
High-Order Sparsity Exploiting Methods with Applications in Imaging and PDEs

by

Dennis Denker

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2016 by the
Graduate Supervisory Committee:

Anne Gelb, Chair
Richard Archibald
Dieter Armbruster

Albert Boggess
Rodrigo Platte
Toby Sanders

ARIZONA STATE UNIVERSITY

May 2016

ABSTRACT

High-order methods are known for their accuracy and computational performance

when applied to solving partial differential equations and have widespread use in

representing images compactly. Nonetheless, high-order methods have difficulty rep-

resenting functions containing discontinuities or functions having slow spectral decay

in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in

terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field

of compressed sensing has introduced a set of techniques based on `1 regularization

that promote sparsity and facilitate working with functions having discontinuities.

In this dissertation, high-order methods and `1 regularization are used to address

three problems: reconstructing piecewise smooth functions from sparse and and noisy

Fourier data, recovering edge locations in piecewise smooth functions from sparse and

noisy Fourier data, and reducing time-stepping constraints when numerically solving

certain time-dependent hyperbolic partial differential equations.

i

DEDICATION

To my parents, for their unending support and love

ii

ACKNOWLEDGMENTS

I would like to thank Prof. Anne Gelb for her dedication to my success in com-

pleting this work and for helping with my development as a mathematician. I am

deeply grateful to her.

I would like to thank Prof. Rodrigo Platte and Prof. Douglas Cochran for their

advice over the years, as various ideas developed.

I would like to thank the other committee members Dr. Rick Archibald, Prof.

Dieter Armbruster, Prof. Al Boggess, and Dr. Toby Sanders for the time they have

dedicated to seeing this work through. Their comments were extremely valuable in

developing these ideas.

I would like to thank Albert Leffler and the Leffler family for their constant support

and help in reviewing this paper.

I would like to thank Cara Gerard for her support and motivation.

I would like to thank my friends Andee, Candy, Debbie, Jorly, Laura, Paloma,

Scott, and Sean for supporting this endeavor from the beginning.

I would like to thank Joan Matuska for inspiring me.

Finally, I would like to thank Jingjing Fan, Evelyn Karis, and Ryan Mead. Helping

you with your preliminary investigation, gave me insight into many of the details of

these problems. Your energy and enthusiasm was inspirational.

This work is supported in part by grants NSF-DMS 1216559, AFOSR FA9550-12-

1-0393, NSF-DMS 1521600, NSF-DMS 1502640, and AFOSR FA9550-15-1-0152.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

2 FUNCTION RECOVERY THROUGH REGULARIZATION AND WAVELET

REPROJECTION . 4

2.1 Introduction . 4

2.1.1 Reconstruction from Non-uniform Fourier Data 5

2.1.2 Reconstruction Using Regularization . 6

2.1.3 Promoting Edge Sparsity and Piecewise Smooth Solutions

through Regularization of Solutions Represented in a Wavelet

Basis . 8

2.2 Design of Regularization Based on Wavelet Reprojection. 9

2.3 The Choice of Wavelet Basis . 11

2.4 Sample One-dimensional Results . 14

2.5 Two-dimensional Implementation . 17

2.6 Kronecker Product Representation . 20

2.7 The Vectorized Split Bregman Implementation . 21

2.8 A Memory Efficient Implementation . 22

2.9 Two Dimensional Results . 23

2.9.1 Filtering . 35

2.10 Analysis . 43

2.10.1 Edge Response . 44

2.10.2 Gibbs Oscillation Suppression and Implicit Filtering 45

2.10.3 Edge Detection Response for High Order Functions 48

iv

CHAPTER Page

2.10.4 Concluding Remarks . 48

3 EDGE DETECTION OF PIECEWISE SMOOTH FUNCTIONS FROM

UNDER-SAMPLED FOURIER DATA . 51

3.1 Preliminaries . 53

3.1.1 The Concentration Factor Edge Detection Method 55

3.1.2 Sparsity Promoting Regularization . 57

3.1.3 Polynomial Annihilation Edge Detection As a Sparsifying

Operator . 59

3.1.4 Sample Sets . 61

3.2 Edge Detection for Under-sampled Fourier Data 62

3.2.1 The Concentration Factor Edge Detection Method 62

3.2.2 The Sparsity Enforcing Edge Detection Method 64

3.2.3 Generating an Edge Map Using Thresholding 65

3.2.4 Variance of Jump Function Responses . 67

3.2.5 Post Processing Edge Detection Using Variance 70

3.2.6 Determining Edges from Regularized Reconstruction 74

3.3 Determining the Two-dimensional Edge Map Using Variance 77

3.3.1 Variance of Jump Function Responses . 82

3.3.2 Determining Edges by Regularized Reconstruction. 83

3.4 Concluding Remarks . 89

4 AN ADAPTIVE FOURIER FILTER FOR RELAXING TIME STEP-

PING CONSTRAINTS FOR EXPLICIT SOLVERS 92

4.1 Background . 93

4.2 The Proposed Filter . 94

v

CHAPTER Page

4.3 Numerical Results . 96

4.4 Conclusion . 102

5 CONCLUSION . 103

REFERENCES . 105

APPENDIX

A THE WAVELET BASIS . 109

A.1 Motivation . 110

A.2 The Discrete Wavelet Basis . 111

A.2.1 Multi-resolution Analysis . 111

A.2.2 Wavelet Basis Formation . 112

A.3 The Daubechies Wavelets . 112

B THE SPLIT BREGMAN ALGORITHM . 115

B.1 Introduction . 116

B.2 Splitting . 116

B.2.1 The Bregman Distance . 117

B.2.2 The Iterative Solution . 118

B.3 Adding Feedback to Simplify the Iteration . 121

B.4 Solving the Sub-problems . 123

B.4.1 The Fidelity Term . 123

B.4.2 The Basis Pursuit Problem . 123

C PERMISSION TO USE PUBLISHED PAPERS . 127

vi

LIST OF TABLES

Table Page

2.1 Parameters Selected for Each Test Case. Unless Otherwise Specified,

We also Choose N = 128. 16

2.2 Parameters Selected for Each Two-dimensional Test Case. Unless oth-

erwise Specified We Let N = 128, ζ = 1
40

, and the Gaussian Sampling

Pattern Will Be Used. 28

2.3 Fraction of Cells in which the Reconstruction Accuracy of Fwav Is

Better Than That of Fnowav and FTV . 38

2.4 Sum of log10 Ratio of Reconstruction Errors with Fwav Compared to

Fnowav and FTV . 38

2.5 Fraction of Cells in which the Reconstruction Accuracy of Fwav is Bet-

ter Than That of Fnowav and FTV Away From Edges. 39

2.6 Fraction of Cells in which the Reconstruction Accuracy is Improved by

Filtering for Fwav, Fnowav and FTV . 40

2.7 Fraction of Cells in which the Reconstruction Accuracy is Improved by

Filtering for Fwav, Fnowav and FTV in Smooth Regions. 41

2.8 Parameters Selected for Each Two-dimensional Spiral Sampling Test

Case. 41

2.9 Fraction of Cells in which the Reconstruction Accuracy Is Improved

by Using Spiral Sampling for Fwav, Fnowav and FTV 41

2.10 Fraction of Cells in which the Reconstruction Accuracy Is Improved

by Using Spiral Sampling in Smooth Regions for Fwav, Fnowav and FTV . 42

3.1 Sample Concentration Factors . 56

3.2 Parameters Selected for Each Test Case. Unless otherwise Specified,

We also Choose N = 64, Q = 30 and ζ = .5. 62

vii

Table Page

4.1 Parameter Values and Results at High Resolution. 97

4.2 Parameter Values and Results at Low Resolution. 99

4.3 Comparison of Results Using Different Resolutions at Filter Power,

p = 12. 101

4.4 Comparison of Results Using Different Resolutions at Filter Power,

p = 8. 102

viii

LIST OF FIGURES

Figure Page

2.1 The Location and Scale of the Wavelet Basis Vectors and the Wavelet

Coefficients Associated with Decompositions of the Monomials of In-

creasing Order. 14

2.2 Bhigh Wavelet Components for D2...D5 When Approximating a Dis-

continuity. 15

2.3 The Projection of f1 onto the Blow Basis and the log10 Pointwise Error

in That Projection with N = 128. 15

2.4 E2(f1) and E3(f1) with N = 128. 15

2.5 f1,F−1V̂, ~fwav, and ~fnowav, on the Domain [−4., .6] to Show Detail. 18

2.6 The Absolute Pointwise Reconstruction Errors in ~fwav and ~fnowav. 19

2.7 ~Q for Each Test Case. 20

2.8 The Test Function, f2, Shown As a Surface Plot, a Contour Plot, and

a One-dimensional Cross-section along the Line y = 1
8
. 24

2.9 K-space Sampling Distributions with γ = 0.3. 25

2.10 The Fourier Reconstruction of f2 Associated with the Test Cases. 27

2.11 Test Case 1 log10 Reconstruction Errors in Fwav, Fnowav, and FTV 28

2.12 Comparison of Accuracy between Fwav and Fnowav, FTV Respectively

for Test Case 1. White Areas Indicate Fwav Is More Accurate. 29

2.13 The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test

Case 1 and log10 Reconstruction Errors along the Cross-section y = 1
8
. 30

2.14 Test Case 2 log10 Reconstruction Errors in Fwav, Fnowav, and FTV 30

2.15 Comparison of Accuracy between Fwav and Fnowav, FTV Respectively

for Test Case 2. White Areas Indicate Fwav is More Accurate. 31

ix

Figure Page

2.16 The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test

Case 2 and log10 Reconstruction Errors along the Cross-section y = 1
8
. 32

2.17 Test Case 3 log10 Reconstruction Errors in Fwav, Fnowav, and FTV 33

2.18 Comparison of Accuracy between Fwav and Fnowav, FTV Respectively

for Test Case 3. White Areas Indicate Fwav Is More Accurate. 33

2.19 The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test

Case 3 and log10 Reconstruction Errors Along the Cross-section y = 1
8
. 34

2.20 Test Case 4 log10 Reconstruction Errors in Fwav, Fnowav, and FTV 35

2.21 Comparison of Accuracy between Fwav and Fnowav, FTV Respectively

for Test Case 4. White Areas Indicate Fwav Is More Accurate. 35

2.22 The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test

Case 4 and log10 Reconstruction Errors along the Cross-section y = 1
8
. 36

2.23 Comparison of Surface Reconstructions for Test Case 4. 37

2.24 Filter Powers of Various Orders . 39

2.25 The Effect of a Fourth Order Filter on the Fourier Reconstruction

without Regularization Applied to Test Case 2. 40

2.26 Comparison of Radial Sampling Distributions for Gaussian and Spiral

Sampling Patterns. 42

2.27 The 2-norm of the Reconstruction Errors as a Function of log10
µ
λ

for

Test Case 2. 43

2.28 The 2-norm of the Reconstruction Errors as a Function of log10
µ
λ

for

Test Case 4. 43

2.29 Artifacts Present in the Fwav Reconstruction. 44

x

Figure Page

2.30 The Blow Reconstruction of r(x) as Compared to the Blow Reconstruc-

tion of r(x− 2
N

) and the Associated Edge Detector Responses. 45

2.31 The Suppression of Gibbs Phenomenon As a Consequence of Projecting

r(x) onto the Blow Basis. 47

2.32 A Comparison of the Raised Cosine Filter and the Wavelet Projection.. 47

2.33 The Effect of the Blow Projection on High-order Smooth Functions. 49

3.1 f1(x). 55

3.2 Sample Jump Response Behavior for Various Concentration Factors

with N = 32. 58

3.3 Concentration Factor Edge Detection Method, SσGN [f1](x). 63

3.4 SMM
N [f1] (x) in (3.21). 64

3.5 Edge Map of f1(x) Resulting from (3.22). 65

3.6 Algorithm 1 Using SσGN [f1](x), SMM
N [f1](x), and SSEN [f1](x) and Thresh-

old c = 7/8. 66

3.7 ~v(E1)(xj) in (3.23) for r(xj) in (3.8), xj = j
N
, j = −N, · · · , N . G in

(3.24a) Is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}. 69

3.8 ~v(E1)(xj) in (3.23) for f1(x) and xj = j
N
, j = −N, · · · , N . G in (3.24a)

Is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}. 69

3.9 ~v(E2)(xj) in (3.23) for f1(x) and xj = j
N
, j = −N, · · · , N . G in (3.24b)

is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}. 70

3.10 Edge Map Generated Using Algorithm 3 for f1(x). Here δ = 5, c = 7
8
. . . 71

3.11 Sample Reconstructions and Pointwise Reconstruction Errors from Ap-

plying (3.25) to the Test Cases in Table 3.2. 75

3.12 ~v(Q) for f1 Using the Parameters in Table 3.2. 76

xi

Figure Page

3.13 Algorithms 2 and 3 Applied to ~v(Q) for f1 Using the Parameters in

Table 3.2. Here δ = 5 and c = 7
8
. 77

3.14 f2(x, y). 78

3.15 SσGC,N [F2]m,n and a Cross-section at SσGC,N [F2]m,N+1. 80

3.16 The Results of Applying Algorithm 4 to SσGC,N [F2]m,n with Thresholding

at c = 15/16. 81

3.17 V(E)m,n Using G = {σG, σ1
P , σ

2
E, σ

4
E} and a Cross-section V(E)m,N+1. . . 82

3.18 The Results of Applying Algorithm 5 to V(E)m,n UsingG = {σG, σ1
P , σ

2
E, σ

4
E},

Maximum Distance between Peaks, δ = 7, Threshold c = 15/16. 83

3.19 V(Q)m,n Using Q = 40 and a Cross-section V(Q)m,N+1. 84

3.20 The Results of Applying Algorithm 5 to V(Q)m,n with Q = 30, Maxi-

mum Distance between Peaks, δ = 7, threshold c = 15/16. 84

3.21 Comparison of Algorithm 5 Results Using N=128, SNR=12.5dB, γ =

.75, β = 0.3, δ = 7, Threshold c = 31/32. 85

3.22 Comparison of Algorithm 5 Results Using N=128, SNR=12.5dB, γ =

9
16

, β = 0.09, δ = 7, Threshold c = 31/32. 86

3.23 Comparison of Algorithm 5 Results Using N=128, SNR=8dB, γ = 1
5
,

β = 0.09 δ = 7, Threshold c = 31/32. 87

3.24 Comparison of Methods Using Algorithm 4 on SσGC,N [F2] and SMM
C,N [F2]

and Algorithm 5 on V(E) and V(Q) for the Test Cases in Table 3.2

and Figures 3.21, 3.22, and 3.23. 88

4.1 The Effect of Filtering on Growth Factors. 94

4.2 The Effect of the Adaptive Filter on Accuracy Using the Parameters

in Table 4.1. 98

xii

Figure Page

4.3 The Effective Solution Support for Example 1 as a Function of Time. . . 99

4.4 The Effect of the Adaptive Filter on Solution Accuracy Using the Pa-

rameters in Table 4.2. 100

B.1 The Subdifferentials at Differentiable and Non-differentiable Points in

One Dimension. 119

B.2 A Simple Basis Pursuit Problem Showing the Combined Functional As

Well As the 1-norm and 2-norm Components. 124

B.3 When |2λbc| > 1 and bc > 0, the Minimum Occurs in the Differentiable

Region 0 < u <∞. 125

B.4 When |2λbc| < 1, the Minimum Occurs at a Point Lacking Differentia-

bility. 126

xiii

Chapter 1

INTRODUCTION

High-order methods are known for their accuracy and computational performance

when applied to solving partial differential equations. They are also in widespread

use in representing images compactly. Also, certain sensing techniques such as MRI

and SAR provide data in terms of Fourier coefficients, which naturally fit with spectral

methods. The success of these methods is predicated on the ability of the associated

basis to represent the function being approximated with few basis elements or with a

spectrum of basis elements having rapidly decaying coefficients. Many real-world ap-

plications work with data that is best represented by functions having discontinuities.

The expression of such functions in the Fourier basis or in bases formed by orthogonal

polynomials results in an infinite number of basis elements, with slow coefficient de-

cay. Additionally, when spectral methods are applied to time-dependent, non-linear,

partial differential equations, solutions initially having a compact representation in

the basis can develop shock or a “spectral cascade” that requires an ever increasing

number of basis elements for accurate representation. In this dissertation, investiga-

tions are made regarding the application of high-order methods and sparsity-driven

regularization to problems having discontinuities or numerical solutions resulting in

a large spectrum in the chosen basis.

Chapter 2 contains an investigation of a technique based on sparsity-promoting

regularization in combination with a wavelet basis as a means to reconstruct functions

from incomplete or noisy Fourier data. The wavelets are constructed to have com-

pact support, both in the physical and frequency domains. The wavelets also have

properties that allow for a local representation of low-order polynomials with few ba-

1

sis elements. This combination of properties would seem to enhance regularizations

that reconstruct piecewise smooth functions. In this chapter, a new regularization is

developed that produces solutions formed from a wavelet basis as opposed to the Eu-

clidean basis. The accuracy of the resulting solutions is investigated both in smooth

regions and near edges under a variety of test cases. This chapter also provides a

detailed discussion of the inherent issues associated with Fourier measurements made

from real-world objects having a piecewise smooth representation and the process

of applying sparsity-promoting regularization techniques. These discussions provide

some of the necessary background for Chapter 3.

Chapter 3 investigates recovering edge information from incomplete or noisy Fourier

data using new techniques based on analyzing the variance in results, when samples

are subject to a set of treatments. Recovering edge information is of equal practical

importance to reconstructing functions. Concentration factor based techniques are

extremely successful at recovering edge information, but these methods can often de-

tect additional false edges. Some strategies have been developed to combat this issue,

but in the presence of noise or sub-sampling, false edge detections persist. In this

chapter, a new strategy is developed that uses regularized function reconstructions

to help eliminate these false edges.

In Chapter 4, techniques used in `1 regularization are applied to numerical solu-

tions of partial differential equations. Explicit time-stepping methods place restric-

tions on time step size in order to maintain stability. One stabilization technique is to

apply filtering, which can often lead to diffusive behavior. Some time-dependent par-

tial differential equations have variable spectral support or slow spectral growth. Time

step restrictions that are necessary when the numerical solution has a full spectrum

are also applied when spectral support is small. This is necessary to avoid instabilities

induced by numerical noise. This chapter investigates applying regularization-inspired

2

techniques when spectral support is small to avoid either a restrictive time-step size

or diffusive filtering.

Concluding remarks are provided in Chapter 5.

3

Chapter 2

FUNCTION RECOVERY THROUGH REGULARIZATION AND WAVELET

REPROJECTION

2.1 Introduction

Several important applications, such as MRI and SAR acquire data by way of

Fourier sampling, Yan (2002); Cheney and Borden (2009); Richards et al. (2010). A

common feature of these data acquisition methods is the imposition of basis functions

over physical space. The resulting complex measurements represent integrals of the

product of these basis functions with a density function. For all practical purposes,

these measurements are true integrals and not discrete sums. Additionally, real-world

scenes contain abrupt transitions from region to region, so the associated response

density function has discontinuities.

Another common feature of these applications is that data elements may be sub-

sampled or collected at non-uniform frequencies. In the case of MRI, the process

of imposing the basis function involves activating a magnetic field gradient for a

certain period of time. To achieve coverage of basis functions, the gradient fields are

often switched on and off. To avoid peripheral nerve stimulation as a consequence

of Faraday’s law, the rate of magnetic field change must be restricted. Thus the

acquisition of a complete set of data on a uniform grid is necessarily slow. Newer

MRI imaging methods reduce the number of samples taken and the number of abrupt

magnetic gradient changes to accelerate the imaging process, Li et al. (2015); Pipe

(1999a). The resulting samples tend to have a higher density at low frequencies, but

are more sparse in the higher frequencies. In the case of SAR, the frequency sampling

4

pattern is partially determined by the physical trajectory of the transmitter-receiver

pair, Gor (2010). Additionally the trajectory has limited physical extent, and at

certain times the transceiver may be re-tasked leading to gaps in the data. Another

cause of missing data is interference from external radio frequency transmissions.

Noise originates from a variety of sources. Both MRI and SAR suffer from elec-

tromagnetic interactions between elements in the field of view such as reflections,

shading, and field inhomogeneities from non-uniform permeability and permittivity.

SAR is very dependent on accurate determination of relative antenna positions, so

noise can be introduced by physical vibrations. SAR also has the disadvantage of

an uncontrollable environment between the transceiver and scene. Of course, both

methods are subject to electronic noise in the imaging apparatus.

2.1.1 Reconstruction from Non-uniform Fourier Data

As stated in Section 2.1, the collected data can be represented by the continuous

Fourier transform of a discontinuous density function, f . We assume the field of view

is the square [−1, 1]× [−1, 1], so an individual Fourier measurement is given by

f̂ωx,ωy =
1

4

∫ 1

−1

∫ 1

−1

f (x, y) e−iπ(ωxx+ωyy)dydx. (2.1)

The frequencies ωx and ωy need not be integers. It is well known that when f is

discontinuous any approximation to f constructed from a finite number of Fourier

terms will be subject to the Gibbs phenomenon and the accuracy of the approximation

will be reduced to first order, Hesthaven et al. (2007). Further, even in the absence

of discontinuities the truncated Fourier series

SNf (x, y) =
Nx∑

kx=−Nx

Ny∑
ky=−Ny

f̂kx,kye
iπ(kxx+kyy); kx, ky ∈ Z (2.2)

has limited resolving power.

5

Practical measurements,
{
f̂(ωx,ωy)j

}
, can occur on a set of non-integer frequen-

cies T =
{

(ωx, ωy)j

}
, with each frequency pair being associated with the function,

φj = eiπ(ωxjx+ωyj y). These functions will not in general be orthogonal. Direct methods

for reconstructing the density function from non-uniform data, such as convolutional

gridding, can be poorly conditioned, especially as the sampling pattern deviates sub-

stantially from the uniform grid. Because of this, a different approach is applied that

instead uses the prior information that the density function is piecewise smooth, and

we seek candidate solutions such that numerical Fourier measurements approximate

the provided measurements,
{
f̂(ωx,ωy)j

}
.

2.1.2 Reconstruction Using Regularization

Regularization is a well-known technique for solving ill-conditioned inverse prob-

lems. Regularizations using `1 penalty terms have enjoyed great success in the fields

of image processing and compressed sensing. A driving principle in many of these

techniques is that some attribute of a good solution will be sparse. Total variation

denoising is a popular physical space1 technique for reconstructing smooth images

from noisy ones, Rudin et al. (1992); Osher et al. (2005). The denoising formulation

employs the regularization

~uclean = argmin
~u

1

2
‖~uoriginal − ~u‖2

2 + λTV (~u) , TV (u) =
∑
j

|~uj+1 − ~uj|. (2.3)

In this case ~u represents a physical-space image. The total variation, TV in (2.3),

is an `1 term that penalizes oscillations at the cost of favoring piecewise constant

solutions, producing the so-called “staircase” artifact2 in the recovered image. This

1Here physical space refers to data derived from spatial as opposed to frequency measurements,

thus there is no requirement for a Fourier transform.
2The “staircase” artifact is the effect of approximating a smooth function with a piecewise con-

stant solution. This leads to abrupt transitions from constant piece to constant piece.

