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ABSTRACT

Functional or dynamic responses are prevalent in experiments in the fields of engi-

neering, medicine, and the sciences, but proposals for optimal designs are still sparse

for this type of response. Experiments with dynamic responses result in multiple re-

sponses taken over a spectrum variable, so the design matrix for a dynamic response

have more complicated structures. In the literature, the optimal design problem for

some functional responses has been solved using genetic algorithm (GA) and ap-

proximate design methods. The goal of this dissertation is to develop fast computer

algorithms for calculating exact D-optimal designs.

First, we demonstrated how the traditional exchange methods could be improved

to generate a computationally efficient algorithm for finding G-optimal designs. The

proposed two-stage algorithm, which is called the cCEA, uses a clustering-based ap-

proach to restrict the set of possible candidates for PEA, and then improves the

G-efficiency using CEA.

The second major contribution of this dissertation is the development of fast

algorithms for constructing D-optimal designs that determine the optimal sequence

of stimuli in fMRI studies. The update formula for the determinant of the information

matrix was improved by exploiting the sparseness of the information matrix, leading

to faster computation times. The proposed algorithm outperforms genetic algorithm

with respect to computational efficiency and D-efficiency.

The third contribution is a study of optimal experimental designs for more general

functional response models. First, the B-spline system is proposed to be used as

the non-parametric smoother of response function and an algorithm is developed to

determine D-optimal sampling points of a spectrum variable. Second, we proposed

a two-step algorithm for finding the optimal design for both sampling points and

experimental settings. In the first step, the matrix of experimental settings is held
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fixed while the algorithm optimizes the determinant of the information matrix for

a mixed effects model to find the optimal sampling times. In the second step, the

optimal sampling times obtained from the first step is held fixed while the algorithm

iterates on the information matrix to find the optimal experimental settings. The

designs constructed by this approach yield superior performance over other designs

found in literature.
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Chapter 1

INTRODUCTION

The popularity of optimal experimental designs has been attributed to many non-

conventional experimental design problems. In contrast with standard experimental

designs, which require standard cubic or spherical design regions and normal/linear

models, optimal experiments allow for irregular design regions and non-normal re-

sponses. The idea of optimal experimental design can be found in, e.g., Kiefer (1961);

Kiefer and Wolfowitz (1959). Kiefer (1959) proposed to optimize functionals of the

design matrix, X, which contains the experimental runs or factor settings. These

functionals are aptly called alphabetic optimality criteria, an example of which is

D-optimality.

So far, research on optimal designs have been largely focused on the static response

system, where one experimental run generates one response value. Examples of these

experiments are abound in any literature on experimental designs.

Recently, experiments that generate multiple response values that form a response

curve or a response profile are beginning to garner more attention. Improvement in

measurement technology and data collection practices have ushered interest in design-

ing experiments with functional responses taken over different points of a continuum

variable. Functional response experiments are different from multivariate response

experiments. In multivariate response experiments, several attributes are measured

simultaneously; while in functional response experiments, the same attribute is mea-

sured at different points of a spectrum variable. For example, the spectrum variable

could be time in a longitudinal study.

1



Functional data can be found in a variety of applications in engineering, medicine,

and the sciences. Some examples that motivated this research are presented and

briefly discussed.

1. Designing fMRI experiments. Functional Magnetic Resonance Imaging

(fMRI) is a brain imaging technique for studying human brain functions. In

a typical fMRI experiment, a sequence of mental stimuli are presented to a sub-

ject. At the same time, an MRI scanner scans the subject’s brain to collect brain

activity data by measuring Blood-Oxygen-Level Dependent (BOLD). The mea-

surements produced by the scanner produce a response curve over time. This

information is used by scientists to detect and monitor the activated region of a

subject’s brain over the testing period. fMRI procedures are costly and invoke

human testing ethical considerations. In this regard, it is necessary to design

highly efficient experiments that produce valid and precise statistical inferences

about brain activities.

2. Designing experiments for emission studies. Advancements in engine

design technology target minimizing vehicle fuel consumption and pollutant

emissions. For example, Binde et al. (2012) studied soot and NOx emissions of

diesel engines through the design of a spatially separated pilot injection. The

objective of these experiments usually include determining the optimal position

of pilot injector, the start of injection (SOI), and the number of pilot injections.

Soot temperature and concentration are recorded over the entire engine cycle

using pyrometrics. In this case, the engine cycle is the spectrum variable and the

soot temperature and concentration are the response curves. From a modeling

standpoint, a challenging aspect of this problem is the dynamic behavior of
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the response curves towards the end of the engine cycle. A flexible model

incorporating these dynamics is a required input in the design and analysis of

engine experiments.

3. Determining the optimal measurement points of photovoltaic sys-

tems. Reliability engineers are usually interested in studying the degrada-

tion behavior of photovoltaic systems when exposed to environmental elements.

Modeling the change in system degradation rate helps predict the inflection

point in the degradation path, an indication of a hard failure. This degradation

path can be practically modeled as functional data, with time as the continuum.

Measuring photovoltaic systems, however, is complicated and time-consuming

so taking frequent measurements is impractical. The experimental design prob-

lem for this case is in determining the sampling frequency that will still yield

good models for prediction.

This dissertation aims to address two major problems raised by these three ex-

amples. First, it is necessary to develop general and flexible modeling methods for

analyzing functional responses in the context of experimental studies. Many stud-

ies involving functional data result from observational studies, such as longitudinal

studies on prediction of success in College by Harackiewicz et al. (2002), literacy

development in children by Juel (1988), and health quality of adolescents Swallen

et al. (2005). Modeling functional responses with experimental covariates is not yet

a well-tapped research area, so there is a need to determine which FDA models are

most suitable as practical inputs in the search for optimal experimental designs. As

will be discussed later, a critical assumption in the search for optimal designs is the

model form.
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Second, the functional nature of the responses presents challenging issues in the

design of optimal experiments. In static-response experiments, standard experimen-

tal designs (such as the 2k designs) and algorithms for optimal designs have been

developed to estimate and predict common statistical measures, such as the process

mean and variance. Comparing to models used in static-response experiments, mod-

els for functional data are made more complex by the number and type of model

parameters of interest, and the presence of inherent correlation with respect to the

spectrum variable. Optimal design methods should be adapted to account for this

complexity. In doing so, the designs constructed could be guaranteed to be optimal

or near-optimal with regard to a certain criterion.

Very few publications have dealt with the problem of the design and analysis of

experimental data for functional responses. In modeling, existing researches have

focused on the single-subject scenario (Del Castillo et al., 2012). In experimental

designs, researches have primarily focused on the specific problem of designing exper-

iments for fMRI studies using genetic algorithm. For example, see Kao et al. (2009);

Kubilius et al. (2011); Eck et al. (2013); Mijović et al. (2014). Genetic algorithm is an

optimization technique that has been widely used in finding optimal designs for linear

and nonlinear models (Romeijn and Pardalos, 2002), but it has received criticism for

its computational inefficiency.

This research aims to address the two major problems previously mentioned.

Chapter 2 focuses on comparing different functional data analysis (FDA) models.

The main purpose of this chapter is to introduce the reader to different FDA models,

and to recommend a general and flexible modeling approach for experimental design.

The mixed effects model, and the varying coefficients model are explored in Chap-

ter 2. These models are extended to accommodate multiple experimental test units,

which is the first significant contribution of this research.
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Chapter 3 presents a short review of basic optimal design concepts. In this sec-

tion, the widely used optimal design criteria, such as D-optimality, I-optimality and

G-optimality, are described. Optimal experimental designs are typically constructed

to fulfill one of two major objectives namely, to estimate model parameters or to

predict within the design space. Design criteria that are focused on estimation aim

to improve the quality of parameter estimates by minimizing the variances of model

coefficients. D-optimality is the most popular criterion due to its efficient update for-

mula and invariance to linear transformations, among others (see Pukelsheim (1993),

Fedorov (1971)). A D-optimal design maximizes the determinant of the expected

Fisher information matrix of parameter estimates, which is equivalent to minimizing

the volume of the confidence region of regression coefficients. G-optimality, another

popular prediction-based criterion, minimizes the maximum average prediction over

the design space.

Optimal designs are categorized in literature as exact designs and approximate

designs. Exact designs are constructed using computer algorithms such as the point-

exchange (Fedorov, 1969; Fedorov, 1971) and coordinate exchange algorithms (CEA)

(Meyer and Nachtsheim, 1995). These algorithms are described in detail in Chapter

3. Further, Chapter 3 presents the second significant contribution of this research

namely, an exchange algorithm for finding G-optimal designs called the cCEA. The

demonstration of the development of a coordinate exchange approach in this chapter

lays the groundwork for the development of exchange algorithms for finding optimal

designs for functional responses

Chapter 4 introduces an efficient exchange algorithm for finding D-optimal designs

in fMRI experiments. In an fMRI study, there are two pertinent sampling times – the

interstimulus interval (τisi) and the time between MR scans of the same brain voxel

or region. A stimulus, q, q = 1, 2, ...Q, is shown to the patient every τisi time unit.
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In this chapter, the sampling times are fixed or prespecified but the optimal stimulus

sequence is designed into the experiment. The optimal design problem now becomes

determining the sequence of the Q stimuli that maximizes a functional of the model

matrix.

Two problems are of interest in fMRI studies. The first problem is the estimation

of the Hemodynamic Response Function (HRF) curve, and the second is the detection

of the activated region in the brain. Each problem requires a different functional data

model. In the estimation problem, the shape of the response function is of interest in

estimation while in the detection problem, there is a presumed shape to this function

but the amplitude of the response function that indicates the level of response to a

specific stimulus is unknown. The proposed algorithm derives D-optimal designs for

both cases. The algorithm takes advantage of the sparseness of the design matrix to

improve computational efficiency. More specifically, updating formulas are proposed

to simplify the calculation of the determinant at each iteration.

Chapter 5 provides an extension of the D-optimal design algorithm to more general

FDA problems. The contributions in this chapter are two-fold. We first consider the

problem of determining the optimal sampling points of the spectrum variable. This

problem is motivated by cases where there are limited resources to take measurements

on a process or a system, such as in the case of degradation data in reliability systems.

Among different modeling techniques, we choose the basis splines (B-splines) model

introduced by De Boor et al. (1978). B-splines are non-parametric models that intro-

duce modeling flexibility while require limited assumptions about the functional form

of the data. An efficient algorithm similar to PEA is proposed to find the optimal

sampling times. In this research, the key contribution is in improving the quality of

the candidate space so that only highly-likely candidates are iterated in the search.

This is made possible by taking advantage of the sparsity of the design matrix.
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The second half of Chapter 5 considers the additional problem of estimating co-

variate effects, in addition to determining optimal sampling times. We introduce

a two-step algorithm for constructing the D-optimal design that simultaneously op-

timizes both parameters of the experiment. The proposed algorithm is compared

with hypothetical and existing designs in the literature to prove the efficacy of the

algorithm.

Finally, Chapter 6 recapitulates the important points in the previous chapters, as

well as possible extensions of this research.
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Chapter 2

FUNCTIONAL DATA ANALYSIS MODELS

Notational Conventions

Y Response Vector

N Number of Experiments

B(x) Basis Matrix

t Vector of Sampling Time

θ Vector of Unknown Model Parameters for Smoothing

W Variance-Covariance Matrix of Observations

m Order of B-spline Bases

L Number of Interior Knots for B-spline system

Dm m-th derivative of a function

U Design Matrix for Fixed Effects

Z Design Matrix for Random Effects

Σ Covariance Matrix of Mixed Effects Model

L Covariance Matrix of the Random effects in Mixed Effects Model

β Vector of Unknown Model Parameters in the Mixed Effects Model

ω Vector of Random Effects in the Mixed Effects Model

V Covariance Matrix of the Observations in Mixed Effects Model

G Design Matrix in Split-Plot Model

K Assignment Matrix in Split-Plot Model

Q Number of Stimuli in fMRI Experiment

d Stimulus Sequence

di i-th Element of Stimulus Sequence

τISI Interval Time Between Two Consecutive Stimuli Demonstration

τTR Interval Time Between Two Consecutive fMRI Scans

Xq Design Matrix for q-th Stimulus

X Design Matrix

F(x) Design Matrix for Independent Factors

hq Unknown Parameter Vector for q-th Stimulus

h Concatenation of All hq

∆T the largest denominator that makes both τISI/∆T and τTR/∆T integers

h∗ The Basis Function for Modeling the fMRI Experiment for Detection Problem
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θq Unknown Magnitude in Detection Problem for q-th Stimulus

Mh Moment Matrix for fMRI Estimation Problem

Mθ Moment Matrix for fMRI Detection Problem

Mθ Moment Matrix for fMRI Detection Problem

H Matrix of the Unknown Model Parameters in Second Stage of the Hierarchical Modeling

f(xi) Column Vector That Contains the Values of i-th Experimental Factors

P Design Matrix in Varying Coefficient Model

β(t) Varying Coefficient

λ Non-negative Smoothing Parameters Which Penalize the Roughness of βs

BT Basis Matrix for Modeling the Varying Coefficients Over a Continuum

Dγ The D-optimal Criterion for Varying Coefficient Model

Functional data is a category of observational or experimental data that is col-

lected over a spectrum variable. For every single response variable, a series of data

yit are measured at discrete points of the spectrum variable, t. Processes and sys-

tems that exhibit inherent dynamic behavior may be naturally modeled as functional

data, where typically, information about the dynamic behavior of systems can not be

aptured by static-response models.

In this research, the first natural question is how functional data is analyzed using

statistical models. The construction of optimal experimental designs require the

complete specification of the model form. The focus of this chapter is on the model-

based analysis of functional data. First, a review of these models and other approaches

in literature is presented. Next, the mixed effects and varying coefficients models,

two popular techniques for analyzing functional data, are adapted and generalized

for the purpose of modeling experimental data with multiple experimental units or

subjects. In addition, the varying coefficient model is implemented in a hierarchal

form, where the B-spline bases are fitted to the derived varying coefficients. The steps

of this generalization are provided in this chapter. Finally, the varying coefficients
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and mixed effects models are compared and contrasted based on predictive error and

the practicality as a model choice for designing optimal experiments.

2.1 Review of FDA Approaches

Techniques for modeling functional data are best understood based on two condi-

tions, namely, the presence or absence of co-factors or covariates. In the absence of

covariates, analyzing functional data can be perceived as a generalization of smooth-

ing time series data. Some widely-used time series smoothing techniques include

the simple moving average and EWMA. Stone (1974), Silverman (1985), and Rice

and Silverman (1991) proposed cross-validation methods for determining the level of

smoothing in functional data analysis. However, these methods may under-smooth

the data when the error terms are correlated. In such case, Diggle and Hutchinson

(1989), Altman (1990) and Hart (1991) proposed a model-free approach to smooth

individual response curve. Non-parametric smoothers are also studied in, e.g., Hastie

and Tibshirani (1990), Silverman and Ramsay (2005), and Eubank (1999). These

non-parametric smoothers use the least square estimation method to fit smoothing

functions, such as B-splines, to noisy observations.

In the presence of covariates, the general approach is to smooth functional data

on the spectrum variable and then regress the coefficients of smoothing function on

the covariates. In this regard, approaches for analyzing functional data may be cate-

gorized as either parametric or non-parametric approach. Besse and Ramsay (1986)

explored principal-components analysis for analyzing functional data. Royston and

Altman (1994), and Lesaffre et al. (1999) used fractional polynomial models for mod-

eling functional data against time. Pan and Goldstein (1998) applied non-parametric

spline functions with the same intent. Spline smoothing estimators of model param-
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eters was introduced by Hastie and Tibshirani (1993). This estimator was further

studied by Hoover et al. (1998). A generalized version of varying coefficient model

where factors and parameters of the response model are functions time was proposed

by West et al. (1985). Fan and Zhang (2000) used a two-step approach to estimate

the varying coefficients of this generalized model. Eubank et al. (2004) demonstrated

an efficient way of calculating spline smoothing estimators. Chiang et al. (2001) dis-

cussed the use of ordinary univariate smoothers in the situation where experimental

factors are constant over time.

Furthermore, hierarchal modeling technique has been discussed in literature as

a powerful technique for modeling functional data. Wu and Hamada (2011a), Tsui

(1999), Del Castillo et al. (2012), Verbeke and Molenberghs (2009a) adopted the hi-

erarchal or 2-stage modeling technique for modeling functional data using parametric

methods such as polynomial models. However, simple low-degree polynomial models

might require extension to handle the nonlinear and complicated shape of functional

data. However, at the experimental design stage, response curves are still unobserved

and, sometimes, unpredictable. We need to either increasine the degrees of polyno-

mial or introduce flexible piecewise regression methods such as splines. The B-spline

system is employed in this dissertation due to its model compactness and computa-

tional stability.

2.1.1 Smoothing Techniques for Analyzing Functional Data

Smoothing techniques are widely used to separate desired signals from noise and

the earliest applications of these methods are in time-series analysis. For example,

the exponentially weighted moving average (EWMA) has been used in smoothing
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health surveillance data by Zhou and Lawson (2008), and semiconductor manufac-

turing processes by Fan et al. (2002). Smoothing techniques are typically used for

finding explanatory patterns in response curves.

Any non-linear, flexible function can be used to smooth functional data. A popular

method is to use a series of B-splines to make up a basis system, and then model the

response curve as a linear combination of these B-spline basis functions. Suppose

that the basis system is stored in a matrix, B(t), then the response is given by the

following linear model of basis functions:

y = B(t)θ + ε ε ∼ N(0,Σ). (2.1)

In the simplest case, the M × 1 column vector y includes M consecutive obser-

vations for one subject, the M × 1 column vector t has the values of the spectrum

variable (e.g. time), and θ is the model parameter vector. A basis system has three

tuning parameters that need to be specified beforehand and they are the number of

bases, the location of the knots, and the order of the spline system. The (i, k)-th

element in matrix B(t) indicates the value of the kth basis value at ti. Consequently,

the ordinary least squares estimator of the model parameters in Equation (2.1) is

given by

θ̂ = (B(t)′B(t))−1B(t)′y. (2.2)

If the assumptions of independence and equal variance among observations are

not satisfied, a weighted least squares estimator is more appropriate, i.e.,

θ̂ = (B(t)′W−1B(t))−1B(t)′W−1y, (2.3)
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where the square matrix W is the variance-covariance matrix of observations.

In fact, any basis system can be used for constructing B(t). For example, the

Fourier basis system is given by:

[1, sinωt′, cosωt, sinωt′, cosωt′, ...] (2.4)

Figure 2.1 shows a set of five Fourier bases defined on the range [0,1] with the basic

cycling period equals to 0.5 .

Figure 2.1: A Set of Five Fourier Bases Defined on the Range [0,1] with Period
Equals to 0.5

The Fourier basis system is accurate at modeling stationary data that do not ex-

hibit extreme infimums, supremums, or lack of local behaviors. The B-spline basis

system, on the other hand, is more appropriate for the case are many known local

behaviors on the response curve. Proposed by De Boor et al. (1978), B-spline basis

functions are generated in a recursive way. The range of spectrum variable is par-

titioned into several sub-intervals by prespecified interior knots or break points and

the number of bases needed for an order-m spline function equals to the number of

interior knots plus m. These order-m basis functions can be recursively formed by

13



their lower order basis functions. The B(t) matrix are then obtained by evaluating

these basis functions at t. For example, consider an order-three B-spline basis system,

m = 3. Scale the range of spectrum variable to be [0, 1] with knot points located

at τ = {0, 0.3, 0.6, 0.9, 1}. Figure 2.2 provides the basis functions of this B-spline

system. If this system is evaluated at t = {0, 0.2, 0.3, 0.4, 0.8, 0.9, 1},then the basis

matrix is given by:

B(t) =



1 0 0 0 0 0

0.11 0.66 0.23 0 0 0

0 0.5 0.5 0 0 0

0 0.22 0.72 0.06 0 0

0 0 0.05 0.62 0.33 0

0 0 0 0.25 0.75 0

0 0 0 0 0 1



,

where Bk(t) indicates the value of kth basis value at t.

Figure 2.2: A Set of Six B-Spline Bases Defined on the Range [0,1] with the Knots
Located at τ = {0, 0.3, 0.6, 0.9, 1}.

B-spline systems enjoy the properties such as compact support or the ability to

control differentiability of the function at arbitrary points. The compact support
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property implies that an order-m B-spline function is only non-zero in at-most m ad-

jacent intervals on the spectrum variable. This property results in a relatively sparse

design matrix. As an additional consequence of the compact support property, the

number of differentiations of a spline function can be controlled by adding duplicate

knots. For example, an order-m B-spline function has m − 2 continuous derivatives

at each interior knot. If it is desired to reduce the number of continuous derivatives

at a specific knot location, a duplicate knot can be added to that specific location.

