bound, the empirically estimated Dp bound crosses the BC bound for

small values of the mean separation. This is due to the variance of the estimator.
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Figure 3.2: The Dp and BC bounds on the Bayes error rate for a bivariate Gaussian

example.

It is important to note that the estimator used here asymptotically converges to the

Dp divergence; however this result doesn’t necessarily extend to finite data. In fact,

for any fixed estimator, there exists a distribution for X and y such that the error

converges arbitrarily slowly [4].

3.3 Bounds On The Domain Adaptation Error

In this section, we consider a cross-domain binary classification problem and show

how the Dp distance can be used to bound the error rate in this setting also. Let us

define data from two domains, the source (training) and the target (testing) domain

and the corresponding labeling functions for each domain yS(x), yT(x) ∈ {0, 1} that

yields the true class label of a given data point x. The source domain, denoted by the

pair (XS, yS), represents the data used to train the machine learning algorithm and

the data (XT, yT) represents the data the algorithm will encounter once deployed.

Let us further define the conditional distributions fS,0(x) = fS(x|ys(x) = 0) and

fS,1(x) = fS(x|ys(x) = 1). The rows of the source and target data are drawn from
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fS(x) and fT(x). The risk, or the probability that the decision, h, disagrees with the

true label is defined as

εS(h, yS) = EfS(x)[|h(x)− yS|], (3.8)

for the source data. It is similarly defined for the target data. In Theorem 5, we

identify a relationship between the error rates on the source and target data. The

proof of this theorem can be found in Appendix E.

Theorem 5 Given a hypothesis, h, the target error, εT(h, yT), can be bounded by

the error on the source data, εS(h, yS), the difference between labels, and a distance

measure between source and target distributions as follows:

εT(h, yT) ≤εS(h, yS) + EfS(x)[|yS − yT|] (3.9)

+2
√
u 1

2
(fS, fT),

where u 1
2
(fS, fT) assumes equiprobable data from the source and target distributions.

The bound in Theorem 5 depends on three terms: the error on the source data, the

expected difference in the labeling functions across the two domains, and a measure

of the distance between source and target distributions (Dp distance). We expect

that the selected training algorithm will seek to minimize the first term; the second

term characterizes the difference between labeling functions in the source and target

domains; the third term is of particular interest to us - it provides a means of bounding

the error on the target data as a function of the distance between source and target

distributions.

In the covariate shift scenario, we assume that there exists no difference between

labeling functions (e.g. yS(x) = yT(x)) and only the distributions between the source

and target data change [11]. Under this assumption, the bound in Theorem 5 reduces
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to

εT(h, yT) ≤ εS(h, yS) + 2
√
u 1

2
(fS, fT). (3.10)

Furthermore, if we assume that the decision rule h attains the Bayes error rate,

εBayes, on the source domain, we can use the results from Theorem 2 to rewrite the

bound in Theorem 5 using only the Dp distance:

εT ≤
1

2
− 1

2
up(fS,0, fS,1) + 2

√
u 1

2
(fS, fT). (3.11)

If we denote the training data matrices by XS,0 ∼ fS,0 and XS,1 ∼ fS,1, then we can

estimate this upper bound using the FR test statistic by

C(XS,0,XS,1)

NS,0 +NS,1

+ 2

√
1− 2

C(XS,XT)

NS +NT

. (3.12)

The result shown in (3.12) represents an upper bound on the target domain er-

ror that can be computed without access to any labels in this domain. This bound

provides interesting insight on the importance of invariant representations for clas-

sification. The target error is bounded by the sum of the affinity between class

distributions in the source domain and the square root of the Dp-distance between

domains. Because of the square root and the multiplicative factor, it is clear that the

second term in (3.12) is weighted much more heavily. This stresses the importance of

invariant representations in classification. In other words, the bound provides a means

of quantifying the relative importance of selecting features that are invariant across

domains versus features that provide good separation separation between classes in

the source domain.
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Chapter 4

EXTENSIONS TO MULTI-CLASS AND REGRESSION PROBLEMS

The most stringent limitation of the error bounds presented in the previous section

is its limitation to binary classification problems. In this chapter we show how these

bounds can be extended to both multi-class classification problems and regression

problems. These extensions will enable the application of the proposed methodology

to a much greater range of problems. The extension to multi-class problems is de-

scribed in Section 4.1, while the extension to regression problems is covered in Section

4.2.

4.1 Extending Bounds To Multi-Class Problems

In this section we extend the bounds introduced in Section 3.2 to multi-class

problems. Section 4.1.1 uses a closed form extensions originally introduced in [74],

while Section 4.1.2 utilizes a recursive extension introduced in [44]. In Section 4.1.3,

we provide a brief comparison of the two methods.

4.1.1 Closed-Form Extension

Consider an M -class problem with prior probabilities p1, ..., pM and conditional

class distributions f1(x), ..., fM(x) in hypothesis space x. We first consider extending

the bounds using the approach described in [74]. In this paper, the authors show that

the BER in multi-class (RM) problems can be bounded by

2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij ≤ RM ≤
M−1∑
i=1

M∑
j=i+1

(pi + pj)Peij (4.1)

where Peij represents the pairwise Bayes risk of the 2-class subproblem of classifying

between classes i and j. Substituting in the upper and lower bounds on the Bayes
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Risk defined in Section 3 yields

2

M

M−1∑
i=1

M∑
j=i+1

(pi + pj)

[
1

2
− 1

2

√
up̃i,ji

(fi(x), fj(x))

]

≤ RM ≤
M−1∑
i=1

M∑
j=i+1

(pi + pj)

[
1

2
− 1

2
up̃i,ji

(fi(x), fj(x))

] (4.2)

where p̃i,ji represents the normalized prior probability for class i defined by

p̃i,ji =
pi

pi + pj
. (4.3)

One limitation of this approach is that the upper bound becomes very loose when

the overlap between class distributions is large. In fact, for completely overlapping

distributions, the upper bound will converge to (M − 1)/2 while the true BER con-

verges to (M − 1)/M . Section 4.1.2 will introduce an alternative that remedies this

shortcoming.

4.1.2 Recursive Extension

Next we consider an expression introduced by Garber and Djouadi that represent

bounds on the Bayes risk in terms of the Bayes risk of theM (M−1)-class subproblems

created by removing different classes as

M − 1

(M − 2)M

M∑
i=1

(1− pi)RM−1
i ≤ RM ≤

min
α∈{0,1}

1

M − 2α

M∑
i=1

(1− pi)RM−1
i +

1− α
M − 2α

.

(4.4)

Here RM−1
i represents the Bayes risk for the (M − 1)-class subproblem created by

removing class i and α is an optimization parameter used to attain the tightest

possible upper bound. By using these upper and lower bounds in a recursive manner

we can attain upper and lower bounds for the multi-class BER in terms of the pairwise

Bayes risks between conditional class distributions. As in the first extension, we
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can bound each pairwise BER in terms of the Dp-divergence using Theorem 2. For

example let us consider the 3-class case, we can compute the upper bound as

R3 ≤ min
α∈{0,1}

1

3− 2α

3∑
i=1

(1− pi)R2
i +

1− α
3− 2α

. (4.5)

Substituting in the bounds expressed in Theorem 2 yields

R3 ≤ min
α∈{0,1}

1

3− 2α

{
(p1 + p2)

[1

2
− 1

2
up̃1,21

(f1, f2)
]

+ (p1 + p3)
[1

2
− 1

2
up̃1,31

(f1, f3)
]

+ (p2 + p3)
[1

2
− 1

2
up̃2,32

(f2, f3)
]}

+
1− α
3− 2α

.

(4.6)

To better understand the role that α plays in this calculation, let us consider the two

extreme cases in which the three class distributions are either completely overlapping

or completely separable, and all class distributions have equal priors p1 = p2 = p3 = 1
3
.

In the first case, R2
1 = R2

2 = R2
3 = 1

2
and α = 0 yields the tightest bound of R3 ≤ 2

3

while α = 1 yields the loosest bound of R3 ≤ 1. In the second case R2
1 = R2

2 = R2
3 =

0, α = 0 yields the loosest bound of R3 ≤ 1
3

while α = 1 yields the tightest bound of

R3 ≤ 0. In general the value of α will depend on the total of the summation in (4.4).

When this summation is greater than (M − 2)/2 then α = 0, otherwise α = 1.

4.1.3 Comparison Of Bounds

Because the two bounds are equivalent when α = 1, Garber was able to show

that for problems with equal priors the recursive extension is guaranteed to be at

least as tight as the closed-form extension [44]. Extended proofs in Section A shows

both the upper and lower recursive bounds will be at least as tight as the closed-form

bounds regardless of priors. The price for this superiority comes in the increased

computational burden. The computational burden of the closed-form bound can be

approximated by M(M − 1)γ(nc)/2, where γ(nc) represents the number of computa-

tions required for a single pairwise risk function between classes containing nc samples.
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(a) Unimodal Scenario (b) Bimodal Scenario

Figure 4.1: Illustration of distribution placement for generating the synthetic data.

In addition to these computations, the recursive bound requires calculation of (4.4)

for all
∑M−1

i=3

(
M
i

)
unique subproblems of 3 or more classes. While these additional

computations are inconsequential for small M , their rapid growth w.r.t. M makes

this method infeasible for problems containing a large number of classes (M > 30).

To test the accuracy of the proposed bounds we consider the scenario in which four

bivariate class distributions are equally spaced in a radial formation around the origin.

