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ABSTRACT

We present fast and robust numerical algorithms for 3-D scattering from perfectly

electrical conducting (PEC) and dielectric random rough surfaces in microwave re-

mote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin’s

procedure in the method of moments (MoM). Due to the high-precision one-point

quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reduc-

ing the matrix fill effort from O(N2) to O(N). The orthogonality and Riesz basis of

the Coiflets generate well conditioned impedance matrix, with rapid convergence for

the conjugate gradient solver. The resulting impedance matrix is further sparsified

by the matrix-formed standard fast wavelet transform (SFWT). By properly select-

ing multiresolution levels of the total transformation matrix, the solution precision

can be enhanced while matrix sparsity and memory consumption have not been no-

ticeably sacrificed. The unified fast scattering algorithm for dielectric random rough

surfaces can asymptotically reduce to the PEC case when the loss tangent grows ex-

tremely large. Numerical results demonstrate that the reduced PEC model does not

suffer from ill-posed problems. Compared with previous publications and laboratory

measurements, good agreement is observed.
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Chapter 1

INTRODUCTION

Electromagnetic scattering problems from random rough surfaces have drawn

great attentions due to the broad applications in microwave remote sensing. Both

analytical and numerical methods have been extensively established in a couple of

decades.

Two classical analytical methods, Kirchhoff approximation (KA) and small pertur-

bation method (SPM), are commonly used with certain restrictions in their domains

of validity. Specifically, KA requires the tangent plane approximation in the local

region, which means a large radius of curvature relative to the incident wavelength

is a must at each point on the surface. In SPM, the surface variations are assumed

to be much smaller than the incident wavelength and the slopes of the rough surface

are relatively small (Kong, 1986).

Compared to analytical methods, numerical methods on random rough surface

scattering have higher flexibility in checking model accuracy and providing valuable

predictions. And Monte Carlo simulations have been generally involved to produce the

converged average scattering coefficient from up to several hundreds of realizations,

depending on the accuracy and the efficiency of the numerical solution. The most

popular numerical method is the method of moments (MoM) employed to the sur-

face integral equations. There are two basic integral equation formulations, namely,

electric field integral equation (EFIE) and magnetic field integral equation (MFIE)

(Yl-Oijala et al., 2012). Contrary to the EFIE, the MFIE is well-posed and renders

good condition numbers of the corresponding impedance matrix, since the K oper-

ator is compact and all the eigenvalues are clustered around a non-zero value. As
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a result, the iterative solvers converge rapidly under the MFIE formulation (Chew

et al., 2008). Despite the advantages of the MFIE, in engineering RCS societies the

EFIE has been dominant while MFIE is recognized as very inaccurate in handling

geometrical singularity. The inaccuracy and slow convergence of the MFIE-RWG

were reported in (Gurel and Ergul, 2005; Ubeda and Rius, 2006, 2005; Warnick and

Peterson, 2007). A novel mixed discretization scheme for the MFIE has been recently

proved a possible solution to the above problems Cools et al. (2011).

Maxwell’s equations and the surface boundary conditions can be reduced to a

single equivalent surface integral equation when the surface is a perfect conductor,

while in the case of a dielectric interface the coupled pair of surface integral equa-

tions need to be employed (Warnick and Chew, 2001). In the later case, the normal

components of Maxwell’s equations on the surface, as the original unknowns, yield

relationships with the surface derivatives of the surface currents and thus can be re-

placed. Though the number of unknowns is reduced, the price has to be paid for

involving the surface derivatives of the surface currents in the integrand. However,

rough surface scattering problems are electrically large, and thus the discretization of

the corresponding surface integral equations can result in a large dense matrix whose

filling time dominants the computational cost. Specifically, traditional MoM requires

the computation time of O(N2) for matrix fill and O(N3) for matrix inversion, where

N is the total number of unknowns. Accordingly, fast algorithms have been developed

to solve this issue and boost the computation efficiency through e.g. manipulating

impedance matrix, accelerating matrix solving procedure, compressing the number of

unknowns, and so on. Several methods have been listed in this literature. Based on

the AIM (Bleszynski et al., 1993, 1996), the sparse matrix/canonical grid (SM/CG)

method (Pak et al., 1997) has employed the planar RWG basis with the series Taylor

expansion and accelerated matrix-vector multiplications with fast Fourier transforms
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(FFT) in the iterative solver. And to further cut down the number of unknowns

and efficiently increase the flexibility, the curvilinear RWG basis and the Chebyshev

interpolating Green’s function have been applied instead (Huang et al., 2009; Huang

and Tsang, 2012). The forward-backward (FB) method (Holliday et al., 1996; Iodice,

2002) has been employed for 1-D surfaces with a modified fast multipole method

(FMM) (Torrungrueng et al., 1998) or spectral acceleration (SA) (Liu et al., 2011;

Brennan et al., 2013).

Wavelets have been successfully used to efficiently solve integral equations related

to 3-D scattering and emissivity problems (Pan et al., 2014; Wang and Pan, 2013;

Jin et al., 2016). Particularly, wavelets has been applied together with the iterative

technique, e.g. bi-conjugate gradient stabilized method (Bi-CGSTAB) (Vorst, 1992;

Huang et al., 2014) for random rough surface (Tretiakov et al., 2004; Pan et al., 2004).

Tapered waves (Braunisch et al., 2000) are used in rough surface scattering to truncate

the computational domain. In (Pan et al., 2004), the tapered wave was imposed as

the incident beam to emulate certain problems in which the footprint of the beam is

smaller than the target, preventing the edge diffraction. Owing to concentrated energy

in spatial/spectral domain and vanishing moments, the implementation of wavelets as

the basis and testing functions produces a sparse impedance matrix and exhibits fast

convergence. Further, the Dirac-δ like property of Coiflets (Pan, 2003) permits fast

calculation of the most off-diagonal entries in the impedance matrix, imposing the

one-point quadrature formula and dramatically reducing the computational efforts in

filling matrix from O(N2) to O(N).

The fast wavelet transform (FWT) can be selected to further sparsify the re-

sulting Coiflet impedance matrix (Tretiakov et al., 2004). In recent years, wavelet

transforms have been extensively applied to areas of wave propagation, data com-

pression and processing (Li et al., 2013; Tang et al., 2015; Guan et al., 2000; Tong
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et al., 2011). The FWT converts a dense matrix produced by MoM to an extremely

sparse one, of which the sparsity (percentage of the nonzero entries) can be 0.01 or

less. The non-zero entries represent both singularity contributions from self-terms

and non-singularity contributions from the interactions between large scale bases in

the original kernel. The FWT can be classified into the standard form (SFWT)

with the complexity O(N logN) and non-standard form (NSFWT) of O(N) (Beylkin

et al., 1991; Beylkin, 1993). Nonetheless, the NSFWT is closely related to the LU

matrix solver, which has no direct connection to the iterative algorithms. Therefore,

we shall not discuss it further. Conversely, the SFWT is easier to implement by

general matrix multiplications (Sarkar and Kim, 1999; Hesham and Hassanein, 2010;

Duff et al., 1986), and the solutions of the integral equations can be reconstructed

by Mallats decomposition and reconstruction algorithms (Mallat, 1989) in a matrix

manner. Furthermore, the SFWT can be easily programmed for parallel computing.

This dissertation is organized as follows: Chapter 2 introduces the fundamentals

and properties of Coiflets. Chapter 3 discusses the fast Coiflet MFIE for scattering

from open rough surfaces. Chapter 4 provides the unified numerical algorithm for

3-D scattering from dielectric and PEC random rough surfaces. Chapter 5 draws the

conclusion.
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Chapter 2

COIFMAN WAVELETS

Wavelets have great potentials in solving electromagnetic problems. Especially for

problems that have discontinuous fields across boundaries, nonlinear wavelet based

methods exhibit fast convergence. Basic wavelet theory and applications can be found

in many excellent books (Daubechies, 1992; Pan, 2003).

In this chapter, we briefly introduce fundamentals and properties of Coifman

wavelets.

2.1 Basic Principles

2.1.1 Scalets and Wavelets

A multi-resolution analysis (MRA) of L2(R) is defined as a sequence of closed

subspaces {Vj}j∈Z of L2(R). A scaling function (or father wavelet) ϕ ∈ V0, with a

non-vanishing integral, exists such that ϕ(t− n) forms a Riesz basis of V0.

Since ϕ ∈ V 0 ⊂ V 1, a sequence {hk} ∈ l2 exists that the scaling function satisfies

ϕ(t) =
∑

k

hk
√
2ϕ(2t− k) (2.1)

Equation (2.1) is called the dilation equation, where {hk} are coefficients of the

low-pass filter and satisfies
∑

hk = 1. The MRA allows us to expand a function in

terms of basis functions, consisting of the scalets and wavelets. And according to

MRA properties, a function can be approximated with any precision by increasing

the resolution in MRA.
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The collection of functions {ϕm,n|n ∈ Z} with

ϕm,n(t) = 2m/2ϕ(2mt− n) (2.2)

forms a Riesz basis of Vm, where m denotes the scale or level and n is the trans-

lation or shift. ϕ(t) is usually normalized in the following way

∫

ϕ(t)dt = 1 (2.3)

We use Wm to denote a space complementing Vm in Vm+1, that is, a space that

satisfies

Vm+1 = Wm ⊕ Vm

⊕
m
Wm = L2(R)

(2.4)

A mother wavelet function (or wavelet) psi exists if the collection of functions

{ψ(t− n)|n ∈ Z} forms a Riesz basis of W0. The definition of ψm,n is similar to that

of ϕm,n. Since ϕ ∈ V 0 ⊂ V 1

ψ(t) =
∑

k

gk
√
2ϕ(2t− k)

ψm,n(t) = 2m/2ψ(2mt− n)

(2.5)

In the previous equation, the band-pass filter for the orthogonal wavelets can be

represented by the low-pass filter as

gk = (−1)k−1h−(k−1) (2.6)

We should mention here that has also L vanishing moments

∫

tlψ(t)dt = 0, l = 0, 1, 2, . . . , L− 1. (2.7)
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2.1.2 Orthogonal Properties

From the previous discussion, it appears that for any scalet ϕm,n(t) ∈ Vm and

wavelet ψm,n(t) ∈ Wm we have

Vm = Wm−1 ⊕ Vm−1

= Wm−1 ⊕Wm−2 ⊕ Vm−2

= Wm−1 ⊕Wm−2 · · · ⊕W0 ⊕ V0

(2.8)

where ⊕ denotes the direct sum.

The above property is the subspace decomposition and result in the following

properties:

a. Scalets on the same level

∫

ϕj0,m(t)ϕj0,n(t)dt = δm,n =











0 m 6= n

1 m = n

(2.9)

b. Wavelets on the same level

∫

ψj0,m(t)ψj0,n(t)dt = δm,n =











0 m 6= n

1 m = n

(2.10)

c. Scalets are orthogonal to wavelets of the same or higher levels, regardless of the

translations.
∫

ϕj0,m(t)ψi0,n(t)dt = 0, j0 ≤ i0 (2.11)

d. Wavelets on different levels are orthogonal regardless of the translations.

∫

ψj0,m(t)ψi0,n(t)dt = 0, j0 6= i0 (2.12)
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2.2 Coifman Wavelets

The Coifman scaling function ϕ(x) of order L is supported on [−L, 2L−1] and the

mother wavelet ψ(x) of order L is compactly supported on [1− 1.5L, 1.5L]. Because

of the particular shape of the Coiflets we truncate the support in [-4, 4] when L = 4.

It can be seen from Fig. 2.1 that both the scalet and wavelet are essentially zero

beyond this truncated interval.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

 

 
Scalet
Wavelet

Figure 2.1: Coifman Scalet and Wavelet of L = 4 and j0 = 0.

The Coifman wavelets of order L have the vanishing moment properties in both

scaling functions and mother wavelets, as shown in equation (2.13), while the Daubechies

wavelets have only vanishing moments for mother wavelets.

∫

ϕ(x)dx = 1
∫

xlϕ(x)dx = 0, l = 1, 2, . . . , L− 1
∫

xlψ(x)dx = 0, l = 0, 1, 2, . . . , L− 1

(2.13)

Scalets under the L2 norm exhibit Dirac-δ like sampling property for smooth

functions. Namely, if ϕ(x) is supported in [p, q] and f(x) is expanded at a point x0
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within [p, q], we can obtain

q
∫

p

f(x)ϕ(x− x0)dx

=
q
∫

p

(

f(x0) + f ′(x0)(x− x0) + · · ·+ fL−1(x0)(x−x0)L−1

(L−1)!
+ · · ·

)

ϕ(x− x0)dx

= f(x0) +O(hL)

(2.14)

where h is the step size, and |x− x0| ≤ h.