The number of non-zero B-spline basis functions is calculated by adding the order

of B-spline functions to the total number of interior knots or p = m + L, where L

is the number of interior knots. Figure 2.3 shows a set of order-4 B-spline functions

with knots at τ = {0, 0.3, 0.6, 0.9, 1}. Compared to Figure 2.3 (a), 1, 2, and 3 du-

plication of knot 0.6 are added to the basis systems in Figures 2.3 (b), (c), and (d),

respectively. Therefore, the B-splines using the basis systems in Figures 2.3 (a), (b),

and (c) have 2, 1, and 0 continuous derivatives at 0.6, respectively, and the B-spline

using the basis system in Figure 2.3 (d) has discontinuity at this point.

The unknown parameter vector, θ in Equation (2.1) can be calculated by Equa-

tion (2.2) or (2.3). Statistics packages such as R and MATLAB feature estimation

suites or libraries for functional data analysis.
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Figure 2.3: Order Four B-Spline Bases System with 7,8,9 and 10 Bases Functions
Which Are Derived from the Knot Points That Are Located at {0,0.3,0.6,0.9,1},
{0,0.3,0.6,0.6,0.9,1}, {0,0.3,0.6,0.6,0.6,0.9,1} and {0,0.3,0.6,0.6,0.6,0.6,0.9,1}, Respec-
tively from Left to Right.

Aside from using least squares methods, using roughness penalty functions is

another powerful technique for smoothing and estimating functional data. Smoothing

by a roughness penalty requires the quantification of roughness. Roughness penalty

is defined as:

PENm(g(t)) =

∫
[Dmg(s)]2ds, (2.5)

where Dm indicates m-th derivative of the function. The penalty function of Equation

(2.5) is used to penalize the residual sum of squares,

PENSSEλ(g(t)|y) = [y − g(t)]′W[y − g(t)] + λ× PENm(g(t)), (2.6)

In Equation (2.6), g(t) is estimated by minimizing PENSSEλ(g(t)|y), while λ is

a tuning parameter that controls the roughness of the function.

Smoothing is a technique that is only effective when the interest is in modeling

the response function against the spectrum variable, such as time. In the case where

the effects of other covariates are of interest, some paramaterized models, such as the

mixed effects model and varying coefficients model are more appropriate. These two

models are discussed in the next two subsections.
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2.1.2 Mixed Effects Model

The mixed effects model has a wide variety of applications in the field of experimen-

tal design and analysis, such as the split-plots experiment, the repeated measurement

experiments, the fMRI experiment, etc. Using matrix notation, the mixed effects

model is written as:

y = Uβ + Zγ + ε, (2.7)

where

ε ∼ N(0,Σ), γ ∼ N(0,L), Cov(ε, γ) = 0. (2.8)

To simplify analysis, Σ is assumed to be equal to σ2I. On the other hand, the

structure of the covariance matrix of random effects, L, is assumed beforehand or

determined by the problem under study. Another important assumption in the mixed

effects model is that β and γ are independently distributed, implying that:

E(y) = Uβ Cov(y) = V = Σ + ZLZ′ (2.9)

Maximum likelihood estimation (MLE) can be used for estimating the unknown

model parameters of the mixed effects model, which is

β̂ = (U′V−1U)U′V−1y (2.10)

with the covariance matrix as

Cov(β) = (U′V−1U)−1. (2.11)

Equation (2.7) was used in Goos and Jones (2011) for modeling split-plot industrial

experiments, in Laird and Ware (1982) for modeling repeated measures, in Liu and
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Frank (2004) and Kao et al. (2009) for modeling fMRI experimental data, and in

Wu and Hamada (2011a) and Tsui (1999), Del Castillo et al. (2012) and Verbeke and

Molenberghs (2009a) for modeling functional data. In subsequent discussions, we will

present two applications of mixed effects models.

2.1.2.1 Mixed Effects Model in fMRI Experiments

Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique that

aims to study human brain response to stimuli in an organized experiment. In this

section, we discuss how the mixed-effects model is utilized in analyzing data from

fMRI experiments.

In the design of an fMRI experiment, the main concern is in determining the

sequence in which mental stimuli are presented to an experimental subject. Suppose

that there Q types of stimuli and that each stimulus type appears in the experiment

at multiple time points. When Q = 2, a possible fMRI experimental design is a

stimulus sequence such as d = {121020...1}. In this example, the i-th element, di,

i = 1, 2, ..., N , represents the stimulus type presented at the i-th time point. A value

of 0 indicates a rest period where no stimulus was presented. The number of elements

in a design, denoted by N , can be any integer so consequently, there is a large number

of possible designs ((Q + 1)N). Further, the interval between two consecutive time

points is denoted by τISI (e.g., 4 seconds). If the experiment starts at time 0, then

di is presented at time (i − 1)τISI . Each stimulus is presented briefly to the subject

(e.g., 1 second).

The primary goal of fMRI experiments is to collect data on brain activity. The

different regions of the brain react differently to a stimulus type. These brain activities

are analyzed by collecting and studying fMRI time series produced by brain voxels

(three dimensional imaging units) that cover the region of interest. Inferences on brain
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activity at each voxel are made by studying the characteristics of the hemodynamic

response function (HRF). The HRF models the change in the ratio of oxy- to deoxy-

blood evoked by the stimulus (see, e.g., Lazar (2008) for details on the HRF). We

show in Figure 2.4 an example of HRFs evoked by a simple one-type stimulus sequence

with τISI = 3 seconds and τTR = 2 seconds. τTR is the time between two consecutive

scans of the fMRI. Overlapping HRFs are a consequence of short τISI . Under the

widely-used linear time invariant (LTI) system (Lindquist et al., 2008), the heights

of these HRFs accumulate linearly to form an “accumulated HRF” as in Figure 2.4.

We note that, in most cases, the assumption of linear accumulation holds unless τISI

is short, e.g. τISI < 2 seconds (see Dale and Buckner (1997)).

Figure 2.4: The Accumulated HRF of Three HRFs That Correspond to a Design
Sequence D = {1101...} with τISI = 3 and τTR = 2. The Accumulated HRF, Drawn
by a Blue Solid Curve, Is Equal to the Summation of HRFs, Drawn by Black Dotted
Curves.

One common objective of an fMRI study is to estimate the HRF of each stimulus

type. This is called the estimation problem in fMRI design literature. For this specific

objective, the following model is proposed (Liu and Frank, 2004):

y =

Q∑
q=1

Xqhq + Sγ + e. (2.12)
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The elements of this model are subsequently described.

The response vector, y = (y1, ..., yT )′, is the fMRI time series of a voxel obtained

by an fMRI scanner. The length of this time series, T , depends on the experimental

duration and the scanning frequency of the fMRI machine. This model aims to

separate the effects of the different stimuli by estimating the unknown parameter

vector hq, which are heights of the discretized HRF for the q-th stimulus type so that

hq = (hq,1, ..., hq,K)′ for q = 1, ..., Q. Further, in Equation (2.12), K = 1 + bτdur/∆T c,

b.c is a flooring function, ∆T is the largest denominator that makes both τISI/∆T

and τTR/∆T integers, and τdur is the effective period of a single stimulus (i.e. the

duration of the HRF). To demonstrate with a simple example, suppose that the effect

of one stimulus lasts τdur = 32 seconds. In this case, if τISI = 4 and τTR = 2, then

∆T = 2 and K = 17. We note that ∆T may or may not be an integer.

The matrix Xq in Equation (2.12) is a T -by-K matrix populated by 1’s and 0’s.

Its (t, k)th element denotes whether the k-th height of the HRF of the q-th stimulus

type contributes to the t-th fMRI signal, yt.

The nuisance term Sγ models the frequently observed trend/drift of fMRI time

series. Here, S is a specific matrix and γ is the corresponding parameter vector.

Vector e in Equation (2.12) is a T -by-1 noise vector with mean 0 and cov(e) = σ2R

for some σ2 > 0 and a positive definite matrix R.

Because the heights of the discretized HRF of each stimulus type are of interest in

the estimation problem, an experimental design that minimizes the general variance

of the least-square estimate of h = (h′1, ...,h
′
Q)′ is desired.

Another common fMRI study objective is to identify the brain voxels activated

by a stimulus type. In fMRI literature, this is called the detection problem, and the

following linear model often used for this objective:
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y =

Q∑
q=1

Xqh
∗θq + Sγ + e, (2.13)

where h∗ in Equation (2.13) is a basis function that contains information about the

heights of the discretized HRF function. In the detection problem, these heights are

assumed to be known and equivalent for different stimuli. Hence, the HRF of the q-th

stimulus type is modeled using information about h∗ with an unknown magnitude,

θq. The other terms in Equation (2.13) are defined as in Equation (2.12). For the

detection problem, the parameter vector θ = (θ1, ..., θQ)′ is of interest, and it indicates

the strength of brain activity due to each stimulus type.

In likelihood estimation, a statistic of interest is the information matrix, a metric

that indicates the amount of information the data set holds about the unknown

parameters in a statistical model. This matrix is calculated by taking the negative

expectation of the second derivative of the log-likelihood function with respect to the

unknown parameters of the model. The information matrix can be written as:

I(β) = −E[
d2

dβ2
log f(x; β)|β]. (2.14)

Generally, the asymptotic variance of the maximum likelihood estimator is equal

to the inverse of the Fisher information. The information matrix is pertinent in the

design of optimal experiments, and we defer further discussions about this matrix for

Chapter 3. In the meantime, we define the information matrices for the two fMRI

models just described. For the estimation model in (2.12), the information matrix is

derived as:

Mh = X′V′(IT −PVS)VX, (2.15)
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where X is the concatenation of all Xq’s (i.e., X = [X1...XQ]), V is a matrix

such that VRV′ = IT with IT being the T -by-T identity matrix, and PVS =

VS(S′V′VS)−1S′V′ is the orthogonal projection matrix onto the column space of

VS.

For the detection model in (2.13), the information matrix is given by:

Mθ = (IQ ⊗ h∗)′X′V′(IT −PVS)VX(IQ ⊗ h∗), (2.16)

where ⊗ denotes the Kronecker product.

2.1.2.2 Hierarchical Modeling for Functional Data

The mixed effects model for modeling functional data can also be perceived by

using a hierarchical modeling approach (Wu and Hamada (2011a), Tsui (1999),

Del Castillo et al. (2012), and Verbeke and Molenberghs (2009a)).

Consider an experiment in which each experimental unit is subject to a treatment

and where the response is measured over time. The hierarchical modeling technique

consists of two consecutive stages. In the first stage, the response curve over time

is modeled by a non-parametric function, and in the second stage, the coefficients of

the first stage model is modeled as functions of treatments.

In mathematical notation, the two stage hierarchical model is represented as:

yj = B(t)θj + εj εj ∼ NM(0,Σ), (2.17)

and

θj = Hf(xj) + ωj ωj ∼ NM(0,Σω), (2.18)
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where yTj = [y1j, y2j, ..., yMj] is a 1 ×M column vector containing the repeated

measures over the continuum (e.g., time) for the jth profile, B(t) is a M × p basis

matrix that consists of the values of the basis function at specified time points, θj is

a p × 1 column vector of regression coefficients, f(xj) is a q × 1 column vector that

contains the values of experimental factors, and H is a p× q matrix of the unknown

model parameters.

Intuitively, the first-stage model individually smooths out the actual observed data

profile yj, while the second-stage model is used to relate the smoothing parameters to

the experimental factors. As a consequence of the multi-stage modeling, a relationship

between the response function and the treatments is derived.

Del Castillo et al. (2012) and Verbeke and Molenberghs (2009a) proposed com-

bining Equations (2.17) and (2.18) to derive the mixed effects model so that:

yj = B(t)[Hf(xj) + ωj] + εj = B(t)Hf(xj) + B(t)ωj + εj, (2.19)

Using Kronecker product of two matrices, the first term of the right hand side of

the equation can be rewritten as (f(xj)
T ⊗ B)vec(H), where vec() operator stacks

columns of H to one column. Hence, the mixed effects model of Equation (2.19) can

be rewritten as:

yj = Xjβ + Bωj + εj, (2.20)

where Xj = f(xj)
T ⊗ B and β = vec(H). It is easy to show the variance of yj is

given by Vj = Σ + B(t)ΣwB(t)T .
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Now consider an experiment with multiple experimental units and their response

curves. The mixed effects model becomes

Y = Xβ + (IN ⊗B)ω + ε, (2.21)

where NM×1 vector Y is equal to [y1,y2, ...,yN], NM×pq matrix X is (IN⊗B)F(x),

where Np × pq matrix F(x) = [Ip ⊗ f(x1), Ip ⊗ f(x2), ..., Ip ⊗ f(xN)]T . β, the

fixed unknown parameters of the model, is equal to [βT1 ,β
T
2 , ...,β

T
p ]T , where βTk =

[βk1, βk2, ..., βkq]. Finally, the random unknown parameters of the model, ω, is equal to

[ωT1 ,ω
T
2 , ...,ω

T
N ]T where ωTj = [wj1, wj2, ..., wjp]. It can be shown that the covariance

matrix of model parameter in Equation (2.21) is equal to

COV(β) = (X′V−1X)−1, (2.22)

where V = Σ + (IN ⊗B)Σω(IN ⊗B)′.

Therefore, the D-optimal design is to minimize the determinant of COV(β), and the

D-optimal criterion is given by

Dβ = |(X′V−1X)−1|. (2.23)

The derivation of this D-optimality criterion is a critical for optimal experimental

designs in Chapter 5.

2.1.3 Varying Coefficient Model

The varying coefficient model is a powerful and flexible non-parametric regression

technique for modeling functional data. In contrast with the mixed-effects model,

this model takes a one-step modeling approach and allows the coefficients of the

experimental factors to vary over the spectrum variable. Hart (1991), and Hastie and

Tibshirani (1993) proposed several forms of the varying coefficient model with time

as the spectrum variable.
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1. The case when the settings of the experimental factors, Pi, have no time-

dependency:

Y = β1(t)P1 + β2(t)P2 + β3(t)P3 + ...+ βk(t)Pk + ε. (2.24)

2. The case when the model parameters β are dependent on the settings of the

experimental factors:

y = Pβ(P) + ε. (2.25)

3. The case when the model parameters vary linearly with time so that β. × t:

y = Pβt+ ε. (2.26)

4. The case when both factor settings and model parameters are functions of time:

y = P(t)β(t) + ε. (2.27)

The last model form was proposed by West et al. (1985) and is called the general-

ized/dynamic varying coefficient model. This model was comprehensively studied by

Cleveland et al. (1992) and discussed in Eubank et al. (2004). We further expound

on the dynamic varying coefficient model in the discussion below.

2.1.3.1 Dynamic Varying Coefficient Model

In contrast with the mixed-effects model, the dynamic varying coefficient model

in Equation (2.27) can accommodate both cases when the experimental settings of

the factors and the parameters vary over time. Here, the estimation method for this

model is outlined. Expanding Equation (2.27) provides the following form of the

varying coefficient model:

Y = β1(t)P1(t) + β2(t)P2(t) + β3(t)P3(t) + . . .+ βk(t)Pk(t) + ε : (2.28)
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Due to the challenges in estimating βi(t) by ordinary univariate smoothers, Eu-

bank et al. (2004) proposed an efficient computational method for simultaneously

smoothing the response and estimating the coefficient curves. The model for this

particular technique is as shown:

yij =
k∑
r=1

βr(ti)prij + εij i = 1, ..., n, j = 1, ..., ni, (2.29)

where subscripts i and j are indicators of subjects and repeated measures over

time and εij ∼ N(0, σ2). The parameter β(.) in Equation (2.29) is estimated by

minimizing the penalized least squares criterion:

n∑
i=1

ni∑
j=1

{yij −
k∑
r=1

prijgr(ti)}2 +
k∑
r=1

λr

∫ 1

0

(g(m)
r )2(t)dt, (2.30)

over all the functions gr r = 1, 2, ..., k, which has m − 1 absolutely continuous

derivatives and is square integrable at the m-th derivative for m ≥ 1. The smooth-

ing parameters λ1 to λk are non-negative numbers which penalize the roughness of

β1, β2, ..., βk. A unique estimator that minimizes Equation (2.30) was derived by

Eubank et al. (2004) as:

β̂λ = A(λ)y, (2.31)

where A(λ) = QπTM−1−(QπTM−1V−T)(VTM−1V)−1VTM−1 and y = (yT1 , ..., y
T
n )T

and yi = (yi1, ..., yini)
T . Matrix π in A(λ) is defined as:

π =


P1 · · · 0

...
. . .

...

0 · · · Pn

 (2.32)

with
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Pi =


pTi1
...

pTini

 (2.33)

and pij = (p1ij, ..., pkij), j = 1, ..., ni. The matrix Q̃ is calculated by taking the

following integral for any two sampling times:

Q̃ = {
∫ min(ti,tj)

0

(ti − s)m−1(tj − s)m−1

{(m− 1)!}2
ds}i,j=1,...,n. (2.34)

T is defined as:

T =


t̃1
T ⊗ Ik

...

t̃n
T ⊗ Ik

 (2.35)

where t̃i = (1, ti, ..., t
m−1
i )T , i = 1, ..., n, and Q = Q̃⊗diag(λ−1

1 , ..., λ−1
k ), and finally

Eubank et al. (2004) defines V = πT and M = πQπT + I. The fitted values ŷλ can

be calculated by R(λ)y, where

R(λ) = I− (M−1 −M−1V(VTM−1V)−1VTM−1). (2.36)

Therefore, the covariance matrix of the model parameters can be derived from

Equation (2.31) as:

Cov(β̂λ) = A(λ)Cov(y)AT (λ), (2.37)

Further, when Cov(y) = σ2I,

Cov(β̂λ) = σ2A(λ)AT (λ). (2.38)

Finding the D-optimal design is equivalent to maximizing the determinant of the

information matrix,|A(λ)AT (λ)|.
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Eubank et al. (2004) proposed replacing the discrete points estimates of β1, ..., βk

with k smooth and continuous curves. This now becomes a two-stage problem where

βOλl are fitted using basis systems.

The specification of this model is as follows:

βOλl = Blγl + εl l = 0, 1, ..., k (2.39)

where βOλl = (βλl(t1), ..., βλl(tn))T , the basis system Bl an n × p matrix, and γl

the vector of p unknown parameters. Ordinary least squares estimation is used to

estimate γl in the model.

A more general form of Equation (2.39) is:

βλ = BTγ + ε, (2.40)

where BT is

BT =



Ik ⊗B1.

Ik ⊗B2.

...

Ik ⊗Bn.

.


(2.41)

The parameter γ in Equation (2.40) is a (p×k)×1 column vector with the ordinary

least squares estimator:

γ̂ = (BT
TBT)−1BT

Tβλ. (2.42)

The covariance matrix of the γ̂ becomes

cov(γ) = [(BT
TBT)−1BT

T ]cov(βλ)[(BT
TBT)−1BT

T ]T (2.43)

By replacing cov(βλ) with Equation (2.37), cov(γ) can also be written as:

28



cov(γ) = σ2[(BT
TBT)−1BT

T ]A(λ)AT (λ)[(BT
TBT)−1BT

T ]T (2.44)

As a result, the D-optimal criterion becomes:

Dγ = |[(BT
TBT)−1BT

T ]A(λ)AT (λ)[(BT
TBT)−1BT

T ]T | (2.45)

where λ is the smoothing parameter previously defined for basis systems.

2.2 Model Comparison

In this section, we compare the performance of the mixed-effects model and the

varying coefficients model by applying them on the data sets found in Nair et al.

(2002) (the design of an electric alternator) and Grove et al. (2004) (engine mapping

problem).

In Nair et al.’s experiment, electric current is recorded over various RPM (revolu-

tions per minute) settings (x1 = 1375, x2 = 1500, x3 = 1750, x4 = 2000, x5 = 2500,

x6 = 3500 and x7 = 5000). This was accomplished for 108 designed alternators (see

Figure 5.11). Eight controllable factors and two noise factors were considered by Nair

et al. (2002) for the design problem.

For this problem, we consider the mixed effects model and the varying coefficient

models with a fourth-order B-spline basis system and three internal knots. The knots

are located at {0, 0.3, 0.5, 0.6, 1}. In this case, the number of bases is equal to seven.

Figure 2.6 shows the basis system used for modeling the data.

Figures 2.7 and 2.8 show the predicted profiles of 10 randomly chosen response

curves generated by these two models. Figure 2.9 further shows the coefficient curves

29



Figure 2.5: 108 Profile Curves Derived from the Experiments Conducted for De-
signing the Electrical Alternator. The Data Is Available for x1 = 1375, x2 = 1500,
x3 = 1750, x4 = 2000, x5 = 2500, x6 = 3500 and x7 = 5000 Which Are Shown by
Circles. These Points Are Connected by Straight Lines.

