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ABSTRACT

Question Answering has been under active research for decades, but it has recently taken

the spotlight following IBM Watson’s success in Jeopardy! and digital assistants such as

Apple’s Siri, Google Now, and Microsoft Cortana through every smart-phone and browser.

However, most of the research in Question Answering aims at factual questions rather than

deep ones such as “How” and “Why” questions.

In this dissertation, I suggest a different approach in tackling this problem. We believe

that the answers of deep questions need to be formally defined before found. Because these

answers must be defined based on something, it is better to be more structural in natural

language text; I define Knowledge Description Graphs (KDGs), a graphical structure con-

taining information about events, entities, and classes. We then propose formulations and

algorithms to construct KDGs from a frame-based knowledge base, define the answers of

various “How” and “Why” questions with respect to KDGs, and suggest how to obtain the

answers from KDGs using Answer Set Programming. Moreover, I discuss how to derive

missing information in constructing KDGs when the knowledge base is under-specified and

how to answer many factual question types with respect to the knowledge base.

After having the answers of various questions with respect to a knowledge base, I ex-

tend our research to use natural language text in specifying deep questions and knowledge

base, generate natural language text from those specification. Toward these goals, I de-

veloped NL2KR, a system which helps in translating natural language to formal language.

I show NL2KR’s use in translating “How” and “Why” questions, and generating simple

natural language sentences from natural language KDG specification. Finally, I discuss

applications of the components I developed in Natural Language Understanding.
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Chapter 1

INTRODUCTION

1.1 Motivation

Question Answering (QA) has been an active research area for decades (Maybury,

2004; Strzalkowski and Harabagiu, 2006; Mendes and Coheur, 2012; Gupta et al., 2012),

but recent success of Question Answering systems, such as IBM Watson (Ferrucci et al.,

2010), Apple’s Siri (Aron, 2011), Google Now (Google, 2012) and Microsoft Cortana, has

been bringing the concept closer to the public than ever.

Until now, most of the work in QA concentrate on factual questions (Gupta et al.,

2012). These questions are usually answered by looking for explicitly stated facts in text

or/and knowledge bases. The approaches along this line have been widely investigated

and archived; many notable successes such as Watson, which defeated Jeopardy!’s former

winners and received first prize of $1 million in 2011 or the AURA System (Chaudhri et al.,

2009) in project Halo, which passed the AP Biology test in 2004.

However, there are very few works on deep question answering; works that exist have

a limited view (Higashinaka and Isozaki, 2008; Aouladomar, 2005; Verberne, 2009, 2006).

These works attempted to answer “Why” questions by searching for the answers in the

given corpus, based on finding terms such as “because,” “so,” in sentences like “ A because

B” or “Because of B, A”. These approaches fail when the corpus does not contain such

terms or the answer needs to be constructed from many parts within the corpus. Moreover,

these approaches do not work when the indication terms are not sufficient.
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1.2 Specific Research Contributions

As current approaches of searching for answer of deep questions have aforementioned

drawbacks, we think a more suitable approach should “construct” the answers rather than

simply search. The major steps in developing our system answering deep questions (P1 to

P5 in Figure 1.1) are as follow:

Formulation:

• P1: Consider the text about photosynthesis in the top left of figure 1.1 and the deep

question, “How does the Calvin cycle work?”. This question can not be answered

by searching the text using indication terms such as “because,” “so,” and “by” in

straightforward search patterns like “The Calvin cycle works by ....” However, the

answer (such as the one in the bottom left of figure 1.1) may be obtained by com-

bining many facts scattered throughout the text. But, to know how to combine such

facts, one first needs to formally define the answer to such a “How” question. For-

mally defining this is the first step of the thesis, and we refer to it as P1.

• P2: Because such answers must be defined based on some knowledge, in a particular

knowledge representation, we explored various knowledge representation schemes.

This knowledge representation should be more structural than a natural language and

should support inference, an imperative property for answering many deep questions.

Developing such a representation is the second step in the thesis, and we refer to it

as P2. In addressing it, we formulated the notion of Knowledge Description Graphs

(KDGs). This structure contains information about events, entities, classes, and the

relations among them. In the middle right of figure 1.1, we give an example KDG

corresponding to the text in the top left. In the bottom right is an answer to the ques-

tion, “How does the Calvin cycle work?” constructed with respect to the example

KDG.
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Major tasks:

• P3: The third step of the thesis is to construct KDGs from knowledge bases, which

we name P3. Since constructing KDGs directly from natural language text is ex-

tremely challenging, we begin with frame-based knowledge bases such as AURA.

Additionally, this step includes enriching the knowledge bases if needed. We con-

sider two cases of missing information as follows:

1. In object-oriented frame-based knowledge bases, the information of each in-

stance is compactly represented using inheritance. To get the complete infor-

mation, one must utilize a process called “unification.”

2. In many cases, the knowledge base is missing information, such as type of

instances or order of events. However, such information can be derived from

related facts.

For each case, we suggest formulations and show an implementation in Answer Set

Programming for enrichment. We also show how to answer many factual question

types with respect to the knowledge base (AURA).

• P4: Using the KDGs constructed from knowledge bases and the answers formally

defined with respect to KDGs, our next step is to construct the answers of deep

questions from KDGs. We refer to it as P4, which we address by showing an imple-

mentation in Answer Set Programming and by proving its correctness.

• P5: So far, we have the answers of various factual and deep question types with

respect to a knowledge base. Our next goal is to extend our research to use natural

language text. While our first target is to only translate deep questions in natural

language to some formal representation, our long-term target is much more ambitious

and challenging: translating natural language text to KDGs. This long-term target is
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our next step, referred to as P5. We achieved the first target using NL2KR, the system

we developed to aid in translating natural language to formal language. However,

P5 requires much more work in upcoming years to have substantial outcomes. For

example, Knowledge Parser, which is not included in this thesis but will be discussed

later in the conclusion, is our first attempt towards it. Knowledge Parser combines

NL2KR and many other techniques to translate natural language text into KDGs.

After solving the pieces above, we realize that our approach can be used to tackle the

bigger related problem: Natural Language Understanding.

In the following chapters, we describe modules to address the puzzle pieces P1-P5.

After that, in the last chapter, we discuss applications and the path to solve some Natu-

ral Language Understanding problems. Details about the content of each chapter and the

progress of the thesis is presented in the following section.

1.3 Organization of the Dissertation

Following is the list of chapters in the dissertation:

• Chapter 1 introduces the motivation and modules of this thesis.

• Chapter 2 defines the KDG and its use in answering deep questions. It addresses P1,

P2, and part of P4

• Chapter 3 solves the problem of cloning and unification, which addresses most of

P3. Although we employ the same preprocessing module as (Baral and Liang, 2012)

to convert text in skolemized KM format (Clark et al., 2004) to Answer Set Pro-

gramming, we utilize different formulations and algorithms to solve the cloning and

unification problem. We provide details about the implementation and prove various

formulations. Additionally, we improve most of the factual question answering in
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(Baral and Liang, 2012); for the rest, we implement similar answers using our new

formulations.

• Chapter 4 shows the implementations of P2 and of deep question answering using

Answer Set Programming, addressing another part of P4.

• Chapter 5 discusses about reasoning to fill the missing information in many cases

where the knowledge base used to construct KDGs is incomplete.

• Chapter 6 introduces the NL2KR system, which can be used to build systems that

translate natural language to formal language. This module aims to address P5. We

brought NL2KR from a proof-of-concept state in (Kumbhare, 2013) to the proto-

type state by including various new features and improvements such as installation

packages, GUI, and bug fixing. Our other major contributions in NL2KR are (i)

CCG parser, which is based on planning, and (ii) new iterative semantic learning

algorithms. The improvements not only make NL2KR usable for people who have

no previous experience on the subject matter but also greatly speed up the learning

process. For example, learning on the corpus of 100 sentences now takes about 3

minutes while previous versions took more than 10 hours without finishing.

• Chapter 7 concludes the contribution in this dissertation and discuss the applications

of the techniques presented in previous chapters.
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Chapter 2

ADDRESSING HOW QUESTIONS WITH RESPECT TO KNOWLEDGE BASES

ABOUT EVENTS, ENTITIES, AND RELATIONSHIPS

2.1 Introduction

There exists a large body of knowledge bases about events, entities, and relationships.

This includes many frame-based knowledge bases, such as the ones mentioned on Knowl-

edge Machine’s website 1 , ConceptNet (Liu and Singh, 2004; Speer and Havasi, 2013),

and especially the knowledge base of AURA (Chaudhri et al., 2009). Manually created,

AURA’s knowledge base represents knowledge in biology, chemistry, and physics. 2 It

contains detailed information about events, entities, and the relationships among them. For

example, regarding the biological process photosynthesis, it has information concerning

the participants within this particular process, its sub-processes, such as light reaction and

the Calvin cycle, its sub-processes’ participants, the fact that light reaction enables the

Calvin cycle, and many other relationships between the two components in photosynthesis.

However, AURA addresses a limited set of factual question types, such as “What is pho-

tosynthesis?”, “What are the similarities between prokaryotic and eukaryotic cells?”, and

“Which chemical bond is the agent of adhesion of water?”

It has been a dream as well as a challenge for the Question-Answering(QA) community

to answer deeper questions, such as “Why” and “How,” with respect to such knowledge

bases and to text. For example, two “Deep KR&R Challenge Workshops” attempting this

challenge were organized recently (DKRC2011, 2011; DKRC2012, 2012); in one of them,

Chaudhri (Chaudhri et al., 2012) lists several “How” and “Why” questions of interest.
1http://www.cs.utexas.edu/users/mfkb/related.html
2The AURA system used its knowledge based in passing AP tests (Gunning et al., 2010).
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”Why” and “How” questions have also been mentioned in the field of Question-Answering

with respect to text (Higashinaka and Isozaki, 2008; Aouladomar, 2005; Verberne, 2009,

2006). However, they rely heavily on phrases such as “because of” and “causes of” to rank

the set of retrieved documents that may contain the answers but do not provide direct ones.

Such approaches are inadequate because the answer is either not explicitly mentioned, or

parts of it are scattered throughout the text and only a part of it may be found by the QA

systems.

According to the best of our knowledge, there is no research categorizing deep ques-

tions such as “How” and “Why” with respect to the answers they demand and no corpus

has been created as such for evaluating such results. One of the most important factor

behind this is the lack of well-founded formulations of deep questions i.e. the answer to

“What should the answer to such a question include?”. Hence in our paper, we attempt to

formulate such answers with respect to a knowledge base and pave an way for formalizing

the answers to deep questions.

In this dissertation, we formulate the answers of “How” questions with respect to

knowledge graphs. Our approach expands on the work of (Baral et al., 2012b), where

the authors attempted to formulate answers to two closely related questions: “How are X

and Y related in process Z” and “Why is X important to Y ?” with respect to a simpler

graphical structure that they called “Event Description Graphs” (EDGs). Our approach is

more general than the one mentioned in (Baral et al., 2012b) in the following ways: (1)

EDGs support a very limited set of nodes and edges while the Knowledge Description

Graph structure, which we use in this work, is more general, and (2) our approach can be

applied to a wider set of questions.

In a sense, formulating an answer to a “How” question is a deeply philosophical task.

Thus, we explored the literature of such in various fields. In biology, Wouters (Wouters,

2005) identified several types of “How/Why” questions and expected answers. For exam-
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ple, he mentions that “How is X used?” asks for the biological role/function and “How

does X work” asks for physiological explanation. However, he does not give details about

what should be included in the answers. In philosophy and the social sciences, Bunge’s

model (Bunge, 2004; Moss and Nicholson, 2012; Gerring, 2010) is often used to describe

how a system works. It contains components, environmental items, and the ties between

them, but lacks the details concerning answers to “How” questions.

Motivated by (DKRC2011, 2011; DKRC2012, 2012; Chaudhri et al., 2011; Baral et al.,

2012b), we define Knowledge Description Graphs (KDGs) 3 by adapting “Object-Oriented”

and frame-based representations from Knowledge Machine (KM) (Clark et al., 2004) and

AURA. Using KDGs, we represent the mechanism of “how” a process works and hence

formulate a graph-based answer. We then expand the construct to answer more complex

questions. Additionally, we apply our constructs on several examples of “How” questions

and analyze their properties. Although we do not elaborate on it in this work, we have

implemented the constructs formulated here to automatically answer “How” questions and

reason about many aspects of biological mechanisms.

Besides the main contribution in formulating the answers to How questions, our work

can also be extended to apply to QA systems which is based on some kind of knowledge

graph (such as IBM Watson (Ferrucci et al., 2010) and AURA (?)) to answer deeper ques-

tions, such as How questions.

In the following sections, we (1) propose a formal definition of KDGs, (2) formulate the

answer of “How does X work?” using KDGs, and then (3) generalize the “How” questions’

formulation to define answers to “How does X ρ Y?” where the ρ can be mechanism rela-

tions, like production, activation, and help. To make it easier to understand, we attempted

to center our examples around the plant domain of biology. Our formalism is neither re-

stricted to the plant domain nor to biology. Also to ease understanding, we provide the
3Please note that KDGs were first defined in a different context in a short paper.
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textual descriptions of the answers in some examples, although those answers are actually

in the form of graphs; we implemented a module to generate natural language answers

from the these graphs. Note that those answers are in simple English and can vary from the

textual description in the given examples.

2.2 Knowledge Description Graphs

A Knowledge Description Graph (KDG) (Baral and Vo, 2013) is a structure that repre-

sents the facts about instances and classes of events, entities, and the relationships between

them. It is a directed graph structure with three types of nodes (event, entity, and class

nodes) and five types of directed edges (compositional, class, participant, locational, and

ordering edges). The first four types of edges are referred to as the main edges. KDGs are

assumed to be directed acyclic graphs with respect to the main edges.

We used the slot names in KM (Clark et al., 2004) and AURA as a guide to categorize

the five types of edges. Figure 2.1 shows the types of edges in a KDG and its corresponding

sources and destinations. For example, ordering edges must be from event to event while

compositional edges must be from event to event or from entity to entity, depending on their

specific relations. Table 2.1 summarizes the type of edges and their meanings. The first

column contains the names of the edge types; the second column depicts the information

the edges usually convey. For example, locational edge from Src to Dest means that the

Dest (must be an event, see the Figure 2.1) happens in Src (must be an entity). The third

column shows the example slot names in KM, corresponding to the edge type.

Each relation between Src and Dest in KM is described by a pair of slot names. For

example, to tell that Dest is a part of Src, slots has-part and is-part-of are used. Slot

has-part of Src has value Dest (Src[has-part] = Dest) and slot is-part-of of Dest (Dest[is-

part-of] = Src). When the Object Graphs (Baral and Liang, 2012) are constructed from

AURA, based on KM, the redundant slots were removed to simplify the Object Graph and
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Edge type Meaning Relation(s)

locational Dest happens in Src happenings

class Src is an instance of class

Dest, or Dest is a super class

of Src

instance-of, super-class

compositional Src is usually composed of

Dest

subevent, first-subevent, has-

part, has-region, has-basic-

structural-unit

ordering there usually timely order be-

tween Src and Dest

next-event, enables, causes,

prevents, inhibits

participant entity Src is involved in event

Dest as a participant, a result,

etc.

raw-materials, result, agent,

destination, instrument, ori-

gin, site

Table 2.1: Types of Edges in a KDG. An Edge (From Src to Dest) Usually Has the Mean-

ing in the Second Column. The Third Column Contains the Example Slot Names in KM

Corresponding to the Edge Type.

render them acyclic. This can be done by keeping the forward slot (such as has-part) and

removing the reversed one (such as is-part-of) for most cases and using the reversed slot if

the forward would create a cycle.

Following the Object Graphs, we assume that KDGs are directed acyclic graphs with

respect to the main edges.

Figure 2.2 shows an example of a KDG. Three types of nodes, which are event, en-

tity, and class, are respectively depicted by rectangles, circles, and hexagons. Ordering

edges are represented by dashed-line arrows. All main edges are represented by solid lines.
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Figure 2.1: Types of edges in a KDG and the corresponding sources and destinations of the

edges.

Compositional edges are represented by solid-line arrows, participant edges by lines with

a black-square pointed to the entity node, class edges by diamond head arrows, and loca-

tional edges by lines with a circle pointed to the event node. Each event or entity node in a

KDG has a specific name, like Plant023 or Photosynthesis342, and has a edge to its class.

However, for the sake of simplicity, we omit most of the class edges and class nodes from

the examples, and we refer to event or entity nodes by their class names rather than specific

names. For example, we shorten Plant023 to Plant and Photosynthesis342 to Photosynthe-

sis.

Shown in Figure 2.2 and Figure 2.3 are two examples of KDGs: the KDG of Plant and

the KDG of Eukaryote. The KDG of Plant (Figure 2.2) contains following information:

(i) A plant cell is the basic structural unit of a plant; it contains chloroplast, where pho-

tosynthesis occurs, and (ii) Photosynthesis can be broken down into two sub-events: light

reaction and the Calvin cycle. The former utilizes sunlight as a raw material and enables

the latter, which produces sugar. Furthermore, Chlorophyll is an agent of photosynthesis.

Reduction of 3 phosphoglycerate is a sub-event of the Calvin cycle.

Cpath and opath:
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Figure 2.2: A KDG of Plant. An answer for “How does photosynthesis work?”, a

HOW plant(photosynthesis) (will be explained in the next section), is encircled by the light

line. An answer for “How does Calvin cycle work?”, a HOW plant(calcin cycle), is encir-

cled by the bold line.

A cpath in the KDG is a path consisting of only main edges. Similarly, an opath consists of

only ordering edges. The path from Photosynthesis node to Light reaction and to Sunlight

in Figure 2.2 is a cpath. The path from Light reaction to Calvin cycle is an opath.

Knowledge Description Graph rooted at Z

If Z is node in KDG G, the Knowledge Description Graph rooted at Z (denoted as

KDGG(Z)) is the induced subgraph of G whose nodes are Z and all of Z’s descendants
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Figure 2.3: A KDG rooted at the entity Eukaryote.

through main edges (from now on, when mentioning the child and descendant in an KDG,

we mean through the main edges). When G is clear from context, KDG(Z) is used instead

of KDGG(Z).

Lemma 1 The descendant relation in KDG is a strict partial order.

Proof 1 We are going to prove descendant relation is a strict order by showing its irreflex-

ivity, transitivity, and asymmetry. Given two nodes X and Y in a KDG, the descendant

relation between them does not always exist. Thus, the descendant relation is a strict par-

tial order.

Irreflexivity: Let X be a nodes in KDG G. X is not a descendant of X.

Transitivity: Let X, Y and Z be three nodes in KDG G. If X is a descendant of Y , Y is

a descendant of Z, then X is a descendant of Z (by definition of descendant)

Asymmetry: Let Z and X be two nodes in a KDG G. If X is a descendant of Z then Z is

not a descendant of X because there is no loop in G with respect to main edges.

The following is an important proposition about the equality of the KDGs when they

are obtained from different KDGs. For example, the KDG of RNA processing (Figure 2.3)
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obtained directly from the KDG of Eukaryote is the same as the one obtained from the

KDG of Neucleus (which was obtained from the KDG of Eukaryote).

Proposition 1 Let X be a descendant of Z in a KDG G. Let G1 be the KDG(X) obtained

from G and G2 be the KDG(X) obtained from KDG(Z). We have G1 = G2.

The proof of this proposition is given in the Appendix.

2.2.1 Highest Node - Lowest Node

Definition 1 A property P of a node in the KDG is either characteristic of the node itself

or of the entity/event/class it represents.

Some example properties “produce mRNA,” “is descendant of Neucleus,” and “is a com-

mon ancestor of Eukaryotic transcription and RNA processing. The two nodes RNA pro-

cessing and Synthesis of RNA in eukaryote in Figure 2.3 both satisfy the properties “has

result mRNA” and “produce mRNA.”

Depending on certain property P, its satisfiability need to be defined when it is not

trivial. For example, an event has the property “has result mRNA” when it has the partici-

pant edge “result” to mRNA, but it also has the property when its subevent has “has result

mRNA.” These satisfiability conditions are not trivial and therefore need to be specified

based on the property in used.

The definition of the “highest node” and “lowest node” that satisfies property P are

given in the following.

Definition 2 The highest nodes in the KDG(X) that have property P - denoted as HIX
P -

are the maximal nodes with respect to the partial order “descendant” in lemma 1 that have

property P. The lowest nodes in the KDG(X) that have property P - denoted as LOX
P - are

the minimal nodes that have property P.
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In other words, node T is a “highest node” with property P if it possesses property P but

none of its ancestor has property P.

Now, suppose there is a property P1 that RNA processing, Synthesis of RNA in eu-

karyote and Eukaryotic translation all satisfy (Figure 2.3). Note that RNA processing is a

descendant of Synthesis of RNA in eukaryote. The highest nodes that have property P1 in

KDG(Eukaryote) are Synthesis of RNA in eukaryote and Eukaryotic translation, but the

lowest nodes that have property P1 in KDG(Eukaryote) are RNA processing and Eukary-

otic translation.

Corollary 1 KDG(X) has at least one node that has property P. There exists at least one

highest node and at least one lowest node in KDG(X) that have property P.

Proof 2 The set of nodes in a KDG(X) that have property P is a non-empty partial order

set =⇒ there always exists maximal elements and minimal elements.

Corollary 2 Let X and Y be two nodes in KDG(Z). There exists at least one lowest com-

mon ancestor of X and Y (denoted as LCAZ(X ,Y )). Let S be a set of nodes in KDG(Z).

There exists at least one lowest common ancestor of all the nodes in S (denoted as LCAZ(S)).

Proof 3 Z is the ancestor of X and Y . Use Corollary 1, we have the result: there exists at

least one lowest common ancestor of X and Y .

2.3 The Answer to “How does X work?”

The answers to “How” questions are constructed from a KDG. If X is a node in the

KDG, there are other nodes that can affect X (via incoming ordering edges). Also, there

are nodes that are affected by X (via outgoing ordering edges). The answer is a graph,

consisting of the nodes that affect X or are affected by X . The answer graph also contains

edges as described below. Our answer construction is inspired by Bunge (Bunge, 2004),
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which describes four attributes that include a set of “environmental” items. These items are

those that affect or are affected by a node. We specify the environmental items via a KDG

to arrive at our answer construction. Formally, the Environmental Set of X is the set { N

| X has an ordering edge to N OR N has an ordering edge to X }. For example, in Figure

2.2, Light reaction and the Calvin cycle are in the environmental set of each other.

2.3.1 Contextual Path

In a KDG, if there is a cpath from node X to node Y , it implies that Y has a structural

relationship to X . Such a cpath is called a contextual path of Y with respect to X . For

example, a contextual path of Photosynthesis with respect to Plant is the path from Plant

to Plant cell, to Chloroplast and then to Photosynthesis. It tells us that the Chloroplast is a

part of Plant cell, the Plant cell is the basic structure of Plant, and Photosynthesis occurs

in the Chloroplast.

The answer to “How” questions on X can be constructed by defining a subgraph consist-

ing of nodes that are in the environmental set of X and the nodes that are in the contextual

path of X with respect to the root of the KDG. To formalize, we first define the candidate

subgraph, HOW Z(X).

Definition 3 (HOW Z(X)) Let X be a node in the KDG(Z), a HOW Z(X) is a induced sub-

graph of KDG(Z) whose set of nodes is the union of the following:

(1) all the nodes in the KDG(X); (2) all the environmental nodes of X; and (3) all the nodes

on a contextual path of X (with respect to Z).

Shown in Figure 2.4 (b) is the visualization of HOW Z(X). The dark triangle is for

the KDG(X), the dashed lines to/from X are for X’s environmental nodes and their edges

from/to X , and the solid line from Z to X is for the contextual path of X with respect to Z.

The other graphs are generalization of the “How does X work?” question and is explained

in section 4.
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Note that the question “How does X work?” is valid only if X is an event node. If X

is an instance of XClass, then the real question is “How does XClass work?” instead of

“How does X work?” However, we often ask this question of X rather than XClass.

Definition 4 (Answer to “How does XClass work?”) Let X be an event node in the KDG(Z)

and X be an instance of XClass. An answer of the question “How does XClass work?” is

a HOW Z(X).

Using HOW Z(X), we can picture the answer of “How does photosynthesis work?” in

Figure 2.2. Since no event affects or is affected by photosynthesis, the answer is the

subgraph of the KDG rooted at Photosynthesis and the path to it from Plant. Similarly,

because the Calvin cycle is affected by the Light reaction, the answer to “How does the

Calvin cycle work?” contains not only the KDG rooted at the Calvin cycle but also at the

node Light reaction and the path to Calvin cycle from Plant.

If the question has a scope such as “How does X work in T?,” given KDG(Z), the

answer would be HOW T (X) where T is used instead of Z as a root node.

2.3.2 Justifying Our Formulation of HOWZ(X)

For an answer such as HOW Z(X) or latter structures, we justify their correctness by

three ways:

1. Conceptually, by their components: The graphical structure must contain all concepts

that the answer should have according to our common sense. For example, HOW Z(X)

contains all concepts mentioned in Bunge’s model.

2. By examples: We apply the structure to a specific question and show that it give us an

“intuitive” answer. We did this in the example “How does photosynthesis work?” in the

previous section.

3. By their properties: The graphical structure should also satisfy important properties

such as existence, uniqueness, and inclusiveness. The inclusiveness property is that the
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structure of answer A should contain the structure of answer B when answer A contains

answer B. For example, conceptually, the answer of “How does photosynthesis work?”

should contain the answer of “How does the Calvin cycle work?” because the Calvin cycle

is a sub-event of photosynthesis.

As the first two ways of justifying HOW Z(X) were shown previously, we justify the

formulation of HOW Z(X) by its properties.

Lemma 2 (Existence, uniqueness) Let X be a node in the KDG(Z), there exists at least

one HOW Z(X). Each of them differs from the others by the contextual path of X.

To relate HOW Z(X) and HOW Z(C) (for the inclusiveness) where C is a descendant of

X in the KDG(Z), we define a notion of “self-contained.” The rationale behind the self-

contained condition is that the encoding of each event should contain only information that

is needed to describe it. Often when the self-contained condition is not satisfied, then there

is a knowledge encoding error where the same event is incorrectly used multiple times.

This can be corrected by creating extra copies of that event and linking them appropriately.

For example, the events Light reaction and Calvin cycle describe the event Photosynthesis,

and there should not be the event Preparation which enables Light reaction when it itself is

not a child of Photosynthesis. If the annotators wanted to encode that Preparation enables

event Light reaction in some other circumstance, they should have created another event

similar to Photosynthesis and included Preparation as its sub-event.

The self-contained condition is formally defined as follows:

Definition 5 (Self-contained) A node X is self-contained if one of the following conditions

is satisfied.

• X does not have any children.

• All of X’s children are self-contained and their environmental nodes (if they exist)

are also X’s children.
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KDG(Z) is self-contained if all its nodes are self-contained.

According to the definition, all of the nodes in Figure 2.2 are self-contained and the

KDG(Plant) is self-contained. For example, all the children of Light reaction and Calvin

cycle are self-contained because they do not have children. The environmental nodes of

Light reaction and Calvin cycle are among themselves and are children of Photosynthesis.

Thus, Photosynthesis is also self-contained. Moreover, from the definition we can easily

show that if C′ is an environmental node of C and C is a node in self-contained KDG(X),

then C′ must be also in KDG(X). If the KDG is self-contained, then a HOW Z(X) con-

structed from it has the inclusiveness property: HOW Z(X) should contain HOW Z(C) if X

is an ancestor of C. More formally,

Corollary 3 Let C be a descendant of X in KDG(Z), C′ is an environmental node of C. If

KDG(X) is self-contained, C′ is also a descendant of X.

Proposition 2 (Inclusiveness) Let X be a node in the KDG(Z) where KDG(Z) is self-

contained. Let C be a descendant node of X through cpath. Each HOW Z(X) contains at

least one HOW Z(C).

The proposition above shows that the answer of “How does photosynthesis work?”

contains the answer to “How does the Calvin cycle work?” (Figure 2.2) since the Calvin

cycle is a descendant of Photosynthesis.

In this proposition, HOW Z(X) does not necessarily contain all HOW Z(C) because there

could be a path from Z to C that does not pass through X .

Proof 4 Let G1 be a HOW Z(X). We are constructing a subgraph G2 of G1 that is a

HOW Z(C).

By definition, HOW Z(X) contains KDG(X), which, in turn, contains KDG(C).
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Let P1 and P2 be two cpaths in G1. P1 is from Z to X, and P2 is from X to C. Let P be

the concatenation of P1 and P2.

Construct the induced subgraph G2 of G1 that contains

1. all the nodes in KDG(C),

2. all the nodes on P,

3. all C’s environmental nodes in KDG(Z),

Using Corollary 3 we have: all C’s environmental nodes in KDG(X) and, thus, also in

G2. Hence, G2 is a HOW Z(C).

2.3.3 Algorithm to Construct HOWZ(X)

We can construct the HOW Z(X) through three steps similar to those below. First, we

start from Z and search for X , traveling through only main edges. Once we reach X , we have

the cpath from Z to X . After that we can obtain X’s environmental nodes, which are con-

nected to/from X through behavioral edges. KDG(X), the last component of HOW Z(X),

can be obtained by searching all the reachable nodes from X through main edges.

INPUT: KDG(Z), X

OUTPUT: HOW^Z(X)

-------------------------

STEP 1: Search for X in KDG(Z) and get the cpath from Z to X

STEP 2: Search for X’s environmental nodes

STEP 3: Get all nodes that X can reach through main edges

Since a KDG is Directed Acyclic Graph (DAG) with respect to main edges, all the steps

above can be done in linear time and linear space (Sedgewick and Wayne, 2011). i.e. its

complexity is C ∗ (V +E) where V and E are the number of nodes and edges in the KDG.

HOW Z(X), thus, can be constructed by algorithms of linear time and space complexity.
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2.4 Generalization - “How does X ρ Y?”

In this section, we formulate answers to questions of the form “How does X ρ Y?.”

They generalize the answer formulation in the previous section; the describing event now

needs to satisfy some additional constraints.

2.4.1 Types of Procedural Questions

We analyzed more than 300 “How” questions from the collection of 1,800 biology

questions and answers 4 , and we found that almost all the questions fall into the following

three types with some slight variations about the scope of the question. i.e. “X of Z” or “X

in Z” instead of only “X” or “Y.”