The property of equation (2.14) in a simple sense is similar to the Dirac-δ function

property
∫

f(x)δ(x− x0)dx = f(x0) (2.15)

The Dirac-δ like nature of the Coiflets can simplify quadrature computation into

a single point value in certain cases, and thus greatly expedite the matrix element

evaluations.

To explicitly explain the zero moment property (2.13), the first seven moment inte-

grals for Coifman scalets of order L = 4 are presented in Table 2.1. The scalets have

three exactly zero moments, according to (2.13). And the addition (approximate)

zero moment in Table 2.1 results in the error of O(h5) in (2.14) for L = 4. Though

the pulse based MoM matrix can also be evaluated with the one point quadrature

formula, the difference is that in the pulse scheme the one point quadrature rule is

O(h) approximation Pan et al. (2004).

As shown in Fig. 2.2, a typical example of a perfectly conducting circular cylinder

excited by a plane wave is discussed here, for the comparison between Coiflets based

MoM and pulse method. The analytical solution to this problem is also included

as a reference (Harrington, 2001). The cylinder is assumed to be infinity along z-

axis, resulting in a 2-D problem at present. Only TE case is considered with 64

sampling points along the entire circle, since the sampling direction in TM case is

transverse to the direction of the excited current which results in the non-sensitive
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current density and far fields. Fig. 2.3 depicts the normalized magnitude of the

current on the cylinder, and Fig. 2.4 illustrates the scattering cross section. The

relative errors to the analytical solutions are also displayed. Here it can be seen that

the superiority of Coiflets are highlighted in TE cases, in which Coiflets achieve higher

accuracy with, e.g. the relative error within 1%, than pulse under the same sampling

points.

Figure 2.2: A Perfectly Conducting Circular Cylinder with a Plane Wave Incident
(300MHz, TE Case). The Cylinder Is Assumed to Be Infinity along Z-Axis, Which
Is Perpendicular to the Cross Section of the Cylinder.

Table 2.1: Moment Integrals for Coifman Scalets of Order L = 4

n moment integral value

0 1.0000000

1 0.0000000

2 0.0000000

3 0.0000000

4 4.9333e-11

5 -0.1348373

6 3.5308e-10
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Figure 2.3: The Excited Current Density Comparisons among Pulse, Coiflet and
Analytical Methods, for the Problem of a Conducting Circular Cylinder Illuminated
by a Plane Wave (TE Case). The Normalized Current Magnitude and the Relative
Error to the Analytical Solutions Are Included. The 64 Sampling Points Are for Both
Pulse Case and Coiflet Case.
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Figure 2.4: The Scattered Field Pattern Comparisons among Pulse, Coiflet and
Analytical Methods, for the Problem of a Conducting Circular Cylinder Illuminated
by a Plane Wave (TE Case). The Normalized RCS and the Relative Error to the
Analytical Solutions Are Included. The 64 Sampling Points Are for Both Pulse Case
and Coiflet Case.
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Chapter 3

FAST COIFLET MFIE FOR SCATTERING FROM OPEN ROUGH SURFACES

Scattering of electromagnetic waves from rough surfaces has great applications in

microwave remote sensing. Both analytical approaches and numerical methods have

been extensively researched. One of the most popular numerical solutions is the inte-

gral equation method discretized by the method of moments (MoM). The electric field

integral equation (EFIE) and magnetic field integral equation (MFIE) are two im-

portant integral equations (Yl-Oijala et al., 2012). Contrary to the EFIE, the MFIE

is well-posed and renders good condition numbers of the corresponding impedance

matrix, since the K operator is compact and all the eigenvalues are clustered around

a non-zero value. As a result, the iterative solvers converge rapidly under the MFIE

formulation (Chew et al., 2008). Despite the advantages of the MFIE, in engineering

RCS societies the EFIE has been dominant while MFIE is recognized as very inaccu-

rate in handling geometrical singularity. The inaccuracy and slow convergence of the

MFIE-RWG were reported in (Gurel and Ergul, 2005; Ubeda and Rius, 2006, 2005;

Warnick and Peterson, 2007). A novel mixed discretization scheme for the MFIE has

been recently proved a possible solution to the above problems Cools et al. (2011).

The Coiflets based MFIE has been applied to 3-D scattering problems in the

previous studies that do not rely on the RWG discretization Pan et al. (2004); Wang

and Pan (2013); Pan et al. (2014). Due to their high concentration in both the

spatial and spectral domains, wavelets allow significant reduction of the sampling

rate from 10 points per wavelength to 4 or 5, dramatically reducing the size of the

matrix Daubechies (1992); Pan (2003). Additionally, the vanishing moments of the

Coiflets of order L = 4 provide one-point quadrature of precision O(h5), reducing the
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computational effort in filling matrix entries from O(N2) to O(N).

In (Wang and Pan, 2013) the Coiflet based MFIE was used to solve scattering from

infinite arrays of sharp conducting cones, under uniform plane wave illumination and

the Floquet condition. In handling geometrical singularity on the closed structure,

it was shown to be very accurate with fast convergence. In (Pan et al., 2004), this

method was applied to truncated rough surfaces, where a tapered wave (Braunisch

et al., 2000) was applied as the incident to resemble the plane wave near the scat-

tering center. The tapered wave decays rapidly to negligibly weak before reaching

surface edges and it extends the range of MFIE to open surfaces. The aforementioned

Coiflet based MFIE method on open surfaces may remarkably save computational re-

sources and achieve fast convergence. In (Pan et al., 2014) our main interest was the

radiometer calibration target, a finite sized array of sharp cones. Working toward

this goal, we paid attention to singularity removal, geometric non-smooth treatment,

and deployment of both scalets and wavelets, namely, the multiresolution analysis

(MRA). Without sufficient details, the SFWT was briefly introduced in (Pan et al.,

2014) to calculate algorithm complexity for the sphere.

On the contrary, here we focus on the SFWT, the tradeoff between matrix sparsity

and solution precision. Instead of a specialized, problem-dependent basis for solving

the MFIE, the current manuscript assesses the SFWT algorithm with a more gen-

eral problem of closed surface objects of the almond and the ogive, and extends the

application to an open structure of the random rough surface. The aforementioned

closed surface examples are designated for accuracy validation of the algorithm be-

cause no high-precision remote sensing examples of open surfaces are available to

compare with. The sphere is smooth and it has closed form expressions. Contrarily,

the almond or the ogive possesses a sharp vertex with geometric discontinuity, and it

has been studied in many publications with well-known numerical and measurement
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data (Woo et al., 93), from which we selected one data set below the 1st resonance.

For surfaces described by numerical data, e.g. rough surfaces, the method also works.

In recent years, wavelet transforms have been extensively applied to areas of wave

propagation, data compression and processing (Li et al., 2013; Tang et al., 2015; Guan

et al., 2000; Tong et al., 2011). The FWT converts a dense matrix produced by MoM

to an extremely sparse one, of which the sparsity (percentage of the nonzero entries)

can be 0.01 or less. The non-zero entries represent both singularity contributions

from self-terms and non-singularity contributions from the interactions between large

scale bases in the original kernel. The FWT can be classified into the standard form

(SFWT) with the complexity O(N logN) and non-standard form (NSFWT) of O(N)

(Beylkin et al., 1991; Beylkin, 1993). Nonetheless, the NSFWT is closely related

to the LU matrix solver, which has no direct connection to the iterative algorithms.

Therefore, we shall not discuss it further in this paper. Conversely, the SFWT is easier

to implement by general matrix multiplications (Sarkar and Kim, 1999; Hesham and

Hassanein, 2010; Duff et al., 1986), and the solutions of the integral equations can

be reconstructed by Mallats decomposition and reconstruction algorithms (Mallat,

1989) in a matrix manner. Furthermore, the SFWT can be easily programmed for

parallel computing.

Two types of complexity analysis were conducted in (Pan et al., 2014), specifically,

fixed frequency with decreasing discretization size and fixed discretization with in-

creasing frequency. At the beginning, matrix assembling time for both types steadily

increased in O(N) due to one-point quadrature. It gradually rose in O(N logN) when

the number of unknowns got very large because the number of off-diagonal elements

grew in the squared fashion. In addition, the memory consumption for non-zero

entries after SFWT sparsification was scaled as O(N1/10 logN) and O(N6/5 logN)

for the fixed frequency and fixed discretization, respectively. In generating the total
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transformation matrix, the lowest level was naturally chosen as jl = 0 in the SFWT.

In such a configuration, the MRA was implemented on all distinctive levels, to achieve

the maximum sparsification. However, the low level factor matrices underwent heavy

truncation that produced relatively large errors. Based upon the discussion above and

numerical computations, we change the lowest level to be jl = 3 in the current paper

to balance the accuracy and sparsity. Comparing the results in (Pan et al., 2014),

the RMS error of the RCS has been reduced from 0.1 to 0.03, while the sparsity only

degraded by 0.85%.

Using FEKO (FEKO, 2015), RWG-MLFMA based commercial software, numeri-

cal results are compared with good agreement. Such comparisons are aimed to val-

idate the accuracy of the algorithm. Commercial codes are optimized with effective

user friendly interfaces and are more efficient in terms of the CPU time. From the

provided numerical results, the new algorithm may achieve similar precision as FEKO

does, yet use less unknowns and require fewer iterations.

In this chapter, we provide formulation and implementation of the SFWT under

scalar discretization of the MFIE. Computational complexity and accuracy of the

algorithm are discussed, followed by the example of random rough surface scattering.

3.1 Formulation

3.1.1 Coiflets based Scalar MFIE

The general vector form of 3-D MFIE for a perfect electric conductor is

~J(~r) = 2n̂× ~Hi(~r) + 2n̂×
∫

S

~J(~r′)×∇′g(~r, ~r′)ds′ (3.1)
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where

g(~r, ~r′) =
e−jkR

4πR

∇′g(~r, ~r′) =
(1 + jkR)e−jkR

4πR3
~R = −G(R)~R

~R = ~r − ~r′ represents the distance from the source to field point.

2-D MFIE is a special case of 3-D one, as

~J(~ρ) = 2n̂× ~Hi(~ρ) + 2n̂×
∫

C

~J(~ρ′)×∇′g(~ρ, ~ρ′)dl′ (3.2)

where

g(~ρ, ~ρ′) =
j

4
H

(2)
0 (k|~ρ− ~ρ′|)

∇g′(~ρ, ~ρ′) = −jk
4
H

(2)
1 (k|~ρ− ~ρ′|)R̂

The 3-D scattering problem is formulated by recasting the vector MFIE into cou-

pled two scalar equations in terms of only two surface current components. The

Coiflets of order L = 4 are discussed here. Both Coifman scalets and wavelets have

the vanishing moments, namely

∫

ϕ(x)dx = 1
∫

xℓϕ(x)dx = 0 , ℓ = 1, 2, . . . , L− 1
∫

xℓψ(x)dx = 0 , ℓ = 0, 1, 2, . . . , L− 1

(3.3)

In (3.3), the scalets exhibit a Dirac-δ like nature, allowing us to reduce the quadrature

computation of most matrix entries into a single point value and thus greatly cut down

the matrix filling calculations from O(N2) to O(N).