Figure 2.6: B-Spline Bases Used for the Mixed Effects and the Varying Coefficient
Models. Seven Bases Functions Are Derived from the Knot Points That Are Located
at 0.3, 0.5 and 0.6 and 1 with Order 4.

fitted using the B-spline basis system for the varying coefficient model. The two

models perform almost equivalently with respect to the sum of squares of error. For

this data set, the mixed effects model performed just a little bit better than the

varying coefficients model.

Grove et al. (2004) discussed an engine mapping experiment where the response,

brake torque, is measured with respect to varying spark advances per sweep. Fifty-five
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Figure 2.7: Fitted Profiles Calculated by the Mixed Effects Model for 10 out of 108
Samples. These Profile Are Chosen Randomly to Show the Model’s Accuracy over
All the Profiles. The Sum of Squares of the Error for This Model over All 108 Profiles
Is Equal to 1.8876e+ 05.

Figure 2.8: Fitted Profiles Calculated by the Varying Coefficient Model for 10 out
of 108 Samples. These Profiles Are Chosen Randomly to Show the Model’s Accuracy
over All the Profiles. The Sum of Squares of the Error for This Model over All 108
Profiles Is Equal to 1.8911e+ 05

spark sweeps were conducted in the study. The data is functional in nature because

torque is measured repeatedly at different spark advances. Figure 2.10) shows the

data set. In this example, the measurement points of the spark advances may be

different at each sweep. Three controllable factors namely, speed (in RPM), load and

AFR were of interest the original study.
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Figure 2.9: Eleven Estimated Predictor Curves Calculated by the Varying Coeffi-
cient Model for Model’s Predictors and Intercept. These Curves Are Modeled in the
Second Stage by the B-Spline System Which Is Shown in Figure 2.6.

Figure 2.10: 55 Profile Curves Derived from the Experiments Conducted for De-
signing the Experiments for Engine Mapping. The Data Is Available for 164 Unique
Degrees Which Are Shown by Circles. These Points Are Connected by Straight Lines.

In our analysis, we used an order-4 B-spline basis system with one internal knot

at 0.5. Figures 2.11 and 2.12 show the predicted sweeps for 10 out of 55 randomly

selected sweeps to demonstrate the predictive performance of the two models. Figure

2.13 also shows the curves fitted to the discrete points from the varying coefficient

model.
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Figure 2.11: Fitted Profiles Calculated by the Mixed Effects Model for 10 out of 55
Samples. These Profiles Are Chosen Randomly to Show the Model’s Accuracy over
All the Profiles. The Sum of Squares of the Error for This Model over All 55 Profiles
Is Equal to 1.96e+ 04

Figure 2.12: Fitted Profiles Calculated by the Varying Coefficient Model for 10 out
of 55 Samples. These Profiles Are Chosen Randomly to Show the Model’s Accuracy
over All the Profiles. The Sum of Squares of the Error for This Model over All 55
Profiles Is Equal to 1.74e+ 04

In addition to the training data, Grove et al. (2004) also provided a validation set

of data with 6 sweeps and 7 observations along different spark advances. Both the

mixed effects model and varying coefficient modeled previously are validated by this

data set. Figure 2.14 and 2.15 show the actual observations and the predicted values

of the mixed effects model and the varying coefficient model, respectively.
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Figure 2.13: Four Estimated Predictor Curves Calculated by the Varying Coefficient
Model for Model’s Predictors and Intercept. These Curves Are Modeled in the Second
Stage by the B-Spline System with Order 4 and Knots at 0, 0.5 and 1.

Figure 2.14: Fitted Profiles Calculated by the Mixed Effects Model for 6 Validation
Sweeps. These Profiles Were Provided by Grove et al. (2004) to Assess the Accuracy
of the Model Developed in Training Stage. The Sum of Squares of the Error for This
Model over All 6 Validation Profiles Is Equal to 3.11e+ 03

In our analysis, the validation and training errors of the varying coefficient model

are slightly smaller than the mixed effects model, but this difference is not statistically

significant.
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Figure 2.15: Fitted Profiles Calculated by the Varying Coefficient Model for 6
Validation Sweeps. These Profiles Were Provided by Grove et al. (2004) to Assess
the Accuracy of the Model Developed in Training Stage. The Sum of Squares of the
Error for This Model over All 6 Validation Profiles Is Equal to 2.82e+ 03

2.3 Conclusion

This chapter provides an overview of the techniques for modeling functional data.

Smoothing techniques, such as the use of basis systems, are flexible in modeling

different shapes and local behaviors of response profiles. For designing experiments

with functional responses, it is necessary to combine the smoothing model with other

parametric regression models on experimental factors (covariates). We discussed two

of such models, the mixed-effects model and varying coefficient model in this chapter.

These modeling techniques were demonstrated by applying them on the data sets

from Nair et al. (2002) and Grove et al. (2004). Both models are equally flexible in

fitting dynamic response data. The flexibility of these models depends on the chosen

order of the bases and the location of knots. In the mixed effects model, the bases

are fitted to the observations, y(t), while in the varying coefficient model, the bases

are fitted to the models’ coefficients (parameters),β(t).

An advantage of the mixed effects model is in its relative simplicity in estima-

tion. On the other hand, the varying coefficient model provides somewhat smoother
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response curves. The primary issue with the varying coefficient model is that an as-

sumption must be made about the structure of the coefficient function with respect

to the spectrum variable. In practice, it is difficult to make reasonable assumptions

about these unknown coefficients beforehand, which makes this model impractical for

constructing optimal experimental designs.
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Chapter 3

OPTIMAL EXPERIMENTAL DESIGNS FOR LINEAR MODELS

Notational Conventions

X Design Matrix

xi i-th Row of the Design Matrix

N Number of Design Points

C Candidate Matrix

O Number of Candidate Points in the Candidate Matrix

c Candidate Point in the Candidate Matrix

x̃i,j changing Coordinates in Row xi

x̃i,−j Fixed Coordinates in Row xi

f(xi) Re-arranged Transpose of Row Vector xi

x(m) Row Vector of a Design Point Expanded to the Model Form

p Number of Model Parameters

K Number of Clusters

MX Cluster With the Largest Maximum Prediction Variance

MU Cluster With the Smallest Maximum Prediction Variance

E Matrix of Evaluation Points Within the Design Space

Al Possible Values to Replace the Current Coordinate Values of a Design Point That is Located in Cluster l

t Number of Iterations

d A Small Number for Expanding the Cluster Search

The construction of experimental designs that are optimal with respect to some

statistical criterion was proposed by Wald (1943). This topic was further developed

by Kiefer in a series of papers that distinguished among these criteria using alphabets

(Kiefer, 1959; Kiefer, 1959II; Kiefer, 1961). The alphabetic optimality criteria have

since become the standard nomenclature in the field of optimal designs.

Optimal designs fall under two general categories namely, exact (discrete) and

continuous (approximate) designs. Continuous designs consider the design region as

a probability measure. The goals of the continuous optimal design problem are to
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determine the minimum number of support points, the location of these points, and

the weights at each support point. While methods for finding continuous designs

are mathematically elegant, criticisms abound regarding this approach when applied

to real cases. For example, suppose that the optimal design for a one-factor exper-

iment is ξ = y1, y2;w1, w2 = (0, 0), (−1, 1); 0.285, 0.715, where (y1, y2) and (w1, w2)

are respectively the support points and weights on these points. The weights are the

relative proportion of replications on each of the two design points. It is sometimes

impossible to find an economic sample size N so that these relative proportions hold

exactly true. For this example, the optimal allocations would be 57, 143 for a total

sample size, N = 200. The key is to find an integer number of runs at each support

point, which could be very large in magnitude. An alternative solution is to approxi-

mate the allocations for a specified number of runs, N . If the experimenter could only

afford N = 20 runs, then the approximate allocation becomes 5.7, 14.3. In practice,

these numbers are rounded up or down. This approach does not guarantee that the

approximate allocation is the optimal design for the specified number of runs.

On the other hand, exact designs begin by specifying the number of runs, N .

Heuristic methods iterate on the objective function until no improvements could be

made for this particular number of runs. Hence, in practical applications, exact

designs are more popular. In this research, the focus is on the construction of exact

optimal designs.

This chapter presents an introduction to algorithms and methods for finding exact

designs for linear models. First, a short discussion about alphabetic optimality and a

description of various optimality criteria are presented in Section 3.1. Exchange algo-

rithms (EA), such as the Point Exchange Algorithm (PEA) and Coordinate Exchange

Algorithm (CEA), are widely-used and will be discussed in the context of the more

popular optimality criteria in Section 3.2. Section 3.3 presents one of the significant
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contributions of this dissertation – a new method for finding G-optimal designs (Saleh

and Pan (2014a)). The algorithms for finding optimal designs for functional data in

subsequent chapters are inspired by the methods discussed in this chapter.

3.1 Alphabetic Optimality Criteria

The most popular optimality criteria, in theory and practice, is the D-optimality

criterion proposed by Wald (1943). In the classical design theory, D-criterion aims

to maximize the determinant of the information matrix. For linear models, the D-

criterion becomes:

max |X ′X|

There are several reasons for its popularity. The D-criterion is useful in the process

of screening out factors, especially in experiments where not much is known about

factor effects. Aside from its usefulness in practice, D-optimal designs have also

been shown to perform well for other design criteria. Finally, the D-criterion is

more computationally efficient than most other design criteria because of its simple

update equations resulting from the special characteristics of the determinant of the

information matrix (Goos, 2002).

Some of the other widely-used design criteria include the A-criterion for screening

and the G- and I-criteria for prediction. The A-criterion optimizes a simpler functional

than the D-criterion namely, the trace of the inverse of the information matrix or:

minTr{M−1}

A-optimality is favored because of its computational efficiency, but A-optimal

designs usually do not perform well with respect to other design criteria. This is
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because it only optimizes with respect to the diagonal elements of the information

matrix, which are proportional to the variances of the coefficient estimates. However,

it ignores the covariance structure among their estimates.

The I-criterion is widely used in experiments where the experimental response

prediction within the design region is the primary objective. The I-criterion minimizes

the average prediction variance in the design region χ:

min

∫
χ

f ′(x)M−1f(x)dx

With standard experimental regions (i.e., cubic, spherical), the I-criterion is easy

to calculate. However, for non-standard regions in higher-dimensional space, evalua-

tion of the integral becomes a non-trivial task.

3.2 Exchange Algorithms for Finding D, A and I Optimality

Fedorov (1969), and Fedorov (1971) introduced the Point Exchange Algorithm

(PEA) for constructing exact D-optimals design for linear models. PEA is favored

for its algorithmic simplicity, but its use in more complex optimality functions is

deterred by its heavy computational load. To reduce the computational expense of

PEA, enhancements were made on the original procedure by Mitchell and Miller Jr

(1970), Wynn (1970), Mitchell (1974), Cook and Nachtrheim (1980), Atkinson and

Donev (1989), Welch (1984), Nguyen and Miller (1992), Vahl and Milliken (2011),

and Nguyen (1993). Some of these algorithms have been implemented in statistical

software, such as Design Expert.

To explain how PEA works, suppose that a D-optimal design needs to be con-

structed in N runs. PEA starts with an initial design matrix and then iterates to

substitute some or all of its rows (design points) with rows from a candidate matrix.

To implement the algorithm, a set of K candidate points is enumerated to form a
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candidate set or candidate matrix C. The algorithm randomly selects N candidate

points to construct the initial design matrix, X. Next, a candidate point that max-

imizes c(X′X)−1c′ is selected from the candidate set. Maximization of this update

function results in maximizing the increase in the determinant of the information ma-

trix through the addition of the candidate point. This point is added into the starting

design matrix, expanding the number of rows to N+1. Every row vector from the ini-

tial design, xi, i = 1, . . . is a candidate for deletion. The algorithm iteratively deletes

each of the row vector and recalculates xi(X
′X)−1x′i with the new candidate point.

The design point deletion that results in the minimum value of xi(X
′X)−1x′i results in

that point being removed from the design matrix. The algorithm continues to iterate

until the value of Fedorov’s delta function, (1 − xi(X
′X)−1x′i)(1 + c(X′X)−1c′) − 1,

becomes very small.

The PEA above is a modified version of the proposals by Wynn (1970) and Mitchell

and Miller Jr (1970). Mitchell (1974) proposed further computational improvements

by allowing more than one row to be added or deleted from the design matrix at each

iteration.

PEA obviously has some intrinsic drawbacks:

1. The size of the candidate matrix becomes enormous even for a moderate number

of experimental factors. For instance, in an experiment with 4 factors with each

factor having 100 possible values, the candidate set contains O = 1004 candidate

points. As a result, the computation time exponentially increases with the size

of the candidate set.

2. The construction of an optimal design requires relatively expensive matrix com-

putations. In the previous example, 106 +N matrix multiplications are required

to find a candidate replacement for a current point in the design matrix.
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The computational complexity of the PEA is NP-hard, as its run time increases

exponentially with the increase in the number of model terms. For high-dimensional

problems, it could also happen that the candidate matrix may become so large that it

cannot be stored in a regular office computing machine. These notable disadvantages

of the PEA motivated work on a more efficient algorithm that could run in polynomial

time. In 1995, the Coordinate Exchange Algorithm (CEA) was proposed by Meyer

and Nachtsheim (1995) for linear models. This algorithm starts with a feasible random

design matrix. The variance functions of all rows (design points) in the design matrix

are then calculated and sorted. The variance function of a single design point is

calculated by:

v(xi) = xi(X
′X)−1x′i, (3.1)

where X is the design matrix of a linear model and xi is the ith row of X. The rows

with the smallest values of the variance function are selected for exchange. Similar

to PEA, the variance function updates the determinant of the information matrix,

and a small values implies that the point has a minimal impact on the value of the

determinant. Following Meyer and Nachtsheim’s notation, let x̃i,j be the coordinates

in xi that will be modified and x̃i,−j be the unchanged coordinates at each iteration.

The changing coordinates will be replaced by x̃j, where x̃j ∈ C and C is the set of all

possible values for these coordinates. Denote f(xi) as a vector that is a re-arranged

transpose of the row vector xi so that

f(xi) =

 f1(x̃i,j)

f2(x̃i,−j)


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where f1(x̃i,j) and f2(x̃i,−j) correspond to the changing and fixed coordinates,

respectively. In other words, the vector f(xi) is partitioned into two groups – changing

and fixed coordinate vectors. A p× p matrix A is defined as

A = [1− v(xi)](X
′X)−1 + (X′X)−1f(xi)f

′(xi)(X
′X)−1. (3.2)

f(xi), A can be partitioned into:

A =

A11 A12

A21 A22

 , (3.3)

A11 is a sub-matrix that involves the changing coordinates, while A22 involves

the fixed coordinates. Replacing the changing coordinates x̃ij by x̃j, the modified

Fedorov delta function becomes:

∆ij
D(x̃ij, x̃j, x̃i,−j) = f ′1(x̃j)A11f1(x̃j) + a′f1(x̃j) + b, (3.4)

where a = 2A12f
′
2(x̃i,−j) and b = f ′2(x̃i,−j)A22f2(x̃i,−j) + (1− v(xi)).

The candidate x̃i that maximizes the delta function replaces the current coordi-

nates x̃ij. These steps repeat for every coordinate from the selected rows until no

more improvements are made in the delta function. It is also recommended that the

algorithm iterates on multiple random starting designs due to the dependency of the

final design on the selected starting random design. An obvious advantage of the

CEA over the PEA is the absence of a set of candidate points, resulting in improved

computational efficiency and reduced memory requirements.

Meyer and Nachtsheim (1995) also adapted the CEA for constructing optimal

designs for other criteria, such as A- and I-optimality. Similar to the CEA for D-

optimality, CEAs for these linear criteria start off by constructing a feasible randomly
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generated design. Instead of the variance function in Equation (3.1), the deletion

function is revised in Equation (3.5) to identify the rows for exchange.

dL(xi) =
φ(xi)

1− v(xi)
, (3.5)

where φ(xi) = tr(Df(xi)f
′(xi)D), and D = (X′X)−1 and v(xi) are similar to the

parameters in Equation (3.1). The delta function becomes:

∆ij
L (x̃ij, x̃j, x̃i,−j) =

f ′1(x̃j)B11f(x̃j) + b′f1(x̃j) + d

f ′1(x̃j)A11f1(x̃j) + a′f1(x̃j) + c
, (3.6)

A, a and c are as given in Equation (3.2) and Equation (3.4). The B matrix is given

by

B = [1− v(xi)][Ip + 2Df(x)f ′(x)]DMD− φ(xi)D, (3.7)

where for I-optimality, M =
∫
R

f(x)f ′(x)dx and for A-optimality, M = I. With

respect to a partitioned B matrix, b = 2B12f
′
2(x̃i,−j) and d = f ′2(x̃i,−j)B22f2(x̃i,−j),

which have constant values for each coordinate.

The coordinate exchange algorithm is a significant milestone in the development

of optimal experimental design algorithms. The efficiency of this algorithm in find-

ing exact optimal design for linear models inspired extensions to accommodate both

Generalized Linear Models (see Gotwalt et al. (2009); Rodriguez et al. (2010); Saleh

and Pan (2014b)) and models for mixture experiments (see Piepel et al. (2005)).

It is noteworthy that besides exchange algorithms, there are also proposals from

mathematical optimization theory that have been used to construct optimal designs.

Examples of these include simulated annealing (SA) (see Haines (1987); Meyer and
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Nachtsheim (1988)), genetic algorithm (GA) (see Broudiscou et al. (1996); Heredia-

Langner et al. (2003)), and an integer programming method (see Welch (1984)).

3.3 An Algorithm for Finding Exact G-Optimal Designs

In this section, we present a clustering-based Coordinate Exchange Algorithm

(cCEA) for finding exact, G-optimal designs. We compared the performance of this

algorithm with other proposals in literature with respect to G-efficiency and compu-

tational efficiency.

Suppose that the model of interest is a polynomial regression model given by

y = Xβ+ε, where X is the expanded design matrix or model matrix, β is the vector

of parameters, and ε is random error so that ε ∼ N(0, σ2I). The variance-covariance

matrix of the least squares estimator of the parameters is given by:

Cov(β̂) = σ2(X′X)−1, (3.8)

where X′X is also known as the expected Fisher information matrix. For a design

point inside the experimental design region, the variance of a predicted response is

calculated as:

V ar(ŷ(x)) = σ2x(m)(X′X)−1x(m)′, (3.9)

where x(m) is the row vector of a design point expanded to the model form. A scaled

version of Equation (3.9) is often used in comparing designs to take into account the

number of runs (N) and disregard the error variance:

SPV (x) =
NV ar(ŷ)

σ2
= Nx(m)(X′X)−1x(m)′. (3.10)
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A G-optimal design is a design that minimizes the maximum scaled prediction

variance over the entire design space. That is, for a design ζ,

Minζ∈Ξ[Maxx∈RSPV (x)], (3.11)

where Ξ is the set of all possible designs and R is the design region. G-optimality

considers the worst case scenario (the largest prediction variance) across the design

space.

To generate an exact design, the common approach is to discretize the range of

the experimental variables. For example, for 5 design variables each with 10 possible

values, there are 105 distinct design points in the design space. To generate a design

in 8 runs, there are

 105

8

 possible design combinations. An exhaustive search

over this complete set of candidate designs to find the optimal is computationally

tedious.

By the General Equivalence Theory (Pukelsheim, 1993), an approximate or con-

tinuous D-optimal design for a linear model is also G-optimal. While the GET is,

in general, not applicable to exact optimal designs, Atwood (1969) showed that this

property can be used to define G-efficiency:

Gefficiency =
p

Maxx∈RSPV (x)
. (3.12)

where 0 ≤ Gefficiency ≤ 1 and p is the number of model parameters.

Various exchange algorithms for constructing D-optimal designs have been imple-

mented in commercial software. In particular, CEAs are efficient for high-dimensional

design problems. However, due to the complexity of the G-optimality criterion, there

is no established CEA proposals for G-optimal designs, with the exception of the

method in Rodriguez et al. (2010). Further, there are no exchange algorithm propos-
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als for finding G-optimal designs under GLMs. In the following section, CEAs for

G-optimal design construction for linear models and GLMs are proposed.

3.3.1 The Clustering-Based Coordinate Exchange Algorithm (cCEA)

One of the obstacles in finding G-optimal design is the repeated evaluation of pre-

diction variance function on a large set of candidate design points. Borkowski (2003)

suggested evaluating the prediction variance function on at most 5p−1 design points,

where each scaled independent variable could only take values from {0,±0.5,±1}.

By this method, it is likely that the true maximum prediction variance is located

outside the search grid, hence it under-optimizes the maximum prediction variance.