1. How does X reproduce/grow/appear/... ?

2. How is Y activated/formed/treated/produced/... ?

3. How does X create/help/participate-in/... Y ?

All three types can be generalized to a single type, “How does X ρ Y?”, where ρ is

a mechanism relation such as “help,” “participation,” and “creation,” upon others. If X or

Y is missing, the general type becomes types 1 and 2, as listed above. We now construct

answers to these generalized questions.

2.4.2 The Generalized Model 1

The answer to “How does X ρ Y?” should contain structures to show (1) the structural

relation between X and Y ; (2) the relation ρ from X to Y , and (3) details on how X works.

Part (1) can be represented with three cpaths: the contextual path to a lowest common

ancestor LCA of X and Y and the two contextual paths of X and Y with respect to the LCA.
4http://www.biology-questions-and-answers.com/
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5 The three cpaths are joined at LCA like an upside-down “Y” (see Figure 2.4 2.4(a)) with

the three end-points X , Y and Z. Part (3) can be represented by HOW Z(X). We need to

construct the structure for (2) expressing the relation ρ from X to Y . That structure is an

undirected path from X to Y , called the relational path.

Definition 6 (Relational path) Let X and Y be two different nodes in KDG(Z). A rela-

tional path from X to Y (denoted as RELZ(X ,Y ) is an undirected path of KDG(Z) from X

to Y through any types of edges.

Examples of some relational paths shown in Figure 2.5 are:

1. RELPhotosynthesis(sunlight,sugar) is the union of cpath from Light reaction to Sun-

light, cpath from Calvin cycle to Sugar and opath from Light reaction to Calvin

cycle (highlighted by solid line in Figure 2.5)

2. RELPhotosynthesis(sunlight,sugar) is the union of cpath from Photosynthesis to Sun-

light and cpath from Photosynthesis to Sugar. It is highlighted by the dashed line in

Figure 2.5.

If the information conveyed by the nodes and edges along the path shows that X ρ Y ,

we said that it explains the relation ρ . For example, the path from Photosynthesis to Calvin

cycle to Sugar shows that Photosynthesis produces Sugar, therefore explaining the relation

“produce.” Similarly, the path from Light reaction to Calvin cycle explains the relation

“enable” or “activate.” Identifying the precise properties that the nodes and edges on the

path (explaining a relation ρ ) should satisfy and automatically matching them will be

discussed in a future work. Here, we loosely define the relational path explaining relation

ρ as follows:

5Note that in a KDG(Z), two nodes X and Y always have at least an LCA since Z is their common ancestor.
However, LCA is not unique and our definitions account for that non-uniqueness.
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Definition 7 (Relational path explaining relation ρ) A relational path from X to Y ex-

plains the relation ρ if the information conveyed by the nodes and edges along the path

shows that X ρ Y .

Armed with the previous definitions, we can construct HOW1Z(X ,ρ,Y ) as follows.

Definition 8 (HOW1Z(X ,ρ,Y )) Let X and Y be two nodes in KDG(Z), LCA be a lowest

common ancestor of X and Y . A HOW1Z(X ,ρ,Y ) is the union of the following subgraphs:

• Cpaths from LCA to X, from LCA to Y and from Z to LCA (contextual path of LCA

with respect to Z),

• a relational path from X to Y explaining relation ρ , and

• the KDG(X) and edges between X and its environmental nodes.

Definition 9 Let X and Y be two nodes in KDG(Z) and be instances of XClass and

YClass respectively. A HOW1Z(X ,ρ,Y ) is an answer of the question “How does XClass ρ

YClass?” 6

The problem of answering question “How does X ρ Y?” now becomes the problem of

finding the relational path explaining ρ using the semantics of edges and nodes along the

path (We give examples in the next subsection).

Depending on the level of details and the specific relation ρ , the HOW1Z(X ,ρ,Y ) struc-

ture may have some slight modifications such as including more relational path(s) or ex-

cluding the KDG(X).

6There could be many answers corresponding to different LCAs.
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2.5 Algorithm to Construct HOW1Z(X,ρ,Y)

We can construct the HOW1Z(X ,ρ,Y )) through three steps similar to those below. First

we begin from Z and search for X , traveling through only main edges. Once we reach

X , we have the cpath from Z to X . After that, we can obtain X’s environmental nodes,

which are connected to/from X through behavioral edges. KDG(X), the last component

of HOW Z(X), can be obtained by searching all the reachable nodes from X through main

edges.

INPUT: KDG(Z), X

OUTPUT: HOW^Z(X)

-------------------------

STEP 1: Search for X and Y in KDG(Z)

STEP 2: Search for lowest common ancestor LCA of X and Y; obtaining

cpath from Z to LCA , cpaths from LCA to X and LCA to Y

STEP 3: Search for X’s environmental nodes and KDG(X)

STEP 4: Search for relational path R from X to Y

Since a KDG is a Directed Acyclic Graph (DAG) with respect to main edges, steps

1-3 can be done in linear time and space (Sedgewick and Wayne, 2011). If step 4 needs a

more complex algorithm, its complexity will be the complexity of the whole algorithm in

constructing HOW1Z(X ,ρ,Y )). The algorithm to find relational paths can be found only

when the precise conditions of the nodes and edges of the path explaining a relation are

determined.

In the following examples, we discuss the complexity in specific cases where these

conditions are determined.

2.5.1 Examples

In this section, we will consider some examples of applying HOW1Z(X ,ρ,Y ) to spe-

cific questions. In each question, we will analyze how HOW1Z(X ,ρ,Y ) changes and verify
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the information it gives.

“How does X work?”

In this case, X and Y of HOW1Z(X ,ρ,Y ) are combined into one and there is no relation ρ .

The three cpaths become the contextual path from Z to X . Hence, HOW1Z(X ,ρ,Y ) (Figure

2.4 (a)) becomes HOW Z(X) (Figure 2.4 (b)) as expected.

“How does X produce Y?”

In this case, there must exist a relational path ρ explaining relation “produce” from X to Y .

Let us assume that conditions of “X produces Y” are defined as follows.

Definition 10 Let X and Y be two nodes in KDG(Z).

• X directly produces Y if there is a participant edge “result” from X to Y , and

• X produces Y if X directly produces Y or X’s component directly produces Y .

Translating to the conditions of the relational paths: A relational path ρ explaining the

relation “produce” must be a cpath from X to Y where the last edge is the participant edge

“result”. Because the relational path from X to Y must be a cpath, Y actually belongs to

KDG(X), and HOW1Z(X , produce,Y ) also becomes the HOW Z(X) as shown in Figure 2.4

(c).

Based on the above, the highlighted path in the Figure 2.6 explains the relation “pro-

duce”: Plant “produces” sugar, as Photosynthesis and Calvin cycle do. The answer to

“How does photosynthesis in plants produce sugar?”, pictured in Figure 2.6, can be read as

follows:

Example 1 Q: How does plant produce sugar?

A: “Plant” is where photosynthesis occurs. Photosynthesis has two sub-events: light reac-

tion and Calvin cycle. The light reaction enables the Calvin cycle, which produces sugar.

Reduction of 3 phosphoglycerate is a sub-event of Calvin cycle.
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Algorithm to construct HOW1Z(X ,Y ) When we sort KDG(Z) in the topological order,

all the nodes on any cpath from X to Y must lie between X and Y . To find a relational path

ρ explaining relation “produce” from X to Y , we first search for a node N in between X and

Y in topological order that has the participant edge “result” to Y . We then find an arbitrary

cpath from X to Y . All these two steps can be done in linear time and space.

As shown above, the other parts of HOW1Z(X ,Y ) can also be constructed in linear time

and space. Hence, HOW1Z(X ,Y ) can be constructed in linear time and space.

“How does X participate in Y?”

In a KDG, an entity C directly participates in an event B if there is a participate edge from

B to C. However, if B is a sub-event of A, C also participates in A. The relational path that

explains the relation “participate” is thus an undirected path starting from X following a

participant edge to P1 (the directed participant edge is from P1 to X), and then continuing

on the compositional edges to P2, P3,..., and then to Y .

Note that the participant edge is from event to entity, P1 must be event node; “How

does X participate in Y?” only makes sense when X is an entity and Y is an event. If X is a

subevent of Y , X does not participate in Y because X is already a “part of” event Y ”.

We formally define this “participant” relational path as follows.

Definition 11 Let X be an entity node and Y be an event node in KDG(Z). PPAT HZ
X ,Y is a

relational path in KDG(Z) that contains the nodes X ,P1,P2, ...,Pn (n ≥ 1) where: Pn = Y ,

there exists a participant edge from P1 to X and a compositional edge from Pi+1 to Pi

(1≤ i≤ n−1).

In the following, there are various questions and answers concerning the “participate”

relation in KDG(photosynthesis). Again, depending on the detail level of the answer,

some parts of the HOW1Z(X ,Y ) can be skipped within the answer. For example, the short

answers of those questions can contain only the relational paths.
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Figure 2.7 shows the answers in the following examples with respect to the KDG of

photosynthesis. The answers of the questions “How does sunlight participate in light reac-

tion?” and “How does sunlight participate in photosynthesis?” are PPAT H photosynthesis
sunlight,light reaction

and PPAT H photosynthesis
sunlight,photosynthesis respectively. Note that according to our definition, sunlight

does not participate in the Calvin cycle or “’Plant”; it only participates in light reaction

and photosynthesis. The answers in the graph can be translated to natural language like the

answers in the examples using the techniques discussed in section 2.8.

Example 2 Q: How does sunlight participate in light reaction?

A: Sunlight is the raw material of light reaction.

Example 3 Q: How does sunlight participate in photosynthesis?

A: Sunlight is the raw material of light reaction, which is a subevent of photosynthesis.

Example 4 Q: How does sunlight participate in reduction of 3 phosphoglycerate?

A: N/A. This question does not have an answer since there is no evidence of sunlight par-

ticipate in reduction of 3 phosphoglycerate.

The following lemma relates the PPAT HZ
X ,Y ′ and PPAT HZ

X ,Y when Y is ancestor event

of Y ′ (i.e., there is a cpath from Y to Y ′ through compositional edges of sub-event relation).

For example, the PPAT H photosynthesis
sunlight,photosynthesis contains PPAT H photosynthesis

sunlight,light reaction as shown in

Figure 2.7.

Lemma 3 (Inclusiveness of PPATH) Let X be an entity node in KDG(Z), Y and Y ′ be

two event nodes in KDG(Z) where Y is an ancestor event of Y ′. If PPAT HZ
X ,Y ′ exists, there

is a PPAT HZ
X ,Y that contain a PPAT HZ

X ,Y ′ . In other words, if X participates in Y ′, it also

participates in Y .
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Proof 5 The needed PPAT HZ
X ,Y can be constructed by concatenating PPAT HZ

X ,Y ′ and subevent

path between Y ′ and Y ′. Moreover, when X only participate in Y through Y ′ (i.e. all partic-

ipant path from X to Y go through Y ′), all PPAT HZ
X ,Y contain PPAT HZ

X ,Y ′ .

Once we find the satisfied relational path, the HOW1Z(X ,ρ,Y ) can be obtained. Here,

because of semantics of the question, Y can not be a descendant of X , and KDG(X) is not

a must-have component of the answer; hence, we can remove it from the answer, leaving

us the structure in Figure 2.4 (d).

“How is X used for Y?”/“How can X help Y?”/ “How does X act in Y?”

These questions are closely related to the question “How does X participate in Y?” where

X is an entity and Y is an event. They imply that X is directly involved in Y or that X

is indirectly involved in Y . We believe that the question “How is X used for Y?” is more

likely in the case of “directly involved” (which can be answered similarly to “How does X

participates in Y?”) and the rest are closer to the case of “indirectly involved.”

Here we consider one of the “indirectly involved” questions according to the following

assumption. We assume that “X helps Y” implies that all of the following conditions are

satisfied:

1. X = P1 or X participates in P1

2. P1 directly “helps” P2 because there is an opath (the path contains only ordering

edges) from P1 to P2

3. P2 = Y or P2 participates in Y

Formally, we define the relational path HPAT HZ
X ,Y explaining relation “help” as fol-

lows.

29



Definition 12 Let X be an entity node and Y be an event node in KDG(Z). HPAT HZ
X ,Y is

a relational from X to Y that contains: an optional PPAT HZ
X ,P1

, opath from P1 to P2 and an

optional PPAT HZ
P2,Y . The two PPATHs are optional.

Similar to previous question, the KDG(X) can removed from the answer of “How can

X help Y?,” leaving us the structure in Figure 2.4 (d).

Example 5 Q: How does sunlight help calvin cycle?

A: Photosynthesis has two subevents: light reaction and calvin cycle. Sunlight is a raw

material of the light reaction. The light reaction enables the calvin cycle

Figure 2.8 shows the answer in the example above with respect to KDG(photosynthesis).

It contains a HPAT H photosynthesis
sunlight,calvin cycle which goes from the sunlight to the Calvin cycle

through the light reaction. Since the answer is with respect to KDG(photosynthesis), the

root Z of the HOW1Z(X ,ρY ) is photosynthesis. Photosynthesis is also a LCA of sunlight

and Calvin cycle. The three cpaths of HOW1Z(X ,ρY ) becomes two: cpaths from photo-

synthesis to sunlight and to Calvin cycle.

“How is Y activated in Z?”

This question is the passive form of “How does X activate Y in Z?”, where X is missing.

We must first find X in KDG(Z) that “activates” Y and then obtain results similar to that of

the active case shown in Figure 2.4 (e).

Assume that the relational path explaining “activate” is an opath ended by ordering edge

“enable”. The opath from light reaction to Calvin cycle explains the relation “activate”.

Thus, Figure 2.8 shows the answer of “How is the Calvin cycle activated in photosynthe-

sis?”. This is the complete answer including the KDG(X) of HOW1Z(X ,ρ,Y ), which is

the KDG(lightreaction) in this example.
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2.5.2 Justifying HOW1Z(X,ρ,Y)

As we mentioned before, we justify the HOW1Z(X ,ρ,Y ) by three ways. The first two

(conceptual and example) were shown in the previous subsection. Here we give justification

by showing the properties of HOW1Z(X ,ρ,Y ).

Lemma 4 (Existence, uniqueness) Let X and Y be two nodes in KDG(Z). If there exists

a relational path from X to Y that explains ρ , there exists at least one HOW1Z(X ,ρ,Y ).

Moreover, since HOW1Z(X ,ρ,Y ) is the generalized answer, we expect it to transform

to the HOW Z(X), similarly to the examples in the previous section.

Proof 6 (Proof by construction) Given X and Y in KDG(Z). There exists at least one

lowest common ancestor LCA of X and Y . Since the Z is the ancestor of LCA, LCA is

ancestor of X and Y , there exists at least one cpath from Z to LCA, one cpath from LCA

to X, and one cpath from LCA to Y . Using the given relational path from X to Y that

explains ρ with the three cpaths above, the KDG(X), and X’s environmental nodes, we can

construct a HOW1Z(X ,ρ,Y ).

Lemma 5 Let X and Y be two nodes in KDG(Z). If Y and other nodes in the relational

path of HOW1Z(X ,ρ,Y ) are descendants of X, then HOW1Z(X ,ρ,Y ) becomes HOW Z(X).

Proof 7 If Y and other nodes in the relational path of HOW1Z(X ,ρ,Y ) are descendants of

X, X is LCA of X and Y . KDG(X) obviously contain cpath from LCA to X and LCA to Y .

All components of HOW1Z(X ,ρ,Y ) construct a HOW Z(X).

However, HOW1Z(X ,ρ,Y ) does not satisfy the inclusiveness property, which motivates

the alternative answer structure HOW2Z(X ,ρ,Y ) defined in the following section.
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2.5.3 The Generalized Answer 2

An alternative formulation of the answer to the question “How does X ρ Y?” could be

a HOW Z(T ) structure, where T is chosen in such a way that the answer would contain the

relational path ρ . To keep the answer as compact as possible, a possible choice of T is a

lowest common ancestor of all the nodes in the relational path.

Definition 13 (HOW2Z(X ,ρ,Y )) Let X and Y be two nodes in KDG(Z). Let REL be a

relational path from X to Y explaining the relation ρ . A HOW2Z(X ,ρ,Y ) is HOW Z(LCA)

where LCA is a lowest common ancestor of all the nodes in REL.

Definition 14 Let X and Y be two nodes in KDG(Z), X and Y are instances of XClass and

YClass. A HOW2Z(X ,ρ,Y ) is an answer of the question “How does XClass ρ YClass?”.

Figure 2.4 (f) illustrates HOW2Z(X ,ρ,Y ); the shaded area is for the KDG(LCA). As

we can see, HOW2Z(X ,ρ,Y ) contains more information than HOW1Z(X ,ρ,Y ). So for a

specific question and the level of detail we want, we can remove some part of it from the

answer; I.e. the shaded area above line ρ or below line ρ or KDG(Y ).

2.5.4 Justifying HOW2Z(X,ρ,Y)

HOW2Z(X ,ρ,Y ) obviously satisfies the existence, uniqueness, and inclusiveness prop-

erties of HOW Z(X). For specific questions, it also collapses to simpler structures similarly

to HOW1Z(X ,ρ,Y ). Moreover, HOW2Z(X ,ρ,Y ) has an additional inclusiveness property

stated below.

Lemma 6 (Inclusiveness) Let HOW2Z(X ,ρ,Y )=HOW Z(LCA) be the structure in KDG(Z)

answering question “How does X ρ Y?”. KDG(Z) is self-constained. Let T be a node on

the relational path of HOW2Z(X ,ρ,Y ) so that the relational path from T to Y still explains

the relation ρ . The HOW2Z(X ,ρ,Y ) answering “How does X ρ Y?” contains at least one

HOW2Z(T,ρ,Y ), the structure answering question “How does T ρ Y?”
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Proof 8 Let LCA1 a lowest common ancestor of the relational path p1 from X to Y ; LCA2

be a lowest common ancestor of the relational path p2 from T to Y . Given p1 contains p2,

we only need to prove that the HOW Z(LCA1) contains HOW Z(LCA2). Since p1 contains

p2, LCA1 must be ancestor of LCA2. There are two possible cases:

1. If LCA1 = LCA2: HOW Z(LCA1) = HOW Z(LCA2), thus HOW Z(LCA1) contains

HOW Z(LCA2).

2. If LCA1 6= LCA2: A HOW Z(LCA1) contains at least one HOW Z(LCA2) (Proposition

2)

2.6 Cascading the HOW1Z(X,ρ,Y) and HOW2Z(X,ρ,Y)

In this section, we very briefly discuss how to use HOW1Z(X ,ρ,Y ) to answer more

complex “How” questions. Combinations of multiple HOW2Z(X ,ρ,Y ) can be done in a

similar manner.

Consider the question “How does X enable Y to create T in Z?”. The answer to this

question contains two smaller ones: how X enables Y in Z and how Y creates T in Z joint at

Y . Compared to two separated structures, the combined answer shown in Figure 2.9 gives

us a better representation of the entire process. For example, it allows us to causally reason

about X and T , i.e. figure out what would happen to T if X is missing or malfunctioning.

2.7 Answering Other Types of Questions

In this section, we are going to describe how the structures we defined in previous

sections can be used to answer other types of question.

2.7.1 Answering “Why is X important to Y (in Z)?” / “Why is X needed for Y (in Z)?”

“Why is X important to Y?” is a very popular “Why” question, as observed in the col-

lection of 1,800 questions on http://www.biology-questions-and-answers.com/. We defined

the answer of this question using EDG (Baral et al., 2012b). Because of the limited EDG
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structure, the actual question answered is “Why is X important to Y in event Z?” where

both X and Y must be in event Z. In the following, using the KDG, which is more general

than EDG, we redefine the answer of the general question “Why is X important to Y (in

Z)?” where X , Y and Z can be either events or entities.

When X plays some role in Y , the question could be answered by explaining the im-

portance of X’s role in Y . This approach is similar to the answered of “Why does entity X

require entity Y?” discussed in (Chaudhri et al., 2012). When X does not directly play any

role in Y , one possible answer of this question may have the following pattern:

1. X is important to P1 because ... (explain the relation of X and P1)

2. P1 is important to P2 because ...

3. ...

4. Pk−1 is important to Pk because ...

5. Pk is important to Y because ....

6. Thus X is thus important to Y .

The importance of X to P1, Pk−1 to Pk or Pk to Y is justified by the relations or edges

in KDG between them. X is important to Y because of the chain of “important” relations.

In the example 6 is the model answer of “Why is sunlight important to photosynthesis?”

following this pattern.

Example 6 Question: Why is sunlight important to photosynthesis?

Model answer: Sunlight is the raw material of light reaction thus sunlight is important to

light reaction, light reaction is an important sub-event of photosynthesis, therefore sunlight

is also important for photosynthesis.
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Edge type Relations Direction Meaning

ordering all relation same direction Src is important to Dest

compositional subevent reversed direction Dest is important to Src

compositional subevent reversed direction Dest is important to Src

participant raw-material, agent reversed direction Dest is important to Src

participant result same direction Src is important to Dest

...

Table 2.2: Some Relations Corresponding to “Important” Edges. If the Edge Are From Src

to Dest, the Third Column Indicates if Src Is Important to Dest (Same Direction) or Dest

Is Important to Src (Reversed Direction).

Graphically, this answer is the answer of “How is X important to Y?” which contains a

relation path from X to Y through Pi (1≤ i≤ k) explaining relation “important”. Each edge

from A to B of this relational path must explain relation “important” from A to B.

Let us take the point that B is important to A; if without B, A does not function properly,

(A is an event) or A’s existence/completeness is affected (A is an entity).

The specific types of edges explaining the “important” relation can vary according to

the KBs in use. Using our KB (based on KM), we assume that an ordering edge from

A to B indicates that the “important” relation has the same direction as the edge (A is

important to B); other types may have the reversed direction (2.2). Once the important

relations are defined, they become special edges between two nodes. Figure 2.10 shows

the KDG(photosynthesis) with these “important” edges. The “important” relation from

sunlight to light reaction is represented by the double-head arrow in reversed direction of

the participant edge “raw-material” from light reaction to sunlight.

The “important” edges in Figure 2.10 can be read as:
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1. sunlight is the raw material of light reaction thus sunlight is important to light reac-

tion.

2. light reaction is important to calvin cycle because the former enable the latter.

3. sub-events like light reaction and calvin cycle are important to photosynthesis.

4. calvin cycle is important to sugar because it produces sugar.

With the “important” edges, finding the relational path explaining the “important” rela-

tion from X to Y becomes finding possible path(s) from X to Y through only “important”

edges. For example, there are two possible such paths from sunlight to photosynthesis.

One path only goes through light reaction; the other goes through both light reaction and

Calvin cycle.

Once we have a relational path explaining the relation “important,” the answer of

“Why is X important to Y in Z?” can be constructed using HOW1Z(X , important,Y ) or

HOW2Z(X , important,Y ) as the formal definition below. The short answer again can skip

the parts unrelated to the relational path. Figure 2.10 shows the relational path explain-

ing why sunlight is important to photosynthesis, which is the answer to “Why is sunlight

important to photosynthesis?” with respect to KDG(photosynthesis).

Definition 15 Let X and Y be two nodes in KDG(Z). The answer of the question “Why is

X important to Y in Z?” is a HOW1Z(X , important,Y ) or HOW2Z(X , important,Y ).

2.7.2 Answering the Question “How are X and Y related?”

In the technical communication (Baral et al., 2012b), we only considered Event De-

scription Graphs (EDG) to answer questions of the form “How are X and Y related in M?,”

where M was restricted to events, as the EDG does not have edges from entities to events.

However, KDGs allow such edges and thus can be used to answer questions where M could

be either an event or an entity.
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Given the KDG of entity 1 in Figure 2.11, let us consider the question “How are entity

8 and event 5 related?”. Conventional wisdom has it that the answer should only contain

important information to understand the relation between 8 and 12 such as:

1. What is event 2 with respect to entity 1? where event 2 is the of entity 8 and event 5

2. What is entity 8 with respect to event 2?

3. What is entity 12 with respect to event 2?

4. The behavioral relation between 8 and 12? For example, does entity 8 help in en-

abling or disable entity 5?

Following this intuition, we define the answer for question “How are X and Y related?,”

named MIN KDGZ
X ,Y , as another subgraph of the KDG. The MIN KDGZ

X ,Y is a variation

of the HOW1Z(X ,Y ) as illustrated in Figure 2.12. It also contains three cpaths: from Z to

a lowest common ancestor LCA of X and Y , from LCA to X , and from LCA to Y . However,

since this question concentrates on the relations, we would include more relations between

X and Y . For instance, we would include all possible opaths between the last two cpaths

above (from LCA to X and from LCA to Y ). Combining with the segments in the two

cpaths, these opaths will becomes various relational paths from X to Y that contain at least

one ordering edge showing behavioral relations from X to Y .

We formally define MIN KDGZ
X ,Y as follows.

Definition 16 Let X and Y be two nodes in an KDG(Z). MIN KDGZ
X ,Y is an induced

subgraph of KDG(Z) consisting of the nodes on the following paths:

1. A contextual path of LCA(X ,Y ) with respect to Z

2. A contextual path Vx of X with respect to LCA(X ,Y )

3. A contextual path Vy of Y with respect to LCA(X ,Y )
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4. All opaths from X ′ to Y ′ where X ′ ∈Vx, and Y ′ ∈Vy

The first three paths above explain the structural relation between X and Y while the

last one explain the behavioral (or ordering) relation from X to Y . In the example in Figure

2.11, this path is from event 3 to event 5 through 4.

Example 7 Q: How are sunlight and sugar related in plants?

A: Photosynthesis is a biological process that occurs in plant. Photosynthesis has two

subevents: light reaction and calvin cycle. The light reaction needs sunlight as its raw

material, and later enables the calvin cycle which produces sugar.

Figure 2.13 shows the answer in the example 7 MIN KDGplant
sunlight,sugar. We have that

LCA(sunlight,sugar) in KDG(plant) is photosynthesis and follows paths from definition

16:

1. A contextual path of LCA(sunlight,sugar) = photosynthesis with respect to Plant

contains plant, plant cell, chloroplast and photosynthesis

2. A contextual path Vx of sunlight with respect to photosynthesis contains photosyn-

thesis, light reaction, and sunlight.

3. A contextual path Vy of sugar with respect to photosynthesis contains photosynthesis,

calvin cycle and sugar

4. All opaths from X ′ to Y ′ where X ′ ∈Vx, and Y ′ ∈Vy: {{light reaction,calvin cycle}}

The entity Clorophyll and the event Reduction of 3 phosphoglycerate are excluded from

the answer because they are not important to understand the relation between sunlight and

sugar.

Properties of MIN KDG

Similar to HOW1, the MIN KDG has the existence and uniqueness properties but not the

inclusiveness.
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Lemma 7 (Existence, uniqueness) Let X and Y be two nodes in the KDG(Z), there al-

ways exists a MIN KDGZ
X ,Y .

In special cases when X or Y is descendant of the other, the ancestor will become a

lowest common ancestor of X and Y . The MIN KDG now becomes the cpath from Z go

through both X and Y .

Lemma 8 Let X and Y be two nodes in the KDG(Z). When Y is a descendant of X, a cpath

from Z to X and to Y is a MIN KDGZ
X ,Y .

2.7.3 Discuss About Answering “Why does X create Y?”

Moldovan (Moldovan et al., 2000) used a single answer type reason for all “Why” ques-

tions. Based on the types of adverbial clauses in (Quirk et al., 1985), Verberne (Verberne,

2006) categorized reason into four subtypes based on their semantic: cause, motivation,

circumstance, and purpose. In the following are examples of these four subtypes from

(Verberne, 2006).

Example 8 (Cause)

Q: Why did the flowers get dry?

A: The flowers got dry because it hadn ’t rained in a month.

Example 9 (Motivation)

Q: Why do you water the flowers?

A: I water the flowers because I don ’t like to see them dry.

Example 10 (Circumstance)

Q: Why should we be able to finish this today?

A: Seeing that it is only three , we should be able to finish

this today.
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Example 11 (Purpose)

Q: Why do people have eyebrows?

A: People have eyebrows to prevent sweat running into their

eyes.

Obviously, one does not necessary have all four types of an answer. For example, cause

and purpose make more sense in answering “Why does plant produce sugar?”. The answer

of the first type could be the description of the chain of processes leading to the creation of

sugar. The answer of the second type could be a description of the importance of creating

sugar to plant (i.e. plants create sugar to store energy, which an important process needed

for plant.)

The information needed to answer the other two subtypes are not usually encoded in

our KB; thus, we will only discuss cause and purpose.

Cause: We can answer the question by describing the chain of processes leading to cre-

ating Y . For example, for question “How does plant produce sugar?” is the Light reaction

enabling Calvin cycle, which creates sugar. This answer is similar to the answer of “How

does plant produce sugar?”: HOW1Z(X ,create,Y ) or HOW2Z(X ,create,Y ). If process B,

which directly makes the action (such as producing sugar), is caused by process A, A would

be included in the answer:

1. If X is the process B, HOW1Z(X ,ρ,Y ) or HOW2Z(X ,ρ,Y ) would contains A because

it is the environmental node of X .

2. If B is descendant of X , A would be in the KDG(X) if the self-contained condition is

satisfied. (See Definition 5)

Motivation: One possible answer could be description of the importance of creating

sugar to plant (i.e. plants create sugar to store energy, which an important process needed

for plant). The answer in this case is similar to the answer of “Why is Y important to X?”
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2.8 Generate Answers in Natural Language

The answers in KDGs can be translated to natural language using the simple templates.

We are using SimpleNLG (Gatt and Reiter, 2009) package to generate simple sentences

from KDG. In the following is the ASP facts representing a KDG in “has( )” format men-

tioned earlier. Each line has a tuple of three things: (X ,Relation,Y ). We define the sentence

template for each type of relation and substitute X and Y to generate output sentences. For

example, ‘”X is an instance of Y, Z and T.” is the template for the 3 following tuples.

has(X, instance_of , Y).

has(X, instance_of , Z).

has(X, instance_of , T).

In the following are a KDG answering question “How does Calvin Cycle work?” and

its representation in ASP.

% _Photosynthesis1514

event(photosynthesis1514).

has(photosynthesis1514 , subevent , light_reaction13426).

has(photosynthesis1514 , subevent , calvin_cycle13425).

% _Light -Reaction13426

has(light_reaction13426 , enables , calvin_cycle13425).