6

regularization was extended to one involving a Generalized Total Variation, which

seeks piecewise polynomials, but the higher order variation quickly becomes compli-

cated, Bredies et al. (2010).

As stated above, many regularizations assume that some feature of a solution is

sparse and an `1 term is created to promote that sparsity. In compressed sensing `1

terms are used as convex relaxations for `0 terms, Candès et al. (2006). An ideal `0

penalty term would seek to minimize the count of non-zero entries in its argument,

but `0 terms are not convex and a general numerical solution is impossible. In Lustig

et al. (2007) the authors seek sparsity in the wavelet coefficients using a penalty term

involving the wavelet transform leading to the formulation

~unew = argmin
~u

1

2
‖~uoriginal − ~u‖2

2 + αTV (~u) + λ‖W~u‖1,

where ~u represents a physical-space image and W is the wavelet transform. When

functions cannot be locally represented by low order polynomials, the wavelet sparsity

ratio exceeds 50% for certain wavelet families, such as the Daubechies wavelets with

two vanishing moments. In these cases numerical tests show the sparsity promot-

ing term conflicts with the fidelity term, introducing significant bias error into the

regularization.

An important concern is that physical space techniques do not address some of the

fundamental issues described in Section 2.1.1 and numerical tests of these techniques,

when applied to Fourier data often commit the so-called “inverse crime”3, Guerquin-

Kern et al. (2012). Additionally, when using non-uniform Fourier data, physical space

regularizations are subject to the ill-conditioning associated with the pre-processing

3Real-world measurements come from a close approximation to the continuous Fourier transform,

(2.1), of the density function. This is not equivalent to sampling in physical space and applying

the discrete Fourier transform, which instead produces Fourier coefficients associated with a band-

limited projection of the true density function.

7

step of converting the Fourier data directly to a uniform physical grid.

In Archibald et al. (2015), the regularization addresses these issues directly by

using a fidelity term that involves the forward Fourier transform and a high-order

penalty term that seeks edge sparsity, while also allowing for piecewise polynomial

solutions. A simplified formulation4 is given by

~unew = argmin
~u

∥∥∥GF~u− ~̂
fg

∥∥∥2

2
+ λ‖Em~u‖1. (2.4)

Here ~u is defined on a uniform physical-space grid, F is the discrete Fourier trans-

form, G is a matrix that selects Fourier coefficients that match the frequencies in

the collected data, f̂g, and Em is a high-order polynomial annihilation edge detec-

tor,Wasserman et al. (2015); Stefan et al. (2010). Observe that the fidelity term in

(2.4) still does not address the mismatch between the discrete Fourier transform, F,

and the measurements derived from the continuous Fourier transform, but the penalty

term assists in reducing the impact of Gibbs phenomenon.

2.1.3 Promoting Edge Sparsity and Piecewise Smooth Solutions through

Regularization of Solutions Represented in a Wavelet Basis

Applying (2.4) to Fourier data results in rapid and accurate convergence in smooth

regions even in the presence of noise or with incomplete sample sets. The method

also succeeds in eliminating Gibbs oscillations away from edges, but the method still

has first-order accuracy near edges. This chapter investigates representing ~u in (2.4)

in terms of a basis that is better adapted at representing piecewise functions. In

(2.4), the solution, ~u, is represented in the Euclidean basis, which is well suited to

representing edges. Nonetheless, the Euclidean basis treats all points in isolation.

4In the simplified formulation, the assumption is made that Fourier coefficients are collected with

sub-sampling, but still at integer frequencies so the discrete Fourier transform as opposed to the

NUFFT is used.

8

Thus, (2.4) relies solely on the fidelity term to promote smoothness between edges.

This chapter introduces a new technique based on using a wavelet subspace for the

representation of ~u. The wavelets are designed to seek a compromise that allows for

some global information to be incorporated into the basis, while still being able to

represent edges locally. The new method does not seek sparsity in terms of wavelet

coefficients as in Lustig et al. (2007), but instead uses the wavelet subspace as a

constraint on admissible solutions.

The rest of this chapter is organized as follows: In Section 2.2, a new regularization

that includes wavelet reprojection is designed. The regularization is developed into

a two-dimensional algorithm in Section 2.5. Preliminary results are demonstrated

in Section 2.9. Additionally, subjective observations regarding the results and the

testing methodology will be discussed. Section 2.10 examines the underlying effects

that result from the addition of the wavelet basis.

2.2 Design of Regularization Based on Wavelet Reprojection

Before describing the modifications made to (2.4), we briefly provide some defini-

tions and notation that will be useful throughout this chapter. We start by defining

W as the discrete wavelet transform associated with some wavelet basis, B, so that

~c =W ~f.

In this formulation, physical space has an N point discretization5, so ~f ∈ RN is some

discrete signal and ~c ∈ RN are the associated wavelet coefficients. The inverse wavelet

transform, W−1
N×N , is a unitary matrix. For economy of expression throughout this

chapter, we will let Blow be the subset of B that contains the N
2

elements of B that are

least localized spatially. Conversely, Bhigh will be defined to be the N
2

most localized

5To maximize compatibility with the wavelets, we choose N to be a power of two.

9

wavelet elements of B. The vector, ~clow, is the set of wavelet coefficients associated

with the elements of Blow in the solution.

The modification to the regularization in (2.4) in one dimension is given by

~clow = argmin
~c

∥∥∥GW−1A
(
~c,~0
)
− S~̂g

∥∥∥2

2
+ λ
∥∥∥EmW−1A

(
~c,~0
)∥∥∥

1
. (2.5)

The reconstructed solution is then given by

~f =W−1A
(
~clow,~0

)
. (2.6)

Here ~c is a vector of wavelet coefficients associated with the elements of Blow and

the M provided Fourier samples, acquired by measurement of the true function are

given by ~̂gM×1. In practice, we will assume M to be significantly smaller than N and

the associated sampling frequencies need not be integers. The operator G uses the

numerical solution to approximate the Fourier coefficients matching the elements of

~̂g.6 The augmentation operator, A (~u,~v) has the effect of stacking the column vectors

~u and ~v to form a new column vector. Therefore A
(
~clow,~0(N2)×1

)
pads ~clow to form

an N × 1 vector.7 The operator S is added to allow for preprocessing steps to be

applied to the provided measurements.8

To highlight edges and suppress smooth regions, the polynomial annihilation tech-

nique, Archibald et al. (2005); Stefan et al. (2010); Wasserman et al. (2015); Archibald

et al. (2015), is used to form an mth-order edge detection matrix, Em. This edge de-

tector uses a stencil of points to approximate the local polynomial series expansion

6Here the forward Fourier transform, G, can be the matrix pair GF as in (2.4) or an implemen-

tation of the NUFFT restricted to the sampled frequencies.
7This generalized form of a padding operator is chosen to allow for future refinements of the

regularization by potentially including elements of Bhigh in the reconstruction.
8In Archibald et al. (2015) an exponential filter was used to deal with noise and to help mitigate

some of the consequences of the Gibbs phenomenon.

10

of the subject function, and terms of order less than m are eliminated. This re-

sults in low-order smooth regions having a vanishing response from the edge detector.

Conversely, edges are approximated locally by high-order polynomials in the discrete

setting, and thus result in a non-zero response from the edge detector. A detailed ex-

planation of this method can be found in Section 3.1.3. The count of edges is assumed

to be small and therefore the regularization uses the `1 norm of the detected edges to

promote sparsity. The regularization parameter, λ, is chosen to appropriately weight

the regularization term.

In summary, the technique operates by constructing solutions from a wavelet

subspace such that Fourier coefficients generated from these solutions approximate

the provided Fourier measurements, in the `2 sense, while promoting edge sparsity

based on the response of a high-order edge detector.

2.3 The Choice of Wavelet Basis

As stated in Section 2.1.3, the goal of representing the solution in a wavelet basis

is to promote piecewise smooth solutions with good edge resolution. We use the

Daubechies wavelets as the wavelet basis in (2.5) based on their vanishing moments

and compact support. A detailed explanation of the construction of the Daubechies

wavelets is given in Appendix A.

Wavelet basis elements are characterized by their scale and location. It is conve-

nient to induce an ordering on the basis. We let B = {Bj} be the set of wavelet basis

vectors ordered from least localized to most localized. When two basis vectors have

equal locality the vectors will be ordered with centers from left to right. Thus using

the notation given in Section 2.2, Blow = {Bj} , j = 1, ..., N
2

, and Bhigh = {Bj} , j =

N
2

+ 1, ..., N . Each basis in the Daubechies family of wavelets is characterized by

the number of vanishing moments. For example, the D2 wavelets have two vanishing

11

moments9. Thus, if we let ~ψ be a member of the D2 basis with support in the interior

of the domain and let ~f be a discrete signal of the form fj = a+ bj, j ∈ Z, a, b ∈ R,

then
〈
~f, ~ψ
〉

= 0. Another important property of the Daubechies wavelets is that

for signals sampled from polynomials that are of low order, but still greater than

the number of vanishing moments, inner products with the members of Bhigh are

small, e.g. for the D2 wavelets the coefficients associated with the monomial x2 in

the domain [−1, 1) are of the order 10−4.

Figure 2.1 provides a visual representation of the D2 wavelets and shows the

wavelet transform of monomials of various orders. The rows of the left half of Figure

2.1 represent the basis elements of the D2 wavelets. The first row contains the scaling

function, subsequent rows have wavelets of increasing locality. For each group having

the same locality, the wavelets are shown with their positions in the domain going from

left to right. The right half of the figure shows inner products of these wavelets with

different monomials in each column, starting with f(x) = 1 and going to f(x) = x5.

We see that the only non-vanishing inner product for the monomial, f(x) = 1, is

the scaling function in the first row. For f(x) = x, the scaling function has a non-

zero inner product, as well as the wavelets that have support intersecting the domain

boundary, because f(x) = x is not periodic. High-order monomials result in similar

boundary coefficients, but also have non-zero inner products in the interior due to

the D2 wavelets having only two vanishing moments; but for low-order monomials,

these coefficients are small.

The members of the Bhigh subset of a Daubechies basis having P vanishing mo-

ments will have physical support 2P , as discussed in Appendix A. This leads to a

tradeoff between element support size and regularity. Consider the wavelet transform

9There is some inconsistency in the literature regarding the naming of the Daubechies wavelets.

We use DN where N is the number of vanishing moments.

12

of a function consisting of piecewise polynomials of maximum order P . The wavelet

coefficients will be zero except for those elements with support intersecting a disconti-

nuity. Thus, as shown in Figure 2.2, increasing P allows for higher order polynomials

in smooth regions at the expense of more wavelets being impacted by discontinuities.

In (2.5), we limit the representation of the solution to the span of Blow, as using the

full wavelet basis in the discrete setting is identical to using the Euclidean basis, i.e.,

span ({~e1, . . . , ~eN}) = span (B). Only when using the truncated basis does the basis

promote smoothness, but using the truncated basis comes at the cost of not being

able to represent edges with the resolution of the Euclidean basis. Numerical tests

indicate that the D2 family of wavelets achieves a good compromise between locality

and approximation accuracy. To demonstrate this we consider the test function

f1 (x) =

3
2

−3
4
6 x < −1

2

7
4
− πx

2
+ sin

(
πx− 1

4

)
−1

4
6 x < 1

8

11πx
4
− 5 3

8
6 x < 3

4

0 otherwise.

(2.7)

Figure 2.3 demonstrates the result of projecting (2.7) unto Blow of D2. We see that

the truncated wavelet basis approximates f(x) in the regions
(
−3

4
,−1

2

)
and

(
3
8
, 3

4

)
at

machine accuracy, but has more difficulty in the region
(
−1

4
, 1

8

)
which is consistent

with Figure 2.1. Nonetheless, we will see that the accuracy there is sufficient to

allow for the reconstruction of smooth regions using (2.5). Additionally, Figure 2.3

demonstrates how the edges of (2.7) are approximated in the truncated basis. For

comparison, Figure 2.4 show the results of applying the polynomial annihilation edge

detectors of orders 2 and 3 to (2.7).

13

Figure 2.1: The Location and Scale of the Wavelet Basis Vectors and the Wavelet
Coefficients Associated with Decompositions of the Monomials of Increasing Order.

2.4 Sample One-dimensional Results

In Fan and Mead (2015), this technique was explored in one dimension with the

finding that the addition of the wavelet reprojection contributes to the robustness

of the regularization with respect to the selection of the regularization parameter.

It was also found that with the selection of the D2 wavelets, regularization results

were similar for both the E2 and E3 polynomial annihilation edge detectors. Also,

the results confirmed those found in Archibald et al. (2015), that the selection a

polynomial annihilation edge detector of order 2 in (2.4) produces accuracy in smooth

14

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-1

-0.5

0

0.5

Original Function

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

D2 final stage Wavelet required

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

D3 final stage Wavelet required

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

0

0.5

D4 final stage Wavelet required

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

0

0.5

D5 final stage Wavelet required

Figure 2.2: Bhigh Wavelet Components for D2...D5 When Approximating a Discon-
tinuity.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Original
Truncated Wavelet Reconstruction

(a) The projection of f1 onto the Blow basis.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b) The pointwise error in the projection.

Figure 2.3: The Projection of f1 onto the Blow Basis and the log10 Pointwise Error
in That Projection with N = 128.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-20

10
-15

10
-10

10
-5

10
0

10
5

E
2
(f

1
)

E
3
(f

1
)

Figure 2.4: E2(f1) and E3(f1) with N = 128.

15

regions while keeping edge artifacts compact. Finally, the addition of the wavelet

reprojection step increases accuracy in smooth regions in the presence of noise or

subsampling.

We develop four test cases to demonstrate of (2.5) in one dimension. We let N

be the number of physical space grid points. Each test case is characterized by two

parameters. We let SNR represent the signal to noise ratio calculated as, SNR =

σ2
signal

σ2
noise

, with SNR = ∞ representing no noise. The set of sampled coefficients, V̂,

consists of two subsets, V̂ = F̂∪R̂, and is controlled by the parameter γ ∈ (0, 1], where

dim(V̂) = γ · N, F̂ =
{
f̂k : −N

16
≤ k ≤ N

16

}
10, and R̂ is a set of randomly selected

coefficients from a normal distribution. The regularization parameters, λ = 0.015

for (2.5), and λ = 0.08 for (2.4) were used as determined in Fan and Mead (2015).

These parameters were chosen by trial and error using various levels of noise and

sub-sampling with the selected test function.

Table 2.1: Parameters Selected for Each Test Case. Unless Otherwise Specified, We
also Choose N = 128.

Test Case SNR γ

1 ∞ 1

2 ∞ 0.4

3 13dB 1

4 13dB 0.4

We will apply (2.5) to a set of test cases with parameters specified in Table 2.1.

We let ~fwav represent the reconstruction formed by the application of (2.5) to V̂

and we let ~fnowav represent the reconstruction formed by the application of (2.4)

10The existence of set F̂ ensures that the central frequencies that determine the basic shape of the

result are included. This is consistent with the real-world sampling methods discussed in Section

2.1

16

with m = 2 to V̂. Figure 2.5 compares the reconstructions formed by direct Fourier

inversion, ~fwav, and ~fnowav. Figure 2.6 shows the absolute point-wise reconstruction

errors associated with each method. To better compare the methods, we define the

point-wise error ratio as

~Qj = log10

∣∣∣~fnowavj − ~f1j

∣∣∣+ ε∣∣∣~fwavj − ~f1j

∣∣∣+ ε

 .

Figure 2.7 shows ~Q for each of the test cases. In this figure, positive values indicate

that (2.5) is more accurate than (2.4). These results indicate that in the presence of

noise or with sub-sampling the wavelet reprojection method, (2.5), is in general more

accurate than the regularization excluding the wavelet reprojection, (2.4). Nonethe-

less, the results are highly dependent on the test function chosen and the proper choice

of the regularization parameter, λ; and these results do not include the application

of a spectral filter in (2.4) as was done in Archibald et al. (2015).

2.5 Two-dimensional Implementation

In one dimension, (2.5) and (2.4) can be solved with general purpose optimization

packages, but using these solvers for two-dimensional problems with realistic values

for N is prohibitively slow while requiring excessive system resources. We choose

instead to use the Split-Bregman algorithm described in Goldstein and Osher (2009)

to solve these optimization problems as was done in Archibald et al. (2015). A

detailed explanation of the Algorithm can be found in Appendix B. Here we discuss

the reformulation of (2.5) in two dimensions required to make it compatible with the

Split-Bregman framework.

17

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True Function
Fourier Reconstruction
With Wavelet Reprojection
Without Wavelet Reprojection

(a) test case 1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True Function
Fourier Reconstruction
With Wavelet Reprojection
Without Wavelet Reprojection

(b) test case 2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True Function
Fourier Reconstruction
With Wavelet Reprojection
Without Wavelet Reprojection

(c) test case 3

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True Function
Fourier Reconstruction
With Wavelet Reprojection
Without Wavelet Reprojection

(d) test case 4

Figure 2.5: f1,F−1V̂, ~fwav, and ~fnowav, on the Domain [−4., .6] to Show Detail.

Consider the simplified11 two-dimensional equivalent of (2.5):

c = argmin
u

∥∥∥G̃ vec
(
FW−1Pu

(
FW−1P

)T)− vec
(
Σ ◦ f̂G

)∥∥∥2

2
+

λ1

∥∥∥∥vec

(
E
(
W−1Pu

(
W−1P

)T)T)∥∥∥∥
1

+ λ2

∥∥∥vec
(
EW−1Pu

(
W−1P

)T)∥∥∥
1
.

(2.8)

The collected Fourier coefficients and the desired wavelet coefficients have been re-

placed with matrices. Thus, u is a matrix representing two-dimensional wavelet co-

efficients associated with the space Blow × Blow. Here the “vec” operator transforms

a matrix into a single column vector by concatenating the columns of the original

matrix. The diagonal, binary selection matrix, G̃, then acts to isolate the generated

Fourier coefficients at the frequency pairs matching those available in f̂G. A discrete

filter is represented by Σ. Here “◦” is the element-wise Hadamard product. The aug-

11This formulation uses sparse sampling at integer frequencies.

18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

With Wavelet Reprojection
Without Wavelet Reprojection

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

With Wavelet Reprojection
Without Wavelet Reprojection

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

With Wavelet Reprojection
Without Wavelet Reprojection

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-4

10
-3

10
-2

10
-1

10
0

With Wavelet Reprojection
Without Wavelet Reprojection

(d) test case 4

Figure 2.6: The Absolute Pointwise Reconstruction Errors in ~fwav and ~fnowav.

mentation operator, A, has been replaced with a padding matrix P. The polynomial

annihilation edge detector can be extended to two dimensions in a manner similar to

anisotropic total variation. Instead, the edge detection regularization term has been

split, with the first term detecting edges along the x direction and the second along

the y direction as in Archibald et al. (2015). In practice, the regularization param-

eters, λ1 and λ2, will be chosen to be a single value, λ. This representation of the

regularization, (2.8), is efficient in that the fast implementations of the Fourier and

Wavelet transforms are naturally applied; however the bilinear forms are not easily

used algebraically in the construction of iterative optimization methods.

19

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

(d) test case 4

Figure 2.7: ~Q for Each Test Case.

2.6 Kronecker Product Representation

To create the iteration compatible with the split-Bregman algorithm, we use the

following identity involving the Kronecker product, ⊗:

vec (ACB) =
(
BT ⊗A

)
vec (C)

to make the substitutions

~u = vec (u) ,
−→
f̂G = vec

(
f̂G

)
, W̃−1 =

(
W−1

)T ⊗W−1, F̃ = FT ⊗ F

P̃ = PT ⊗P, Ẽy = I⊗ E, Ẽx = E⊗ I.

The vectorized equivalent of (2.8) can then be formed. The regularization parameter,

λ, weights the penalty terms seeking sparsity against the fidelity term that seeks to

have the solution match the provided samples. We shift this parameter from the

20

penalty terms to the fidelity term as µ
2

to make the regularization compatible with

Goldstein and Osher (2009); Archibald et al. (2015), resulting in

~c = arg min
~u

µ

2

∥∥∥∥G̃F̃W̃−1P̃~u−
−→
f̂G

∥∥∥∥2

2

+
∥∥∥ẼxW̃

−1P̃~u
∥∥∥

1
+
∥∥∥ẼyW̃

−1P̃~u
∥∥∥

1
. (2.9)

If we let ~f = W̃−1P̃~u, then (2.9) can be made to resemble the simplified version of

(2.4) with the form

~c = arg min
~u

µ

2

∥∥∥∥G̃F̃~f −
−→
f̂G

∥∥∥∥2

2

+
∥∥∥Ẽx

~f
∥∥∥

1
+
∥∥∥Ẽy

~f
∥∥∥

1
. (2.10)

2.7 The Vectorized Split Bregman Implementation

Having transformed (2.8) from a bilinear form to one based on left matrix mul-

tiplication, we now split (2.9) into sub-problems consistent with the Split-Bregman

algorithm.

We first split (2.10) into `1 problems and a Euclidean norm problem. We let

~dx := Ẽx
~f and ~dy := Ẽy

~f , which bridge the `1 and `2 problems and include a new

regularization parameter, λ. This parameter, λ, is used in the Split-Bregman algo-

rithm to weight the original fidelity term against the new fidelity terms involving

~d. We also introduce the variables bx and by to represent the sum of residuals be-

tween iterations as is standard with the Split-Bregman algorithm. This leads to three

optimization problems that must be solved:

~un+1 = argmin
~u

µ

2

∥∥∥∥G̃F̃W̃−1P̃~u−
−→
f̂G

∥∥∥∥2
2

+
λ

2

∥∥∥~dnx − ẼxW̃
−1P̃~u−~bnx

∥∥∥2
2

+
λ

2

∥∥∥~dny − ẼyW̃
−1P̃~u−~bny

∥∥∥2
2

(2.11a)

~dn+1
x = argmin

~d

∥∥∥~d− ẼxW̃
−1P̃~un+1 −~bx

∥∥∥
1

(2.11b)

~dn+1
y = argmin

~d

∥∥∥~d− ẼyW̃
−1P̃~un+1 −~by

∥∥∥
1
. (2.11c)

We solve (2.11a) by differentiation using the general result

argmin
~x

λ

2

∥∥∥A~x−~b∥∥∥2

2
= ~x s.t.

∂

∂~x

λ

2

∥∥∥A~x−~b∥∥∥2

2
= λ (A∗A~x−A∗b) = 0.

21

To conserve space we let R̃ = W̃−1P̃. In practice, the two matrices, W−1 and P,

are combined into a rectanglar matrix, R, containing the first half of the columns of

W−1. We now have the solution to (2.11a) given by

µ
(
G̃F̃R̃

)∗
G̃F̃R̃~u− µ

(
G̃F̃R̃

)∗−→
f̂G + λ

((
ẼxR̃

)∗ (
ẼxR̃~u−

(
~dnx −~bnx

))
+
(
ẼyR̃

)∗ (
ẼyR̃~u−

(
~dny −~bny

)))
= 0

or

R̃∗
(
µF̃∗G̃∗G̃F̃ + λẼ∗

xẼx + λẼ∗
yẼy

)
R̃~u = R̃∗

(
µF̃∗G̃∗

−→
f̂G + λẼ∗

x

(
~dnx −~bnx

)
+ λẼ∗

y

(
~dny −~bny

))
.