To search through a larger design region, Borkowski (2003) proposed the genetic al-

gorithm (GA). Rodriguez et al. (2010) suggested a coordinate exchange algorithm

with Brent’s optimization method, where the random starting design is optimal in

some way (e.g, D-optimal or I-optimal). However, Brent’s method is a local search

method, so it could be trapped in a local optimal point.

The proposed algorithm in this section is a hybrid of the point exchange and the

coordinate exchange algorithms. It proceeds in two steps. In the first step, we try

to find a near G-optimal design by clustering and exchanging design points. In the

second step, a coordinate exchange algorithm is applied on the initial design matrix

obtained from the first step to generate a design with better G-optimality. In general,

the first step can quickly identify the neighborhood in which the optimal design points

are likely to be located. In this way, it relieves the exhaustive search requirement that

results in decreased computational time. In the second step, the coordinate values of

some design points are systematically adjusted within a limited range so as to further

reduce the maximum prediction variance.
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3.3.1.1 Step 1: Clustering and Exchanging Candidate Design Points

Let the design space be a hypercube and let the value of each independent variable

vary from -1 to 1. To initiate design construction, a random design matrix, denoted

by X, is generated. The G-efficiency and the maximum prediction variance are then

calculated for the current design matrix. A set of candidate design points, denoted by

C, are randomly generated. In order to cover the design space as much as possible, the

candidate set must have a large number of candidate design points. For instance, for

a linear model with 4 factors, we recommend a candidate set of at least 104 candidate

design points. The G-optimal design is constructed by following these steps:

1. Cluster the candidate design points in C into K groups. The value of K may

vary for different applications, but we recommend 5 to 10 clusters in order to

create a diverse set of points while avoiding a big increase in computational

burden.

2. Based on the current design matrix X, evaluate the prediction variance on all

candidate points and find the maximum prediction variance in each cluster.

Denote the cluster with the largest maximum prediction variance as MX and

the cluster with the smallest maximum prediction variance as MU .

3. Determine the cluster membership of each design point in the current design

matrix. If there is no design point in MU , choose the cluster that has the

next smallest maximum prediction variance and denote it as MU . Repeat this

process until there is at least one design point in MU .

4. Remove one design point from theMU cluster, thus the design matrix is changed

to an (N − 1) × p matrix. Based on this modified design matrix, find the

maximum prediction variance from the candidate points in MU and calculate
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the change in maximum prediction variance. Repeat this process for all design

points in the MU cluster. Finally, delete the design point that causes the

minimal change in maximum prediction variance.

5. Use the modified design matrix to evaluate the prediction variance on each

candidate point in the MX cluster. Add the candidate point that has the

maximum prediction variance into the design matrix.

6. Repeat Steps 2-5 until no meaningful reduction in the maximum prediction

variance of each cluster is observed.

Five to ten clusters are suggested because if there are too few clusters, the MU

cluster may contain many design points, increasing the computational time for search-

ing for the design point to be excluded. On the other hand, if there are too many

clusters, it is likely that the MU cluster may not contain any design point, then

the algorithm has to repeatedly search for a new MU , and this will also cause fewer

candidate points in MX to be considered for replacing the point in MU and hinder

the improvement of the design matrix after each iteration.

The proposed clustering and point exchange algorithm partitions the design space

into several sub-regions and finds the sub-region that has the maximum prediction

variance. Adding a new design point in this sub-region can greatly reduce the pre-

diction variance in this local region. Concurrently, the algorithm identifies a design

point from the current design matrix that does not induce a large change on the local

prediction variance if this point is removed. Thus, it is better to exchange this design

point with the candidate point in the large prediction variance sub-region.

Figure 3.1 shows the transition of a design point from one cluster to another cluster

on a two-dimensional design space. Figures 3.1(a) and 3.1(b) are the scaled prediction

variance graphs of the initial experimental design and the design after one iteration,
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respectively. Figures 3.1(c) and 3.1(d) are their corresponding design spaces, where

candidate points are clustered and design points are marked by black dots. Cluster

1 initially has very large scaled prediction variance (see Figure 3.1(a)), but after

removing one design point in Cluster 2 and adding one design point in Cluster 1, the

scaled prediction variance in Cluster 1 is significantly reduced (see Figure 3.1(b)).

Figure 3.1: The Scaled Prediction Variance Plot and the Design Space Region That
Is Divided into 5 Clusters. From the Left Panel to the Right Panel, One Design Point
in the MU Cluster Is Replaced by a Candidate Point in the MX Cluster.

Although the proposed clustering and point exchange algorithm can generate a

good design for a linear model, it does not guarantee finding the exact G-optimal

design, especially for a complicated model such as response surface models and GLMs.

Thus, we use the design matrix produced in this step as the initial matrix for further

improvement.

3.3.1.2 Step 2: Coordinate Exchange of Design Matrix

A coordinate exchange algorithm is proposed to fine-tune the initial design matrix

found in the point exchange step. Same as the first step, we will first partition the

whole design space into several clusters, and then the coordinate ranges of these
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clusters will be utilized to reduce the computational effort of the coordinate exchange

step.

Unlike PEA, where current design points are replaced by candidate design points,

CEA works directly on one or more coordinates of an existing design point. From the

initial design matrix, the design points that need to be modified are first determined.

As the G-optimality criterion is more sensitive to the design points that are located

in the regions with large prediction variance, those design points will be modified.

We first randomly generate a large set of evaluation points within the design

space. They are denoted as E and are clustered into k clusters. To increase diversity

of evaluation points, E should be different from C used in the previous step. Set up a

candidate value set Al, l = 1, 2, ..., k, for each cluster. The elements in Al are possible

values to replace the current coordinate values of a design point that is located in

cluster l. The range of the candidate value set for the ith variable (xi) in cluster l is

given by (Minil,Maxil), where Minil is defined by

Minil = max(min(Eil),−1),

and Maxil is defined by

Maxil = min(max(Eil), 1),

where Eil denotes the ith coordinate values of evaluation points in cluster l. Fur-

thermore, we would widen this range slightly after each search iteration. At the tth

iteration, the ranges become

Minil = max(min(Eil)− d× (t− 1),−1),

and

Maxil = min(max(Eil) + d× (t− 1), 1),

where d is a small number, such as 0.01. Figure 3.2 shows how the search range is

widened after one iteration.
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Figure 3.2: Expanding the Design Region after One Iteration

The proposed coordinate exchange algorithm consists of the following steps:

1. Cluster the evaluation points in E into k groups.

2. Determine the cluster membership of each of the current design points.

3. Order clusters based on their largest prediction variance values on the evaluation

points in these clusters.

4. Consider the design points in the cluster with the largest prediction variance.

Exchange the value of the first coordinate of one design point with an ele-

ment in its candidate set A1l. Recalculate the maximum prediction variance of

evaluation points. Find the element that can produce the largest reduction in

maximum prediction variance and use it to replace the current coordinate value

of the design point. When calculating the information matrix of a new design

matrix, X′NewXNew, the inverse of information matrix can be updated by

(X′NewXNew)−1 = M−MB(I + MB)−1M (3.13)

with

M = (X′X)−1 B = x′
∗
ix
∗
i − a a = x′ixi,
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where xi is the row of the old design matrix to be modified and x∗i is the new

row in the new design matrix. Note that M and a are constants within each

iteration.

5. Repeat Step 4 for all coordinates of all design points in this cluster, until

no further improvement in reducing the maximum prediction variance can be

achieved.

6. Compute the Euclidian distance of new points to k cluster centroids, and reas-

sign their cluster memberships.

7. Monitor the reduction of maximum prediction variance on the evaluation points.

If no meaningful reduction can be obtained, stop; otherwise, begin to modify

the coordinate values of the design points in the cluster with the next largest

prediction variance.

An example of G-optimal design points obtained by the coordinate exchange al-

gorithm is shown in Figure 3.3, along the initial design points obtained by the clus-

tering and point exchange algorithm. One can see that during the step of coordinate

exchange, 3 initial design points are modified and 5 initial design points remain un-

changed. Among those modified points, 2 of them still belong to their initial clusters

and one design point has moved to its neighbor cluster.

Because the candidate and evaluation sets are randomly selected, it is recom-

mended that both PEA and CEA steps should be repeated more than 10 times.

Notice that the proposed algorithm cannot be applied to saturated or supersaturated

designs due to the singularity of the information matrix from those designs.

The computational complexity of our algorithm depends on the size of candidate

set, the number of rows of design matrix and the number of clusters. In the point
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Figure 3.3: Compare the Initial Design from the First Step and the Final Optimal
Design Generated by cCEA.

exchange step of cCEA, let C be the number of elements in the candidate set, K and

N be the number of clusters and the number of rows of design matrix, respectively. We

assume that C is significantly larger than N , and N is larger or equal to the number

of columns of design matrix. The computational complexity of k-means clustering

with C candidate points is O(CKN). The complexity of calculating the inverse of the

information matrix, (X ′X)−1, is O(N3) and the complexity of calculating prediction

variances is O(C2N). Sorting out the maximum or the minimum prediction variance

requires O(C) order of time. In the worst case scenario, N − 1 design points may fall

into the cluster MU and all of these points need to be evaluated to find the row with

the least effect on the prediction variance; then, the computational complexity of this

step equals to O(C2N2). Because these operations are sequential rather than nested,

the total computational requirement is the sum of individual operation requirements;

therefore, the computation of the point exchange step is in the polynomial order of C,

K and N . Similarly, it can be shown that the computation of the coordinate exchange

step of cCEA is solvable in the polynomial order of the number of candidate points,
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the size of design matrix and the size of possible coordinate values. In summary, the

cCEA algorithm is solvable in polynomial time.

3.4 Results

We compare the performance of the G-optimal designs generated by the cCEA

in Tables 3.4 to 3.4 with the designs generated in Borkowski (2003) and Rodriguez

et al. (2010) for linear models with 2 to 5 factors and where the desired number of

runs varies from 7 to 26 design points. We also show that the cCEA is superior with

respect to computing times.
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Table 3.1: G-Optimal Designs for
Experiments with Two Factors

N x1 x2

1 0.063523 0.126625

2 0.995599 0.063243

3 -0.99941 0.959794

4 -1 -0.9092

5 0.225831 0.990961

6 0.799327 -1

7 0.998935 0.978566

1 1.11E-16 0.8

2 -0.79957 0

3 -1 -1

4 -1 1

5 1 1

6 0.99949 0.1

7 1 -1

8 0 -0.99268

1 0.028336 0.998537

2 0.1 -0.2

3 -1 0.988177

4 0.997797 -1

5 -1 -1

6 0.990061 0.031361

7 -0.99996 0.1

8 0.997289 0.973432

9 -0.10749 -0.99939

1 0.4 -0.8

2 -0.5 -0.08299

3 -0.2 0.981516

4 0.992719 0.948816

5 -1 -0.8

6 -1 0.964564

7 0.999772 0.201816

8 -0.99874 0.1

9 0.994314 -0.97379

10 -1 -1

N x1 x2

1 -1 -0.6

2 0.7 -0.8

3 -1 0.322269

4 -0.1 0.1

5 1 -1

6 1 0.3

7 -1 1

8 -0.9 -1

9 1 0.971705

10 -0.2 -0.9

11 -0.01374 1

1 -0.8 -0.9

2 1 0.2

3 -0.6 0.6

4 0.1 -0.34376

5 -0.95982 -0.99399

6 0.317641 1

7 1 -1

8 1 1

9 -0.99955 0.248549

10 -1 1

11 0.2 -0.6

12 1 -1
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Table 3.2: G-Optimal Designs for Ex-
periments with Three Factors

N x1 x2 x3

1 0.596941 1 -1

2 0.9 -0.9 0.998856

3 0.996941 0.060626 -0.2

4 -1 -0.6 -1

5 -0.1 -1 -0.3

6 0.9 1 0.8

7 -0.2 0.1 0.904886

8 -0.9 1 -0.69712

9 -1 -1 0.854886

10 -0.9 0.9 0.9

11 0.9518 -0.82285 -1

1 -0.26109 -0.28743 0.050025

2 0.809143 -1 -0.8

3 0.832277 -1 0.906175

4 0.968781 0.457014 -1

5 8.33E-17 1 -1

6 -0.9 -0.9 -1

7 -1 0.743678 -0.7

8 0.944488 0.994064 0.016065

9 -0.98765 -0.89602 0.888092

10 -1 0.957466 0.934525

11 0.944488 0.155501 0.966065

12 0.144488 0.855501 0.991799

1 0 -1 -1

2 0.9 0.995178 -1

3 -1 1 0.8

4 0.973954 -1 0.916209

5 1 -0.1 -0.1

6 -1 -0.8 1

7 -0.1427 0.995178 -0.3

8 -1 0.70495 -1

9 -0.03113 0.094547 1

10 1 0.972501 0.910111

11 -0.7 -1 0.1

12 1 -0.9 -0.99181

13 -1 -0.69644 -0.9

1 0 0 -1

2 -1 0.05 1

3 -1 1 1

4 -0.05 -1 0

5 0.15 1 1

N x1 x2 x3

6 -1 1 0.05

7 -1 -1 -1

8 -1 0.95 -1

9 1 -1 1

10 1 1 -1

11 1 1 1

12 -1 -1 1

13 1 0 0

14 1 -1 -1

1 -0.2 1 -0.1

2 0.05 -1 0

3 1 -1 1

4 1 -1 -1

5 1 0.95 1

6 -1 1 1

7 -1 -1 1

8 0.05 -0.3 -1

9 -0.2 0.05 1

10 1 0 0.2

11 -1 -1 -1

12 0.95 1 -1

13 0.9 0.9 0.05

14 -1 -0.1 0

15 -1 1 -1

1 -0.1 1 0

2 0.15 -0.05 1

3 -0.45 -1 0

4 1 -1 1

5 -1 1 1

6 1 -1 -1

7 1 1 -1

8 -1 -1 -1

9 1 0 0.15

10 0.15 -0.8 0.1

11 -1 -1 1

12 0.1 0.2 -1

13 1 -0.9 -1

14 1 1 1

15 -1 1 -1

16 -1 0.05 0
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Table 3.3: G-Optimal Designs for Experiments with Four Factors
N x1 x2 x3 x4

1 -0.19526 0.974286 0.009128 -1

2 -1 -0.8 0.910656 -1

3 -1 0.959887 -0.6 0.9584

4 -1 0.674286 -1 -1

5 0.988471 -1 1 0.15845

6 0.913718 0.795782 0.990158 -1

7 0.275092 -1 -1 -1

8 -1 -1 -0.6 0.2

9 0.8 0.859887 0.6 0.9584

10 0.975534 -1 -0.9 0.95845

11 0.875092 -0.1 -0.7 -0.5

12 0.975092 1 -1 -0.4

13 -0.1 0.459887 -1 0.4584

14 0.875092 -0.5 -0.6 -0.6

15 -0.7 -0.6 0.967297 0.996628

16 -1 1 1 -0.04026

1 0.5 -1 1 1

2 1 -1 -0.65 0.95

3 0.9 1 -1 0.35

4 1 1 0.95 -0.4

5 -1 -1 1 -1

6 -1 -0.85 0.9 1

7 0.05 1 0 1

8 -1 0.9 0.95 0.85

9 1 -0.8 0.8 0.35

10 -1 1 -0.95 1

11 -1 1 0.95 -1

12 -1 -1 -0.1 -1

13 0 0.05 0.95 -1

14 0.9 1 -1 -0.95

15 -0.05 -1 -1 -0.2

16 0.95 0.65 0.45 -1

17 1 0.05 -1 1

18 1 -1 -1 -1

19 -0.9 -0.05 0.5 0

20 1 -0.9 0.85 -1

21 1 1 1 1

22 -1 -0.25 -1 -0.95

23 -0.95 1 -0.85 -1

24 -1 -1 -1 1
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Table 3.4: G-Optimal Designs for Experiments with Five Factors
N x1 x2 x3 x4 x5

1 -0.3 0.9 -0.5 -0.9 -0.5

2 0.2 0.083461 -1 0.2 0.4

3 -1 -1 1 0.727208 0.516052

4 0.901536 -1 -0.4 0.835002 -0.00043

5 -0.7 0.8 -1 -1 0.779079

6 -0.6 0.619248 1.11E-16 0.6 1

7 -1 0.3 -1 0.8 -1

8 1 0.744798 1 -1 -0.9

9 -1 -0.4 -0.3 -1 -0.8

10 -1 0.971427 0.9 -0.21703 -1

11 1 1 -0.6 0.5 -1

12 0.9 -1 0.613798 -1 0.3

13 0.5 0.971427 0.9 0.982974 -1

14 1 1 -0.6 -0.9 1

15 0.973318 1 1 0.5 0.622308

16 -0.8 1 -0.4 1 0.606144

17 0.964851 -1 -1 -1 -0.99254

18 0.364851 -0.6 -0.1 -1 1

19 -0.9 -1 -0.8989 -0.22279 0.966052

20 -0.1 -1 -0.8 0.985007 -1

21 1 -0.5 0.717211 0.3 -1

22 0.723318 -0.8 0.954698 0.9 1

23 -0.6 -1 1 -1 -1

24 -1 -0.22857 1 0.982974 -0.7

25 -0.9 0.513433 1 -1 0.979079

26 1 -0.26654 -0.8 1 1

Table 3.5 gives the G-efficiencies of Brokowski’s, Rodriguez et al.’s, and cCEA

designs. The cCEA method generally provides designs with higher G-efficiencies.

It is also noteworthy to explore the I-efficiencies of the G-optimal designs. The G-

criterion minimizes the maximum prediction variance in lieu of the average prediction

variance (APV). Hence, its APV value is expected to be larger than the APV value of

an I-optimal design. The I-criterion optimizes with respect to the prediction variance

in the entire region of the design space. To compare the cCEA-generated G-optimal

and an I-optimal design with respect to the I-criterion, we utilize the fraction of

design space (FDS) plot developed by Zahran et al. (2003). The FDS plot shows

the proportion of design space that has a prediction variance less than or equal to a

specific value. It therefore provides a comprehensive assessment of the behavior of the

59



prediction variance over the whole experimental region. A good design is expected

to produce a lower and flatter prediction variance profile. Figure 3.4 shows that the

prediction variance profile of the G-optimal design is flatter than that of the I-optimal

design for the case with 2 factors and 7 design points. Compared to the I-optimal

design, the values of the prediction variance are more uniform for the G-optimal

design.

Figure 3.4: The FDS Plots of G-Optimal Design and I-Optimal Design for the
Linear Model with 2 Factors and 7 Design Points

In Table 3.6, we compare the computation time of the cCEA algorithm with the

algorithm used in Rodriguez et al. (2010). Both algorithms were implemented on a

computer with Intel Core i5, 2.40 GHz. The computation times of Rodriguez et al.’s

algorithm were obtained by running the author’s JMP script code. According to the

author, the search should be iterated using at least 100 random initial designs to avoid

premature convergence to a local optimum. In all cases explored, the cCEA yielded

lower computation time. Figure 3.5 plots the computation time versus the size of

design for both Rodriguez et al. (2010)’s algorithm and the cCEA. It shows that the

computation time of Rodriguez et al.’s algorithm increases exponentially when the

size of the problem increases, while the cCEA only increases in a polynomial fashion.
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Figure 3.5: Plot of Computation Time vs. The Size of Design for Different Algo-
rithms.

3.5 Conclusion

In this chapter, we gave an overview of computer algorithms for generating optimal

experimental designs. We proposed a new computer algorithm, cCEA, to generate G-

optimal designs for linear models. G-optimal designs are typically tedious to construct

because of the repeated evaluation of the G-criterion over a sufficiently large number

of points in the design region. The proposed algorithm is a hybrid of the point and

coordinate exchange algorithms that uses a k-means clustering method to reduce

the number of evaluations of the G-optimality objective function. This alleviates

some of the computational burden so that even as the size of the design matrix

increases, the objective function is still solvable in polynomial time. To demonstrate

the effectiveness of the cCEA, a comparison was made with existing methods in the

literature. We found that our proposed algorithm outperformed existing methods

with respect to G-efficiency. More importantly, the G-optimal design was also found

to have significantly lower computing times especially for larger problems. The cCEA-

generated G-optimal design also performed well with respect to the I-criterion.
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Table 3.5: Compare the G-Efficiencies of Optimal Designs Generated by Different
Algorithms.

G-efficiencies

Number of Number of Brokowski’s Rodriguez et al.’s cCEA G-optimal

factors design points design design design design APV

2 7 0.8 0.8 0.854 0.67

2 8 0.879 0.879 0.913 0.59

2 9 0.863 0.863 0.888 0.43

2 10 0.859 0.859 0.861 0.49

2 11 0.861 0.861 0.864 0.41

2 12 0.848 0.848 0.855 0.37

3 11 0.772 0.772 0.887 0.74

3 12 0.801 0.801 0.868 0.69

3 13 0.836 0.836 0.913 0.6

3 14 0.893 0.893 0.889 0.54

3 15 0.839 0.839 0.863 0.52

3 16 0.793 0.793 0.838 0.34

4 16 - .729 .772 0.84

4 24 - 0.811 0.846 0.44

5 26 - 0.778 0.809 0.66
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Table 3.6: Compare the Computation Times (in Seconds) of the cCEA with Ro-
driguez et apl.’s Algorithm with One Run.