We consider two scenarios. In the first scenario, each class distribution is represented

by a single Gaussian distribution. In the second scenario, the class distributions

from the first scenario are augmented by a second Gaussian distribution at a 180◦

rotation from the first. This second scenario is used to illustrate the behavior of the

Bhattacharyya bound when the parametric assumption that each class can be modeled

by a single Gaussian does not fit the actual data. The distribution placements used

in each scenario are presented in Figure 4.1.

Throughout this experiment, each Gaussian is isotropic with unit covariance, and
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Figure 4.2: True BER and error bounds for varying radii generated by each scenario

of the synthetic data simulation.

mean determined by the angle and radius. The angle used to place each distribution

is held constant (see Figure 4.1) while the radius is varied from zero, where the distri-

butions in each scenario are completely overlapping, to eight where the distributions

in each scenario contain almost no overlap with the neighboring distributions. The

radius is varied in increments of 0.2, and each class distribution is represented by

1000 samples of data generated according to the parameters of the distribution. At

each radius, we generate bounds on the Bayes error using both the recursive and

closed-form extensions described in the previous Sections for the Dp and BC bounds.

In these calculations, the Dp-divergences are calculated using the approach described

in Section 3. The Bhattacharyya distances are estimated in a parametric fashion by

empirically estimating the mean and covariance matrices, then plugging the results

into the explicit formula for multivariate normal distributions defined in [63], and in

a non-parametric fashion by using a 2-dimensional histogram to estimate each under-

lying distribution and solving for the BC by integration. We obtain a ground truth

value of the BER by integrating across the true underlying class distributions. To

reduce the variance of the estimator we average our results across 25 Monte Carlo
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iterations. The resulting bounds are shown in Figure 4.2.

In Figure 4.2a, we see little difference between the parametric and non-parametric

estimates of the Bhattacharyya bound, other than a slight negative bias that is most

pronounced for tightly overlapping distributions. Figure 4.2b shows that while the

non-parametric Dp and BC bounds remain largely unaffected by the addition of the

second Gaussian for each class, the parametric bounds do not hold for radii exceed-

ing 1.5 when the separation between modes is sufficient to violate the parametric

assumption. In both scenarios, the Dp bound provides a tighter bound on the BER. It

should be noted that the benefits of the Dp bound will only become more pronounced

in high-dimensional spaces where accurate non-parametric density estimation is often

infeasible [56].

4.2 Bounds On Regression Error

In the previous two Section we introduced bounds on performance in classification

problems, where our data belongs to a discrete number of classes we would like to

predict. In this Section, we will extend these ideas to regression problems where

the response values we are trying to model are continuous. Consider the set of data

(xi, yi) for i ∈ [1 . . . n], where each instance xi ∈ Rd is sampled from the underlying

distribution f(x) and each response yi ∈ R1 is defined as:

yi = θ(xi) + βi (4.7)

where θ(xi) reflects an oracle function that provides the ground truth response for each

exemplar and βi is zero mean white noise with variance σ2
i . We assume that both the

exemplars and the corresponding responses are independent identically distributed

random variables. In this section, we will introduce a graph-theoretic measure that

upper bounds the mean squared error (MSE) of the optimal estimator of the true
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response θ(x). Additionally, we will show that as the number of samples approaches

infinity, the proposed function converges to the MSE. To begin, we define a spanning

tree on X as a connected graph, G = (X, E), with vertex set X, edges E, edge weights

given by Euclidean distances between vertices, and no cycles. The length L(G) of the

spanning tree is the sum of its edge lengths. The minimal spanning tree (MST), is

defined as the spanning tree with the minimum length. Throughout the rest of this

Section we will use G to refer to the MST of X.

Recall that the Friedman-Rafsky test statistic C(X0,X1) represents a count of the

number of edges in the minimum spanning tree on X0∪X1 that connect points in X0

to points in X1. If we reformulate this problem such that X = X0 ∪X1 = [x1, ...,xn]

and y = [yi, ..., yn] where

yi =

 1 : xi ∈ X1

0 : xi ∈ X0

(4.8)

then we can redefine C(X0,X1) as

C(X,y) =
∑
eij∈E

|yi − yj|2. (4.9)

For every edge in the Euclidean MST of X, this statistic calculates the squared

difference in y values between neighboring nodes in G. Using this notation, we can

generalize this statistic beyond the classification problem and use it to measure the

intrinsic difficulty of regression problems. To do so, we show that the expected value

of this statistic asymptotically converges to the variance of βi. Substitute (4.7) into
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(4.9) we get:

E
[
C(X,y)

]
= E

∑
eij∈E

|θ(xi) + βi − θ(xj)− βj|2


=
∑
eij∈E

E
[
(θ(xi)− θ(xj))2

]
+
∑
eij∈E

E
[
(βi − βj)2

]
+
∑
eij∈E

2E
[
(βi − βj)(θ(xi)− θ(xj))

]
=
∑
eij∈E

E
[
(θ(xi)− θ(xj))2

]
+
∑
eij∈E

(σ2
i + σ2

j ).

(4.10)

The second term in (4.10) is the sum of the variances for each set of points connected

by an edge in the MST. Without loss of generality, we can simplify this term by

defining the degree of each vertex in the MST as ρi for i ∈ [1 . . . n]. It is easy to see

that this variance term in (4.10) can be rewritten as∑
eij∈E

(σ2
i + σ2

j ) =
n∑
i=1

E[ρi]σ
2
i . (4.11)

This corresponds to weighted sum of the variance of each label. A number of theo-

retical and empirical studies suggest that the degree distribution in random graphs

follows a power law, fρ(ρ) ∼ (1
ρ
)γ [78]. This is known to be a relatively low-entropy

distribution, where the variable takes one of only a few values with high probability.

As a result, the weights in the sum would not exhibit great variability, especially for

large values of γ. If we now assume that the noise is identically distributed (σ2
i = σ2

for i ∈ [1 . . . n]), this weighted sum simplifies to
n∑
i=1

E[ρi]σ
2
i = σ2

n∑
i=1

E[ρi] (4.12)

It is known that the sum of the degrees across all nodes in a spanning tree is equal

to two times the number of edges (2||G||), and that the number of edges is one less

than the number of nodes, therefore

σ2

n∑
i=1

E[ρi] = σ2(2||G||) = 2(n− 1)σ2. (4.13)
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Now let us define

Φ(X,y) =
C(X,y)

2(n− 1)
, (4.14)

with mean

E[Φ(X,y)] =
1

2(n− 1)

∑
eij∈E

E[(θ(xi)− θ(xj))2] (4.15)

+
1

2(n− 1)

n∑
i=1

E[ρi]σ
2
i .

Under this assumption, it is easy to see that the first term in (4.15) will be greater

than or equal to zero, therefore Φ upper bounds a weighted version of the MSE of the

ideal estimator. Furthermore, if θ(x) is a Lipschitz continuous function with Lipschitz

constant K, then ‖θ(xi)− θ(xj)‖2 ≤ K‖xi − xj‖2. Combining this relationship with

the assumption that the noise is identically distributed in (4.12) and (4.13), we can

form the following inequality:

E[Φ(X,y)] ≤ K

2(n− 1)

∑
eij∈E

‖xi − xj‖2 + σ2. (4.16)

This not only bounds the MSE of the ideal estimator, we will go on to show that

when x is drawn from a compactly supported distribution f(x), it asymptotically

converges to the true noise variance, σ2, since the first term in the inequality goes to

0. If we define the average euclidean distance of the edges in G as

Γ(G) =
1

n− 1

∑
eij∈E

‖xi − xj‖2, (4.17)

then the first term in (4.16) is equal to K
2

Γ(G). This term manages the tightness of

the MSE bound. This quantity has been studied in the literature. In fact, in [106]

Steele showed that, with probability 1,

lim
n→∞

Γ(G) = lim
n→∞

c(d)(n− 1)
−2
d

∫
<
f(x)

d−2
d dx, (4.18)
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where f(x) represents the compactly supported probability density function of the

underlying distribution from which X is sampled, c(d) denotes a strictly positive

constant, and d represents the data dimension. Note that this expression is only valid

when d > 2.

We see from (4.18) that the bias of Φ is affected by 1) the Lipschitz constant; 2)

the number of samples; 3) the dimension; 4) the density of the input distribution.

From this relationship it is easy to see that the bound becomes arbitrarily tight as

n → ∞. Furthermore, the rate of convergence for smaller d, smaller K, and more

compact distributions, f(x), increases.
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Chapter 5

DESIGNING FITTING RULES FOR CONSTRUCTING DIVERGENCE

MEASURES

In Section 2.2.4 we presented some of the advantages of graph-based estimators

over plug-in methods, however a very restrictive limitation of graph-based estima-

tion is that there is no general approach their usage. This section will introduce a

procedure for approximating unknown information-theoretic quantities via a linear

combination of directly estimable quantities. Unlike plug-in estimators, graph-based

estimators require different graphs and statistics depending on the quantity we wish

to estimate. Additionally there are a number of information theoretic quantities for

which there currently exists no established approach for graph-based estimation. To

resolve these issues, we propose a set of directly estimable basis functions that we can

use in the estimation of any unknown quantity. We refer to this proposed method as

a Fitting Routine for Optimizing Your Own divergence (FROYO).

The remainder of this chapter is organized as follows. In Section 5.1, we will

elaborate on the idea of directly estimable basis functions. Section 5.2 we present the

framework for fitting weights which can be used with the chosen basis set in order to

approximate an arbitrary information theoretic quantity. Section 5.3 will illustrate

the efficacy of the proposed methodology for forming tighter bounds on the Bayes

risk.