% _Calvin -Cycle13425

has(calvin_cycle13425 , result , sugar13435).

has(calvin_cycle13425 , subevent , reduction_of_3_phosphoglycerate6918

).

From those facts, we can generate the following sentences:

Sugar13435 is a result of calvin_cycle13425.

Reduction_of_3_phosphoglycerate6918 is a subevent of

calvin_cycle13425.
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Calvin_cycle13425 and light_reaction13426 are subevents of

photosynthesis1514.

Light_reaction13426 enables calvin_cycle13425.

2.9 Conclusions

Recent research has brought Question Answering to a much larger audience. However,

most of the research has focused on factual questions. In this work, we investigated some

cases of the more involved “Why” and “How” questions. We take the view that answers

to such questions need to be initially formulated with respect to structured knowledge be-

fore basing them on free text, and hence we introduced the notion of KDG. The KDG is

an abstract structure that contains information about objects and events such as classes,

components, properties, sub-events, and the relationship between events and objects.

Our goal in this work was to formulate answers of “How” questions. We showed that

the answer construction can be derived from a Knowledge Description Graph (KDG) by

extracting the environment set and the contextual path corresponding to an entity or event

X . From this result, we generalized our method to answer questions like “How does X ρ

Y ?,” where X is a subject of ρ (i.e. ρ is a relation such as reproduction, growth) or X is

an object of ρ (i.e. ρ is a relation such as activation, formation, production). We can also

cascade answers to two or more X ρ Y questions to answer more complex procedural (or

mechanism) questions. We justified our answer formulations by showing that they satisfy

several natural properties and also through examples. Subsequently, we showed that the

proposed structures can also be used to answer other “Why” and “How” such as “Why is

X important to Y?”, “How are X and Y related?”, and “Why does X ρ Y ?”.
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Figure 2.4: Visualization of the answers to various “How” questions:
(a) HOW1Z(X ,ρ,Y ) answering “How does X ρ Y?” This generic answer can be trans-
formed into the answers of simpler questions (in subfigure (b)-(d)). For example, for ques-
tion “How does X produce Y?” path ρ becomes produce and Y must be in KDG(X), sub-
figure (a) become (c).
(b) HOW Z(X) answering “How does X work?”; The dark triangle is for the KDG(X), the
dashed lines to/from X are for X’s environmental nodes and their edges from/to X , and the
solid line from Z to X is for the contextual path of X with respect to Z.
(c) HOW1Z(X , produce,Y ) answering “How does X produce Y?”;
(d) HOW1Z(X ,ρ,Y ) answering “How does X help/participate/activate in Y?”;
(e) HOW2Z(X ,ρ,Y ) answering “How does X ρ Y?,” another generic answer to question
“How does X ρ Y?”. It gives more details than the one in subfigure (a) and satisfies more
properties (of a “proper” answer form our intuition) such as inclusiveness
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Figure 2.5: Some relational paths in KDG of Photosynthesis
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Figure 2.6: The answer of question “How does plant produce sugar?,”

(plant, photosynthesis) KDG, is enclosed by solid line. The highlighted path from

Plant to Sugar explains relation “produce”
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Figure 2.7: Various relational paths explaining relation “participate” in

KDG(photosynthesis):

(a) PPAT H photosynthesis
sunlight,light reaction, explaining how sunlight participates in light reaction, is

surrounded by a dashed enclosure.

(b) PPAT H photosynthesis
sunlight,photosynthesis, explaining how sunlight participates in photosynthesis, is

surrounded by a solid enclosure.
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Figure 2.8: The answer of the question “How does sunlight help calvin cycle (in photo-

synthesis)?” in KDG(photosynthesis) is enclosed by solid line. Coincidently, it is also the

answer of “How is calvin cyle activated in photosynthesis?”
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Figure 2.9: The combination of HOW1Z(X ,ρ,Y ) and HOW1Z(Y,ρ ′,T ) joint at Y
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Figure 2.10: “Important” edges are represented by double-head arrows. A relational path

explaining relation “important” from sunlight to photosynthesis is surrounded by the solid

enclosure.

Figure 2.11: The KDG of entity 1
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Figure 2.12: Visualization of MIN KDGZ
X ,Y .

Figure 2.13: The answer of the question “How are sunlight and sugar related in plant?”
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Figure 2.14: A KDG answering question “How does Calvin Cycle work?”
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Chapter 3

ANSWER SET PROGRAMMING BASED REPRESENTATION AND REASONING

WITH RESPECT TO FRAME-BASED KNOWLEDGE BASES

3.1 Introduction

A large body of such KBs have been developed using frame-based representations

(Fikes and Kehler, 1985) 1 . The University of Texas hosts a website 2 listing a large

number of these KBs, such as AURA (Chaudhri et al., 2009), Cyc (Matuszek et al., 2006),

FreeBase (Bollacker et al., 2008), WordNet (Miller, 1995), EcoCyc (Karp et al., 2002),

RiboWeb (Altman et al., 1999), and others. While “object,” “instance,” and “oriented”

terms arised during the late 1950s and early 1960’s at MIT and in 1960-61 by Sutherland,

the first frame-based knowledge representation (KR) is often considered to appear in 1975

(Minsky, 1975).

Knowledge in frame-based KR is organized in frames. Each frame has slots which can

be filled with values or other frames. Similarly to object-oriented structure, there are hi-

erarchical ordering frames which determine whether one frame may inherit the properties

of another. Because of these inbuilt features, i.e. inheritance, frames allow concise repre-

sentation of knowledge. For example, to describe a Sphynx cat, one can specify its unique

features (i.e. its lack of a coat) in the set of frames corresponding to Sphynx cat class.

One do not need to list other common features that it inherits from cat family, mammal, or

animal.

Over the years, there has been some work to logically formalize the inheritance aspect

of frames (Touretzky, 1986; Horty, 1994; Brewka, 1987). However, those work do not
1See also http://www.cs.man.ac.uk/∼stevensr/onto/node14.html
2http://www.cs.utexas.edu/∼mfkb/related.html
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address “cloning” and “unification,” the procedural reasoning mechanisms in many frame-

based systems. The cloning operation allows an object (i.e. a new hybrid breed of cat

named Blabla) to copy all the properties of another object (i.e. Sphynx cat), while Blabla is

not necessary be one subtype of Sphynx cat. Unification operation combines existing prop-

erties of an object with all possible properties that it can inherit (through inheritance and

cloning), then resolves all the conflicts and yields the complete information about that ob-

ject. For example, unification on Sphynx cat will acquire additional information from Cat,

Mammal, Animal, and others; combine with existing information in Sphynx cat to have a

complete view about Sphynx cat. Unification needs to do more than well-known overriding

and overloading operations in Object-Oriented programming. For example, Sphynx cat and

normal cat respectively have two different objects Skin Sphynx and Skin Cat. Running uni-

fication on Sphynx cat is not simply choose one of the two types of skin, but merging two

types into one unified type, and possibly repeat the merging process further (i.e. merging

properties of the skin).

The first attempts to formalize cloning and unification were introduced in a parallel

fashion in (Baral and Liang, 2012) and (Chaudhri and Son, 2012). Although both were

inspired from the unification procedure in the frame-based systems KM (Clark and Porter,

2011) 3 , and both use AURA 4 , they are still substantially different from each other. For

example, while (Chaudhri and Son, 2012) is more clear about the principles of unification,

(Baral and Liang, 2012) covers more cases of unifications and how unifications can be

applied recursively. Inspired by our previous work (Baral and Liang, 2012), we propose

different and more comprehensive formalization of cloning and unification. By capturing

the context of cloning and unification, it is better in specifying the conditions and how to

recursively accomplish unification; it has the strength of both (Baral and Liang, 2012) and
3KM has been adopted by various projects, notably Project Halo (Chaudhri et al., 2009).
4AURA is also developed under Project Halo.
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(Chaudhri and Son, 2012). More details about the comparison among the four systems are

discussed in section 3.8.

After giving the formal definition of unification using cloning and inheritance, we give

an Answer Set Programming (ASP) based implementation of it. Afterwards, we show how

to use ASP to answer several different types of factual questions. These questions were

supported in AURA and discussed in (Baral and Liang, 2012). In this work, we revise and

change the answering in (Baral and Liang, 2012) with respect our new formalism. In the

process, we also suggest the optimization for ASP rules and mention its impact with respect

to a large biological KB such as AURA.

3.2 Background

3.2.1 Answer Set Programs

We chose Answer Set Programming (ASP) (Gelfond and Lifschitz, 1988) as our knowl-

edge representation language because of the following reasons:

1. ASP has simple syntax yet is expressive; it is non-monotonic, which is required in

our non-monotonic formalism of unification and cloning.

2. ASP has a strong theoretical foundation with many building-block results (Baral,

2003), allowing us to prove the correctness of our implementation in this work.

3. It has several efficient solvers: (Gebser et al., 2008; Niemelä and Simons, 1997;

Leone et al., 2006), allowing us to scale our solution to large KB as AURA.

An ASP program is a collection of rules of the form:

a← a1, ... ,am, not am+1, ... , not am+n

where a, a1, ...,am+n are atoms. The rule reads as “a is true if a1...am are all known

to be true and am+1...am+n can be assumed to be false”. The semantics of answer set
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programs are defined using answer sets. An entailment relation (|=) with respect to answer

set programs is defined as follows: a program Π entails an atom p iff p is true in all the

answer sets of Π.

3.2.2 Frame-based Knowledge Representation and Reasoning

Similar to (Baral and Liang, 2012) and (Chaudhri and Son, 2012), we also choose KM

as our reference frame-based formalism. Knowledge in KM is organized in frames; each

frame has slots which can be filled with values or other frames. Usually, KM’s slots specify

properties of class/instance or relations between them. KM provides the structured repre-

sentation for classes and instance via slots in the following format, where “superclasses”

and “instance-of” are two special meaning slots for representing class and instance.

(every <class > has

(superclasses (<superclass1 > ...

<superclassN >))

(<slot1 > (<expr11 > <expr12 >...))

(<slot2 > (<expr21 > <expr22 >...))...)

(<instance > has

(instance -of (<class1 >...<classn >))

(<slot1 > (<expr11 > <expr12 >...))

(<slot2 > (<expr21 > <expr22 >...))...)

Some key slots that have special meanings for representation and reasoning in KM are

listed below:

• Superclasses: The slot “superclasses” specifies the parent class of a class. All the

superclass information in the KB form a hierarchy for all the concepts in the KB.

• Prototype-of: This slot defines the prototype(s) of a class. A prototype is an in-

stance that serves as a basis of a class. If c is a prototype of class C, all instances
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of C should copy all slots values (properties) of c, unless restricted otherwise via a

specified prototype scope. How exactly these slot values are copied is defined as a

unification process and will be formally defined later.

• Instance-of: This slot defines the class that an instance belongs to. A prototype c of

class C is also an instance of C. If a is an instance of class C, then a gets a copy of

all the slot values of C’s prototype.

• Cloned-From: This is a shortcut in KM. If an instance a has this slot with value b

(read as a is cloned from b), then all b’s slot values are copied to a’s.

Users can interact with KM through queries. KM uses deterministic construction rules

(Clark and Porter, 2011) to provide answers to queries. Both the queries and rules are

normally based on instances; KM has several specialized reasoning modules to capture

inheritance, cloning, and unification.

In the following, we illustrate KM’s reasoning process with respect to an example about

Vehicle which is slightly modified from the example in (Clark and Porter, 2011):

(Vehicle1 has

(instance -of (Vehicle))

(prototype -of (Vehicle))

(has -engine ((a Engine with

(strength (* Powerful))

(fuel ((a Gas -type with

(combustibility (*Hi)))))))))

(every Car has

(superclasses (Vehicle)))

(Car1 has

(instance -of (Car))
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(prototype -of (Car))

(has -engine ((a Engine with

(size (* Average))

(fuel ((a Gas -type with

(type (* Unleaded)))))))))

In the example, there are two classes (Vehicle, Car) and two instances (Vehicle1, Car1).

Vehicle1 is a prototype of Vehicle, and Car1 is a prototype of Car, specified by “prototype”

slots. Vehicle is a superclass of Car. KM has a rule that when a class inherits from its

superclasses, all of the classes’ instances will be cloned from the superclasses’ prototypes.

This means Car1 will be cloned from Vehicle1.

Therefore Car1 will obtain from Vehicle1 the engine’s information. However, Car1

already has an engine; if it directly copies another engine from Vehicle1, then Car1 will

have two engines, which is not intuitively correct. The better way involves Car1 keeping

its engine, but that engine copies other attributes(values) from Vehicle1’s engine, such as

the attribute power f ul as shown below.

(Car1 has

(has -engine (a Engine with

(strength (* Powerful))

(size (* Average))

(fuel (?)))

Again, both Car1’s engine and Vehicle1’s engine has the slot f uel. We again let Car1’s

f uel obtain attributes from Vehicle1’s engine’s fuel as follows:

(Car1 has

(has -engine (a Engine with

(strength (* Powerful))

(size (* Average))

(fuel (((a Gas -type with

(type (* Unleaded))
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(combustibility (*Hi)))))))

This whole process is called “cloning” and “unification,” which is an important aspect

of reasoning in KM. KM defined it in a procedural way. In this work, we defined “clone”

and “unification” in a declarative way.

3.3 Formal Definitions About a Frame Based Knowledge Base

In this section, we first formally define various aspects of a frame-based KB as the

background for defining inheritance, cloning, and unification in the next section. Our fol-

lowing definitions are based on various frame-based systems such as KR, and we made

some simplifications to focus on the main aspects: cloning and unification.

Frame-based KR focuses on representing two aspects: classes and instances. Class

properties and hierarchy information are key aspects of each class. Class properties, which

are inherited by all its instances, are represented in prototype in some frame-based KR for-

malisms like KR. The representation of prototypes is not different from the ones of normal

instances, so we will start with the hierarchy information, defining the Class Hierarchy

Graph.

Figure 3.1: Snippet of Class Hierarchy Graph
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Definition 17 A Class Hierarchy Graph (GclassH) is a directed acyclic graph whose ver-

tices are classes and edges encode class-superclass relationship; i.e. if (C1, C2) is a di-

rected edge then C2 is a superclass of C1.

The ASP encoding of GclassH is a collection of facts of the form:

has(X, superclass , Y).

class(X).

class(Y).

Where X and Y are vertices in the graph, and there is an edge from X to Y . Following is

the encoding for the example in Figure 3.1:

has(animal , superclass , eukaryote).

has(animal , superclass , multicellular_organism).

has(eukaryote , superclass , organism).

has(multicellular_organism , superclass , organism).

has(organism , superclass , living_entity).

class(animal).

class(eukaryote).

class(multicellular_organism).

class(organism).

class(living_entity).

Definition 18 An object graph Gob j(O) (also denoted simply by G(O)) that describes an

object O consists of a core object graph which is a directed graph that has following prop-

erties:

1. Its vertices are instances.

2. It has two types of edges: non-inheritable and inheritable.

3. All the vertices (or nodes) can be reached from O through a chain of inheritable

edges and then an optional non-inheritable edge.
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4. It is acyclic with respect to the inheritable edges.

The ASP encoding of Gob j(O) is a collection of all the slot values of X in the form

has(X ,S,V ), in which the slot S is the label of the edge connecting X to V .

An edge (X ,R,Y ) is labeled by R and means XR Y . For example, an edge (X , instance−

o f ,Y ) means that X is an instance of Y .

Non-inheritable labels, such as {prototype-of, cloned-from, etc}, tend to describe the

“relations” rather than the “properties.” These labels are not to be transferred from one

object graph to another via cloning or inheritance.

Inheritable labels, such as {instance-of, has-part, agent, etc.}, describe the properties

of an instance, and may be inherited or cloned by other instances.

In the following are the facts that we are going to use in many up-coming examples and

illustrate how our definitions will work.

has(cell325 , instance_of , cell).

has(cell325 , prototype_participants , attach2542).

has(cell325 , prototype_participants ,

negatively_charged_region11496).

has(cell325 , prototype_participant_of , cell325).

has(cell325 , prototype_of , cell).

has(cell325 , prototype_scope , cell).

has(cell325 , has_part , cytoplasm689).

has(cell325 , has_part , ribosome23653).

has(cell325 , has_part , chromosome10040).

has(cell325 , has_part , enzyme6401).

has(cell325 , has_part , plasma_membrane14508).

has(cell325 , diameter , length_value15324).

has(cell325 , has_region , cell_pole13862).

has(cell325 , has_region , cell_pole13861).

has(cell325 , has_region , surface1564).
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has(cell325 , cloned_from , cell18399).

has(cell325 , cloned_from , tangible_entity22850).

has(cell325 , clean_instance_of , cell).

Definition 19 A Knowledge Base is a collection of object graphs, a class hierarchy graph,

and a specification of inheritable/non-inheritable labels (slot names).

Both object graphs and the class hierarchy graph are encoded using ASP facts of the

form has(X ,S,V ), in which X can be either an object or a class, S is a slot name, and V is

the value for slot S. The noninheritable slots are encoded as noninheritable(S).

Using the definitions above, we will define the transitive closure of “instance-of” and

generalized version of “cloned-from” relations, which are useful for reasoning about a KB.

Definition 20 (tc-instance-of) Let x be an instance and Y be a class in the knowledge base

KB. x is a tc-instance-of Y iff one of the following conditions is satisfied:

1. x is an instance of Y

2. There exist a set of class {C1,C2, ...,Ck = Y} satisfying all following conditions:

(a) x is an instance of C1

(b) Ci is a subclass of Ci+1 (1≤ i < k)

In the following example, tc− instance−o f relations cell325 and cell (or living entity)

are derived from superclass and instance−o f relation.

Example 12

has(cell , superclass , living_entity).

has(cell325 , instance_of , cell).

=> tc_instance_of(cell325 , cell).

tc_instance_of(cell325 , living_entity).
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As a compact representation, Gob j(X) (also denoted as G(X)) only contains instance-of

edges connecting X to the immediate class(es) of X . However, X also recursively belongs

to all the superclasses of the immediate class(es). The above definition defines a transitive-

closure of the classes that an object X belongs to.

Using tc-instance-of, we define g-cloned-from relation which is a generalized version

of the cloned-from relation. x is g-cloned-from y in two cases: (1) it is explicitly said that x

is cloned-from y (see Figure 3.2(a)) and (2) x is a tc-instance-of class C, whose prototype

is y (see Figure 3.2(b)). In the second case, by inheritance, x must have all properties of the

prototype of C; thus, it must be cloned from y.

Figure 3.2: g-cloned-from relation

Definition 21 (g-cloned-from) Let x and y be two instances in the knowledge base KB. x

is g-cloned-from y iff

• x is cloned from y, or

• x is an tc-instance of a class c and y is a prototype of c

In the following is an example of applying Definition (?).
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Example 13

has(cell325 , cloned_from , tangible_entity22850).

has(tangible_entity22850 , instance , cell).

has(cell18399 , prototype_of , cell).

=> g_cloned_from(cell325 , tangible_entity22850).

g_cloned_from(tangible_entity22850 , cell18399).

To simplify the formulas and descriptions in the latter sections, given an edge label S,

we will define the set of nodes connected from x or A through edges of label S.

Definition 22 (NP(x,S) and NP(A,S)) Let x be a node and A be a set of nodes in a set of

object graphs P, and let S be an edge label.

NP(x,S) is the set of nodes {n : (x,S,n) in P }, the set of nodes that link from x through an

edge of type S in P.

NP(A,S) is union of NP(x,S) over all node x in A.

For example, N{G(b1)}(b1,has− part) contains only one element: body2; N{G(a1)}({a1},has−

part) contains two elements: head1 and body1.

3.4 Unification in a Frame-based Knowledge Base

G(X) does not necessary contain complete information about X because extra infor-

mation is in the object graphs containing {Y1, ...,Yn} which X is g-cloned-from. However,

the properties of {Y1, ...,Yn} should not be directly added to X’s object graph, but rather

need to go through a merging process which is referred to as unification (Clark and Porter,

2011; Chaudhri and Son, 2012; Baral and Liang, 2012). In this section, we will describe

the unification process and the principles that it follows.

3.4.1 Principles of Unification Process

Our unification process follows these two principles:
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1. Respect the original annotation: The unification process on G(X) should keep all the

existing information of G(X) in the KB.

2. Specificity principle: while acquiring extra information from {Y1, ...,Yn}, we keep

only the most specific information. For example, if (x,S,a) and (x,S,b) are two

possible candidate edges, we will keep the first one if a is more specific than b.

3.4.2 Specificness - Subsume Relation

Given two instances x and y, we need to define a measurement about the specificness.

We define the measurement as subsume relation. x subsumes y, meaning x is more specific

than y. The subsume relation is based on the classes that x and y are tc-instances-of.

Definition 23 (Subsume relation) Let x and y be instances, the sets {xc1...xcm} and {yc1...ycn}

be all the classes that x and y are tc-instances-of, respectively. We say that x subsumes y iff

{yc1...ycn} ⊆ {xc1...xcm}.

Since subsume relation is based on the subset relation, subsume relation is transitive: if x

subsumes y and y subsumes z then x subsumes z.

In the following is an example of applying Definition 23.

Example 14 (Subsume)

tc_instance_of(cell325 , cell).

tc_instance_of(cell325 , living_entity).

tc_instance_of(tangible_entity22850 , cell).

tc_instance_of(tangible_entity22850 , tangible_entity).

has(cell , superclass , living_entity).

has(cell , superclass , tangible_entity).

=> tc_instance_of(cell325 , tangible_entity).

tc_instance_of(tangible_entity22850 , living_entity).
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=> subsume(cell325 , tangible_entity22850)

subsume(tangible_entity22850 , cell325)

In this case, since cell is a subclass of tangible entity and of living entity, cell325

is also a tc-instance-of tangible entity and tangible entity22850 is also a tc-instance-of

living entity. cell325 and tangible entity22850 therefore are both tc-instance-of 3 classes:

cell, living entity, and tangible entity. Thus, cell325 and tangible entity22850 subsume

each other.

Since the subsume relation is based on the subset relation of sets, it is a partial order.

Given a set of nodes, we can define the most specific or most detailed nodes as the minimal

elements according to subsume relation.

Definition 24 (Minimal with respect to subsume relation) Let A be a set of nodes in a

knowledge base KB. Let MINsubsume(A) be a set of minimal elements of A according to

subsume relation. When two nodes in A subsume each other, MINsubsume(A) contains a

random one.

For example, Figure 3.3 shows the subsume relation among all the instances in the set

A = {x0,x1, ...,x5}. x0 and x1 are clearly two minimal elements. Since x4 and x5 subsume

each others, either of them will be in MINsubsume(A). The two possible MINsubsume(A)

therefore are {x0,x1,x4} and {x0,x1,x5}.

Given two sets A and B, suppose we want to keep all the nodes in B and add some extra

nodes in A to it. To do that, we would limit checking only the set of more specific nodes in

A. In another words, remove from A all the nodes in A which are less specific than any node

in B. We define the result set as the difference between A and B with respect to subsume

relation.

Definition 25 (Set difference with respect to subsume relation) Let A and B be two set
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Figure 3.3: Subsume relationall the instances in the set A = {x0,x1, ...,x5}. The two possi-

ble MINsubsume(A) thus are {x0,x1,x4} and {x0,x1,x5}

of nodes in a knowledge base KB. Let A\subsumed B denote the set of A’s elements which is

not subsumed by any of B’s element.

Since x subsumes itself, A\subsumed B does not contains any node of B: (A\subsumed B)∩B=

/0

3.4.3 Microclone and Unification Process

Let us consider the following example shown in Figure 3.4 .

• mammal is subclass of animal.

• a1 is a prototype (and of course also an instance) of animal.

• b1 is a prototype of mammal.

• d1 is a prototype of mutated animal.

• c1 is an instance of mutated dog. c1 is cloned from b1.

• a1 has body1 and head1 . body1 has big1 .

66



Figure 3.4: (a) Object graphs for a1, b1, c1, and d1 together with their relations

(b) Object graphs for a1, b1, and e1 together with their relations

• b1 has body2 and 4− legs . body2 is cloned from body0 .

• c1 has tail1 .

• d1 also has body2 .

• e1 is an instance of animal and it is cloned from both a1 and b1.

Example 15 (ASP encoding of the example in Figure 3.4)

has(a1 , instance_of , animal).
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has(a1 , prototype_of , animal).

has(a1 , has_part , body1).

has(a1 , has_part , head1).

has(body1 , instance_of , body).

has(body1 , has_size , big1).

has(body1 , has_part , four_legs).

has(four_legs , instance_of , legs).

has(head1 , instance_of , head).

has(big1 , instance_of , size).

has(b1 , instance_of , mammal).

has(b1 , prototype_of , mammal).

has(b1 , has_part , body2).

has(body2 , instance_of , body).

has(body2 , has_part , fur1).

has(fur1 , instance_of , fur).

%%%

has(body2 , cloned_from , body0).

has(body0 , instance_of , body).

%%%

has(c1 , instance_of , mutated_dog).

has(c1 , cloned_from , b1).

has(c1 , has_part , tail1).

has(tail1 , instance_of , tail).

has(d1 , instance_of , mutated_animal).

has(d1 , prototype_of , mutated_animal).

has(d1 , has_part , body2).
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has(e1 , instance_of , animal).

has(e1 , cloned_from , a1).

has(e1 , cloned_from , b1).

% Class information

class(animal).

class(mammal).

class(mutated_dog).

class(mutated_animal).

class(tail).

class(body).

class(size).

class(head).

class(legs).

class(fur).

has(mammal , superclass , animal).

Since b1 is an instance of mammal, it should inherit all properties of the prototype a1

of animal (or b1 should be cloned from a1.) By stating this, it should be understood that

b1 should have 4− legs from body1 of a1 . In other words, body2 should be cloned from

body1 . However, since d1 is not cloned from a1 , it should not have 4− legs, even though

it has body2 . In order to differentiate these cases, we define the context and microclone

relation in such a way that body2 is only cloned from body1 in the context of b1, and that

cloning relation is named microclone.

More specifically, b1 should be microcloned from a1 since it is defined to be cloned

from a1 ; body2 should be microcloned from body1 because b1 is cloned from a1 and they

play the same role in b1 and a1 (they both are the bodies of a1 and b1 respectively).
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Figure 3.5: Three cases of microcloning. The arrow labeled microclonedb1,a1 from body2

to body1 means that body2 in b1 is microcloned from body1 in a1.

Figure 3.5 illustrates three cases of microcloning in definition 26. The first case in

3.5(a) is straight-forward, when x2 is g-cloned from x1, x2 in the context of x2 (or “x2 in x2”

for short) is microcloned from x1 in x1. In another words, we can also understand that x2 in

G(x2) is microcloned from x1 in G(x1).

The intuition behind Figure 3.5(b) is that when we unify G(x2) with G(x1), v1 contains

more specific information than v2 but we have to keep the name v2, according to the first

principle. In order to preserve the information, v2 should be marked to be microcloned

from v1 so that later, G(v2) will be unified with G(v1) to get extra information.

In the case of Figure 3.5(c), when both v1 and v2 should be considered for adding to x0,

v2 should be microcloned from v1 so if v2 is chosen to be added to x0, the details in v1 will

be considered while unifying v1. In the latter of this section, this will not happen in cases

where v1 is more specific than v2 and we choose v1 to add to x0. However, when v1 and

v2 are equally specific (v1 and v2 subsume each other like body1 from a1 and body2 from
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b2 in Figure 3.4(b), they will be marked to be microcloned from each other. Randomly

selecting one of them will not lose us any information.

The formal definition of microcloned is given in the following.

Definition 26 Let x1,x2,v1,v2, C and F be instances in a knowledge base KB.

1. x2 in the context of x2 (or in x2 for short) is microcloned from x1 in x1 if x2 is g-cloned

x1. (see Figure 3.5(a))

2. v2 in C is microcloned from v1 in F if all of the following conditions are satisfied (see

Figure 3.5(b))

(a) x2 in C is microcloned from x1 in F

(b) KB contains two inheritable edges (x1,S,v1) and (x2,S,v2)

(c) v1 subsumes v2

3. v2 is microcloned from v1 in C if all of the following conditions are satisfied (see

Figure 3.5(c))

(a) x1 in C is microcloned from x0 in F

(b) x2 in C is microcloned from x0 in F

(c) KB contains two inheritable edges (x1,S,v1) and (x2,S,v2)

(d) v1 subsumes v2

When the context C is clear, we only use “x2 is microcloned from x1”.

In the example in Figure 3.4, b1 in b1 is microcloned from a1 in a1 because b1

is tc-cloned-from a1. body2 in b1 is microcloned from body1 in a1 according to def-

inition 26.2: body1 subsumes body2 (they actually subsume each other), KB contains
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(a1,has part,body1) and (b1,has part,body2), and b1 in b1 is microcloned from a1 in

a1.

Using Definition 26, we can have two useful lemma about a node microcloned from

any node. If a node x in G(C) cannot be reached from C through inheritable edges only (in

other words, it must travel through non-inheritable edge to reach x), x is not microcloned

from any node in the context of C.

Lemma 9 Let v, v′, C, and F be instances in a knowledge base KB. If v in C is microcloned

from v′ in F (v 6=C), there exists a path of inheritable edges from C to v.

Proof 9 1. Because v 6= C, v in C is microcloned from v′ in F comes from the last two

cases of Definition 26. This means that the parent x of v is microcloned from x′ in F

where x connects to v through an inheritable edge.

2. x can be C or not. If x 6=C, the parent node x2 of x is also microcloned from another

node; x2 connects to x through an inheritable edge. ...

3. The process is repeated until xk = C is achieved. We can go from xk = C through

xk−1, xk−2, ..., x2, x and to v by inheritable edges.

Lemma 10 Let v is a node in G(C) in a knowledge base KB. If the last edge of all the

paths from C to v is non-inheritable, v is not microcloned from any node in the context of

C.

Proof 10 This can be proved through contradiction using previous lemma. If v is micro-

cloned from a node in the context of C, there must be a path of inheritable edges from C to

v.

Armed with the subsume and microcloned relation, we define the unification process as

the following.
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First of all, given an object graph G(C) and a set of object graphs P that we need to

unify to G(C), we retain all G(C)’s nodes and edges in the unification result. For each

node x of G(C), it may be microcloned from some nodes xi in P. These nodes xi may

contain additional information that x should have. This information is contained in the

edges (xi,S,v j) and G(v j) in P. We will merge this information into G(C) by creating the

extended set of edges (x,v j) and by including the set as well as G(v j) in the unification

result.