Number of factors Number of design points Rodriguez et al.’s algorithm cCEA

2 7 359 6

2 8 443 32

2 9 467 32

2 10 420 64

2 11 507 42

2 12 793 66

3 11 67 40

3 12 3220 49

3 13 3981 38

3 14 4398 42

3 15 4986 119

3 16 4247 54

4 16 9622 193

4 24 10953 247

5 26 29580 368
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Chapter 4

OPTIMAL EXPERIMENTAL DESIGNS FOR FMRI EXPERIMENTS

Notational Conventions

Q Number of Stimuli in fMRI Experiment

d Stimulus Sequence

di The i-th Element of Stimulus Sequence

τISI Interval Time Between Two Consecutive Stimuli Demonstration

τTR Interval Time Between Two Consecutive fMRI Scans

τdur Duration of One HRF

Xq Design Matrix for q-th Stimulus

K Number of Columns in Xq

X Concatenation of All Xq’s

hq Height Vector for q-th Stimulus

h Concatenation of All hq’s

δi The Time Point When Stimulus Type i Appears in the Design Dequence d

Di Modification Matrix

∆T The largest denominator that makes both τISI/∆T and τTR/∆T integers

h∗ The Basis Matrix for the Detection Problem

θq Magnitude in Detection Problem for the q-th Stimulus

Mh Moment Matrix for the fMRI Estimation Problem

Mθ Moment Matrix for the fMRI Detection Problem

O Matrix of Zeros

∆E Fedorov Delta Function for The Estimation Problem

∆D Fedorov Delta Function for The Detection Problem

Functional magnetic resonance imaging (fMRI) is a powerful procedure for obtain-

ing information about how human brains work. In a typical fMRI study, a subject is

presented a sequence of stimuli. Information about brain activity are collected over

a short period of time after the presentation of a stimulus. Because fMRI studies

involve human subjects, efficient experimentation is of paramount importance. As

mentioned in Chapter 2.2.1, the main concern in fMRI studies is in determining the
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optimal sequence of the presentation of stimuli to experimental subjects. In this

chapter, we focus on this particular case of optimal designs for functional data.

Two fast computer algorithms for finding D-optimal designs for fMRI studies are

proposed in this chapter for the estimation and detection problems of fMRI exper-

iments. The fMRI data are modeled using linear models such as the mixed-effects

model, but the construction of the fMRI design matrix is different from conventional

linear design problems. The proposed algorithms are based on a greedy search along

each dimension in the design region. This problem has been solved in the literature

using genetic algorithm (GA). For example, see Kao et al. (2009); Kubilius et al.

(2011); Eck et al. (2013); Mijović et al. (2014). As a general optimization method,

the GA technique is sometimes criticized for being inefficient due to its stochastic

nature, particularly when the size of the optimization problem becomes large (see

Romeijn and Pardalos (2002)). The proposed algorithm promises to improve the

computational efficiency of the GA. Further, it handles a common constraint in fMRI

studies – where every stimulus type appears in the design a specified number times –

which the GA cannot accommodate.

To accomplish this, we look at the literature on exchange algorithms for linear

models. The two most widely-used exchange algorithms namely, PEA and CEA,

were discussed in Chapter 3. CEA has been lauded for its computational efficiency

and flexibility to handle a wide variety of design problems (see, e.g., Gotwalt et al.

(2009), Goos and Jones (2011)). However, adapting the CEA to the special case of

fMRI design problems is not trivial. One major difficulty lies in the special structure

of the fMRI design matrix, which will be shown in this chapter. By working on the

specific nuances of this design matrix, we derive useful updating formulas that sig-

nificantly reduce the computational burden when calculating the D-criterion values.
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The usefulness of our proposals is demonstrated in our test cases for both single- and

multi-objective fMRI design problems.

This chapter proceeds as follows. Section 4.1 discusses fMRI studies in the context

of experimental designs. More specifically, we discuss the primary objectives of the

optimal design problem and the fMRI experimental method. Section 4.2 reviews

the linear models that will be used for the two major objectives – estimation and

detection. Section 4.3 defines the design matrix for fMRI data and explains how

these matrices are constructed. The proposed algorithms for finding D-optimal fMRI

designs for the estimation, detection and multi-objective optimization problems are

discussed in detail in Section 4.5. Finally, in Section 4.6, we compare the performance

of the proposed algorithm to other approaches in the literature.

4.1 Experimental Design of fMRI

An fMRI study is conducted by measuring the increase or decrease of neural

activities in the voxels of the brain due to the presentation of different stimuli to

a patient at specific time points. The neuronal activities in the brain result in an

increased (decreased) cerebral blood flow to the brain area of interest. The increase in

blood flow increases the ratio of oxygenated hemoglobin to deoxygenated hemoglobin

at specific voxels. The difference between the magnetic properties of oxygenated

and deoxygenated hemoglobin is the basis for the Hemodynamic Response Function

(HRF). Figure 4.1 shows a sample of an HRF resulting from the presentation of one

stimulus that could have a lasting (carry-over) effect of 32 seconds. This duration is

denoted by τdur.

Studies have shown that HRF’s accumulate additively when multiple stimuli are

presented to a patient and the interval time between two consecutive demonstration

exceeds 2 seconds (see Lindquist et al. (2008)). In other words, the amplitude of the
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Figure 4.1: Single Hemodynamic Response Function, Stimulated by Only One Stim-
ulus

HRF increases when several stimuli are presented in accelerated succession. Figure

4.2 shows three HRFs (broken curves) resulting from the presentation of one stimulus

at different time points. This graph highlights the additive property of the fMRI

signal.

An fMRI experiment is conducted by presenting each stimulus type, q = 1, 2, . . . Q,

to a patient at time (j− 1)τISI , j = 1, ..., N . τISI denotes the pre-specified interstim-

ulus interval or the minimum time between the presentation of consecutive stimuli.

Numerous studies have been conducted on using fixed τISI of at least 15 seconds

in order to achieve a design with higher statistical efficiency or power. However,

Dale (1999) has demonstrated the high statistical efficiency of using τISI as short as

500ms by quantitative analysis, especially if τISI is properly jittered from trial to trial.
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Figure 4.2: Three Hemodynamic Response Function (Broken Curves) Resulted by
Demonstrating One Stimulus in Different Time Points Form the Accumulated HRF
(Blue Curves).

HRF signals in one voxel are measured by the MR scanner every τTR. An fMRI

experimental design is a sequence of stimuli, such as in Figure 4.1.

The jth entry of this sequence is the stimulus type shown to the patient at time

(j − 1)τISI , j = 1, ..., 7.

As mentioned in Chapter 2.2.1, there are two useful pieces of information obtained

from fMRI studies. First is the HRF height produced by a stimulus type. Because the

MR scanner provides accumulated HRF’s (in lieu of individual HRF’s), the goal is to

estimate the individual HRF curves induced by a stimulus accurately. This problem

is also known as “estimation” in fMRI literature. The second primary objective is to

detect the activated brain voxels using the HRF magnitude. This is referred to as the

detection problem. These two objectives will be explored in more detail in the next

section.
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4.2 Linear Models for Estimation and Detection Problems

For the estimation problem in fMRI studies, the following model has been pro-

posed (see Liu (2004)):

y =

Q∑
q=1

Xqhq + Sγ + e. (4.1)

The response vector, y = (y1, ..., yT )′, contains information about the signals

collected in the MR scan of a voxel. The yj,1 entry of vector y is the jth height of the

accumulated HRF signal at time (j−1)τTR. The length of this time series, T , depends

on the experimental duration and the scanning frequency of the fMRI machine. If

an fMRI experiment has N stimuli demonstrations (including the rest period), then

T = NτISI/mTR where mTR = τTR/∆T . The discretization interval ∆T is the largest

denominator that makes both τISI/∆T and τTR/∆T integers. ∆T may or may not

be an integer.

The parameter vector hq = (hq,1, ..., hq,K)′ in Equation (4.1) represents the heights

of the discretized HRF for the q-th stimulus type, where q = 1, ..., Q. More specifically,

hq,j, j = 1, ..., K represents the unknown HRF height at time (j − 1)∆T for stimulus

q. K can be also defined as the number of discretization intervals for estimating

the HRF curves, where K = 1 + bτdur/∆T c, bc is the flooring function, and τdur is

the duration of an HRF signal. A notable aspect of the HRF curves is presence of

carry-over or lasting effects of a stimulus, denoted by τdur. This implies that the first

stimulus still affects the HRF height at the MR scan of the second stimulus. The

effect of a single stimulus may last, say, τdur = 32 seconds. In this case, if τISI = 4

and τTR = 2, then ∆T = 2 and K = 17. The matrix Xq in Equation (4.1) is a

T -by-K matrix filled with 1’s and 0’s. Its (t, k) element indicates whether or not the
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k-th height of the HRF of the q-th stimulus type contributes to the t-th fMRI signal,

yt. Deriving the Xq will be discussed with more details in the next section.

Finally, the nuisance term Sγ models the frequently observed trend/drift of the

fMRI time series. Here, S is a specific matrix and γ is the corresponding parameter

vector. Vector e in Equation (4.1) is a T -by-1 noise vector with mean 0 and cov(e) =

σ2R for some σ2 > 0 and a positive definite matrix R.

In the estimation problem, the heights of the discretized HRF of each stimulus

type are of interest in estimation. An experimental design that minimizes the general

variance of the least-square estimate of h = (h′1, ...,h
′
Q)′, is desired.

The detection problem, on the other hand, aims to identify which stimulus type

activates brain voxels. For this problem, the following linear model is often used:

y =

Q∑
q=1

Xqh
∗θq + Sγ + e. (4.2)

In this model, the HRF of the q-th stimulus type is modeled by an specified and

assumed-to-be-known HRF shape, h∗, with an unknown magnitude, θq. The other

terms in Equation (4.2) are defined as in Equation (4.1). For the detection problem,

the parameter vector θ = (θ1, ..., θQ)′ is of interest, and it indicates the strength of

brain activation due to each stimulus type.

For the model in Equation (4.1), the information matrix for h is given by Liu and

Frank (2004):

Mh = X′V′(IT −PVS)VX, (4.3)

where X is the concatenation of all Xq’s (i.e., X = [X1...XQ]), V is a ma-

trix such that VRV′ = IT with IT being the T -by-T identity matrix, and PVS =

VS(S′V′VS)−1S′V′ is the orthogonal projection matrix onto the column space of
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VS. For the detection problem using model (4.2), the information matrix of θ is

given by:

Mθ = (IQ ⊗ h∗)′X′V′(IT −PVS)VX(IQ ⊗ h∗), (4.4)

where ⊗ denotes the Kronecker product.

To find the D-optimal fMRI design, the objective is to maximize the determinant

of the information matrix Mh or Mθ. The information matrix depends on the design

d through the design matrix X, which is the concatenation of Xq’s, q = 1, 2, ..., Q.

Systematically constructing Xq will be discussed in the next section.

4.3 Design Matrix Construction for fMRI Problem

The construction of the design matrices for fMRI experiments depend on whether

the times of the onsets of stimuli and the scanning times of fMRI equipment are

synchronized (τISI = kτTR) or not synchronized (τISI 6= kτTR). For both conditions,

the design matrix (X) concatenates the design matrices from each stimulus (Xq, q =

1, ..., Q), i.e. , X = [X1X2, ...,XQ], where the jth row of the design matrix shows the

status of the system at time (j − 1)τTR.

When τISI = τTR, the number of rows in the design matrix is equal to N , where

again N is the number of elements in the fMRI design sequence (d). The number

of columns in the matrix Xq becomes 1 + bτdur/∆T c. Consequently, the number of

columns in X is QK.

Under the first experimental condition, the X matrix can be constructed by con-

verting an fMRI design sequence with Q stimulus types into Q sequences, where the

qth sequence indicates the time points where stimulus type q appears in the design

sequence d. For example, for the sequence d = {122021}, δ1 = (1, 0, 0, 0, 0, 1) and

δ2 = (0, 1, 1, 0, 1, 0). Hence, the first column of Xq is δ′q and the subsequent columns
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are obtained by shifting the previous column one position down and padding 0’s on

the c− 1 rows, where c is the column number.

To illustrate, suppose the stimulus sequence is d = {121020}. Including rest

periods, there are six time points (N = 6) with two stimulus types (Q = 2). Let

the interval time between two consecutive time points be four seconds (τISI = 4)

and a total of six fMRI scans (T = 6) of a voxel is acquired with a four-second

scanning interval (τTR = 4). Assume that the duration of each HRF is sixteen

seconds (τdur = 16). Thus, we have ∆T = 4, and K = 1 + b16/4c = 5. In this

case, δ1 and δ2 are (1, 0, 1, 0, 0, 0) and (0, 1, 0, 0, 1, 0), respectively. The design matrix

becomes X = [X1X2] with

X1 =



1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


and X2 =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1


.

As a result,

X =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 1 1 0 0 1 0

0 0 0 1 0 0 1 0 0 1


In interpreting the design matrix, a value of “1” in x11 indicates the 1st height of

the HRF of the 1st stimulus type contributes to the 1st fMRI signal. The “1”’s in x31,
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x33, x37 show that the 1st height of the HRF of the 1st stimulus type, the 3rd height of

the HRF of the 1st stimulus type, and the 2nd height of the HRF of the 2nd stimulus

type all contribute to the 3rd accumulated HRF.

For cases where τISI 6= τTR, construction of the design matrix is more complex.

Here, we discuss the logical construction of the design matrix. We first construct an

expanded design matrix based on an expanded design sequence, d∗. The expanded

design matrix is denoted by X∗. The final design matrix X is extracted from X∗ by

taking some rows of the expanded matrix. The expanded design matrix hasNτISI/∆T

rows, with KQ columns. τ ∗ISI = ∆T for the expanded design matrix. For example,

for an fMRI experiment with τISI = 3 and τTR = 2, ∆T = 1, therefore τ ∗ISI = 1.

To construct the expanded design sequence, we add (τISI/∆T )− 1 resting stimuli

between any two consecutive stimuli in the original sequence. For instance, if d =

{011010} and τISI = 3 and τTR = 2, ∆T = 1, the expanded design sequence is formed

by adding two resting stimuli ((3/1)−1) between any two consecutive stimuli in d. As

a result, the expanded design sequence becomes d∗ = {000100100000100000}. The

length of the expanded design matrix is equal to the number of rows in the expanded

design sequence, which is NτISI/∆T = or18 for this example.

The expanded matrix X∗ is built as for a stimulus sequence d∗ with τ ∗ISI , where

the the first column of X∗ is the same as d′∗ (for Q = 1, d∗ = δ1 ) and the subsequent

columns of X∗ are then obtained by shifting the previous column one position down

and padding 0’s at the c− 1 rows, where c is the column number.

To obtain the final design matrix, X is extracted from X∗ by taking only row

numbers (j − 1)τTR/∆T + 1, j = 1, ..., T . These rows correspond to the time points

of fMRI scanning. Row (j − 1)τTR/∆T + 1 in the expanded matrix becomes Row j

in the final design matrix.

73



For example, the expanded matrix X∗ for the stimulus sequence d = {011010}

becomes:

X∗ =



0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 ...

1 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 ...

0 0 1 0 0 0 0 ...

1 0 0 1 0 0 0 ...

0 1 0 0 1 0 0 ...

0 0 1 0 0 1 0 ...

0 0 0 1 0 0 1 ...

0 0 0 0 1 0 0 ...

0 0 0 0 0 1 0 ...

1 0 0 0 0 0 1 ...

0 1 0 0 0 0 0 ...

0 0 1 0 0 0 0 ...

0 0 0 1 0 0 0 ...

0 0 0 0 1 0 0 ...

0 0 0 0 0 1 0 ...


From the expanded design matrix, we only obtain some rows for the final design

matrix:
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X =



0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 ...

0 1 0 0 0 0 0 ...

1 0 0 1 0 0 0 ...

0 0 1 0 0 1 0 ...

0 0 0 0 1 0 0 ...

1 0 0 0 0 0 1 ...

0 0 1 0 0 0 0 ...

0 0 0 0 1 0 0 ...


In this section, we only considered the case with one stimulus type for the experimen-

tal condition τISI 6= τTR. When q ≥ 2, then δq vectors should be constructed from d

and the same procedure applies in the construction of the individual design matrices.

The expanded design matrix is constructed by concatenating the design matrices for

each stimulus i.e., X∗q, q = 1, ..., Q ( X∗ = [X∗1X
∗
2, ...,X

∗
Q]). The final design matrix

is obtained as in the one-stimulus case. Equation (4.5) shows a more detailed and

analytical construction of the design matrix.

Xq =
(
IT ⊗

[
1,0′mTR−1

])
U[B0,B1, ...,BK−1]

IK ⊗ δq ⊗

 1

0mISI−1


 . (4.5)

Here, the N -by-1 vector δq is a 0-1 vector whose i-th element is 1 if di = q. In

addition, mISI = (τISI/∆T ), mTR = (τTR/∆T ), 0a is the a-by-1 vector of zeros, and

B =

 0′mISIN−1 0

ImISIN−1 0mISIN−1

 ,

75



U =



[ImTRT ,OmTRT,(mISIN−mTRT )], mTRT < mISIN ; ImISIN

O(mTRT−mISIN),mISIN,

 , mTRT > mISIN ;

ImTRT , mTRT = mISIN ;

and Oa,b is the a-by-b zero matrix.

4.4 Proposed Algorithms

The illustrative example in the previous section indicated that perturbing a single

element in d alters multiple rows in the design matrix. This is in contrast to the

conventional design problems for linear models, where changing one row does not

necessarily affect the other rows. Hence, using conventional methods may not work

for the fMRI case.

In this section, two novel greedy search algorithms are proposed for finding D-

optimal fMRI designs for the estimation and detection problems. Updating formulas,

also known as the delta functions, are derived to simplify the calculation of the new

determinant value after changing one element in a design sequence.

4.4.1 The Estimation Problem

Based on the specific feature of the design matrix X, a deterministic greedy search

algorithm is proposed for finding D-optimal designs for the fMRI estimation problem.

The idea is to sequentially perturb every element in the current design sequence, d,

by replacing each element with another label (0, 1, ..., or Q) for yielding the greatest

improvement in the determinant of the information matrix. By changing the i-th

element of d from q to q∗, the design matrix becomes XNEW = X + Di, where
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Di = Di,q∗ −Di,q for some T -by-QK matrices Di,q and Di,q∗ . Here, Di,0 = OT×QK , a

matrix of zeros, for q = 0. For q = 1, ..., Q, Di,q = [Di,q,1 · · ·Di,q,Q] with Di,q,j = OT×K

for all j 6= q, and Di,q,q being a 0-1 matrix. The positions of 1’s in Di,q,q correspond

to the altered element in the design sequence. Let (ri, ci) be the position where the

first 1 appears in Di,q,q. We have

ri =

⌈
(i− 1)τISI

τTR

⌉
+ 1; ci =

(ri − 1)τTR − (i− 1)τISI
∆T

+ 1,

where d.e denotes a ceiling operation. In particular, the ri-th scan is the first fMRI

scan after the presentation of di. The ci-th discretized HRF value, hq,ci , which is

evaluated at (ci−1)∆T seconds after the stimulus onset, contributes to yri . Following

the construction rule of the fMRI design matrix, it can also be shown that other

positions of 1’s in Di,q,q are (ri + `, ci + mTR`), with ` = 1, ..., b(K − ci)/mTRc. The

matrix Di,q∗,q∗ for the q∗-th stimulus type can also be constructed using this method.

Let the i-th element di = q in the current design be replaced by q∗, then the deter-

minant of the new information matrix is given by X′NEWEXNEW | = |X′EX|∆E(Di),

where E = V′(IT −PVS)V, and

∆E(Di) = |IQK + M−1
h (X′EDi + D′iEX + D′iEDi)| (4.6)

is the delta function that depends on q∗ through Di. Thus, the goal is to find

q∗ ∈ {0, 1, ..., Q}\{q} that maximizes the delta function (see also Lemma 2.5.1 in

Fedorov (1971)). Since Di is sparse, the matrix operations in Equation (4.6) can be

calculated efficiently. For example, when τISI = τTR, Di is a T -by-QK matrix with
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Di = [OT×K , ...,−I∗T×K , ..., I
∗
T×K , ...,OT×K ];

I∗T×K =


Oi−1,` Oi−1,K−`

I` O`,K−`

OT−i−`+1,` OT−i−`+1,K−`

 .
Here, Oa×b is the a-by-b matrix of zeros, and I` is the identity matrix of order ` =

min{K, (T−i+1)}. The matrix −I∗T×K forms the ((q−1)K+1)-th to qK-th columns

of Di, whereas I∗T×K forms the ((q∗− 1)K + 1)-th to q∗K-th columns. Corresponding

to Di, E can then be partitioned as

E =


E11 E12 E13

E′12 E22 E23

E′13 E′23 E33

 ,
where E11, E22, and E33 are symmetric matrices of orders (i−1), `, and T − i− `+ 1,

respectively. Consequently, D′iEDi is reduced to the following form:

D′iEDi =



O O O O O

O E22 O −E22 O

O O O O O

O −E22 O E22 O

O O O O O


.