5.1 Directly-Estimable Basis Functions

In the previous chapters we have gone over a number of directly estimable in-

formation theoretic quantities including the Rényi entropy, the α-Jensen divergence,
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and the Dp-divergence. We also discussed the well established asymptotic error rates

of various k-NN classifiers. While knowledge of the asymptotic properties of the error

rates for k-NN classifiers is useful in its own right for providing performance guar-

antees on the classifier, we also propose using these quantities as directly estimable

basis functions that can be used to estimate information theoretic quantities. This

property has been exploited in previous work to estimate and bound the Bayes risk

[25, 40, 41, 42], however there has been little investigation into the use of these error

rates for other information-theoretic quantities. We would like to exploit the variation

in the asymptotic properties of the k-NN classifier w.r.t. k in order to generate data-

driven basis functions that can be used to form estimates of information theoretic

quantities that would otherwise require the use of plug-in estimators.

Recall the previously defined posterior class distributions η = η0 and η1, along

with the fact that any quantity that can be expressed as a function of these two

quantities can expressed by only one by exploiting their symmetry (η0 = 1 − η1).

Now consider the family of functions that can be expressed in the following form:

D(η) =

∫
g(η)(p0f0(x) + p1f1(x))dx. (5.1)

All f -divergence functions are part of this family, as are the Asymptotic Error

Rate (AER) functions for the k-NN classifier and the Dp-divergence function. Figure

5.1 illustrates how both the traditional and Hellman k-NN rules can be represented

as a function of η. We see as the value of k increases in the traditional k-NN classifier,

h(η) more tightly bounds min(η, 1− η), which is consistent with Stone’s Lemma, and

the regardless of k the AER function peaks at h(0.5). This means that, the risk is

maximized in regions where the posterior likelihoods are equal for both classes. This

is not the case for Hellman’s rule, which (for k ≥ 5) has two peaks that approach

zero and one with increasing k. This is due to the fact that Hellman’s rule will
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Figure 5.1: Basis functions (hk(η)) for the traditional and Hellman nearest neighbor

rules for odd k ≤ 31.

reject almost all instances in regions of equal posterior likelihoods for higher values

of k. The two rules exhibit unique asymptotic properties, the usefulness of which will

depend on the quantity we wish to estimate. While it is quite possible that none of

these AER functions may closely approximate g(η), we hypothesize that there exists

some linear combination of them that will. In this manner, we would like to think

of these AER functions as data-driven basis functions that can be used to estimate

new information theoretic quantities given 1) such weights exist and 2) we are able

to estimate them. In the next section we will propose a method of estimating the

weights, and illustrate the approach on an academic example.

5.2 Fitting Routine

First consider the series of discrete points η̃1, η̃2, ..., η̃Ñ , where 0 ≤ η̃1 < η̃2 <

... < ηÑ ≤ 1. Suppose that we have some set of functions h1(η), h2(η), ..., hK(η)

that are directly estimable in an asymptotically consistent manner. While none of
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these individual functions may closely approximate g(η), we hypothesize that there

exists some linear combination of them that will. To identify weights which best

approximate g(η), we form the following optimization problem

w1, ..., wK = argmin
wi,...,wK

Ñ∑
i=1

∣∣∣g(η̃i)−
K∑
k=1

wkhk(η̃i)
∣∣∣2. (5.2)

Using these weights we have identified the directly estimable approximate for g(η)

ĝ∗(η) =
K∑
k=1

wkhk(η). (5.3)

As a simple example, let us suppose that for our set of directly estimable functions

h1(η), h2(η), ..., hK(η) we have the AER functions for the traditional k-NN classifiers

for all odd k ≤ 21, and we wish to estimate is the Hellinger distance. In this scenario,

we can define

g(η) = (
√
η −

√
1− η)2. (5.4)

If we tried to form a linear combination from a single AER function, the best we

could do is the blue line in Figure 5.2a. However, by forming a linear combination we

are able to form a near perfect approximation of the Hellinger distance. This example

problem will be examined in greater detail in the following Section.

5.2.1 Approximation Vs. Estimation Error

To better understand the performance of the proposed approach it is important to

understand the two primary sources of error, which we term the approximation and

estimation error. The approximation error (eA) represents the difference between the

combination of AER functions ĝ∗(η) and the desired function g(η). The estimation

error eest represents the difference between the finite sample estimate

ĝ(η) =
K∑
k=1

wkĥk(η). (5.5)
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(a) Approximation Function (b) Approximation Error

Figure 5.2: Single AER vs. linear combination of 11 AERs for approximating the

Hellinger distance with directly estimable functions.

and the asymptotic approximation ĝ∗(η). Using these error types, we can express

g(η) as

g(η) = ĝ(η) + eA + eest

= ĝ(η) + (g(η)− ĝ∗(η)) + (ĝ∗(η)− ĝ(η))

(5.6)

where

eA = g(η)− ĝ∗(η) (5.7)

and

eest = ĝ∗(η)− ĝ(η). (5.8)

Looking back to the previous example, we see that while the approximation formed

by solving (5.2) is extremely small, the weights required to reach this solution are on

the order of 103, and thus the variance scales similarly. Thus without implementing

some type of constraint on the magnitude of these weights, we are unlikely to reach a

practical solution. To resolve this issue, we propose the use of a regularization term
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that penalizes the convex solver for selecting large weights. We propose the following

regularized equation

w1, ..., wK = argmin
w1,...,wK

Ñ∑
i=1

[
g(η̃i)−

K∑
k=1

wkhk(η̃i)

]2

+ λ

K∑
k=1

∣∣∣wkEη̃[hk(η̃)]
∣∣∣

= argmin
w1,...,wK

Ñ∑
i=1

[
g(η̃i)−

K∑
k=1

wkhk(η̃i)

]2

+ λ

K∑
k=1

∣∣∣wk
Ñ

Ñ∑
j=1

hk(η̃j)
∣∣∣

(5.9)

where λ represents a tuning constant that balances between the approximation error

and estimation error of the final solution. Selecting a small λ will yield a solution

which very closely approximates the desired measure in the asymptotic regime, how-

ever the large weights required to yield such a solution will result in high variance.

Larger values of λ will yield a solution, that while easier to estimate could contain a

large amount of finite sample bias. To illustrate this, lets look at a sample dataset

from [39] which considers two multivariate normal distributions f0(x) N(µ0,Σ0) and

f1(x) N(µ1,Σ1) with parameters

µ0 =

[
2.56 0 0 0 0 0 0 0

]T
; Σ0 = I8 (5.10)

and

µ1 =

[
0 0 0 0 0 0 0 0

]T
; Σ1 = I8 (5.11)

respectively. Based on sample sizes of 100 and 1000 drawn from each of these dis-

tributions, the proposed methodology is used to estimate the Hellinger distance for

several λ values varying from 10−3 to 10. This experiment is repeated across a 100

iteration Monte Carlo simulation, and the results are presented in Figure 5.3. These

plots clearly illustrate the trade off between approximation error and estimation error

that occurs with the selection of λ. Furthermore in comparing Figure 5.3a to Figure

5.3b, we see that as sample size increases, the optimal weighting for the regulariza-
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(a) N = 100 (b) N = 1000

Figure 5.3: Plots illustrating the trade-off between estimation error and approxima-

tion error for varying values of λ.

tion term decreases. This is due to the fact that the estimation error decreases with

sample size, while the approximation error is unaffected by changes in sample size.

5.3 Tighter Bounds On The Bayes Risk

In addition to estimating information-theoretic quantities, we can also use the

proposed approach to formulate tighter non-parametric bounds on the Bayes risk.

We previously illustrated how the proposed methodology can be used to approximate

any general function. Since we can represent the Bayes risk in the form

R∗ =

∫
min(η, 1− η)

(
p0f0(x) + p1f1(x)

)
, (5.12)

the Bayes risk can be approximated by setting

g(η) = min(η, 1− η). (5.13)
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This approximation can be converted to an upper bound simply by adding the con-

straint

g(η̃) ≤ ĝ(η̃) ∀η̃ (5.14)

making our final optimization problem with L2 regularization:

argmin
wi

Ñ∑
i=1

[
min(η̃i, 1− η̃i)−

K∑
k=1

wkhk(η̃i)

]2

+ λ
K∑
k=1

∣∣∣wkEη̃[hk(η̃)]
∣∣∣2

Subject to min(η̃i, 1− η̃i) ≤
K∑
k=1

wkhk(η̃i)

. . .

(5.15)

Optimizing according to (5.15) we can construct bounds that are, in the asymp-

totic regime, much tighter than the Bhattacharyya and Dp bounds that have been

previously described. Figure 5.4 illustrates ĝ(η) for each of these bounds relative to

the BER, along with the looseness of each bound as a function of η.

The next step is to empirically examine the efficacy of these bounds in the finite

sample regime. To accomplish this we consider two 2-dimensional Gaussian distribu-

tions f0(x) N(µ0,Σ0) and f1(x) N(µ1,Σ1) with parameters

µ0 = −

c

c

 ; Σ0 =

1 0

0 1

 (5.16)

and

µ1 =

c

c

 ; Σ1 =

1 0

0 1

 (5.17)

respectively. The mean parameter c is varied from 0 to 2 in increments of 0.1. We

then estimate the Dp directly and Bhattacharyya bounds parametrically (assumes

Gaussianity), along with the optimized bounds for λ = 0.01 and λ = 0.1. We then
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Figure 5.4: Plots illustrating the asymptotic bounds as a function of the normalized

posterior distribution.

repeat this experiment across a 500 iteration Monte-Carlo simulation. The average

value of these bounds in comparison to the true BER and the previously described

Bhattacharyya and Dp-divergence bounds is displayed as a function of the separation

between distributions in Figure 5.5. The results of this simulation are presented in

Figure 5.5, in terms of the actual bounds, their average looseness, estimator variance,

and MSE w.r.t. the true BER. These results indicate that the proposed method allows

much tighter bounds on the BER and that the estimator variance remains relatively

small.