Specifically, in 3-D rough surface scattering, we define

R =
√

(x− x′)2 + (y − y′)2 + [f(x, y)− f(x′, y′)]2 (3.4)

where f is the profile of the rough surface.
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Since

n̂ = ~n cosχ =













−∂f(x,y)
∂x

−∂f(x,y)
∂y

1













cosχ (3.5)

where

cosχ =

{

[

∂f(x, y)

∂x

]2

+

[

∂f(x, y)

∂y

]2

+ 1

}− 1
2

Let

~F (~r) =
~J(~r)

cosχ
= ~J(~r)

{

[

∂f(x, y)

∂x

]2

+

[

∂f(x, y)

∂y

]2

+ 1

} 1
2

(3.6)

Thus, (3.1) can be reformulated into

~F (~r)

2
+

∫

~n× [~F (~r′)× ~RG(R)]dx′dy′ = ~n× ~Hi(~r) (3.7)

For the right side of (3.7),

~n× ~Hi(~r) =













−∂f(x,y)
∂x

−∂f(x,y)
∂y

1













×













Hix

Hiy

Hiz













= (−∂f(x, y)
∂y

Hiz −Hiy)x̂+ (
∂f(x, y)

∂x
Hiz +Hix)ŷ

+ (−∂f(x, y)
∂x

Hiy +
∂f(x, y)

∂y
Hix)ẑ

(3.8)

For the second term on the left side of (3.7),

~n× [~F (~r′)× ~RG(R)] = ~F (~r′)[~n · ~RG(R)]− ~RG(R)[~n · ~F (~r′)] (3.9)

X component: Fx(~r
′)(~n · ~R)G(R)−G(R)(~R · x̂)[~n · ~F (~r′)]

Y component: Fy(~r
′)(~n · ~R)G(R)−G(R)(~R · ŷ)[~n · ~F (~r′)]

Given ~n · ~J = 0, we can get

Fz =
∂f(x, y)

∂x
Fx +

∂f(x, y)

∂y
Fy (3.10)
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The vector form of MFIE in (3.1) can be recast into the scalar form in terms of x

and y components, as

Fx(~r)

2
+
∂f(x, y)

∂y

∫

dx′dy′G(R)[(x− x′)Fy(~r
′)− (y − y′)Fx(~r

′)]

+

∫

dx′dy′G(R)

{

[−(x− x′)
∂f(x′, y′)

∂x′
+ f(x, y)− f(x′, y′)]Fx(~r

′)

−(x− x′)
∂f(x′, y′)

∂y′
Fy(~r

′)

}

= −∂f(x, y)
∂y

Hiz(~r)−Hiy(~r)

(3.11)

and

Fy(~r)

2
− ∂f(x, y)

∂x

∫

dx′dy′G(R)[(x− x′)Fy(~r
′)− (y − y′)Fx(~r

′)]

+

∫

dx′dy′G(R)

{

[−(y − y′)
∂f(x′, y′)

∂y′
+ f(x, y)− f(x′, y′)]Fy(~r

′)

−(y − y′)
∂f(x′, y′)

∂x′
Fx(~r

′)

}

=
∂f(x, y)

∂x
Hiz(~r) +Hix(~r)

(3.12)

where

G(R) =
(−1− jkR)e−jkR

4πR3

Fx(~r) =

{

[

∂f(x, y)

∂x

]2

+

[

∂f(x, y)

∂y

]2

+ 1

} 1
2

~J(~r) · x̂

Fy(~r) =

{

[

∂f(x, y)

∂x

]2

+

[

∂f(x, y)

∂y

]2

+ 1

} 1
2

~J(~r) · ŷ

(3.13)

We apply the Galerkin based MoM to solve the coupled integral equations (3.11)

and (3.12). Specifically, we use Coifman wavelets as basis and testing functions. First

we expand the unknowns in terms of Coiflets

Fx(~r) =
∑

i

∑

j

αijϕj0,i(x)ϕj0,j(y)

Fy(~r) =
∑

i

∑

j

βijϕj0,i(x)ϕj0,j(y)

(3.14)
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We substitute the above expansions into (3.11) and multiply ϕj0,m(x)ϕj0,n(y) to

both sides

∑

ij

αij
2

∫

ϕj0,i(x)ϕj0,j(y)ϕj0,m(x)ϕj0,n(y)dxdy

+
∂f(x, y)

∂y

∫

dx′dy′
∫

dxdyϕj0,m(x)ϕj0,n(y)G(R)

[

(x− x′)
∑

ij

βijϕj0,i(x
′)ϕj0,j(y

′)

−(y − y′)
∑

ij

αijϕj0,i(x
′)ϕj0,j(y

′)

]

+

∫

dx′dy′
∫

dxdyϕj0,m(x)ϕj0,n(y)G(R)

×
{

[

−(x− x′)
∂f(x′, y′)

∂x′
+ f(x, y)− f(x′, y′)

]

∑

ij

αijϕj0,i(x
′)ϕj0,j(y

′)

−(x− x′)
∂f(x′, y′)

∂y′

∑

ij

βijϕj0,i(x
′)ϕj0,j(y

′)

}

=

∫

dxdyϕj0,m(x)ϕj0,n(y)

[

−∂f(x, y)
∂y

Hiz(~r)−Hiy(~r)

]

(3.15)

Since

φj0,m(x) = 2j0/2φ(2j0x−m)

φj0,n(y) = 2j0/2φ(2j0y − n)

(3.16)

Imposing orthogonality and one point quadrature, we arrive at

αmn
2

+
∑

ij

αij

(

1

2j0/2

)4

G(xi, yj ; xm, yn)

×
{

−(yn − yj)
∂f(xm, yn)

∂y
− (xm − xi)

∂f(xi, yj)

∂x
+ [f(xm, yn)− f(xi, yj)]

}

+
∑

ij

βij

(

1

2j0/2

)4

G(xi, yj; xm, yn)

{

(xm − xi)

[

∂f(xm, yn)

∂y
− ∂f(xi, yj)

∂y

]}

= −
(

1

2j0/2

)2 [
∂f(xm, yn)

∂y
Hiz(xm, yn) +Hiy(xm, yn)

]

(3.17)
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In the same manner, (3.12) can be discretized as

βmn
2

+
∑

ij

αij

(

1

2j0/2

)4

G(xi, yj ; xm, yn)

{

(yn − yj)

[

∂f(xm, yn)

∂x
− ∂f(xi, yj)

∂x

]}

+
∑

ij

βij

(

1

2j0/2

)4

G(xi, yj ; xm, yn)

×
{

−(xm − xi)
∂f(xm, yn)

∂x
− (yn − yj)

∂f(xi, yj)

∂y
+ [f(xm, yn)− f(xi, yj)]

}

=

(

1

2j0/2

)2 [
∂f(xm, yn)

∂x
Hiz(xm, yn) +Hix(xm, yn)

]

(3.18)

The matrix form of the discretized MFIE is

(

γ2

2
I+ Z

)

X = b (3.19)

I is the identity matrix, and

Z =







Q R

S T






(3.20)

X =







αmn

βmn






(3.21)

b =







hmn

kmn






(3.22)

where

γ = 2j0

hmn = γ

[

−∂f(xm, yn)
∂y

Hiz(xm, yn)−Hiy(xm, yn)

]

kmn = γ

[

∂f(xm, yn)

∂x
Hiz(xm, yn) +Hix(xm, yn)

]

(3.23)
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Q = G(xi, yj; xm, yn)

×
{

−(yn − yj)
∂f(xm, yn)

∂y
− (xm − xi)

∂f(xi, yj)

∂x
+ [f(xm, yn)− f(xi, yj)]

}

R = G(xi, yj; xm, yn)

×
{

(xm − xi)

[

∂f(xm, yn)

∂y
− ∂f(xi, yj)

∂y

]}

S = G(xi, yj; xm, yn)

×
{

(yn − yj)

[

∂f(xm, yn)

∂x
− ∂f(xi, yj)

∂x

]}

T = G(xi, yj; xm, yn)

×
{

−(xm − xi)
∂f(xm, yn)

∂x
− (yn − yj)

∂f(xi, yj)

∂y
+ [f(xm, yn)− f(xi, yj)]

}

For the incident wave with horizontal polarization, the bistatic scattering coeffi-

cient in Region 1 is defined as

σα = γαh = 4π
|Es

α|2
2ηPinc

(α = h, v) (3.24)

Pinc is the real incident power, and

Es
h = −jkη

4π

∫

dx′dy′ejkr
′ cosψ

× [−Fx(x′, y′) sinφs + Fy(x
′, y′) cosφs]

Es
v = −jkη

4π

∫

dx′dy′ejkr
′ cosψ

×
{

Fx(x
′, y′)

[

cos θs cosφs −
∂f(x′, y′)

∂x′
sin θs

]

+ Fy(x
′, y′)

[

cos θs sinφs −
∂f(x′, y′)

∂y′
sin θs

]}

(3.25)

where

r′ cosψ = x′ sin θs cosφs + y′ sin θs sinφs + f(x′, y′) cos θs (3.26)
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3.1.2 Matrix Sparsification Using SFWT

Using Galerkin’s procedure and wavelet basis functions, an operator equation

(Tf)(x) = g(x) (3.27)

can be discretized into a matrix equation at level j as

[T j ]|cj〉 = |gj〉 (3.28)

The continuous operator and discrete operator are related by

T = lim
j→∞

(PjTPj) = lim
j→∞

(T j) (3.29)

where T j is the projection of T onto Vj and tested in Vj. The FWT has been generally

classified into non-standard form and standard form towards the sparsification of an

existing impedance matrix (Pan, 2003).

Non-standard form:

Since

Vj+1 = Vj
⊕

Wj, ϕ ∈ V and ψ ∈ W

T j+1 =







Ajj Bjj

Cjj T j






(3.30)

where

Ajjkk′ = 〈ψj,k, T (ψj,k′)〉 =
∑

n

∑

m

gn−2kgm−2k′T
j+1
n,m

Bjj
kk′ = 〈ψj,k, T (ϕj,k′)〉 =

∑

n

∑

m

gn−2khm−2k′T
j+1
n,m

Cjj
kk′ = 〈ϕj,k, T (ψj,k′)〉 =

∑

n

∑

m

hn−2kgm−2k′T
j+1
n,m

T jkk′ = 〈ϕj,k, T (ϕj,k′)〉 =
∑

n

∑

m

hn−2khm−2k′T
j+1
n,m

(3.31)

h and g are the lowpass and bandpass filter banks, respectively, and are well tabulated

in wavelet books Pan (2003).
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j,kφ<     ,T(      )>  ψj,k’ .

Figure 3.1: Nonstandard Form Representation of a Decomposed Matrix.

In (3.30), submatrix Ajj is very sparse since both of the expansion and testing

functions are wavelets ψ, while submatrix T j is dense because both of the expansion

and testing functions are scalets ϕ. Repeating the previous procedures to the sub-

matrices T j, T j−1, . . . , we may decompose the matrix T j+1 into a telescopic structure

known as the nonstandard form, as illustrated in Fig. 3.1.

Standard form:

In the nonstandard-form decomposition, one only manipulates the diagonal submatri-

ces. If we also work on the off-diagonal submatrices Bjj and Cjj, which are composed

of a mix of scalets and wavelets, we then decomposed the matrix T j+1 into the stan-

dard form. The lower-left quarter Cjj can be decomposed as

Cℓ,j =







Aℓ−1,j

Cℓ−1,j






, ℓ = j, j − 1, · · · , 1 (3.32)
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Figure 3.2: Standard Form Representation of a Decomposed Matrix.

where

Aℓ−1,j
k,k′ =

∑

n

gn−2kC
ℓ,j
n,k′

Cℓ−1,j
k,k′ =

∑

n

hn−2kC
ℓ,j
n,k′

(3.33)

In the same manner, the upper-right quarter

Bj,ℓ =
[

Aj,ℓ−1Bj,ℓ−1
]

, ℓ = j, j − 1, · · · , 1 (3.34)

where

Aj,l−1
k,k′ =

∑

n

gn−2k′B
j,l
k,n

Bj,l−1
k,k′ =

∑

n

hn−2k′B
j,l
k,n

(3.35)

The overview of the resulting matrix is shown in Fig. 3.2. And Fig. 3.3 displays an

example impedance matrix resulting from a perfectly electrically conducting (PEC)

circular cylinder (infinity length) illustrated by a plane wave. There are 1024 sampling

points along the entire circle and the non-zero entries after SFWT count only 0.35%

of the original impedance matrix.
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Figure 3.3: Impedance Matrix of the Standard FWT (Threshold = 1 × 10−3) for
a PEC Circular Cylinder Illuminated by a Plane Wave (300MHz, TE Case). The
Cylinder Length Is Infinity and There Are 1024 Sampling Points along the Entire
Circle.

3.1.3 SFWT Implementation with Matrix Form

We begin with a 1-D transformation matrix of dimension N × N , where N is

chosen to be an integer of power 2 to match the dilation equations. Assume N = 2jh ,

where jh is the finest (highest) level of the impedance matrix as the input of SFWT.

When the level shifts from jh to jl, the coarsest (lowest) level, the transformation

matrices of different size are generated. The choice of level jl depends on the size

of the non-zero filter bank coefficients of the individual wavelets and it affects the

solution accuracy and matrix sparsity.

The conventional SFWT introduced above can be reorganized in terms of the

matrix form, e.g. (3.36) is a 1-D transformation matrix on (jh − 1) level (Pan et al.,

2014). Both the lowpass filter coefficients h and bandpass filter coefficients g are of

Coiflets of order L = 4. The subsampling by factor 2 is accomplished by the shift

between the elements of each row in this transformation matrix.
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Pjh−1 = [P ]2jh×2jh =





























































































g0 g1 g2 g3 g4 g5 0 · · ·

g−2 g−1 g0 g1 g2 g3 g4 g5 0 · · ·

g−4 g−3 g−2 g−1 g0 g1 g2 g3 g4 g5 0 · · ·

g−6 g−5 g−4 g−3 g−2 g−1 g0 g1 g2 g3 g4 g5 0 · · ·
. . .

· · · 0 g−6 g−5 g−4 g−3 g−2 g−1 g0 g1 g2 g3

· · · 0 g−6 g−5 g−4 g−3 g−2 g−1 g0 g1

h0 h1 h2 h3 h4 h5 h6 h7 0 · · ·

h−2 h−1 h0 h1 h2 h3 h4 h5 h6 h7 0 · · ·

h−4 h−3 h−2 h−1 h0 h1 h2 h3 h4 h5 h6 h7 0 · · ·

h−4 h−3 h−2 h−1 h0 h1 h2 h3 h4 h5 h6 h7 0 · · ·
. . .