Here, O is a matrix of zeros. The positions of E22 and −E22 depend on q and q∗,

and can be easily obtained. We note that when either q or q∗ is 0, the matrix Di, and

hence D′iEDi, may even be more sparse. Similarly, we may partition the product of

E and X into
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EX =


EX1

EX2

EX3

 ,
where EX1, EX2, and EX3 form, respectively, the first (i − 1) rows, the i-th to the

(i+ `− 1)-th rows, and the last (T − i− `+ 1) rows of EX. We then have

D′iEX =



O

−EX2

O

EX2

O


,

where −EX2 starts from the ((q − 1)K + 1)-th row and EX2 starts from the ((q∗ −

1)K + 1)-th row of D′iEX.

The algorithm begins with a randomly generated sequence d and its corresponding

design matrix X. Next, it sequentially perturbs every element of d for improving the

value of the D-criterion. Specifically, each run of the algorithm has N iterations.

At every i-th iteration of a run, di = q is replaced by the q∗ ∈ {0, 1, ..., Q}\{q}

that yields the greatest improvement in the D-value. The delta function ∆E(Di)

and the previously derived formulas allow a fast calculation of the updated D-value.

The process is repeated several times until no further improvement is achieved. The

pseudo-code of this algorithm is found in Algorithm 1. In the next section, the

algorithm is modified to obtain D-optimal designs for the detection problem.

4.4.2 The Detection Problem

For the detection problem, the focus is on obtaining an fMRI design that facilitates

precise inferences on the magnitudes of the HRFs, specifically θ in model (2.13). To
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this end, we apply the same idea of sequentially perturbing each di in the design

sequence d as described in the previous section. Let Z = X(IQ⊗h∗). The information

matrix of θ becomes Z′EZ. Similar to the estimation problem, it can be shown that

changing one element of design sequence from q to q∗ changes the information matrix

to:

Z′NEWEZNEW = Z′EZ + Z′Ti + T′iZ + T′iTi,

where ZNEW = (X + Di)(IQ ⊗ h∗), Ti = Di(IQ ⊗ h∗), and Di is defined as in the

previous section. The delta function for updating the determinant of Z′NEWEZNEW

becomes:

∆D(Ti) = |IQ + M−1
θ (Z′ETi + T′iEZ + T′iETi)|, (4.7)

where Ti = [ti,1, ..., ti,Q], ti,j] = OT is the vector of T zeros for j 6= q and j 6= q∗,

ti,q∗ = −ti,q = Di,q,qh
∗ when both q and q∗ are positive. Only part of Di,q,qh

∗ is

non-zero. In particular,

Di,q,qh
∗ =



[01,ri−1, h
∗
ci
, h∗ci+mTR , ..., h

∗
ci+mTRb(K−ci)/mTRc,01,K−(ci+mTRb(K−ci)/mTRc)],

for ci +mTRb(K − ci)/mTRc ≤ K − 1;

[01,ri−1, h
∗
ci
, h∗ci+mTR , ..., h

∗
ci+mTRb(K−ci)/mTRc],

for ci +mTRb(K − ci)/mTRc > K − 1.

Like Di, Ti is also a sparse matrix, allowing the adaptation of the previous algo-

rithm to this problem (see Algorithm 1). The delta function ∆D(Ti) and the sparsity

of Ti facilitates the efficient calculation of the objective functions during the search.
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4.4.3 Multi-Objective Optimization

In some cases, fMRI studies simultaneously need to satisfy both objectives of

estimation and detection. The optimal design for such cases can be obtained by

formulating and solving a multi-objective optimization (MOO) problem. Following

previous studies (see, e.g., Wager and Nichols (2003) and Kao et al. (2009)), we

consider a set of weighted-sum criteria, each being a weighted sum of the standardized

optimality criteria for detection and estimation. The criterion has the following form:

f(λ) = λ

(
|X′EX|

max |X′EX|

) 1
KQ

+ (1− λ)

(
|Z′EZ|

max |Z′EZ|

) 1
Q

, (4.8)

where λ ∈ [0, 1]. The maxima in Equation (4.8) are taken over all possible fMRI

designs, which are obtained by using the proposed algorithm for maximizing |X′EX|

and |Z′EZ|. For a given value of λ, the elements in a design sequence are sequentially

changed so as to maximize:

λ

(
|X′EX|(i)∆E(Di)

max |X′EX|

) 1
KQ

+ (1− λ)

(
|Z′EZ|(i)∆D(Ti)

max |Z′EZ|

) 1
Q

. (4.9)

Here, |X′EX|(i) and |Z′EZ|(i) are the determinants of the information matrix for

estimation and detection before perturbing the value of di. The delta functions,

∆E(Di) and ∆D(Ti), are the improvements in the D-optimality criterion value for

estimation and detection after changing the value of di in design sequence. Equation

(4.9) enables a recursive update of the objective function’s value after a change in the

design.
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Data: τISI , τTR, N,Q,R

Result: Optimal design for the estimation problem

Initialization;

for r = 1...R do

Generate a random fMRI sequence d;

Construct the design matrix X;

z = 1;

Detz = |X′EX|; Detold = 0;

while z = 1 or Detz −Detold ≥ ε do

Detold = Detz ;

for i = 1, 2, ..., N do

for q = 0, 1, ..., Q, except j = di do

Calculate ∆E(Di) (∆D(Ti)), as defined by Equation (4.6) (Equation (4.7)), for the estimation

(detection) problem;

end

Find the stimulus type q∗ such that q∗ = arg max ∆E(Di) (q∗ = arg max ∆D(Ti)) for the estimation

(detection) problem;

if max ∆E(Di) > 1 (max ∆D(Ti) > 1) for the estimation (detection) problem then

di = q∗ ;

X = X + Di (Z = Z + Ti) for the estimation (detection) problem;

Detz = Detz ×∆E(Di) (Detz = Detz ×∆D(Ti)) for the estimation (detection) problem;

end

end

Detz+1 = Detz ;

z = z + 1 ;

end

X(r) = X (Z(r) = Z) for the estimation (detection) problem;

Det(r) = Detz ;

end

Output the optimal design X∗ = X(r) such that r = arg maxDet(r);

Algorithm 1: Finding Optimal Designs for the fMRI Estimation (Detection) Prob-

lem

4.5 Comparing CEA and GA for fMRI Experimental Design Problems

The proposed CEA-inspired algorithm developed in the previous section for the

fMRI problem is compared with the modified version of the GA for fMRI developed

by Kao et al. (2009).

4.5.1 Performance of the Estimation Algorithm in fMRI Experiments

To explore the performance of the proposed algorithm for the estimation prob-

lem, the following two scenarios are considered: (1) (τISI , τTR) = (2, 2), and (2)
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(τISI , τTR) = (3, 2). For both scenarios, the duration of the HRF is set to τdur = 32

seconds. Therefore, K = 1 + b32/2c = 17 and K = 1 + b32/1c = 33 for the first and

second scenarios, respectively. Following Kao et al. (2009), a total of eight combi-

nations of Q and N are considered namely, (Q,N) =(2, 252), (3, 255), (4, 624), (6,

342), (7, 624), (8, 728), (10, 1330), and (12, 2196).

Table 4.1 compares the determinants and relative efficiency of the optimal designs

found by the our algorithm and GA for the first scenario. To be comparable, each

algorithm is repeated 10 times with 10 different initial designs. The design sequence

with the maximum determinant from the 10 runs is chosen as the optimal design. In

the literature on GA, initial designs are randomly generated at each implementation,

while in other cases, traditional fMRI designs are chosen as the initial design (see

Kao et al. (2009) for details). In our implementation of the proposed algorithm, we

randomly generated an initial design for 9 runs, while the starting design for the 10th

run is a traditional, fMRI design.

Table 4.1: Comparing the Determinants of the Designs Obtained by Genetic Algo-
rithm and Coordinate Exchange Algorithm for the Estimation Problem with τISI = 2
and τTR = 2

Determinant Time (minutes)

Q N GA New algorithm Relative efficiency GA New algorithm

2 255 2.84(×1057) 2.94 1.03 12.2 0.3

3 255 3.84(×1081) 3.96 1.03 21.9 0.5

4 624 4.64(×10130) 5.24 1.12 21.7 5.0

6 342 1.41(×10157) 1.41 1.00 56.0 4.3

7 624 1.87(×10209) 2.42 1.29 130.8 24.0

8* 728 1.33(×10243) 1.33 1.00 19.7 7.2

10* 1330 3.12(×10336) 3.13 1.00 81.8 50.0

12* 2196 6.95(×10435) 6.96 1.00 173.7 181.1

* Indicates cases where the GA did not improve on its initial designs.
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In all cases, optimal designs from the new algorithm are comparable or better

than designs from the GA approach with respect to D-efficiency. Table 4.1 also

shows the computing times of each approach. In all cases but one, the new algorithm

has consistently faster implementations than GA. We note that the GA terminates

prematurely when it could not find a design that outperforms the initial design, hence

in some cases, the computational times are seemingly short. For example, in the case

where Q = 4, N = 624, the proposed algorithm is only 3.34 times faster than GA,

compared to the case when Q = 2, N = 255 where the improvement factor is close to

40. In the former case, however, the relative efficiency is 1.12, and it is obvious that

the GA could not find a better design so it likely terminated early.

For the case where τISI = 3 and τTR = 2, K = 33, so the size of the information

matrix is approximately twice of that in the previous scenario. The advantage of

the proposed algorithm over the GA is unequivocal for these cases as shown in Table

4.2. Based on these results, we can see that the new algorithm is more effective in

finding optimal fMRI designs, particularly with more stimulus types and when fMRI

scanning times are out-of-sync with the onset times of the stimuli.

Table 4.2: Comparing the Determinants of the Designs Obtained by Genetic Algo-
rithm and Coordinate Exchange Algorithm for the Estimation Problem with τISI = 3
and τTR = 2

Determinant Time (minutes)

Q N GA New algorithm Relative efficiency GA New algorithm

2 255 5.76(×1094) 6.41 1.11 13.9 0.7

3 255 6.12(×10131) 7.24 1.18 60.9 2.6

4 624 2.36(×10217) 4.19 1.77 435 29.1

6 342 0.442(×10246) 1.05 1.12 315 28.8

7 624 0.0373(×10340) 1.8 48.25 1324 140.8

8 728 0.363(×10394) 6.6 18.1 1578 214.6

10* 1330 3.25(×10553) 1.23× 104 3784 3727.2 233.5

12* 2196 6.06(×10726) 2.73× 104 4504 663.22 591.18

* Indicates cases where the GA did not improve on its initial designs.
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4.5.2 Performance of the Detection Algorithm in fMRI Experiments

Similar to what was done for the estimation problem, we compare the performance

of GA and our new algorithm for the detection problem when τISI = 2, τTR = 2 and

τISI = 3, τTR = 2. For each of these cases, the number of columns for each stimulus

is respectively 17 and 33, and the number of fMRI events varies between 200+ to

2000+. Results are shown in Tables 4.3 and 4.4.

Table 4.3: Comparing the Determinants of the Designs Obtained by Genetic Algo-
rithm and Coordinate Exchange Algorithm for the Detection Problem with τISI = 2
and τTR = 2

Determinant Time (minutes)

Q N GA New algorithm Relative efficiency GA New algorithm

2 255 2.46(×104) 2.46 1 6.7 0.07

3 255 2.052(×106) 2.054 1 12.2 0.08

4 624 4.66(×109) 4.72 1.01 17.6 0.2

6 342 1.72(×1012) 1.73 1.005 12.4 0.52

7 624 5.5(×1015) 5.89 1.07 5.5* 1.2

8 728 1.61(×1018) 1.69 1.04 6.5* 2.11

10 1330 4.87(×1024) 4.9 1.006 18.7* 2.28

12 2196 2.37(×1031) 2.75 1.16 47.9* 38.3

The GA approach was unable to improve on the initial fMRI traditional designs

in cases with 7, 8, 10 and 12 stimulus types. The optimal designs for detection

constructed using the proposed algorithm are superior across the board compared

to the designs from the GA approach. The greatest improvements are realized in

problems with more stimulus types and bigger information matrices.

4.6 Conclusion

fMRI studies are useful for mapping brain activity and determining the effects of

various stimuli. fMRI experiments are costly and require the participation of human
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Table 4.4: Comparing the Determinants of the Designs Obtained by Genetic Algo-
rithm and Coordinate Exchange Algorithm for the Detection Problem with τISI = 2
and τTR = 2

Determinant Time (minutes)

Q N GA New algorithm Relative efficiency GA New algorithm

2 255 1.161(×104) 1.174 1.01 7.5 0.25

3 255 6.4(×105) 6.32 0.98 25 0.8

4 624 0.997(×109) 1.01 1.01 13.3 1.1

6 342 1.65(×1011) 1.69 1.02 142.1 3.23

7 624 3.95(×1014) 4.11 1.04 17.1* 0.8

8 728 7.8(×1016) 7.93 1.01 16.2* 1.3

10 1330 1.01(×1023) 1.02 1.01 87.9* 6

12 2196 2.52(×1029) 2.94 1.16 516.5* 31.95

beings as test subjects, so it is of paramount importance that these experiments are

designed as efficiently and effectively as possible. In this chapter, a new algorithm

was proposed for constructing D-optimal designs for the estimation and detection

problems in fMRI studies. The two problems have separate goals in statistical infer-

ence and yield different linear models for estimation. The main goal of the optimal

design problem is to find a sequence of stimuli, d∗ that optimizes a functional of the

design matrix. This is not a trivial problem, because each stimulus has a presumed

“carryover” or lasting effect. The carryover effect further complicates the structure

of the design matrix.

The methods proposed in this chapter adapted the linear models proposed for

analyzing fMRI data to cases where there are several experimental subjects. The

primary contributions include the derivation of update formulas similar to Fedorov’s

delta function in point-exchange and coordinate exchange, as well as a complete

algorithm for generating the optimal designs. The algorithms resemble the coordinate

exchange algorithm, where each element of the design matrix is perturbed until an
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optimal design is achieved. By exploiting the sparseness of the design matrix, update

formulas are calculated faster hence resulting in faster overall computation times.

The performance of the new algorithm is compared with the only existing approach

published in the literature namely, the Genetic Algorithm applied to fMRI studies

in Kao et al. (2009). In almost of the cases considered, the new algorithm showed

improvements in the D-criterion, as well as improvements in computing times. The

disparity between the two algorithms becomes more evident as the problem becomes

more complex, especially in cases with more stimuli and when the presentation times

of stimuli and MR scanning times are out-of-sync.

A comprehensive comparison of the two algorithms are shown in Figures 4.3 and

4.4. These two graphs demonstrate the superior performance of the new algorithm

over the GA in finding more statistically efficient designs with less CPU time. More

notably, the GA fails to make improvements on its initial designs for larger problems.

In contrast, the new algorithm consistently improves on the initial design to achieve

optimal experiments that are highly efficient for detecting brain activation.

Figure 4.3: Relative Determinant of the Optimal Designs Calculated by the New
Algorithm over GA’s Optimal Designs for Design Sequences with (Q,N) with (2, 255),
(3, 255), (4, 624), (6, 342), (7, 624), (8, 728), (10, 1330) and (12, 2196).
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Figure 4.4: Relative Computation Time of the New Algorithm over GA’s Computa-
tion Time for Design Sequences with (Q,N) with (2, 255), (3, 255), (4, 624), (6, 342),
(7, 624), (8, 728), (10, 1330) and (12, 2196).
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Chapter 5

OPTIMAL EXPERIMENTAL DESIGNS FOR DYNAMIC RESPONSES

Notational Conventions

Y Response Vector

N Number of Experiments

B(x) Basis Matrix

t Vector of Sampling Time

θ Vector of Unknown Model Parameters for Smoothing

W Variance-Covariance Matrix of Observations

m Order of B-spline Bases

L Number of Interior Knots for B-spline system

p Number of B-spline system bases

Σ Covariance Matrix of Mixed Effects Model

β Vector of Unknown Model Parameters in the Mixed Effects Model

ω Vector of Random Effects in the Mixed Effects Model

X Design Matrix

F(x) Design Matrix for Independent Factors

H Matrix of the Unknown Model Parameters in Second Stage of the Hierarchical Modeling

f(xi) Column Vector That Contains the Values of i-th Experimental Factors

Similar to fMRI studies, designing experiments for functional data in other en-

gineering and scientific applications require precision in estimation and economy in

design. Experiments typically involve multiple independent variables or covariates

that need to be optimized. For example, Binde et al. (2012) studied soot and NOx

emissions of diesel engines through the design of a spatially separated pilot injection.

This experiment involved three independent variables namely, the position of the pi-

lot injector, the start of injection (SOI), and the number of pilot injections. Soot

temperature and concentration (mass) are recorded over the entire engine cycle using
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pyrometrics. It is immediately evident that soot temperature and concentration are

dynamic over the engine cycle, so this can be modeled as functional data.

Experimenters will raise two practical questions regarding this type of experimen-

tal design namely, (1) at what settings should these factors be held at different runs of

the experiment and (2) at what points in the continuum should the response be mea-

sured? In many cases, the sampling points need to be determined, not only for mod-

eling precision, but also from the standpoint of economy. Measurement equipment

that generate experimental data may not be automated, so manpower is required

to collect data points. This is the primary difference between static-response and

functional response experiments – when collecting functional data over a spectrum

variable, it is necessary to plan for the sampling or measurement points.

This chapter addresses the topic of designing experiments for systems with dy-

namic responses. Methods in this chapter focus on two cases, namely, (1) derivation

of the optimal sampling points of spectrum variable and (2) determining the optimal

experimental settings and sampling points simultaneously.

This chapter consists of two contributions to the literature. First, we propose

an algorithm for finding D-optimal sampling times and second, the method for con-

structing designs when both sampling times and factor settings need to be planned

for an experiment is proposed. In the next two sections, we provide a reviews of sim-

ilar work on optimal designs (Section 5.1) and non-parametric models for functional

data (Section 5.2). Section 5.3 deals with the case when only the sampling points

need to be determined for the experiment. Robust designs are also explored when

there are uncertainties in the functional form of the data. Section 5.4 considers cases

when both sampling times and experimental factor settings need to be determined

simultaneously. Finally, Section 5.5 compares a design generated by the proposed

algorithm against an ordinary D-optimal design commonly used in literature.
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5.1 Introduction

The dynamic response systems studied in this chapter are functions of time or

an observable variable that is referred as spectrum variable. Instead of a single re-

sponse value, these systems generate response curves over the spectrum variable. The

dynamic characteristics of these curves and their interactions with other experimen-

tal factors are of interest to experimenters, thus it requires new experimental design

methods for exploring such system efficiently.

Experiments that generate dynamic responses are found in, e.g., Crowder and

Hand (1990), Fan and Zhang (2000), Nair et al. (2002), Woods et al. (2003), and Kao

et al. (2009).

Statistical models for modeling dynamic responses will be discussed in a later sec-

tion. For an experimenter, designing these experiments requires her to make decisions

on (1) when or where to take response measurements along the spectrum variable and

(2) how to choose the combination of experimental factors and their levels. The first

consideration is unique for such experiments, especially when the measurement cost

is high. A good experimental design should demand less experimental runs and/or

less measurement frequency, but it can achieve higher statistical efficiency in model

parameter estimation or response prediction. In this chapter we will represent the

methods for deriving the optimal sampling times of response variable and the optimal

settings of experimental factors based on the D-optimal criterion.

In contrast with standard experimental designs, which require standard cubic or

spherical design regions and normal/linear models (see Montgomery (2008), Wu and

Hamada (2011b) for more details on the standard designs). Designing experiments

with irregular design regions and non-normally distributed responses was founded on

Kiefer (1959, 1961); Kiefer and Wolfowitz (1959) via introducing alphabetic criteria
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for constructing optimal experimental designs. Among these optimality criteria, D-

optimality is the most popular one for evaluating the quality of a design for model

parameter estimation. The D-optimal criterion maximizes the determinant of ex-

pected Fisher information matrix of parameter estimators. Fedorov (1969, 1971)

introduced the point exchange algorithm (PEA) for constructing exact D-optimal

designs for linear models. This algorithm and its variants are widely adopted by

existing statistical software (see, e.g., Mitchell and Miller Jr (1970), Wynn (1970),

Mitchell (1974), Cook and Nachtrheim (1980), Atkinson and Donev (1989), Welch

(1984) , Nguyen and Miller (1992), Vahl and Milliken (2011), and Nguyen (1993)).