(2.12)

In (2.12), R̃∗ is singular and cannot simply be removed.

The `1 equations, (2.11b) and (2.11c), are solved using the shrink operator as

described in Appendix B. The shrink operator is defined as

shrink (~x, γ)j =
xj
|xj|

max (0, |xj| − γ) . (2.13)

The solutions to (2.11b) and (2.11c) are then given by

~dn+1
x = shrink

(
~dx −~bx,

1

λ

)
(2.14a)

~dn+1
x = shrink

(
~dx −~bx,

1

λ

)
. (2.14b)

2.8 A Memory Efficient Implementation

For efficiency we convert the right hand side of (2.12) back to matrix notation.

Also the diagonal, binary matrix, G̃T , projects
−→
f̂G back to itself, so G̃T

−→
f̂G =

−→
f̂G. The

matrix form is then given by

rhs = R̃∗
(
µF̃∗G̃∗

−→
f̂G + λẼ∗x

(
~dnx −~bnx

)
+ λẼ∗y

(
~dny −~bny

))
=

RT
(
µF∗f̂GF∗T + λ (dnx − bnx) Ex + λEy

T
(
dny − bny

))
R. (2.15)

22

Using G̃T G̃ = G̃ we derive the matrix form of the left hand side given by

lhs = R̃∗
(
µF̃∗G̃∗G̃F̃ + λẼ∗xẼx + λẼ∗yẼy

)
R̃~u =

RT
(
µF∗

(
G ◦

(
FRuRTFT

))
F∗T + λRuRTETE + λETERuRT

)
R.

(2.16)

In spite of being complicated, the matrices involved either have fast transform equiv-

alents or are extremely sparse. With the matrix representions, (2.15) and (2.16),

(2.11a) is solved quickly by the conjugate gradient method. Also, as will be discussed

in Section 3.1.3, if the domain consists of a Cartesian grid with periodic boundary

conditions, then E is circulant and therefore represents a discrete convolution oper-

ator. The convolution theorem can then be applied to the edge detection matrices.

Thus

R̃∗
(
µF̃∗G̃∗G̃F̃ + λẼ∗

xẼx + λẼ∗
yẼy

)
R̃~u = R̃∗F̃∗

(
µG̃∗G̃ + λF̃Ẽ∗

xẼxF̃
∗ + λF̃Ẽ∗

yẼyF̃
∗
)
F̃R̃~u

where µG̃∗G̃ + λF̃Ẽ∗xẼxF̃
∗ + λF̃Ẽ∗yẼyF̃

∗ is diagonal. This allows for a fast, direct

solution to (2.16).

2.9 Two Dimensional Results

To demonstrate (2.8) in two dimensions, we use the same test function as that

found in Archibald et al. (2015). The test function consists of three pieces in the

domain [−1, 1)× [−1, 1) using regions defined as

S =

[
0,

3

4

)
×
[
0,

3

4

)

T =

{
(x, y) :

√
x2 + y2 <=

1

2

}
with the function defined as

f2 (x, y) =

sin π

2

√
x2 + y2 (x, y) ∈ S

cos 3π
2

√
x2 + y2 (x, y) ∈

(
SC ∩ T

)
cos π

2

√
x2 + y2 (x, y) ∈

(
SC ∩ TC

)
.

23

We let the discretely sampled values of f2 be Fj,k = f2

(
−1 + 2(j−1)

N
,−1 + 2(k−1)

N

)
.

Figure 2.8 shows f2 both as a surface and as a contour plot. Also included is a cross-

section of the function along the line y = 1
8

that will be examined in various test

cases.

(a) Surface plot (b) Contour plot

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) Cross-section

Figure 2.8: The Test Function, f2, Shown As a Surface Plot, a Contour Plot, and a
One-dimensional Cross-section along the Line y = 1

8
.

We develop test cases as in one dimension, but extend the two-dimensional sam-

pling method to form the set V̂ = F̂ ∪ R̂. The tests approximate the sampling

density found in modern MRI imaging with a higher density in the low frequencies

and a roughly radially symmetric pattern, although we constrain the problem to

use only integer frequencies. The provided Fourier samples are close approximations

to the continuous Fourier transform of the test function.12 It was found in prior

one-dimensional test cases in Fan and Mead (2015), that when the lowest frequency

samples are missing, reconstruction is impossible. Thus in all cases a central disk

of frequencies is retained. This is controlled by a parameter ζ where , such that

dim
(
F̂
)

= ζN2 and F̂ =

{
f̂j,k :

√
j2 + k2 6 N

√
ζ
π

}
. In a manner similar to the

one-dimensional case, dim(V̂) = γN2. To form the set R̂ we test both the Gaussian

12The Fourier coefficients are generated by using the Fast Fourier Transform at the highest reso-

lution that memory on the testing machine allows. The appropriate frequencies are then extracted

and renormalized.

24

and spiral sampling patterns shown in Figure 2.9.

(a) Gaussian (b) Spiral

Figure 2.9: K-space Sampling Distributions with γ = 0.3.

In the Gaussian sampling pattern, the sample frequencies are drawn from a ran-

dom number generator with a radial Gaussian probability distribution having mean

zero and standard deviation 3
8
N . Frequencies are rounded to the nearest integer

grid point and bounded in the square
[
−N

2
, N

2

)
×
[
−N

2
, N

2

)
. Samples are drawn and

duplicates removed until the desired sub-sampling ratio is achieved.

With the spiral sampling pattern, frequencies are selected with similar rounding,

bounding and duplicate removal. We choose the increment values given by ∆θ =

3
4

√
N2(s−r)

2
and ∆ρ = 1

∆θN2(s−r) . The form of these increments is chosen to cover

the available square of Fourier modes as much as possible and to produce a spiral

pattern as opposed to a radial pattern. With these increments a polar sequence can

be created to cover k-space as given by

(ωx, ωy) = (j∆ρ cos (j∆θ) , j∆ρ sin (j∆θ)) ; j ∈ sN2.

We extend the one-dimensional reconstruction definitions by letting Fwav rep-

resent the reconstruction formed by the application of (2.8) to V̂ with polynomial

annihilation order 3, Fnowav represent the reconstruction formed by the application

25

of (2.4) to V̂ with polynomial annihilation order 2, and FTV represent the recon-

struction formed by the application of (2.4) to V̂ with polynomial annihilation order

1, since polynomial annihilation of order 1 is equivalent to total variation up to a

constant. Other values for the polynomial annihilation order were tested numerically,

and these values gave inferior results, because a higher order polynomial annihilation

operator has a larger edge response. To better compare the methods, we define the

point-wise error ratio between two methods as

Q(method1,method2)j,k = log10

(∣∣Fmethod2j,k − Fj,k

∣∣+ ε∣∣Fmethod1j,k − Fj,k

∣∣+ ε

)
(2.17)

For all the reconstruction methods, the accuracy in the neighborhood of edges is first

order. To analyze the reconstruction accuracy in smooth regions quantitatively, some

results will explicitly exclude cells in the neighborhood of edges of f2. The radius

of the neighborhood ignored will be given by the parameter η. Unless otherwise

specified, we let η = 0, meaning no edge cells are excluded. We let Cedge be the count

of edge cells excluded.

The primary two-dimensional test cases are given in Table 2.2. Unless otherwise

specified, the grid point count will be N = 128, the Gaussian sampling pattern will

be used with ζ = 1
40

, where dim
(
F̂
)

= ζN2, and the polynomial annihilation order

for the edge detector in (2.8) will be 3. We also use a µ
λ

ratio of 4.46 in (2.11a).

This was determined by trial and error, finding the mid-point of a set of µ
λ

values

that achieved good results across a range of noise levels and sub-sampling ratios. Of

course, in general this value will depend on the specific level of noise, the amount of

sub-sampling, and the form of the test function.

To demonstrate the effect of noise and sub-sampling, Figure 2.10 shows the Fourier

reconstructions, F−1V̂(F−1)
T

for each of the test cases in Table 2.2. The oscillations

associated with Gibbs phenomenon are clearly visible in test case 1.

26

(a) Test case 1 (b) Test case 2

(c) Test case 3 (d) Test case 4

Figure 2.10: The Fourier Reconstruction of f2 Associated with the Test Cases.

27

Table 2.2: Parameters Selected for Each Two-dimensional Test Case. Unless other-
wise Specified We Let N = 128, ζ = 1

40
, and the Gaussian Sampling Pattern Will Be

Used.

Test Case SNR γ

1 ∞ 1

2 ∞ 0.5

3 7dB 1

4 7dB 0.5

Figure 2.11 shows the reconstruction errors associated with the three methods:

Fwav, Fnowav, and FTV for test case 1. Figure 2.12 highlights the regions where the

reconstruction accuracy for Fwav is superior to that of Fnowav and FTV . Figure 2.13

shows the reconstructions and associated reconstruction errors for each of the methods

along the cross-section, y = 1
8
. In test case 1, Fwav and Fnowav have similar levels of

accuracy in smooth regions, but they differ in the neighborhood of edges. The total

variation reconstruction suffers from the “staircase” artifact, which is clearly visible

in the rapid oscillations in relative accuracy seen in Figure 2.12.

(a) Wavelet (b) PA(2) (c) TV

Figure 2.11: Test Case 1 log10 Reconstruction Errors in Fwav, Fnowav, and FTV .

In test case 2, the original data set is sub-sampled. Figure 2.14 shows the re-

construction errors associated with the three methods: Fwav, Fnowav, and FTV for

28

(a) PA(2) (b) TV=PA(1)

Figure 2.12: Comparison of Accuracy between Fwav and Fnowav, FTV Respectively
for Test Case 1. White Areas Indicate Fwav Is More Accurate.

test case 2. Figure 2.15 highlights the regions where the reconstruction accuracy for

Fwav is superior to that of Fnowav and FTV . Figure 2.16 shows the reconstructions

and associated reconstruction errors for each of the methods along the cross-section,

y = 1
8
. Visually there is little difference in the relative performance of the methods in

the case of 50% sub-sampling as compared to no sub-sampling as shown in Figures

2.15 and 2.12 respectively, but subtle variations in the relative errors are visible in

the cross-section graphs, Figures 2.13 and 2.16.

In test case 3, the original sample locations are unchanged, but complex Gaussian

noise is added to each sample. Figure 2.17 shows the reconstruction errors associated

with the three methods: Fwav, Fnowav, and FTV for test case 3. Figure 2.18 highlights

the regions where the reconstruction accuracy for Fwav is superior to that of Fnowav

and FTV . Figure 2.19 shows the reconstructions and associated reconstruction errors

for each of the methods along the cross-section, y = 1
8
. In this test, Fwav has increased

accuracy in smooth regions but also has poorer edge resolution relative to the other

methods as shown in Figures 2.18 and 2.19.

We perform sub-sampling and add noise in test case 4. Figure 2.20 shows the

reconstruction errors associated with the three methods: Fwav, Fnowav, and FTV for

29

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Wavelet PA(2) TV

(a) PA(2)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-4

10
-3

10
-2

10
-1

Wavelet PA(2) TV

(b) TV=PA(1)

Figure 2.13: The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test
Case 1 and log10 Reconstruction Errors along the Cross-section y = 1

8
.

(a) Wavelet (b) PA(2) (c) TV=PA(1)

Figure 2.14: Test Case 2 log10 Reconstruction Errors in Fwav, Fnowav, and FTV .

30

(a) PA(2) (b) TV=PA(1)

Figure 2.15: Comparison of Accuracy between Fwav and Fnowav, FTV Respectively
for Test Case 2. White Areas Indicate Fwav is More Accurate.

test case 4. Figure 2.21 highlights the regions where the reconstruction accuracy for

Fwav is superior to that of Fnowav and FTV . Figure 2.22 shows the reconstructions

and associated reconstruction errors for each of the methods along the cross-section,

y = 1
8
. As in test case 3, the wavelet based reconstruction, (2.8), appears to perform

better than the other methods as seen by examining Figure 2.22. Since this test

case represents the worst corruption of the provided samples, Figure 2.23 shows a

side by side comparison of the original test function, the Fourier reconstruction from

the the sub-sampled and noisy data, and the reconstructions Fwav, Fnowav, and FTV .

The “staircase” artifact is clearly visible in the total variation reconstruction and

oscillations in the reconstruction are best controlled in Fwav.

Quantitative Comparison of Methods

We compare the reconstruction methods quantitatively by using the ratio of recon-

struction errors, (2.17). In Table 2.3, the fraction of the cells in the reconstruction

having better accuracy using (2.8) are tabulated. We see that in test cases 1 and 2,

the regularization using the second order polynomial annihilation edge detector alone

is superior, while (2.8) has better performance in the presence of noise. In all cases,

31

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Wavelet PA(2) TV

(a) PA(2)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-3

10
-2

10
-1

Wavelet PA(2) TV

(b) TV=PA(1)

Figure 2.16: The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test
Case 2 and log10 Reconstruction Errors along the Cross-section y = 1

8
.

32

(a) Wavelet (b) PA(2) (c) TV=PA(1)

Figure 2.17: Test Case 3 log10 Reconstruction Errors in Fwav, Fnowav, and FTV .

(a) PA(2) (b) TV=PA(1)

Figure 2.18: Comparison of Accuracy between Fwav and Fnowav, FTV Respectively
for Test Case 3. White Areas Indicate Fwav Is More Accurate.

(2.8) has better performance than the total variation regularization.

Table 2.4 shows the sum of (2.17) across all cells normalized by the size of the

image. This provides an indication about whether (2.8) has relatively large recon-

struction errors or successes compared to the other methods. This method of mea-

suring performance follows the pattern in table 2.3 indicating that the matrix of

reconstruction error ratios do not have a few dominant cells.

Recognizing the reconstructions in the neighborhood of edges is first order and

that the individual methods have different edge resolution, we now focus on the per-

formance of the methods in smooth regions by tabulating the ratio of reconstruction

33

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Wavelet PA(2) TV

(a) PA(2)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-5

10
-4

10
-3

10
-2

10
-1

Wavelet PA(2) TV

(b) TV=PA(1)

Figure 2.19: The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test
Case 3 and log10 Reconstruction Errors Along the Cross-section y = 1

8
.

34

(a) Wavelet (b) PA(2) (c) TV=PA(1)

Figure 2.20: Test Case 4 log10 Reconstruction Errors in Fwav, Fnowav, and FTV .

(a) PA(2) (b) TV=PA(1)

Figure 2.21: Comparison of Accuracy between Fwav and Fnowav, FTV Respectively
for Test Case 4. White Areas Indicate Fwav Is More Accurate.

errors in cells away from edges with neighborhood radius, η = 4. In Table 2.5, the

fraction of the cells in the reconstruction having better accuracy using (2.8) in smooth

regions is tabulated. We see the same pattern as in table 2.3. Indeed, the performance

of (2.4) increases relative to (2.8) in the absence of noise, while the performance of

(2.8) relative to (2.4) increases in the presence of noise.

2.9.1 Filtering

In Archibald et al. (2015), the results include a preprocessing step involving the

application of a spectral filter to the sample set, V̂. Such filtering accelerates con-

35

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

True Wavelet PA(2) TV

(a) PA(2)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-4

10
-3

10
-2

10
-1

Wavelet PA(2) TV

(b) TV=PA(1)

Figure 2.22: The One-dimensional Reconstruction: Fwav,Fnowav, and FTV for Test
Case 4 and log10 Reconstruction Errors along the Cross-section y = 1

8
.

36

(a) F (b) F−1V̂
(
F−1

)T

(c) Fwav (d) Fnowav

(e) FTV

Figure 2.23: Comparison of Surface Reconstructions for Test Case 4.

37

Table 2.3: Fraction of Cells in which the Reconstruction Accuracy of Fwav Is Better
Than That of Fnowav and FTV .

Test Case count(Q(wav,nowav)>0)
N2

count(Q(wav,TV)>0)
N2

Test case 1 0.430 0.547

Test case 2 0.443 0.604

Test case 3 0.581 0.635

Test case 4 0.550 0.639

Table 2.4: Sum of log10 Ratio of Reconstruction Errors with Fwav Compared to
Fnowav and FTV .

Test Case
∑
Q(wav,nowav)

N2

∑
Q(wav,TV)
N2

Test case 1 -0.019 0.020

Test case 2 -0.032 0.058

Test case 3 0.019 0.112

Test case 4 0.019 0.128

vergence in smooth regions while reducing the impact of noise. Additional details

regarding filtering will be provided in Section 4.1. We now test the effect of filtering

by scaling V̂ with weights from a discrete exponential spectral filter defined by

Σkx,ky = e
−β
(
|kx|
N
2

)ρ
e
−β
(
|ky |
N
2

)ρ
(2.18)

Here the filter power, ρ, is a positive even integer and β is a defined such that

e−β = εmachine, where εmachine is machine epsilon. The integer sample frequencies

are represented by (kx, ky). The weight matrix, Σ, is applied using the Hadamard

product as in (2.8). Filters of various powers are shown in Figure 2.24.

38

Table 2.5: Fraction of Cells in which the Reconstruction Accuracy of Fwav is Better
Than That of Fnowav and FTV Away From Edges.

Test Case count(Q(wav,nowav)>0)
N2−Cedge

count(Q(wav,TV)>0)
N2−Cedge

Test case 1 0.404 0.532

Test case 2 0.438 0.602

Test case 3 0.615 0.673

Test case 4 0.585 0.677

Figure 2.24: Filter Powers of Various Orders

By comparing Figures 2.24 and 2.9, it is evident that high-order filters barely

impact the sub-sampled set of data. Thus, a low-order filter must be chosen, with

the downside being that diffusion is introduced. To match the extent of the set of

available coefficients, we choose ρ = 4, recognizing that diffusion will be introduced

around edges. Figure 2.25 shows the effect of a fourth order filter on direct Fourier

reconstuction without regularization of the sub-sampled data in test case 2. Table

2.6 shows the impact of filtering by comparing the ratio of reconstruction errors with

and without filtering for each of the reconstruction methods. Table 2.7 shows the

39

(a) Without filtering (b) With filtering

Figure 2.25: The Effect of a Fourth Order Filter on the Fourier Reconstruction
without Regularization Applied to Test Case 2.

same calculations, but excludes cells in the η = 4 neighborhood of edges. We see that

when considering all cells, filtering has mixed results, but when focusing on smooth

regions, filtering improves accuracy as expected, with the exception of test case 1

for (2.4). With less sub-sampling, a higher order filter would have been applicable,

reducing the impact on edges.

Table 2.6: Fraction of Cells in which the Reconstruction Accuracy is Improved by
Filtering for Fwav, Fnowav and FTV

Test Case
count(Q(filter,nofil.)>0)

N2 ,Fwav
count(Q(filter,nofil.)>0)

N2 ,Fnowav
count(Q(filter,nofil.)>0)

N2 ,FTV

Test case 1 0.509 0.490 0.483

Test case 2 0.481 0.505 0.480

Test case 3 0.513 0.578 0.497

Test case 4 0.499 0.515 0.504

Spiral Sampling

We now switch our attention to examining the effect of spiral sampling vs. Gaussian

sampling. Table 2.8 contains the parameters used in a new set of test cases.

We change γ to 0.3 in these tests only to make the sampling pattern clearly

40

Table 2.7: Fraction of Cells in which the Reconstruction Accuracy is Improved by
Filtering for Fwav, Fnowav and FTV in Smooth Regions.

Test Case
count(Q(filter,nofil.)>0)

N2−Cedge
,Fwav

count(Q(filter,nofil.)>0)

N2−Cedge
,Fnowav

count(Q(filter,nofil.)>0)

N2−Cedge
,FTV

Test case 1 0.516 0.488 0.534

Test case 2 0.502 0.506 0.524

Test case 3 0.559 0.629 0.543

Test case 4 0.524 0.532 0.526

Table 2.8: Parameters Selected for Each Two-dimensional Spiral Sampling Test
Case.

Test Case SNR γ Sampling Method

5 ∞ 0.3 Gaussian

6 ∞ 0.3 Spiral

7 7dB 0.3 Gaussian

8 7dB 0.3 Spiral

distinguishable from low density uniform sampling. Table 2.9 shows the effect of

changing the sampling trajectory by comparing the ratio of reconstruction errors

using Gaussian and spiral sampling for each of the reconstruction methods. Table

2.10 shows the same calculations, but excludes cells in the η = 4 neighborhood of

edges. We see that with the addition of noise, spiral sampling results in a decrease of

accuracy compared to Gaussian sampling. This is explained by the fact that with the

chosen spiral sampling pattern, more high frequency samples are present as compared

to the Gaussian sampling pattern as shown in Figure 2.26. High frequency samples

tend to have smaller magnitudes and thus are more easily impacted by noise.

Table 2.9: Fraction of Cells in which the Reconstruction Accuracy Is Improved by
Using Spiral Sampling for Fwav, Fnowav and FTV

Test Case
count(Q(spir.,Gaus.)>0)

N2 ,Fwav
count(Q(spir.,Gaus.)>0)

N2 ,Fnowav
count(Q(spir.,Gaus.)>0)

N2 ,FTV

Test cases 5,6 0.530 0.521 0.522

Test cases 7,8 0.450 0.470 0.482

41

Table 2.10: Fraction of Cells in which the Reconstruction Accuracy Is Improved by
Using Spiral Sampling in Smooth Regions for Fwav, Fnowav and FTV .

Test Case
count(Q(spir.,Gaus.)>0)

N2−Cedge
,Fwav

count(Q(spir.,Gaus.)>0)

N2−Cedge
,Fnowav

count(Q(spir.,Gaus.)>0)

N2−Cedge
,FTV

Test case 5,6 0.526 0.512 0.504

Test case 7,8 0.431 0.455 0.480

(a) No noise (b) With noise

Figure 2.26: Comparison of Radial Sampling Distributions for Gaussian and Spiral
Sampling Patterns.

Dependence on Regularization Parameters

As a final test of the methods, we examine robustness with regard to the regularization

parameter µ
λ
. Figure 2.27 shows the 2-norm of the reconstruction error as a function

of log10
µ
λ

for Fwav and Fnowav for test case 2. We consider all cells as well as those

away from the η = 4 neighborhood of edges. Figure 2.28 shows the equivalent results

for test case 4. We see that in general the slope of the regularization parameter

dependence curve is more shallow for the wavelet based reconstruction indicating more

robustness with regard to parameter selection. More importantly, we see crossings

in the reconstruction error curves near the optimal parameter value. This indicates

that the relative success of (2.8) vs. (2.4) is very much dependent on the choice

of µ
λ
. The conclusion being that the two methods may differ in the details of their

reconstructions, but are overall very similar on average.