In an effort to better understand the finite sample characteristics, we apply the

proposed methodology a sample dataset from the Fukunaga book on Pattern Recog-

nitio [39]. This set contains two 8-dimensional Gaussian distributions f0(x) and f1(x)

with parameters

µ0 =

[
2.56 0 0 0 0 0 0 0

]T
; Σ0 = I8 (5.18)
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Figure 5.5: Estimation characteristics of the proposed bounds along with the Dp and

Bhattacharyya bounds.

and

µ1 =

[
0 0 0 0 0 0 0 0

]T
; Σ1 = I8 (5.19)

respectively. Using these distributions, we compare the performance of the directly

estimable Dp-divergence bound, the Bhattacharyya bound which assumes Gaussian

class distributions, and optimized bounds as a function of sample size, which we vary

logarithmically between 100 and 10000. This simulation is then repeated across a 500

iteration Monte Carlo simulation and the results are presented in Figure 5.6 for the

lower bounds and 5.7 for the upper bounds. These rsults

In Figures 5.6a and 5.7a the finite samples estimates for each bound are depicted

using solid lines while the asymptotic bounds are are depicted using dotted lines.

While the Bhattacharyya bounds generally have the best finite sample properties,

the accuracy of this estimate is subject to large finite sample and asymptotic bias

should the data not fit the assumed parametric model. Furthermore these bounds

are looser than the other two methods by a wide margin. We see that in both simu-
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lations the proposed methodology yields by far the tightest bounds in the asymptotic

regime. Additionally the finite sample properties are superior to the Dp bound in

both scenarios and similar to the Bhattacharyya in the lower bound.

The variance of all 3 methods, converges at a rate of ≈ 1
N

, however the bias of

the Bhattacharyya bound converges to zero much faster than that of the other two

methods, and as a result, it converges much faster in the MSE sense as well. Despite

the proposed method having a lower initial bias (N = 100) in the lower bound, it

is quickly surpassed by the faster convergence of the Bhattacharyya bound. One

concern this simulation illustrates, particularly for the lower bound, is that as the

bounds become tighter, the amount of estimation error necessary to invalidate the

bounds lessens. Because of this the Dp lower bound falls above the true BER at

smaller sample sizes N < 300, and the lower FROYO bound exceeds the BER for all

tested sample sizes. As a result an important direction of future work is in improving

the convergence rate of the proposed method, however if we are concerned about this

problem, a simple solution is to artificially loosen the bound by adding or subtracting

some constant.
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(a) Bounds (b) Bias

(c) Variance (d) MSE

Figure 5.6: Lower bounds based on the Dp-divergence, Bhattacharyya distance, and

proposed methodology along with their estimator properties in terms of bias, variance

and MSE.
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(a) Bounds (b) Bias

(c) Variance (d) MSE

Figure 5.7: Upper bounds based on the Dp-divergence, Bhattacharyya distance, and

proposed methodology along with their estimator properties in terms of bias, variance

and MSE.
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Chapter 6

ALGORITHMS AND RESULTS

In this Section we utilize the error bounds developed in Section 3 to develop ro-

bust algorithms for preprocessing data prior to modeling classification and regression

problems. In Section 6.1 we use the previously established error bounds to develop

feature selection algorithms for both single-domain and cross-domain binary clas-

sification problems. We then show how these algorithms can be used in automatic

speech-based diagnosis/screening of Dysarthrias. In particular we show how the cross-

domain learning algorithm can be used to identify features that will generalize to new

speech disorders outside of the training data. Section 6.2 introduces a data removal

algorithm that minimizes the bound on the regression error introduced in Section

4.2. We then use this algorithm in order to identify and remove instances that are

corrupted by high levels of bias from individual raters.

6.1 Feature Selection Using Direct Estimation

In machine learning, feature selection algorithms are often used to reduce model

complexity and prevent over-fitting [75]. In many scenarios, feature selection will

improve model performance since the reduced dimensionality leads to a much more

densely populated hypothesis space and helps prevent overfitting. One way in which

we can use the performance bounds proposed in this Dissertation is to identify features

that will minimize the estimated error bounds for a given sample of data. Consider

that we have some set of training data XS with corresponding labels yS, and an

unlabeled set of test data XT. Algorithm 1 describes a forward selection algorithm

that iteratively selects features to minimize a given bound I. Within this general
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framework we propose to develop feature selection algorithms that minimize any of

the error bounds proposed in this dissertation, simply by varying the function defined

by I.

We consider four different classification experiments to test the efficacy of different

bounds proposed throughout this dissertation. The first two experiments, described

in Sections 6.1.1 and 6.1.2 respectively, investigate the binary classification task of

discriminating between healthy individuals and those with Dysarthria using sentence-

level speech data. The third experiment, found in Section 6.1.3 is a variation on this

binary classification task, where the training data contains only individuals with a

single subtype of Dysarthria, and we would like to identify features that will generalize

well to the other subtypes found in the test data. The fourth experiment, found in

Section 6.1.4, is a multi-class classification problem in which we are trying to identify

features that discriminate well between the different subtypes of Dysarthria.

6.1.1 Experiment 1: Binary Classification Bounds In Dysarthric Speech

Classification

We showed in Theorem 2 that the BER in binary classification problems can be

bounded by

1

2
− 1

2

√
up(f0, f1) ≤ εBayes ≤ 1

2
− 1

2
up(f0, f1). (6.1)

This experiment will explore the efficacy of selecting features in order to minimize

I(XS(Ω),XT(Ω),yS) =
C(X1(Ω),X2(Ω))

N1 +N2

, (6.2)

which reflects the direct estimate of the upper bound in (6.1) for a given set of features

Ω and X1 and X2 represent subsets of XS when yS equals zero and one respectively.

We empirically evaluate the feature selection algorithm on a pathological speech

database recorded from patients with neurogenic disorders. In particular, we consider
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Algorithm 1 Forward selection algorithm to minimize performance bound I.

Input: Feature data from two different classes in the source

domain and unlabelled data from the target

domain:XS, yS, XT, I

Output: Top k features that minimize Φ :

Ω

Define: Ω = ∅

F = 1 . . .M

for j ∈ 1 . . . k do

Φ = ∅

for Fi ∈ F \ Ω do

Φ(Fi) = I(XS(Ω ∪ Fi),XT(Ω ∪ Fi),yS)

end for

Ω = Ω ∪ {argmin
Fi

Φ(Fi)}

end for

the problem of classifying between healthy and dysarthric speech. Dysarthria is a mo-

tor speech disorder resulting from an underlying neurological injury. We make use of

data collected in the Motor Speech Disorders Laboratory at Arizona State Univer-

sity, consisting of 34 dysarthric speakers and 13 healthy speakers (H). The dysarthria

speakers included: 12 speakers with ataxic dysarthria, secondary to cerebellar de-

generation (A), 10 mixed flaccid-spastic dysarthria, secondary to amyotrophic lateral

sclerosis (ALS), 8 speakers with hypokinetic dysarthria secondary to Parkinson’s Dis-

ease (PD), and 4 speakers with hyperkinetic dysarthria secondary to Huntington’s

disease (HD). Each patient provided speech samples, including a reading passage,

phrases, and sentences. The speech database consists of approximately 10 minutes

of recorded material per speaker. These speech samples were taken from the larger
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pathological speech database described in [72].

The recordings from each speaker were split into individual sentences by hand and

features were extracted at the sentence level. Three different feature sets were used:

envelope modulation spectrum (EMS) features, long-term average spectrum (LTAS)

features, and ITU-T P.563 features. EMS is a representation of the slow amplitude

modulations in a signal and captures aspects of the speech signal related to rhythm.

The LTAS features capture atypical average spectral information in the signal. The

P.563 features measure atypical and unnatural voice and articulatory quality. For a

more detailed discussion of these features, we refer the readers to [15].

For this experiment we form both the training and test sets by randomly drawing

300 dysarthric speech samples and 300 healthy speech samples for each set, ensuring

that there is no overlap between training and test data. Using the FS algorithm

in Alg. 1, we use the training data to find the top 20 features that minimize the

respecitive BER bound. We compare this feature selection algorithm against one

that uses a parametric estimate of the Bhattacharyya bound for multivariate normal

distributions. For every feature set ranging in size from 1-20, we build support vector

machine (SVM) classifiers on the training data and evaluate their accuracy on the

test data. This experiment is repeated ten times using different randomly generated

training and test sets, and the average accuracy is displayed in Figure 6.1.

The results of this experiment indicate that the initial features selected by the Dp-

distance criteria provide faster convergence to the maximum classification rate when

compared to those selected by the BC criteria; however, as expected, as additional

features are selected, both algorithms eventual converge to roughly the same level of

performance. We purposefully restrict ourselves here to a very limited training set

(300 samples per class) in order to evaluate the Dp-distance in a small N setting.

Next, we consider the same problem but with a variable number of training samples
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Figure 6.1: Average classification accuracy using reduced feature sets.

per class. The results of this experiment are presented in Table 6.1. As the number

of training instances increases, the classifier success rate increases for the Dp-based

method, however it stays relatively flat for the BC-based method. For very small val-

ues of N , the bias/variance associated with the Dp-distance estimator seems to results

in features that provide poorer separability when compared to the BC method. Given

that the results of this estimator are asymptotic, this is expected. As the number

of features increase, both the Dp and BC algorithms converge to approximately the

same value.