· · · 0 h−4 h−3 h−2 h−1 h0 h1 h2 h3

· · · 0 h−4 h−3 h−2 h−1 h0 h1





























































































N×N

(3.36)

A diagonal unity matrix is added to the original transformation matrix on j-th

level, to realize the equal matrix size of Pj. Then the total transformation matrix S

in 1-D case can be obtained as a product of the matrices Pj, namely

S1D = PjlPjl+1 . . . Pjh−1 (3.37)

where

Pj =







I(2jh−2j+1)×(2jh−2j+1) 0

0 [P ]2j+1×2j+1







j = jh − 1, . . . , jl + 1, jl.

(3.38)

Assume the system equation before the SFWT is TX = g, where X is the un-

known. Apply the SFWT using the total transformation matrix S, the new system

equation becomes (Pan et al., 2014)

T ′X ′ = g′ (3.39)
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where

T ′ = STSt, g′ = Sg (3.40)

upon the solution of X ′, the original unknown is obtained by

X = StX ′ (3.41)

It has to be specified that the original transformation matrices are not perfectly

orthonormal, since in the conventional SFWT the truncations of filter banks are

inevitably involved beginning with (jh−1) level and getting heavier in the rest levels.

More specifically here, for Coiflets of order L = 4, both lowpass and bandpass filter

banks consist of 12 nonzero elements respectively, e.g. the lowpass bank has nonzeros

of h−4, h−3, h−2, . . . h7. Starting from the lowest resolution level 0 in the conventional

SFWT, the original transformation matrices are

j = 0, [P ]2×2 =







g0 g1

h0 h1






;

j = 1, [P ]4×4 =



















g0 g1 g2 g3

g−2 g−1 g0 g1

h0 h1 h2 h3

h−2 h−1 h0 h1



















;

· · ·

j = j, [P ]2j+1×2j+1 ;

· · ·

(3.42)

The cumulative impact of the truncation error on accuracy is noticeable especially

for electrically large problems. Heavy truncations produce relatively large errors in

constructing the total transformation matrix S. In other words, S is not a perfectly
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orthonormal matrix. Considering the tradeoff between accuracy and sparsity, numer-

ical trials reveal that the choice of jl = 3 provides the best results. In other words,

the lowest factor matrix must contain all lowpass and bandpass filters in order to

keep the precision.

Fig. 3.4 depicts the orthogonality of S by the matrix elements in U = StS, for

jl = 0 and jl = 3 respectively (the highest level is fixed at jh = 6). Ideally, U will be

an identity matrix. And it is clearly observed that in the case of jl = 3 the diagonal

and off-diagonal elements cluster closer to 1 and 0, respectively, compared with the

jl = 0 case in the conventional SFWT. Data support can be found in Table 3.1 for

RMS errors of U matrix elements in these two cases.
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Figure 3.4: The Orthogonality Comparison between jl = 0 and jl = 3 for 1-D Total
Transformation Matrix S. Diagonal and Off-Diagonal Elements of U = StS Are
Compared Separately. The Finest Level jh = 6.

2-D case has a similar scheme while only one dimension is considered at each time.

Assume a matrix with the size of (M ×N)2, where the sampling points of N for the

1st dimension and the ones of M for the 2nd dimension should be integer powers of
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Table 3.1: RMS Errors for Elements of U = StS in 1-D SFWT (jh = 6)

RMS error jl = 0 RMS error jl = 3

/% /%

Diagonal 6.305 5.163

Off-diagonal 0.8442 0.4248

2. The whole matrix can be divided into N × N submatrices with each submatrix

containing M ×M elements. Accordingly, the complete 2-D transformation matrix

on j-th resolution level should follow the same submatrix profile. To be specific,

each original element in (3.36) should be augmented to a M ×M submatrix as the

1st dimension. Then the M ×M 1-D transformation matrix of the 2nd dimension

are lined up diagonally. The resulting 2-D transformation matrix on j-th resolution

level is shown in Fig. 3.5. And the total 2-D transformation matrix can be derived

from (3.37). Here jh is chosen as min(log2M, log2N). In this matrix manner, the

parallel computation can be easily implemented on the multiplication of a matrix and

a vector.

Figure 3.5: Transformation Matrix on j-th Level in 2-D SFWT.
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3.2 Computational Complexity

The matrix generated from MFIE equations with finest scaling functions is con-

verted to a sparse one by the SFWT under a certain threshold. Two typical examples,

a circular cylinder with infinity length and a sphere, are discussed here for compu-

tational complexity of 1-D and 2-D SFWT, respectively. The iterative solver, e.g.,

conjugate gradient (Vorst, 1992), is employed in the sphere case to solve the result-

ing sparse matrix with the accuracy of 1 × 10−3. And two types of computational

complexity, fixed frequency and fixed discretization, are reported below.

3.2.1 Circular Cylinder

Fixed Frequency: The frequency is fixed at 300MHz and the discretization size

is varying from λ/20 to λ/163. The memory consumption for non-zero entries after

SFWT is O(N1/5 logN) in Fig. 3.6.

Fixed Discretization: The discretization of λ/20 is kept and the frequency is

increasing from 300MHz to 2.4GHz. The memory is scaled as O(N6/5 logN) as ka

goes up, as shown in Fig. 3.6.

3.2.2 Sphere

The PEC sphere with the diameter D = 2m is excited by a plane wave. The

incident is into the North Pole with the E-field parallel to x-axis. And the scattered

fields are collected on φ = 0◦ plane. Originally, the coarsest level, jl, in generating

the total transformation matrix is selected to be 0 in (Pan et al., 2014).

Fixed Frequency: The frequency is fixed at 300MHz and the discretization size

is varying from λ/5 to λ/82. The number of unknowns is increasing subsequently

with the matrix assembling time maintaining the complexity of O(N), as shown in
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Fig. 3.7(a). Here the matrix assembling time includes both matrix filling and solving

time (see Table 3.2). Since this situation is analogous to electrical small problems

and ka is constant, the memory consumption for non-zero entries after SFWT is

O(N1/10 logN) in Fig. 3.7(b).

Fixed Discretization: The discretization of λ/5 is kept and the frequency is in-

creasing from 300MHz to 4.8GHz. The memory requirement is scaled asO(N6/5 logN)

as ka goes up. The reason is that SFWT, like other acceleration method, e.g., ACA,

H2, etc., can only work for moderate sized problems. Hence the memory complexity

could be as poor as O(N2) at the high frequency. Meanwhile, the matrix assembling

time can still follow O(N), since the One-Point property of the father wavelet is ap-

plied to all the off-diagonal elements. All the above is suggested in Fig. 3.7. But one

should notice that the number of the off-diagonal elements scales as O(N2), which

means they will have increasing effect on the calculation time. Hence, the matrix as-

sembling time may gradually grow as N logN . The detailed performance parameters,

such as electric size, number of unknowns, matrix filling and solving time, number of

iterations, sparsity indices, etc. are tabulated in Tables 3.2 and 3.3 below. The 4th

row of Table II, D = 16λ, corresponds to the largest electric size solved by ACA (Zhao

et al., 2005). The last two rows are for D = 24λ, 32λ, respectively. While these two

cases are solved by the Coiflet algorithm without any difficulties, we cannot perform

the SFWT for matrix sparsification due to computer memory limitation. The ’NA’

in the tables should read ’not available’.

Next, for better accuracy, the coarsest level jl is selected to be 3 instead of 0,

which may increase the non-zero entry memory after the sparsification (threshold

= 1× 10−3).

In order to quantitatively measure the additional memory consumption resulting

from the accuracy improvement, the complexity of non-zero entry memory is numeri-
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Figure 3.6: Memory Scaling of MFIE after SFWT (Threshold = 1 × 10−3) for a
PEC Circular Cylinder with Infinity Length. The Plane Wave Is Employed as the
Incident (TE Case). Two Experiments Are Performed: (1) Fixed Discretization and
Increasing Frequency; (2) Fixed Frequency and Decreasing Discretization.

Table 3.2: Fixed Frequency

N
D Matrix-Filling Matrix-Solving Nonzero-Entry

/λ /sec /sec Iter. /GB

1024 2 2132 <1 12 0.008350581

4096 2 5748 1 12 0.012485981

16384 2 18979 3 12 0.016895831

65536 2 73752 92 12 0.022155613

147456 2 171278 434 12 NA

262144 2 387722 273 12 NA
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Table 3.3: Fixed Discretization

N
D Matrix-Filling Matrix-Solving Nonzero-Entry

/λ /sec /sec Iter. /GB

1024 2 2132 <1 12 0.008350581

4096 4 5841 1 25 0.044291437

16384 8 19059 8 38 0.269784003

65536 16 73741 982 142 1.79526937

147456 24 169767 4880 140 NA

262144 32 388535 3672 166 NA

cally studied. We employ fixed discretization here to better explore the quantification.

The fixed discretization case works on the electrically increasing large problem while

the frequency goes up. In addition, based on the previous work (Pan et al., 2014),

the Coiflet based method is relatively stable in the fixed frequency case of the sphere

example, since the electrical size is constant and better accuracy can be obtained by

the employment of smaller discretization.

Table 3.4 lists non-zero entry memory data for jl = 3 together with data for jl = 0

in the previous work (Pan et al., 2014). The discretization is fixed to λ/5 and the

frequency is increasing from 300MHz to 2.4GHz. Numerical data indicates inconspic-

uous increase in memory consumption, leading to that the memory requirement can

still be scaled as O(N6/5 logN) as shown in Fig. 3.8.

Fig. 3.9 compares relative errors of bistatic scattering coefficients between jl = 0

and jl = 3 cases. The sphere is discretized by 32 and 64 Coiflets in θ and φ directions

respectively, rendering 4096 unknowns. Both Coiflet based results are with respect

to FEKO data at 600MHz. It can be observed that, in the case of jl = 3 relative

errors cluster much closer to 0 than those in jl = 0 case. In addition, the RMS of the
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above relative errors is 3.320× 10−2 for jl = 3, compared to 1.014× 10−1 for jl = 0.

In other words, jl = 3 can achieve higher accuracy than jl = 0. Such improvement

on accuracy can also be represented through RMS error comparisons for U matrix

elements. Specifically, in jl = 3 case the RMS errors for diagonal and off-diagonal

elements are 7.579×10−2 and 9.103×10−4 respectively, while in jl = 0 case the errors

are 1.127× 10−1 for the diagonal and 2.118× 10−3 for the off-diagonal. Moreover, in

Table 3.4, the memory consumption for non-zero entries in jl = 3 case only increases

by 0.85% of the total unknowns.

Table 3.4: Fixed Discretization: Non-Zero Entry Memory

N
D Non-zero jl = 0 Non-zero jl = 3

/λ /GB (%) /GB (%)

1024 2 0.0084 (26.72) 0.0093 (29.78)

4096 4 0.0443 (8.86) 0.0485 (9.71)

16384 8 0.2698 (3.37) 0.2794 (3.49)

65536 16 1.7953 (1.40) 1.8038 (1.41)

3.3 Accuracy

In this section, scattering coefficients resulting from four classic metallic models of

circular cylinder, sphere, almond and ogive are selected to validate algorithm accuracy.

The circular cylinder has infinity length and can be treated as a 2-D object. The

rest examples are closed surfaces and they may introduce interior resonance. As is

known, both EFIE and MFIE suffer from inner resonance problems. The combined

field integral equation (CFIE), which is a combination of EFIE and MFIE with a

certain combined coefficient, can overcome the inner resonance problem and reduce
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the matrix condition number, improving the accuracy and accelerating the iteration

speed. Fortunately, for the three closed-surface examples here, each operates below

its 1st resonance point.

All matrices generated from MFIE equations with finest scaling functions are

converted to sparse ones by SFWT with jl = 3 maintained and a threshold. The

iterative solver, e.g., bi-conjugate gradient (Vorst, 1992), is employed to solve the

resulting sparse matrices. The accuracy performance is reported through the com-

parisons with analytical solutions for the cylinder and FEKO simulation results for

the rest.

3.3.1 Circular Cylinder

The conducting circular cylinder is discretized only along the circle direction by

the Coiflets with the discretization of ∆ = λ/10 (totally 64 sampling points), since

the length is infinity. In Fig. 3.10, the excited surface current and bistatic scattering

coefficients display good agreement with the analytical results, respectively. In the

example mentioned in Fig. 3.3, the non-zero entries after SFWT count only 0.35%

of the original impedance matrix, while the accuracy of the excited surface current

and the bistatic scattering coefficients can still be well matched with the analytical

results in Fig. 3.11, respectively.