The PEAs proposed by these researchers take the exhaustive search approach to find-

ing the optimal design from a large set of candidate design points. Generating and

storing the candidate matrix and comparing each candidate design point with others

impose a huge computational burden in many optimal design problems. Therefore,

some meta-heuristic optimization algorithms, such as genetic algorithm (GA) and

simulated annealing (GA) algorithm, have been adapted to obtain optimal experi-

mental designs (see, e.g., Haines (1987), Meyer and Nachtsheim (1988), Broudiscou

et al. (1996), and Heredia-Langner et al. (2003)). On the other hand, the coordinate

exchange algorithm (CEA) proposed by Meyer and Nachtsheim (1995) has been able

to address the PEA’s shortcoming by avoiding the explicit list of candidate design

points. Until today, this type of algorithm is still one of the most popular algo-

rithms for constructing D-optimal designs for linear and nonlinear models. Despite

the popularity of the alphabetic optimal designs, they are usually planned for phys-

ical experiments. Some recent development of experimental designs for computer

experiments, where computer systems could be deterministic, can be found in, e.g.,

Johnson et al. (1990), Santner et al. (2013) and Fang et al. (2005). Joseph et al.

(2015) recently proposed a new criterion to calculate maximum projection designs in
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computer experiments. This design simultaneously considers the space-filling prop-

erty and the projection power of a design. Morris (2015) proposed a criterion that

resembles I-optimality to support experiments on stochastic computer models, where

model uncertainty and experimental information insufficiency exist.

While the optimal design of experiments with static responses has been widely

discussed in literature, the research on experimental designs for dynamic responses has

been sparse. To design the experiment with a dynamic response, one needs to select a

set of response measurement points on the spectrum variable, as well as the setting of

other experimental factors. These two aspects may be considered separately or jointly.

Most of the existing literature on experimental designs for dynamic responses focused

on the first aspect only, i.e., the response measurement locations or the sampling times

on the response curve. Gaffke et al. (1999) used B-spline bases for modeling response

curves and then found the D-optimal design for dynamic response. Woods et al. (2003)

considered an additional interaction term of B-spline bases and ordinary polynomial

models. Heiligers (1998) used Chebyshev splines for designing E-optimal experiments

with dynamic responses. Finding the Ds and T optimal sampling times for functional

data was also discussed by Fisher and Woods Fisher (2012). Our proposed algorithm

extends these approaches by considering both experimental settings and sampling

times simultaneously via an mixed effects modeling method of dynamic response.

This method is derived from the hierarchical modeling approach to fitting functional

data recommended by Del Castillo et al. (2012), Wu and Hamada (2011b), Tsui

(1999) and Nair et al. (2002). We also note that mixed effects models are widely

studied in longitudinal data analysis (see, e.g., Laird and Ware (1982), Verbeke and

Molenberghs (2009b)).

The remainder of the chapter is organized as follows. The B-spline, as a flexible

nonparametric model for fitting dynamic response data, will be discussed in the next
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section. A novel algorithm to be presented in Section 3 will focus on the planning

of sampling times on response curves. Another algorithm will be provided in Section

4 for simultaneously producing optimal experimental settings and optimal sampling

times. Finally, the performance of optimal designs obtained by our algorithms will

be compared with other designs through several examples.

5.2 Regression Models for Dynamic Responses

It is common to use polynomial regression models to depict nonlinear relationships

between a response variable and a predictor variable, but these models are inadequate

at capturing complicated local behaviors of a dynamic response. Figure 5.1 plots such

a data set where the response variable demonstrates different dynamic behaviors in

different region. The type of data is referred as whiplike structured data in Ruppert

et al. (2003). A direct remedy of polynomial regression is to construct many local

polynomial functions based on the data, or piecewise polynomial regression. Each

local polynomial function is able to model response dynamics within its corresponding

region, while the overall smoothness of the response curve is obtained by imposing

connectivity and smoothness constraints at the end points (knots) shared by the two

adjacent local polynomials. Cubic spline regression model is a popular piecewise

polynomial model, in which the second-order derivatives of adjacent local polynomial

functions can be set equal, thus the connection is smooth to visual inspection. In

Figure 5.1, the cubic polynomial function, quartic polynomial function, and cubic

spline function with equally spaced knots are fitted to the data and it demonstrates

the inadequacy of polynomial models in comparison with piecewise models.
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Figure 5.1: Whiplike Structured Data. Complexity of the Data Changes Signifi-
cantly at t = 0.4.

5.2.1 B-Spline Model

Piecewise polynomial regression models constitute a flexible method for the non-

parameteric curve fitting of multiple local features. In the piecewise regression model,

dynamic responses are segmented to pieces by knots and each piece is fitted by a poly-

nomial function. Boundary constraints of these polynomial functions are implemented

to guarantee the continuity and smoothness of adjacent curves at knots. Although it

is easy to directly construct piecewise models by truncated power basis functions, this

approach is computationally unstable due to its imbalanced design matrix; instead,

B-spline bases are commonly used for constructing piecewise polynomial regression

models.

Without loss of generality, let the function f(t) span over the dynamic variable t

from 0 to 1, i.e., 0 ≤ t ≤ 1, and there are L number of interior knots within this range.

The basis functions of a B-spline of order m are polynomial functions with the degrees

m− 1. Expand the knot set by adding m additional knots at each end of t spectrum

and order these knots. Let τ to be the order knot vector; i.e., τ = [τ1, τ2, ....τL+2m],

where τ1 = τ2 = ... = τm = 0 and τL+m+1 = τL+m+2 = ... = τL+2m = 1. Then, the
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m-order B-spline basis functions can be expressed in the following recursive form (

De Boor et al. (1978)):

Bk,1(t, τ ) =

 1 τk ≤ t < τk+1

0 otherwise

Bk,m(t, τ ) =
t− τk

τk+m−1 − τk
Bk,m−1(t, τ ) +

τk+m − t
τk+m − τk+1

Bk+1,m−1(t, τ ), (5.1)

where k is the index of knots; i.e., k = 1, 2, ..., L + 2m. Thus, a B-spline function,

S(t), is defined as

S(t) =
L+2m∑
k=1

ckBk,m(t, τ ),

where ck is the coefficient for each basis, and Bk,m(t, τ ) will be shown as Bk(t) in

abstract.

An order-m B-spline function with L interior knots has p = L+m number of non-

zero basis functions. The sum of these basis functions at any t equals to 1. These

B-spline basis functions are compact, which refers to the property that an order-m B-

spline basis is non-zero in at-most m adjacent segments between knots. This property

allows a design matrix from B-spline model to have few non-zero entries. An order-4

B-spline function has polynomial bases with degrees of 3, or cubic polynomial bases.

Then, these functions can have up-to-2nd-order differentiations equated at knots and

make the whole curve smooth to visual inspection. Figure 5.2 (a) shows a set of order-

4 B-spline basis functions with internal knots at {0.3, 0.6, 0.9}. The differentiability

at knots can be reduced by adding replicated knots. For example, Figure 5.2 (b), (c),

(d) have additional 1, 2, 3 replicates of knot 0.6, respectively, which result in a basis

system that has one-degree continuous derivative, zero-degree continuous derivative

but continuous function, and discontinuous function, respectively, at this point.

Using B-splines to model a dynamic response yields Y (t) = S(t)+ε = BT (t)θ+ε,

where BT (t) is the transpose of a basis function vector, θ is a vector of coefficients
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Figure 5.2: The Order-4 B-Spline System with 7,8,9 and 10 Basis Functions
That Are Derived from the Internal Knots Located at {0.3,0.6,0.9},{0.3,0.6,0.6,0.9},
{0.3,0.6,0.6,0.6,0.9} and {0.3,0.6,0.6,0.6,0.6,0.9}, Respectively.

and ε ∼ N(0, σ2). Suppose there are N dynamic response profiles and M observa-

tions at t1, t2, ..., tM on each profile, then the response vector of each profile is yj =

[y1j, y2j, ..., yMj]
T , j = 1, 2, ..., N . Let the response matrix be as Y = [y1,y2, ...,yN ],

then

Y(t) = B(t)Θ + ε, (5.2)

where B(t) is the design matrix of basis functions and its elements are as bik =

Bk(ti), i = 1, 2, ...,M ; Θ is a matrix of coefficients; ε ∼ N(0,Σ). As aforementioned,

the sum of all elements in each row of B matrix equals to one. This constraint needs

be adopted in developing efficient algorithms for finding optimal design matrix in the

next section.

The following example demonstrates the flexibility of B-spline function on mod-

eling dynamic response. The data plotted in Figure 5.3 are taken from Binde et al.

(2012), which are the mass of soot emitted from diesel engine over crank angle from

0 to 50 degrees. Consider the order-4 B-spline function with equal distance interior

97



knots. Figure 5.3 shows the fitted curves with 9 interior knots (13 basis functions) and

with 19 interior knots (23 basis functions). One can see that with more interior knots

(or number of basis functions) more local behaviors of the dynamic response can be

captured by the model. It is difficult to obtain this level of flexibility by a parametric

model. On the other hand, one should be careful of selecting the number of knots

and their locations of B-spline model, as an unwise selection may cause over-fitting or

under-fitting of the data. For designing an experiment with dynamic responses, these

knots can be selected based on the prior engineering knowledge of the system; thus,

any optimal design derived from a B-spline model is locally optimal to the specific

prior knowledge only. Robust experimental designs under the uncertainty of knots

selection will be discussed later in this chapter.

Figure 5.3: Soot Mass Data for Crank Angle after Top Dead Center [CA ATDC]
between 0O to 50O Are Shown by Circles. Two Different B-Spline Bases System
Are Fitted to the Data. One Can See the Local Behavior of the Models Boost by
Increasing the Number of Bases Significantly

5.2.2 Mixed Effects Model

Beside of specifying the sampling points on dynamic outputs, an experimental

design of dynamic response system concerns with the study of effects of experimental

factors on the system’s dynamic behavior. To model these effects, a popular approach
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is the hierarchical modeling approach, in which the coefficients in spline model (5.2)

are functions of experimental factors (see e.g., Wu and Hamada (2011a), Tsui (1999),

Del Castillo et al. Del Castillo et al. (2012), and Verbeke and Molenberghs (2009a)).

Consider an experiment that consists of multiple treatments on experimental units

and the outputs from each experimental unit are measured over time. The hierarchical

modeling approach has two stages – first, the response curve of each experimental unit

is modeled by a spline function; second, the coefficients of spline function are modeled

as functions of treatments.

This approach yields:

yj = B(t)θj + εj εj ∼ NM(0,Σ), (5.3)

and

θj = Hf(xj) + ωj ωj ∼ NM(0,Σω), (5.4)

where xj is the vector of experimental factors applied on the j-th experimental unit

and f(xj) is the transformation of experimental factors, and H is a matrix of unknown

model parameters. Thus, the stage-1 model smooths the actual observed data profile,

yj, individually, and the stage-2 model assesses the relationships between smoothing

parameters and experimental factors.

Del Castillo et al. (2012) and Verbeke and Molenberghs (2009a) proposed to com-

bine Equations (5.3) and (5.4) to derive the mixed effects model such as

yj = B(t)[Hf(xj) + ωj] + εj = B(t)Hf(xj) + B(t)ωj + εj, (5.5)

Using Kronecker product of two matrices, the first term of the right hand side of

the equation can be rewritten as (f(xj)
T ⊗ B)vec(H), where vec() operator stacks

columns of H to one column. Then, the mixed effects model of the j-th dynamic

response becomes

yj = Xjβ + Bωj + εj, (5.6)
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where Xj = f(xj)
T ⊗ B and β = vec(H). It is easy to show the variance of yj is

given by Vj = Σ + B(t)ΣwB(t)T .

Given that there are multiple experimental units and each of them generates one

response curve, the mixed effects model becomes

Y = Xβ + (IN ⊗B)ω + ε, (5.7)

where NM×1 vector Y is equal to [y1,y2, ...,yN], NM×pq matrix X is (IN⊗B)F(x),

where Np × pq matrix F(x) = [Ip ⊗ f(x1), Ip ⊗ f(x2), ..., Ip ⊗ f(xN)]T . β, the

fixed unknown parameters of the model, is equal to [βT1 ,β
T
2 , ...,β

T
p ]T , where βTk =

[βk1, βk2, ..., βkq]. Finally, the random unknown parameters of the model, ω, is equal

to [ωT1 ,ω
T
2 , ...,ω

T
N ]T where ωTj = [wj1, wj2, ..., wjp].

The maximum likelihood estimation of unknown parameters in the mixed effects

model provided above is

β̂ = (XTV−1XT )−1XTV−1y. (5.8)

This estimator is unbiased to the parameter being estimated. The covariance of these

estimates is given by

COV (β̂) = (XTV−1X)−1, (5.9)

where V = Σ + (IN ⊗B)Σω(IN ⊗B)T . To obtain a D-optimal experimental design,

one needs to minimize the determinant of COV (β̂) or maximize the determinant of

information matrix; therefore, the D-optimal criterion is defined as

Dβ := max
X
|XTV−1X|. (5.10)

Mixed effects models have been applied on a wide variety of experimental design

studies. For examples, Goos and Jones (2011) used this model for designing split-

plot experiments; Laird and Ware (1982) used it to study the repeated measurement
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problem; Liu and Frank (2004) and Kao et al. (2009) applied it on fMRI experiments.

However, the experimental response we considered is much more complicated than

those in previous studies. We will derive the optimal experimental plan for both

the sampling time of dynamic response and the setting of experimental factors on

individual experimental unit.

The design matrix of mixed effects model, X, is a sparse matrix. This matrix is

constructed by the multiplication of stacked basis matrix B and experimental design

points f(x). According to the B-spline bases properties, order-m B-spline bases are

nonzero only at the m adjacent intervals separated by knots. Therefore, in the case of

using order-4 B-spline function to model a dynamic response with 10 interior knots,

there are 14 basis functions, but each basis function has non-zero values in 4 adjacent

intervals only, so at any sampling point there are at most 4 non-zero basis values.

Note that, if there is one sampling point in each interval, the basis matrix will become

a banded matrix with a bandwidth of 4. For example, in the experiment give by Grove

et al. (2004) there are 55 subjects, 3 independent factors and 7 observations on each

response curve, using the order-4 B-spline model yields a design matrix of size 385×21

((NM)× (pq)). To make all model parameters estimatible, only 385 nonzero entries

are needed in this matrix, which is 5% of the size of design matrix.

5.3 Optimal Sampling Times for Dynamic Response

Finding optimal sampling times of responses is a unique problem that would not

be seen in experiments with static responses. Sampling is required when there is a

high cost associated with the response measurement. Gaffke et al. (1999) presented D-

optimal designs for B-spline regression models and their designs were taking approx-

imate design forms. This relaxation enables statisticians to find an explicit formula

for the optimal solution, but this solution in the approximate design form may not
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be feasible in practice, because the weight values of design points in an approximate

design may not be able to be transformed to integers for a given sample size. Exact

designs that are obtained from exchange algorithms are considered in this chapter.

5.3.1 D-Optimal Design of Sampling Time

In this section, we discuss the D-optimal sampling times for functional data in

order to estimate the θ parameter vector in Equation (5.2) accurately. The covariance

matrix for this linear model is equal to

COV (θ̂) = (BTB)−1,

where the observations are assumed to be independent and have the equal variance.

Therefore, the D-optimal criterion can be specified as

Dθ := max
B
|BTB| (5.11)

S.T. bi1 = 1, for all i’s.

where bi is the ith row of B. It is defined by bi = [B1(ti) B2(ti)... Bp(ti)], where

p = m + l, and Bk(ti) is given by Equation (5.1) evaluated at the sampling time ti.

The constraint simply states that each row of B must sum to unity.

To provide a general idea of what an optimal sampling plan would be like for a B-

spline model, we plot two different B-spline basis systems in in Figure 5.4 and Figure

5.5, along with their optimal sampling times. One can see these optimal sampling

times are either on or close to the locations where one basis function has its maximum

value. The property can be explained by following theorems.
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Figure 5.4: Six Bases for an Order 4 B-Spline System with Internal Knots Located
at τ = {0.3, 0.8}. Optimal Sampling Times Are Depicted by Solid Lines, Where the
Dotted Lines Indicates the Location of the Knots. Sampling Time Vector for the New
Approach Is t = {0, 0.145, 0.385, 0.669,0.895, 1}

Figure 5.5: Five Bases for an Order 4 B-Spline System with Internal Knot Located
at τ = {0.1}. Optimal Sampling Times Are Depicted by Solid Lines, Where the
Dotted Lines Indicates the Location of the Knots. Sampling Time Vector for the
New Approach Is t = {0, 0.071, 0.307, 0.72, 1}.

Lemma 5.3.1 Let the symmetric square matrix M be a positive definite matrix with

non-negative elements, then its determinant can be calculated by

|M| =
p∏

k=1

mkk − ωT , (5.12)

where miis are the diagonal elements of M and ωT is a term involved the second-order

cofactors of diagonal elements and it is always positive.
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The proof can be extended from the Cauchy’s expansion of the determinant of a

positive definite matrix. As a result, to maximize the determinant function, we can

try to increase the values of diagonal elements and reduce the values of non-diagonal

elements at the same time. In general, if there exists a B-spline basis matrix with all

non-diagonal elements equal to zero and Tr(M) = J , where M = BTB and J is the

number of rows in B-spline basis matrix, then B is universally optimal design (see

Kiefer (1974)).

Now, considering the B-spline basis matrix defined in Equation (5.11) and M =

BTB, it is easy to show that the summation of all elements in M,
∑

i

∑
jmij = M ,

where M is the number of rows of B or the number of sampling times. This property

implies that increasing the values of diagonal elements in M will simultaneously

decrease the values of non-diagonal elements in M, when M is the information matrix

of the B-spline design matrix B.

Theorem 5.3.2 Let t = [t1, t2, ..., tM ] be the ordered sequence of optimal sampling

times for a dynamic system modeled by a B-spline model, then the two end points of

the spectrum variable must be included in this sequence, i.e., t1 = 0 and tM = 1.

This theorem can be proved by applying the previous lemma. Suppose B is the

design without including t1 = 0 or tM = 1 sampling time. Based on the Cauchy’s

expansion theorem and also Laplace’s formula, a D-optimal design can be found by

maximizing the diagonal elements in BTB and minimizing non-diagonal elements at

the same time. Constant summation property of the B-spline matrix shows replacing

a row in the design matrix by another one does not change the summation of the

elements in the information matrix. Therefore, changing the first row of B to be [1 0

0 ... 0] and the last row to be [0 0 ... 0 1] will increase the determinant of information
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matrix. Thus, t1 = 0 and tM = 1 must exist in the sequence of optimal sampling

times.

We can apply the same argument to other sampling times in the optimal sequence.

As the spline function is supported by p = m+L bases, it requires at least p sampling

times to make all coefficients estimatible. To have the diagonal elements of informa-

tion matrix to be large while non-diagonal elements to be small, the corresponding

diagonal elements in B should be large, which implies that optimal sampling times

should be located around the time when one basis function reaches its maximum.

Although we have not found a precise proof, this speculation has been supported by

all numerical examples we have tried. On the other hand, we can utilize this insight

to reduce the size of candidate points for constructing the optimal sampling time

sequence by using exchange algorithms. This idea will be further elaborated in the

next section.

Theorem 5.3.3 Let M be the information matrix corresponding to a B-spline design

matrix B. Suppose this B-spline system has its interior knots equal-distancedly placed

between the two ends of the spectrum variable, then optimal sampling times must be

symmetrically located between 0 and 1.

With uniformly spaced internal knots, it is realized that a basis function of B-spline

are symmetric to another basis function or itself. Using the Cauchy’s expansion, it

can be shown that if the time t, t < 0.5, is included in the optimal sampling sequence,

then 1− t must also appear in the sequence. Assume b1 and b2 are the vectors that

correspond to the sampling time t and 1 − t, respectively. If b1 is a row vector

to be augmented to B, the new information matrix can be calculated as M + Md
1,

where Md
1 = bT1 b1. Matrix Md

1 is a sparse matrix with a block of nonzero elements.

This block is similar to the nonzero block in Md
2 calculated by bT2 b2. This similarity,
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between Md
1 and Md

2 , is caused by the symmetrical behavior of bases due to uniformly

spaced internal knots. As a result, sampling at t or 1 − t has similar impact on the

information matrix. Therefore, if one of them appear in the optimal sequence the

other one must also appear.