6.1.2 Experiment 2: Fitting Routine Bounds For Dysarthric Speech Classification

This experiment shares the same goal as the previous experiment (detection of

Dysarthria based on speech data) however it will be used to evaluate the use of
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Table 6.1: Average classification accuracies (in percent) of top 10 features selected

Dp-divergence and Bhattacharyya distance criteria

Number of Algorithm Number of Training Instances

Features 100 200 300 400 500

10
BC 86.88 86.93 87.61 87.98 87.22

Dp 86.36 88.67 89.59 89.20 90.03

15
BC 90.84 90.46 90.51 91.69 90.88

Dp 88.08 90.66 92.00 92.12 92.72

20
BC 91.10 93.02 93.35 93.98 93.72

Dp 89.28 92.15 93.20 93.41 94.21

the fitting routine introduced in Chapter 5 for feature selection. One interesting

question which arose from the previous experiment, and that we hope to answer in

this experiment, is how much of the performance benefits Dp bound are due to the

non-parametric method of its estimation rather than overall tightness of the bound.

Because the proposed fitting routine allows us a method of directly estimating any

f -divergence, we can identify a set of weights that will yield a directly estimable

approximation of the Bhattacharyya distance. For this experiment, we set the opti-

mization criteria to

I(XS(Ω),XT(Ω),yS) =
8∑

k=1

wkε
NN
2k−1(XS(Ω),yS) + w0, (6.3)

where εNNk (XS(Ω),yS) represents the error rate of the k-NN classifier on dataset

(XS,yS) using feature set Ω and the weights w0, w1, ..., w8 are identified by solving

(5.9) for λ = 0.1. Based on the results shown in Figure 5.3, this value of λ appears

to be close to optimal for the sample sizes used in this experiment (300 samples per

class). By comparing features identified by this direct estimate of the Bhattacharyya

79



distance with features selected by the parametric estimate of the Bhattacharyya dis-

tance and the direct estimate of the Dp-divergence, we hope to gain some insight into

the importance of direct estimation in selecting optimal features for binary classifica-

tion tasks.

The initial data set used in this experiment is drawn from an updated version of the

previously described data set. Our starting data for this experiment contains samples

from 78 dysarthric speakers and 13 healthy speakers (H). The dysarthric speakers in-

cluded: 17 speakers with ataxic dysarthria, secondary to cerebellar degeneration (A),

15 mixed flaccid-spastic dysarthria, secondary to amyotrophic lateral sclerosis (ALS),

39 speakers with hypokinetic dysarthria secondary to Parkinson’s Disease (PD), and 7

speakers with hyperkinetic dysarthria secondary to Huntington’s disease (HD). From

this data set, we extract same LTAS and EMS features discussed previously, however

we have replaced the P.563 features with a set of 234 features based on Mel-Frequency

Cepstral Coefficients. From this data, disjoint sets of four healthy speakers and 30

Dysarthric speakers are randomly selected and assigned to the training and test data.

We randomly select 75 instances from each healthy speaker and 10 instances from

each dysarthric speaker so that both the training and test data are composed of 600

total samples.

From this data the top 20 features are selected to minimize the parametric and

direct estimates of the Bhattacharyya bound along with the direct estimate of the Dp

bound. For every feature set ranging in size from 1-20, we build a SVM and evaluate

the subset based on the error of the SVM on the reduced feature set. This experiment

is repeated 100 times and the results are averaged and displayed in Figure 6.2.

Despite the slight variations the experimental design the performance of feature

selection algorithms based on the parametric estimate of the Bhattacharyya bound

and the direct estimate of the Dp bound is largely consistent with the findings of ex-
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Figure 6.2: Average classification accuracy using reduced feature sets.

periment 1. The direct estimate of the Bhattacharyya bound yields performance that

closely resembles the performance of the Dp criteria, indicating that non-parametric

estimation method likely factors more into the performance on the resulting feature

set than the tightness of the bound.

6.1.3 Experiment 3: Domain Adaptation Bounds In Dysarthric Speech

Classification

Like in the previous two experiments, Experiment 3 focuses on the task of distin-

guishing between healthy individuals and individuals with Dysarthria using sentence-

level speech data. However unlike in the previous two experiments, we restrict our

data so that the training data contains only a single subtype of Dysarthria that

is different from the subtypes contained in the test set. Many of the ways in which
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Dysarthria affects speech varies across subtypes, as a result traditional machine learn-

ing strategies may not generalize well to the test data. To counter this we will select

features that minimize the proposed upper bound on the error in the target domain

εS(h, yS) = EfS(x)[|h(x)− yS|], (6.4)

which can be accomplished by assigning

I(XS(Ω),XT(Ω),yS) =
C(XS,0(Ω),XS,1(Ω))

NS,0 +NS,1

+ 2

√
1− 2

C(XS(Ω),XT(Ω))

NS +NT

.

(6.5)

To generate the training and test groups used in this experiment, we start by se-

lecting 300 healthy instances for the training set and 300 (different) healthy instances

for the test set. The rest of the training and test data is made up of 300 randomly se-

lected samples from one of the four Dysarthria subtypes: Ataxic, ALS, Huntington’s

and Parkinson’s. Each model is then evaluated on the test sets for each subtype not

contained in the training set.

Using each training set-test set combination, we generate feature subsets using

the proposed selection algorithm, along with three competing algorithms that are

used for comparison. The first algorithm we use for comparison is a standard forward

selection algorithm based on the BC distance. This algorithm is used as a baseline

for comparison, however because it assumes the training and test data come from the

same distribution [47], we expect it to perform poorly relative to the other algorithms.

Next we use the same Bhattacharyya FS algorithm, however we account for the

separation in domains by using feature normalization, as described in [64], prior to

feature selection. We refer to this method as BC with feature normalization (BCFN).

The final domain-invariant feature learning algorithm we compare against is based

on Conditional Probability Models (CPM), as described in [101]. This approach at-

tempts to select a sparse mapping that maximizes an objective function that trades
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off between prediction algorithm performance and the distance between target and

source distributions (controlled by a Lagrangian parameter λ). For classification, the

logistic regression function is used and a penalization term is added to ensure that

the mapping contains minimal contribution from features containing large differences

between source and target data. For the specifics of the implementation, we refer the

reader to [101]. The same parameter settings are used here. Because this approach

utilizes an optimization criteria involving a trade-off between the source-domain sep-

aration and the train-test separation, it resembles the proposed FS algorithm more

closely than any other method proposed in the literature.

Table 6.2: Classification accuracies of SVM classifier using the top 20 features re-

turned by each feature selection method for each combination of training and test

data.

Trial Source Target BC BCFN CPM Dp

1 Ataxic ALS 56.50 73.28 75.82 76.22

2 Ataxic Huntington’s 56.83 72.52 70.12 75.12

3 Ataxic Parkinson’s 49.27 60.75 58.53 64.43

4 ALS Ataxic 52.95 66.35 54.68 67.15

5 ALS Huntington’s 64.25 73.67 65.50 72.23

6 ALS Parkinson’s 54.32 65.97 69.48 73.60

7 Huntington’s Ataxic 49.95 53.63 43.00 49.30

8 Huntington’s ALS 63.40 64.12 63.17 73.00

9 Huntington’s Parkinson’s 59.48 62.22 69.73 76.03

10 Parkinson’s Ataxic 41.13 55.65 42.15 48.23

11 Parkinson’s ALS 62.10 66.30 61.25 67.35

12 Parkinson’s Huntington’s 73.67 71.12 64.47 68.98
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We present the average classification accuracies yielded by the top 20 features from

each FS algorithm for each train-test combination in Table 6.2. The DA algorithm

introduced in Section 6.1 achieved the highest classification accuracy in 8 of the 12

trials, while the BC algorithm scored the lowest 8 of 12 trials. The results clearly

illustrate the importance of utilizing domain adaptation in this type of scenario;

even an approach as simple as feature normalization yields roughly 8.5 % higher

classification accuracy on average. To observe the value of the lower-dimensional

subsets generated by each algorithm, we average the accuracy across all twelve trials

and display the accuracy as a function of the number of features in Figure 6.3. We

can see in this figure that the performance of the proposed algorithm consistently

improves as additional features are added. Because the optimization criteria we have

selected minimizes the upper bound on the error, the algorithm has a tendency to

pick “safe” features; e.g. using this algorithm invariant features are preferred, even if

they are less informative in the source domain.

To better understand how DA helps us build robust models, we look at the top two

features returned general and DA FS criterions introduced in Section 6.1. Figure 6.4a

displays the training and test data plotted across the top two features returned by

the general FS criteria. We see that these two features represent a strong separation

between the two classes in the training set, however this separation is not similarly

represented in the test data, and as a result these features will not be beneficially

for the target application. Figure 6.4b displays the data plotted against the top two

features returned by the DA FS criteria. Even though the separation between classes

in the training data isn’t as noticable as in the features returned by the general criteria,

both Dysarthria subtypes manifest themselves very similarly within this feature space,

and as a result models built on them will generalize well between these two subtypes.
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Figure 6.3: Average classification accuracy on foreign subtypes using reduced feature

sets.
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Figure 6.4: Low dimensional representation of datasets (Source Domain:ALS, Target

Domain:Parkinson’s).