3.3.2 Sphere

The PEC sphere, as shown in Fig.3.12, is discretized in the spherical coordinates

by the Coiflets in both θ and φ directions with the discretization of ∆ = λ/5 and the

number of 4096 unknowns. To accommodate the non-periodic nature, the intervallic

scalets are employed in θ direction (Pan, 2003; Pan et al., 1999). Since only Coifman

scaling function is used, the original matrix is quite dense. Hence SFWT is applied
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to compress the storage and improve the efficiency.

In Fig. 3.14, the bistatic scattering coefficients of the sphere at 600MHz. The

MFIE result can match that of FEKO, while FEKO needs 15015 unknowns (10010

triangle meshes) with the suggested mesh triangle edge length of λ/8. And it can

still fit the precision with only 9.71% matrix elements left after SFWT of threshold

= 1× 10−3 involved. The resulting impedance matrix is shown in Fig 3.13.

Similarly, Fig. 3.16 depicts the bistatic scattering from the sphere at 300MHz

with 2.5% matrix elements left in Fig. 3.15 after SFWT sparsification. Based on the

study in the previous section, the matrix can be dramatically compressed by involving

SFWT, e.g. 1.41% of the original matrix elements for the smooth surface of 800λ2,

while the precision can still be preserved.

Figure 3.12: Sphere Configuration

3.3.3 Almond

The almond (Woo et al., 93), as shown in Fig.3.17, is employed as the benchmark

for algorithm verification. Fig.3.18 and 3.19 depict the monostatic scattering from
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Figure 3.13: Impedance Matrix of SFWT (Threshold = 1×10−3) for a PEC Sphere
at 600MHz.
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Figure 3.14: Bistatic Scattering of a PEC Sphere at 600MHz (φ = 0◦ Cut). The
Incident Plane Wave Is into the North Pole with the E-Field Parallel to x-Axis.
Simulation Results of SFWT (Threshold = 1× 10−3), Standard Coiflets Method and
FEKO Are Compared.
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Figure 3.16: Bistatic Scattering of a PEC Sphere at 300MHz (φ = 0◦ Cut). The
Incident Plane Wave Is into the North Pole with the E-Field Parallel to x-Axis.
Simulation Results of SFWT (Threshold = 1 × 10−3), Standard Coiflets and FEKO
Are Compared.
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the metallic almond at 1.19GHz and 7GHz, respectively. ’HH’ and ’VV’ are labeled

for backscattering from horizontal and vertical polarization, respectively.

Especially for the case of horizontal polarization, the surface currents on the high

curvature ‘edges’ are extremely sensitive. In the 7GHz case, the bi-conjugate method

converges at 51st iteration by 9.911 × 10−4 (criterion = 1 × 10−3). It is shown that

numerical results of SFWT with 8192 unknowns (threshold = 1×10−4) display agree-

ment with those of standard Coiflets method and FEKO simulation with 11568 un-

knowns (7712 triangle meshes), while the non-zero matrix entries are 5.11% of the

standard method. Fig.3.20 compares simulation results of similar dense sampling

points among SFWT, standard Coiflets and FEKO. Specifically, both SFWT and

standard Coiflet methods have 32768 unknowns, while FEKO has 32775 unknowns

(21850 triangle meshes). Measured data in literature is also provided.

Figure 3.17: Almond Configuration
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Figure 3.18: Monostatic Scattering from the NASA Almond at 1.19GHz. Simulation
Results of SFWT, Standard Coiflets and FEKO Are Compared.
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Figure 3.19: Monostatic Scattering from the NASA Almond at 7GHz. Simulation
Results of SFWT, Standard Coiflets and FEKO Are Compared.
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Figure 3.20: Monostatic Scattering from the NASA Almond at 7GHz. Simulation
Results with Similar Dense Sampling Points Are Compared among SFWT, Standard
Coiflets and FEKO. Measured Data in Literature Is Also Provided.

Figure 3.21: Ogive Configuration
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3.3.4 Ogive

The ogival body (Woo et al., 93), as shown in Fig.3.21, is a classical RCS test

case. In Fig.3.22, the monostatic scattering from the metallic ogive at 1.18GHz is

displayed for both horizontal and vertical co-polarizations. Similar to the almond

case, simulation results of SFWT, standard Coiflets (2048 unknowns) and FEKO

(2067 unknowns or 1378 triangle meshes) are compared. The bi-conjugate method in

SFWT converges at 11st iteration by 9.932× 10−4 (criterion = 1× 10−3).

The problems above have explicit geometric expressions. For more complex struc-

tures, readers are referred to a more general algorithm, which uses arbitrary 3-D

meshes under the EFIE with triangular cells in conjunction with hierarchical bases

for the preconditioning (Vipianaa et al., 2009).

3.4 Random Rough Surfaces

The PEC rough surface under investigation here has a profile defined by Gaussian

probability density function and Gaussian correlation function. The tapered wave

(Braunisch et al., 2000) is applied to the truncated surface as the horizontal incidence,

to resemble the plane wave near the scattering center and decay rapidly to negligibly

weak before reaching the surface edge. The scattering configuration and an example

rough surface profile can be seen in Fig. 3.23. Since it has been proved that the

discretization ∆ = λ/4 is sufficient for the scattering problems of random PEC rough

surface (Pan et al., 2004), we will use this rule of thumb for all problems in this

section.
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Figure 3.22: Monostatic Scattering from the Metallic Ogive at 1.18GHz. Simulation
Results of SFWT, Standard Coiflets and FEKO Are Compared.
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Figure 3.23: Configuration of 3-D Scattering from an Example Rough Surface Pro-
file.
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Figure 3.24: Bistatic Scattering Coefficients from One Realization of the 8λ × 8λ
PEC Rough Surface (σ = 0.2λ, lx = ly = 0.6λ). The Incident Tapered Wave Is at
θi = −40◦ and φi = 90◦ (Horizontal Polarization). Simulation Results of SFWT and
Standard Coiflets Method Are Compared.
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3.4.1 Surface with Intermediate Roughness

Fig. 3.24 depicts the bistatic scattering coefficients from one surface realization

with intermediate roughness (standard deviation σ = 0.2λ and correlation length

lx = ly = 0.6λ on the truncated size of 8λ× 8λ). And horizontal incidence is selected

as θi = −40◦ and φi = 90◦. Here, horizontal incident and horizontal scattering are

referred to as the HH polarization, while VH is for horizontal incident and vertical

scattering. A SFWT threshold of 1 × 10−3 is applied and the convergence of the

bi-conjugate method has been achieved within 7 iterations at 9.617× 10−4 (criterion

= 1×10−3). It can be observed that the far field results have good agreement between

the standard Coiflets method and the one sparsified by SFWT.

3.4.2 Very Rough Surface

Fig. 3.25 illustrates the bistatic scattering coefficients from one realization of the

very rough surface with the following parameters: standard deviation σ = 1.0λ,

correlation length lx = ly = 2.0λ, the truncated surface size 16λ× 16λ. The tapered

incident is specified as θi = −20◦ and φi = 90◦.

The averaged scattering coefficients generated from the original Coiflets based

numerical method, as shown in Fig. 3.26, have been demonstrated to have good

agreement versus experimental data (Pan et al., 2004). Fig. 3.25 shows that for a

single realization, Coiflets based numerical results after SFWT can still well preserve

the accuracy, compared with the original results of the Coiflets method.
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Figure 3.25: Bistatic Scattering Coefficients from One Realization of the 16λ× 16λ
PEC Rough Surface (σ = 1.0λ, lx = ly = 2.0λ). The Incident Tapered Wave Is at
θi = −20◦ and φi = 90◦ (Horizontal Polarization). Simulation Results of SFWT and
Standard Coiflets Method Are Compared.
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Figure 3.26: Average Bistatic Co-Polarized and Cross-Polarized RCS from 576 Re-
alizations of the 16λ × 16λ PEC Rough Surface (σ = 1.0λ, lx = ly = 2.0λ). The
Incident Tapered Wave Is at θi = −20◦ and φi = 90◦ (Horizontal Polarization).
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Chapter 4

ON UNIFIED NUMERICAL ALGORITHM FOR 3-D SCATTERING FROM PEC

AND DIELECTRIC RANDOM ROUGH SURFACES

Scattering of electromagnetic waves from rough surfaces has been applied to mi-

crowave remote sensing. Both analytical models and numerical methods have been

extensively studied during the past decades. The highly robust analytical models of

Kirchhoff approximation (KA) and small perturbation method (SPM) are generally

used within their limited domains of validity (Fung, 1994). Attempts were made to

combine the two analytical models, resulting the two-scale model (Ulaby et al., 1982).

Extending the two-scale to multi-scale, the iterated Kirchhoff of PEC (Fung and Pan,

1987) was derived, which reduces to the KA solution in the high-frequency region and

SPM solution in the low-frequency region, respectively. Using the same approach and

assumptions of (Fung and Pan, 1987), a model of iterated Kirchhoff for dielectric sur-

faces was developed (Fung et al., 1992), and has been widely used in remote sensing.

Other extended analytical models include Kirchhoff with shadowing (Ishimaru et al.,

1996) and Wiener-Hermite (WH) expansion (Eftimiu, 1988; Eftimiu and Pan, 1990;

Eftimiu, 1989), among others.

Compared to analytical methods, numerical algorithms have higher flexibility for

the real-world applications. The most common numerical approach is the integral

equation (IE) method discretized by the MoM. From mathematical point of view,

there are two basic integral equation formulations, namely, the Fredholm IE of 1st

kind, or electric field integral equation (EFIE) and the Fredholm IE of 2nd kind, or

magnetic field integral equation (MFIE). Maxwell’s equations and the surface bound-

ary conditions can be reduced to a single equivalent surface integral equation when
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the surface is a perfect conductor, while in the case of a dielectric interface the coupled

pair of surface integral equations need to be employed (Warnick and Chew, 2001).

In the later case, the normal components of Maxwell’s equations on the surface, as

the original unknowns, yield relationships with the surface derivatives of the surface

currents and thus can be replaced. Though the number of unknowns is reduced, the

price has to be paid for involving the surface derivatives of the surface currents in

the integrand. However, rough surface scattering problems are electrically large, and

thus the discretization of the corresponding surface integral equations can result in a

large dense matrix whose filling time dominants the computational cost. Specifically,

traditional MoM requires the computation time of O(N2) for matrix fill and O(N3)

for matrix inversion, where N is the total number of unknowns. Consequently, sev-

eral advanced algorithms have been proposed in combination with iterative solvers

and fast methods. Based on the AIM (Bleszynski et al., 1993, 1996), the sparse

matrix/canonical grid (SM/CG) method (Pak et al., 1997) has employed the planar

RWG basis with the series Taylor expansion and accelerated matrix-vector multipli-

cations with fast Fourier transforms (FFT) in the iterative solver. And to further

cut down the number of unknowns and efficiently increase the flexibility, the curvilin-

ear RWG basis and the Chebyshev interpolating Green’s function have been applied

instead (Huang et al., 2009; Huang and Tsang, 2012). The forward-backward (FB)

method (Holliday et al., 1996; Iodice, 2002) has been employed for 1-D surfaces with

a modified fast multipole method (FMM) (Torrungrueng et al., 1998) or spectral

acceleration (SA) (Liu et al., 2011; Brennan et al., 2013).

Wavelets have been successfully used to efficiently solve integral equations related

to 3-D scattering and emissivity problems (Pan et al., 2014; Wang and Pan, 2013;

Jin et al., 2016). Particularly, wavelets has been applied together with the iterative

technique, e.g. bi-conjugate gradient stabilized method (Bi-CGSTAB) (Vorst, 1992;
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Huang et al., 2014) for random rough surface (Tretiakov et al., 2004; Pan et al., 2004).

Tapered waves (Braunisch et al., 2000) are used in rough surface scattering to truncate

the computational domain. In (Pan et al., 2004), the tapered wave was imposed as

the incident beam to emulate certain problems in which the footprint of the beam is

smaller than the target, preventing the edge diffraction. Owing to concentrated energy

in spatial/spectral domain and vanishing moments, the implementation of wavelets as

the basis and testing functions produces a sparse impedance matrix and exhibits fast

convergence. Further, the Dirac-δ like property of Coiflets (Pan, 2003) permits fast

calculation of the most off-diagonal entries in the impedance matrix, imposing the

one-point quadrature formula and dramatically reducing the computational efforts in

filling matrix from O(N2) to O(N).

In this chapter, the coupled Fredholm integral equations of the 2nd kind are solved

by the Coiflet based MoM for unknown tangential and normal components of surface

fields on a 3-D dielectric interface. As a system of the Fredholm of the 2nd kind, it is

well-posed. Numerical results are outlined, including method validation and modeling

examples.