42

log
10

(µ/λ)
-1.5 -1 -0.5 0 0.5 1 1.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

14.5

15

15.5

16

16.5

17
Wavelet
PA(2)

(a) All cells

log
10

(µ/λ)
-1.5 -1 -0.5 0 0.5 1 1.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4
Wavelet
PA(2)

(b) Smooth regions only

Figure 2.27: The 2-norm of the Reconstruction Errors as a Function of log10
µ
λ

for
Test Case 2.

log
10

(µ/λ)
-1.5 -1 -0.5 0 0.5 1 1.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

14

15

16

17

18

19

20

21
Wavelet
PA(2)

(a) All cells

log
10

(µ/λ)
-1.5 -1 -0.5 0 0.5 1 1.5

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

3

4

5

6

7

8

9

10

11

12
Wavelet
PA(2)

(b) Smooth regions only

Figure 2.28: The 2-norm of the Reconstruction Errors as a Function of log10
µ
λ

for
Test Case 4.

2.10 Analysis

We summarize the results in Section 2.9. The wavelet based regularization, (2.8),

is effective at suppressing noise and high frequency oscillations in smooth regions.

Also, in the neighborhood of edges, the wavelet reconstruction is irregular, as shown

in Figure 2.29, and edge induced oscillations are not as localized as those seen with

(2.4) or with the total variation regularization. We now explain the reasons for this

behavior.

43

Figure 2.29: Artifacts Present in the Fwav Reconstruction.

2.10.1 Edge Response

As discussed in Section 2.3, choosing the number of vanishing moments in the

wavelet basis, P , results in the physical support of the Bhigh basis functions being

2P . Increasing P , implies not only that each member of Bhigh is wider, but also

that more members of Bhigh will intersect an edge as shown in Figure 2.2. Therefore,

the projection of a discontinuity onto the Blow subspace results in a wide, high-order

oscillatory reconstruction, which is expanded even more by the edge detector.

To explain the irregular edge reconstructions, we note that the Daubeschies wavelets

are not symmetric. Thus, the reconstruction from the Blow projection of a piecewise

smooth function is not translation invariant. We demonstrate this by examining the

reconstruction of a ramp function given by

r(x) =

 x+ 1 −1 ≤ x < 0

x− 1 0 ≤ x < 1.
(2.19)

We let r̂ be the 2N lowest Fourier coefficients of r resulting from the continuous

44

Fourier transform. In Figure 2.30, the Blow reconstruction of r(x) is compared to the

Blow reconstruction of r(x − 2
N

). We see that the shapes of the reconstructions are

different and consequently the edge detector response to these reconstructions differ

as well. This leads to (2.8) producing irregular edges based on the particular grid cell

through which the edge passes. This lack of symmetry could be corrected by using a

bi-orthogonal wavelet basis.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True function
D2 wavelet projection

(a) Blow reconstruction of r(x)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Edge detection from the true function
Edge detection from projection

(b) Edge detector response to the Blow recon-

struction of r(x)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
True function
D2 wavelet projection

(c) Blow reconstruction of r(x− 2
N)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Edge detection from the true function
Edge detection from projection

(d) E2

(
F−1r̂

)
Figure 2.30: The Blow Reconstruction of r(x) as Compared to the Blow Reconstruc-
tion of r(x− 2

N
) and the Associated Edge Detector Responses.

2.10.2 Gibbs Oscillation Suppression and Implicit Filtering

In addition to the reduced accuracy in the reconstruction caused by the slow

decay of Fourier coefficients, the Gibbs phenomenon introduces rapid oscillations that

45

radiate from discontinuities. The results from Section 2.9 show that the wavelet based

reconstruction is effective at suppressing these oscillations. This suppression of Gibbs

related oscillations can result directly from the projection of the solution onto the

span of the Blow basis, without the need for regularization. In Figure 2.31, the ramp

function, r(x), is shown along with its reconstruction from 128 Fourier modes. When

the Fourier reconstruction is projected onto the Blow subspace of the D2 wavelets,

the oscillations are dramatically reduced as would be seen with a spectral filter. The

edge detector response of the projection is also confined to the neighborhood of the

edge, rather than decaying slowly as occurs without the projection step.

This suppression of oscillations is similar to the application of a spectral filter.

Consider the raised cosine filter, a second order spectral filter with a discrete formu-

lation given by

σrcosk =
1

2

(
1 + cos

(
2πk

N

))
. (2.20)

Figure 2.32 shows the application of this filter to r̂ has a reconstruction error almost

identical to that resulting from the wavelet projection.

46

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
True function

Fourier reconstruction

(a) F−1r̂

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
True function
Wavelet projection of the Fourier reconstruction

(b) projBlow

(
F−1r̂

)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(c)
∣∣F−1r̂ − r

∣∣
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(d)
∣∣projBlow

(
F−1r̂

)
− r
∣∣

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

(e) E2

(
F−1r̂

) -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

(f) E2

(
projBlow

(
F−1r̂

))
Figure 2.31: The Suppression of Gibbs Phenomenon As a Consequence of Projecting
r(x) onto the Blow Basis.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a)
∣∣projBlow

(
F−1r̂

)
− r
∣∣

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b)
∣∣(F−1 (σr cosk ◦ r̂)

)
− r
∣∣

Figure 2.32: A Comparison of the Raised Cosine Filter and the Wavelet Projection.

47

2.10.3 Edge Detection Response for High Order Functions

Another artifact seen in Figure 2.29 is that in smooth regions, the reconstruction

is continuous, but contains abrupt slope changes. The polynomial annihilation edge

detector operates by detecting when the function values evaluated at stencil points

cannot be interpolated by a low order polynomial. When a function is smooth but

has non-negligible derivatives of order higher than that of the detector there is a

non-zero response from the detector, but this response tends to be smooth, i.e. there

are no discontinuities in the first derivative of the edge detector response. When a

similar function is projected onto the Blow subspace, the recontruction is smooth in

areas that are well approximated by low order polynomials. In areas where the local

Taylor series expansion has large high order terms, the Blow approximation fails by

introducing discontinuities in the first derivative. This is further amplified by the

edge detector, as shown in Figure 2.33. In Figure 2.33, we see the effect of the edge

detector when applied directly to the function sin (8πx), which has large Taylor series

coefficients beyond the third term. The response from the edge detector is smooth.

After wavelet projection, the edge detector has a larger and non-smooth response. For

the function sin (2πx), the wavelet projection has little impact on the edge detector

response because of the rapid decay in Taylor series coefficients.

2.10.4 Concluding Remarks

From the test results, the main advantage of (2.8) over prior methods such as

(2.4) is robustness with respect to the selection of the regularization parameter, λ
µ
,

and the innate inclusion of a spectral filter in the regularization that suppresses high

frequency oscillations. Nonetheless, in smooth regions the overall accuracy of (2.8) is

very similar to that of (2.4) and small variations in the regularization parameter tend

48

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
sin(8π x)

Function
Edge detector applied to the function
Edge detector applied to wavelet projection

(a) sin (8πx)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
sin(2π x)

Function
Edge detector applied to the function
Edge detector applied to wavelet projection

(b) sin (2πx)

Figure 2.33: The Effect of the Blow Projection on High-order Smooth Functions.

to favor one method over the other. In the neighborhood of edges, prior methods

are superior at localizing oscillations. This negative aspect of the reconstruction with

(2.8) outweighs the benefit in terms of robustness. Switching to the bi-orthogonal

wavelet basis would most likely help with the edge reconstructions. Techniques for

49

including some members of the Bhigh set based on edge recovery may also result in

better edge reconstructions, but there is no overwhelming advantage to (2.8) to justify

additional processing steps compared to (2.4).

50

Chapter 3

EDGE DETECTION OF PIECEWISE SMOOTH FUNCTIONS FROM

UNDER-SAMPLED FOURIER DATA

Several important applications including magnetic resonance imaging (MRI) and

synthetic aperture radar (SAR) acquire data by way of Fourier sampling Yan (2002);

Gor (2010); Cheney and Borden (2009); Richards et al. (2010). To reduce data ac-

quisition times, some MRI techniques forgo collection of frequency data on a uniform

Cartesian grid, opting instead to collect information on trajectories that densely sam-

ple low frequencies and sub-sample high frequencies Pipe (1999b); Zuo et al. (2006);

Li et al. (2015); Ilievska and Ivanovski (2011). Recovering edge information from

this data is useful in a variety of situations, such as producing edge maps that can

be interpreted directly by practitioners, as a source of data for feature detection and

categorization, or as data that can be used in combination with other processing

techniques to enhance image recovery.

The concentration factor edge detection method recovers edge information directly

from acquired Fourier data, Gelb and Tadmor (1999). It operates by applying a set

of concentration factors to the supplied Fourier samples. Starting with a complete,

band limited set of Fourier samples the recovered “edge map”, or synonymously

“jump map”, exhibits a corresponding response at the location of true edges, but also

exhibits oscillations that decay away from edges. Isolating the true edges requires

some form of thresholding. The particular structure of these oscillations is dependent

on the chosen set of concentration factors, and in Gelb and Tadmor (2006) results

from different concentration factors were combined with the minmod algorithm to

remove some of these oscillations. Unfortunately, additional oscillations occur when

51

the sampled Fourier data are noisy or in cases where the band of Fourier coefficients is

not adequately resolved. Unless removed by additional thresholding, these oscillations

in smooth regions translate into false positive edge detections. But the additional

thresholding may cause failure in identifying true edges.

In this chapter we demonstrate that in spite of these false positives, there is

valuable information contained in the structure of the oscillations in the neighborhood

of jumps that can be extracted to recover the edges of the underlying image. In

particular we note that at jump locations and in smooth regions the different jump

approximations are similar, while in the neighborhood of jumps there is an exploitable

variance in behavior. On measuring this variance, we note a “two peak” signature

surrounding jumps that is not generally present around spurious oscillations not in

the vicinity of edges. Thus we develop a new algorithm to detect these variance

signatures as a way of filtering out false positives from the edge map approximation.

The filtering method based on the variance in behavior between concentration

factors succeeds in eliminating false positives detections, that are the result of oscilla-

tions inherent in the concentration method edge approximations. Nonetheless, false

edges in the Fourier reconstruction from incomplete or noisy Fourier data may become

indistinguishable from true edges without additional prior information. To eliminate

these false edges, we call upon the assumption that the underlying function is piece-

wise smooth with a sparse edge map. In Archibald et al. (2015), piecewise smooth

functions were reconstructed from under-sampled and noisy Fourier data using `1

regularization to promote the sparsity of edges. In spite of sub-sampling and noise,

smooth regions are recovered accurately with this method. To achieve this accuracy,

the sparsifying transform must distinguish smooth regions with high regularity from

edges. In particular, TV cannot be used for the sparsifying transform because of

the resulting “staircasing effect”. Instead we use the PA transform of order 2, as

52

developed in Archibald et al. (2015), which yields faster convergence in the smooth

regions. With the ability to accurately reconstruct smooth regions from incomplete

data, we introduce treatments involving subsets of the already sub-sampled Fourier

data set. The variance in the reconstruction from these subsets exhibits a similar

“two peak” signature, which can be used to eliminate false positive edge detections.

We develop a new method that validates edges generated by the concentration factor

edge detection technique based on their presence inbetween regions of high variance.

The important advantage of this method is that false jumps resulting from the in-

complete and noisy Fourier samples are distinguishable from true jumps based on the

regularized reconstruction.

The rest of the chapter is organized as follows. In Section 3.1 we review the neces-

sary background and establish the test case framework. In Section 3.2 we examine the

one dimensional results of methods based on the concentration factor edge detector,

developed in Gelb and Tadmor (1999), demonstrate the structure of the concentra-

tion factor approximation, and propose a new method of edge detection based on

the variance in approximations associated with different concentration factors. We

then introduce a new method for detecting edges based on the variance in regularized

reconstruction. In Section 3.3 we extend the results to two dimensions. Concluding

remarks are provided in Section 3.4.

3.1 Preliminaries

Let f be a periodic piecewise smooth function defined on [−1, 1). We define

the corresponding jump function, [f], as the difference between the right-hand and

left-hand limits of the function i.e.

[f] (x) = f
(
x+
)
− f

(
x−
)
. (3.1)

53

Thus, in smooth regions [f] = 0 and at discontinuities [f] is the value of the jump.

Since our ultimate goal is to construct an edge map of f , we discretize x uniformly

as D = {xj = j
N
}Nj=−N . We note that the jump function approximation method

described here does not restrict the solution to uniform points, but using this dis-

tribution may improve its computational efficiency. We also make the assumption

that there is at most one jump discontinuity within a cell Ij = [xj, xj+1], which is

reasonable when data are acquired as the first 2N + 1 Fourier coefficients, or some

sparse subset of those values. Thus, if [f](xj) is the value of the jump occurring in

Ij, we can write

[f](x) =
N−1∑
j=−N

[f](xj)χIj(x), (3.2)

where χIj(x) is defined as

χIj(x) =

 1 if x ∈ Ij

0 for all other x.
(3.3)

For simplicity, the numerical algorithms used in this investigation all place the jump

discontinuity at the left boundary of its corresponding cell.

To demonstrate basic features of the algorithms discussed in this chapter, we will

consider the following function, displayed in Figure 3.1.

f1 (x) =

2− πx

3
+ sin

(
πx+ 1

16

)
−3

4
6 x < 3

16

4πx− 9 1
2
6 x < 15

16

0 otherwise,

(3.4)

where

[f1](x) =

2.04 x = −3
4

−2.41 x = 3
16

−2.72 x = 1
2

2.71 x = 15
16
.

54

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

Figure 3.1: f1(x).

3.1.1 The Concentration Factor Edge Detection Method

For algorithmic development, let us assume that f has a single discontinuity at

x = ξ, ξ ∈ (−1, 1). Suppose we are given a (sparse) subset of Fourier coefficients,

f̂(k) =
1

2

∫ 1

−1

f (x) e−ikπxdx, −N ≤ k ≤ N. (3.5)

Repeated integration by parts provides the relationship

f̂(k) =
1

2π

(
[f](ξ)

ik
+

[f ′](ξ)

(ik)2 +
[f ′′](ξ)

(ik)3 + . . .

)
e−ikπξ =

e−ikπξ

2πik
+O

(
1

k2

)
, (3.6)

where [f](ξ) is the value of the jump at x = ξ. In Gelb and Tadmor (1999), (3.6) was

used to generate the concentration factor edge detection method, given by

SσN [f] (x) = i
N∑

k=−N,k 6=0

f̂(k)sgn(k)σ

(
|k|
N

)
eikπx, (3.7)

where the “concentration factor” σ(η), η ∈ [0, 1], discretized at
(
|k|
N

)
, satisfies the

following admissibility requirements:

1. σ(η)
η
∈ C2 (0, 1)

2.
∫ 1

ε
σ(η)
η
→ −π where ε is small.

Some examples of admissible concentration factors are listed in Table 3.1, while

the results of SσGN [f1](x) for N = 32, 64, and 128 are shown in Figure 3.3(a).

55

Table 3.1: Sample Concentration Factors

Concentration factor type expression details

Trigonometric σG (η) = π sin(πη)
Si(π)

Si (π) =
∫ π

0
sinx
x
dx

Polynomial σpP (η) = pπηp p is the order of polynomial

concentration factor.

Exponential σαE (η) = Cηe
1

αη(η−1) α is the order of the exponential

concentration factor.

C is a scale factor given by

C = π∫ 1−1/N
1/N

e
1

ατ(τ−1) dτ

Due to the relationship obtained in (3.6), the concentration factor edge detection

method in (3.7) can be characterized using the ramp function rξ(x) = r(x− ξ), where

r(x) =

 −
x+1

2
−1 ≤ x < 0

−x−1
2

0 ≤ x < 1,
(3.8)

and

[rξ](x) =

 1 x = ξ

0 x 6= ξ.
(3.9)

The corresponding Fourier coefficients of rξ(x) are

r̂ξ(k) =

e−ikπξ

2ikπ
k 6= 0

0 k = 0.
(3.10)

Using the above notation, a piecewise linear approximation of piecewise smooth

f with a single discontinuity at x = ξ can now be written as

f(x) ≈ [f](ξ)rξ(x). (3.11)

As shown in (3.6), the jump value associated with the jth derivative of f , [f (j)],

leads to terms in f̂k that decay as 1
kj+1 . Conversly, the concentration factors in Table

56

3.1 yield small values for σ(|k|
N

) when k is small. Thus the jumps, [f] and [r], are of

primary importance in characterizing the concentration factor edge detection method.

Analogously to (3.11), if f has jump discontinuities at ξm, m = 1, · · ·M , the linear

approximation of f is

f(x) ≈ R(x) =
M∑
m=1

[f] (ξm) rξm(x). (3.12)

Substituting the corresponding (multiple jump) values of r̂ξ(k) in (3.10) into f̂k in

(3.6), it is evident that (3.7) approximates [R](x). Moreover, by translating each

discontinuity location a distance ξm, we can further characterize (3.7) by defining

Definition 1 (The jump response). Given concentration factor σ, we define the jump

response as

W σ
N (x) := SσN [r](x) =

1

2π

∑
0<k≤N

σ
(
|k|
N

)
|k|

eikπx. (3.13)

Figure 3.2 shows the jump response using various specific concentration factors. It

demonstrates that in the neighborhood of a jump discontinuity, the behavior of (3.13)

is highly dependent on the particular concentration factor chosen, while away from

discontinuities the convergence rate is O(1
N

). These different behavior patterns have

been exploited in Gelb and Tadmor (2006), where post processing algorithms were

developed to pinpoint the edges. While such techniques were shown to be effective

given all 2N + 1 Fourier samples in (3.5), we will demonstrate that they are not as

robust when the data are noisy or further sub-sampled. Instead we will employ an l1

regularization technique that exploits the sparsity of [f](x), as observed by the sparse

number of non-zero coefficients in (3.2). We first review l1 regularization below.

3.1.2 Sparsity Promoting Regularization

Regularization is a well-known technique for solving ill-conditioned inverse prob-

lems, and regularizations using `1 penalty terms have enjoyed great success in the

57

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(a) WσG

N

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(b) WσP

N , Order=1

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(c) WσP

N , Order=2

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(d) WσE

N , Order=1

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(e) WσE

N , Order=2

-0.6 -0.4 -0.2 0 0.2 0.4

-1

-0.5

0

0.5

1

(f) WσE

N , Order=3

Figure 3.2: Sample Jump Response Behavior for Various Concentration Factors
with N = 32.

fields of image processing and compressed sensing, Rudin et al. (1992); Yin et al.

(2008). A driving principle in many of these techniques is that some attribute of a

good solution will be sparse. An ideal `0 penalty term would seek to minimize the

count of non-zero entries in its argument, but `0 terms are not convex and a general

numerical solution is impossible. Hence `1 terms are used as convex relaxations for

`0 terms in compressed sensing, Candès et al. (2006). For the algorithms described

below we will use regularizations of the general form

~u∗ = argmin
~u

(∥∥∥G~u−H~b∥∥∥2

2
+
∑
j

λj‖φj (~u)‖1

)
. (3.14)

58

Here ~u∗ is the desired solution, ~b is the provided data, G and H are optional operators

to make trial solutions, ~u, compatible with the provided data, ~b, {φj} is a set of spar-

sifying operators, and {λj} is a set of regularization parameters weighting individual

penalty terms. For the algorithms described below the operators G, H and {λj} will

be linear and the minimization problem in two dimensions can be efficiently solved

using the Split-Bregman algorithm, Goldstein and Osher (2009).

3.1.3 Polynomial Annihilation Edge Detection As a Sparsifying Operator

We now review the polynomial annihilation method that was introduced in Archibald

et al. (2005) and used as a sparsifying operator in a penalty term in Archibald et al.

(2015); Stefan et al. (2010); Wasserman et al. (2015) as a means for reconstructing

functions from sparse or noisy Fourier data. Although the method was developed

for multiple dimensions and non-uniform data, we have found that for a uniform

grid it is most efficient to employ the polynomial annihilation operator dimension by

dimension, Archibald et al. (2015); Wasserman et al. (2015). Thus we describe the

technique for given data f(xj), xj = j
N

, j = −N, · · · , N . In practice f (xj) will be

the elements of the solution vector ~u in (3.14). The polynomial annihilation edge

detection method is defined as

Lpf (x) =
1

qp (x)

∑
xj∈S

cj (x) f (xj),

where cj (x) are polynomial annihilation coefficients, qp (x) is a normalization factor,

and Sx is a set of p+1 grid points surrounding x, which can be extended periodically as

necessary.1 The polynomial annihilation coefficients, cj (x), are designed to annihilate

1The polynomial annihilation method does not restrict the class of underlying functions to be

periodic. Indeed, the stencils Sx can be made one sided as the boundaries of the domain are

approached.

59

polynomials up to degree p, and are obtained by solving the system

∑
xj∈Sx

cj(x)ϕ`(xj) = ϕ
(p)
` (x), j = 1, . . . , p+ 1, (3.15)

where ϕ`, ` = 0, . . . , p, is a basis of for the space of polynomials of degree ≤ p. With

the restrictions just described, the solution to (3.15) is given by

cj =
p!∏

k=1...p+1,k 6=j
(j − k)h

, (3.16)

where h is the distance between grid points 1
N

. Thus, in the uniform case, cj is inde-

pendent of xk ∈ D. The normalization factor, qp (x), assures the proper convergence

of Lpf (x) to the jump value at each discontinuity and is given by

qp (x) =
∑

xj∈Sx,xj>x

cj (x). (3.17)

When f is periodic, the uniform distribution of grid points implies that qp is also

independent of choice of xk. We can therefore define the polynomial edge detection

operator Pp as a circulant matrix such that

(Pp~v)k =
1

qp

p+1∑
j=1

cj~vk+j− 2+p
2
. (3.18)

For example, when p = 2 we have

P2 =

2 −1 0 · · · 0 −1

−1 2 −1 0 · · · 0

0
.

...

...
. 0

0 · · · 0 −1 2 −1

−1 0 · · · 0 −1 2

.

60

3.1.4 Sample Sets

We assume the Fourier coefficients of a piecewise periodic smooth function, f ,

are drawn from a set Û =
{
f̂k : −N 6 k 6 N

}
, and that these Fourier coefficients

may be subject to complex Gaussian noise. Each test case is characterized by a

set of parameters. We let SNR represent the signal to noise ratio, with SNR = ∞

representing no noise. The initial set of coefficients, Û, may be sub-sampled as

controlled by parameters γ, β, and ζ to form

V̂ = F̂ ∪ R̂, (3.19)

where dim(V̂) = γ(2N + 1),

F̂ =
{
f̂k : −βN ≤ k ≤ βN

}
,

with 0 ≤ β ≤ 1, and R̂ is a set of randomly selected coefficients f̂k, |k| > βN (|k| ≤ N

when β = 0) from a normal distribution.2

Now, for each test we construct q = 1, · · · , Q subsets from V̂ as

T̂q = F̂ ∪ R̂q, (3.20)

where R̂q has ζ(γ−β)(2N + 1) randomly selected values of R̂. We will apply the nu-

merical algorithms in this investigation to a set of test cases with parameters specified

in Table 3.2.