5.3.2 Algorithm for Finding D-Optimal Sampling Times

Properties of an optimal B matrix are discussed in the previous section and these

properties will be utilized in this section to develop a deterministic search algorithm

for finding the D-optimal sampling plan. Similar to PEA, the proposed algorithm

requires a set of candidate points. Each row of matrix B (a design point) corresponds

to a sampling time; i.e., for a time t there is a row vector [b1 b2 ... bp]. Define an

objective function to be

obj(t) = max{b2
i } − λ

∑
i

∑
j>i

bibj (5.13)

We discretize the spectrum variable from 0 to 1 to give a list of t values. Then, with

the list of obj(t) values we find all local maximums and save their corresponding t’s to

the candidate set. Parameter λ in Equation (5.13) is a regularization parameter. This

parameter eventually controls the trade-off between achieving a large increase in the

diagonal element of information matrix and a decrease in the non-diagonal elements.

This parameter needs be tuned before the implementation of our algorithm.

Starting from a random initial design where sampling times are randomly assigned

between 0 and 1, our algorithm replaces these sampling times by the times in the

candidate set one by one. At each iteration, the Fedorov delta function will be

evaluated for assessing the improvement in the determinant of information matrix

when a current sampling time is replaced by a candidate sampling time. The iteration
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terminates when there is no more replacement that can increase the determinant of

information matrix.

Data: τ , t,m, L,F(x)

Result: Optimal design for the estimation problem

Initialization;

Generate B-spline basis functions with order-m and L internal knots;

Generate the candidate set C;

Calculate obj(t) for all discretized values of t ;

C ← arg(max obj(t)) ;

Generate the initial design matrix ;

while δ∗ ≥ e do

for j ∈ C do

δij ←

delta function of replacing i-th sampling point by the jth candidate point.

end

δ∗ ← max δi.;

ti ← arg(max δi.) ;

end

Algorithm 2: New Approach for Finding the Optimal Sampling Times

Computation times and determinants of the optimal designs obtained by our al-

gorithm are compared with those obtained from exhaustive search over all possible

sampling plans. Woods et al. (2003) suggested to the candidate set by choosing only

sampling times around the locations where each basis function reaches its maximal

value. Our approach further reduces this candidate set to include only N candidate

sampling times.
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Consider the examples in Figures 5.4 and 5.5. Varying the tuning parameter λ,

we compare the D-efficiency of the optimal design from our algorithm to the one from

exhaustive search. Figures 5.6 and 5.7 show that our algorithm is capable of reaching

to the highest possible efficiency with a proper choice of λ. The computation time of

our algorithm is much reduced from Woods et al. (2003) For the first example (Figure

5.4), the average computation time of our algorithm is 0.06 seconds, comparing to

12 seconds by Woods et al. (2003). In addition, Kaishev (1989) suggested to simply

use the times where each basis function has its maximal value. The efficiency of this

sampling plan is also marked by circle in the Figure 5.6 and Figure 5.7. It is clear

that Kaishev’s sampling plan is not optimal.

Figure 5.6: Comparing the Determinants of the Optimal Design from New Approach
and the Ordinary PEA for Different λS for an Experiment with 6 Runs and Order-4
Basis System with Internal Knots at τ = {0.3, 0.8}

5.3.3 Robust Sampling Plans

The optimal sampling plan depends on the basis functions, thus the locations of

interior knots, of B-spline system. The selection of knots in turn depends on the

experimenter’s knowledge of the shape of response curve. Therefore, uncertainties

in this prior knowledge at the experimental design stage require the experimenter
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Figure 5.7: Comparing the Determinants of the Optimal Design from New Approach
and the Ordinary PEA for Different λS for an Experiment with 5 Runs and Order-4
Basis System with Internal Knot at τ = {0.1}

to consider a robust design. In the following example, five different basis systems

with different locations of internal knots are used. Optimal sampling times for five

systems are shown in Figure 5.8. Then, we apply the k-means clustering algorithm

to cluster these optimal sampling times into k clusters, where k is less than the total

number of sampling times determined by the experimenters. In the next step, the

centroids of these clusters are stored in the candidate set and exchange algorithm is

applied to construct the robust sampling plan, where the objective function is set as

the median of D-efficiency for the all basis systems considered. Figure 5.9 shows the

robust design for the five B-spline systems provided in Figure 5.8.

5.4 Optimal Design of Experiments with Dynamic Responses

In Section 2.2 we modeled the dynamic response system by a mixed effects model

such as Equation (5.7). The D-optimal experimental design for such system is ob-

tained by applying the D-optimal criterion (5.11). However, design matrix X in

Equation (5.7) is large matrix and it is a function of the B-spline basis matrix B too.

Direct application of exchange algorithm on finding optimal X is unpractical. In this
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Figure 5.8: Five B-Spline Basis Systems with Order Three and Two Internal Knots
at Random Locations. Optimal Sampling Times for Different Bases Are Depicted by
Solid Lines, Where the Dotted Lines Indicates the Location of the Knots.

Figure 5.9: Robust D-Optimal Design for 5 B-Spline Systems Provided in Figure
5.8. Each Sampling Time Has Two Replicates for an Experiment with 10 Sampling
Times. Optimal Sampling Times for Different Bases Are Depicted by Solid Lines,
Where the Dotted Lines Indicates the Location of the Knots

section, we will use two steps to find the optimal design of experiments with dynamic

responses.

5.4.1 The Two-Step Approach

The first step is to find the optimal sampling times for a given B-spline basis

system. This is the same as maximizing the information matrix of Model (5.3),
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Table 5.1: Optimal Sampling Times for an Order-4 B-Spline Basis System

Number of Samples Optimal Sampling Times (t)

6 {0,0.12,0.33,0.6,0.85,1}

7 {0,0.12,0.33,0.6,0.85,0.85,1}

8 {0,0.12,0.33,0.6,0.6,0.85,0.85,1}

9 {0,0.12,0.33,0.33,0.6,0.6,0.85,0.85,1}

10 {0,0.12,0.12,0.33,0.33,0.6,0.6,0.85,0.85,1}

B(t)TB(t). For example, consider a order-4 B-spline basis system with two interior

knots at τ = {0.3, 0.6}. These basis functions are plotted in Figure 5.10 and the

optimal sampling times with different number of samples are listed in Table 5.1.

Figure 5.10: The Order-4 B-Spline Bases System with Internal Knots Located at
τ = {0.3, 0.6}

The number of bases of a B-spline system depends on the number of knots assigned

to the system. Reducing the number of bases may result in losing modeling flexibility

of some local behaviors of response curves under certain experimental conditions;

while increasing the number of bases requires the experimenter to have more prior

knowledge of the dynamic response and increases the complexity of experimental

design.

After finding optimal sampling times, the second step is to find the optimal ex-

perimental condition for each experimental unit, i.e., the optimal X in Model (5.7).
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Table 5.2: Optimal Experimental Designs of an Order-4 B-Spline System with 3
Experimental Factors and 55 Experimental Units

Sampling Strategies

x (experimental conditions) Two-step Random-6 Random-7 Random-8 Random-9 Random-10 Equal-6 Equal-7 Equal-8 Equal-9 Equal-10

{−1,−1,−1} 14 11 14 14 14 11 14 13 12 14 14

{−1,−1, 1} 13 5 10 11 5 5 13 11 4 12 13

{−1, 1,−1} 14 8 12 13 8 8 14 14 8 13 14

{−1, 1, 1} 0 6 4 3 9 7 14 5 7 0 0

{1,−1,−1} 14 8 9 10 4 7 0 9 6 4 0

{1,−1, 1} 0 5 2 1 6 6 0 0 6 0 0

{1, 1,−1} 0 0 4 3 9 9 0 2 10 2 14

{1, 1, 1} 0 9 0 0 0 2 0 1 2 0 0

Note the X = (IN ⊗ B)F(x). With B is fixed, we applied exchanged algorithm to

find the optimal F(x) to maximize the D-optimal design objective given in Equation

(5.10).

To compare this two-step approach to other methods, we consider the previous

example of order-4 B-spline system with 3 experimental factors and 55 experimental

units. The range of each factor is scaled to -1 to 1, so the design region is a cube.

Beside of the two-step approach, we apply two other approaches – optimizing D-

objective (5.10) with randomly chosen sampling times or uniformly spaced sampling

times. The designs derived from these approaches are listed in Table 5.2. We varied

the number of sampling times from 6 to 10. However, using the two-step approach,

the selected experimental conditions are the same for any number of sampling times,

so they are listed in one column. The numbers in each column of Table 5.2 are the

number of experimental units assigned to the corresponding experimental conditions.

The determinants of the information matrices of these designs are given in Table

5.3. One can see that the two-step approach is clearly superior than the other two

approaches in terms of providing designs with larger determinant values of information

matrix.
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Table 5.3: Determinants of the Information Matrices of Experimental Designs De-
rived from Three Approaches.

Determinants for Sampling Strategies

Number of Sampling Times Two-step Random Equal

6 2.75E+17 1.02E+10 2.16E+16

7 1.42E+18 2.43E+13 4.41E+17

8 7.34E+18 3.28E+15 2.91E+18

9 3.74E+19 1.61E+16 1.17E+19

10 1.91E+20 1.37E+17 3.87E+19

5.4.2 Two Engineering Examples

In this section, we apply the two-step approach for finding optimal experimental

designs of dynamic response systems on two engineering examples found in litera-

ture, and compare them with standard designs and engineer suggested designs. The

standard design is obtained by uniformly placing sampling times combined with D-

optimal design of experimental factors, while the engineer suggested design is taken

from the literature.

The first example concerns with designing an electrical alternator (see Nair et al.

(2002)). The response variable is electric current. The spectrum variable is revolu-

tions per minute (RPM) and it is sampled at {1375, 1500, 1750, 2000, 2500, 3500, 5000}

for 108 designed alternators (see Figure 5.11). After scaling the range of spectrum

variable to [0, 1], we have these sampling RPMs at {0, 0.03, 0.1, 0.17, 0.31, 0.58, 1}.

Eight controllable factors and two noise factors are considered in this example.

We use an order-4 B-spline system to model the response profiles over RPM and

place two interior knots at τ = {0.3, 0.6}. These basis functions are plotted in Figure

5.10. Then, the optimal sampling RPMs are located at {0, 0.12, 0.33, 0.6, 0.85, 0.85, 1}.

The determinants of information matrices of the engineer suggested design in Nair
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Figure 5.11: 108 Profile Curves Derived from the Experiments Conducted for De-
signing the Electrical Alternator. The Electric Current Values Are Marked by Circles
and They Are Connected by Straight Lines.

Table 5.4: Determinants of the Information Matrix from the Optimal Design, Stan-
dard Design, and Engineer Suggested Design

Design Determinant

Two-step 6.04E + 90

Standard Design 1.30E + 89

Engineer Suggested Design 4.08E + 48

et al. (2002), the standard design, and the D-optimal design derived from the two-step

approach are compared in Table 5.4.

The second example is taken from Grove et al. (2004). It is an engineering-

mapping problem, where brake torque is studied for 55 different spark sweeps where

the spark advance is varied for each sweep (see Figure 5.13). In this example, the

spark degrees may be different for each sweep and three controllable factors – speed,

load and AFR – can be varied in the experiment. Again, we scale the range of

spark advance to [0, 1]. We use an order-4 B-spline model with one interior knot at

τ = {0.5}. Figure 5.12 shows the set of these basis functions.

Table 5.5 presents the optimal design obtained from the two-step approach and the

standard design with uniformly spaced spark advances. Comparing the determinant
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Figure 5.12: The Order-4 B-Spline Bases System with Internal Knot Located at
τ = {0.5}

Figure 5.13: Response Profiles from the Engine-Mapping Experiments

values from these two designs, one can see the two-step approach is clearly better

than the alternative.

5.5 Conclusion

Designing optimal experiments for dynamic responses need to take into account

the variation over the continuum and the variation due to the changing levels of the

experimental factors. In this regard, a semi-parametric model was deemed a flexible

and appropriate model for designing optimal experiments for dynamic responses.
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Table 5.5: Two Design Alternatives for the Engineer-Mapping Example

Design Spark Advance (t) Determinant

Two-step {0,0.18,0.18,0.5,0.82,0.82,1} 7.24E + 15

Standard Design {0,0.16,0.33,0.5,0.66,0.83,1} 4.07E + 15

The model can be perceived as a hierarchical modeling strategy, where at the first

stage, a non-parametric model is used to smooth out the response curves over the

continuum, while in the second stage, the estimated parameters from the first model

are regressed against the experimental factors. The juxtaposition of the two is simply

a mixed effects model, as proposed in Del Castillo et al. (2012).

This chapter first considered the sampling point design problem. A fast, com-

putational algorithm was developed to determine the optimal sampling points. The

sampling points could be time in a longitudinal study or any continuous variable that

serves as the continuum for the functional responses. In this chapter, we explored

three different cases of the sampling points namely, time, RPM, and the angle of

spark advances in both hypothetical and real-world studies. For this problem, the

B-spline basis system was used as the smoothing model, both for its flexibility and

special mathematical properties that facilitate faster computation.

The corresponding design matrix for the B-spline is sparse. We exploited this

property and used Cauchy’s expansion to simplify the computation of the determinant

at each iteration and to restrict the set of possible optimal sampling points. These

improvements resulted in a more efficient algorithm. In comparison to the traditional

point-exchange-algorithm, the proposed method performed almost 200 times faster

and yielded relatively high D-efficiencies.

The constructed optimal designs are not robust to deviations from the assumed

B-spline functions. The optimal design is sensitive to changes in the number and

location of the knots, as well as the order and the number of basis functions. A simple
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way to incite robustness into a design is to reducing the number of basis functions,

which has its own disadvantage of smoothing out local trends. We explored a robust

design method using k-means clustering and demonstrated how to use this approach

for the case of finding robust optimal sampling points.

After the demonstrating the capability of the proposed algorithm to calculate

optimal sampling points, we considered the two-step approach to find the optimal

design for both sampling points and experimental settings. In the first step, the

matrix of experimental settings, D, was held fixed while the algorithm optimized the

determinant of the information matrix for a mixed effects model to find the optimal

sampling times. In the second step, the optimal sampling times obtained from the

first stage were held fixed while the algorithm iterated on the information matrix to

find the optimal experimental settings. The designs constructed using the proposed

algorithm yielded superior performance over other designs, as examples demonstrated

by found in the literature.
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Chapter 6

SUMMARY AND CONCLUSION

This thesis examined optimal design methods for functional or dynamic responses.

Functional or dynamically varying responses abound in applications in engineering,

medicine, and the sciences. While designing experiments for static-response studies

is a well-tapped area in literature, proposals for functional responses still require

in-depth examination. Analyzing functional data sets requires smoothing out the

variation over the spectrum variable, resulting in functional data models that are

more complicated than their static counterparts.

We examined two semi-parametric models for functional data–the mixed-effects

model and the varying coefficient models. The intent was to find a practicable model

form for our optimization problems. The mixed-effects model is an amalgamation of

two stages in hierarchical modeling. In the first stage, the functional responses are

smoothed with respect to the spectrum variable, and in the second, the parameters

from the first-stage model are regressed against experimental factors. The choice of

non-parametric smoother in the first stage is the subject of some researches. In this

study, we opted for the B-spline basis system. The B-spline system possesses attrac-

tive mathematical properties for modeling and design. It is flexible for various forms

of the response functions, such that its parameters can be tightened to closely capture

local behaviors on the response curve or loosened to avoid over-fitting. Del Castillo

et al. (2012) had proposed a mixed-effects model, and we adopted this model for study

with incorporating the B-spline into the second-stage model. The varying coefficient

model, on the other hand, fits different parameters at every sampling point, and then

uses a smoother for the estimated parameters in the second stage. We compared
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and contrasted the fitting and predictive capabilities of these two models for some

examples found in the literature.

In terms of fitting and prediction, there is no clear superior modeling technique.

Each model proved superior over the other for some data sets and required the same

number of parameters. However, the parameters of the mixed-effects model can

easily be estimated by ordinary least squares, while the estimators for the varying

coefficients model are more complicated. In addition, it is difficult to make reasonable

assumptions about the functional form of the estimated parameters in the varying

coefficients model, which makes it an impractical choice for optimal design tasks. In

light of these findings, we proposed the mixed-effects model as the model from for

designing optimal experiments for functional responses.

This dissertation focused on finding exact optimal designs for linear models and

these designs are found by point exchange or coordinate exchange algorithm. The

construction of exact designs requires the specification of the information matrix for

a given model.

In Chapter 3, we proposed the cCEA, a clustering, two-step exchange algorithm for

constructing G-optimal designs for ordinary linear models. G-optimality aims to find

a design that minimizes the maximum prediction variance over the design region. By

the very nature of its functional, the G-criterion is computationally tedious because

of the repeated evaluations of the prediction variance over a large number of design

points. The existing algorithms in literature yield exponential computing times with

respect to the size of the problem. The cCEA is able to construct an optimal design

with high G-efficiency in polynomial time.

In comparison with other designs in the literature, the cCEA generally produced

higher G-efficiencies, flatter prediction variance profiles over the design region volume,

and performed well with respect to the I-criterion. Most importantly, the computa-
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tional time of the cCEA only increased polynomially as the size of the problems

increased. This improvement was due to the reduced number of exchanges in the

first stage. Thus, the algorithm took advantage of the PEA’s property of exhaustive

search to narrow down the location of the optimal points, while using the CEA’s fast

computation to further improve the G-efficiency.

In Chapter 4, we dealt with the construction of optimal designs in the context

of fMRI studies. The HRF curve represents the amount of brain activity triggered

by the presentation of a stimulus. In this research, we assumed that the sampling

times (measurement points) are known and specified. This is typically the case for

fMRI studies because the sampling points are controlled by the magnetic resonance

(MR) scanner. The primary problem in fMRI studies is to determine the optimal

sequence of the stimuli. This is not a trivial problem because the presentation of a

stimulus produces a carry-over or lasting effect, further complicating the structure of

the design matrix.

We proposed a fast computational algorithm for the construction of exact, D-

optimal designs for the stimuli sequence. The algorithm is similar to CEA, where

each element of the design matrix is perturbed until no improvements are made on

the D-criterion.

Our proposed algorithms were compared with the closest work in the literature –

the genetic algorithm (GA) applied to fMRI studies. In almost of the cases considered,

the new algorithm showed improvements in the D-criterion, as well as improvements

in computing times. The disparity between the proposed algorithm and the GA was

more evident as the problem became more complex, such as in cases with more stimuli

and when the presentation times of stimuli and MR scanning times were out-of-sync.

The algorithms developed for the fMRI case were further extended to accommo-

date general cases with functional or dynamic responses. We dealt with two types of
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problems, namely, determining optimal sampling times for studies with no co-factors

and determining both sampling times and optimal experimental settings when co-

factors are present.

For the problem of optimal sampling times, we considered the B-spline basis sys-

tem as the non-parametric base model. Design matrices resulting from B-splines

are sparse, full-column rank, and possess the constant summation property. These

properties enabled the use of Cauchy’s expansion theorem. As a direct result of this

theorem, we found that maximizing the sum of diagonal elements of information ma-

trix and minimizing the off-diagonals is tantamount to this optimization problem. It

was also proven mathematically that the vector of optimal sampling points always

included the points t = 0 and t = 1. If the knots of the B-spline are chosen to be

equally-spaced, then the optimal sampling times are just symmetric around the knots,

cutting the required computation time in half. As a consequence of these mathemat-

ical results, an algorithm was proposed for constructing optimal sampling times that

simplified the computation of the determinant at each iteration and restricted the set

of possible optimal candidates. The algorithm outperformed PEA’s computational

time by a factor of 200 and yielded designs with high D-efficiencies.

Finally, we proposed an iterative, two-step algorithm for finding the optimal de-

sign for both sampling points and experimental settings. In the first step, the matrix

of experimental settings, X, was held fixed while the algorithm optimized the de-

terminant of the information matrix for a mixed effects model to find the optimal

sampling times. In the second step, the optimal sampling times obtained from the

first step were held fixed while the algorithm iterated on the information matrix to

find the optimal experimental settings. The optimal sampling points are not depen-

dent on the experimental settings, so we found it more beneficial to find the optimal

sampling points before determining the experimental settings.
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The designs constructed using the proposed algorithm yielded superior perfor-

mance over other designs, such as examples found in the literature.

The area of designing optimal experiments for functional or dynamic responses is

still relatively novel in literature. We propose the following extensions of our work.

In our current study, we assumed that the sampling times were equal in length and

every experimental condition was sampled using the same sampling strategy. This

would be useful in the case where taking response samples is a very expensive activity

and the number of total samples is strictly limited. In addition, dynamic experimental

factors that change their values over time will be considered in our future study.
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