4.1 Formulation

4.1.1 Vector and Scalar Integral Equations

Fig. 4.1 sketches the configuration of 3-D scattering. The standard surface integral

equations (Poggio and Miller, 1973; Li and Fung, 1991; Hsieh and Fung, 2003; Fung

et al., 1992) are defined in normalized field quantities with
√
ε ~E = ~e and

√
µ ~H = ~h
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Figure 4.1: Configuration of 3-D Scattering from Random Rough Surface (Horizon-
tal Incident Case).

(Ogurtsov and Pan, 2008)

~n1 × ~hi =
~n1 × ~h1

2
− ~n1 ×

∫

~H1ds
′

0 =
~n1 · ~h1

2
− ~n1 ·

∫

~H2ds
′

0 =
~n1 × ~e1

2
+ ~n1 ×

∫

~E2ds′

~n1 · ~ei =
~n1 · ~e1

2
+ ~n1 ·

∫

~E1ds′

(4.1)

where
~E1 = jk1(n̂

′
1 × ~h1)g1 − (n̂′

1 × ~e1)×∇′g1 − (n̂′
1 · ~e1)∇′g1

~H1 = jk1(n̂
′
1 × ~e1)g1 + (n̂′

1 × ~h1)×∇′g1 + (n̂′
1 · ~h1)∇′g1

~E2 = −jk1(n̂′
1 × ~h1)g2 + (n̂′

1 × ~e1)×∇′g2 +
ε1
ε2
(n̂′

1 · ~e1)∇′g2

~H2 = −jk1
ε2
ε1
(n̂′

1 × ~e1)g2 − (n̂′
1 × ~h1)×∇′g2 −

µ1

µ2

(n̂′
1 · ~h1)∇′g2.

(4.2)

~n1, ~n
′
1 are the surface normals in Region 1

~n1 =
√

1 + f 2
x + f 2

y n̂1,

fx =
∂f(x, y)

∂x
, fy =

∂f(x, y)

∂y

(4.3)
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f(x, y) is the profile of rough surface.

g1, g2 are the Green’s functions in Region 1 and Region 2, and∇′g1, ∇′g2 represent

the gradients of the Green’s functions

g1,2 =
e−jk1,2R

4πR
,∇g′1,2 =

(1 + jk1,2R)e
−jk1,2R

4πR3
~R,

R =
√

(x− x′)2 + (y − y′)2 + (f − f ′)2.

(4.4)

The scalar form of (4.1) can be derived in terms of x, y and n components, with

the following six unknowns






































































Fx(~r) = ~n1 × ~h(~r) · x̂

Fy(~r) = ~n1 × ~h(~r) · ŷ

Fn(~r) = ~n1 · ~h(~r)

Ix(~r) = ~n1 × ~e(~r) · x̂

Iy(~r) = ~n1 × ~e(~r) · ŷ

In(~r) = ~n1 · ~e(~r).

(4.5)

4.2 Expansion and Test with Coifman Scalets

The Galerkin procedure is conducted to discretize the scalar integral equations.

We first expand (4.5) with Coifman scaling functions, and arrive at


















































































Fx(~r) =
∑

i

∑

j

aijϕj0,i(x)ϕj0,j(y)

Fy(~r) =
∑

i

∑

j

bijϕj0,i(x)ϕj0,j(y)

Fn(~r) =
∑

i

∑

j

cijϕj0,i(x)ϕj0,j(y)

Ix(~r) =
∑

i

∑

j

dijϕj0,i(x)ϕj0,j(y)

Iy(~r) =
∑

i

∑

j

eijϕj0,i(x)ϕj0,j(y)

In(~r) =
∑

i

∑

j

fijϕj0,i(x)ϕj0,j(y).

(4.6)
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After substituting (4.6) into the scalar formulation, we conduct testing process by

multiplying ϕj0,m(x)ϕj0,n(y) to both sides of the integral functions and executing inte-

gration. Then the orthogonality and the one-point quadrature are taken to discretize

the scalar integral equations as the matrix form (except diagonal entries), yielding

(

γ2

2
I+ Z

)

X = b (4.7)

Z =

































Aa Ab Ac Ad Ae Af

Ba Bb Bc Bd Be Bf

Ca Cb Cc Cd Ce Cf

Da Db Dc Dd De Df

Ea Eb Ec Ed Ee Ef

Fa Fb Fc Fd Fe Ff

































(4.8)

X =

































amn

bmn

cmn

dmn

emn

fmn

































b =

































hmn

kmn

0

0

0

lmn

































(4.9)

where

γ = 2j0 , G1,2 =
(−1− jk1,2R)e

−jk1,2R

4πR3
,

R =
√

(xm − xi)2 + (yn − yj)2 + (fmn − fij)2,

fmn = f(xm, yn), fij = f(xi, yj)

(4.10)
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and

hmn = γ

[

−∂fmn
∂y

hiz − hiy

]

kmn = γ

[

∂fmn
∂x

hiz + hix

]

lmn = γ

[

−∂fmn
∂x

eix −
∂fmn
∂y

eiy + eiz

]

(4.11)
























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











































































Aa = G1

[

(yn − yj)
∂fmn
∂y

+ (xm − xi)
∂fij
∂x

−(fmn − fij)]

Ab = G1

[(

−∂fmn
∂y

+
∂fij
∂y

)

(xm − xi)

]

Ac = G1

[

∂fmn
∂y

(fmn − fij) + (yn − yj)

]

Ad = jk1g1

[

∂fmn
∂y

∂fij
∂x

]

Ae = jk1g1

[

1 +
∂fmn
∂y

∂fij
∂y

]

Af = 0

(4.12)







































































































Ba = G1

[(

−∂fmn
∂x

+
∂fij
∂x

)

(yn − yj)

]

Bb = G1

[

(xm − xi)
∂fmn
∂x

+ (yn − yj)
∂fij
∂y

−(fmn − fij)]

Bc = G1

[

−∂fmn
∂x

(fmn − fij)− (xm − xi)

]

Bd = jk1g1

[

−1− ∂fmn
∂x

∂fij
∂x

]

Be = jk1g1

[

−∂fmn
∂x

∂fij
∂y

]

Bf = 0

(4.13)
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




















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




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





































































Ca = −G2

[(

−1− ∂fmn
∂x

∂fij
∂x

)

(yn − yj)

+
∂fmn
∂y

(xm − xi)
∂fij
∂x

− ∂fmn
∂y

(fmn − fij)

]

Cb = −G2

[(

1 +
∂fmn
∂y

∂fij
∂y

)

(xm − xi)

−(yn − yj)
∂fmn
∂x

∂fij
∂y

+
∂fmn
∂x

(fmn − fij)

]

Cc = −µ1

µ2

G2

[

∂fmn
∂x

(xm − xi)

+
∂fmn
∂y

(yn − yj)− (fmn − fij)

]

Cd = −jk1
ε2
ε1
g2

[

∂fmn
∂x

− ∂fij
∂x

]

Ce = −jk1
ε2
ε1
g2

[

∂fmn
∂y

− ∂fij
∂y

]

Cf = 0

(4.14)
































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
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






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

































































Da = −jk1g2
[

−∂fmn
∂y

∂fij
∂x

]

Db = −jk1g2
[

−1− ∂fmn
∂y

∂fij
∂y

]

Dc = 0

Dd = G2

[

−(yn − yj)
∂fmn
∂y

−(xm − xi)
∂fij
∂x

+ (fmn − fij)

]

De = G2

[(

∂fmn
∂y

− ∂fij
∂y

)

(xm − xi)

]

Df =
ε1
ε2
G2

[

−∂fmn
∂y

(fmn − fij)

−(yn − yj)]

(4.15)
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















Ea = −jk1g2
[

1 +
∂fmn
∂x

∂fij
∂x

]

Eb = −jk1g2
[

∂fmn
∂x

∂fij
∂y

]

Ec = 0

Ed = −G2

[(

−∂fmn
∂x

+
∂fij
∂x

)

(yn − yj)

]

Ee = −G2

[

(xm − xi)
∂fmn
∂x

+(yn − yj)
∂fij
∂y

− (fmn − fij)

]

Ef = −ε1
ε2
G2

[

−∂fmn
∂x

(fmn − fij)

−(xm − xi)]

(4.16)
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











Fa = jk1g1

[

∂fij
∂x

− ∂fmn
∂x

]

Fb = jk1g1

[

∂fij
∂y

− ∂fmn
∂y

]

Fc = 0

Fd = G1

[(

−1− ∂fmn
∂x

∂fij
∂x

)

(yn − yj)

+(xm − xi)
∂fij
∂x

∂fmn
∂y

− (fmn − fij)
∂fmn
∂y

]

Fe = G1

[(

1 +
∂fmn
∂y

∂fij
∂y

)

(xm − xi)

−(yn − yj)
∂fmn
∂x

∂fij
∂y

+
∂fmn
∂x

(fmn − fij)

]

Ff = G1

[

∂fmn
∂x

(xm − xi)

+
∂fmn
∂y

(yn − yj)− (fmn − fij)

]

.

(4.17)

The evaluations of the diagonal matrix elements are performed by a two-dimensional

quadrature formula numerically. The external integral is carried out by one-point
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quadrature while the internal one is calculated by generalized Gaussian quadrature.

The system matrix is iteratively solved by the Bi-CGSTAB (Vorst, 1992).

4.3 Scattering

For the horizontal incident, the bistatic scattering coefficient in Region 1 is

σα = 4π
|Es

α|2
2ηPinc

(α = h, v). (4.18)

Pinc is the real incident power given in (4.36), and

Es
h = − jk

4π

1√
ε1

∫

dx′dy′ejkr
′ cosψ

{[−Fx(~r ′) sinφs + Fy(~r
′) cosφs]

+ [Ix(~r
′) cos θs cosφs + Iy(~r

′) cos θs sinφs

− In(~r
′) sin θs]}

(4.19)

Es
v = − jk

4π

1√
ε1

∫

dx′dy′ejkr
′ cosψ

{[Ix(~r ′) sinφs − Iy(~r
′) cosφs]

+ [Fx(~r
′) cos θs cosφs + Fy(~r

′) cos θs sinφs

− Fn(~r
′) sin θs]}

(4.20)

where

r′ cosψ = x′ sin θs cosφs + y′ sin θs sinφs

+ f(x′, y′) cos θs.

(4.21)

In general, the scattered intensities from a random rough surface can be decom-

posed into coherent and incoherent components as follows (Tsang and Kong, 2001)

σα co = 4π
|〈Es

α〉|2
2ηPinc

(4.22)

σα inco = 4π
〈|Es

α|〉2 − |〈Es
α〉|2

2ηPinc

. (4.23)
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Coherent components only contribute to the specular reflected and transmitted

directions, whereas incoherent components contribute to all directions. In the limiting

case of a very rough surface, coherent components almost vanish and only incoherent

components remain.

4.4 Incident Power

The tapered wave (Braunisch et al., 2000) is applied to the truncated rough sur-

face. The superposition of a 2-D spectrum of plane wave incident on the xoy plane

from the positive z-axis can be represented as

~Ei(~r) =

∫ ∞

−∞
d~κρe

i(~κρ·~ρ−kzz)ψ(~κρ)~e(~κρ)

~Hi(~r) =

∫ ∞

−∞
d~κρe

i(~κρ·~ρ−kzz)ψ(~κρ)

η
~h(~κρ)

(4.24)

where

~r = ~ρ+ ẑz = x̂x+ ŷy + ẑz

~κρ = x̂κx + ŷκy

kz =











√

k2 − κ2ρ, 0 ≤ κρ ≤ k

−i
√

κ2ρ − k2, κρ > k

ψ(~κρ) =
τ 2

4π
e−

τ2

4 |~κρ−~kiρ|2

(4.25)

The spectrum ψ carries the information on the shape of the footprint of the

incident field and is assumed to be centered about

~kiρ = x̂kix + ŷkiy = k sin θi(x̂ cosϕi + ŷ sinϕi) (4.26)

The polarization vectors ~e and ~h are of the general forms as follows

~e(~κρ) = eh(~κρ)ĥ(~κρ) + ev(~κρ)v̂(~κρ)

~h(~κρ) = ev(~κρ)ĥ(~κρ)− eh(~κρ)v̂(~κρ)

(4.27)
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where

ĥ(~κρ) =











x̂ sinϕi − ŷ cosϕi, κρ = 0

1
κρ
(x̂κy − ŷκx), κρ > 0

v̂(~κρ) =











x̂ cosϕi + ŷ sinϕi, κρ = 0

kz
kκρ

(x̂κy + ŷκx) + ẑ κρ
k
, κρ > 0

(4.28)

The incident fields produced by the tapered wave of different angles on the planar

surface are sketched in Fig. 4.2. It can be clearly seen that, in the case of normal

incidence, the footprints are perfect circles whose centers are fully overlapped with

that of the planar surface. And the intensity on the edges decays to almost zero,

which could avoid the edge effects in scattering problems. For the oblique incidence,

the result is tolerable until θi = 60◦, at which the polar angle the object begins to

act as a reflector that directs energy toward the edges. So there may be problems for

the scattering calculation when the incident angle is larger than θi = 60◦.