While this approach obviously satisfies the first principle of unification aforementioned,

the extended set of edges (x,v j) must be chosen according to the second principle: v js must

be the most specific nodes. The process of selecting the most specific nodes must be done

according to each possible type of edge S. Let M be the set of nodes in G(C) reached from

x through edge S; let N be the ones in P from xis. Since M will be in the unification result,

we would want to remove all nodes in N that have a more specific one in M. After that, the

most specific nodes will be determined based on “subsume” relation. Thus, the extended

set of edges will contains the edges (x,v j) where v js are in MINsubsume(N \subsume M).

Following is the formal definition of the extended set of edges.

Definition 27 (Extended set of edges) Let x and C be two instances in a knowledge base

KB, P be a set of object graphs. Let A be the set of instances in P that x in the context C is

microcloned from.

An extended set of edges of label S from x in the context C, denoted by edges∗C(x,S,P)

is set of edges from x to all instances in the set of nodes MINsubsume(NP(A,S) \subsume

NG(C)(x,S)).

An extended set of edges from x in the C, denoted by edges∗C(x,P) is the union of

edges∗C(x,S,P) over all labels S.
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Figure 3.6: Enhancement set of edges from b1 in b1 in unification G(b1) with G(a1)

(a): relations between a1 and b1

(b): Enhancement set of edges from b1 in b1

In the definition, NG(C)(x,S) is the set of nodes in G(C) reached from x through edges

of type S, NP(A,S) is the set of nodes in P reached from any node in A through edges of

type S.

The \subsume between two sets is to remove the less specific nodes. From this different

set, we get only the most specific elements by MINsubsume().

If x is not microcloned from any instance (A = /0), obviously the extended set of edges

is empty.

Following is an example how an extended set of edges from b1 in the context of b1 is

obtained.

Example 16 (Obtaining a edges∗b1(b1), the extended set of edges from b1 in the context of b1)

As shown before, b1 in the context b1 (“b1 in b1” for short) is microcloned from only a1 in

a1. The set of all instances that b1 in b1 is microcloned from is A = {a1}.

We start by computing the extended set of edge type has− part.

1. Calculate set of nodes from b1 and A through edges has− part: NG(b1)(b1,has−

part) = {body2} and NG(a1)({a1},has− part) = {head1,body1}.

2. Calculate NP(A,S)\subsume NG(C)(x,S), the addition nodes that we should link to b1.
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Figure 3.7: Extended set of edges from body2 with respect to b1 in unification G(b1) with

G(a1) (a): relations between body1 and body2

(b): Extended set of edges from body2 with respect to b1

Since body1 of a1 is subsumed by body2 of b1, it is excluded. NP(A,S) \subsume

NG(C)(x,S) contains only head1.

3. Find the most specific nodes in NP(A,S)\subsume NG(C)(x,S). head1 is the only node

and the most specific one in this set: MINsubsume({head1}) = {head1}

4. Add a new has− part edge from b1 to body1 into the extended set.

The extended set of edges of type has− part from b1, edges∗C(b1,has− part), thus has only

one edge.

Since has− part is the only type of edges from b1 and A, edges∗C(b1) is also edges∗C(b1,has−

part) and contains only one edge (Figure 3.6).

As explained earlier, in order to unify G(b1) with G(a1), we need to compute the

extended set of edges from each node of b1. For example, figure 3.6 shows the extended

set of edges from b1 in b1; figure 3.7 shows the extended set of edges from body2 in b1.

Since body0 is not microcloned from any node, the extended set of edges from it is empty.

Combine G(b1) with all the extended sets of edges and we have the unification of G(b1)

and G(a1) as shown in Figure 3.8. If G(head1), G(4− legs), or G(big1) contains more

nodes, we would have to include them in the unification result.
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Figure 3.8: Unified enhancement graphs. Shaded nodes are added by the unification pro-

cess.

(a) Object graphs for a1, b1, c1, and d1 together with their relations

(b) Unified enhancement of G(b1). d (c) Unified enhancement of G(c1)

(d) Object graphs for a1, b1, and e1 together with their relations

(e) Unified enhancement of G(e1)
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The formal definition of the unification of an object graph is given as follows.

Definition 28 (Unified enhancement of an object graph in a knowledge base) The uni-

fied enhancement of object graph G(x) of a knowledge base KB, denoted as G∗(x).

1. When x is not g-cloned from any node in KB, G∗(x) is G(x) itself.

2. When x is g-cloned from x1, x2,... xk, G∗(x) is obtained from G(x) by adding to each

node v of G(x) the following:

(a) Each edges (v, t j) in edges ∗x (v,{G∗(x1),G∗(x2), ...,G∗(xk)}), where t j is ob-

tained from G∗(xi), and

(b) all the graphs G(t j) in G∗(xi)

Below, we show how the unification process works for the example in Figure 3.4.

Example 17 (G∗(a1), unified enhancement of object graph G(a1)) Since a1 is not cloned

from any other nodes, G∗(a1) is G(a1).

Example 18 (G∗(b1), unified enhancement of object graph G(b1)) Since b1 is g-cloned

from a1, the unified enhancement of G(b1) is based on G∗(a1). As shown above, G∗(b1) is

obtained by unifying G(b1) and G(a1) and is shown in Figure 3.8. After unification, there

are some more nodes merged to G(b1) (shaded nodes in Figure 3.8(b)).

Example 19 (G∗(c1), unified enhancement of object graph G(c1)) The unified enhance-

ment of object graph G(c1) is calculated based on G∗(b1). Start by calculating the ex-

tended set of edges from c1; since c1 is microcloned from b1, we have to consider nodes

body2 and head1 from b1. Because they are all the most specific nodes, the extended set of

edges from c1 contains two edges from c1 to body2 and to head1. There is no other node

in G(c1) microcloned from other nodes in G(b1). The G∗(c1) is constructed by combin-

ing together G(c1), two edges from c1 to body2 and to head1, G(body2), and G(head1).
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Compared to G(c1), G∗(c1) has some more nodes obtained from G(body2) and G(head1)

(shaded nodes in Figure 3.8(c))

Example 20 (G∗(d1), unified enhancement of object graph G(d1)) Since d1 is not cloned

from any other nodes, G∗(d1) is G(d1).

Example 21 (G∗(e1), unified enhancement of object graph G(e1)) Either head1 in b1

or head1 in a1 is put into G∗(e1), because they subsume each other. Note that although

these two are both head1, their children may differ. Similarly, either body1 in a1 or body2

in b1 is selected. However, in either case, since they subsume each other, the children of

the other node are also put into G∗(e1). G∗(e1) contains the same amount of information

as G∗(b1).

3.5 Answer Set Programming Encoding of Frame-based Reasoning Aspects

In this section we present the declarative ASP rules for reasoning over the knowledge

base.

From the previous section we noticed several properties of the knowledge base. In

particular, the representation of an object is not self-contained. An object graph describing

an object X only records the most specific properties of X , and it will let X inherit from

the superclasses or clone from other instances to obtain the general properties. One of

the fundamental reasoning tasks for the KB is to retrieve the full properties for an object,

which can be used to answer the most fundamental question: What is X?. The property

acquiring process for an instance has the following steps:

• Encoding basic information of the Knowledge Base: encoding the various com-

ponents of a Knowledge Base.

• Obtaining generalizations of the instance and subsume relation: Each instance

can have facts about inheritance in the form: has(Instance1, instance o f ,Class1),
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and each class can have facts expressing superclass information:

has(Class1,superclass,Class2), which indicates that Class2 is a superclass of Class1.

Therefore, Instance1 will inherit from Class2 as well. Transitive closure rules are

needed to define this process.

• Obtaining what an instance clones from: Besides inheritance, an instance can

also obtain some properties from other instances via cloning:

has(Instance1,clone f rom, Instance2). It can also obtain from the prototype of the

classes it belongs to.

• The unification process: When inheriting or cloning happens, an instance is re-

quired to acquire information from the other classes/instances. Each slot value of the

instance will not just be the one stated in its own frame, but will be merged with all

the acquired information. The merging process is referred to as unification.

We will continue using the example in Figure 3.4 to illustrate the unification process

step by step. The input ASP encoding is as follows:

has(a1 , instance_of , animal).

has(a1 , prototype_of , animal).

has(a1 , has_part , body1).

has(a1 , has_part , head1).

has(body1 , instance_of , body).

has(body1 , has_size , big1).

has(body1 , has_part , four_legs).

has(four_legs , instance_of , legs).

has(head1 , instance_of , head).

has(big1 , instance_of , size).

has(b1 , instance_of , mammal).

has(b1 , prototype_of , mammal).
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has(b1 , has_part , body2).

has(body2 , instance_of , body).

has(body2 , has_part , fur1).

has(fur1 , instance_of , fur).

%%%

has(body2 , cloned_from , body0).

has(body0 , instance_of , body).

%%%

has(c1 , instance_of , mutated_dog).

has(c1 , cloned_from , b1).

has(c1 , has_part , tail1).

has(tail1 , instance_of , tail).

has(d1 , instance_of , mutated_animal).

has(d1 , prototype_of , mutated_animal).

has(d1 , has_part , body2).

has(e1 , instance_of , animal).

has(e1 , cloned_from , a1).

has(e1 , cloned_from , b1).

% Class information

class(animal).

class(mammal).

class(mutated_dog).

class(mutated_animal).

class(tail).

class(body).
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class(size).

class(head).

class(legs).

class(fur).

has(mammal , superclass , animal).

3.5.1 Encoding Basic Information of the Knowledge Base

Encoding the Specification of Non-Inheritable/inheritable Slot Names

Object graphs and the Hierarchy graph of the KB are specified above. The specification

of non-inheritable/inheritable slot names (edge labels) are specified by “noninheritable(S)”

predicate such as:

a1:

noninheritable(prototype_participants;

prototype_participant_of;

prototype_scope;

prototype_of;

cloned_from;

clone_built_from;

instance_of;

clean_instance_of;

big_nodes).

We do not need another predicate for inheritable slot names because all slot names that

are not non-inheritable are considered inheritable.

Encoding Instances/Classes

All the classes in the KB are encoded by predicate “class(C)”. All other atoms appeared in

“has(X, , V)” are considered as instances and are encoded by predicate “ins( )”.
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a2, a3:

% grab all instances

ins(X) :- has(X,S,V), not class(X).

ins(V) :- has(X,S,V), not class(V).

Following are instances and classes in the example input. As expected, all the instances

are recognized correctly in the output of running those rules on previous example facts:

class(animal)

class(body)

class(fur)

class(head)

class(legs)

class(mammal)

class(mutated_animal)

class(mutated_dog)

class(size)

class(tail)

ins(a1)

ins(b1)

ins(big1)

ins(body0)

ins(body1)

ins(body2)

ins(c1)

ins(d1)

ins(e1)

ins(four_legs)

ins(fur1)

ins(head1)

ins(tail1)
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3.5.2 Obtaining Generalizations of an Instance

When retrieving information for an instance, the first step is to gather all of its classes.

Here, we discuss the rules for obtaining multiple inheriting classes for an instance. The

slot “instance-of” directly encodes all the classes (immediate class) to which an instance

belongs to, and the instance also recursively belongs to the immediate classes’ superclasses.

The rules a4 and a5 encodes instance o f (X ,Y ), which means class Y is an immediate

class of instance X .

a4, a5:

instance_of(X,Y) :- has(X,instance_of ,Y).

instance_of(X,Y) :- has(X,clean_instance_of ,Y).

The rules a6 and a7 encode g instance o f (X ,Y ), which means instance X transitively

belongs to class Y . Rule i3 uses the immediate class as the base case. Rule a7 means that

if X is a tc instance o f M and Y is a superclass of M, then X is also a tc instance o f Y .

a6, a7:

tc_instance_of(X,Y) :- instance_of(X,Y).

tc_instance_of(X,Y) :- tc_instance_of(X,M), has(M,superclass ,Y).

Shown in the following is output of running tc instance o f rules:

% Here is the running output of tc_instance_of:

tc_instance_of(a1 ,animal)

tc_instance_of(b1 ,animal)

tc_instance_of(b1 ,mammal)

tc_instance_of(big1 ,size)

tc_instance_of(body0 ,body)

tc_instance_of(body1 ,body)

tc_instance_of(body2 ,body)

tc_instance_of(c1 ,mutated_dog)
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tc_instance_of(d1 ,mutated_animal)

tc_instance_of(e1 ,animal)

tc_instance_of(four_legs ,legs)

tc_instance_of(fur1 ,fur)

tc_instance_of(head1 ,head)

tc_instance_of(tail1 ,tail)

As expected, the instance of subclass, like b1 of mammal, is also tc-instance-of super-

class, like animal.

3.5.3 Encoding Subsume Relation

The subsume relation is encoded by rules a8 and a9. V 1 does not subsume V 2 if there

exists a class C which V 2 is a tc-instance-of but V 1 is not. V 1 subsumes V 2 if there is no

evidence telling otherwise.

a8, a9:

% V1 subsumes V2 if V1 is more specific.

not_subsume(V1,V2) :-

ins(V1), ins(V2),

tc_instance_of(V2 ,C),

not tc_instance_of(V1 ,C),

V1!=V2.

subsume(V1 ,V2) :-

ins(V1), ins(V2),

not not_subsume(V1 ,V2).

In the following are the output facts from running the two rules above on our example

input of a1, b1, c1, and d1. As we can see, a1, b1, c1, and d1 subsume each other because

the only class they are instance of is animal. body0, body1, and body2 subsume each

other, since the only class they belong to is body. The relations between other pairs are all
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not subsume.

not_subsume(a1,b1)

not_subsume(a1,big1)

not_subsume(a1,body0)

not_subsume(a1,body1)

not_subsume(a1,body2)

not_subsume(a1,c1)

not_subsume(a1,d1)

not_subsume(a1,four_legs)

not_subsume(a1,fur1)

not_subsume(a1,head1)

not_subsume(a1,tail1)

not_subsume(b1,big1)

not_subsume(b1,body0)

not_subsume(b1,body1)

not_subsume(b1,body2)

not_subsume(b1,c1)

not_subsume(b1,d1)

not_subsume(b1,four_legs)

not_subsume(b1,fur1)

not_subsume(b1,head1)

not_subsume(b1,tail1)

not_subsume(big1 ,a1)

not_subsume(big1 ,b1)

not_subsume(big1 ,body0)

not_subsume(big1 ,body1)

not_subsume(big1 ,body2)

not_subsume(big1 ,c1)

not_subsume(big1 ,d1)

not_subsume(big1 ,e1)

not_subsume(big1 ,four_legs)
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not_subsume(big1 ,fur1)

not_subsume(big1 ,head1)

not_subsume(big1 ,tail1)

not_subsume(body0 ,a1)

not_subsume(body0 ,b1)

not_subsume(body0 ,big1)

not_subsume(body0 ,c1)

not_subsume(body0 ,d1)

not_subsume(body0 ,e1)

not_subsume(body0 ,four_legs)

not_subsume(body0 ,fur1)

not_subsume(body0 ,head1)

not_subsume(body0 ,tail1)

not_subsume(body1 ,a1)

not_subsume(body1 ,b1)

not_subsume(body1 ,big1)

not_subsume(body1 ,c1)

not_subsume(body1 ,d1)

not_subsume(body1 ,e1)

not_subsume(body1 ,four_legs)

not_subsume(body1 ,fur1)

not_subsume(body1 ,head1)

not_subsume(body1 ,tail1)

not_subsume(body2 ,a1)

not_subsume(body2 ,b1)

not_subsume(body2 ,big1)

not_subsume(body2 ,c1)

not_subsume(body2 ,d1)

not_subsume(body2 ,e1)

not_subsume(body2 ,four_legs)

not_subsume(body2 ,fur1)
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not_subsume(body2 ,head1)

not_subsume(body2 ,tail1)

not_subsume(c1,a1)

not_subsume(c1,b1)

not_subsume(c1,big1)

not_subsume(c1,body0)

not_subsume(c1,body1)

not_subsume(c1,body2)

not_subsume(c1,d1)

not_subsume(c1,e1)

not_subsume(c1,four_legs)

not_subsume(c1,fur1)

not_subsume(c1,head1)

not_subsume(c1,tail1)

not_subsume(d1,a1)

not_subsume(d1,b1)

not_subsume(d1,big1)

not_subsume(d1,body0)

not_subsume(d1,body1)

not_subsume(d1,body2)

not_subsume(d1,c1)

not_subsume(d1,e1)

not_subsume(d1,four_legs)

not_subsume(d1,fur1)

not_subsume(d1,head1)

not_subsume(d1,tail1)

not_subsume(e1,b1)

not_subsume(e1,big1)

not_subsume(e1,body0)

not_subsume(e1,body1)

not_subsume(e1,body2)
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not_subsume(e1,c1)

not_subsume(e1,d1)

not_subsume(e1,four_legs)

not_subsume(e1,fur1)

not_subsume(e1,head1)

not_subsume(e1,tail1)

not_subsume(four_legs ,a1)

not_subsume(four_legs ,b1)

not_subsume(four_legs ,big1)

not_subsume(four_legs ,body0)

not_subsume(four_legs ,body1)

not_subsume(four_legs ,body2)

not_subsume(four_legs ,c1)

not_subsume(four_legs ,d1)

not_subsume(four_legs ,e1)

not_subsume(four_legs ,fur1)

not_subsume(four_legs ,head1)

not_subsume(four_legs ,tail1)

not_subsume(fur1 ,a1)

not_subsume(fur1 ,b1)

not_subsume(fur1 ,big1)

not_subsume(fur1 ,body0)

not_subsume(fur1 ,body1)

not_subsume(fur1 ,body2)

not_subsume(fur1 ,c1)

not_subsume(fur1 ,d1)

not_subsume(fur1 ,e1)

not_subsume(fur1 ,four_legs)

not_subsume(fur1 ,head1)

not_subsume(fur1 ,tail1)

not_subsume(head1 ,a1)
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not_subsume(head1 ,b1)

not_subsume(head1 ,big1)

not_subsume(head1 ,body0)

not_subsume(head1 ,body1)

not_subsume(head1 ,body2)

not_subsume(head1 ,c1)

not_subsume(head1 ,d1)

not_subsume(head1 ,e1)

not_subsume(head1 ,four_legs)

not_subsume(head1 ,fur1)

not_subsume(head1 ,tail1)

not_subsume(tail1 ,a1)

not_subsume(tail1 ,b1)

not_subsume(tail1 ,big1)

not_subsume(tail1 ,body0)

not_subsume(tail1 ,body1)

not_subsume(tail1 ,body2)

not_subsume(tail1 ,c1)

not_subsume(tail1 ,d1)

not_subsume(tail1 ,e1)

not_subsume(tail1 ,four_legs)

not_subsume(tail1 ,fur1)

not_subsume(tail1 ,head1)

subsume(a1 ,a1)

subsume(a1 ,e1)

subsume(b1 ,a1)

subsume(b1 ,b1)

subsume(b1 ,e1)

subsume(big1 ,big1)

subsume(body0 ,body0)

subsume(body0 ,body1)
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subsume(body0 ,body2)

subsume(body1 ,body0)

subsume(body1 ,body1)

subsume(body1 ,body2)

subsume(body2 ,body0)

subsume(body2 ,body1)

subsume(body2 ,body2)

subsume(c1 ,c1)

subsume(d1 ,d1)

subsume(e1 ,a1)

subsume(e1 ,e1)

subsume(four_legs ,four_legs)

subsume(fur1 ,fur1)

subsume(head1 ,head1)

subsume(tail1 ,tail1))

As we can predict, because b1 is an instance of mammal, it subsumes both a1 and e1.

e1 and a1 subsume each other because they are both instances of animal. d1 is the only

instance of mutated animal and does not subsume any other instance.

3.5.4 Obtaining What an Instance Clones From

Cloning is another mechanism that facilitates the reuse of the existing knowledge frames

and avoids repeating the encoding of the same set of knowledge entries. Default cloning

refers to the case where the information encoded for a prototype is transferred to other

instances of the same class. User-defined cloning refers to the user specified facts of the

form has(X ,cloned f rom,Y ). Both cases need to be taken into account when deciding the

set of instances the current instance is cloning from.

The rules a10 and a11 encode the User-defined cloning, rule a12 encodes the Default

cloning.

a10, a11, a12:
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g_cloned_from(X,Y) :- X!=Y, has(X,cloned_from ,Y).

g_cloned_from(X,Y) :- X!=Y, has(X,clone_built_from ,Y).

g_cloned_from(X,Y) :- X!=Y, tc_instance_of(X,M), has(Y,

prototype_of ,M).

In the following is the output related to g-cloned-from rules. This output matches the

g-cloned-from relations illustrated in Figure 3.4.

g_cloned_from(b1,a1)

g_cloned_from(body2 ,body0)

g_cloned_from(c1,b1)

g_cloned_from(e1,a1)

g_cloned_from(e1,b1)

Encoding microclones relation Having the g cloned f rom relation, we can define

the microclone relations. Rules a13, a14, and a15 respectively encode the three cases of

microcloning in Definition 26.

a13, a14, a15:

% Case 1:

microclones ((X1,X1), (X2,X2)) :-

ins(X1), ins(X2),

g_cloned_from(X1,X2).

% Case 2:

microclones ((V1,C), (V2,F)) :-

microclones ((X1,C), (X2,F)),

has(X1 , S, V1),

has(X2 , S, V2),

not noninheritable(S),

subsume(V1 ,V2), V1!=V2.
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% Case 3:

microclones ((V1,F1), (V2,F2)) :-

microclones ((X,C), (X1,F1)),

microclones ((X,C), (X2,F2)),

has(X1 , S, V1),

has(X2 , S, V2),

not noninheritable(S),

subsume(V1 ,V2).

Executing the program on the example input gives us the following output.

microclones ((b1,b1) ,(a1,a1))

microclones ((body1 ,e1) ,(body2 ,b1))

microclones ((body2 ,b1) ,(body1 ,a1))

microclones ((body2 ,body2) ,(body0 ,body0))

microclones ((body2 ,e1) ,(body1 ,a1))

microclones ((c1,c1) ,(b1,b1))

microclones ((e1,e1) ,(a1,a1))

microclones ((e1,e1) ,(b1,b1))

Again, this output matches the microclone relations shown in Figure 3.4.

3.5.5 Encoding Cloning Process

Encoding the Extended Set of Edges

Predicate may have

We used predicate may have((X ,S,V ),C,(Y,F)) to indicate that we must consider edge

(Y,S,V ) in the extended set of edges (from X in the context C), since X in C is microcloned

from Y in F . This is equivalent to NP(A,S) in Definition 27, where A is the set of instances

that X is microcloned from, and P is the set of graphs G∗(F) (C is microcloned from F).

a16:
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% X may have value V from Y if: X microclones value V from

some instance Y

% may_have ((X,S,V),C,(Y,F)): we may have (X,S,V) in C from Y

in F

may_have ((X,S,V),C,(Y,F)) :-

hasc((Y,S,V),F),

microclones ((X,C), (Y,F)).

Executing the program on the example input gives us the following output.

may_have ((b1,has_part ,body1),b1 ,(a1,a1))

may_have ((b1,has_part ,head1),b1 ,(a1,a1))

may_have ((body1 ,has_part ,four_legs),e1 ,(body2 ,b1))

may_have ((body1 ,has_part ,fur1),e1 ,(body2 ,b1))

may_have ((body1 ,has_size ,big1),e1 ,(body2 ,b1))

may_have ((body2 ,has_part ,four_legs),b1 ,(body1 ,a1))

may_have ((body2 ,has_part ,four_legs),e1 ,(body1 ,a1))

may_have ((body2 ,has_size ,big1),b1 ,(body1 ,a1))

may_have ((body2 ,has_size ,big1),e1 ,(body1 ,a1))

may_have ((c1,has_part ,body2),c1 ,(b1,b1))

may_have ((c1,has_part ,head1),c1 ,(b1,b1))

may_have ((e1,has_part ,body1),e1 ,(a1,a1))

may_have ((e1,has_part ,body2),e1 ,(b1,b1))

may_have ((e1,has_part ,head1),e1 ,(a1,a1))

may_have ((e1,has_part ,head1),e1 ,(b1,b1))

Predicate may not have

Rule a17 encodes the instances that are subsumed by a node in G(C).

a17:

% Result of set difference with respect to subsume: KB has the edge

(X, S, V1), may have (X, S, V2) from Xj but V1 subsume V2.
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% V is in N \_{subsume} M if may_have ((X,S,V), C,(Y,F)) and not

may_not_have ((X, S, V), C)

may_not_have ((X, S, V2), C) :-

has(X, S, V1), may_have ((X, S, V2), C, (Xj , F)),

subsume(V1 , V2),

X != Xj ,

V1 != V2.

Executing the program on the example input gives us the following output.

may_not_have ((b1 ,has_part ,body1),b1)

This result is expected because our first principle of unification that makes us select

body2.

Predicate equ

Rule a18 encodes that V 1 and V 2 are equally specific nodes when they subsume each

other; (X ,S,V 1) and (X ,S,V 2) are two possible edges from X in context C. The condition

not may not have((X ,S,V 1),C) is to remove the nodes V 1 that are subsumed by a node in

G(C). This is equivalent to obtaining the set N \subsume M in Definition 27. Note that the

equivalent relation between nodes are transitive and symmetric. In a set of equally specific

nodes, every node has equ() relation to every other node.

a18:

% Equally specific nodes

equ((X, S, V1), (Xi , Fi), (X, S, V2), (Xj , Fj), C) :-

may_have ((X, S, V1), C, (Xi, Fi)), may_have ((X, S, V2), C, (Xj

, Fj)),

subsume(V2 , V1), subsume(V1 , V2),

not may_not_have ((X, S, V1), C), not may_not_have ((X, S, V2),

C),

Xi != X, Xj != X, Xi != Xj.
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Executing the program on the example input gives us the following output.

equ((e1 ,has_part ,body1),(a1 ,a1),(e1 ,has_part ,body2),(b1 ,b1),e1)

equ((e1 ,has_part ,body2),(b1 ,b1),(e1 ,has_part ,body1),(a1 ,a1),e1)

equ((e1 ,has_part ,head1),(a1 ,a1),(e1 ,has_part ,head1),(b1 ,b1),e1)

equ((e1 ,has_part ,head1),(b1 ,b1),(e1 ,has_part ,head1),(a1 ,a1),e1)

Predicate may not have2

Rule a19 encodes instances that are less specific than another instance. If two instances

x4 and x5 subsume each other like in Figure 3.3, and they are not subsumed by any other

node, they would not be included in not may have2().

a19:

% Most specific nodes: nodes that are not subsumed by any node ,

except its equally specific ones.

may_not_have2 ((X, S, V1), C) :-

may_have ((X, S, V1), C, (Xi,_)), may_have ((X, S, V2), C, (Xj,

_)),

subsume(V2 , V1), not_subsume(V1 , V2),

V1 != V2 , Xi != X, Xj != X.

Executing the program on the example input gives us nothing on may not have2 since

our example a1-e1 does not have this case.

Predicate edges s

Rule a20 encodes the most specific nodes (nodes in MINsubsume(NP(A,S)\subsume NG(C)(x,S)))

of Definition 27. When a node V is not less specific than any node, either V or one of its

equally specific nodes will be randomly chosen and put in the edges s().

a20:

1 { edges_s ((X, S, V1), C, (Xj, Fj)): equ((X, S, V), (Xi, Fi),

(X, S, V1), (Xj , Fj), C);

edges_s ((X, S, V), C, (Xi , Fi))} 1 :-
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may_have ((X, S, V), C, (Xi, Fi)),

not may_not_have ((X, S, V), C),

not may_not_have2 ((X, S, V), C).

Following is one output of the program with respect to the example input.

edges_s ((b1 ,has_part ,head1),b1 ,(a1 ,a1))

edges_s ((body1 ,has_part ,four_legs),e1 ,(body2 ,b1))

edges_s ((body1 ,has_part ,fur1),e1 ,(body2 ,b1))

edges_s ((body1 ,has_size ,big1),e1 ,(body2 ,b1))

edges_s ((body2 ,has_part ,four_legs),b1 ,(body1 ,a1))

edges_s ((body2 ,has_part ,four_legs),e1 ,(body1 ,a1))

edges_s ((body2 ,has_size ,big1),b1 ,(body1 ,a1))

edges_s ((body2 ,has_size ,big1),e1 ,(body1 ,a1))

edges_s ((c1 ,has_part ,body2),c1 ,(b1 ,b1))

edges_s ((c1 ,has_part ,head1),c1 ,(b1 ,b1))

edges_s ((e1 ,has_part ,body1),e1 ,(a1 ,a1))

edges_s ((e1 ,has_part ,head1),e1 ,(b1 ,b1))

The output tells that we need to add to G∗(b1):

1. The edge (b1,has part,head1), which is obtained from G(a1) in G∗(a1).

2. The edges (body2,has part, f our legs) and (body2,has size,big1), which are ob-

tained from G(body1) in G∗(a1).

This result exactly matches the one in Figure 3.8, which we analyzed previously.

Similarly, we need to add two edges to G∗(c1) and seven edges to G∗(e1), which also

match previous results. Note that the rest of the graph G(body2) in G∗(b1) is also added to

G∗(c1) but through rule a27. It also indicates that no new edge is added to G∗(d1), keeping

G∗(d1) indifferent from G(d1)
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Encoding the Connectivity in Object Graph

We encode an edge ((X ,S,Y )) in the context of C by hasc((X ,S,Y ),C). Using predicate

connectI(X ,Y,C), we encode the connectivity through inheritable edges from X to Y in the

context C. connect(X ,Y,C) is used to encode the connectivity through connectI and then

through an optional non-inheritable edge.

a21, a22:

% ConnectI from X to Y if there is a chain of inheritable

edges from X to Y

connectI(X, X, C) :- ins(X), ins(C).

connectI(X, Z, C) :- connectI(Y,Z,C), hasc((X, S, Y), C), not

noninheritable(S).

a23, a24:

% Connect from X to Y if there connectI there is a chain of

edges from X to Y; the optional last edge is noninheritable

.

connect(X, Y, C) :- connectI(X, Y, C).

connect(X, Z, C) :- connectI(X,Y,C), hasc((Y, S, Z), C),

noninheritable(S).