Different values of N will demonstrate the various features of our new algorithm.

In applications where the sampling is limited to the small wave numbers, that is

small N , we do not expect to use much compression. However, as discussed in the

2Numerical experiments were also performed for uniformly distributed sets with no noticeable

difference for β ≥ .3 and various choices of γ. However, for 0 < β < .3 and γ << 1, it becomes

imperative to keep the low modes of the given data set.

61

Table 3.2: Parameters Selected for Each Test Case. Unless otherwise Specified, We
also Choose N = 64, Q = 30 and ζ = .5.

Test Case SNR β γ

1 ∞ 0 1

2 ∞ 0.3 0.75

3 12.5dB 0.3 1

4 12.5dB 0.3 0.75

introduction, in applications such as MRI, some sampling trajectories are designed to

oversample the low frequency modes while sparsely sampling in the high frequency

range. Moreover, if very large data sets are obtained, compression could be used to

process the data more efficiently. Our numerical experiments give insight into both

situations. Similarly, we demonstrate that our method is robust when the given data

are noisy.

3.2 Edge Detection for Under-sampled Fourier Data

3.2.1 The Concentration Factor Edge Detection Method

We first examine the direct application of the concentration factor edge detection

method, given in (3.7). As shown in Figure 3.3(a), this method works well when given

the full set of 2N+1 noiseless Fourier coefficients, but it loses its effectiveness as either

the signal to noise ratio decreases, (Figure 3.3(c)), or the number of available Fourier

samples decreases, (Figure 3.3(b) and (d)). Oscillations appear in the smooth regions,

and as they increase in magnitude, effective thresholding becomes more difficult.

The minmod algorithm was used in Gelb and Tadmor (2006) to exploit the vari-

ability in the jump responses apparent in Figure 3.2. Specifically, the results in (3.7)

62

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

N=32

N=64

N=128

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

N=32

N=64

N=128

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

N=32

N=64

N=128

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

N=32

N=64

N=128

(d) test case 4

Figure 3.3: Concentration Factor Edge Detection Method, SσGN [f1](x).

using admissible concentration factors, σ1, · · · , σn, were jointly post processed as

SMM
N [f] (x) = minmod {Sσ1N [f] (x) , Sσ2N [f] (x) , . . . , SσnN [f] (x)} , (3.21)

where

minmod {a1, a2, . . . an} =

 smin (|a1| , |a2| , . . . |an|) if sgn (a1) = . . . sgn (an) = s

0 otherwise.

The results of (3.21) using the set {σG, σ1
P , σ

2
P , σ

1
E, σ

2
E} are displayed in Figure 3.4.

Although some artificial oscillations are reduced, these improvements become less ev-

ident as more noise and less data are used. In some cases, adding more concentration

factors in (3.21) may help in further reducing the magnitude of the oscillations. That

said, although (3.21) is not an effective means of differentiating the results using var-

ious concentration factors in these cases, it still is possible that this variation can be

63

exploited in a different way. In Section 3.2.4 we introduce a new algorithm with this

in mind.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Minmod Result
True Jump Values

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Minmod Result
True Jump Values

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Minmod Result
True Jump Values

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Minmod Result
True Jump Values

(d) test case 4

Figure 3.4: SMM
N [f1] (x) in (3.21).

3.2.2 The Sparsity Enforcing Edge Detection Method

The sparsity enforcing edge detection method for determining edges in noisy

and/or sub-sampled environments using regularization was developed in Stefan et al.

(2012) and given by

SSEN [f] = argmin
~g

(
‖~g − SσσN [f]‖2

2 + λ‖~g‖1

)
. (3.22)

Here ~g is a vector discretized on a physical-space grid,
{
xj = j

N

}N
j=−N .

Figure 3.5 displays the results of (3.22) using σG. Comparing Figures 3.3, 3.4, and

3.5, we see that (3.22) yields better results than (3.7) when given all 2N + 1 noiseless

coefficients, although post processing with the minmod algorithm, (3.21), is more

64

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sparsity Result
True Jump Values

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sparsity Result
True Jump Values

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Sparsity Result
True Jump Values

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Sparsity Result
True Jump Values

(d) test case 4

Figure 3.5: Edge Map of f1(x) Resulting from (3.22).

effective. However, using the regularization in (3.22) is more robust in cases where

data are noisy and under-sampled, although the results inherently depend on the

regularization parameter chosen. Thus, we observe a tradeoff between artificial jump

suppression and the failure to detect true edges. Nonetheless, this method provides an

effective jump response that varies from those generated using the concentration factor

edge detection method in (3.7), which may be exploited in the procedure described

below.

3.2.3 Generating an Edge Map Using Thresholding

Let us call E[f] the result acquired either by (3.7), (3.21), or (3.22). It is evident

that some degree of post processing is needed to reduce the number of false positives

and form an accurate edge map. One way to do this is to use thresholding. Rather

than prescribe a cut off value related to the |E[f](x)|, which may not be robust with

65

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
σ

G
N

 S
MM

N
 S

SE

N
 True Jump Locations

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S
σ

G
N

 S
MM

N
 S

SE

N
 True Jump Locations

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

S
σ

G
N

 S
MM

N
 S

SE

N
 True Jump Locations

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

S
σ

G
N

 S
MM

N
 S

SE

N
 True Jump Locations

(d) test case 4

Figure 3.6: Algorithm 1 Using SσGN [f1](x), SMM
N [f1](x), and SSEN [f1](x) and Thresh-

old c = 7/8.

respect to noise or sub-sampling, we appeal to the presumed sparsity of the underlying

jump function, [f], to choose a threshold, ε = ε(c), such that dim ({|E[f](x)| < ε}) =

c (2N + 1). Typically c ∈ (9
10
, 1). Although the corresponding threshold is seemingly

large, it is reasonable under the assumption that [f] has a sparse representation,

and that there should be relatively few values of |E[f](x)| > ε. Additionally, only

the extrema of E[f](x) are considered as jumps in the post processed jump function

approximation, EPP [f](x), and these extrema are separated by a distance of at least

d. That is, we define each local jump region to have a distance of d, where d is

dependent on the noise and amount of sub-sampling. The process of thresholding

and extrema detection can then be combined as shown in Algorithm 1.

Figure 3.6 compares the thresholded edge maps generated by SσGN [f1](x), SMM
N [f1](x),

and SSEN [f1](x), with c = 7
8
. We note that a larger value for c would isolate the four

66

Algorithm 1 Generating an Edge Map Using Thresholding

Choose a jump function approximation method to construct E[f], a threshold

ε = ε(c) as described above, and a distance d which defines the distance of

each local jump region. Although not necessary for periodic functions, for sim-

plicity assume that no jumps occur between [x(−N), x(−N+d)] and [x(N−d), x(N)].

for j = −N + d, · · · , N − d

if |E[f](xj)| > ε and |E[f](xj)| > |E[f](xl)| for |xj − xl| < d, then

• EPP
N [f](xj) = E[f](xj)

else

• EPP
N [f](xj) = 0

end if

end for

true jumps, but as can be seen in test case 4, the scale of false jumps approaches that

of true jumps. Without advance knowledge of the true jump heights, increasing the

threshold, c, risks eliminating true jumps.

3.2.4 Variance of Jump Function Responses

As is evident from Figure 3.6, simple thresholding becomes less effective as noise

is increased or as the data are further under-sampled. We now introduce a new

method for detecting edges by defining the variance vector of the set of jump function

approximations, E = {
−−→
E1f, · · · ,

−−→
Enf}, where each

−−→
E`f is calculated on a set of points

67

~x = {xj}Nj=−N , as3

~v(E)n =
1

dim(E)

∑
Ej∈E

(
−−→
Ejfn −

1

dim(E)

∑
Ek∈E

−−→
Ekfn)2, n = 1 . . . 2N + 1. (3.23)

From the previous discussions, possible sets of jump function approximations eval-

uated at grid points xj, j = −N, · · · , N , include

E1 = {
−−→
SσkN f}σk∈G, (3.24a)

E2 = {
−−→
SσkN f}σk∈G ∪

−−−→
SSEN f, (3.24b)

where G is a set of concentration factors and SSEN [f] is given in (3.22). The result

of (3.23) with E1 for f(x) = r(x) is displayed in Figure 3.7. It is evident that in

regions away from the neighborhood of the jump, ξ = 0, ~v(E1) is small as desired.

The largest variance is seen in the neighborhood of the jump discontinuities, but the

variance at x = ξ is again small. This behavior is consistent with the oscillatory

behavior observed in the jump responses for each concentration factor observed in

Figure 3.2. Figure 3.8 displays the variance using E1 for the same concentration

factors on f1(x).

The results of (3.23) using E2 are shown in Figure 3.9. We see that including

information from (3.22) does not seem to yield any more information that will help

to isolate edges, so it is not utilized further in our investigation.

3We note that a related idea that exploits the jump responses in (3.13) using maximum likelihood

estimators was developed in Petersen et al. (2012). The main goal of that investigation was to

produce the best ROC curve in noisy environments when given the first 2N + 1 Fourier coefficients

of a piecewise smooth function.

68

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.05

0

0.05

0.1

Figure 3.7: ~v(E1)(xj) in (3.23) for r(xj) in (3.8), xj = j
N
, j = −N, · · · , N . G in

(3.24a) Is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

Concentration Variance Result
True Jump Locations

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

Concentration Variance Result
True Jump Locations

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Concentration Variance Result
True Jump Locations

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Concentration Variance Result
True Jump Locations

(d) test case 4

Figure 3.8: ~v(E1)(xj) in (3.23) for f1(x) and xj = j
N
, j = −N, · · · , N . G in (3.24a)

Is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}.

69

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Augmented Variance Result
True Jump Locations

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

Augmented Variance Result
True Jump Locations

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

Augmented Variance Result
True Jump Locations

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

Augmented Variance Result
True Jump Locations

(d) test case 4

Figure 3.9: ~v(E2)(xj) in (3.23) for f1(x) and xj = j
N
, j = −N, · · · , N . G in (3.24b)

is Given by G = {σG, σ1
P , σ

2
E, σ

4
E}.

3.2.5 Post Processing Edge Detection Using Variance

The variance computed in (3.23) allows us to distinguish where an edge is likely

to occur from an artifact caused by the oscillatory response of the jump function

approximation. Below, we provide an algorithm that allows us to convert the variance

in (3.23) to an edge map.

As in Algorithm 1, we first determine which points xj, j = −N, · · · , N , describe

local jump regions in the domain [−1, 1]. It is evident from Figures 3.8 and 3.9 that

each edge occurs between two locations where var(E) is a local maximum. Indeed, a

good guess might be to choose the midpoint value between these peaks. Hence, we

define the local jump regions as the distance between two neighboring peaks, which

is described in Algorithm 2.

70

The algorithm also requires thresholding to avoid false local region detections.

We threshold v(E) in a manner similar to that applied in Algorithm 1, appealing to

the presumed sparsity of the underlying jump function [f], and choosing a thresh-

old, ε(c) = ε, such that dim
({
v(E)xj < ε

})
= c (2N + 1). Typically 3

4
≤ c < 1.

Algorithm 3 isolates the edges from within each jump region.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Concentration Variance Result
True Jump Values

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Concentration Variance Result
True Jump Values

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Concentration Variance Result
True Jump Values

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Concentration Variance Result
True Jump Values

(d) test case 4

Figure 3.10: Edge Map Generated Using Algorithm 3 for f1(x). Here δ = 5, c = 7
8
.

Figure 3.10 demonstrates application of Algorithm 3 on f1(x) using E1 in (3.23).

While the algorithm is effective in noiseless environments with the first 2N+1 Fourier

coefficients given, it is evident that adding noise and reducing the size of the sampling

set makes it difficult for the algorithm to recover true edges without producing false

ones. Indeed, in test cases 3 and 4, the edge at x = −.75 is completely missed while

false edges occur in other parts of the domain. This is not so surprising given the

results in Figure 3.8, which shows large variance in smooth regions. The convergence

71

Algorithm 2 Local Jump Region Determination

Choose a variance threshold, ε as described above, and a maximum distance be-

tween peaks threshold, δ, needed to establish two neighboring peaks. Although not

needed for periodic functions, we also choose d so that no jump occurs between

[x(−N), x(−N + d)] or [x(N − d), x(N)].

set counter for the number of potential edges, ν = 0.

for j = −N + d, · · · , N − d

• if ~v(E)xj > ~v(E)xj−1
and ~v(E)xj > ~v(E)xj+1

and ~v(E)xj > ε, then

1. ν = ν + 1

2. yν = xj;

• end if

end for

set counter for the number of jump regions, ` = 0.

for n = 1, · · · , ν − 1

• if dist(yn, yn+1) < δ then (we are in a jump region – otherwise, the large

variance indicated a false edge))

1. ` = `+ 1

2. B` = {xj : yn ≤ xj ≤ yn+1}

• end if

end for

72

Algorithm 3 Edge Map Generation

Input variables: Jump regions B`, ` = 1, · · · , L, and SσN [f](x).

form SPPN [f](x) from SσN [f](x) using Algorithm 1

for ` = 1, · · · , L

1. ξ` = arg maxxj∈B` |SPPN [f](xj)|

2. E(ξ`) = SσN [f](ξ`)

end for

set counter for ` = 1

for j = −N, · · · , N

• if xj = ξ` and ` ≤ L then

1. E(xj) = E(ξ`)

2. ` = `+ 1

• else E(xj) = 0.

end for

of the concentration factor edge detection method in smooth regions given the first

2N + 1 Fourier coefficients is such that ~v(E1) is a valid predictor of where edges are.

However, no such proof of convergence exists for the concentration factor method

when the data are sub-sampled as in (3.19). Hence, we seek to develop an algorithm

where the variance between the jump discontinuities, that is, in smooth regions,

remains small, even when the data are sub-sampled. This is accomplished in Section

3.2.6.

73

3.2.6 Determining Edges from Regularized Reconstruction

As observed in Section 3.2.5, the limitations on post processing the jump func-

tion approximation using (3.23) using either (3.24a) or (3.24b) are due to too much

variability away from the edges in smooth regions. However, as will be shown below,

using (3.23) may still be an effective tool when the input set, (E in (3.23)), has the

property that each element in E differs in convergence properties only within each

jump region, that is, the convergence is similar in smooth regions. Thus, we seek a

new set E for which this property holds. As it turns out, the method developed in

Archibald et al. (2015), which approximates piecewise smooth functions from under-

sampled Fourier data using l1 regularization, leads to such a set. The method is

briefly reviewed below.

Once again we are given the (noisy) Fourier coefficients of a piecewise smooth func-

tion from the set V̂ in (3.19). For each sub-sampled set T̂q in (3.20), we reconstruct

f on a set of uniform grid-points xj, j = −N, · · · , N, as

~fq = argmin
~u

||Fq~u− ~̂
fq||22 + λ||Pp~u||1. (3.25)

Here ~u is a vector discretized on the physical-space grid,
{
xj = j

N

}N
j=−N ,

~̂
fq is the

vector of Fourier coefficients formed from the sub-sampled set T̂q, and Fq is the

discrete Fourier transform generating the coefficients to match
~̂
fq. The polynomial

annihilation transform, Pp in (3.18), is used as a sparsifying operator in the penalty

term. We choose p = 2 in our numerical experiments. We note that when p = 1,

which is equivalent to using total variation as the l1 term, the reconstruction does not

exhibit the needed variance in the neighborhood of edges, causing edge locations to

shift in (3.25). Consequently, (3.26) is not effective in this case. Conversely, choosing

p > 2 creates more oscillations near the jump discontinuities, leading to an extended

variance region with multiple peaks in each jump region, making it difficult to isolate

74

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Case 1 Case 2 Case 3 Case 4

(a) Reconstruction

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Case 1 Case 2 Case 3 Case 4

(b) log10 Reconstruction error

Figure 3.11: Sample Reconstructions and Pointwise Reconstruction Errors from
Applying (3.25) to the Test Cases in Table 3.2.

the edges. Figure 3.11 shows the approximation of f1(x) for each of the four test

cases and the corresponding pointwise errors. Observe that for the first two test

cases, (3.25) converges accurately away from the discontinuities but is not accurate in

the neighborhoods of the internal edges. For test cases 3 and 4, (3.25) is less accurate.

Nonetheless, as we will show shortly, the solutions ~fq, q = 1, · · · , Q, vary very little in

smooth regions, while they exhibit more variation near the discontinuities. As before,

we will exploit this variation in the approximation to determine the edge locations

of f . However, now we choose E to contain the approximations of f given in (3.25).

Moreover, instead of choosing different approximation parameters, e.g. σ in (3.7), we

75

consider different sampling sets, T̂q, q = 1, · · · , Q, in (3.20).4 Thus for Q = {~fq}Qq=1,

where each ~fq is calculated on a set of points xj, j = −N, · · · , N , we have

~v(Q)j =
1

Q

Q∑
q=1

(
−→
fq j −

1

Q

Q∑
q=1

−→
fq j)

2, j = 1 . . . 2N + 1. (3.26)

Figure 3.12 show the results of (3.26) for f1(x) using each test case in Table 3.2.

Once (3.26) is calculated, we can apply Algorithms 2 and 3 to recover an edge map,

in this case with (3.26) replacing (3.23). Figure 3.13 shows these results.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Augmented Variance Result
True Jump Locations

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

×10
-3

0

1

2

3

4

5

6

7

8

9

Augmented Variance Result
True Jump Locations

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

×10
-3

0

2

4

6

8

10

12

14

16

Augmented Variance Result
True Jump Locations

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

×10
-3

0

2

4

6

8

10

12

14

16

Augmented Variance Result
True Jump Locations

(d) test case 4

Figure 3.12: ~v(Q) for f1 Using the Parameters in Table 3.2.

4We note that it is possible to vary the sampling sets for E in (3.23) as well. Unfortunately, for

the same reasons as stated at the end of Section 3.2.5, using different sampling sets did not reduce

the variance sufficiently in the smooth regions of the domain.

76

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Regularized Reconstruction Variance Result
True Jump Values

(a) test case 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Postprocessed Regularized Reconstruction Variance Result
True Jump Values

(b) test case 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-3

-2

-1

0

1

2

Postprocessed Regularized Reconstruction Variance Result
True Jump Values

(c) test case 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Postprocessed Regularized Reconstruction Variance Result
True Jump Values

(d) test case 4

Figure 3.13: Algorithms 2 and 3 Applied to ~v(Q) for f1 Using the Parameters in
Table 3.2. Here δ = 5 and c = 7

8
.

3.3 Determining the Two-dimensional Edge Map Using Variance

Below we describe how the methods developed in Section 3.2 can be expanded

to two dimensional functions. In this case we assume that f : R2 → R is a periodic

piecewise smooth function on [−1, 1]2, and that we are given Fourier coefficients

f̂k,l =
1

4

∫ 1

−1

∫ 1

−1

f(x, y)e−iπ(kx+ly)dydx, (3.27)

drawn from a set Û =
{
f̂k,l : −N ≤ k, l ≤ N

}
. For ease of presentation, we will

consider the same test cases as those displayed in Table 3.2, with the equivalent

parameters used in each direction.

The following function, displayed in Figure 3.14, will be used to test our algo-

77

Figure 3.14: f2(x, y).

rithms:

f2 (x, y) =

1
3

(1− x3) + 1
2

(xy − y2) if
√(

x− 1
2

)2
+
(
y − 1

2

)2
< 1

4

2
3
− 5

2
(x2 + y2) if

√
x2 + y2 < 1

4
+ 1

20
sin
(
atan

(
y
x

))
1
4

(x4 − 2x2 + 1) (y4 − 2y2 + 1) otherwise.

(3.28)

We seek to recover the scalar valued jump function approximation, defined in two

dimensions as

[f](x, y) :=
M∑
j=1

[f](Pj)χPj(x, y), (3.29)

where the x and y coordinates of each discontinuity Pj, j = 1, · · · ,M , are given by

(ξj, ηj), and χPj(x, y) is the two dimensional extension of (3.3), which has value 1 at

each cell containing Pj and 0 everywhere else. As in the one dimensional case, we

observe that there are only a sparse number of nonzero coefficients in (3.29).

We wish to recover (3.29) from (3.27) at a finite set of uniform grid points, (xn, ym),

for n,m = −N, · · · , N . Determining [f] is considerably more difficult in two dimen-

sions, because its non-zero values depend upon how each edge is approached. Since

we are essentially interested in generating an edge map on a Cartesian grid, we will

say that each jump value, [f](ξ, η), is approximated as the difference of f in the x di-

rection multiplied by the difference in f in the y direction across an internal boundary

78

curve at the point (ξ, η). This interpretation allows us to define the two dimensional

concentration factor edge detection method as

SσN [f](x, y) = −
N∑

l=−N,l 6=0

N∑
k=−N,k 6=0

f̂k,lsgn(k)sgn(l)σ(
|k|
N

)σ(
|l|
N

)eiπ(kx+ly). (3.30)

Using (3.30) has some inherent limitations, however. In particular, if the underlying

image has an edge that consists of a straight line in either coordinate direction,

the method would not “see” it in that direction, as (3.30) would return zero. As

discussed in Martinez et al. (2014), one option to improve the performance in these

cases is to apply (3.30) twice, once in the Cartesian coordinate system and once again

after rotating the image, which will detect edges that align with the coordinate axes.

However, for generating an edge map on a Cartesian grid, we have found that applying

(3.7), (3.23), and Algorithm 3 dimension by dimension, is efficient and robust. To

this end, we write the dimension by dimension equivalents of (3.7) as

Sσx,N [f](x, ym) = i
N∑

l=−N

N∑
k=−N,k 6=0

f̂k,lsgn(k)σ

(
|k|
N

)
eiπ(kx+lym), (3.31a)

Sσy,N [f](xn, y) = i
N∑

k=−N

N∑
l=−N,l 6=0

f̂k,lsgn(l)σ

(
|l|
N

)
eiπ(kxn+ly), (3.31b)

for each xn = n
N

, and ym = m
N

, −N ≤ n,m ≤ N . We compute (3.31a) and (3.31b) on

xn and ym respectively. For algorithmic purposes, we will use Sσx,N [F]m,n to represent

(3.31a) applied row by row or in the ~x direction and correspondingly Sσy,N [F]m,n

to represent (3.31b) applied column by column or in the ~y direction. We can then

combine these results to form

SσC,N [F]m,n =

√(
Sσx,N [F]m,n

)2

+
(
Sσy,N [F]m,n

)2

.

As in Algorithm 1, an edge map, SPPC,N [F], can be obtained by thresholding SσC,N [F]

as demonstrated below.

79

Algorithm 4 Two Dimensional Edge Map Generation Using Thresholding

Input variables: SσC,N [F]m,n.

for j = −N, · · · , N

1. let ~u be the thresholded jump map generated by Algorithm 1 using

SσC,N [F]j,1...2N+1

2. for k = −N, · · · , N

(a) let ~v be the thresholded jump map generated by Algorithm 1 using

SσC,N [F]1...2N+1,k

(b) if |~vj| > |~uk|

i. SPPC,N [F]j,k = ~vj

(c) else

i. SPPC,N [F]j,k = ~uk

3. end for

end for

(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4

Figure 3.15: SσGC,N [F2]m,n and a Cross-section at SσGC,N [F2]m,N+1.