The complex incident power of the tapered wave is

Q =

∫ ∫ ∞

−∞
dxdy

~Ei × ~H∗
i

2
· (−ẑ)

=
1

2η

∫ ∫ ∞

−∞
dκxdκy

∫ ∫ ∞

−∞
dΩxdΩy

∫ ∫ ∞

−∞
dxdy

{

e−j(~κρ·~ρ−kzz)+j(
~Ωρ·~ρ−kzz)ψ(~κρ)ψ(~Ωρ)

~e(~κρ)× ~h(~Ωρ) · (−ẑ)
}

(4.29)

Since

~e× ~h = k̂ =
1

k
(kxx̂+ kyŷ − kz ẑ) (4.30)
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Figure 4.2: Incident Field Hy
i of the Tapered Wave (τ = 2.0λ) at: (a) θi = 0◦, φi =

90◦; (b) θi = −40◦, φi = 90◦; (c) θi = −60◦, φi = 90◦.
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The internal integral in spatial domain can be simplified as
∫ ∫ ∞

−∞
dxdye−j(~κρ·~ρ−kzz)+j(

~Ωρ·~ρ−kzz)ψ(~κρ)ψ(~Ωρ)k̂ · (−ẑ)

=

∫ ∫ ∞

−∞
dxdyψ(κx, κy)ψ(Ωx,Ωy)

×
{

e−j[(κx−Ωx)x+(κy−Ωy)y]
kz
k

}

=4π2ψ(κx, κy)ψ(Ωx,Ωx)δ(κx − Ωx)δ(κy − Ωy)
kz
k

(4.31)

Substituting (4.31) into (4.29), we obtain

Q =
2π2

η

∫ ∫ ∞

−∞
dΩxdΩyψ(Ωx,Ωy)

kz
k

×
∫ ∫ ∞

−∞
dκxdκyψ(κx, κy)δ(κx − Ωx)δ(κy − Ωy)

=
2π2

η

∫ ∫ ∞

−∞
dΩxdΩyψ(Ωx,Ωy)ψ(Ωx,Ωy)

kz
k

=
2π2

η

∫ ∫ ∞

−∞
dκxdκyψ

2(κx, κy)
kz
k

=
τ 4

8η

∫ ∫ ∞

−∞
dkxdkye

− τ2

2
|kρ−kiρ|2 kz

k

(4.32)

Consequently, the real incident power is

Pinc = Re(Q)

=
τ 4

8η

∫ ∫

kρ≤k
dkxdkye

− τ2

2
[(kx−kix)2+(ky−kiy)2]

×
√

1− (kx/k)2 − (ky/k)2

(4.33)

Assume the general incident plane is yoz plane. Thus, kix = 0 and kiy = k sin θi.

Pinc =
τ 4

8η

∫ ∫

kρ≤k
dkxdkye

− τ2

2
[k2x+(ky−kiy)2]

×
√

1− (kx/k)2 − (ky/k)2

=
τ 4k2

8η

∫ ∫

kρ≤k
d

(

kx
k

)

d

(

ky
k

)

e−
k2τ2

2 ( kx
k )

2

× e
− k2τ2

2

(

ky
k
−sin θi

)2√

1− (kx/k)2 − (ky/k)2

(4.34)
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Defining kx/k = ρ cosχ, ky/k = ρ sinχ and applying the integral relationship of

exponent and Bessel functions (Jeffrey and Zwillinger, 2007) to the inner integral, we

can derive

Pinc =
τ 2(kτ)2

8η

1
∫

ρ=0

2π
∫

χ=0

ρdρdχ
√

1− ρ2

× e−
(kτ)2

2 [ρ2 cos2 χ+(ρ sinχ−sin θi)
2]

=
πτ 2

4η
e−

(kτ sin θi)
2

2 (kτ)2

×
1

∫

0

I0
[

(kτ)2ρ sin θi
]

e−
(kτ)2

2
ρ2ρ

√

1− ρ2dρ

(4.35)

Let β = (kτ)2 sin θi/2, α = (kτ)2/2 and u = ρ2. Equation (4.35) becomes

Pinc =
πτ 2

4η

α

eβ
2/α

1
∫

0

I0
(

2β
√
u
)

e−αu
√
1− udu (4.36)

Equation (4.36) is the semi-analytical solution to the incident power of the tapered

wave. It only consists of a simple 1-D integral which can consequently speed up

computations of the normalization factor in scattering coefficients. Table 4.1 compares

these analytical solutions of the tapered incident power with numerical data collected

from a 8λ × 8λ plate, under incidents of multiple angles (φi = 90◦ and τ = 2.4λ).

The relative error of analytical solutions to numerical data can be controlled under

1%. For the iterative expression of (4.36), please refer to Appendix A.

4.5 Numerical Results

Numerical validation and examples are presented in this section. All 2-D random

rough surfaces are generated with pre-specified Gaussian statistics, and truncated due

to the limitation of computational resources.
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Table 4.1: Incident Power of the Tapered Wave (τ = 2.4λ)

θ◦i Numerical data Analytical data Error/%

0 0.01187180 0.01194648 0.629

30 0.01025520 0.01032015 0.633

60 0.00562885 0.00566999 0.731

80 0.00213183 0.00213691 0.238

4.5.1 Validations

To assess the accuracy of the solution, a 8λ× 8λ conducting rough surface (εr2 =

1 − 20000j) is generated with a Gaussian rms height h = 0.2λ and a Gaussian cor-

relation length lx = ly = 1.0λ. Four Coifman scalets per wavelength are employed

over the rough surface. A horizontal tapered wave incident is specified as θi = −40◦

and φi = 90◦. The negative θi represents the incident wave is located in the 2nd

quadrant of the incident plane yoz. In Fig. 4.3 the sparsity pattern of the resulting

matrix indicates normal components of H-field and tangential components of E-field

have vanished. However, the impedance matrix is not decoupled. In fact, the three

patches are linked by the sub-diagonals. The excited surface currents and the normal

components of surface fields are selected at a cross section of y = 6.25λ, as shown in

Fig 4.4. The corresponding co-polarized (HH) and cross-polarized (VH) bistatic scat-

tering coefficients from a single realization of the 8λ× 8λ conducting random surface

are displayed in Fig. 4.5. Good agreement can be observed with the MFIE results in

the PEC case (Pan et al., 2004). Similarly, Fig 4.6 displays bistatic scattering from a

single 16λ× 16λ surface with the aforementioned sampling rate and roughness. The

detailed parameters, such as number of unknowns, matrix filling and solving time,

number of iterations and condition numbers are tabulated in Table 4.2. Numerical
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results demonstrate that the reduced PEC model does not suffer from ill-posed prob-

lems, namely, matrix condition numbers are kept small and solutions are stable under

extremely large loss-tangent, because the reduced system is still the Fredholm of the

2nd kind.

Fig. 4.7 shows the average bistatic scattering coefficients resulting from 20 re-

alizations of 8λ × 8λ dielectric rough surfaces with h = 0.2λ, lx = ly = 1.0λ and

εr2 = 6.5 − 1.0j. The sampling rate is eight Coifman scalets per wavelength. Com-

parisons between cases of horizontal incidence and vertical incidence have been con-

ducted with the incident angle of θi = −20◦ and φi = 90◦. It can be seen σHV ≈ σV H ,

namely the reciprocity is satisfied. The average bistatic scattering coefficients from

40 realizations of 16λ× 16λ dielectric rough surfaces with the above parameters are

also provided in Fig. 4.8.

Table 4.2: Parameter Comparisons between PEC Code (MFIE) and Dielectric Code
(Our Normalized Surface IE)

Size Unknowns Matrix-Filling Matrix-Solving Condition

/λ2 Total/sec (diag./%) /sec Iter. No.

PEC
8×8 2048 4103 (100.00) <1 4 5.71

16×16 8192 15204 (99.09) 2 5 11.64

Dielectric
8×8 6144 4670 (99.96) 1 4 85.32

16×16 24576 20123 (96.09) 39 5 259.42

Fig. 4.9 and Fig. 4.10 show the average backscattering results for a conducting

surface (εr2 = 1 − 2000j) and a lossy dielectric one (εr2 = 20 − 20j), respectively,

with two groups of random rough surfaces of different roughness. For each case,

20 realizations of 8λ × 8λ surfaces are applied and a limited range of the incident

angles is selected due to the necessary modifications required on the current Coiflet
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Figure 4.3: Sparsity Pattern of the Matrix for a Single 8λ × 8λ Dielectric Surface
(h = 0.2λ, lx = ly = 1.0λ, εr2 = 1 − 20000j). Blue color represents nonzeros while
white color represents zeros.

model for large incidence. The incoherent components of co-polarization from the

numerical Coiflet method are compared with the results of first-order perturbation

theory (PT), Kirchhoff approximation (KA) and first-order Wiener-Hermite (FWH)

expansion (Eftimiu and Pan, 1990). The first group of the statistical surfaces has the

roughness of kh = 0.1 and kl = 3.0 and thus the perturbation method needs to be

used (Ulaby et al., 1982), since

kh < 0.3

√
2h/l < 0.3

(4.37)

The second group of rough surfaces with kh = 0.66 and kl = 7.0 qualify the
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Figure 4.4: The Magnitude of Surface Currents and Field Normal Components at
the Cross Section of y = 6.25λ for a Single 8λ× 8λ Dielectric Surface (h = 0.2λ, lx =
ly = 1.0λ, εr2 = 1 − 20000j), Compared to PEC Case. (Horizontal Incidence with
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Figure 4.5: Bistatic RCS of a Single 8λ × 8λ Dielectric Surface (h = 0.2λ, lx =
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Figure 4.6: Bistatic RCS of a Single 16λ × 16λ Dielectric Surface (h = 0.2λ, lx =
ly = 1.0λ, εr2 = 1− 20000j), Compared to PEC Case. Both Coherent and Incoherent
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Figure 4.7: Average Bistatic RCS Comparisons between Horizontal Incidence and
Vertical Incidence, Resulting from 20 Realizations of 8λ× 8λ Random Gaussian Sur-
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Figure 4.8: Average Bistatic RCS Comparisons between Horizontal Incidence and
Vertical Incidence, Resulting from 40 Realizations of 16λ × 16λ Random Gaussian
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restrictions of the Kirchhoff scattering model, mathematically as (Ulaby et al., 1982):

kl > 6

l2 > 2.76hλ

(4.38)

Fig. 4.11 and Fig. 4.12 present similar backscattering from 40 realizations of 16λ×

16λ surfaces. It can be seen that the Coiflet results can well match that of the SPM

model for scattering from slightly rough surfaces (kh = 0.1 and kl = 3.0). Again,

good agreement can also be observed between the Coiflet method and the KA model

in intermediate surfaces (kh = 0.66 and kl = 7.0).

4.5.2 Examples

Surface with Intermediate Roughness

Here the truncated 8λ × 8λ dielectric rough surface is modeled with the following

parameters: Gaussian standard deviation h = 0.2λ, Gaussian correlation length lx =

ly = 0.6λ, εr2 = 6.5− 1.0j. Horizontal incidence is at θi = −10◦ and φi = 90◦. Eight

Coifman scalets per wavelength are employed, resulting in the number of unknowns

N = (8× 8)2 × 6 = 24576 and the complex valued system matrix of N2.

Fig. 4.13 depicts the surface induced electric currents and magnetic currents over

one surface realization. The vanishing currents around the boundaries demonstrate

in return the characteristics of the negligible near-edge power density of the inci-

dent tapered wave. The normal components of the induced fields are also included

in Fig. 4.13. Accordingly, Fig. 4.14 presents the radar cross-section for the above-

mentioned realization. The total matrix fill time takes 18611 seconds, in which

(N2−N) off-diagonal entries from one-point quadrature consume 60 seconds (0.322%).