85



6.1.4 Experiment 4: Multi-Class Bounds In Dysarthric Speech Classification

Unlike the previous three experiments, experiment 4 considers the task of distin-

guishing between different subtypes of dysarthria, rather than distinguishing between

healthy and dysarthric individuals. In Section 4.1 we introduced closed-form and

recursive extensions of the Dp bound to multi-class problems. For a general M -class

classification problem, we can minimize the closed-form extension of the Dp bound

by assigning

I(XS(Ω),XT(Ω),yS) =
M−1∑
i=1

M∑
j=i+1

C(Xi(Ω),Xj(Ω))

N
, (6.6)

where Xi represents the set of instances in XS with label i. Minimization of the

recursive bound can be minimized by assigning

I(XS(Ω),XT(Ω),yS) = U(X1(Ω), ...,XM(Ω)). (6.7)

This can be estimated recursively solving

U(X1, ...,XM) = min
α∈{0,1}

1

M − 2α

M∑
i=1

(1− Ni

N
)U([X1, ...,XM ] \Xi) +

1− α
M − 2α

, (6.8)

where Ni represents the number of instances in Xi, N represents the total number

of instances in XS, and U represents the direct estimate of the recursive M -class

upper bound on the Bayes risk. This is achievable since the 2-class Bayes risk can be

calculated using (6.1).

Beginning with the dataset described in Experiment 2, minus the set of Huntington

speakers which are removed due to the limited amount of data that is available within

that subtype we extract a total of 1201 features including 99 long-term average spec-

trum (LTAS) features [98], 60 Envelope Modulation Spectrum (EMS) features [73],

234 mel frequency cepstral coefficients (MFCC) features, and 783 additional spatio-

temporal features [116]. We then partition the database into training and test sets,
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by randomly selecting 10 speakers from each subtype and 20 sentences from each

speaker to be placed in the training set. From this data we iteratively select features

using a forward selection feature selection algorithm that attempts to minimize the

criteria in (6.6) and (6.7) along with the closed-form and recursive extensions of the

Bhattacharyya bound estimated parametrically. We also include a wrapper feature

selection method that iteratively selects the features that maximize the performance

of the classifier on a held-out validation set. Wrappers will typically identify the

optimal subset of features for the selected classifier, but are computationally very

burdensome [65]. Each FS algorithm is used to identify feature subsets of sizes 1-10.

For each subset a classification tree is trained on the training data, and evaluated on

the test data. This entire procedure is repeated over a 20-iteration Monte Carlo sim-

ulation and the average performance achieved by the subsets from each FS algorithm

is displayed in Figure 6.5.

Figure 6.5 shows that the Dp-based FS algorithm achieved superior performance

to BC-based algorithm throughout the experiment, although the gap narrows as ad-

ditional features are added. While the Dp algorithm achieves slightly higher perfor-

mance in the smaller subsets, the wrapper yields the highest overall performance. We

were not able to observe any significant difference in the closed-form and recursive

bounds in this experiment, and other than some of the later features chosen by the

Dp algorithm the two methods generally returned the same set of features. This in-

dicates that we are operating in the regime in Figure 4.2 after the two methods have

converged and the bounds become virtually identical.

6.2 Exemplar Removal Using Bound On Regression Error

A starting point for the algorithm is the theory outlined in Section 4.2. Because

Φ(X) asymptotically converges to the label variance, we propose an algorithm which
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tion of the number of features selected.

seeks to identify the subset of instances Ω that minimizes the following metric w.r.t.

Ω:

Φ(X(Ω),y) =
1

(2|Ω| − 1)

∑
eij∈E

|yi − yj|2 (6.9)

There are two problems with seeking to minimize this criterion. First, evaluating

this criterion for every potential subset of exemplars would require construction of 2n−

1 minimum spanning trees, which will be computationally infeasible even for relatively

small data sets. Second, minimizing this criterion without penalizing or restricting the

number of exemplars removed would yield a subset containing the two instances with

the closest y values. We remedy both of these problems by using a sequential backward

selection (SBS) algorithm which will iteratively remove the ”worst” instances until it

reaches the desired subset size k. By using the SBS algorithm we reduce the required

number of MSTs to
∑N

n=k+1 n = 1
2
(N − k)(N + k + 1). For large values of N , this

approach may still be computationally prohibitive in many applications. To further
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Algorithm 2 Iterative exemplar removal using minimum spanning trees.

Input: Data Matrix X, Stopping Criteria k

Output: Top N − k exemplars that minimize Φ :

Ω

Define: Ω = 1 . . . N

for j ∈ 1 . . . k do

G(E,X(Ω)) = MST (X(Ω))

for i ∈ G(E,X(Ω)) do

Ψi(X(Ω),y) =
1

ρi

∑
eij∈E

|yi − yj|2

end for

Ω = Ω \ argmax
i

Ψi

end for

reduce the computational burden we introduce an alternate criterion that represents

average squared difference in labels across branches connected to point xi

Ψi(X,y) = Φ(X,y|i) =
1

ρi

∑
eij∈E

|yi − yj|2 (6.10)

In short, this function estimates the average difference between y values for all points

connected to xi in the MST. As such, it estimates the contribution of instance xi

to Φ(X(Ω)). While this is a heuristic simplification of the optimal criterion in (6.9),

empirical simulations found that the new, simplified criterion performs well on a

number of experiments (see Section 4). By using the Ψ criterion, the algorithm now

requires the construction of k MSTs.

6.2.1 Academic Example

To test the effectiveness of the proposed algorithm we examine the scenario where

y can be expressed as a linear combination of x plus additive gaussian white noise
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(AGWN) β ∼ N(0, σ2).

yi =
M∑
j=1

α(j)xi(j) + βi = ỹi + βi (6.11)

where M represents the number of features and xi(j) represents the value of feature

j for instance i. For our simulation, we make X a 25-dimensional matrix containing

2000 exemplars that are normally distributed with zero mean and unit variance. We

set all α coefficients equal to one while β may take on one of 5 different noise levels

with equal probability.

Once the dataset is generated, we use Algorithm 2 to iteratively remove exemplars

from the dataset. After each exemplar is removed, we use the reduced dataset to train

a linear model. We evaluate the performance of each model based on its mean squared

error (MSE) in predicting the true labels ỹi. The resulting MSE values are displayed

in Figure 6.7. It is clear from this figure that removing the high-noise values results

in a smaller MSE. In fact, there is an initial dramatic drop in the the MSE (resulting

from removing the highest-noise exemplars), followed by a more gradual decline. To

verify that the algorithm is correctly identifying the exemplars generated from the

higher σ2 values we also plot the histogram displaying how many of the first 400

exemplars removed are drawn from each noise level in Figure 6.6. This Figure shows

that while the algorithm does select instances for rejection from every noise level, the

majority of exemplars that are removed are drawn from the higher noise levels.

6.2.2 Dysarthric Speech Example

A graphical depiction of the experimental setup is provided in Figure 6.8. Be-

ginning with a 4180x123 matrix containing several feature sets including long-term

average spectrum (LTAS) [98], Envelope Modulation Spectrum [73], and P.563 [95],

we partition the data for cross-validation by removing a single speaker from the train-

90



0.316 63.25 94.87 158.11 316.23
0

100

200

300

Noise Level (σ)

In
st

an
ce

s 
R

em
ov

ed

Figure 6.6: Number of exemplars removed corresponding to each noise level among

the total 400 samples rejected by the proposed algorithm.

500 1000 1500 2000

200

400

600

Number of Removed Exemplars

M
ea

n 
S

qu
ar

ed
 E

rr
or

Figure 6.7: MSE as a function of the number of exemplars removed.

ing set and placing them in the test set. We then employ Principal Feature Analysis

algorithm [76] with the correlation matrix to identify the top 50 features with mini-

mal redundancy. We then apply Principal Components Analysis to further reduce the

dimensionality. The instance rejection procedure described in Algorithm 2 is applied

to the resulting dataset to iteratively identify and remove noisy instances. We set

K = 1000 and select 5 points per MST for removal, and monitor the performance of

the algorithm as a function of the number of exemplars removed. After removing the

noisy instances we use PCA to form a low-dimensional representation. Finally we use
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Figure 6.8: Block Diagram of Experimental Design.

the modified dataset, which now contains N − k exemplars expressed in 10 dimen-

sions, to train a linear model using robust least squares with Huber loss. The severity

ratings of a single SLP are used as the response variable. The resulting model is then

used to predict responses for each of the instances that were partitioned into the test

dataset. This yields a set of responses pertaining to a single speaker that we then

average to achieve an estimate of the severity rating for that speaker. This process is

then repeated until we have generated severity ratings for all 33 speakers and 6 SLPs

in the data set. In addition to the exemplar selection algorithm introduced in Section

6.2, we also tested 3 alternate selection methods for selecting examples: (a) k-means

clustering, (b) support vector regression, and (c) speaker based exemplar removal.

In k-means exemplar selection we identify 250 clusters using the k-means algorithms,

then iteratively remove points with the largest distance from their respective cluster

mean. Next we a construct a support vector machine (SVM), and remove all instances

not chosen as support vectors. We control the number of support vectors by varying

the C parameter from 0.025 to 10 on a logarithmic scale while ε is held constant at

0.25. Finally we employ a speaker based pruning method where we look at the data

from each individual speaker and remove iteratively remove the instances with the

largest standardized euclidean distance from the mean.

Because severity is inherently subjective and no ground truth scores exist, we use

the average severity rating of the 5 SLPs not used in training to approximate the

true severity rating. We evaluate the performance of each model by correlating the
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Figure 6.9: Average correlation between objective model and the average subjective

rating as a function of the number of exemplars removed, the mean correlation of the

individual SLPs against the average score is 0.9332.

predicted ratings with the average rating of the 5 SLPs not used to train the model.