80

(a) test case 1 (b) test case 2 (c) test case 3

(d) test case 4

Figure 3.16: The Results of Applying Algorithm 4 to SσGC,N [F2]m,n with Thresholding

at c = 15/16.

Figure 3.15 and 3.16 show SσC,N [F2]m,n and the thresholded result respectively.

Thresholding is difficult even for test case 1, and becomes less effective with fewer

available coefficients or more noise, as oscillations appear both at nearby edge points

as well as in smooth regions.

As in the one dimensional case, the primary advantage of the minmod algorithm,

(3.21), is that it reduces oscillations that result from the so called “side lobes” of any

particular concentration factor. Indeed, the internal oscillations seen in test case 1 of

Figure 3.16 are greatly reduced. However, this advantage becomes negligible as the

data are increasingly noisy or under-sampled. The sparsity enforcing edge detection

method, (3.22), is also readily extended to multiple dimensions using a dimension by

dimension approach, and the results are analogous to the one dimensional case. Since

neither offers a significant improvement over the standard concentration factor edge

81

detection method, the results are not included here.

3.3.1 Variance of Jump Function Responses

Analogously to the one dimensional case in (3.23), we define the two dimen-

sional variance on the set of two dimensional jump function approximations, E =

{E1F, · · · , EnF}, where each EjF is calculated on a set of points (xn, ym), with

−N ≤ m,n ≤ N , as

V(E)m,n =
1

dim(E)

∑
Ej∈E

(EjFm,n −
1

dim(E)

∑
Ek∈E

EkFm,n)2. (3.32)

Here

E = {SσkC,N [F]m,n}σk∈G.

Algorithm 5 describes how to generate a two dimensional edge map from (3.32). As

with Algorithm 2, there is a need for thresholding. We now choose ε = ε(c) such that

dim
({

V(E)m,n < ε
})

= c (2N + 1)2. We note that Algorithm 5 actually returns

an indicator of relative edge heights rather than a pair of directional jump values.

These can be determined if necessary by referencing SσN,X [F]m,n and SσN,Y [F]m,n at

edge points.

(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4

Figure 3.17: V(E)m,n Using G = {σG, σ1
P , σ

2
E, σ

4
E} and a Cross-section V(E)m,N+1.

82

The variance of jump response, V(E)m,n, using the concentration factor set G =

{σG, σ1
P , σ

2
E, σ

4
E}, is shown in Figure 3.17 with the results from Algorithm 5 shown in

Figure 3.18. The high variance regions in the neighborhood of edges are well defined

with the full set of noise free Fourier coefficients as well as when those coefficients

are sub-sampled. However, it is evident that large variance levels appear in smooth

regions in the presence of noise. Thresholding V(E)m,n in Algorithm 2 causes some

false jump regions to be identified and some true jump regions to be discarded, leading

to false positives and missed edges in Algorithm 5 (Figure 3.18(c) and (d)).

(a) test case 1 (b) test case 2 (c) test case 3

(d) test case 4

Figure 3.18: The Results of Applying Algorithm 5 to V(E)m,n Using G =
{σG, σ1

P , σ
2
E, σ

4
E}, Maximum Distance between Peaks, δ = 7, Threshold c = 15/16.

3.3.2 Determining Edges by Regularized Reconstruction

Algorithm 5 works well when the behavior of the variance can properly identify

local jump regions. As in the one dimensional case, the variance of the regularized

83

(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4

Figure 3.19: V(Q)m,n Using Q = 40 and a Cross-section V(Q)m,N+1.

(a) test case 1 (b) test case 2 (c) test case 3

(d) test case 4

Figure 3.20: The Results of Applying Algorithm 5 to V(Q)m,n with Q = 30, Maxi-
mum Distance between Peaks, δ = 7, threshold c = 15/16.

84

(a) SσG

C,N [F] (b) SMM
C,N [F] (c) V(E)

(d) V(Q)

Figure 3.21: Comparison of Algorithm 5 Results Using N=128, SNR=12.5dB, γ =
.75, β = 0.3, δ = 7, Threshold c = 31/32.

reconstruction method, (3.25), augments the edge detection criterion further by recog-

nizing the piecewise smooth structure of the underlying function. In two dimensions,

the l1 regularized reconstruction for each sampling set T̂q, q = 1, · · · , Q is achieved

by solving the regularization in Wasserman et al. (2015); Archibald et al. (2015),

F(m,n),q = argmin
G

||FqG− f̂q||2F + λx|| vec (Pp
xG) ||1 + λy|| vec

(
Pp
xG

T
)
||1, (3.33)

where Pp
x corresponds to using (3.18) in the x direction for each fixed ym, −N ≤

m ≤ N , and similarly applying Pp
x to GT performs the calculation in the y direction.

Here G represents the physical-space image discretized on the uniform grid in the

domain [−1, 1)× [−1, 1). We note that in Archibald et al. (2015) the split Bregman

algorithm, Goldstein and Osher (2009), was shown to be applicable for the polynomial

annihilation transform operator, making (3.33) computationally efficient. Analogous

85

(a) SσG

C,N [F] (b) SMM
C,N [F] (c) V(E)

(d) V(Q)

Figure 3.22: Comparison of Algorithm 5 Results Using N=128, SNR=12.5dB, γ =
9
16

, β = 0.09, δ = 7, Threshold c = 31/32.

to (3.26), the variance of the two dimensional regularized reconstructions is given by

V(Q)(m,n) =
1

Q

Q∑
q=1

(F(m,n),q −
1

Q

Q∑
q=1

F(m,n),q)
2. (3.34)

Figure 3.19 illustrates the results of (3.34), while the results after post processing

with Algorithm 5 are shown in Figure 3.20. The identification of false edges in smooth

but variable regions results from a lack of resolution in the given data. Thresholding

reduces the false detects but also discards some true edges. Numerical experiments

indicate that increasing the size of the initial data set U defined in Section 3.1.4

for the polynomial annihilation transform of order 2 improves the performance of

the algorithm. Figure 3.21 displays the results of each algorithm for N = 128 with

the remaining parameters in Table 3.2 held constant. The threshold constant for

Algorithm 1, c, is adjusted to reflect the increase in resolution. Figure 3.22 shows

86

(a) SσG

C,N [F] (b) SMM
C,N [F] (c) V(E)

(d) V(Q)

Figure 3.23: Comparison of Algorithm 5 Results Using N=128, SNR=8dB, γ = 1
5
,

β = 0.09 δ = 7, Threshold c = 31/32.

how each algorithm is affected when the initial data set U is increased to N = 128,

but the sample size for each test, γ(2N + 1)2 is held fixed (that is, to the case when

N = 64). Finally, Figure 3.23 demonstrates that for N = 128, similar results can be

obtained with noisier data (SNR = 8) and more sub-sampling (γ = .2).

Figure 3.24 compares our methods quantitatively for each of the four test cases,

as well as the examples from Figures 3.21, 3.22, and 3.23, by measuring their ability

to properly classify points as edges. The figure displays the fraction of edge cells that

were correctly detected, the count of false positives, and the fraction of false positives

that lie in the 8-connected neighborhood of true edge cells. Observe that when the

variance for the regularized reconstruction is used, most of the false positives are near

the true edges.

87

Test Case
1 2 3 4 5 6 7

C
o

rr
e

c
t

D
e

te
c
ti
o

n
 F

ra
c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
σ

G
N

 S
MM

N
 V(E) V(Q)

(a) Correct detections/edge cells

Test Case
1 2 3 4 5 6 7

F
a

ls
e

 P
o

s
it
iv

e
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

S
σ

G
N

 S
MM

N
 V(E) V(Q)

(b) False positives

Test Case
1 2 3 4 5 6 7

A
d

ja
c
e

n
t

D
e

te
c
ti
o

n
s
/F

a
ls

e
 P

o
s
it
iv

e
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
σ

G
N

 S
MM

N
 V(E) V(Q)

(c) False positives adjacent to edge cells/false posi-

tives

Figure 3.24: Comparison of Methods Using Algorithm 4 on SσGC,N [F2] and SMM
C,N [F2]

and Algorithm 5 on V(E) and V(Q) for the Test Cases in Table 3.2 and Figures 3.21,
3.22, and 3.23.

88

3.4 Concluding Remarks

Assuming sufficient resolution, the concentration factor edge detection method,

(3.7), effectively recovers the edges of a piecewise smooth function from its first 2N+1

noiseless Fourier coefficients. The method is subject to many false positives if the data

are noisy or if values from the set of 2N+1 Fourier coefficients are missing or otherwise

unusable. Thresholding helps, but the threshold value is problem dependent and is

therefore not very robust to added noise or reduced sample size. Moreover, when

jumps are small, thresholding may eliminate true edges. Processing the results via

the minmod algorithm, (3.21), helps to eliminate some false edges that are artifacts

of oscillatory jump function responses, but is still not robust when data are noisy or

under-sampled. Finally, while the sparsity promoting l1 regularization edge detection

algorithm, (3.22), is in general more robust to noise and under-sampling, it still does

not fare well under increasing noise and/or under-sampling.

This investigation has demonstrated that post-processing the concentration factor

edge detection method by evaluating the variance of each jump function reconstruc-

tion, (3.23), is more effective at eliminating false positives generated from noisy data.

It is furthermore fast and easy to implement, as it requires no iterative solutions, and

each test can be performed in parallel. However, it also loses some effectiveness as

the Fourier data become increasingly noisy, or when data are more sparsely sampled

in the high frequency range. This lack of robustness can be explained by the fact

that as the level of noise or the amount of sub-sampling increase, the concentration

factor edge detection method using any concentration factor will recover false jumps

in smooth regions, and thus result in low variance there. Hence this investigation

sought an algorithm that is able to maintain its high order convergence properties

in smooth regions while effectively isolating jump discontinuities, even in the pres-

89

ence of noise or under-sampling. We achieve this by adding the prior information

that the true function is piecewise smooth. To this end, we observe that the l1 reg-

ularized reconstruction algorithm, (3.25), which reconstructs images from sparsely

sampled noisy Fourier data, does indeed maintain the convergence rate of the sparsi-

fying transform operator in smooth regions so long as the l1 regularization term is at

least second order (implying that total variation is not an effective choice). Thus, we

see that applying the variance technique in (3.26) to the l1 regularized reconstruction

algorithm is effective in detecting the edges of an image, which can in turn be used

to classify regions of interest. Our method is robust to increasing levels of noise and

sub-sampling, and is efficient since each test can be performed in parallel. Future

investigations will include a more rigorous study of parameter choices. Future inves-

tigations will also include the case where the Fourier data are sampled non-uniformly,

which occurs in applications such as propeller and parallel MRI. We believe that in

these cases our algorithm will further demonstrate its computational efficiency, since

in the non-uniform case, the FFT is not as readily used, so reducing the amount of

data needed becomes more critical.

90

Algorithm 5 Two Dimensional Edge Map Generation

Input variables: SσC,N [F]m,n, V(E)m,n.

for j = −N, · · · , N

1. ~u = V(E)j,1...2N+1

2. ~w = SσC,N [F]j,1...2N+1

3. determine B` from ~u by Algorithm 2

4. determine (EX)j,1...2N+1 from B` and ~w by Algorithm 3

end for

for j = −N, · · · , N

1. ~u = V(E)1...2N+1, j

2. ~w = SσC,N [F]1...2N+1 , j

3. determine B` from ~u by Algorithm 2

4. determine (EY)1...2N+1,j from B` and ~w by Algorithm 3

end for

for j = −N, · · · , N

1. for k = −N, · · · , N

(a) Ej,k =
∣∣∣(EX)j,k

∣∣∣+
∣∣∣(EY)j,k

∣∣∣
2. end for

end for

91

Chapter 4

AN ADAPTIVE FOURIER FILTER FOR RELAXING TIME STEPPING

CONSTRAINTS FOR EXPLICIT SOLVERS

Filters are often used to stabilize piecewise smooth solutions. In order to maintain

spectral accuracy away from discontinuities, such filters must decay with high order

smoothness, Hesthaven et al. (2007); Tadmor (2007). Unfortunately, high order filters

require small time steps to maintain stability in partially filtered modes; and achieving

high order smoothness results in diffusion in some innately stable modes. Apart from

using filters to improve accuracy of under-resolved solutions, the resolution of the

solution space can be increased; but this comes at the cost of even smaller step sizes

and greater computational effort per step.

As a way of better balancing accuracy and computational cost, we introduce

an adaptive filter, which maintains stability without diffusion when the numerical

solution is well resolved, but acts as a high order filter when spectral support is

large. The modification to a standard filter is simple to implement and has negligible

computational cost. The numerical tests show this filter can achieve a lasting increase

in solution accuracy even after the time when solutions become permanently under-

resolved and traditional filtering is required.

This chapter is organized as follows: In section 4.1 the necessary background in

filter construction and the sources of instability are reviewed. In section 4.2 a simple

chop filter is introduced, which is further refined into an adaptive filter. In section 4.3

we present the results of a variety of numerical tests using this filter.

92

4.1 Background

It is well known that the pseudo-spectrum of the spatial discretization must sit

within the stability region of the time integration scheme, Reddy and Trefethen

(1992). Violating this condition leads to exponential growth of modes with eigen-

values outside the region. Even when solution spectral support is limited to stable

modes, numerical noise can perturb modes with growth factors larger than one, which

then grow exponentially, LeVeque (2002).

A direct solution to this problem is to reduce time step size, which also increases

accuracy, but may be prohibitively expensive computationally. For piecewise smooth

solutions, filtering promotes stability and can control modes with large growth factors,

Gelb and Tadmor (2000). The requirements for high quality filters that promote

spectral accuracy has been well studied, Hesthaven et al. (2007).

Definition 2. Let the ratio of a given Fourier frequency to the highest allowable

frequency in the solution space be given by: η = |j|
N
, j = −N . . .N . An even function,

σ (η) ≥ 0 is a filter of order q provided that:

• σ (η) ∈ Cq−1 [−∞,∞]

• σ (0) = 1 and σ (η) = 0, η ≥ 1

• σ(m) (0) = σ(m) (1) = 0,∀m ∈ [1, ..., q − 1]

A commonly used filter is the exponential filter, given by:

σ (η) =

 1 η ≤ ηc

e−α(
η−ηc
1−ηc)

p

η > ηc

(4.1)

Typically α is chosen such that σ (1) = O (εmachine). The filter acts on modes starting

93

at ηc and when ηc = 0, we have:

σ (η) = e−αη
p

. (4.2)

Reconstruction quality in smooth regions can be improved by increasing the power of

the exponential filter, p. Stability is better for smaller p, but filter induced diffusion

extends into low frequency modes with smaller values of p and ηc, as illustrated in

Figure 4.1. Note that by Definition 2 increasing p or ηc requires more Fourier modes,

Tadmor (2007). Thus we see that balancing spectral accuracy with performance leads

to filters that introduce some level of diffusion in otherwise stable modes.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

G
ro

w
th

 F
a

c
to

r

Transport Equation with ∆t such that 1/8 of modes are unstable. Growth Factors v.s. Fourier Modes,ηc=0,p=12

Innately stable modes experiencing filter induced diffusion
Unfiltered Growth Factors
Effective Growth Factors after Filtering

Figure 4.1: The Effect of Filtering on Growth Factors.

4.2 The Proposed Filter

When a solution has small spectral support it is possible that the exact solution is

zero in the unstable modes. Until the solution expands into unstable regions the only

trigger for instabilities is numerical noise. In particular, one often uses the FFT in

94

solving nonlinear problems and round-off errors in the FFT are sufficient to perturb

unstable modes that then grow exponentially, Schatzman (1996).

Consider the following filter:

chop (ûj) =

 ûj |ûj| > λ

0 |ûj| ≤ λ
, λ ≈ 250εMachine (4.3)

The motivation for (4.3) comes from the shrink operator used in l1 regularization

problems and the proposal for solving PDEs by maintaining solution sparsity using

this operator, Schaeffer et al. (2013); Osher and Li (2009). For well scaled and well

posed problems, |ûj| in modes associated with the actual solution will exceed the

threshold and will be unaffected leaving only noise driven modes to be corrected to

zero. Non-linear PDE terms can introduce data in modes that are indistinguishable

from noise, but in practice for well scaled problems these effects are fleeting and

exist at a level many orders of magnitude smaller than the accuracy of the numerical

scheme.

The chop filter thus allows time steps that may exceed the CFL condition without

introducing diffusion; and the solution remains stable as long as its instantaneous

support sits in the stability region of the numerical scheme. Nevertheless, problems

of interest will have support that spends some time in unstable regions. During these

periods (4.3) is not contractive and is completely ineffective at controlling instabilities.

In order to stabilize the solution once the true spectrum expands into the region

of instability a standard filter can be used. A new threshold parameter, τ , can be

compared against the size of the spectral support of the solution to determine whether

the filter should merely chop noise, or chop noise as well as apply an exponential filter.

The resulting hybrid filter maintains stability while minimizing diffusive effects when

spectral support is small.

Algorithm 6 can be optimized substantially. Determination of the size of the spectrum

95

Algorithm 6 Adaptive Filter

1: procedure adaptive filter(û,λ,threshold)

2: for all ûj do

3: if |ûj| < λ then

4: ûj ← 0

5: support← max ({|j| : |ûj| > λ})

6: if support ≥ threshold then

7: for all ûj do

8: ûj ← ûje
−αηp . α, η, p as defined in (4.2)

on line 5 can be found as a side effect of the chop filter on lines 2-4. Other than making

this determination, the chop filter affects each mode independently and can be made

parallel. In addition, the chop operator, (4.3), requires the determination of the

magnitude of a complex number. Numerical tests show that (4.4) is a less expensive

alternative to (4.3) and has no measurable impact on the calculated solution.

chop∗ (ûj) =

 ûj |Re (ûj)|+ |Im (ûj)| > λ∗

0 otherwise
(4.4)

4.3 Numerical Results

In the results that follow we will make use of the following definitions:

Definition 3. Time step acceleration factor, ω: The ratio between the smallest stable

time step size for an unfiltered solution and the smallest stable time step size for the

solution using the adaptive filter.

Definition 4. Enduring relative accuracy, Ψ: The ratio of the accuracy in the so-

lution using only (4.2) vs. algorithm 6 at some time after the solution has become

under-resolved and the accuracy of each method is well established.

96

To demonstrate our new algorithm, we consider the following example:

Example 1.

ut + c (x)ux = 0 (4.5a)

c (x) =
1

2
sin2 (βx) +

1

γ
; u (x, 0) = cos (x) (4.5b)

We used a fourth order Runge-Kutta scheme for time stepping and a spatial dis-

cretization with N Fourier modes.

The form of (4.5) was chosen to help illustrate the effects of the adaptive filter,

Algorithm 6. With properly chosen constants and initial conditions, the solution

starts out stable and well resolved, and then the spectrum grows into the region of

instability and beyond to the region where aliasing can occur.

Table 4.1: Parameter Values and Results at High Resolution.

Equation Parameters Filter Parameters Results

β γ N p λ, chop τ , adaptive ω Ψ

modes power threshold threshold accel. accuracy

2 20 1000 12 5× 10−13 0.96 1.06 10.54

Figure 4.2 shows a comparison of the accuracy using the adaptive filter, Algorithm

6, vs. the exponential filter, (4.2), alone using the equation and filter parameters in

Table 4.1. In the region 0 ≤ t < 2.26 the solution is stable and the spectrum sits in

a region where the value of the exponential filter is essentially one. The two filters

perform identically. In the region 2.26 ≤ t < 2.98, the spectrum has grown to the

point where the solution is still stable and the adaptive filter is only chopping, but

the exponential filter has become diffusive and the accuracy of the solution suffers.

In the region 2.98 ≤ t < 4.76, the adaptive threshold is periodically exceeded and

the adaptive filter must apply diffusion during some time steps. In this region, the

97

exponential filter is continually diffusive and accuracy decreases more rapidly than

with the adaptive filter. Finally in the region 4.76 ≤ t the spectrum sits in the region

of instability and aliasing. The adaptive filter frequently acts like the exponential

filter, but the early accuracy gains persist.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

10
−9

10
−8

10
−7

10
−6

A
b
s
o
lu

te
 A

c
c
u

ra
c
y

Maximum Pointwise Error vs. Time

Adaptive Filter

Exponential Filter

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

2
4
6
8

10
12

R
a
ti
o
 o

f
a
c
c
u
ra

c
ie

s

Time

Figure 4.2: The Effect of the Adaptive Filter on Accuracy Using the Parameters in
Table 4.1.

Figure 4.3 shows the source of this enduring accuracy gain for the results Fig-

ure 4.2. With the strong diffusion of the exponential filter, the spectral support never

grows beyond 75% of the available modes in the numerical solution space. When the

adaptive filter operates as a chop filter, the spectral support grows until it reaches

the adaptive threshold value, τ = .96. At this point the adaptive filter acts as the

exponential filter and further support growth is limited, i.e., the effective resolution

of the method is increased vs. the exponential filter.

98

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

S
o

lu
ti
o

n
 s

u
p

p
o

rt
/n

u
m

e
ri
c
a

l
s
u

p
p

o
rt

 c
a

p
a

c
it
y

Comparison of Support v.s. Time

Adaptive Filter

Exponential Filter

Figure 4.3: The Effective Solution Support for Example 1 as a Function of Time.

Using the parameters in Table 4.2, the problem is solved at a lower resolution and

lower filter power. The results are shown in Figure 4.4. Even though the time step

improvement is better, the lower resolution and smaller adaptive threshold, τ , lead

to marginal accuracy gains. The solution spends very little time in the region where

the adaptive filter chops and the exponential filter is diffusive.

Table 4.2: Parameter Values and Results at Low Resolution.

Equation Parameters Filter Parameters Results

β γ N p λ, chop τ , adaptive ω Ψ

modes power threshold threshold accel. accuracy

1 18 400 8 5× 10−13 0.85 1.68 1.21

The parameters and results in Table 4.3 compare the behavior of the filter at various

spatial resolutions. Such a comparison is difficult. We require that the support of the

true solution spectrum exceeds the capacity of the numerical solution space even for

high resolutions; but at low resolutions the same spectrum causes truncation error

99

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

10
−8

10
−7

10
−6

A
b

s
o

lu
te

 A
c
c
u

ra
c
y

Maximum Pointwise Error vs. Time

Adaptive Filter

Exponential Filter

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

R
a

ti
o

 o
f

a
c
c
u

ra
c
ie

s

Time

Figure 4.4: The Effect of the Adaptive Filter on Solution Accuracy Using the Pa-
rameters in Table 4.2.

to dominate. To achieve a balance we use the same equation for all resolutions, but

compare the results at the moment when the support of the true solution is 1.75

times the maximum support resolved by the numerical solution space. Additionally,

time step sizes that are unstable at high resolutions become stable at low resolutions

eliminating the need for filtering. So, to produce a reasonable comparison the time

step size needs to be dependent on spatial resolution. We use:

∆t = α∆texponential + α∆tstable (4.6)

Where ∆texponential is the smallest stable time step using the exponential filter and

∆tstable is the smallest stable time step with no filtering. We set α to 0.9 which

achieves nearly the time step gains of the exponential filter (4.2), but provides room

100

Table 4.3: Comparison of Results Using Different Resolutions at Filter Power, p =
12.