Meanwhile, matrix solving time totals 156 seconds with 18 iterations at the accuracy

of 6.42367× 10−4 (convergence criterion is 1× 10−3).
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Figure 4.9: Average Backscattering RCS Comparisons among Methods of Coiflet,
PT, KA and First Order Wiener-Hermite, for 20 Realizations of 8λ× 8λ Conducting
Gaussian Surfaces (εr2 = 1 − 2000j): (a) kh = 0.1 and kl = 3.0; (b) kh = 0.66 and
kl = 7.0. Only the Incoherent Components of Co-Polarization Are Considered.
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Figure 4.10: Average Backscattering RCS Comparisons among Methods of Coiflet,
PT, KA and First Order Wiener-Hermite, for 20 Realizations of 8λ × 8λ Dielectric
Gaussian Surfaces (εr2 = 20 − 20j): (a) kh = 0.1 and kl = 3.0; (b) kh = 0.66 and
kl = 7.0. Only the Incoherent Components of Co-Polarization Are Considered.
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Figure 4.11: Average Backscattering RCS Comparisons among Methods of Coiflet,
PT, KA and First Order Wiener-Hermite, for 20 Realizations of 16λ×16λ Conducting
Gaussian Surfaces (εr2 = 1 − 2000j): (a) kh = 0.1 and kl = 3.0; (b) kh = 0.66 and
kl = 7.0. Only the Incoherent Components of Co-Polarization Are Considered.
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Figure 4.12: Average Backscattering RCS Comparisons among Methods of Coiflet,
PT, KA and First Order Wiener-Hermite, for 20 Realizations of 16λ× 16λ Dielectric
Gaussian Surfaces (εr2 = 20 − 20j): (a) kh = 0.1 and kl = 3.0; (b) kh = 0.66 and
kl = 7.0. Only the Incoherent Components of Co-Polarization Are Considered.
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In Fig. 4.15, the average bistatic co-polarized scattering coefficients of 300 real-

izations are compared with results of SMCG method (Pak et al., 1997), with good

agreement (except the backscattering enhancement). Both coherent and incoherent

components are included in the comparison above. Fig. 4.16 separates coherent and

incoherent components for bistatic co-polarized and cross-polarized RCS, respectively.

The mismatching can be improved by the utilization of 16λ× 16λ rough surfaces

in Fig. 4.17, while the rest initial parameters are kept identical to 8λ × 8λ case.

Separated coherent and incoherent components are shown in Fig. 4.18. For a certain

single surface realization, total matrix fill time takes 85762 seconds, since the number

of unknowns (N = (16 × 8)2 × 6 = 98304) is as 4 times as the one in 8λ × 8λ case.

Meanwhile, the off-diagonal entries consume 894 seconds (1.042%), corresponding to

the increase of approximately 16 times in off-diagonal matrix elements. Matrix solving

time is still stable with 159 seconds (21 iterations). The convergence criterion (1 ×

10−3) can be generally reached within 25 iterations during matrix solving procedure

for each realization.

Very Rough Surface

The benchmark structures for the dielectric surfaces were fabricated accurately by

a computer-numerical-controlled (CNC) milling machine (Ailes-Sengers et al., 1995;

Phu et al., 1994, 1993; Ishimaru et al., 1996). At the experimental frequencies from

75GHz to 100GHz, the relative permittivity of the structure material is 7−13j, which

is very lossy. We selected the surfaces with a Gaussian probability density function

of h = λ and Gaussian correlation function of lx = ly = 2λ. The truncated 16λ× 16λ

surface is illuminated by a horizontal tapered wave at θi = −20◦ and φ = 90◦. Eight

Coiflets per wavelength are still maintained for this extremely rough surface. The

numerical results are the average of 300 realizations, and the convergence criterion
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Figure 4.13: The Magnitude of Surface Currents and Field Normal Components for
a Single 8λ × 8λ Gaussian Surface (h = 0.2λ, lx = ly = 0.6λ, εr2 = 6.5 − 1.0j) : (a)
Jx; (b) Jy; (c) Mx; (d) My; (e) Hn; (f) En. (Horizontal Incidence with θi = −10◦ and
φi = 90◦)
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Figure 4.15: Average Bistatic Co-Polarized RCS Compared with SMCG Method
over 300 Realizations of 8λ×8λ Random Gaussian Surfaces (h = 0.2λ, lx = ly = 0.6λ,
εr2 = 6.5− 1.0j). Both Coherent and Incoherent Components Are Included.
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Figure 4.16: Average Bistatic Co-Polarized and Cross-Polarized RCS with Coherent
and Incoherent Components Respectively (8λ× 8λ Surfaces).
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Figure 4.17: Average Bistatic Co-Polarized RCS Compared with SMCG Method
over 300 Realizations of 16λ × 16λ Random Gaussian Surfaces (h = 0.2λ, lx = ly =
0.6λ, εr2 = 6.5− 1.0j). Both Coherent and Incoherent Components Are Included.
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Figure 4.18: Average Bistatic Co-Polarized and Cross-Polarized RCS with Coherent
and Incoherent Components Respectively (16λ× 16λ).
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Figure 4.19: Average Bistatic Co-Polarized and Cross-Polarized RCS Compared
with Experiment over 300 Realizations of 16λ×16λ Random Gaussian Surfaces (h =
1λ, lx = ly = 2λ, εr2 = 7− 13j).
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(1 × 10−3) can be reached within 13 iterations during matrix solving procedure for

each realization.

Fig. 4.19 demonstrates that the Coiflets based numerical results have fairly good

agreement with experimental data and analytical solutions (Ailes-Sengers et al., 1995).

The computed cross-polarization scattering coefficients, like the analytical solution in

the same publication, are higher than experimental data, but the curves all follow

similar trend. This is mainly due to the fact that the truncated surface is not large

enough and the resulting edge diffraction affects the sensitive cross-polarization. The

cross-polarization setup of the experiment might also contribute to the discrepancy.

Here the coherent components almost vanish and only incoherent components exist.

Clear backscattering enhancement can be observed in both co- and cross-polarization.
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Chapter 5

CONCLUSION

We present fast numerical scattering algorithms for 3-D PEC and dielectric ran-

dom rough surface in microwave remote sensing. The compactly supported Coifman

wavelets are employed to discretize the surface integral equations. The Coiflets are

continuous, smooth and orthogonal, which permit great reduction of the sampling rate

and dramatic compression of the matrix size. In addition, a Dirac-δ like property of

Coiflets allows fast calculation of the most off-diagonal entries in the impedance ma-

trix, which slashes the computational efforts for matrix filling from O(N2) to O(N).

The MFIE method is applied to solve scattering problems from PEC rough sur-

faces, and the complexity of the algorithm is numerically determined to be in between

O(N) and O(N logN). The resulting impedance matrix is further compressed by

SFWT. The solution accuracy and matrix sparsity can be well balanced by proper

selection of the coarsest level of the total transformation matrix. Numerical exam-

ples are conducted for undulating and sharp surfaces and the results exhibit good

agreement with the RWG-FLFMA based commercial software FEKO. The proposed

algorithm can be easily implemented for parallel computing.

The unified algorithm for dielectric rough surfaces can reduce to the PEC case

when loss tangent grows very large. The Monte Carlo simulations are conducted for

a wide range of material parameters from low-loss dielectrics to PEC cases, and the

results are stable and fast converged. In terms of geometric shapes and statistical

specifications, the algorithm is also robust. Comparing to the published literature

and laboratory measurement, good agreement has been observed.
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APPENDIX A

ITERATIVE SOLUTION OF TAPERED INCIDENT POWER
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Equation (4.36) can be expressed as
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(A.1)
where β = (kτ)2 sin θi/2, α = (kτ)2/2 and u = ρ2.

Expanding (A.1) into series forms (Jeffrey and Zwillinger, 2007), we can approxi-
mately get
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where
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(A.3)

For easy implementation, (A.2) can be transferred to

Pinc =
πτ 2

4η
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n
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(A.4)

where
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m=0
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= exfn

x =
β2

α

(A.5)
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Then we can get several F elements in front.

F0 = ex

F1 = ex(1 + x) = exf1

F2 = (F ′
1x)

′ = ex(x2 + 4x+ 2) = exf2

F3 = (F ′
2x)

′ = ex(x3 + 9x2 + 18x+ 6) = exf3
· · ·

(A.6)

The iterative relationship of f is found as

f0 = 1

f1 = 1 + x = f0(x+ 1) + f ′
0(2x+ 1) + f ′′

0 x

f2 = x2 + 4x+ 2 = f1(x+ 1) + f ′
1(2x+ 1) + f ′′

1 x

f3 = x3 + 9x2 + 18x+ 6 = f2(x+ 1) + f ′
2(2x+ 1) + f ′′

2 x

· · ·
fn+1 = fn(x+ 1) + f ′

n(2x+ 1) + f ′′
nx

(A.7)

Define
fn = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 (A.8)

where a0, a1, · · · , an are real number coefficients.

Similarly,

f ′
n = an · nxn−1 + an−1 · (n− 1)xn−2 + · · ·+ a1

f ′′
n = an · n(n− 1)xn−2 + an−1 · (n− 1)(n− 2)xn−3 + · · ·+ a2

(A.9)

Table A.1: Incident power of the tapered wave (τ = 2.4λ)

θ◦i Numerical data Iterative data Error/%
0 0.01187180 0.01194671 0.630
30 0.01025520 0.01032108 0.642
60 0.00562885 0.00565867 0.530
80 0.00213183 0.00217099 1.837
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Then,

fn+1 = bn+1x
n+1 + bnx

n + · · ·+ b1x+ b0

= fn(x+ 1) + f ′
n(2x+ 1) + f ′′

nx

= xn+1 {an}+ xn {an(2n+ 1) + an−1}
+ xn−1

{

ann
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· · ·
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· · ·

(A.10)

where
m = n+ 1, n, n− 1, · · ·
am+1 = 0 (m+ 1 > n)
am−1 = 0 (m− 1 < 0)

(A.11)

Combined (A.7) and (A.10), the coefficients of ∀f can be solved iteratively. Ac-
cordingly, the incident power has been analytically reformulated into the binomial
expression. Table A.1 compares the iterative solutions of the tapered incident power
with numerical data collected from a 8× 8 plate, under multiple incidents (φi = 90◦
and τ = 2.4λ).
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APPENDIX B

GENERATION OF RANDOM SURFACES BY SPECTRAL DOMAIN METHOD
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In order to perform numerical simulations, a realization has to be generated in a
random rough surface with prescribed surface distribution and autocorrelation func-
tions. The spectral method for the generation of a random surface profile has been
found more convenient especially for surface derivatives.

The 2-D rough surface is described by z = f(x, y), which is a random function
of position (x, y). Various two-dimensional spectra and autocorrelations, which are
basically extensions of the one-dimensional case, can be used to generate the 2-D
rough surface. For reasons of practicality in surface manufacturing, only surfaces
with Gaussian roughness and Gaussian spectrum are considered. The correlation
function R(τx, τy) that describes the coherence between different points on the surface
separated by the distance d =

√

τ 2x + τ 2y and is given by

R(τx, τy) = σ2exp

(

− τ 2x
2l2x

−
τ 2y
2l2y

)

(B.1)

where τx and τy describe the separation between any two points along the x and y
directions.

The coherence length of the surface profiles is given by lx and ly. The power
spectral density function of the surfaceW (kx, ky) is related to the correlation function
via a two-dimensional Fourier transform. For a Gaussian correlation function given
by (B.1) we have

W (kx, ky) =
lxlyσ

2

4π
exp

(

−k
2
xl

2
x

4
−
k2yl

2
y

4

)

(B.2)

It is important to note that in (B.2), there are two distinct correlation lengths, lx
and ly. The surface is isotropic when lx = ly, and anisotropic if lx 6= ly. If one of the
correlation lengths is much greater than the other, the 2-D surface becomes essentially
a 1-D surface for the purpose of the experiments and numerical calculations. The
corresponding rms slopes are defined respectively by ρx =

√
2σ/lx and ρy =

√
2σ/ly.

The rough surface profile z = f(x, y) is related to the 2-D DFT of the power
spectrum as

f(x, y) =
1

LxLy

Nx
2

−1
∑

m=−Nx
2

Ny
2

−1
∑

n=−Ny
2

F (Kxm, Kyn)exp(iKxmx+ iKyny) (B.3)

where

F (Kxm, Kyn) = 2π
√
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2

, m 6= 0, Nx

2
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and
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2πn

Ly
, i =

√
−1 (B.4)

In the above expressions, Kxm and Kyn are the discrete set of spatial frequencies, Lx
and Ly are surface profile lengths in x and y directions, respectively. To generate a
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real sequence, the requirement for F (Kxm, Kyn) is as follows

F (Kxm, Kyn) = F ∗(−Kxm,−Kyn)

F (Kxm,−Kyn) = F ∗(−Kxm, Kyn)
(B.5)

Under the above two conditions, the 2D sequence is “conjugate symmetrical” about
the origin. This means that the reflection of any point about the origin is its complex
conjugate. By using the Fourier coefficients (B.4) we can also find the corresponding
Fourier coefficients for the surface derivatives in the x and y directions

F∂x(Kxm, Kny) := F (Kxm, Kny)× iKxm

F∂y(Kxm, Kny) := F (Kxm, Kny)× iKyn
(B.6)

By taking the inverse 2-D DFT with the Fourier coefficients given in (B.6) we can
also obtain at each sampling point the first derivatives of a random surface profile
in both the x and y directions. Fig. 4.1 is generated from the 2-D spectral method
discussed above.
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