These correlation values are then averaged across the 6 different SLP CV stages and

the resulting average correlation scores are displayed as a function of the number of

exemplars removed in Figure 6.9.

Figure 6.9 shows that of the four exemplar pruning methods that were tested,

the proposed MST-based pruning approach is the only one that achieved a noticeable

improvement in correlation when averaged across the six SLPs. The proposed method

yields an improvement of ∼ 0.015 in the average correlation score which plateaus at

around 150 instances and begins to decline after ∼ 500 exemplars have been removed.

This decline marks the point at which the benefit of reducing the noise in the dataset
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no longer outweighs the information lost in reducing the overall size of the dataset.

6.3 Computational Considerations

In this Section, we will discuss the computational complexity of the algorithms

introduced in this dissertation. These algorithms are based on graph-theoretic esti-

mators, and as a result their computational burden is primarily based on the efficiency

of the graph construction process. We will first review recent work to develop com-

putationally efficient methods of constructing minimum spanning trees and nearest

neighbor graphs, then we will outline the specific computational challenges for each

of the major algorithms developed in this document.

6.3.1 Euclidean Minimum Spanning Tree Construction

The computational complexity of minimum spanning tree algorithms is typically

described as a function of the number of vertices n and the number of edges m in the

original graph. The traditional MST algorithms such as Kruskal’s and Prim’s work in

O(m log n) and O(m+n log n) time respectively [68, 92]. Recently, more advanced al-

gorithms have been able to reduce this burden to O(m log∗ n) [36], O(m log log∗ n)[43],

O(m log log n) [124], and O(mα(n)) [91] where α(n) represents the inverse Ackerman.

These algorithms function quite well in applications in which are starting edge set

is small (m���n). However, in the case of euclidean MST computation every pair of

vertices represents a candidate edge m = n(n−1)
2

and all of these algorithms act in

Ø(n2) time.

When working in R2, we can generate an exact MST in O(n log n) by first com-

puting the Delaunay triangulation, then running and exact MST algorithm on the

reduced edge set. While this provides an optimal solution in R2, it won’t neces-

sarily extend well to higher dimensions where the Delaunay triangulation might be
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equivalent to the complete graph. Bentley and Friedman proposed an algorithm uti-

lizing kd-trees for nearest neighbor searches [13], which they suggest (but do not

rigorously prove) operates in O(n log n) time. March proposed the dual-tree Boruvka

algorithm, which modifies the framework of Boruvkas original solution, by forming

kd-trees across various components as a fast method of identifying neighboring com-

ponents within a spanning forest [81]. The authors suggest show that this algorithm

achieves an asymptotic run time of O(α(n)n log n), however the complexity of this

approach increases exponentially with dimensions, as a results the actual time re-

quirements might be much greater in practice.

An approach employed by a number of algorithms is to first extract a sparse graph

from the complete graph, drastically reducing the number of edges, then compute an

exact solution on the sparse graph. The accuracy and speed of these methods vary

based on the method used to extract the sparse graph. One solution, proposed by

Pravin Vaidya [111], is to first subdivide the space into equally sized cubes. Any pair

of vertices lying in the same cube will remain connected, while any two vertices lying

in different cubes will only remain connected if their respective edge length falls below

a given threshold. This algorithm runs in O(ε−dn log n) time and yields a graph with

weight≤ (1+ ε)WMST , where WMST represents the weight of the true minimum span-

ning tree. Later Callahan and Kosaraj employed well separated pair decomposition in

order to attain a graph with the same maximum weight in O(n log n + (εd/2 log 1
ε
)n)

time. Zhong et al. proposes a fast minimum spanning tree algorithm, that uses

K-means clustering to form
√
n different subdivisions, then forms uses exact MST

algorithms to compute the MSTs within and between the clusters [126]. This al-

gorithm operates in O(n1.5) time and is experimentally shown to generate a more

accurate solution when compared with the algorithm proposed in [71] the uses the

Hilbert curve for clustering. A number of algorithms have been proposed which utilize
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a well separated pair decomposition (WSPD) to form the graph subdivisions. Agar-

wal used this approach to develop an algorithm that is bound to O(Fd(n, n)log(n))

time, where Fd(n, n) is the time required to solve the bichromatic closest pair prob-

lem for n points in d dimensions. Narsimhan et al. propose two variants of this

approach in the GeoMST and GeoMST2 algorithms. While the authors expect the

latter of these algorithms to operate in O(n log n) time, this figure ignores how the

algorithms complexity varies with dimension [86]. Neemuchwala proposed the modi-

fied projection-decomposition algorithm, which attempts to accelerate Kruskal’s algo-

rithm from O(m log(n) ≈ n2 log(n)) to O(n log(n)) by restricting the set of candidate

edges to only those likely to be in the minimum spanning tree by removing any edges

exceeding ε in length [89]. When ε is chosen such that the number of edges is sig-

nificantly reduced without removing any edges belonging to the minimum spanning

tree, this approach will yield the optimal tree in a highly efficient manner. However

if ε is too high the edge set will be inadequately pruned and the performance will be

similar to Kruskal’s algorithm. If on the other hand ε is too low, then the desired

minimum spanning tree will not be a subset of the reduced edge set, and will thus

be unattainable. While there are approaches for estimating the appropriate value of

ε [89], it is possible in certain data sets that there exists no value of ε that will reach

the optimal solution in O(n log(n)) time.

6.3.2 Feature Selection Algorithm

For a given euclidean minimum spanning tree algorithm, suppose constructing

said tree requires T (n, d) steps, where n is the number of samples and d is the di-

mensionality of the sample space.

For the single-domain feature selection algorithm we begin with a data set com-

posed of N instances measured by M features. Suppose we wish to select the top L
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features using the feature selection algorithm described in 1, then the total number

of steps required for the feature selection algorithm equals

T (N,M,L) =
L∑
d=1

(M − d+ 1)T (N, k). (6.12)

Now for the cross-domain learning algorithm, the optimization criterion is calcu-

lated the same number of times but now requires the construction of two separate

EMSTs in it’s calculation. Considering a data set with NS training instances and NT

test instances, and once again selecting the top L of M total features, the algorithm

now requires

T (NS, NT ,M,L) =
L∑
d=1

(M − d+ 1)(T (NS, d) + T (NS +NT , d)) (6.13)

total steps for computation.

6.3.3 Multi-Class Feature Selection

For the general bound, calculation of the multi-class error rate for a K-class prob-

lem using d variables requires

Tbound(N,K, d) =
K∑
i=1

K∑
j=i+1

T (ni + nj, d) (6.14)

computations, where ni represents the number of instances in class i. For the recur-

sive bound, the recursive calculation of (4.4) requires approximately an additional∑d−1
i=1

∑M−1
i=3

(
M
i

)
i computations. When the calculation of these bounds is integrated

into a forward selection algorithm the number of calculation becomes

TMC(N,M,L) =
L∑
d=1

(M − k + 1)Tbound(N,K, d). (6.15)

By substituting the computations in (6.14) into (6.15) the total calculations becomes

T generalMC (N,M,L) =
L∑
d=1

(M − d+ 1)
K∑
i=1

K∑
j=i+1

T (ni + nj, d) (6.16)
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or for the recursive bound

T recursiveMC (N,M,L) =
L∑
d=1

(M − d+ 1)

[
K∑
i=1

K∑
j=i+1

T (ni + nj, d) +
K−1∑
i=3

(
M

i

)
i

]
. (6.17)

If we assume the number of instances-per-class to be a constant value n = N/K, then

(6.16) can be simplified to

T generalMC (N,M,L) =
L∑
d=1

(M − d+ 1)
K(K + 1)

2
T (2n, d) (6.18)

6.3.4 Data Removal Algorithm

Consider a data set ofN instances measured across aM -dimensional feature space.

Each time a group of instances is removed this algorithm requires T (Nr,M) steps,

where Nr is the number of remaining instances at that stage. Supposing we wish to

remove L samples of data K samples at a time, this algorithm requires

T (N,M,L,K) =

d L
K
e∑

i=1

(T (N − (i− 1) ∗K,M)) (6.19)

total steps. While the computational benefits of increasing K are significant, higher

values of k are more likely to lead to the removal valuable instances that are corrupted

by their proximity to noisy data.
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Chapter 7

CONCLUSION AND FUTURE WORK

This dissertation has introduced error bounds for binary classification (single and

multi-domain), multi-class classification, and regression problems that can be esti-

mated using minimum spanning trees. The bounds introduced for binary classifica-

tion are tighter than the popular Bhattacharyya bounds and can be estimated without

assuming a parametric model. These desirable properties are maintained when these

bounds are extended to multi-class problems. The cross-domain learning bounds in-

troduced in this paper similarly do not require parametric assumptions on the class

distributions in either domain, nor any labeled data in the target domain. We go

on to show each of these bounds can be a powerful tool when used as optimization

criteria in a feature selection algorithm. When generalized to regression problems, we

are able to upper bound the MSE for an optimal model. Additionally an approach

for approximating information-theoretic quantity of the form

D(f0, f1) =

∫
f1(x)φ

(
f0(x)

f1(x)

)
dx (7.1)

for underlying distributions f0(x) and f1(x) using convex optimization is introduced.

While previous graph-based estimates have been limited to particular divergence func-

tions, this approach is applicable for any f -divergence and any dispersion function

φ(t).