Executing the program on the example input gives us the following output. Only the

first 10 predicates of connectI and connect from a1-e1 are shown. As we can see, a1

connectIs to a1 in all the of the contexts a1, b1, big1, etc. connect also links instance (i.e.

d1) to the classes (i.e. body).

connectI(a1,a1,a1)

connectI(a1,a1,b1)

connectI(a1,a1,big1)

connectI(a1,a1,body0)

connectI(a1,a1,body1)
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connectI(a1,a1,body2)

connectI(a1,a1,c1)

connectI(a1,a1,d1)

connectI(a1,a1,e1)

connectI(a1,a1,four_legs)

connectI(a1,a1,fur1)

connectI(a1,a1,head1)

connectI(b1,b1,a1)

connectI(b1,b1,b1)

connectI(b1,b1,big1)

connectI(b1,b1,body0)

connectI(b1,b1,body1)

connectI(b1,b1,body2)

connectI(b1,b1,c1)

connectI(b1,b1,d1)

connectI(b1,b1,e1)

connectI(b1,b1,four_legs)

connectI(c1,big1 ,c1)

connectI(c1,body2 ,c1)

connectI(c1,c1,a1)

connectI(c1,c1,b1)

connectI(c1,c1,big1)

connectI(c1,c1,body0)

connectI(c1,c1,body1)

connectI(c1,c1,body2)

connectI(c1,c1,c1)

connectI(c1,c1,d1)

connectI(d1,big1 ,b1)
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connectI(d1,big1 ,c1)

connectI(d1,big1 ,e1)

connectI(d1,body2 ,a1)

connectI(d1,body2 ,b1)

connectI(d1,body2 ,big1)

connectI(d1,body2 ,body0)

connectI(d1,body2 ,body1)

connectI(d1,body2 ,body2)

connectI(d1,body2 ,c1)

connectI(e1,big1 ,e1)

connectI(e1,body1 ,e1)

connectI(e1,e1,a1)

connectI(e1,e1,b1)

connectI(e1,e1,big1)

connectI(e1,e1,body0)

connectI(e1,e1,body1)

connectI(e1,e1,body2)

connectI(e1,e1,c1)

connectI(e1,e1,d1)

connect(a1 ,a1 ,a1)

connect(a1 ,animal ,a1)

connect(a1 ,big1 ,a1)

connect(a1 ,body ,a1)

connect(a1 ,body1 ,a1)

connect(a1 ,four_legs ,a1)

connect(a1 ,head ,a1)

connect(a1 ,head1 ,a1)

connect(a1 ,legs ,a1)

connect(a1 ,size ,a1)
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connect(b1 ,b1 ,a1)

connect(b1 ,b1 ,b1)

connect(b1 ,b1 ,big1)

connect(b1 ,b1 ,body0)

connect(b1 ,b1 ,body1)

connect(b1 ,b1 ,body2)

connect(b1 ,b1 ,c1)

connect(b1 ,b1 ,d1)

connect(b1 ,b1 ,e1)

connect(b1 ,b1 ,four_legs)

connect(c1 ,c1 ,a1)

connect(c1 ,c1 ,b1)

connect(c1 ,c1 ,big1)

connect(c1 ,c1 ,body0)

connect(c1 ,c1 ,body1)

connect(c1 ,c1 ,body2)

connect(c1 ,c1 ,c1)

connect(c1 ,c1 ,d1)

connect(c1 ,c1 ,e1)

connect(c1 ,c1 ,four_legs)

connect(d1 ,big1 ,b1)

connect(d1 ,big1 ,c1)

connect(d1 ,big1 ,e1)

connect(d1 ,body ,a1)

connect(d1 ,body ,b1)

connect(d1 ,body ,big1)

connect(d1 ,body ,body0)

connect(d1 ,body ,body1)
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connect(d1 ,body ,body2)

connect(d1 ,body ,c1)

connect(e1 ,a1 ,a1)

connect(e1 ,a1 ,b1)

connect(e1 ,a1 ,big1)

connect(e1 ,a1 ,body0)

connect(e1 ,a1 ,body1)

connect(e1 ,a1 ,body2)

connect(e1 ,a1 ,c1)

connect(e1 ,a1 ,d1)

connect(e1 ,a1 ,e1)

connect(e1 ,a1 ,four_legs)

Encoding the Construction of Unified Object Graph

G∗(C) is encoded by all the predicates hasc((X ,S,V ),C), where C connects to X in the

context of C, represented by connect(C,X ,C).

We add new edges to the G ∗ (C) by adding new hasc((X ,S,V ),C). Using rules a25,

a26 and a27. we encode G∗(C) according to Definition 28.

Rule a25 adds all of the existing edges of G(C) to G∗(C).

Rule a26 puts all edges in the extended set of edges into G∗(C). The extended set of

edges (Definition 27) is encoded by predicate edgess((X ,S,V ),C,(Xi,F)).

edgess((X ,S,V ),C,(Xi,F)) means that the edges (Xi,S,V ) from Xi in F is in the extended

set of edges from X in C.

Rule a27 puts every edge in G(V ) in G∗(F) into G∗(C), where C is g-cloned-from F ,

and V was added into G∗(C) by rule a26.

a25, a26, a27:

% Add all the existing nodes from x
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hasc((X, S, V), C) :-

ins(C),

has(X, S, V).

% Add the edge from x to the most specific nodes

hasc((X, S, V), C) :-

edges_s ((X, S, V), C, (Xi , F)).

% Add all other nodes in G(V) in G*(F) if (X,S,V) is added

through edges_s( )

hasc((Z1, SZ, Z2), C) :-

edges_s ((X, S, V), C, (Xi , F)),

hasc((Z1 , SZ , Z2), F),

connect(V, Z2 , F),

connect(V, Z1 , F).

Executing the program on the example input gives us the following output. Here, we show

only the facts with respect to the context of a1 and b1.

hasc((a1,has_part ,body1),a1)

hasc((a1,has_part ,head1),a1)

hasc((a1,instance_of ,animal),a1)

hasc((a1,prototype_of ,animal),a1)

hasc((b1,has_part ,body2),a1)

hasc((b1,instance_of ,mammal),a1)

hasc((b1,prototype_of ,mammal),a1)

hasc((big1 ,instance_of ,size),a1)

hasc((body0 ,instance_of ,body),a1)

hasc((body1 ,has_part ,four_legs),a1)

hasc((body1 ,has_size ,big1),a1)

hasc((body1 ,instance_of ,body),a1)

hasc((body2 ,cloned_from ,body0),a1)
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hasc((body2 ,has_part ,fur1),a1)

hasc((body2 ,instance_of ,body),a1)

hasc((c1,cloned_from ,b1),a1)

hasc((c1,has_part ,tail1),a1)

hasc((c1,instance_of ,mutated_dog),a1)

hasc((d1,has_part ,body2),a1)

hasc((d1,instance_of ,mutated_animal),a1)

hasc((d1,prototype_of ,mutated_animal),a1)

hasc((e1,cloned_from ,a1),a1)

hasc((e1,cloned_from ,b1),a1)

hasc((e1,instance_of ,animal),a1)

hasc((four_legs ,instance_of ,legs),a1)

hasc((fur1 ,instance_of ,fur),a1)

hasc((head1 ,instance_of ,head),a1)

hasc((mammal ,superclass ,animal),a1)

hasc((tail1 ,instance_of ,tail),a1)

hasc((a1,has_part ,body1),b1)

hasc((a1,has_part ,head1),b1)

hasc((a1,instance_of ,animal),b1)

hasc((a1,prototype_of ,animal),b1)

hasc((b1,has_part ,body2),b1)

hasc((b1,has_part ,head1),b1)

hasc((b1,instance_of ,mammal),b1)

hasc((b1,prototype_of ,mammal),b1)

hasc((big1 ,instance_of ,size),b1)

hasc((body0 ,instance_of ,body),b1)

hasc((body1 ,has_part ,four_legs),b1)

hasc((body1 ,has_size ,big1),b1)

hasc((body1 ,instance_of ,body),b1)

hasc((body2 ,cloned_from ,body0),b1)
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hasc((body2 ,has_part ,four_legs),b1)

hasc((body2 ,has_part ,fur1),b1)

hasc((body2 ,has_size ,big1),b1)

hasc((body2 ,instance_of ,body),b1)

hasc((c1,cloned_from ,b1),b1)

hasc((c1,has_part ,tail1),b1)

hasc((c1,instance_of ,mutated_dog),b1)

hasc((d1,has_part ,body2),b1)

hasc((d1,instance_of ,mutated_animal),b1)

hasc((d1,prototype_of ,mutated_animal),b1)

hasc((e1,cloned_from ,a1),b1)

hasc((e1,cloned_from ,b1),b1)

hasc((e1,instance_of ,animal),b1)

hasc((four_legs ,instance_of ,legs),b1)

hasc((fur1 ,instance_of ,fur),b1)

hasc((head1 ,instance_of ,head),b1)

hasc((mammal ,superclass ,animal),b1)

hasc((tail1 ,instance_of ,tail),b1)

3.5.6 Correctness of the ASP Encoding

Definition 29 (ASP program) Given a knowledge base KB, the ASP program ΠKB is the

answer set program consisting of the following:

1. The rules from a1 to a27.

2. All facts of the form has(X ,S,V ) and class(C) that are either in the class hierarchy

graph or in the object graphs.

Lemma 11 X is an in a knowledge base KB iff:

ΠKB |= ins(X)
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The proof for lemma 11 will be given in the Appendix.

Lemma 12 X is a tc-instance-of Y with respect to a knowledge base KB iff:

ΠKB |= tc instance o f (X ,Y )

The proof of lemma 12 will be given in the Appendix.

Lemma 13 X subsumes Y with respect to a knowledge base KB iff:

ΠKB |= subsume(X ,Y )

Lemma 14 X is g-cloned-from Y with respect to a knowledge base KB iff:

ΠKB |= g cloned f rom(X ,Y )

The proof of lemma 14 will be given in the Appendix.

Lemma 15 X in C is microcloned from Y in F with respect to a knowledge base KB iff:

ΠKB |= microclones((V 1,C),(V 2,F))

Proposition 3 Let X and Y be two instances in a knowledge base KB. Y is in G∗(X) iff:

ΠKB |= connect(X ,Y,X)

The proof of Proposition 3 will be given in the Appendix.

3.6 Efficient Unification

3.6.1 Efficient ASP Implementation

In the ASP implementation above, the program will do unification for all instances with

respect to the context of all the instances in the KB. This process could take forever on a

large KB such as AURA. However, among various kinds of questions possibly posed to a
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knowledge base, many can be more efficiently answered by modifying some of the rules

given in the earlier section. For example, we only want to accomplish unification with

respect to the context of several instances and for some instances related to the context

instances; most of instances in the KB are irrelevant to the questions and will be ruled out.

This is similar to the use of magic sets in efficiently answering Datalog queries, whereas

Datalog rules are transformed based on query patterns. In the following, we show how

some rules can be modified for efficiency purposes without sacrificing correctness for the

specific kind of queries.

We choose two types of queries for illustration. For questions like “What is X?”,

“What is the difference between X and Y?”, we only need to have complete information

about X and Y (i.e. G∗(X) and G∗(Y )). That means we have to unify G(X) in context of X

and G(Y ) in the context of Y . This would need G∗(Xi)s and G∗(Yj)s; Xis and Y js are nodes

of which X and Y are g-cloned from (Definition 28), meaning that we have to unify G(Xi)s

and G(Yj)s in the context of Xis and Yjs.

So if we want to compute the set S of context instances, initially, we add X and Y to

S. In the second step, we add Xis and Yjs, which X and Y are g-cloned from. We then add

instances of which Xis and Yjs themselves are g-cloned from, and so on.

We use predicate context(X) to encode that we need to use X as a context instance.

Rule a28 finds all of the needed context instances.

a28:

context(Y) :- context(X), g_cloned_from(X,Y).

From the unification definitions above, it is also clear that for computing the unified

G∗(X), we only need the instances in G(X), G(Xi)s, and G(Mk)s (Xis are g-cloned from

Mk),... In other words, we use only the instances in G(T ) where T is one of the context that

we need.
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Similarly to connectI(X ,Y,C) and connect(X ,Y,C) in a21, a22, a23 and a24, we use

predicate relateI(C,X) to encode connectivity through inheritable edges from C to X in

G(C); relate(C,X) for connectivity through relateI and then through an optional non-

inheritable edge.

Compared to rules a21, a22, a23 and a24, the rules a29, a30, a31, and a32 have some

differences:

1. They use the edges in the original object graphs (encoded by has(X ,S,Y )) instead of

the unified object graphs (encoded by hasc((X ,S,Y ),C)).

2. relateI(C,X)s and relate(C,X)s are defined only when context(C) is true because

we only care about instances in G(T ) where T is one of the context that we need.

a29, a30, a31, a32:

relateI(X, X) :- context(X).

relateI(X, Z) :-

context(X),

relateI(X,Y),

has(Y, S, Z),

not noninheritable(S).

relate(X,Y) :-

context(X),

relateI(X,Y).

relate(X, Z) :-

context(X),

relateI(X,Y),

has(Y, S, Z),

noninheritable(S).

We then limit ourselves to the instances of interest by modifying rules a2 and a3.
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We change

a2, a3:

% grab all instances

ins(X) :- has(X,S,V), not class(X).

ins(V) :- has(X,S,V), not class(V).

to

a33, a34:

ins(X) :- has(X,S,V), not class(X),

context(C), relate(C, X).

ins(V) :- has(X,S,V), not class(V),

context(C), relate(C, X).

For other rules: a13-a15, a16-a20, a21-a22, a23-a24, and a25-a27, we add rule context(C)

(or context(F), context(X1), context(X2)) where C is used as the context of unification in

that rule similar to the way rule a2 was changed to a33.

Similarly to how a2 was changed to a33, in rule a25, we also add relate(C,X) because

we then only consider existing edges in G(C) to G∗(C). We can see all those rules (a13-

a15, a16-a20, a21-a22, a23-a24 and a25-a27) after the modification by uncommenting the

commented atoms in each rule shown before. For example, a13 was previously like this:

a13:

microclones ((X2,X2), (X1,X1)) :-

% context(X1), context(X2),

ins(X1), ins(X2),

g_cloned_from(X2,X1).

After uncommenting “% context(X1), context(X2)”, we get the modified rule:
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a35:

microclones ((X2,X2), (X1,X1)) :-

context(X1), context(X2),

ins(X1), ins(X2),

g_cloned_from(X2,X1).

The complete program with all the modified rules is listed in the Appendix.

3.6.2 Query Execution Timings

We tested the rules on a corpus that contains 5,180 classes, 32,339 instances, and 5,673

entries in the class hierarchy graph, and 198,301 entries in the various object graphs. The

running time with the efficient encoding is around 3 seconds per question, while the earlier

encoding ran for more than two hours without giving an answer.

3.6.3 Correctness of the ASP Encoding

Definition 30 (ASP program) Given a knowledge base KB, the ASP program Π′KB is the

answer set program consisting of all the following:

1. The modified rules of a1 - a27.

2. All facts of the form has(X ,S,V ) and class(C) that are either in the class hierarchy

graph, or in the object graphs.

3. The rules a28 and a29-a32.

4. The facts of the form context(C) of all the object graphs G(C)s of interest.

Lemma 16 X is in the object graph G(C) in a knowledge base KB iff:

Π
′
KB |= relate(C,X)

The proof of Lemma 16 will be given in the Appendix.
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Proposition 4 Let X and Y be two instances in a knowledge base KB. Y is in G∗(X) iff:

Π
′
KB |= connect(X ,Y,X)

The proof sketch of Proposition 4 will be given in the Appendix.

3.7 Encoding of Question Answering

The AURA system supports seven types of questions, namely:

1. Identifying superclasses.

2. Giving an example of a class.

3. Computing a slot value.

4. Describing a class.

5. Checking if an assertion is true or false.

6. Comparing individuals.

7. Computing the relationship between two individuals.

Our current ASP based system can answer all types of questions supported by AURA.

In this section, we show some of the comparatively difficult ones (We do not show the ASP

rules for “Identifying superclasses” and “Giving an example of a class,” as they are very

straight forward in our ASP implementation).

3.7.1 Describe a Class

The most simple yet fundamental question is: “What is (a/an) X?”. There are two ways

to answer this question:

1. Return the full list of properties for X .

110



2. Return the most distinguishable properties of X , in comparison to its immediate su-

perclass.

The first way provides a direct answer, which is an object graph G∗(X). The output

of the unification process of G(X) in the context of X contains the facts of G∗(X) and

many other facts. However, we can get all the nodes of G∗(X) from the facts of the form

connect(X ,Y,X). connect(X ,Y,X) must be true for each node Y in G∗(X).

Return the Full List of Properties for X

The question “What is (a/an) X?” is encoded like the following. Here, X is the animal

class.

% Q: What is an animal?

question(q1).

qhas(q1, type , what).

qhas(q1, cat , is).

qhas(q1, param1 , animal).

Following are the two rules utilized to answer the question. In both rules, we first find

the instance C of the class X in the question. Rule a36 puts the fact context(C) so that

the unification process can start. Rule a37 returns all the edges from M to N in G∗(C). M

must be connected from C through inheritable edges because if it is not, it must be reached

through a non-inheritable edge; it is a leaf node of the object graph by definition. G∗(C)

should not contain any edge from such leaf nodes.

a36, a37:

% A: [answer by return the full list of properties for

cell.]

context(C) :- question(Q),

qhas(Q, type , what),

qhas(Q, cat , is),
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qhas(Q, param1 , Class),

has(C, prototype_of , Class).

answer(Q, hasc((M, S, N), C)) :- hasc((M, S, N), C),

context(C),

connectI(C, M, C),

connect(C, N, C),

qhas(Q, type , what),

qhas(Q, cat , is),

qhas(Q, param1 , Class),

has(C, prototype_of , Class).

Executing the answering rules on our example KB with the encoding “What is an ani-

mal?” give us the G∗(a1) in the following:

answer(q1 ,hasc((a1 ,has_part ,body1),a1))

answer(q1 ,hasc((a1 ,has_part ,head1),a1))

answer(q1 ,hasc((a1 ,instance_of ,animal),a1))

answer(q1 ,hasc((a1 ,prototype_of ,animal),a1))

answer(q1 ,hasc((big1 ,instance_of ,size),a1))

answer(q1 ,hasc((body1 ,has_part ,four_legs),a1))

answer(q1 ,hasc((body1 ,has_size ,big1),a1))

answer(q1 ,hasc((body1 ,instance_of ,body),a1))

answer(q1 ,hasc((four_legs ,instance_of ,legs),a1))

answer(q1 ,hasc((head1 ,instance_of ,head),a1))

context(a1)

It only needs the context of a1 in order to answer, and the answer has the correct edges,

matching with the examples previously shown. Similarly, we can verify the answer of

“What is a mammal?,” which is G∗(b1) in the following output. Both a1 and b1 were used

as the context for unification.
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answer(q1 ,hasc((b1 ,has_part ,body2),b1))

answer(q1 ,hasc((b1 ,has_part ,head1),b1))

answer(q1 ,hasc((b1 ,instance_of ,mammal),b1))

answer(q1 ,hasc((b1 ,prototype_of ,mammal),b1))

answer(q1 ,hasc((big1 ,instance_of ,size),b1))

answer(q1 ,hasc((body2 ,cloned_from ,body0),b1))

answer(q1 ,hasc((body2 ,has_part ,four_legs),b1))

answer(q1 ,hasc((body2 ,has_part ,fur1),b1))

answer(q1 ,hasc((body2 ,has_size ,big1),b1))

answer(q1 ,hasc((body2 ,instance_of ,body),b1))

answer(q1 ,hasc((four_legs ,instance_of ,legs),b1))

answer(q1 ,hasc((fur1 ,instance_of ,fur),b1))

answer(q1 ,hasc((head1 ,instance_of ,head),b1))

context(a1)

context(b1)

Next, we run another example on the real AURA KB. The question is “What is a

cell?”. The answer is the G∗(cell325), where cell325 is an prototype of cell. Follow-

ing are 10-lines for 10 edges from a total of the 648 edges of G∗(cell325). Compared to

the original G(cell325), G∗(cell325) was obtained from two more classes (cell18399 and

tangible entity22850) and was doubled in size (to 648 from 229).

answer(q1 ,hasc((cell325 ,clean_instance_of ,cell),cell325))

answer(q1 ,hasc((cell325 ,cloned_from ,cell18399),cell325))

answer(q1 ,hasc((cell325 ,cloned_from ,tangible_entity22850),

cell325))

answer(q1 ,hasc((cell325 ,diameter ,length_value15324),cell325))

answer(q1 ,hasc((cell325 ,does_not_enclose ,

extra_cellular_matrix11481),cell325))

answer(q1 ,hasc((cell325 ,has_part ,chromosome10040),cell325))

answer(q1 ,hasc((cell325 ,has_part ,cytoplasm689),cell325))

answer(q1 ,hasc((cell325 ,has_part ,enzyme6401),cell325))
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answer(q1 ,hasc((cell325 ,has_part ,plasma_membrane14508),cell325

))

answer(q1 ,hasc((cell325 ,has_part ,ribosome23653),cell325))

Return the Most Distinguishable Properties of X

In this section, we present another way to answer the question. Similar to previous method,

in order to answer the question “What is a/an X?”, we first find the prototype P of class

X and return the properties of P. Note that G∗(P) was created from G(P) by obtaining

additional information from three sources:

1. Prototypes of X’s ancestor classes

2. Instances that P is cloned from (encoded by cloned-from edge)

3. Other prototypes of P’s classes (including X)

G(P) contains the most distinguishable properties of P compared to those sources, so

G(P) itself is already a reasonable answer to the question. But if we want to limit the

comparisons to ancestor classes, we can modify the g-cloned-from rules (a10-a12) so that

G(P) does not use additional information from the prototypes of X’s ancestor classes. The

G∗(P) returned from the answering rules a36, a37 would return simpler answers than those

of the previous section.

Another way to answer this question is by showing the differences between P and a

prototype of X’s superclass(es). Details of how to show the differences will be discussed

in next section.

To summarize, we can consider three ways of returning the most distinguishable prop-

erties of X :

1. Return G(P).
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2. Return G∗(P) after modifying rules a10-a12.

3. Return the differences between P and a prototype of X’s superclass(es).

Here, we show the ASP rules for the first and second ways. The last one will be discussed

in next section.

Return G(P)

Following is the modified version of rule a37 to return G(P) instead G∗(P). , we still need

to use the rule a36.

Existing rule a36:

% A: [answer by return the full list of properties for

cell.]

context(C) :- question(Q),

qhas(Q, type , what),

qhas(Q, cat , is),

qhas(Q, param1 , Class),

has(C, prototype_of , Class).

a38:

answer(Q, has(X, S, Y)) :- has(X, S, Y),

relateI(P, X),

relate(P, Y),

qhas(Q, type , what),

qhas(Q, cat , is),

qhas(Q, param1 , Class),

has(P, prototype_of , Class).

Rule a38 returns all the edges in G(P), compared to a37, which uses relate and relateI

instead of connectI and connect.

Modifying rules a10-a12

In the following section, we show the change in rules a10-a12 so that G∗(P) does not use
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additional information from the prototypes of X’s ancestor classes. In fact, we only need

to change a12; instead of tc instance o f , we need to use instance o f .

Existing rules a10 and a11:

g_cloned_from(X,Y) :- X!=Y, has(X,cloned_from ,Y).

g_cloned_from(X,Y) :- X!=Y, has(X,clone_built_from ,Y).

g_cloned_from(X,Y) :- X!=Y, instance_of(X,M), has(Y,

prototype_of ,M).

Executing the answering rules (a36 and a37) with modified rule a39 on our example

KB with the encoding “What is a mammal?” give us the G∗(b1) in the following:

answer(q1 ,hasc((b1 ,has_part ,body2),b1))

answer(q1 ,hasc((b1 ,instance_of ,mammal),b1))

answer(q1 ,hasc((b1 ,prototype_of ,mammal),b1))

answer(q1 ,hasc((body2 ,cloned_from ,body0),b1))

answer(q1 ,hasc((body2 ,has_part ,fur1),b1))

answer(q1 ,hasc((body2 ,instance_of ,body),b1))

answer(q1 ,hasc((fur1 ,instance_of ,fur),b1))

context(b1)

Since a1 is the prototype of animal, it was not used to unify. G∗(b1) now has 7 edges

(compared to 13 of the previous).

3.7.2 Comparing Individuals

This is another fundamental question, which asks for the similarities and differences

between two individuals. The question could be about the specific instances such as “What

are the similarities between b1 and c1?”, but this is uncommon. Most of the time, the

questions are about classes such as “What are the differences between prokaryotic and

eukaryotic cells?”
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We first present a method in answering questions about similarities and later extend it

to the “differences” case.

Class Similarities

As usual, we begin by encoding the question. The question “What are the similarities

between Class1 and Class2?” is encoded as the following:

a39:a40:

% Q: What are the similarities between Class1 and Class2?’’

question(q2).

qhas(q2, type , what).

qhas(q2, cat , similarity).

qhas(q2, param1 , class1).

qhas(q2, param2 , class2).

For example, the question “What are the similarities between mutated animal and mam-

mal?” is encoded as follows. Class1 and Class2 here are mutated animal and mammal

respectively.

Example 22

% Q: What are the similarities between mutated_animal

and mammal?’’

question(q2).

qhas(q2 , type , what).

qhas(q2 , cat , similarity).

qhas(q2 , param1 , mammal).

qhas(q2 , param2 , mutated_animal).

Similarly to answering the previous question, we must find the prototypes C1 and C2

of class1 and class2 respectively; then, we add the facts context(C1) and context(C2) so

the unification may begin. Note that context(C1;C2) is the shortcut for context(C1) and

context(C2).
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a41:

context(C1;C2) :- question(Q),

qhas(Q, type , what),

qhas(Q, cat , similarity),

qhas(Q, param1 , Class1),

qhas(Q, param2 , Class2),

has(C1 , prototype_of , Class1),

has(C2 , prototype_of , Class2).

If the question is about mammal and mutated animal in our example KB, b1 and d1 re-

spectively are the prototypes of mammal and mutated animal. So, the answer set would

contain context(d1) and context(b1).

In rule a42, we use predicate compare(Q,(C1,C1),(C2,C2)) to see that to answer ques-

tion Q, we need to compare C1 with C2 (more precisely, C1 in the context of C1 with C2

in C2).

a42:

% We need to compare C1 in the context of C1 with C2 in C2

compare(Q,(C1 , C1), (C2 , C2)) :- question(Q),

qhas(Q, type , what),

qhas(Q, cat , similarity),

qhas(Q, param1 , Class1),

qhas(Q, param2 , Class2),

has(C1 , prototype_of , Class1),

has(C2 , prototype_of , Class2).

To answer this, we introduce the predicate sim((M,X),(N,Y ),S,V ) to stand for the

same value V of the same slot S shared by two instances M in X and N in Y . The rules for

this predicate are as follows:

118



a43:

% (M in X) and (N in Y) both contain V for slot S

sim((M,X),(N,Y),S,V) :- compare(Q,(M,X), (N,Y)),

hasc((M,S,V), X),

hasc((N,S,V1),Y),

V==V1.

Let us return to our mammal vs. mutated animal; in the answer set, we would have

sim((d1,d1),(b1,b1),has part,body2) since we need to compare d1 with b1, and each of

them has-part body2. However, as mentioned earlier, the contents of body2 in b1 and in d1

are not the same. We would need further comparison in G(body2). Rule a44 encodes this

logic. We will continue to compare V in X and V in Y if both M in X and N in Y contain

the edge of type S to V .

a44:

compare(Q, (V, X), (V, Y)) :- compare(Q,(M,X), (N,Y)),

sim((M,X),(N,Y),S,V),

connectI(X, V, X),

connectI(Y, V, Y).

Using this rule in our example, we have the following output. It continued to compare

body2 in d1 and body2 in b1 and found that both of them have f ur1; it then continued

comparing f ur1 in d1 and f ur1 in d1.

compare(q2 ,(body2 ,d1),(body2 ,b1))

compare(q2 ,(d1 ,d1),(b1 ,b1))

compare(q2 ,(fur1 ,d1),(fur1 ,b1))

sim((body2 ,d1),(body2 ,b1),cloned_from ,body0)

sim((body2 ,d1),(body2 ,b1),has_part ,fur1)

sim((body2 ,d1),(body2 ,b1),instance_of ,body)

sim((d1 ,d1),(b1 ,b1),has_part ,body2)

sim((fur1 ,d1),(fur1 ,b1),instance_of ,fur)
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Finally, the answer of the question is obtained simply by combing all sim() predicates.

a45:

answer(Q, sim((M,X),(N,Y),S,V)) :- compare(Q,(M,X), (N,Y)),

question(Q),

qhas(Q, type , what),

qhas(Q, cat , similarity),

sim((M,X),(N,Y),S,V).

Following is the output of answering question, “What are the similarities between mu-

tated animal and mammal?”. The program we used is the combination of : ΠKB, question

encoding rules a40, rules a41, a42, a43, a44 and a45.

answer(q2,sim((body2 ,d1),(body2 ,b1),cloned_from ,body0))

answer(q2,sim((body2 ,d1),(body2 ,b1),has_part ,fur1))

answer(q2,sim((body2 ,d1),(body2 ,b1),instance_of ,body))

answer(q2,sim((d1 ,d1),(b1 ,b1),has_part ,body2))

answer(q2,sim((fur1 ,d1),(fur1 ,b1),instance_of ,fur))

compare(q2 ,(body2 ,d1),(body2 ,b1))

compare(q2 ,(d1 ,d1),(b1 ,b1))

compare(q2 ,(fur1 ,d1),(fur1 ,b1))

context(a1)

context(b1)

context(d1)

sim((body2 ,d1),(body2 ,b1),cloned_from ,body0)

sim((body2 ,d1),(body2 ,b1),has_part ,fur1)

sim((body2 ,d1),(body2 ,b1),instance_of ,body)

sim((d1 ,d1),(b1 ,b1),has_part ,body2)

sim((fur1 ,d1),(fur1 ,b1),instance_of ,fur)
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Class Differences

Here we discuss how to answer questions like: “What are the differences between prokary-

otic and eukaryotic cells?”. This question is encoded exactly like the one about simi-

larity, except the question category (encoded by qhas(Q,cat,CAT EGORY ) is changed to

qhas(Q,cat,di f f erence):

% Q: What are the differences between mutated_animal and

mammal?’’

question(q2).

qhas(q2, type , what).

qhas(q2, cat , difference).

qhas(q2, param1 , mammal).

qhas(q2, param2 , mutated_animal).