N ∆t p ω Ψ ‖u− uadaptive‖∞
Modes Time Step Power Acceleration Accuracy Error

256 0.0317 12 1.43 2.52 2.56e-5

512 0.0154 12 1.45 4.53 3.657e-5

768 0.0104 12 1.47 4.70 6.39e-5

1024 0.0077 12 1.47 5.35 9.54e-5

for accuracy gains from the adaptive filter 6. For the following tests we use:

c (x) =
1

2

(
sin2 (x) +

3

2
sin2 (2x)

)
+

1

20
(4.7)

with the chop threshold, λ: 5× 10−13 and the adaptive filter threshold, τ : 0.98

We see a modest improvement in accuracy between the adaptive filter and the ex-

ponential filter. The ratio gets better as the resolution grows, because the solution

spends more time in the region where the adaptive filter can operate without the

exponential filter. Contrary to what is normally expected, the absolute accuracy of

the solution does not improve with better resolution. This is not a failure of the

technique, but instead a consequence of the tests being designed to have a consistent

portion of true solution support in the numerical solution space when measurements

are made. The same test is performed in Table 4.4, but with lower filter power. With

the lower power, larger time steps are possible, but there is also more diffusion; and

the adaptive filter’s accuracy improves compared to the exponential filter.

Similar numerical tests were also performed on Burger’s equation and the KDV

equation, showing modest accuracy improvements as well.

101

Table 4.4: Comparison of Results Using Different Resolutions at Filter Power, p = 8.

N ∆t p ω Ψ ‖u− uadaptive‖∞
Modes Time Step Power Acceleration Accuracy Error

256 0.0359 8 1.65 4.56 0.0003

512 0.0179 8 1.71 7.08 0.0005

768 0.0120 8 1.71 8.36 0.0008

1024 0.009 8 1.73 9.40 0.0011

4.4 Conclusion

The accuracy gains achieved with the adaptive filter are highly dependent on the

PDE being solved and the particular parameters that are chosen as well as the degree

to which the CFL condition is exceeded. Certain configurations result in very small

accuracy gains. Nonetheless, in all numerical tests that were performed the adaptive

filter with stability maintaining parameters outperformed the exponential filter alone.

The computational and development costs of the adaptive filter are negligible, making

it a simple addition to standard filtering techniques. With the current algorithm, the

choice of the adaptive threshold parameter, τ , is left to the implementer. Maximum

accuracy gains occur when this parameter is just below the first unstable mode.

Future versions of this algorithm could determine the proper value for the parameter

by analyzing the growth factors for the equation in question dynamically.

102

Chapter 5

CONCLUSION

The overarching conclusion of this work is that adding sparsity promoting opera-

tions to high-order numerical techniques can increase accuracy and reliability when

only a subset of the required basis coefficients is available in a numerical solution or

when source data samples are corrupted by noise. High-order techniques provide the

foundation for accurately approximating smooth regions. The addition of sparsity

promoting regularization helps to selectively eliminate high frequency artifacts and

corruptions to low frequency coefficients that degrade piecewise smooth solutions.

The attempt to add a wavelet reprojection step, (2.8), to the regularization tech-

nique, (2.4), described in Archibald et al. (2015), resulted in a solution that was more

robust with respect to the selection of the regularization parameter, λ, but this ro-

bustness was limited and came at the cost of reduced accuracy in the neighborhood of

edges. The Blow subset of D2 wavelet basis fundamentally lacks the ability to resolve

discontinuities. Various attempts were made to extend the basis with selected ele-

ments of the Bhigh set, but there was a trade-off between being able to resolve edges

and the suppression of Gibbs oscillations near these edges. Other extensions to the

method were considered, but the difference in accuracy of the wavelet based recon-

struction in smooth regions was not substantial enough to warrant further research.

Nonetheless, the investigation was valuable, not only because it reaffirmed the

effectiveness (2.4), but also because it provided insight into the behavior of (2.4) in

the neighborhood of edges as well as smooth regions in the presence of noise and

sub-sampling. This insight helped direct the development of the variance based edge

recovery techniques. Another important development coming from the work is the

103

concept of an innate equality constraint in a minimization problem that seeks a

solution from a class of functions defined by the subspace of a basis, i.e. by using

the wavelet subspace, we force the solution to be in the class functions containing

polynomials in smooth regions as opposed to only promoting this requirement through

penalty terms as in Bredies et al. (2010).

The recovery of edges using variance is a promising technique. Concentration

factor based methods are very successful at detecting true edges, but suffer from

false edge detections. The addition of a variance based algorithm helps to remove

many of the falsely detected edges, especially those that are far away from true edges.

Treatments based on subsets of the original samples are a natural approach, but

other treatments may enhance the algorithm further, especially in addressing the

false negative detection errors seen in the results.

The method for reducing time stepping constraints when solving time-dependent

hyperbolic PDEs was inspired by an approach based on regularization similar to (2.3)

being applied at each time step in the numerical solution. That method was slow,

because the added regularization required solving a non-trivial minimization prob-

lem at each time step. The added regularization also introduced bias error, which

impacted the numerical solution in a manner similar to added diffusion. The modifi-

cation involving only the shrink operator removed the `2 term from the regularization

and therefore had minimal performance impact. It nonetheless had the effect of con-

trolling numerical noise in unstable modes. The class of equations compatible with

the adaptive filter is naturally limited, but when applicable, the filter provides real

gains at almost no cost.

104

REFERENCES

SAR image formation toolbox for MATLAB, vol. 7699 (2010), URL
http://dx.doi.org/10.1117/12.855375.

Archibald, R., A. Gelb and R. B. Platte, “Image reconstruction from undersampled
fourier data using the polynomial annihilation transform”, Journal of Scientific
Computing pp. 1–21, URL http://dx.doi.org/10.1007/s10915-015-0088-2
(2015).

Archibald, R., A. Gelb and J. Yoon, “Polynomial fitting for edge detection in irregu-
larly sampled signals and images”, SIAM J. Numer. Anal. 43, 1, 259–279 (2005).

Bredies, K., K. Kunisch and T. Pock, “Total generalized variation”, SIAM J. Imaging
Sci. 3, 3, 492–526 (2010).

Byrne, C. L., “Proximal minimization with bregman distances and the goldstein-osher
algorithm for constrained optimization”, (2015).

Candès, E. J., J. Romberg and T. Tao, “Robust uncertainty principles: Exact sig-
nal reconstruction from highly incomplete frequency information”, IEEE Trans.
Inform. Theory 52, 489–509 (2006).

Chen, S. S., D. L. Donoho and M. A. Saunders, “Atomic decom-
position by basis pursuit”, SIAM Rev. 43, 1, 129–159, URL
http://dx.doi.org/10.1137/S003614450037906X (2001).

Cheney, M. and B. Borden, Fundamentals of Radar Imaging (So-
ciety for Industrial and Applied Mathematics, 2009), URL
http://epubs.siam.org/doi/abs/10.1137/1.9780898719291.

Daubechies, I., Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference
Series in Applied Mathematics (Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1992).

Daubechies, I., “Orthonormal bases of compactly supported wavelets”, (1993).

Fan, J. and R. Mead, An l1 Regularization Algorithm for Reconstructing Piecewise
Smooth Functions from Fourier Data Using Wavelet Projection, Undergraduate
honors thesis, Arizona State University (2015).

Frazier, M. W., An Introduction to Wavelets Through Linear Algebra (Springer, 2001).

Gelb, A. and E. Tadmor, “Detection of edges in spectral data”, Appl. Comp. Har-
monic Anal. 7, 101–135 (1999).

Gelb, A. and E. Tadmor, “Enhanced spectral viscosity approximations for
conservation laws”, Applied Numerical Mathematics 33, 1-4, 3–21, URL
http://dx.doi.org/10.1016/S0168-9274(99)00067-7 (2000).

105

Gelb, A. and E. Tadmor, “Adaptive edge detectors for piecewise smooth data based
on the minmod limiter”, J. Sci. Comput. 28, 2-3, 279–306 (2006).

Goldstein, T. and S. Osher, “The split bregman method for l1-
regularized problems”, SIAM J. Imaging Sci. 2, 2, 323–343, URL
http://dx.doi.org/10.1137/080725891 (2009).

Guerquin-Kern, M., L. Lejeune, K. P. Pruessmann and M. Unser, “Realistic analytical
phantoms for parallel magnetic resonance imaging”, IEEE Transactions on Medical
Imaging 31, 3, 626–636, URL http://dx.doi.org/10.1109/TMI.2011.2174158
(2012).

Hesthaven, J. S., S. Gottlieb and D. Gottlieb, Spectral methods for time-
dependent problems, Cambridge Monographs on Applied and Com-
putational Mathematics (Cambridge University Press, 2007), URL
http://dx.doi.org/10.1017/CBO9780511618352.

Ilievska, E. S. and Z. A. Ivanovski, “Customized k-space trajectory for compressed
sensing mri”, in “Telecommunications Forum (TELFOR), 2011 19th”, pp. 631–634
(2011).

Kirby, R. M., M. Berzins and J. S. Hesthaven, eds., Spectral and High Order Meth-
ods for Partial Differential Equations ICOSAHOM 2014 (Springer International
Publishing, 2015), URL http://dx.doi.org/10.1007/978-3-319-19800-2.

LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (Cambridge Univer-
sity Press, 2002).

Li, Y., R. Yang, C. Zhang, J. Zhang, S. Jia and Z. Zhou, “Analysis of generalized
rosette trajectory for compressed sensing mri”, Medical Physics 42, 9, 5530–5544
(2015).

Lustig, M., D. Donoho and J. M. Pauly, “Sparse mri: The application of com-
pressed sensing for rapid mr imaging”, Magn. Reson. Med. 58, 6, 1182–1195, URL
http://dx.doi.org/10.1002/mrm.21391 (2007).

Martinez, A., A. Gelb and A. Gutierrez, “Edge detection from non-uniform fourier
data using the convolutional gridding algorithm”, J. Sci. Comput. 61, 3, 490–512
(2014).

Osher, S., M. Burger, D. Goldfarb, J. Xu and W. Yin, “An iterative regularization
method for total variation-based image restoration”, Multiscale Model. Simul. 4,
2, 460–489, URL http://epubs.siam.org/doi/abs/10.1137/040605412 (2005).

Osher, S. and Y. Li, “Coordinate descent optimization for `1 minimization with appli-
cation to compressed sensing; a greedy algorithm”, Inverse Problems and Imaging
3, 3, 487–503, URL http://dx.doi.org/10.3934/ipi.2009.3.487 (2009).

Petersen, A., A. Gelb and R. Eubank, “Hypothesis testing for fourier based edge
detection methods”, J. Sci. Comput. 51, 608–630 (2012).

106

Pipe, J. G., “Motion correction with propeller mri: application to head motion and
free-breathing cardiac imaging”, (1999a).

Pipe, J. G., “Motion correction with propeller mri: application to head motion and
free-breathing cardiac imaging”, in “Magn Reson Med.;42:963?9”, (1999b).

Reddy, S. C. and L. N. Trefethen, “Stability of the method of lines”, Numer. Math.
62, 1, 235–267, URL http://dx.doi.org/10.1007/BF01396228 (1992).

Richards, M., J. Scheer, J. Scheer and W. Holm, Principles of modern radar, no. v.
1 in Principles of Modern Radar (SciTech Publishing, Incorporated, 2010), URL
https://books.google.com/books?id=nD7tGAAACAAJ.

Rudin, L., S. Osher and E. Fatemi, “Nonlinear total variation based noise removal
algorithms”, Phys. D 60, 259–268 (1992).

Schaeffer, H., R. Caflisch, C. D. Hauck and S. Osher, “Sparse dynamics for partial
differential equations”, Proceedings of the National Academy of Sciences 110, 17,
6634–6639, URL http://dx.doi.org/10.1073/pnas.1302752110 (2013).

Schatzman, J. C., “Accuracy of the discrete Fourier transform and the
fast Fourier transform”, SIAM J. Sci. Comput. 17, 5, 1150–1166, URL
http://dx.doi.org/10.1137/S1064827593247023 (1996).

Setzer, S., “Operator splittings, bregman methods and frame shrinkage in im-
age processing”, International Journal of Computer Vision 92, 3, 265–280, URL
http://dx.doi.org/10.1007/s11263-010-0357-3 (2010).

Shor, N. Z., Minimization Methods for Non-Differentiable Functions (Springer Berlin
Heidelberg, 1985), URL http://dx.doi.org/10.1007/978-3-642-82118-9.

Stefan, W., R. Renaut and A. Gelb, “Improved total variation type regularizations
using higher order edge detectors”, SIAM J. Imaging Sci. 3, 2, 232–2516 (2010).

Stefan, W., A. Viswanathan, A. Gelb and R. Renaut, “Sparsity enforcing edge detec-
tion method for blurred and noisy Fourier data”, J. Sci. Comput. 50, 3, 536–556,
URL http://dx.doi.org/10.1007/s10915-011-9536-9 (2012).

Tadmor, E., “Filters, mollifiers and the computation of the Gibbs phenomenon”, Acta
Numer. 16, 305–378, URL http://dx.doi.org/10.1017/S0962492906320016
(2007).

Wasserman, G., R. Archibald and A. Gelb, “Image reconstruction from Fourier data
using sparsity of edges”, J. Sci. Comput., to appear (2015).

Yan, H., Signal processing for magnetic resonance imaging and spectroscopy, vol. 15
(CRC Press, 2002).

Yin, W., S. Osher, D. Goldfarb and J. Darbon, “Bregman iterative algorithms for
l1-minimization with applications to compressed sensing”, SIAM J. Imaging Sci. 1,
143–168 (2008).

107

Zuo, J., E. G. Walsh, G. Deutsch and D. B. Twieg, “Rapid mapping of flow velocity
using a new parse method”, Magnetic Resonance in Medicine 55, 1, 147–152, URL
http://dx.doi.org/10.1002/mrm.20750 (2006).

108

APPENDIX A

THE WAVELET BASIS

109

Wavelets are characterized by their ability to form an orthogonal basis with localiza-
tion in space and frequency. For the continuous wavelets, individual basis elements are
dilations and translations of a single mother wavelet, ψ. In the case of the Daubechies
Wavelets, each family has a predetermined number of vanishing moments. We now
discuss the discrete Daubechies Wavelets as used in (2.5) following the formulation
in Frazier (2001).

A.1 Motivation

We assume that vectors are real of length N such that N = 2p, p ∈ N\ {0}. They
will be extended periodically with period N so as to be indexed by the integers, with
~vj = ~vj+N . We introduce several operators to facilitate this explanation

Definition 5 (The conjugate reflection operator). The discrete conjugate reflection
operator is defined by equation (A.1) and has the effect of reversing the order of
elements in the vector and shifting such that the first element remains in place. This
reversal is followed by the element-wise complex conjugate.

(C~v)j = ~v2−j (A.1)

Definition 6 (The discrete translation operator). The discrete translation operator
is defined by equation (A.2) and has the effect of shifting the indices of the vector by k
elements. Shifting by negative values is equivalent to shifting in the opposite direction.

(Rk~v)j = ~vj−k (A.2)

The convolution operator can then be expressed in terms of the discrete translation
operator, conjugate reflection and the inner product. I.e.

(~u ∗ C~v)k = 〈~u,Rk−1~v〉 (A.3a)

(~u ∗ ~v)k = 〈~u,Rk−1C~v〉 (A.3b)

Definition 7 (The down-sampling operator). The down-sampling operator is defined
by equation (A.4) and has the effect of producing a vector of length N

2
composed of

the odd elements of its argument.

(D~v)j = ~v2(j−1)+1 (A.4)

The notation Dp will mean p applications of the down-sampling operator.

Definition 8 (The up-sampling operator). The up-sampling operator is defined by
equation (A.5) and has the effect of producing a vector of length 2N with odd elements
being provided by its argument and even elements being 0.

(U~v)j =

{
~v j−1

2
+1 j odd

0 j even
(A.5)

The notation Up will mean p applications of the up-sampling operator. Also the com-
position UD~v has the effect of zeroing the even elements of ~v.

110

As the starting point for the wavelets, we note that an orthonormal basis formed
by the translations of a single basis element will fail to be localized in frequency,
leading us to a basis formed by two elements. The wavelet construction therefore
seeks to form an orthonormal set by using two vectors ~u and ~v as well as their even
translations.

W := {R2k~u}
N
2
−1

k=0 ∪ {R2k~v}
N
2
−1

k=0

The admissibility requirements that two vectors ~u and ~v, which will be referred to as
seeds, and their even translates form an orthonormal set are given by

|ûk|2 +
∣∣ûk+N/2

∣∣2 = 2 (A.6a)

|v̂k|2 +
∣∣v̂k+N/2

∣∣2 = 2 (A.6b)

ûj v̂j + ûj+N
2
v̂j+N

2
= 0. (A.6c)

A.2 The Discrete Wavelet Basis

Assuming that one seed vector ~u has been provided and the mean of the elements
of ~u is non-zero, the second seed ~v can be found as

~vj = (−1)|j|~u2−j. (A.7)

For the sake of generality, we will define ũ and ṽ as the duals of ~u and ~v respectively
such that

〈~uj, ũk〉 = δkj , 〈~vj, ṽk〉 = δkj .

The vectors ~u and ~v as well as their even translations form an analysis basis and
ũ and ṽ with their even translations form a synthesis basis. Any vector ~z can be
reconstructed with the following decomposition

~z =

N
2
−1∑

k=0

〈~z,R2k~v〉R2kṽ+

N
2
−1∑

k=0

〈~z,R2k~u〉R2kũ. (A.8)

In the restricted case of the orthogonal wavelets ũ = ~u and ṽ = ~v. Using (A.3a) and
(A.3b), we find that (A.8) is equivalent to

~z = ṽ ∗ U (D (~z ∗ C~v)) + ũ ∗ U (D (~z ∗ C~u)) . (A.9)

A.2.1 Multi-resolution Analysis

We will call the reconstruction, (A.9), S. Noting that D (~z ∗ C~u) is a vector of
length N

2
, it too can be decomposed using S thus

S (z) = ṽ ∗ U (D (~z ∗ C~v)) + ũ ∗ U (S (D (~z ∗ C~u))) (A.10)

Such nesting can occur recursively with S operating on ever smaller vectors. We let

~z1 = z

111

~zj = D (~zj−1 ∗ C~u)

so
S (zj) = ṽ ∗ U (D (~zj ∗ C~v)) + ũ ∗ U (S (~zj+1)) . (A.11)

This process establishes a so-called Multi-Resolution Analysis with the multi-scale
properties of the continuous wavelets. The reconstruction, (A.9) uses convolutions,
which can be calculated using the FFT and the successive decompositions in (A.11)
operate on ever smaller vectors forming a convergent geometric series; thus, MRAs
operate with O (N log2N) performance similar to the FFT.

A.2.2 Wavelet Basis Formation

The MRA described in (A.11) performs well, but this formulation is incompatible
with software requiring an explicit linear operator and it is difficult to analyze. We
therefore seek a set of basis vectors allowing for a pair of linear transformations that

are equivalent to (A.11). We define the sets of vectors ~φj,k, ~ψj,k and associated duals

φ̃j,k, ψ̃j,k where j represents a stage and k represents a translation such that

~ψj,k = R2j−1(k−1)
~ψj,1 k = 1 · · · N

2j−1

We let
~ψ1,1 = ~v, ψ̃1,1 = ṽ, ~φ1,1 = ~u, φ̃1,1 = ũ

To direct us to the form of the elements in the bases, we expand the recursion (A.11)
by one step.

~z = ṽ ∗ U (D (~z ∗ C~v)) + ũ ∗ U (ṽ ∗ U (D (D (~z ∗ C~u) ∗ C~v)) + ũ ∗ U (D (S (D (~z ∗ C~u)) ∗ C~u)))

Then by linearity

~z = ṽ ∗ U (D (~z ∗ C~v)) + ũ ∗ U (ṽ ∗ U (D (D (~z ∗ C~u) ∗ C~v))) + ũ ∗ U (ũ ∗ U (D (S (D (~z ∗ C~u)) ∗ C~u)))

We seek a form

~z = ψ̃1,1 ∗ U
(
D
(
~z ∗ C ~ψ1,1

))
+ ψ̃2,1 ∗ U

(
D
(
~z ∗ C ~ψ2,1

))
+ · · ·+

ψ̃log2N,1 ∗ U
(
D
(
~z ∗ C ~ψlog2N,1

))
+ φ̃log2N,1 ∗ U

(
D
(
~z ∗ C~φlog2N,1

)) (A.12)

This is accomplished by letting

~ψj+1,1 = ~φj,1∗U j
(
~ψ1,1

)
, ~φj+1,1 = ~φj,1∗U j

(
~φ1,1

)
, ψ̃j+1,1 = φ̃j,1∗U j

(
ψ̃1,1

)
, φ̃j+1,1 = φ̃j,1∗U j

(
φ̃1,k

)
(A.13)

A.3 The Daubechies Wavelets

To satisfy the admissibility requirements (A.6a), the Daubechies Wavelets employ
powers of the well known trigonometric identity.

cos2θ + sin2θ = 1

112

The Daubechies Wavelets form families, ’DK’, where K represents the number of
vanishing moments in the corresponding wavelet, Daubechies (1992, 1993). Also, 2K
is the number of non-zero entries in the seed vector ~u. We let k = 2K − 1. Consider
the polynomial (

cos2 jπ

N
+ sin2 jπ

N

)k
= 1

evaluated at N points jπ
N
, j = 0 · · ·N − 1, where N is the defined as in Section A.1.

We expand the polynomial using the binomial theorem(
cos2 jπ

N
+ sin2 jπ

N

)k
=

k∑
m=0

(
k
m

)(
cos

(
jπ

N

))2m(
sin

(
jπ

N

))2(k−m)

= 1 (A.14)

With k being odd, the number of terms in (A.14) is even. We isolate and label the
first half of the terms (A.14). Let

b (j) =

k−1
2∑

m=0

(
k
m

)(
cos

(
jπ

N

))2m(
sin

(
jπ

N

))2(k−m)

We use the fact that there is π
2

phase difference between sin and cos.

cos

((
j + N

2

)
π

N

)
= − sin

(
jπ

N

)
, sin

((
j + N

2

)
π

N

)
= cos

(
jπ

N

)
Thus, the second half of the terms in (A.14) can be expressed as

b

(
j +

N

2

)
=

k∑
k−1
2

=0

(
k
m

)(
cos

(
jπ

N

))2m(
sin

(
jπ

N

))2(k−m)

Thus,

b (j) + b

(
j +

N

2

)
= 1

If we choose
|û (j)|2 = 2b (j) (A.15)

then ∣∣∣∣û(j +
N

2

)∣∣∣∣2 = 2b

(
j +

N

2

)
and |û (j)|2 +

∣∣∣∣û(j +
N

2

)∣∣∣∣2 = 2

as required by the admissibility condition (A.6a).