This work is motivated by a desire to measure the intrinsic difficulty of machine

learning problems directly from the dataset. For such a measure to be generally

accepted it should be applicable to a wide variety of datasets and have the following

properties:
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1. Applicable to a variety of problems (binary classification, regression, multi-class

classification, cross-domain learning)

2. Estimable for a variety of attributes (discrete, continuous, categorical)

3. Independent of the underlying distributions

4. Estimable and computationally feasible even in large high-dimensional datasets.

These properties are to some degree attained by the work proposed in this disser-

tation, though not completely. A fundamental limitation of non-parametric statistics

in general is that consistency can only be attained asymptotically, and convergence

may be arbitrarily slow for particular distributions. As a result, while we can work to

develop more robust and practical solutions, we are never truly invariant to the un-

derlying nature of the data being studied. Additionally, due to their basis in minimal

graphs, none of the work proposed in this paper is applicable to data with categorical

attributes.

There are several interesting directions for future work related to the topics dis-

cussed in this dissertation. Acquiring a better understanding the asymptotic proper-

ties of minimal graphs is essential for the development of new graph-based estimators.

Similarly acquiring a better understanding of their finite sample characteristics is es-

sential for understanding the utility of these measures for different problems. While

there exists a direct relationship between asymptotic value of quantities such as the

Henze-Penrose 2-sample test statistic and the 1-NN error rate, the difference between

the properties of their finite sample estimates remains largely unexplored.

With regards to the fitting routine proposed in Chapter 5, there remain several

topics to explore. Improving the finites sample characteristics of estimations based

on this approach is critical. This could be accomplished simply by improving the esti-

mator properties of the individual basis functions by using ensemble methods such as
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those introduced in [105]. However, it is also possible, given a good understanding of

the convergence rate of each basis function, to incorporate the bias reduction within

the general optimization procedure for the fitting routine. This is potentially a far

more computationally efficient approach than applying ensembles to each individual

basis function. Additionally, while we have only considered error rates for the tradi-

tional k-NN rule as our basis set, we could potentially include any directly estimable

quantity in our basis set, and the role that the chosen basis set plays in the methods

performance requires further investigation. Obviously, if we wished to estimate a

quantity that is asymmetric w.r.t. η0, we would need utilize basis functions that are

also asymmetric. A final consideration that remains to be explored is the sampling

of η0 in the fitting routine. We have proposed a uniform sampling of η0, with an

equal weighting applied to each sample in the optimization criteria, however may not

accurately reflect the expected posterior values for the data being studied. It remains

to be seen whether a non-uniform sampling of η0 could improve the performance of

the proposed approach.

Future work in this area should focus not only on improving methods for graph-

based estimators but on development of practical tools around the approaches that

currently exist. We introduced algorithms that exploit graph-based estimators for

performing feature selection and data removal. Previous research has used these

estimators for image registration [87] and robust clustering [55], however a number

of applications in machine learning remain largely unexplored.
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A.1 Proof Of Theorem 1

By combining Eq. (3.1) and (3.2) from the text we can rewrite

Dp0 =
1

4p0p1

[1− 4p0p1Ap0(f0, f1)− (p0 − p1)2] (A.1)

=
1− (p0 − p1)2

4p0p1

− Ap0(f0, f1) (A.2)

= 1− Ap0(f0, f1), (A.3)

where

Ap0 =

∫
f0(x)f1(x)

p0f0(x) + p1f1(x)
dx. (A.4)

From Theorem 2 in [53], we know that as N0 → ∞ and N1 → ∞ in a linked
manner such that N0

N0+N1
→ p0 and N1

N0+N1
→ p1,

C(f0, f1)

N0 +N1

→ 2p0p1Ap0(f0, f1), (A.5)

almost surely.
Combining the asymptotic relationship in Eq. (A.5) with the results from Eq.

(A.3), we see that

1− C(f0, f1)
N0 +N1

2N0N1

→ Dp0(f0, f1), (A.6)

almost surely as N0 → ∞ and N1 → ∞ in a linked manner such that N0

N0+N1
→ p0

and N1

N0+N1
→ p1.

A.2 Proof Of Theorem 2

We begin with the realization that the Bayes error rate can be expressed in terms
of the total variation (TV) distance between distributions [63]:

R∗ =
1

2
− 1

2

∫
|p0f0(x)− p1f1(x)|dx. (A.7)
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Next, we show that we can bound the TV distance from above and below using D̃p0 :

D̃p0 = 1− 4p0p1Ap0(f0, f1) (A.8a)

= 1− 4p0p1

∫
f0(x)f1(x)

p0f0(x) + p1f1(x)
dx (A.8b)

=

∫
[p0f0(x) + p1f1(x)] dx

− 4p0p1

∫
f0(x)f1(x)

p0f0(x) + p1f1(x)
dx

(A.8c)

=

∫
[p0f0(x) + p1f1(x)]2 − 4pqf0(x)f1(x)

p0f0(x) + p1f1(x)
dx (A.8d)

=

∫
p0f0(x)2 + p1f1(x)2 − 2pqf0(x)f1(x)

p0f0(x) + p1f1(x)
dx (A.8e)

=

∫
[p0f0(x)− p1f1(x)]2

p0f0(x)− p1f1(x)
dx (A.8f)

=

∫
|p0f0(x)− p1f1(x)| |p0f0(x)− p1f1(x)|

p0f0(x) + p1f1(x)
dx. (A.8g)

Since

|p0f0(x)− p1f1(x)|
p0f0(x) + p1f1(x)

≤ 1 for all x, (A.9)

we can simplify (A.8g) to

1− 4p0p1Ap0(f0, f1) ≤
∫
|p0f0(x)− p1f1(x)| dx. (A.10)

This provides a lower bound on the TV distance based on D̃p0 . In order to derive the
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upper bound we begin with

DTV(f0, f1) =

∫
|p0f0(x)− p1f1(x)| dx (A.11a)

=

∫
|p0f0(x)− p1f1(x)|

√
p0f0(x) + p1f1(x)√
p0f0(x) + p1f1(x)

dx (A.11b)

≤

√√√√∫ ( p0f0(x)− p1f1(x)√
p0f0(x) + p1f1(x)

)2

dx

×
���

���
���

���
���

��:1√∫ (√
p0f0(x) + p1f1(x)

)2

dx

(A.11c)

≤
√
D̃p0(f0, f1). (A.11d)

By combining the inequalities in (A.10) and (A.11d) with the relationship in (A.7),
we see that we can bound the BER by

1

2
− 1

2

√
D̃p0(f0, f1) ≤ R∗ ≤ 1

2
− 1

2
D̃p0(f0, f1). (A.12)

A.3 Proof Of Theorem 3

By the geometric vs harmonic mean inequality,

f0(x)p1f1(x)p0 ≥ f0(x)f1(x)

p0f0(x) + p1f1(x)
. (A.13)

It immediately follows that Ap0(f0, f1) ≤
∫
f0(x)p1f1(x)p0 , a scaled Chernoff informa-

tion function. Thus,

Ap0(f0, f1) ≤
∫
f0(x)p1f1(x)p0 . (A.14)

A.4 Proof Of Theorem 4

For equiprobable classes (p = q = 1
2
) The upper and lower bounds on the Bayes

error rate based on the Bhattacharyya distance are defined by [63]

1−
√

1−BC2(f0, f1)

2
≤ R∗ ≤ BC(f0, f1)

2
, (A.15)

where

BC(f0, f1) =

∫ √
f0(x)f1(x)dx. (A.16)

To show that the D̃ 1
2

bound upper bound is tighter than the Bhatacharyya bound

we must show that A 1
2
(f0, f1) ≤ BC(f0, f1). It is clear that this is the case from
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Theorem 3. For the D̃ 1
2

lower bound to be tighter, BC2(f0, f1) must be less than

equal to A 1
2
(f0, f1). We show this to be true using the Cauchy-Schwartz inequality:

BC2(f0, f1) =

[∫ √
f0(x)f1(x)

]2

(A.17a)

=

∫ √
f0(x)f1(x)√

1
2
(f0(x) + f1(x))

√
1

2
(f0(x) + f1(x))dx

2

(A.17b)

≤
∫

f0(x)f1(x)
1
2
(f0(x) + f1(x))

dx
��

���
���

���
�:1∫

1

2
(f0(x) + f1(x))dx (A.17c)

= A 1
2
(f0, f1). (A.17d)

Combining both bounds, we see that

1

2
− 1

2

√
1−BC2(f0, f1) ≤1

2
− 1

2

√
D̃ 1

2
(f0, f1)

≤ R∗ ≤ 1

2
−1

2
D̃ 1

2
(f0, f1) ≤ 1

2
BC(f0, f1).

A.5 Proof Of Theorem 5

The proof begins in the same fashion as the result in [11] and then diverges.

εT(h, yT) =εT(h, yT) + εS(h, yS)− εS(h, yS) (A.18a)

+ εS(h, yT)− εS(h, yT)

≤εS(h, yS) + |εS(h, yT)− εS(h, yS)| (A.18b)

+ |εT(h, yT)− εS(h, yT)|
≤εS(h, yS) + EfS(x)[|yS − yT |] (A.18c)

+
∣∣∣∫ fT(x)|h(x)− yT |dx

−
∫
fS(x)|h(x)− yT |dx

∣∣∣
≤εS(h, yS) + EfS(x)[|yS − yT |] (A.18d)

+

∫
|fT(x)− fS(x)||h(x)− yT |dx

≤εS(h, yS) + EfS(x)[|yS − yT |] (A.18e)

+

∫
|fT(x)− fS(x)|dx

In (A.18e), we identify an upper bound on the target error expressed using the TV
distance between source and target distributions. Using (A.11d) this can be expressed
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in terms of D̃ 1
2
:

εT (h, yT ) ≤ εS(h, yS) + E{|yS − yT |}

+ 2
√
D̃ 1

2
(fT , fS)

(A.19)
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