Similarly, we need to change “similarities” to “differences” in rules a41 and a42 to

make rules a46 and a47.

a46, a47:

% Question about differences

% ------------------------------

context(C1;C2) :- question(Q),

qhas(Q, type , what),

qhas(Q, cat , difference),

qhas(Q, param1 , Class1),

qhas(Q, param2 , Class2),

has(C1 , prototype_of , Class1),

has(C2 , prototype_of , Class2).

% We need to compare C1 in the context of C1 with C2 in C2

compare(Q,(C1 , C1), (C2 , C2)) :- question(Q),

qhas(Q, type , what),
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qhas(Q, cat , difference),

qhas(Q, param1 , Class1),

qhas(Q, param2 , Class2),

has(C1 , prototype_of , Class1),

has(C2 , prototype_of , Class2).

For differences, we define “difference” as: What instance X has but Y doesn’t, and

vice versa. We use the predicate di f f ((M,X),(N,Y ),S,V,h1) which stands for: M in X

has V for S but N in Y does not if H = h1, M in N in Y has V for S but M in X does not

if H = h2. We introduce H to represent which of X and Y holds the value V . We define

di f f ((M,X),(N,Y ),S,V,h1) based on sim((M,X),(N,Y ),S,V ):

a48, a49:

% (M in X) and (N in Y) do not agree on V for slot S

diff((M,X) ,(N,Y),S,V,h1) :- compare(Q,(M,X), (N,Y)),

hasc((M,S,V), X),

not sim((M,X),(N,Y),S,V).

diff((M,X) ,(N,Y),S,V,h2) :- compare(Q,(M,X), (N,Y)),

hasc((N,S,V), Y),

not sim((M,X),(N,Y),S,V).

The answer is collected from di f f () predicates similarly to the sim() case.

a50:

answer(Q, diff((M,X),(N,Y),S,V,H)) :- compare(Q,(M,X), (N,Y))

,

question(Q),

qhas(Q, type , what),

qhas(Q, cat , difference),

diff((M,X),(N,Y),S,V,H).
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Following is the output for answering the question “What are the differences between

mutated animals and mammals?”, where the facts compare() and sim() are exactly matched

with the case of the similarity question.

answer(q2,diff((body2 ,d1),(body2 ,b1),has_part ,four_legs ,h2))

answer(q2,diff((body2 ,d1),(body2 ,b1),has_size ,big1 ,h2))

answer(q2,diff((d1 ,d1),(b1 ,b1),has_part ,head1 ,h2))

answer(q2,diff((d1 ,d1),(b1 ,b1),instance_of ,mammal ,h2))

answer(q2,diff((d1 ,d1),(b1 ,b1),instance_of ,mutated_animal ,h1))

answer(q2,diff((d1 ,d1),(b1 ,b1),prototype_of ,mammal ,h2))

answer(q2,diff((d1 ,d1),(b1 ,b1),prototype_of ,mutated_animal ,h1))

compare(q2 ,(body2 ,d1),(body2 ,b1))

compare(q2 ,(d1 ,d1),(b1 ,b1))

compare(q2 ,(fur1 ,d1),(fur1 ,b1))

context(a1)

context(b1)

context(d1)1

diff((body2 ,d1),(body2 ,b1),has_part ,four_legs ,h2)

diff((body2 ,d1),(body2 ,b1),has_size ,big1 ,h2)

diff((d1 ,d1),(b1 ,b1),has_part ,head1 ,h2)

diff((d1 ,d1),(b1 ,b1),instance_of ,mammal ,h2)

diff((d1 ,d1),(b1 ,b1),instance_of ,mutated_animal ,h1)

diff((d1 ,d1),(b1 ,b1),prototype_of ,mammal ,h2)

diff((d1 ,d1),(b1 ,b1),prototype_of ,mutated_animal ,h1)

sim((body2 ,d1),(body2 ,b1),cloned_from ,body0)

sim((body2 ,d1),(body2 ,b1),has_part ,fur1)

sim((body2 ,d1),(body2 ,b1),instance_of ,body)

sim((d1 ,d1),(b1 ,b1),has_part ,body2)

sim((fur1 ,d1),(fur1 ,b1),instance_of ,fur)

Following is the result of answering the question “What are the differences between

prokaryotic and eukaryotic cells?” using the AURA KB. Since both eukaryotic and prokary-
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otic cells are subclasses of the cell, it only used 6 classes as context for unification. It com-

pared a total of 62 pairs of instances, finding 682 similarities and 126 differences. The first

10 differences between prokaryotic and eukaryotic cells are shown as follows.

answer(q2,diff((cell325 ,prokaryotic cell347),(cell325 ,

eukaryotic_cell2547),has_part ,centrosome7733 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,cytoskeleton7736 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,dna_polymerase_ii14856 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,dna_polymerase_iii14855 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,dna_polymerase10219 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,endoplasmic_reticulum7735 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,entity1168 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,entity32113 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,entity7731 ,h2))

answer(q2,diff((cell325 ,prokaryotic_cell347),(cell325 ,

eukaryotic_cell2547),has_part ,golgi_apparatus7734 ,h2))

3.7.3 Computing a Slot Value

This is a common type of question, and a representative example is What is the agent

of adhesion-of-water (X)?. We can think of this question as a one-hop search of the

slot value V , given an instance X and a slot name S. So, the answer is V if the relation

hasc((X ,S,V ),V ) holds.
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We consider another example of the question: What chemical bond is the agent of

adhesion-of-water (X)?, in which more properties (like constraints) are posed in the ques-

tion. The answer to this question is Q if the following relations hold:

hasc((X, S, V), X),

tc\_instance\_of(Q, Value_class),

Value_class = chemical\_bond.

We use Value class to denote the additional property, and according to the question,

the answer V must be a “chemical bond”. The answer is a “hydrogen bond,” which is both

the agent of X and is a subclass of chemical bond.

Following is the question encoding, rules to answering, and the output of answers of

“What chemical bond is the agent of adhesion-of-water?”

What chemical bond is the agent of adhesion of water?

Q:

question(q3).

qhas(q3 , type , what).

qhas(q3 , cat , value).

qhas(q3 , param1 , adhesion_of_water).

qhas(q3 , param2 , agent).

qhas(q3 , param3 , chemical_bond).

A:

answer(Q, hasc((X, S, V), X)) :- hasc((X, S, V), X),

context(X),

question(Q),

qhas(Q, type , what),

qhas(Q, cat , value),

qhas(Q, param1 , Class),

qhas(q3, param2 , S),
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qhas(q3, param3 , Value_class),

tc_instance_of(V, Value_class),

has(X, prototype_of , Class).

Output:

answer(q3,hasc(( adhesion_of_water3157 ,agent ,hydrogen_bond3449),

adhesion_of_water3157))

context(adhesion_of_water3157)

3.7.4 Check if an Assertion Is True or False

Such a question would be asking whether an assertion of the form (X ,R,Y ) is true.

For example, “Is it true that an animal cell is a eukaryotic cell?” is asking whether (ani-

mal cell, is-a, eukaryotic cell) is true. Without telling the context, we can understand that

the assertion is true within all contexts.

The rules to check if (X ,R,Y ) is true and answered need to be specified according to the

content of the question. For this example, the rule to answer the question category “is-a”

is in the following, which means that X is-a Y if X is a descendant class of Y . We use

tc subclass(X ,Y ) to tell that X is a descendant class of Y .

a51, a52, a53:

tc_subclass(X,Y) :- has(X, superclass , Y).

tc_subclass(X,Z) :- tc_subclass(X,Y), has(Y, superclass , Z).

answer(Q,true) :- question(Q),

qhas(Q, type , is_it_true),

qhas(Q, cat , is_a),

qhas(Q, param1 , Class1),

qhas(Q, param2 , Class2),

has(C1 , prototype_of , Class1),

tc_instance_of(C1 , Class2).
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In addition, we have the rule that returns f alse when we cannot conclude that the an-

swer is true.

a54:

answer(Q, false) :- not answer(Q,true),

question(Q),

qhas(Q, type , is_it_true).

The following is the question encoding and output of the answer to “Is it true that an

animal cell is a eukaryotic cell?”

% Q: Is it true that an animal cell is a eukaryotic cell?

question(q4).

qhas(q4, type , is_it_true).

qhas(q4, cat , is_a).

qhas(q4, param1 , animal_cell).

qhas(q4, param2 , eukaryotic_cell).

Output:

answer(q4,true)

3.7.5 Compute Relationship Between Two Individuals

An example of this type of question is “What is the relationship between light reac-

tion and the Calvin cycle?” or “How are light reaction and the Calvin cycle related?”.

In (Baral and Liang, 2012), we showed a simple answer of this question as the similari-

ties and differences between light− reaction and Calvin− cycle. A better answer to this

question was discussed in (Baral et al., 2012b), which contains both structural relation

(light− reaction and Calvin− cycle are sub-events of photosynthesis) and behavioral re-

lation (light− reaction enables Calvin− cycle). A complete formalization of this answer

is presented in another parallel work of ours about answering various types of “How” and

“Why” questions.
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Table 3.1: Comparison Between the Four Systems Implementing Unification

Criteria (Clark and
Porter,
2011)

(Baral and
Liang, 2012)

(Chaudhri
and Son,
2012)

This work

Fact type unskolemized skolemized unskolemized skolemized
Non-Destructive Y Y Y
Non-monotonic Y Y Y
Multiple results Y Y
Declarative Y Y Y
Procedural Y Y Y
Controllable level
of details

Y Y Y

Principle: respect
the original anno-
tation

Y Y Y Y

Principle: keep
the most specific
information

Y Y Y

Explicit unifica-
tion

Y Y Y

Locally recursive * Y
Globally recur-
sive

** Y

3.8 Related Work

This work is a major extension of (Baral and Liang, 2012) and directly relates to

(Chaudhri and Son, 2012). Both of these works are inspired by the unification procedure

(Clark and Porter, 2011). In the following section, we compare this work with the three

systems. Table 3.1 summarizes the differences among the systems.

3.8.1 Input Facts

First of all, both (Baral and Liang, 2012) and this work use skolemized facts, while

(Clark and Porter, 2011) and (Chaudhri and Son, 2012) use unskolemized facts in AURA.

(Clark and Porter, 2011) uses the unskolemized facts in KM (LISP like), as shown in sec-

tion 3.2. (Chaudhri and Son, 2012) uses unskolemized facts in ASP format.

Example of unskolemized facts in KM format (from (Chaudhri and Son, 2012)):
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Unskolemized facts in KM format:

(every Car has

(has -engine ((a Engine called E1)))

(has -tank ((a Tank with

connected -to ((( the has -engine

of Self) called E1 ))))

Example of unskolemized facts in ASP format (from (Chaudhri and Son, 2012)):

Unskolemized facts in ASP format:

class(car).

class(engine).

class(tank).

% car has engine

instance_of(_engine1(X), engine):- instance_of(X, car).

slot(has_engine , X, _engine1(X)):- instance_of(X, car).

% car has tank

instance_of(_tank2(X), tank):- instance_of(X, car).

slot(has_tank , X, _tank2(X)):- instance_of(X, car).

% engine and tank are connected

slot(connected , _engine1(X), _tank2(X)):- instance_of(X, car).

%% object_of

object_of(_engine1(X), X) :- constant(X).

object_of(_tank2(X), X) :- constant(X).

codomain_type(_engine1(X), engine):- constant(X).
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codomain_type(_tank2(X), tank):- constant(X).

domain_type(_engine1(X), car):- constant(X).

domain_type(_tank2(X), car):- constant(X).

% Example facts needed for reasoning about an object s1 which is

a suburban car.

% constant(s1).

% instance_of(s1, suburban).

% subclass_of(suburban , car).

Skolemized version of the facts above:

class(car).

class(engine).

class(tank).

% car has engine

has(car1 , instance_of , car).

has(car1 , prototype_of , car).

has(engine1 , instance_of , engine).

has(car1 , has_engine , engine1).

% car has tank

has(tank1 , instance_of , tank).

has(car1 , has_tank , tank1).

% engine and tank are connected

has(engine1 , connected , tank1).

% Example facts needed for reasoning about an object s1 which is
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a suburban car.

% has(suburban , subclass , car).

% has(s1, instance_of , suburban).

3.8.2 Operational Characteristics

The heuristic unification process in (Clark and Porter, 2011) was designed as a com-

mand to modify the knowledge base; thus, it has following characteristics:

1. Destructive. i.e. when an instance is unified with the other, the other is removed from

the knowledge base.

2. Has only one possible result. A single default choice is not enough for many cases,

such as when only one value (i.e. animal1 has what kind of body) can be chosen

among two candidates which are equally specific (i.e. body1 and body2, both of

them are instances of body and subsume each other)

3. Monotonic and procedural.

While the unification process in (Clark and Porter, 2011) is considered as a command to

change KB, the other three can be considered as views of KB. For example, the unification

of b1 is the view of b1 in the KB. All three systems are non-destructive and non-monotonic

in constructing the views, i.e. the KB is not changed after unification; when KB is updated,

the unification results are also changed.

The last two systems give multiple results, while (Baral and Liang, 2012) gives only

one. Both (Baral and Liang, 2012) and this work describe the unification and give ASP

implementation, but the algorithm can also be used for procedural implementation.

In (Baral and Liang, 2012), when b1 is unified and if body2 in b2 is cloned from a

body0, body2 is also unified with body0. The result is that every instance related to b1 is

unified. While this is perfectly fine in our toy examples, querying AURA KB returns a huge
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output. Thousands of instances were unified and included in the output, but most are not

closely related to the main subject. In this work, we first resolved all instances that b1 is

cloned from and keep the other cloning untouched (such as body2 is cloned from body0).

If needed, body2 can be unified with body0 in another unification round. The output of

this work would be compact, human readable, and can be extended to include increasingly

more information if required. The other two systems (Clark and Porter, 2011; Chaudhri

and Son, 2012) can be used in a similar manner to control the level of details in the output.

3.8.3 Unification Algorithm

In this section, we compare the most important properties of the four systems; they are

the main factors controlling the completeness and correctness of the unification result. For

example, when c1 is unified and globally recursive, the system would not unify b1 initially

to get a1’s information and bring to G∗(c1).

Explicitly ((Chaudhri and Son, 2012) and this work) or implicitly (Clark and Porter,

2011; Baral and Liang, 2012), all four systems use two principles in section 3.4.1. While

all four follow the principle of respecting the original annotation, only three follow the

specificity principle. (Baral and Liang, 2012) uses the most specific instances for micro-

cloning.

There are two types of cloning in KM (corresponding to two cases in Definition 21):

explicit (using cloned from slot) and inheritance. (Chaudhri and Son, 2012) only supports

the last, while the others support both.

By locally recursive, we mean that the system should automatically continue unifying

body2 (and other descendants) when it unifies b1. By globally recursive, we mean that the

system should automatically figure out and initially unify a1 and then b1 when it needs to

unify c1. (Baral and Liang, 2012) also considers these cases but the results do not match

with common sense; it does not keep track of context and does not consider some cases of
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microcloning and selecting instance by specificness. More information about this is in the

next subsection. Of course, all systems can be called repeatedly on a specified list of objects

to have the effect of recursiveness. For example, if we want to unify c1, we create a list of

objects to unify, including a1, body1, b1, body2,... We then are able to call unification on

an object in the list, one by one, and save the result for the next call. However, with our

recursive definitions, our system will figure out what objects need to be unified and will do

so on the fly.

3.8.4 More Details About the Differences Between Our Two Systems

In (Baral and Liang, 2012), we propose declarative formulation for unification and

implementation in ASP. Based on the unification results, we also proposed ASP rules to

answer questions that were answered in AURA system. (Baral and Liang, 2012) unifies

an instance X with X’s ancestor classes and from instances in which X was cloned from.

Compared to (Baral and Liang, 2012), we have many improvements in this version:

1. Clear definition what is included in the an object graph. This prevents unrelated

lengthy information in the results and also serves as the basis for our later formula-

tions and proofs.

2. Improved algorithm to answer questions.

3. Included proofs for ASP implementations.

4. The context is introduced to capture the “inheritance-by-clone” of annotators. Con-

sider the example in Figure 3.9(a), where b1 is annotated as “cloned-from” a1. It

should be understood that b1’s body should also be inherited from a1’s body. This

means that body2 should be unified with body1 (from a1) and has properties such

as has-part 4-legs and has-size big1. However, body2 in d1 should not have those

properties since d1 is not cloned from a1. In (Baral and Liang, 2012), the contexts
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Figure 3.9: Differences between our two systems, caused by context.

(a) Object graphs of a1, b1 and d1.

(b) Unified object graphs of a1, b1 and d1 using algorithms in our previous work.

(c) Unified object graphs of a1, b1 and d1 using algorithms in this work.
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Figure 3.10: Differences between our two systems, caused by specificness equalities.

(a) Object graphs of m1, n1 and o1 and relation between m body1, m body2.

(b) Unified object graphs of o1 using algorithms in our previous work.

(c) Unified object graphs of o1 using algorithms in this work.

of b1 and d1 are not considered. The result is that when b1 is unified, new proper-

ties are added to body2, and d1 also uses those new properties. Figure 3.9(b) shows

the unified object graphs of b1 and d1 using algorithms in (Baral and Liang, 2012).

body2 in the object graph of d1 also have 4− legs and big1. Figure 3.9(b) shows the

unified object graphs of b1 and d1 using algorithms in this work. As we expected,

body2 in the object graph of d1 does not have incorrect properties, i.e. 4− legs and

big1.

5. Consider equality in specificness and yield multiple outputs. Figure 3.10(a)(b) shows
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Figure 3.11: Differences between our two systems, caused by microcloning.

(a) Object graphs of m1, n1 and o1 and relation between m body1, m body2 and body4.

(b) Unified object graphs of o1 using algorithms in our previous work.

(c) Unified object graphs of o1 using algorithms in this work.

an example where o1 is g-cloned-from m1 and n1. m1 has m body1 and n1 has

m body2. Both m body1 and m body2 are instances of m body. Since m body1 and

m body2 are equally specific (they subsume each other), our previous algorithms

would give only one answer where both m body1 and m body2 are in the unified

object graph of o1 (3.10(c)). This may not be correct since o1 should have only

one body that contains properties of both m body1 and m body2. The algorithm

in this work would return two answers, where one of m body1 or m body2 would

be selected to be included in o1’s object graph. However, both answers are correct
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because the selected one would be unified with the other. Figure 3.10(d) shows the

case where mbody1 is selected and is unified with m body2. It contains properties of

both m body1 and m body2.

6. Consider more scenarios of microcloning. Figure 3.11(a)(b) shows another example

of m1, n1, and o1. o1 now has part body4, which is an instance of body. Our previous

algorithms would put m body1, m body2, and body4 in o1’s object graph, while the

new one would unify both m body1 and m body2 with body4.

3.9 Conclusion and Future Work

Similar to AI planning, where there is somewhat of a mismatch in terms of research

planners (mostly not HTN based) and industrial planners (mostly Hierarchical Task Net-

work - HTN (Sacerdoti, 1974) based), there seems to be a mismatch between KR logics

and the formalisms used in large knowledge bases. A large number of the latter seem to use

frame-based representation while there is comparatively less theoretical research (outside

of DL) on frame-based representation. Some exceptions include DLV+, FAS, and F-logic

(Kifer and Lausen, 1989). In this work, we show how answer set programming can be used

to encode some procedural reasoning mechanisms in frame-based systems, like “cloning”

and “unification” in particular. We then show that those ASP encodings can be further en-

hanced with appropriate filters for making answer finding as query (pattern) driven, as in

Magic Sets (Bancilhon et al., 1985). Thus, we show how to answer various kinds of ques-

tions with respect to large knowledge bases constructed by domain experts with domains

in a reasonable amount of time in particular. In the future, we plan to explore answering of

other kinds of questions, such as “Why” and “How” with respect to such large knowledge

bases.
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Chapter 4

REASONING WITH CURATED KNOWLEDGE BASES: REASONING TO DERIVE

MISSING INFORMATION IN EVENT-OBJECT DESCRIPTION GRAPHS LIKE KDG

Going from abstract structures to reasoning with real knowledge bases (KBs), we no-

ticed that the KBs often have missing pieces of information, such as properties of an in-

stance (of a class) or relations between two instances. For example, AURA does not encode

that Eukaryotic translation is the next event of Synthesis of RNA in eukaryote; this may be

because the two sub-events of “Protein synthesis” were encoded independently. The miss-

ing pieces make the KB and the Description Graphs constructed from it fragmented, and

as a result, answers obtained with respect to them are not intuitive. Moreover, the KBs like

AURA often have two or more names that refer to the same entity. To get intuitive answers,

they need to be resolved and merged into a single entity. Such findings of non-identical du-

plicates in the KB and the act of merging them into one is referred in the literature as entity

resolution (Getoor and Diehl, 2005; Brizan and Tansel, 2006).

In this chapter, we start with underspecified knowledge description graphs (UDGs) and

formulate notions of reasoning with respect to these graphs to obtain certain missing in-

formation. We then present our approach of entity resolution and use it in recovering

additional missing information. We give an Answer Set Programming (ASP) encoding of

our formulation, and we conclude with a discussion on the uses of the above, particularly

in answering “Why” and “How” questions.

4.1 Underspecified Knowledge Description Graphs

An Underspecified Knowledge Description Graph (UDG) is a structure that repre-

sents the facts about instances and classes of events, entities and relationships between
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them. An UDG is constructed from knowledge bases such as AURA. Formal definition of

the UDGs is given in the following.

Definition 31 An UDG is a directed graph with one type of node and five types of directed

edges: compositional edges, ordering edges, locational edges and participant edges. Each

node represents an instance (of a class) or a class in our KBs. An UDG has the property

that there are no directed cycles within any combination of compositional, locational and

participant edges.

We also used the slot names in KM (Clark et al., 2004) and AURA as a guide to cate-

gorize four types of edges (Table 2.1).

Constructing the KDGs from UDGs is completing information about entity, event, and

class. In this section, we discuss the missing information in the UDGs and the KDGs and

how we can recover some of it through reasoning.

Coming from the KB used to construct the KDG, this missing information prevents us

from reasoning on the KDG.

There are basically two types of missing information: (i) missing properties of an in-

stance of a class or relations between two instances resulting from negligence (Section 4.2)

and (ii) missing information more likely resulting from the methodology of data collection

(Section 4.5, 4.6).

4.2 Event, Next Event, First Sub-event and Last Sub-event

One can directly obtain event names by looking at facts in the form of “has (E, instance

of, event)” in the KB and concluding E as an event. However, for some events, such facts

may be missing. In that case, we may be able get the fact from the UDG’s edges and the

edge constraints of the KDGs (Figure 2.1). More formally:

Definition 32 Let E be a node in the UDG(Z). E is an event if there is

(i) a participant edge or an ordering edge from E;
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(ii) a locational edge or an ordering edge to E;

(iii) a compositional edge (of subevent or first subevent relation) from/to E; or

(iv) a path of class edges from E to the class event.

Based on Definition 32, we get that photosynthesis is an event because it has compositional

edges (of subevent relation) to light reaction and the Calvin cycle.

Next-event, first sub-event, and last sub-event are amongst the most important prop-

erties in describing events. However, they are not always directly available in our KB.

Fortunately, in many cases, we can recover them from other properties.

Definition 33 Let E and E ′ be two events in the KDG(Z). Event E ′ is the next event of E

if E enables, causes, prevents or inhibits E ′.

In other words, E ′ is the next event of E if there is an ordering edges from E to E ′.

Definition 34 Let S be the set of subevents of an event X in the KDG(Z). Event E in S is

the first subevent of X if there exists no other event E ′ in S such that E is the next event of

E ′. Similarly, event E in S is the last subevent of X if there exists no other event E ′ in S

such that E ′ is the next event of E.

Here we assume that S was properly encoded in that there is only one chain of sub-

events in S. In our KB, light reaction and Calvin cycle are two sub-events of photosynthesis,

and light reaction enables the Calvin cycle. Their orders are not defined, however. Using

Definition 33 and 34, we can identify that: the Calvin cycle is the event following light

reaction, light reaction is the first sub-event of photosynthesis, and the Calvin cycle is the

final sub-event.
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4.3 Input/Output of Events

Two types of events: In our KB, there are two types of events: transport events and

operational events. In a transport event, there is only a change in the locations; the input

and output locations are different from each other while the input and output entities are

the same. All other events are operational events. In an operational event, there is usually

no change in its location. We differentiate the two types of events by their ancestor classes;

transport events are descendants of the classes move through, move into and move out of.

Input, Output, Input Location, and Output Location: To reason about the KDG,

we need the input and output of each event as well as the input and output locations, which

are not always available. In the following, we show how to use various events’ relations

- such as raw-material, destination, location, and others - to create four new relations (IO

relations): input, output, input-location, and output-location. After that, we propose rules

to complete the KDG’s IO relations.

We created the IO relations of an event based on specific relations as shown in Table

4.1. The meaning of relation “base” from AURA depends on the context. For transport

events, it is for input-location; for operational events, it is for input.

Completing Missing Information of Input, Output, Input Location, and Output

Location: We can obtain missing IO properties of an event from its sub-event(s). For

instance, an input of the first sub-event of E is also an input of E.

Definition 35 The input and input-location of the first subevent of E are also the input and

input location of E, respectively. The output and output-location of the last subevent of E

are also the output and output-location of E, respectively.

In our KB, photosynthesis has two sub-events: light reaction and the Calvin cycle,

the event following light reaction. Sunlight is the raw-material of light reaction, sugar

is the result of the Calvin cycle. Using Definition 35, we have that sunlight is the input
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Event type IO relation type Relation(s)

Transport event input object

Transport event output object

Transport event input-location base, origin

Transport event output-location destination

Operational event input object, base, raw-material

Operational event output result

Operational event input-location site

Operational event output-location destination 1

Table 4.1: The IO Properties of Events and Their Corresponding Relations.

of light reaction as well as photosynthesis; sugar is the output of both Calvin cycle and

photosynthesis.

Similarly, the output location of an operational event is often not defined in the KB, but

we can use input location as the default value for output location.

Definition 36 Let E be an event in KDG(Z), E’s input location is also the output location

if E’s output location has not been specified.

Figure 4.1 shows the IO properties of events in Fig 2.3. The properties in bold are the

ones that were recovered using Definitions 35 and 36.

4.4 Main Class of an Instance

In our KB, one instance may belong to many classes. For example, dna strand19497,

the input of Eukaryotic transcription, is an instance of dna strand, dna sequence, nu-

cleic acid and polymer 2 . However, to reason about the equality between instances,
2For the sake of simplicity, in the previous figures and descriptions, we usually referenced the entities and

events by their “main” class(es) and not by the instances’ names although our KB and our implementation
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Figure 4.1: The IO properties of events in Fig 2.3. The five blocks contain IO properties of

events: Synthesis of RNA in eukaryote, Eukaryotic translation, Move out, and Eukaryotic

transcription. The middle rectangle of each block contains the event name. The top rect-

angles are for input and output locations; the bottom rectangles are for input and output.

The properties in bold were recovered using Definitions 35 and 36

we need the “main” class(es) - the most specific class(es) of that instance. Our formal

definition of “main” class is given below.

Definition 37 Let E be an instance in KDG(Z). ClassB is a main class of instance E if

1. it is a class of E and

2. it is not the case that there is a ClassA which is a class of E and

(a) ClassB is ancestor of ClassA or

(b) ClassB is a general class but ClassA is not;

where general classes in our KB are thing, event, entity, spatial entity, tangible entity, and

chemical entity.

works on instances’ names.
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The main classes of dna strand19497, according to the Definition 37, are dna strand

and dna sequence; the other classes of dna strand19497 are ancestors of those two.

4.5 Entity Resolution

In the KBs such as AURA, the curation was done in many sessions and probably by

many people (The same is true with respect to many other KBs; especially the ones that are

developed using crowd-sourcing). The results, in many cases, (i) use two different instance

names when they are probably the same instance and (ii) contain parts of some biological

process encoded as independent events. For example, the input of Eukaryotic translation

(Figure 2.3) is mrna4642, whereas the output of Move out is mrna22911; Synthesis of RNA

in eukaryote and Eukaryotic translation should be sub-events of “Synthesis of protein in

eukaryote,” but they are encoded as two separate events.

In this section, we propose methods to solve the first problem. These methods are then

used to solve the second problem in the next section. In order to compare two instances in

a KB, we define a match relation. Generally speaking, instance A can match with instance

B if A can be safely used in a context where a term of B is expected. We defined matching

relation with many confidence levels for greater flexibility in future works.

Definition 38 Let A and B be two instances in KDG(Z). Let ClassA and ClassB be main

classes of A and B respectively.

1. A matches with B with high confidence if one of the following is true

(a) A = B (A and B are the same instance)

(b) A is cloned from B (Shortcut in AURA to specify that A has all the properties of

B)

(c) ClassA is an ancestor of ClassB.
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2. A matches with B with medium confidence if A and B are both cloned from an instance

C.

3. A matches with B with low confidence if ClassA = ClassB (A and B are instances of

the same main class).

4. A matches with B with confidence Con f if all the following are true

(a) A matches with C with confidence Con f1

(b) C matches with B with confidence Con f2

(c) Con f is the lower confidence between Con f1 and Con f2.

5. Otherwise, A does not match with B.

Using Definition 38, we can match mrna4642, the input of Eukaryotic translation, with

mrna22911, the output of Move out, because both have mrna as the main class.

While Definition 38 can match all the inputs and outputs in our aforementioned exam-

ple, it is not sufficient for matching location. For example, we cannot match an instance of

cytoplasm to an instance of cytosol. However, when we say Event A occurs in cytosol, we

can understand that Event A occurs in cytoplasm. To overcome this shortcoming, we define

the relation Spatially match as follows.

Definition 39 Instance A in KDG(Z) is a location instance if the class ClassA of A is a

descendant of the class spatial entity.

Definition 40 Let A and B be two location instances in KDG(Z). Let ClassA and ClassB

be main classes of A and B respectively.

1. Location A spatially matches with location B with confidence Con f if instance A

matches with instance B with confidence Con f .
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2. Location A spatially matches with location B with high confidence if one of the fol-

lowing is true:

(a) B is inside A (the relation inside is encoded in our KB by slot name is inside).