With
∣∣eiφû (j)

∣∣ = |û (j)|, we are left with free phase parameters for all of the Fourier
coefficients and need to choose these phase parameters such that the physical space
support of the wavelets is minimized. This can be found analytically. Alternatively,

113

we use knowledge of the support location to establish a system of equations using the
discrete Fourier transform.

ûj =
k+1∑
m=1

ume
−2πi(m−1)(j−1)

N (A.16)

Thus the scaling function seed, ~u, has been generated and ~v can be found by (A.7).

114

APPENDIX B

THE SPLIT BREGMAN ALGORITHM

115

B.1 Introduction

We examine the Split-Bregman algorithm for solving regularization problems of
the form:

argmin
~u

(∥∥∥A~u−~b∥∥∥
2

+ µ‖E~u‖1

)
(B.1)

This algorithm is able to solve a more general class of problem:

argmin
~u

‖Φ (~u)‖1 +H (~u) (B.2)

where ‖Φ (u)‖1, H (u) are convex, min
u
H (u) = 0, and H (u) ,Φ (u) are differentiable.

Below are outlines of the Generalized Split-Bregman Algorithm, Algorithm 7,
and its antecedent, Algorithm 8. Each major component will be examined in detail
following discussions in Goldstein and Osher (2009); Yin et al. (2008).

Algorithm 7 Generalized Split Bregman Algorithm

1: while convergence criterion not met do
2: for n = 1 to N do . A small number of interior iterations
3: uk+1 = argmin

u
H (u) + λ

2

∥∥dk − Φ (u)− bk
∥∥2

2

4: dk+1 = argmin
d
‖d‖1 + λ

2

∥∥d− Φ
(
uk+1

)
− bk

∥∥2

2

5: bk+1 = bk +
(
Φ
(
uk+1

)
− dk+1

)
6: k = k + 1

Algorithm 8 Split Bregman without Feedback

1: while
∥∥uk − uk−1

∥∥
2
> tol do

2: uk+1 := argmin
u

Eu
(
u, dk

)
− pku

(
uk, dk

)
·
(
u− uk

)
+ λ

2

∥∥dk − Φ (u)
∥∥2

2

3: dk+1 := argmin
d

Ed
(
uk, d

)
− pkd

(
uk, dk

)
·
(
d− dk

)
+ λ

2
‖d− Φ (uk)‖2

2

4: pk+1
u = pku + λ∇Φ

(
dk+1 − Φ

(
uk+1

))
5: pk+1

d = pkd − λ
(
dk+1 − Φ

(
uk+1

))
6: k = k + 1

B.2 Splitting

First, we examine the “Split” in Split-Bregman which leads to the variable, d, in
lines 3 and 4 in Algorithm 7. Problems such as (B.2) have a mixture of terms using
the 1-norm and the 2-norm. For example, H may represent a least squares fidelity

term, as in
∥∥∥A~u−~b∥∥∥

2
from (B.1); and Φ might represent a gradient leading to a total

variation regularization term. The mixed norms and the lack of differentiability for
the 1-norm make the general problem, (B.2), difficult to solve. Nonetheless, there are

116

known fast techniques for solving simpler problems, namely the conjugate gradient
method for solving convex problems involving strictly 2-norms and shrinkage or soft
thresholding for solving a class of problem typically referred to as Basis Pursuit, Chen
et al. (2001), and is given by,

argmin
~u

‖~u‖1 subject to A~u = ~b (B.3)

We discuss the solution to this sub-problem later, but the first step is to transform
(B.2) so that the Basis Pursuit solution can be used.

We simplify the 1-norm term and convert (B.2) into a constrained optimization

problem by letting ~d = Φ (~u).

argmin
~u,~d

∥∥∥~d∥∥∥
1

+H (~u) subject to ~d = Φ (~u) (B.4)

This constrained optimization problem is difficult as well, so we attempt to solve it as
an unconstrained problem, penalizing any departure from the constraint. We create
a new convex and differentiable term representing the error in the constraint

λ

2
‖d− Φ (~u)‖2

2 (B.5)

This is then added to the objective function to remove the constraint, yielding

argmin
~u,~d

∥∥∥~d∥∥∥
1

+H (~u) +
λ

2
‖d− Φ (~u)‖2

2 (B.6)

Remark. It is important to note for the explanation that follows, in this regularized
form, d no longer has an explicit dependence on u and is allowed to move freely.

The left two terms of (B.6) represent the original objective function that we are

trying to minimize. We let E
(
~u, ~d
)

=
∥∥∥~d∥∥∥

1
+H (~u), so (B.6) becomes

argmin
~u,~d

E
(
~u, ~d
)

+
λ

2

∥∥∥~d− Φ (~u)
∥∥∥2

2
(B.7)

We now introduce the Bregman distance as a means to solve (B.7).

B.2.1 The Bregman Distance

We begin by defining the Bregman distance for differentiable functions and then
generalize it to non-differentiable functions.

Definition 9 (The Bregman distance for differentiable functions). Let f be a convex,
differentiable function. The Bregman distance is defined as

Df (~v, ~u) = f (~v)− (f (~u) + (∇f) (~u) · (~v − ~u)) (B.8)

117

Interpreting (B.8), we have f (~v) minus the linear approximation to f(~v) using
the value and gradient at ~u. This is not a true metric, since it violates symmetry
and the triangle inequality; but it is positive semi-definite for convex functions. Also,
the Bregman distance will decrease monotonically as ~v approaches ~u along the line
between them.

We now introduce the sub-gradient and sub-differential.

Definition 10 (The subgradient). Let f : RN → R be convex. A subgradient at a
point ~x0 is a vector ~v such that:

f (~x)− f (~x0) > ~v · (~x− ~x0) , ∀~x ∈ RN

Following the convention standard in the imaging community we will use ~px(~x0)
to denote the subgradient at ~x0. If f is differentiable then the subgradient takes on
a single value at all points ~x0. On the other hand, if f is not differentiable then it is
possible to have a set of subgradients at points lacking differentiability.

Definition 11 (The subdifferential). Let f : RN → R be convex. The subdifferential
of f at ~x0 is a set valued function:

(∂f)(~x0) := {v : f (~x)− f (~x0) > ~v · (~x− ~x0)}
In one dimension, the subdifferential of f at a point x0, ∂f (x0), is the set of all

slopes such that no line passing through ~x0 crosses f , although tangency is allowed.
If f is convex then 0 ∈ ∂f (~x0) if f has a minimum at x0. This is illustrated in Figure
B.1.

Since ‖d‖1 is not differentiable in (B.7), we use the subgradient with the following
Bregman distance:

Definition 12 (The Bregman distance for non-differentiable functions). Let f :
RN → R be convex and let ~pu be the subgradient as defined in Definition 10, then
the Bregman Distance is defined as

Dp
f (~v, ~u0) = f (~v)− (f (~u0) + ~pu (~u0) · (~v − ~u0)) (B.9)

B.2.2 The Iterative Solution

In order to solve the mixed norm problem, (B.6), iteratively, we split (B.7) into a
minimization for u and d and set up an iteration by defining two separate functionals:

Eu (~u) = H (~u) (B.10a)

Ed

(
~d
)

=
∥∥∥~d∥∥∥

1
(B.10b)

We solve these functionals independently while still respecting the constraint. A
single iteration, k, of the solution to (B.7) is therefore

~uk+1 := argmin
~u

Eu (~u) +
λ

2

∥∥∥~dk − Φ (~u)
∥∥∥2

2
(B.11a)

~dk+1 := argmin
~d

Ed

(
~d
)

+
λ

2

∥∥∥~d− Φ
(
~uk+1

)∥∥∥2

2
(B.11b)

118

−5 −4 −3 −2 −1 0 1 2 3 4 5
−20

0

20

40

60

80

100

120

140

160

180

Subderivative is a
single line

Subderivative is a set, but because this point is an
extremum. The set includes dy/dx=0 line

Figure B.1: The Subdifferentials at Differentiable and Non-differentiable Points in
One Dimension.

We justify this splitting by showing that an iteration which is contractive for both
(B.11a) and (B.11b) will be contractive for (B.7) as well. Note that (B.10a) has no

dependence on ~d and as noted earlier, ~d has no direct dependence on ~u. Thus, after
an application of (B.11a) we have

H
(
~uk+1

)
+
λ

2

∥∥∥~dk − Φ
(
~uk+1

)∥∥∥2

2
6 H

(
~uk
)

+
λ

2

∥∥∥~dk − Φ
(
~uk
)∥∥∥2

2

for all possible ~uk. Moreover, since ~dk is held fixed,
∥∥∥~dk∥∥∥

1
is unchanged and thus the

functional in (B.6) cannot grow.∥∥∥~dk∥∥∥
1

+H
(
~uk+1

)
+
λ

2

∥∥dk − Φ
(
~uk+1

)∥∥2

2
6
∥∥∥~dk∥∥∥

1
+H

(
~uk
)

+
λ

2

∥∥dk − Φ
(
~uk
)∥∥2

2

The identical argument holds for (B.11b). Thus we have a contraction for (B.6).
While (B.11a) and (B.11b) could be solved by gradient descent using the subgradi-

ent, such techniques are slow to converge with convergence rate O
(

1√
k

)
, Shor (1985).

A more efficient method is to use the Bregman distance as defined in Definition 12 to
establish a proximal minimization algorithm Byrne (2015). Thus we replace Eu and
Ed in (B.11a) and (B.11b) with their associated Bregman distances to obtain

Dpu
Eu

(
~u, ~uk

)
= Eu (~u)−

(
Eu
(
~uk
)

+ ~pku
(
~uk
)
·
(
~u− ~uk

))
(B.12a)

Dpd
Ed

(
~d, ~dk

)
= Ed

(
~d
)
−
(
Ed

(
~dk
)

+ ~pkd

(
~dk
)
·
(
~d− ~dk

))
(B.12b)

119

In (B.12a) we evaluate along the ~u, ~uk line holding ~dk fixed and conversely for (B.12b).

Since we are solving a minimization problem, Eu
(
~uk
)
, Ed

(
~dk
)

represent uniform

vertical shifts in the surfaces and are irrelevant to the minimization. Combining
(B.12a), (B.12b), (B.11a) and (B.11b) therefore yields

~uk+1 := argmin
~u

Eu (~u)− ~pku
(
~uk
)
·
(
~u− ~uk

)
+
λ

2

∥∥∥~dk − Φ (~u)
∥∥∥2

2
(B.13a)

~dk+1 := argmin
~d

Ed

(
~d
)
− ~pkd

(
~dk
)
·
(
~d− ~dk

)
+
λ

2

∥∥∥~d− Φ (~uk)
∥∥∥2

2
(B.13b)

Determining the Subgradients

In (B.13a) and (B.13b) we assume the subgradients ~pku, ~p
k
d are known. We now develop

a method for determining them. Recall from Definition 11 that at an extremum, 0
is a member of the subdifferential. Thus, since ~uk+1 solves (B.13a), 0 is a member
of the subdifferential of the objective function in (B.13a) when evaluated at ~uk+1.
Similarly, 0 is a member of the subdifferential of the objective function in (B.13b)

when evaluated at ~dk+1.
Finally, by (B.12a), (B.12b) and Definition 12 we have

~pk+1
u ∈ (∂Eu)

(
~uk+1

)
and ~pk+1

d ∈ (∂Ed)
(
~dk+1

)
(B.14)

Differentiating (B.13a) and applying the argument above implies

0 ∈ ∂~u
(
Eu (~u)− ~pku

(
~uk
)
·
(
~u− ~uk

)
+
λ

2

∥∥∥~dk − Φ (~u)
∥∥∥2

2

) ∣∣∣∣ ~u = ~uk+1

which leads to

0 = ~pk+1
u

(
~uk+1

)
+ ∂~u

(
−~pku

(
~uk
)
·
(
~u− ~uk

)
+
λ

2

∥∥∥~dk − Φ (~u)
∥∥∥2

2

) ∣∣∣∣ ~u = ~uk+1

when solving for 0 and using (B.14). Note that ∂ represents a sub-gradient in

this context. Next, observing that ~uk and ~dk are constants and ∂
(
~pku
(
~uk
)
· ~u
)

=∑
j

∂
∂~uj

(
~pku
(
~uk
))
j
~uj =~pku

(
~uk
)
, we have

0 = ~pk+1
u

(
~uk+1

)
− ~pku

(
~uk
)

+ λ (∇Φ)
(
~uk+1

) (
~dk − Φ

(
~uk+1

))
or equivalently

~pk+1
u

(
~uk+1

)
= ~pku

(
~uk
)
− λ (∇Φ)

(
~uk+1

) (
~dk − Φ

(
~uk+1

))
(B.15)

A similar construction for the (B.13b) yields

~pk+1
d

(
~dk+1

)
= ~pkd

(
~dk
)
− λ

(
~dk+1 − Φ

(
~uk+1

))
(B.16)

120

The basis for Algorithm 8 can then be obtained by combining (B.13a), (B.13b),
(B.15), and (B.16) as

uk+1 := argmin
u

Eu
(
u, dk

)
− pku

(
uk, dk

)
·
(
u− uk

)
+
λ

2

∥∥dk − Φ (u)
∥∥2
2

(B.17a)

dk+1 := argmin
d

Ed
(
uk, d

)
− pkd

(
uk, dk

)
·
(
d− dk

)
+
λ

2
‖d− Φ (uk)‖22 (B.17b)

pk+1
u = pku

(
~uk+1

)
+ λ (∇Φ)

(
dk+1 − Φ

(
uk+1

))
(B.17c)

pk+1
d = pkd

(
~dk+1

)
− λ

(
dk+1 − Φ

(
uk+1

))
(B.17d)

B.3 Adding Feedback to Simplify the Iteration

We now examine the evolution of Algorithm 8 to Algorithm 7. The idea of modi-
fying b in line 5 of Algorithm 7 is often referred to as “adding the noise back into the
iteration”. This characterization was first used when solving a very specific problem,
Total Variation Denoising or Rudin-Osher-Fatemi (ROF) Denoising given by (B.18),
Osher et al. (2005). In the more general context of solving (B.2), the technique fa-
cilitates convergence in an analogous way, Goldstein and Osher (2009), but the b
term may or may not represent noise in the solution. In the context of (B.2) b is
representative of errors in the constraint term (B.5) during prior iterations.

To understand the source of the phrase “adding the noise back into the iteration”
we look at the ROF algorithm in detail. The minimization problem for ROF denoising
is given by

c = argmin
~u

‖u‖BV + µ ‖m− u‖2
2 (B.18)

where c is a noise reduced image, m is a measured, noisy source image, µ is a regu-
larization parameter and BV is the bounded variation,

‖u‖BV =

∫
|∇u| (B.19)

The one dimensional discrete form of (B.19) is ‖D~u‖1, where D is a differentiation
matrix.

Changing µ in (B.18) affects the relative dominance of the BV term, thus the
amount of smoothing that occurs in the solution.

The technique described in Osher et al. (2005) is given in Algorithm 9.

Algorithm 9 Total Variation Denoising with Feedback

1: u0 = 0
2: b0 = 0
3: while not stopping criterion met do

4: uk+1 = argmin
u
‖Du‖1 + µ

∥∥m+ bk − u
∥∥2

2

5: bk+1 = bk +m− uk+1

6: k = k + 1

Consider the first iteration of Algorithm 9 for the one dimensional ROF problem.
After the first iteration, ~u1 represents a smoothed version of the original signal m.

121

Thus, in line 5, ~m − ~u1 represents noise and texture, which is then added into the
fidelity term on line 4 during the next iteration. Hence, we are led to the concept of
adding the noise back into the iteration.

The literature provides various perspectives on why adding the noise back into
the iteration is effective, but most intuitive explanations seem to break down after
the first few iterations. In particular, some explanations make note that during the
initial step the minimization extracts the smooth portion of the signal, which then
leads to b representing noise and texture. This then leads m+ b being more noisy on
the next iteration. The explanations then assume that over time more and more of
the original noise appears in the result of each iteration. Numerical tests show that
some iterations have a result that is smoother locally than their predecessors or show
fluctuations completely unrelated to the initial noise. For example, a gradient descent
step can lead to a solution which is better in an l2 sense than its predecessor, yet has
individual elements which are worse. Nonetheless, Algorithm 9 has been shown to be
equivalent to iterations using the Bregman distance as in Algorithm 8, Goldstein and
Osher (2009); Osher et al. (2005).

For simplicity in notation we let J (~u) = ‖~u‖BV . Now consider the Bregman
distance for J(~u) with respect to the prior iteration, ~uk, given by

Dp
J

(
~u, ~uk

)
= J (~u)−

(
J
(
~uk
)

+ ~pu
(
~uk
)
·
(
~u− ~uk

))
(B.20)

Using (B.20) we create a new functional to replace the functional in (B.18), yielding

J (~u)−
(
J
(
~uk
)

+ ~pu
(
~uk
)
·
(
~u− ~uk

))
+ µ ‖m− u‖2

2 (B.21)

Analogous to the process used to obtain (B.15),

~pk+1
u

(
~uk+1

)
= ~pku

(
~uk
)

+ 2µ
(
~m− ~uk

)
(B.22)

As described in Osher et al. (2005), defining ~bk =
~pk(~uk)

2µ
and making the replacement

in (B.22) yields
~bk+1 = ~bk +

(
~m− ~uk

)
i.e., line 5 of Algorithm 9.

We assume that µ is chosen so as to produce a smoothed result in (B.18). It is
shown in Osher et al. (2005) that asymptotically ~uk → ~m. Thus, as the iterations
progress, ~uk evolves from a smooth signal to the original noisy signal. A frequently
chosen stopping criterion is the discrepancy principle – stopping when the noise level
in the iteration is of the scale of some pre-determined noise variance.

We compare Algorithm 9 to a Split Bregman implementation of the same tech-
nique, Algorithm 10. In Algorithm 10 on line 6, bk is no longer adjusted by m− uk,
the difference between the smooth image and the measured image, but instead by
Duk+1 − dk+1, the error in the iteration’s ability to conform to the constraint (B.5).
For the algorithm to properly solve the regularization problem Duk−dk → 0 for large
k, but the expression “adding back the noise” does not really describe this procedural
step. The Split Bregman algorithm has been shown to be equivalent to other opti-
mization algorithms, in particular the Bregman method, an Augmented Lagrangian
method, and a Douglas-Rachford splitting method, Setzer (2010).

122

Algorithm 10 Split Bregman ROF Iteration with Feedback

1: b0 = 0
2: while not stopping criterion met do
3: for n = 1 to N do . A small number of interior iterations
4: uk+1 = argmin

u

1
2
‖m− u‖2

2 + λ2

2

∥∥Du− (dk − bk)∥∥2

2

5: dk+1 = argmin
d

µs ‖d‖1 + λ2

2

∥∥d− (Duk+1 + bk
)∥∥2

2

6: bk+1 = bk +Duk+1 − dk+1

7: k = k + 1

B.4 Solving the Sub-problems

B.4.1 The Fidelity Term

Line 3 of Algorithm 7 involves finding the minimizer of the fidelity term of the
original problem as well as the regularization term linking the two sub-problems. All
the components are differentiable and therefore can be solved directly or through
well known optimization techniques. It has been recommended that in the context
of Split-Bregman with feedback, iterative minimizers only be run for a few steps
as the regularization term will change with each step in the outer loop. In spite of
solving the sub-problems inaccurately, as long as the solutions are contractive, overall
convergence still occurs as the outer loop progresses. This property is known as “error
forgetting”.

B.4.2 The Basis Pursuit Problem

Line (4) of Algorithm 7 involves finding the solution to a Basis Pursuit problem,
(B.3). Following comments in Osher and Li (2009), the explanation below describes
how the shrink operator solves the Basis Pursuit problem in one dimension. Let us
consider

argmin
u

(
‖~u‖1 + λ‖A~u− f‖2

2

)
and its scalar equivalent

argmin
u

(
|u|+ λ(cu− b)2) (B.23)

For simplicity, let us also assume that λ = 1, c = 1, with b being the only free
parameter. Figure B.2 demonstrates a simple Basis Pursuit problem.

To demonstrate the effect of the shrink operator we examine various cases:

• Case 1: Assume that the minimum occurs at a point where the functional in
(B.23) is differentiable, i.e. at any point other than u = 0. It will be shown
that this occurs when |2λbc| > 1. We will further assume that bc > 0. This
forces the minimum of (cu− b)2 to occur on 0 < u < ∞. These assumptions
will lead to the minimum of (B.23) occurring on 0 < u <∞. This case is shown
in Figure B.3.

123

Figure B.2: A Simple Basis Pursuit Problem Showing the Combined Functional As
Well As the 1-norm and 2-norm Components.

We replace |u| with u in (B.23) and expand to obtain

λc2u2 + (1− 2λcb)u+ λb2

We differentiate and seek the requirement that this minimum occurs in 0 < u <
∞

2λc2u+ (1− 2λcb) = 0

The minimum occurs in 0 < u <∞ if bc > 0 and 2λbc > 1

u =
b

c
− 1

2λc2
=

2λbc− 1

2λc2
(B.24)

If instead bc < 0, we replace |u| with −u and seek a solution in −∞ < u < 0.
By a similar process we obtain

u =
b

c
+

1

2λc2
=

2λbc+ 1

2λc2
(B.25)

Thus, the minimum occurs at a differentiable point as long as |2λbc| > 1.

124

Figure B.3: When |2λbc| > 1 and bc > 0, the Minimum Occurs in the Differentiable
Region 0 < u <∞.

• Case 2: When |2λbc| < 1 (B.23) is solved when u = 0. This is shown in Figure
B.4.

The general solution to the Basis Pursuit problem comes from combining these cases
and is given by

u =

b
c

+ 1
2λc2

|2λbc| > 1, bc < 0
0 |2λbc| < 1, bc > 0

b
c
− 1

2λc2
|2λbc| > 1, bc > 0

(B.26)

We now define the shrink operator as

shrink (x, y) =

{
x+ |y| x < − |y|

0 |x| 6 |y|
x− |y| x > |y|

(B.27)

Thus (B.26) can be expressed in terms of the shrink operator, (B.27), as

u =
1

c2
shrink

(
bc,

1

2λ

)
(B.28)

We have now completed the motivation and numerical implementation procedure
for solving (B.1) using the Split Bregman Algorithm.

125

Figure B.4: When |2λbc| < 1, the Minimum Occurs at a Point Lacking Differentia-
bility.

126

APPENDIX C

PERMISSION TO USE PUBLISHED PAPERS

127

Chapter 3 of this dissertation was submitted for publication to the SIAM Journal
on Scientific Computing in March 2016 under the title “Edge Detection of Piecewise
Smooth Functions from Under-sampled Fourier Data”. It was co-authored with Prof.
Anne Gelb.

Chapter 4 of this dissertation has been published in Kirby et al. (2015), pages 157-
166. It was co-authored with Dr. Rick Archibald and Prof. Anne Gelb.

I have obtained permission from the co-authors to include these papers in the disser-
tation.

Dennis Denker

128