(b) B is part of A (the relation “part of” is encoded in our KB by slot name part of).

3. Location A spatially matches with location B with confidence Con f if all the follow-

ing are true:

(a) A spatially matches with location C with confidence Con f1.

(b) C spatially matches with B with confidence Con f2.

(c) Con f is the lowest confidence between Con f1 and Con f2.

Suppose that in our KB that cytosol234 and cytosol987 all are instances of cytosol; cy-

toplasm322 is an instance of cytoplasm, and cytosol987 is inside cytoplasm322. We can

then conclude: cytosol234 and cytosol987 match with each other with low confidence,

according to Definition 38.3 while cytoplasm322 spatially matches with cytosol987 with

high confidence (Definition 40.2.a). Cytosol987 spatially matches with cytosol234 with

low confidence (Definition 40.1), and cytoplasm322 spatially matches with cytosol234 with

low confidence (Definition 40.3) .

4.6 Finding the Possible Next Events

In this section, we demonstrate the usefulness of matching instances (Definition 38 and

40) in finding the next possible event(s) of a given event. While in simple cases (Section

4.2) we can find the next event E’ of an event E by using Definition 33, there are still cases

where no ordering edges from E to E ′ exists. For examples, Alteration of mrna ends and

RNA splicing are two sub-events of RNA processing, but no other relation between them was

defined. However, they all occur in nucleus16421, and Alteration of mrna ends’s output,
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pre mrna7690, matches with RNA splicing’s input, rna8697. This information suggests

that RNA splicing is Alteration of mrna ends’s next event.

Following this intuition, our approach for finding the next event is that E ′ is the sub-

sequent event of E if the output of E matches the input of E ′, and output location of E

matches the input location of E ′. In the example in Figure 2.3, this assumption holds in

all three events: Eukaryotic transcription, RNA processing and Move out, all of which are

already defined in our KB as consequent events. This assumption also suggests that Eu-

karyotic translation can be the following event of either Synthesis of RNA in eukaryote or

Move out. Armed with Definition 38 and 40, we define the following join relation.

Definition 41 Let A and B be two events in KDG(Z). Event A joins to event B if all of the

following conditions are true:

1. The output of A matches with the input of B or vice versa.

2. The output location of A spatially matches with the input location of B or vice versa.

Applying this definition, Alteration of mrna ends joins to RNA splicing, Eukaryotic

transcription joins to RNA processing, RNA processing joins to Move out, and both Syn-

thesis of RNA in eukaryote and Move out join from Eukaryotic translation. Since we want

Eukaryotic translation to be a possible next event of Synthesis of RNA in eukaryote instead

of its sub-event Move out, we define the possible next event as follows.

Definition 42 Let A and B be two events in KDG(Z) where A joins to B. B is a possible

next event of A if none of the following conditions is true:

1. A joins to AncestorB where AncestorB is the ancestor event of B (in other words,

there is a non-empty path of subevent relation from AncestorB to B).

2. Ancestor event AncestorA of A joins to B.
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3. A is an ancestor event of B.

4. B is an ancestor event of A.

5. A and B have the same ancestor event.

In our example, condition 42.2 gives us that Eukaryotic translation is not the possible

next event of Move out while 42 concludes that Eukaryotic translation is the possible next

event of Synthesis of RNA in eukaryote. We assume that an event and its sub-events are

put in our KB as a whole, so the next event relations between them are well defined. Thus,

conditions 42.3-5 take those relations out of consideration.

When we have a path of possible next events, we can create an event SE, which is the

super event of all events in the path, and add suitable next event or subevent relations. This

new event would link the events that were mistakenly encoded as independent events (that

we mentioned earlier).

4.7 ASP Encodings

4.7.1 Encoding the Types of Edges

Similar to the encoding of types of edges in 5.1.1.

4.7.2 Recovering Event and Entity Information

Finding Next Events, First Sub-events and Last Sub-events: Rules ee1-ee2 find the

next events (Definition 33), and rules ee3-ee6 find the first and last sub-events (Definition

34).

ee1: predicates(ordering_edge , enables; causes; prevents; inhibits).

ee2: has(E1 , next_event , E2) :- has(E1 , Predicate , E2), predicates(

ordering_edge , Predicate).

ee3: not_fse(Z, E) :- has(Z, subevent , E), has(Z, subevent , E2), E2

!= E, has(E2, next_event , E).
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ee4: not_lse(Z, E) :- has(Z, subevent , E), has(Z, subevent , E2), E2

!= E, has(E, next_event , E2).

ee5: has(Z, first_subevent , E) :- has(Z, subevent , E), not not_fse(Z

, E).

ee6: has(Z, last_subevent , E) :- has(Z, subevent , E), not not_lse(Z,

E).

4.7.3 Encoding Transport Events and Operational Events

t event(E) or o event(E) is used to indicate a transport event or an operational event,

respectively.

ev1: predicates(t_event , move_through; move_into; move_out_of).

ev2: t_event(E) :- has(E, instance_of , Transport_class), predicates(

t_event , Transport_class), event(E).

ev3: o_event(E) :- event(E), not t_event(E).

4.7.4 Encoding the Inputs and Outputs of Operational Events

We denote the input/output/input location/output location of an event with input, out put,

input loc and out put loc respectively. Rules i1-i6 get the IOs of operational events. IOs of

transport events are encoded similarly (rules i7-i11).

i1: input(E, A) :- has(E, object , A), o_event(E).

i2: input(E, A) :- has(E, base , A), o_event(E).

i3: input(E, A) :- has(E, raw_material , A),o_event(E).

i4: output(E, A) :- has(E, result , A), o_event(E).

i5: input_location(E, A) :- has(E, site , A), o_event(E).

i6: output_location(E, A) :- has(E, destination , A), o_event(E).

i7: input(E, A) :- has(E, object , A), t_event(E).

i8: output(E, A) :- has(E, object , A), t_event(E).

i9: input_location(E, A) :- has(E, base , A), t_event(E).

i10: input_location(E, A) :- has(E, origin , A), t_event(E).
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i11: output_location(E, A) :- has(E, destination , A), t_event(E).

Getting the Missing Inputs and Outputs: Rule i12 gets the input of an event from its

first sub-event (Definition 35). Other rules are used to get the input location, output, and

output location. Rule i16 gets the default output location of an event(Definition 36).

i12: input(E, A) :- input(SE , A), has(E, first_subevent , SE).

i13: input_location(E, A) :- input_location(SE , A), has(E,

first_subevent ,

SE).

i14: output(E, A) :- output(SE , A), has(E, last_subevent , SE).

i15: output_location(E, A) :- output_location(SE , A), has(E,

last_subevent

, SE).

i16: has(E, output_location , A) :- not has(E, output_location , A2),

has(E, input_location , A), entity(A2), event(E), A2 != A.

Encoding the Main Class(es) of an Instance: ClassA is a main class of instance A if

ClassA is one of A’s classes and we do not have not main class(A,ClassA) (which mean

ClassA is not the main class of A).

m1: general_class(thing; event; entity; spatial_entity;

tangible_entity; chemical_entity).

m2: not_main_class(A, ClassB) :- has(A, instance_of , ClassA), has(A,

instance_of , ClassB), has(ClassA , ancestorclass , ClassB).

m3: not_main_class(A, ClassB) :- has(A, instance_of , ClassA)), has(A

, instance_of , ClassB), general_class(ClassB), not general_class(

ClassA).

m4: main_class(A, ClassA) :- has(A, instance_of , ClassA), not

not_main_class(A, ClassA).
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Encoding Instance Matching: We use predicate match with(A,B,Con f idence) to rep-

resent match with relations (Definition 38) from instance A to B; Con f idence can be either

low, medium, or high. Rule ma1 encodes the sub-case 38.1.a of Definition 38. The last rule

is for Definition 38.4, matching A to B transitively through C. lowest con f idence(Con f 1,Con f 2,Con f )

means Con f is the lowest confidence in Con f 1 and Con f 2 (Rules lc1-lc7). Rules for other

cases of Definition 38 are ma2-ma5.

% Define confidence levels

lc1: confidence(high;medium;low).

lc2: lower_confidence(high ,medium).

lc3: lower_confidence(medium , low).

lc4: lower_confidence(high , low).

% Z is the highest confidence among X and Y.

lc5: lowest_confidence(X, X, X) :- confidence(X).

lc6: lowest_confidence(X, Y, Y) :- lower_confidence(X, Y).

lc7: lowest_confidence(X, Y, X) :- lower_confidence(Y, X).

ma1: match_with(A,B,high) :- main_class(A,ClassA), main_class(B,

ClassB), A==B.

ma2: match_to(A, B, high) :- main_class(A, ClassA), main_class(B,

ClassB), A == B.

ma3: match_to(A, B, high) :- main_class(A, ClassA), main_class(B,

ClassA), has(A, cloned_from , B).

ma4: match_to(A, B, medium) :- main_class(A, ClassA), main_class(B,

ClassA), main_class(C, ClassC), not match_to(A, B, high), A != B,

A != C, B != C, has(A, cloned_from , C), has(B, cloned_from , B).

ma5: match_to(A, B, low) :- main_class(A, ClassA), main_class(B,

ClassA), A != B, not match_to(A, B, high), not match_to(A, B,

medium).

ma6: match_with(A,B,Conf) :- match_with(A,C,Conf1), match_with(C,B,

Conf2), A!=B, A!=C, B!=C, lowest_confidence(Conf1 ,Conf2 ,Conf).
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Encoding locational instance matching Predicate match location(A,B,Con f idence)

represents spatially match to relation (Definition 40) from instance A to B. Again, Con f idence

can be either low, medium, or high. The first rule encodes Definition 39; the sequent rules

encode Definition 40. The second rule involves the case where instance A matches with

instance B; the next two rules, when B is inside or part of A; and the last rule, when A

spatially matches with B through C.

sma1: location(A) :- has(A, instance_of , ClassA), has(ClassA ,

ancestorclass , spatial_entity).

sma2: match_location(A, B, Confidence) :- location(A), location(B),

match_with(A, B, Confidence).

sma3: match_location(A, B, high) :- location(A), location(B), has(B,

is_inside , A).

sma4: match_location(A, B, high) :- location(A), location(B),has(A,

part_of , B).

sma5: match_location(A, B, Conf) :- match_location(A, C, Conf1),

match_location(C, B, Conf2), A != B, A != C, B != C,

lowest_confidence(Conf1 , Conf2 , Conf).

Encoding join relation Join relation (Definition 41) is encoded in the following:

match with(A,B) is true if A match to B or vice versa at any confidence level.

match location(A,B) is defined for similar purpose. join(A,B) means A joins to B, which

is true when we can match (regardless of direction) output of A to input of B and output

location of A to input location of B.

j1: _match_with(A, B) :- match_with(A, B, Confidence).

j2: _match_with(B, A) :- match_with(A, B, Confidence).

j3: _match_location(A, B) :- match_location(A, B, Confidence).

j4: _match_location(B, A) :- match_location(A, B, Confidence).

j5: _join(A, B) :- output(A, OutputA), output_loc(A, OutputLocationA

),
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j6: input(B, InputB), input_location(B, InputLocationB), A != B,

_match_with(OutputA , InputB), _match_location(OutputLocationA ,

InputLocationB).

Encoding Possible-next-event Relation: In this section, we show how Definition 42 is

encoded. We use has(A, tc subevent,B) to represent transitive closure of sub event relation

between A and B (encoded by has(A,subevent,B)), which is defined in the standard way

(rules tcsub1-tcsub2). We also use join(A,B) to encode that A joins to B according to

Definition 41.

tcsub1: has(A, tc_subevent , B) :- has(A, subevent , B).

tcsub2: has(A, tc_subevent , C) :- has(A, tc_subevent , B), has(B,

subevent , C).

% Ancestor event of A joins to B

n1: _notNextEvent(A, B) :- _join(A, SuperB), _join(A, B), has(SuperB

, tc_subevent , B).

% A joins to to ancestor event of B

n2: _notNextEvent(A, B) :- _join(SuperA , B), _join(A, B), has(

SuperA , tc_subevent , A).

% An event joins to its ancestor event

n3: _notNextEvent(E, A) :- _join(E, A), has(E, tc_subevent , A).

n4: _notNextEvent(A, E) :- _join(A, E), has(E, tc_subevent , A).

% Two sub events of one ancestor

n5: _notNextEvent(A, B) :- _join(A, B), has(E, tc_subevent , A), has(

E, tc_subevent , B).

n6: possible_next_event(A,B) :- _join(A, B), not _notNextEvent(A, B)

.
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4.7.5 Correctness of the ASP rules

Definition 43 The ASP program ΠC is the answer set program consisting of the following

rules:

• ee1 to ee6 for next events, first subevents and last events,

• ev1 to ev3 for two types of events,

• i1 to i16 for inputs, outputs of events,

• m1 to m4 for main class(es),

• lc1 to lc7 for the lowest confidence,

• ma1 to ma6 for match relation,

• sma1 to sma5 for spatially match relation,

• tcsub1 to tcsub2 for transitive closure of subevents,

• j1 to j6 for joined events, and

• n1 to n6 for possible next events.

Proposition 5 E is the last subevent of X in KDG(z) iff

ΠG(z)∪Πpath∪ΠC |= has(z, last subevent,E)

where ΠG(z) and Πpath were defined in Definition 44 and 46.

Proof 11 (Proposition 5) Forward direction: If E is the last subevent of X in KDG(z), all

answer sets of ΠG(z)∪Πpath∪ΠC contain has(z, last subevent,E)).
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1. Since E is an event of X, has(z,subevent,E) must be true in all answer sets.

2. If the body of rule ee4 is satisfied, there will be another event E2 which is a next

event of E. E is not the last subevent of X : contradiction.

3. Hence, the body of rule ee4 is not satisfied. not lse(X ,E) is not true in any answer

set.

4. Rule ee6, then, makes has(z, last subevent,E) true in all answer set of ΠG(z) ∪

Πpath∪ΠC.

Backward direction: If an answer set ANS of ΠG(z)∪Πpath∪ΠC contains

has(z, last subevent,E), E is the last subevent of X.

1. has(z, last subevent,E) must be introduced by rule ee6; ANS contains

has(z,subevent,E)) and does not contain not lse(X ,e). E is a subevent of X.

2. If E is not the last subevent of X, by definition, there must be another event E2 so

that E2 is also a subevent of X and E2 is the next event of E. In that case, the body

of rule ee4 must be satisfied and ANS would contain not lse(X ,e).

3. Hence, E is the last subevent of X.

Proposition 6 A is a main class of E in KDG(z) iff

ΠG(z)∪Πpath∪ΠC |= main class(E,A)

Proof 12 (Proposition 6) Forward direction: If A is a main class of E in KDG(z), all an-

swer sets of ΠG(z)∪Πpath∪ΠC contain main class(E,A).

1. Since A is a class of E, has(E, instance,A)) must be true in all answer sets.
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2. If the body of rule m2 (or m3) is satisfied, there will be another class A2 of E which

is more specific than A. For example, A is a ancestor class of A2. By definition, A is

not the main class of E : contradiction.

3. Hence, the body of rule m2 (or m3) is not satisfied. not main class(E,A) is not true

in any answer set.

4. Rule m4, then, makes main class(E,A) true in all answer set of ΠG(z)∪Πpath∪ΠC

Backward direction: If an answer set ANS of ΠG(z)∪Πpath∪ΠC contains main class(E,A),

A is a main class of E.

1. main class(E,A) must be introduced by rule m4; ANS contains has(E, instance,A)

and does not contain not main class(E,A). E is an instance of class A.

2. If A is not a main class of E, there will be another class A2 of E which is more specific

than A. For example, A is a ancestor class of A2 and E is also an instance of A2.

In that case, the body of rule m2 (or m3) must be satisfied and ANS would contain

not main class(E,A): contradiction.

3. Hence, A is a main class of E.

4.8 Conclusion and Discussions

While using the frame based knowledge base AURA to formulate the answers to “How”

and “Why” questions, we noticed missing information in the KB that make our answer less

intuitive. These flaws exist not only in AURA but also in large curated KBs, often the KBs

created by multiple people, sometimes even through crowd-sourcing. This often leads to

some information being inexplicably stated, even though the knowledge base contains clues

to derive that information. Using the examples that we observed in AURA, we developed
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several general formulations regarding missing knowledge about events. Being able to

obtain missing information and to enrich the original KDGs, one can obtain more accurate

and intuitive answers to the deep reasoning questions.

One of our formulations was about entity resolution where we resolve multiple entities

that may have different names but refer to the same entity. Our method is different from

other methods in the literature of (Getoor and Diehl, 2005; Brizan and Tansel, 2006). Since

each entity resolution method heavily relies on the properties of the database it is working

on and no other system we know of is about AURA or similar event centered knowledge

bases, we were unable to directly compare our method with those of the others. Our ap-

proach to use rules (albeit ASP rules) in deriving missing information is analogous to the

use of rules in data cleaning and in improving data quality (Herzog et al., 2007; Rahm and

Do, 2000; Fan et al., 2009). However, those works do not focus on the issues discussed in

this work.
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Chapter 5

ANSWERING DEEP QUESTIONS USING ANSWER SET PROGRAMMING -

TOWARD AN OVERALL SYSTEM

In this chapter, we present the encoding of Knowledge Description Graphs in Answer set

programming (ASP), and the encoding of the structures answering “How” and “Why” ques-

tions in previous sections.

5.1 ASP Encodings

5.1.1 Encoding the Common Components

In this subsection, we present the ASP encoding of the common components used to

answer various question types.

Encoding the KDG

The KDG(z) is encoded by the ASP program ΠG(z) defined below.

Definition 44 The ASP program ΠG(z) is the answer set program consisting of the facts

that are generated from all the nodes and edges of KDG(z) in the following way:

1. Generate “context(z)”.

2. For each node N, generate

“has(N, instance o f ,entity)” if N is an event node, “has(N, instance o f ,entity) if N

is an entity node, and class(N) if N is a class node.

3. For each edge of relation R from E1 to E2, generate ‘has(E1,R,E2)”.

159



Encoding the Questions

For efficiency, we include the predicate “question” in many of our rules. This focuses the

answer set computation on only those KDGs and KDG properties imperative to answering

specific questions asked.

We use the same template for all of the questions. Each question has a QID, Type,

Category, two Parameters, and optionally, a Scope.

q1: question(QID).

q2: has(QID , type , Type).

q3: has(QID , category , Category).

q4: has(QID , param1 , XClass).

q5: has(QID , param2 , YClass).

q6: has(QID , scope , ScopeClass).

Illustrated below are the encodings of the question “How does photosynthesis work?”.

question(q).

has(q, type , how).

has(q, category , work).

has(q, param1 , photosynthesis).

Definition 45 The ASP program ΠQ(q) is the answer set program consisting of the rules

q1 to q6 to encode the question q.

Encoding the Entities and Events

The following rules define events, entities, and things. class(X) means that X is a class.

t1: event(X) :- has(X,instance_of ,event).

t2: entity(X) :- has(X,instance_of ,entity).

t3: thing(X) :- entity(X).

t4: thing(X) :- event(X).

t5: thing(X) :- class(X).
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Encoding the Types of Edges and Types of Paths

We use doconnects(X ,Y ) to denote the ordering edge from X to Y . Predicate ordering edge

is used to define the slot names corresponding to the ordering edges. Other types of edges

are defined similarly.

e1: compositional_edge(subevent; first_subevent).

e2: ordering_edge(next_event; enables; causes; prevents; inhibits).

e3: participant_edge(agent; beneficiary; destination; donor;

experiencer; instrument; object; origin; path; raw_material;

recipient; result; site; substrate; toward).

e4: locational_edge(base_of; site_of; location_of).

e5: compositional_edge(has_part; has_basic_structural_unit;

has_region).

e6: class_edge(instance_of; super_class).

e7: doconnects(X, Y) :- has(X, S, Y), ordering_edge(S), event(

X), event(Y).

e8: dcconnects(X, Y) :- has(X, S, Y), compositional_edge(S),

event(X), event(Y).

e9: dcconnects(X, Y) :- has(X, S, Y), compositional_edge(S),

entity(X), entity(Y).

e10: dpconnects(X, Y) :- has(X, S, Y), participant_edge(S),

event(X), entity(Y).

e11: dlconnects(X, Y) :- has(X, S, Y), locational_edge(S),

entity(X), event(Y).

e12: dclconnectes(X, Y) :- has(X, S, Y), class_edge(S), entity(X)

, class(Y).

e13: dclconnectes(X, Y) :- has(X, S, Y), class_edge(S), event(X),

class(Y).

e14: dclconnectes(X, Y) :- has(X, S, Y), class_edge(S), class(X),

class(Y).
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We define dcpath connects(X ,Y ) to be true if there is a compositional edge, partic-

ipant edge, or locational edge from X to Y (rules c1-c3). cpath connects denotes the

transitive closures of dcpath connects(X ,Y ); oconnects denotes the transitive closures

of do connects(X ,Y ). cpath connects2(X ,Y ) is a shortcut for cpath connects(X ,Y ) or

X = Y .

c1: dcpath_connects(X, Y) :- dcconnects(X, Y).

c2: dcpath_connects(X, Y) :- dpconnects(X, Y).

c3: dcpath_connects(X, Y) :- dlconnects(X, Y).

c4: cpath_connects(X, Y) :- dcpath_connects(X, Y).

c5: cpath_connects(X, Y) :- cpath_connects(X, K),

dcpath_connects(K, Y), K != X, K!= Y.

c6: cpath_connects2(X, X) :- thing(X).

c7: cpath_connects2(X, Y) :- cpath_connects(X, Y).

c8: oconnects(X, Y) :- doconnects(X, Y).

c9: oconnects(X, Y) :- oconnects(X, K), doconnects(K, Y), K != X

, K!= Y.

5.1.2 Answering Question “How Does X Work?”

Getting (Z,X) KDG From the Question

We represent the answer to “How does X work?” by zx kdg(Q,Z,X), where Q is the

question ID. The root of our context, KDG(Z), is represented by context(Z).

z1: zx_kdg(Q,Z,X) :- question(Q), has(Q,type ,how), has(Q,category ,

work), has(Q,param1 ,XClass), has(X, instance_of ,XClass), context(

Z), cpath_connects(Z,X).

Getting All Nodes and Edges in (Z,X) KDG

The next step of our encoding is to put all of the nodes and edges in one of the (Z,X) KDG

into the final answer. Numstep in the rule p0 below is a constant to limit the maximum
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length of the cpath we want to compute. In p1-p2 by selected path(A,Z,X ,N), we mean

that X is a node in the selected cpath from A to Z at distance N from A in that cpath. If a

node B has already been selected, p2 selects only one node C amongst all of the nodes that

directly connect from B (through cpath) and also connect to Z (or be Z itself). Rules p3-p4

remove all answer sets that do not contain the entire path from A to Z. Rule a1 gets all the

nodes on the selected path from Z to X , while a2 gets all the nodes in KDG(X). The last

rule is to get all of edges of (Z,X) KDG.

p0: step (0.. numstep).

p1: selected_path1(A, Z, A, 0) :- zx_kdg(Q,A,Z).

p2: 1 { selected_path1(A, Z, C, T+1) : cpath_connects2(C, Z) :

dcpath_connects(B, C) } 1 :- selected_path1(A, Z, B, T), B != Z,

step(T), zx_kdg(Q,A,Z).

p3: completed_path1(zx_kdg(Q,A,Z)) :- zx_kdg(Q,A,Z), selected_path1(

A, Z, Z, T), step(T).

p4: :- zx_kdg(Q,A,Z), not completed_path1(zx_kdg(Q,A,Z)).

a1: ans(Q,zx_kdg(Q,Z,X),node ,N) :- zx_kdg(Q,Z,X), selected_path1(Z,X

,N,T), step(T).

a2: ans(Q,zx_kdg(Q,Z,X),node ,N) :- zx_kdg(Q,Z,X), cpath_connects(X,N

).

% Adding all the edges in the KDG between two nodes of structure G

to the answer.

a3: ans(Q,G,edge ,has(A,Predicate ,B)) :- has(A,Predicate ,B), ans(Q,G,

node ,A), ans(Q,G,node ,B).

Correctness of the ASP Rules

Definition 46 The ASP program Πpath is the answer set program consisting of the rules:

• t1 to t5 for events and entities,
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• e1 to e14 for edges, and

• c1 to c9 for paths.

Corollary 4 Let x and y be two nodes in the KDG(z). There exists an ordering edge (or

respectively compositional, participant, locational, class edge) from x to y iff ΠG(z)∪Πpath

|= doconnects(x,y) (or dcconnects(x,y), d pconnects(x,y), dlconnects(x,y), dclconnects(x,y)

respectively).

Corollary 5 Let x and y be two nodes in the KDG(z). There exists a cpath edge from x to

y iff

ΠG(z)∪Πpath |= dcpath connects(x,y).

Proposition 7 Let x and y be two nodes in the KDG(z). There exists a cpath from x to y iff

ΠG(z)∪Πpath |= cpath connects(x,y).

Definition 47 The ASP program Π1
answer(numstep) is the answer set program consisting

of the rules:

• z1 for defining (Z,X) KDG

• p0 to p4 for selecting a cpath

• a1 to a3 for selecting nodes and edges for the answer set

where numstep is the constant in rule p0.

Definition 48 The ASP program Π1(q,z,numstep) is the answer set program:

Π
1(q,z,numstep) = ΠG(z)∪Πpath∪ΠQ(q)∪Π

1
answer(numstep)
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Proposition 8 Let q1 be the question “How does xc work?”. Let x be a node in the

KDG(z) so that xc is x’s class. For each (z,x) KDG K, there exists an answer set of

Π1(q1,z,numstep) containing:

ans(q1,zx kdg(q1,z,x),node,N)

and

ans(q1,zx kdg(q1,z,x),edge,has(I,Predicate,J))

where numstep is equal to or greater than the length of the cpath from z to x in K; N is any

node of K, and (I,Predicate,J) is any edge of K.

Proposition 9 Let q1 be the question “How does xc work?”. Let x be a node in the KDG(z)

so that xc is x’s class. Suppose there exists at least one (z,x) KDG where the length of cpath

from z to x is less than or equal numstep. If A is an answer set of Π1(q1,z,numstep), let

V = {n : ans(q1,zx kdg(q1,z,x),node,n) ∈ A} and

E = {(i,Predicate, j) : ans(q1,zx kdg(q1,z,x),edge,has(i,Predicate, j)) ∈ A}. There ex-

ists a (z,x) KDG K so that V is K’s set of nodes and E is K’s set of edges.

5.1.3 Answering Question “How Does X Produce Y?”

We used the same question template as previous question to encode “How does X pro-

duce Y?”. For example, illustrated below are the encodings of question “How does a plant

produce sugar?”.

question(q).

has(q, type , how).

has(q, category , produce).

has(q, param1 , plant).

has(q, param2 , sugar).
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Encoding Output of an Event

We define that Y is the output of event X if it is produced by X or by a sub-event of X . This

definition is encoded in rules o1-o2 below.

o1: output(E,A) :- has(E,result ,A), event(E).

o2: output(E,A) :- output(SE ,A), has(E,subevent ,SE).

Getting HIX
P

Below, we present the encoding of HIX
P , the highest node in the KDG(X) that has property

P. In the first rule, the property “produce Y” of the question “How does X produce Y?”

is denoted as property(produce(YClass)), where YClass is the class of Y . The next rule

defines when an event node HI in KDG(X) has the property “produce Y”. h3-h4 encode

HIX
P using default negation. Node X is the highest node that has property P if there is no

ancestor X ′ of X that also has property P.

h1: property(produce(YClass)) :- question(Q), has(Q,type ,how), has(Q

,category ,produce), has(Q,param1 ,XClass), has(Q,param2 ,YClass),

has(X,instance_of , XClass).

h2: has_prop(X,produce(YClass)) :- property(produce(YClass)), output

(X,Y), has(Y,instance_of ,YClass).

h3: _not_hn(X,HI ,Prop) :- has_prop(HI ,Prop), has_prop(AncestorHI ,

Prop), cpath_connects(AncestorHI ,HI), AncestorHI !=HI ,

cpath_connects2(X, AncestorHI).

h4: _hn(X,HI ,Prop) :- has_prop(HI ,Prop), not _not_hn(X,HI , Prop),

cpath_connects2(X, HI).

Similarly to answering the previous question type, we define

zx kdg(Q,X ,HI) & zx kdg(Q,Z,X) in z2 & z3; they correspond to (X ,HI) KDG and

(Z,X) KDG.

z2: zx_kdg(Q,X,HI) :- question(Q), has(Q,type ,how), has(Q,category ,

produce), has(Q,param1 ,XClass), has(Q,param2 ,YClass), has(X,
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instance_of ,XClass), context(Z), cpath_connects2(Z,X), _hn(X,HI ,

produce(YClass)), X!=HI.

z3: zx_kdg(Q,Z,X) :- question(Q), has(Q,type ,how), has(Q,category ,

produce), has(Q,param1 ,XClass), has(Q,param2 ,YClass), has(X,

instance_of ,XClass), context(Z), cpath_connects2(Z,X), _hn(X,HI ,

produce(YClass)), X==HI.

Definition 49 The ASP program Πout put is the answer set program consisting of the rules

o1 & o2

Definition 50 The ASP program Π2
answer(numstep) is the answer set program consisting

of the following rules:

• z2 to z3 for defining (Z,X) KDG

• p0 to p4 for selecting a cpath

• a1 to a3 for selecting nodes and edges for the answer set

where numstep is the constant in rule p0.

Definition 51 The ASP program Πhighest node is the answer set program consisting of the

rules h1 to h5.

Definition 52 The ASP program Π2(q,z,numstep) is the answer set program:

Π
2(q,z,numstep) =ΠG(z)∪Πpath∪Πout put ∪ΠQ(q)

∪Πhighest node∪Π
2
answer(numstep)

Compared to Π1(q,z,numstep), Π2(q,z,numstep) has different rules for (Z,X) KDG in

Π2
answer(numstep) and additional rules in Πout put and Πhighest node.
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Corollary 6 Let q2 be the question “How does xc produce yc?”. Let x be a node in the

KDG(z). x has property “produce yc” iff

Π
2(q2,z,numstep) |= has prop(x, produce(yc))

Corollary 7 Let q2 be the question “How does xc produce yc?”. Let x be a node in the

KDG(z). he is the highest node in the KDG(x) that has property “produce yc” iff

Π
2(q2,z,numstep) |= hn(x,he, produce(yc)).

Proposition 10 Let q2 be the question “How does xc produce yc?”, x be the highest node

in the KDG(z) that has the property “produce yc,” and xc be x’s class. For each (z,x) KDG

K, there exists an answer set of Π2(q2,z,numstep) containing:

ans(q2,zx kdg(q1,z,x),node,N)

and

ans(q2,zx kdg(q1,z,x),edge,has(I,Predicate,J))

where numstep is equal to or greater than the length of the cpath from z to x in K. N is any

node of K, and (I,Predicate,J) is any edge of K.

Proposition 11 Let q2 be the question “How does xc produce yc?” and x be the high-

est node in the KDG(z) that has property “produce yc” and xc is x’s class. If A is an

answer set of Π2(q2,z,numstep), let V = {n : ans(q2,zx kdg(q2,z,x),node,n) ∈ A} and

E = {(i,Predicate, j) : ans(q2,zx kdg(q2,z,x),edge,has(i,Predicate, j)) ∈ A}. There ex-

ists an (z,x) KDG K so that V is K’s set of nodes and E is K’s set of edges.

5.1.4 Answering Question “How Is X Related to Y?”

Illustrated below are the encodings of the question “How is sunlight related to sugar?”.
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question(q).

has(q, type , how).

has(q, category , relation).

has(q, param1 , sunlight).

has(q, param2 , sugar).

Encoding a Lowest Common Ancestor

In the following is the encoding of a lowest common ancestor of two nodes. The first rule

is to find all ancestors Z of X and Y . The second and third rule state that Z2 is a lowest

common ancestor (of X and Y ) if another common ancestor Z2, which is a descendant of

Z1, does not exist.

l1: common_ancesstor(Z,X,Y) :- cpath_connects2(Z, X),

cpath_connects2(Z, Y), X != Y.

l2: not_lcs(Z1 , X, Y) :- common_ancesstor(Z1 ,X,Y), common_ancesstor(

Z2,X,Y), Z1 != Z2, cpath_connects(Z1, Z2).

l3: lcs(Z, X, Y) :- common_ancesstor(Z, X, Y), not not_lcs(Z, X, Y).

Definition 53 The ASP program Πlca is the answer set program consisting of rules l1 to

l3.

Encoding the MIN KDG Structure and Adding Nodes of a MIN KDG to the Answer

In the following is the encoding of the MIN KDG structure and how nodes of the MIN KDG

are added to the answer.

z4: min_kdg(Q, Z, LCS , X, Y) :-

question(Q),

has(Q, type , how),

has(Q, category , relation),

has(Q, param1 , XClass),

has(Q, param2 , YClass),
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has(X, instance_of , XClass),s

has(Y, instance_of , YClass),

lcs(LCS , X, Y),

context(Z).

p0: step (0.. numstep).

p5: selected_path3(Z, LCS , Z, 0) :- min_kdg(Q, Z, LCS , X, Y).

p6: selected_path3(LCS , X, LCS , 0) :- min_kdg(Q, Z, LCS , X, Y).

p7: selected_path3(LCS , Y, LCS , 0) :- min_kdg(Q, Z, LCS , X, Y).

p8: 1 { selected_path3(A, Z, C, T+1) : cpath_connects2(C, Z) :

dcpath_connects(B, C) } 1 :- selected_path3(A, Z, B, T), B != Z,

step(T).

p9: completed_path3(min_kdg(Q, Z, LCS , X, Y)) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(Z, LCS , LCS , T1), selected_path3(LCS , X, X,

T2), selected_path3(LCS , Y, Y, T3), step(T1), step(T2), step(T3

).

p10: :- min_kdg(Q, Z, LCS , X, Y), not completed_path3(min_kdg(Q, Z,

LCS , X, Y)).

% Three cpaths:

a4: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(Z, LCS , N, T), step(T).

a5: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(LCS , X, N, T), step(T).

a6: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(LCS , Y, N, T), step(T).

% Every node on the opath between two nodes on the 3 paths above

a7: ans(Q, MinKDG , node , N) :- ans(Q, MinKDG , node , X), ans(Q,

MinKDG , node , Y), oconnects(X, N), oconnects(N, Y).
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% Adding all the edges in the KDG between two nodes of structure G

to the answer.

a3: ans(Q,G,edge ,has(A,Predicate ,B)) :- has(A,Predicate ,B), ans(Q,G,

node ,A), ans(Q,G,node ,B).

Definition 54 The ASP program Π3
answer(numstep) is the answer set program consisting

of the rules:

• z4 for defining MIN KDG

• p5 to p10 and p0 for selecting a cpath

• a3 to a7 for selecting nodes and edges for the answer set

where numstep is the constant in rule p0.

Corollary 8 Let x and y be two nodes in the KDG(z). l is a lowest common ancestor of x

and y in the KDG(x) iff

ΠG(z)∪Πpath∪Πlca |= lca(z,x,y).

Definition 55 The ASP program Π3(q,z,numstep) is the answer set program:

Π
3(q,z,numstep) =ΠG(z)∪Πpath∪ΠQ(q)

∪Πlca∪Π
3
answer(numstep)

Proposition 12 Let q3 be the question “How does xc related to yc?” and x and y respec-

tively be instances of xc and yc in the KDG(z). For each MIN KDGz
x,y K, there exists an

answer set of Π3(q3,z,numstep) containing:

ans(q3,min kdg(q3,z,x),node,N)
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and

ans(q3,min kdg(q3,z,x),edge,has(I,Predicate,J))

where numstep is equal to or greater than the length of longest cpath among the three

cpaths from z to LCA(x,y), from LCA(x,y) to x, and from LCA(x,y) to x. N is any node of

K, and (I,Predicate,J) is any edge of K.

Proposition 13 Let q3 be the question “How does xc related to yc?” and x and y respec-

tively be instances of xc and yc in the KDG(z). If A is an answer set of Π3(q3,z,numstep),

let

V = {n : ans(q3,min kdg(q3,z,x),node,n) ∈ A}, and

E = {(i,Predicate, j) : ans(q3,min kdg(q3,z,x),edge,has(i,Predicate, j))∈A}. There ex-

ists an MIN KDGz
x,y K so that V is K’s set of nodes, and E is K’s set of edges.

5.1.5 Answering Question “How Does X Participate in Y?”

Illustrated below are encodings of the question “How does sunlight participate in pho-

tosynthesis?”.

question(q).

has(q, type , how).

has(q, category , participation).

has(q, param1 , sunlight).

has(q, param2 , photosynthesis).

Encoding the Ppath

pp1: ppath_connects(X, Y) :- dpconnects(Y, X), entity(X), event(Y).

pp2: ppath_connects(X, Z) :- ppath_connects(X, Y), event(Y), has(Z,

subevent , Y).

z5: ppath(Q, Z, X, Y) :-
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question(Q),

has(Q, type , how),

has(Q, category , participation),

has(Q, param1 , XClass),

has(Q, param2 , YClass),

has(X, instance_of , XClass),

has(Y, instance_of , YClass),

entity(X), event(Y),

ppath_connects(X, Y),

context(Z).

Adding Nodes in the PPATH to the Answer

p0: step (0.. numstep).

p11: selected_path4(X, Y, X, 0) :- ppath(Q, Z, X, Y).

p12: 1 { selected_path4(A, Z, B, 1) : dpconnects(B, A) } 1 :-

selected_path4(A, Z, A, 0).

p13: 1 { selected_path4(A, Z, C, T+1) : has(C, subevent , B) } 1 :-

selected_path4(A, Z, B, T), T >= 1, step(T), B != Z.

p14: completed_path4(ppath(Q, Z, X, Y)) :- ppath(Q, Z, X, Y),

selected_path4(X, Y, Y, T), step(T).

p15: :- ppath(Q, Z, X, Y), not completed_path4(ppath(Q, Z, X, Y)).

a8: ans(Q,ppath(Q, Z, X, Y),node ,N) :- ppath(Q, Z, X, Y),

selected_path4(X,Y,N,T), step(T).

% Adding all the edges in the KDG between two nodes of structure G

to the answer.

a3: ans(Q,G,edge ,has(A,Predicate ,B)) :- has(A,Predicate ,B), ans(Q,G,

node ,A), ans(Q,G,node ,B).

Definition 56 The ASP program Π4
answer(numstep) is the answer set program consisting

of the rules:
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• pp1, pp2 for defining ppath connects

• z5 for defining PPAT H

• p11 to p15 and p0 for selecting a ppath

• a8 and a3 for selecting nodes and edges for the answer set

where numstep is the constant in rule p0.

Definition 57 The ASP program Π4(q,z,numstep) is the answer set program:

Π
4(q,z,numstep) =ΠG(z)∪Πpath∪ΠQ(q)∪Π

4
answer(numstep)

Proposition 14 Let q4 be the question “How does xc participate in yc?” and x and y re-

spectively be instances of xc and yc in the KDG(z) so that there is a participant path from x

to y (Definition 11). For each PPAT Hz
x,y K, there exists an answer set of Π4(q4,z,numstep)

containing:

ans(q4, ppath(q4,z,x),node,N)

and

ans(q4, ppath(q4,z,x),edge,has(I,Predicate,J))

where numstep is equal to or greater than the length of K. N is any node of K, and

(I,Predicate,J) is any edge of K.

Proposition 15 Let q4 be the question “How does xc participate in yc?” and x and y

respectively be instances of xc and yc in the KDG(z) so that there is a participant path

from x to y (Definition 11). If A is an answer set of Π4(q4,z,numstep), let V = {n :

ans(q4, ppath(q4,z,x),node,n) ∈ A} and

E = {(i,Predicate, j) : ans(q4, ppath(q4,z,x),edge,has(i,Predicate, j)) ∈ A}. There ex-

ists a PPAT Hz
x,y K so that V is K’s set of nodes, and E is K’s set of edges.
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5.1.6 Answering Question “Why is X important to Y?”

Illustrated below are the encodings of the question “Why is sunlight important to pho-

tosynthesis?”.

question(q).

has(q, type , why).

has(q, category , important).

has(q, param1 , sunlight).

has(q, param2 , photosynthesis).

Encoding the “important path”

% All the cpath edges except "result" - Reversed direction

i1: dipath_connects(Y, X) :- dcpath_connects(X, Y), not has(X,

result , Y).

% "result" - Same direction

i2: dipath_connects(X, Y) :- has(X, result , Y).

% Ordering edges - Same direction

i3: dipath_connects(X, Y) :- doconnects(X, Y).

% Transitive closure of ipath_connects

i4: ipath_connects(X, Y) :- dipath_connects(X, Y).

i5: ipath_connects(X, Z) :- ipath_connects(X, Y), dipath_connects(Y,

Z).

Define the Structures in the Answer

The answer of this question contains two structures: MIN KDG and IPAT H.

z6: min_kdg(Q, Z, LCS , X, Y) :-

question(Q),

has(Q, type , why),

has(Q, category , important),
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has(Q, param1 , XClass),

has(Q, param2 , YClass),

has(X, instance_of , XClass),

has(Y, instance_of , YClass),

lcs(LCS , X, Y),

context(Z).

z7: ipath(Q, Z, X, Y) :-

question(Q),

has(Q, type , why),

has(Q, category , important),

has(Q, param1 , XClass),

has(Q, param2 , YClass),

has(X, instance_of , XClass),

has(Y, instance_of , YClass),

ipath_connects(X, Y),

context(Z).

Adding Nodes in the IPATH to the Answer

p0: step (0.. numstep).

% Selecting nodes in the important path

p16: selected_path5(X, Y, X, 0) :- ipath(Q, Z, X, Y).

p17: 1 { selected_path5(A, Z, C, T+1) : dipath_connects(B,C) } 1 :-

selected_path5(A, Z, B, T), step(T), B != Z.

p18: completed_path5(ipath(Q, Z, X, Y)) :- ipath(Q, Z, X, Y),

selected_path5(X, Y, Y, T), step(T).

p19: :- ipath(Q, Z, X, Y), not completed_path5(ipath(Q, Z, X, Y)).

a9: ans(Q,ipath(Q, Z, X, Y),node ,N) :- ipath(Q, Z, X, Y),

selected_path5(X,Y,N,T), step(T).
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% Three cpaths:

a4: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(Z, LCS , N, T), step(T).

a5: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(LCS , X, N, T), step(T).

a6: ans(Q, min_kdg(Q, Z, LCS , X, Y), node , N) :- min_kdg(Q, Z, LCS ,

X, Y), selected_path3(LCS , Y, N, T), step(T).

% Every node on the opath between two nodes on the 3 paths above

a7: ans(Q, MinKDG , node , N) :- ans(Q, MinKDG , node , X), ans(Q,

MinKDG , node , Y), oconnects(X, N), oconnects(N, Y).

% Adding all the edges in the KDG between two nodes of structure G

to the answer.

a3: ans(Q,G,edge ,has(A,Predicate ,B)) :- has(A,Predicate ,B), ans(Q,G,

node ,A), ans(Q,G,node ,B).

Definition 58 The ASP program Π5
answer(numstep) is the answer set program consisting

of the rules:

• i1 to i5 for defining ipath connects

• z6, z7 for defining MIN KDG and IPAT H

• p16 to p19 and p0 for selecting an ipath

• a9, a3-a7 for selecting nodes and edges for the answer set

where numstep is the constant in rule p0.

Definition 59 The ASP program Π5(q,z,numstep) is the answer set program:

Π
5(q,z,numstep) =ΠG(z)∪Πpath∪ΠQ(q)∪Π

5
answer(numstep)
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Proposition 16 Let q5 be the question “Why is xc important to yc?” and x and y respec-

tively be instances of xc and yc in the KDG(z) so that there is a IPAT Hz
x,y. For each K =

IPAT Hz
x,y∪MIN KDGz

x,y , there exists an answer set of Π5(q5,z,numstep) containing all

of the following:

1.

ans(q5, ipath(q5,x,y),node,N)

or

ans(q5,min kdg(q5,z, lcs,x,y),node,N)

2.

ans(q5, ipath(q5,x,y),edge,has(I,Predicate,J))

or

ans(q5,min kdg(q5,z, lcs,x,y),edge,has(I,Predicate,J))

where numstep is equal to or greater than the maximum length of the IPAT Hz
x,y, and the

three cpaths composing MIN KDGz
x,y (cpath from z to LCA(x,y) and from LCA(x,y) to x,

y); N is any node of K. (I,Predicate,J) is any edge of K.

Proposition 17 Let q5 be the question “Why is xc important to yc?” and x and y respec-

tively be instances of xc and yc in the KDG(z) so that there is a IPAT Hz
x,y. If A is an answer

set of Π5(q5,z,numstep), let
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V1 ={n : ans(q5, ipath(q5,x,y),node,n) ∈ A}

V2 ={n : ans(q5,min kdg(q5,z,, x,y),node,n) ∈ A}

E1 ={(i,Predicate, j) : ans(q5, ipath(q5,x,y),edge,has(i,Predicate, j)) ∈ A}

E2 ={(i,Predicate, j) : ans(q5,min kdg(q5,z,, x,y),edge,has(i,Predicate, j)) ∈ A}

There exists an K = IPAT Hz
x,y∪MIN KDGz

x,y so that V1∪V2 is K’s set of nodes, and E1∪E2

is K’s set of edges.
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Chapter 6

TRANSLATING NATURAL LANGUAGE TO FORMAL LANGUAGE

In previous chapters, we discussed various aspects of answering deep questions with

respect to a knowledge base. In this chapter, we will discuss extending our research to

use natural language text. This includes translating deep questions in natural language to

some formal representation, and a long-term target of translating natural language text to

KDG specifications. We will focus on NL2KR, a system we used to address the first target,

although it was developed for a broader purpose: translating natural language to formal

language. We will also give a glimpse of Knowledge Parser, our first attempt to translate

natural language to KDG specifications, which is not included in this dissertation.

6.1 Introduction and Motivation

Most tasks involving Natural Language Understanding (NLU) need translation of nat-

ural language (NL) to a formal language that can be further processed. Recently, algo-

rithms have been devised to learn such semantic parsers for many applications, includ-

ing command interpretations (Ge and Mooney, 2009; Chen and Mooney, 2011; Artzi and

Zettlemoyer, 2013b), human robot interactions (Dzifcak et al., 2009; Matuszek et al., 2013;

Krishnamurthy and Kollar, 2013), puzzle solving (Baral and Dzifcak, 2012), question an-

swering (QA) (Kwiatkowski et al., 2011; Liang et al., 2013), query construction (Krishna-

murthy and Mitchell, 2012), and program generation (Kushman and Barzilay, 2013). While

outputs of semantic parsers can serve that role for specific applications, it would be prefer-

able to build a platform that can learn such a translation system given an application. In

this research, we present such a platform, called NL2KR. It is a user-friendly platform that

takes sentences and their translations (language can vary depending on the application) and
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some initial dictionary (for bootstrapping) to construct a translation system for the desired

target language (from natural language input).

Our approach to translating natural language text to formal representation is inspired

by Montague’s work (Montague, 1974), where the meanings of words and phrases are

expressed as λ -calculus expressions. The meaning of a sentence is built from semantics of

constituent words through appropriate λ -calculus applications. A key impediment in using

this approach has been the difficulty of coming up with the λ -calculus representations of

words.

Although Montague’s approach has been widely used (Blackburn and Bos, 2005; Zettle-

moyer and Collins, 2005; Costantini and Paolucci, 2010; Baral et al., 2011; Kwiatkowski

et al., 2010, 2013) to translate natural language to formal languages, to our knowledge,

there has not been any other user-friendly platform that allows users to create their own

translation system. The closest system to ours is the Semantic Parsing Framework (UW

SPF) (Artzi and Zettlemoyer, 2013a).

UW SPF’s approach to overcoming the impediment is to try all arbitrary splits of the

input sentence and all arbitrary splits of its meaning (using an algorithm called high-order

unification), then consider all combinations of the two splitting results. UW SPF does not

use the CCG parser but induces the CCG parse trees to fit the current splitting. Hence,

those “phrases” 1 and parse trees usually conflict with the grammatical/common sense

understanding of sentences, making UW SPF learn a large number of tuples (word, CCG

category, meaning) very specific to the arbitrary splitting. Most importantly, the high-order

unification algorithm used to split the lambda expression imposes many restrictions (such

as limited forms of functional application) on the target language, which severely limit its

usefulness on new applications. Please see section 6.7 for more details.

Our NL2KR platform addresses the problem with two different parallel approaches. (1)
1Could be any subsequence of words in the sentence, not need to be a correct English phrase
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Type Sentence Meaning

Training John eats rice eat(john,rice)

Testing Mary drinks water drink(mary,water)

Table 6.1: A Very Simple Corpus to Explain the Various Techniques We Are Using in

NL2KR.

Using Inverse−λ and Generalization (see section 6.2), we do not enforce the restrictions

that high-order unification algorithms do. Moreover, based on known meanings, we can

learn the meanings of new words, which should have higher quality. (2) Instead of generat-

ing CCG categories of words, we rely on a good CCG parser to make the tuples (word, CCG

category, meaning) more general, thus reducing the number of tuples needed. Moreover,

generalization and CCG parser allow NL2KR to translate sentences, which have previously

unseen words. We will clarify these points using a very simple corpus that contains only

one sentence for training and one for testing.

Consider the corpus shown in Table 6.1. The CCG parse trees of the two sentences in

the corpus are shown in Figure 6.1 and 6.2. The CCG parse trees give us two things:

1. The words “John,” “Mary,” “rice,” and “water” have the same CCG category; “eats”

and “drinks” have the same category. This allow Generalization algorithm to work,

finding the meanings of the others from one word, i.e. of “Mary” from “John”.

2. The meanings of “rice” combine with ones of “eats” initially, and the meanings of

two-word phrase combine with the ones of “John” to have the meanings of whole

sentences.

Consider the meaning “eat(John,rice)” of the training sentence. Assume that we know

that the meaning of “John” is simply “John”. NL2KR will learn the meanings of other

words through Inverse− λ and Generalization; using Generalization, we can guess that
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Figure 6.1: CCG parse tree of sentence “John eats rice”

“rice” has the meaning “rice;” using the Inverse−λ algorithm, from the meaning of “John

eats rice” and “John,” we can get the meaning of “eats rice.” Similarly, we get the meaning

of “eats.”

When NL2KR encounters the testing sentence, “Mary drinks water,” even though the

words in the sentence are unseen, CCG parse trees show that they have similar categories

to known words. Additionally, Generalization can generate their meanings from known

meanings, and thus can obtain the meaning of the whole sentence. For example, “water”

means “water” (generalized from “rice” or “John”), “drinks” means “drink( , )” (this is not

exact meaning. Its exact meaning in λ -calculus will be shown in the next chapter).

We have evaluated our platform on two datasets: GeoQuery (Zelle and Mooney, 1996)

and Jobs (Tang and Mooney, 2001). GeoQuery is a database of geographical information.
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Figure 6.2: CCG parse tree of sentence “Mary drinks water”

Jobs contains sentences with job related query. Experiments demonstrate state-of-the-art

performance in both cases with fairly small initial dictionaries.

The rest of the chapter is organized as follows: we first present the architecture and

algorithms of NL2KR platform, then discuss the experiments. We, then, will present some

take-out lessons of effective NL2KR use. After that, we will discuss about Knowledge

Parser, and conclude our contributions in NL2KR.

6.2 Background

6.2.1 Lambda Calculus

Lambda calculus was proposed by Alonzo Church (Church, 1936) to investigate func-

tions, function application, and recursion. Lambda expressions can be thought of in terms

of functions and arguments. λx.bird(x) is an example of a lambda expression which ab-
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stracts over x and signifies that the predicate bird accepts a single argument or input x.

If we apply this function on tweety as input, denoted by λx.bird(x)@tweety, we obtain

bird(tweety). This way of applying one lambda expression to another is particularly use-

ful to us in constructing meaning from words or phrases in a sentence (explained in Sec.

6.2.2).

Let us assume V is an infinite but fixed set of identifiers. Formally, a λ -expression is

one of the following: (1) a variable v in V , (2) an abstraction (λv.e) where v is a variable and

e is a λ -expression, (3) an application e1@e2 where e1 and e2 are two λ -expressions, or

(4) a constant. For example, x, λx.boxer(x), f ly(tweety), and john are all λ -expressions.

Variables in a λ -expression can be bound or free. In the example expressions, x is free in x

and bound in λx.boxer(x).

There are some operations defined over λ expressions e.g. α-conversion and β -reduction.

α-conversion is the operation of renaming bound variables in a λ -expression to yield

an equivalent expression. For examples, changing λx.plane(x) to λu.plane(u) does not

change the meaning of the expression. β -reduction is the operation of applying functions

to their arguments by replacing all instances of a free variable v in the function by an argu-

ment expression R, e.g. λx. f ly(x)@tweety yields f ly(tweety).

6.2.2 Montague’s Approach

Our work is inspired by Montague Semantics (Montague 1974) which postulates that

the meaning of a sentence is built from meanings of its parts, which combine through syn-

tactic operations. The semantic meaning of words and phrases are expressed in terms of

λ -calculus expressions, and the meaning of the whole sentence is constructed from con-

stituent words through successive λ -calculus applications. Montague’s approach has been

used in many works including (Blackburn and Bos, 2005; Zettlemoyer and Collins, 2005;

Baral et al., 2008; Dzifcak et al., 2009; Costantini and Paolucci, 2010; Baral et al., 2012a;
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Zettlemoyer and Collins, 2007)

Consider the following two examples to illustrate the use of λ -calculus in translating

English sentences to first order logic.

Example 1:

“John eats rice” can be translated to “eat(john, rice)” using the following λ -expressions:

• “eats”: λuλv.eat(v,u)

• “rice”: rice

• “eats rice”: its meaning is obtained by the λ -application (denoted by @) between

“rice” and “eats”. As shown by CCG categories in the sentence’s CCG parse tree

(more about this in the next section), “rice” will be the argument and “eats” will be

the function in the λ -application.

“eats rice” = λuλv.eat(v,u)@rice = λv.eat(v,rice).

The leading λu of λuλv.eat(v,u) is removed and all other occurrence(s) of u are

replaced by rice.

• “John” : john

• “John eats rice”: its meaning is obtained by the λ -application between “eats rice”

and “John,” where “John” is the argument.

“John eats rice”: λv.eat(v,rice)@ john = eat( john,rice)

Here the leading λv of λv.eat(v,rice) is removed and all other occurrence(s) of v are

replaced by john.

Example 2:

Another example is the sentence “Most birds fly,” which can be translated into first order

logic as f ly(X)← bird(X),not¬ f ly(X). Consider the following λ -expressions for each

word:

186



• “Most”: λuλv.(v@X ← λu@X ,not ¬v@X).

• “birds”: λx.bird(x)

• “fly”: λy. f ly(y)

The meaning of the entire sentence in terms of λ -calculus expressions can be obtained

by combining its parts as follows:

• “Most birds”: (λuλv.(v@X ← λu@X ,not¬v@X))@(λx.bird(x)) which simplifies

to λv.(v@X ← bird(X),not¬v@X).

• “Most birds fly” : (λx.x@λy. f ly(y))@(λv.(v@X ← bird(X),not¬v@X)) which

simplifies to f ly(X)← bird(X),not¬ f ly(X).

In order to use Montague’s approach, we need to know the following:

1. The order of combination of sentence constituents and rules for their combination

2. Semantic meanings of words in the sentence in terms of λ -expressions

A Combinatory Categorial Grammar(CCG)(Sec. 6.2.3) is used to find the order of combi-

nation of parts of a sentence and to define the rules for their combination. Application of

this approach also requires that lambda expressions of all words in the sentence need to be

known, but manually formulating them is a tedious task, especially if they are complex.

The Inverse Lambda and Generalization algorithms (Sec. 6.2.4 and Sec. 6.2.5) can be used

to automatically obtain these semantics from others that are known.

6.2.3 Combinatory Categorial Grammar

In the previous section, we pointed out that to build the meaning of a complete sentence,

the order of combination of its parts and the rules for this combination must be known. To

combine two given constituents with given λ semantics by application (or β -reduction),
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we need to know which of the constituents will be the function and which will be the

argument for this application. Combinatory Categorial Grammar(CCG)(Steedman, 2000)

can provide this kind of information. CCG has a transparent mapping between syntax and

semantics unlike other grammars, and giving compositional semantics is straightforward

(Clark and Curran, 2007). In building λ expressions, the CCG parser output would be able

to correctly dictate which λ expression should be applied to which. CCG is characterized

by CCG categories and syntactic rules.

• CCG Categories: Every lexical element is assigned to at least one category.

– Basic categories such as S, N, or NP,

– Derived categories constructed from basic categories such as S\NP or NP/N,

and

• Syntactic rules describing the concatenation operations of categories and the result-

ing category. For example, if X has category A/B and Y has category B, then the

forward application between X and Y will yield the category A (for the phrase XY )

– Application

∗ Forward Application(>) A/B B
A

∗ Backward Application(<) B A\B
A

– Composition

∗ Forward Composition(>B) A/B B/C
A/C

∗ Backward Composition(<B) B\C A\B
A\C

– Type Raising

∗ Forward Type Raising(>T) A
B/(B\A)

∗ Backward Type Raising(<T) A
B\(B/A)
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CCG Syntactic rule NL2KR operation X’s role Y ’s role

Forward Application λ -application function argument

Backward Application λ -application argument function

Forward Composition λ -application function argument

Backward Composition λ -application argument function

Type Raising keep the same λ -expression N/A N/A

Table 6.2: Mapping Between CCG Syntatic Rules and the Operations in NL2KR

Intuitively, the word “walks” has the category S\NP, meaning that if an NP (a noun

phrase) is concatenated to the left of “walks,” then we obtain a string of category S (a

sentence). Indeed, when we concatenate “John,” an NP, to the left of “walks,” we obtain

“John walks,” which is a sentence.

Table 6.2 shows the mapping between CCG syntatic rules between X and Y , and the

λ -applications NL2KR used to combine the meanings of X and Y .

Table 6.3 shows an example how CCG can be used to find the order of combination of

constituent words or phrases in the sentence “Most birds fly.” The CCG categories of all

words has been indicated. The category of “birds” is N, meaning it is a noun. The category

of “Most” is N/N, signifying a modifier of a noun. The category N/N also indicates that

if a noun is concatenated to the right of “most,” then the category of the resulting phrase is

N. Similarly, the category of “fly” is S\NP, which is common for most intransitive verbs.

It also means that “fly” will form a complete sentence (S) after concatenating with a noun

phrase (NP) from the left. In this way, we know that one possible way of combination

is that “most” and “birds” combine first to yield a phrase “most birds” of category N, as

dictated by the combination rules of CCG. The λ semantics of this phrase is obtained by

an application of the λ expression “most” as a function to the λ expression “birds” as an
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Table 6.3: CCG Parse : “Most birds fly”

Most birds fly

N/N N S\NP

λuλv.(v@X ← λu@X ,not ¬v@X) λx.bird(x) λx.x@λy. f ly(y)

>

N S\NP

NP S\NP

(λuλv.(v@X ← λu@X ,not¬v@X))@(λx.bird(x))

<

S

(λx.x@λy. f ly(y))@(λv.(v@X ← bird(X),not¬v@X))

= f ly(X)← bird(X),not¬ f ly(X).

argument. At the next level, this phrase combines with “fly” to yield the meaning of the

entire sentence as shown. A sentence can have multiple parses.

6.2.4 Inverse Lambda Algorithm

Inverse λ Algorithm is used to learn lambda expressions for words present in training

sentences. It is useful when we know the λ -expression of a phrase and the λ -expression of

one of its sub-parts (ie. one of its children in the CCG parse tree), but not of the other.

NL2KR’s inverse λ operation is based on the work proposed in (Gonzalez, 2010). It

computes a λ -expression F such that H = F@G or H = G@F if given H and G. These are

called Inverse-L and Inverse-R algorithms respectively.

In the example of “Most birds fly,”using λ -application (and β -reduction), we can get
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the λ -expression of the whole sentence when we have those of “Most birds” and “fly,”

along with the CCG parse tree of the sentence. However, when the λ -expressions of “Most

birds” and “Most” are unknown, the λ calculus operations do not help in finding them. In

this case, Inverse λ algorithm can compute the λ -expression of “Most birds” given the λ -

expressions of “fly” and that of the whole sentence. Subsequently, from the λ - expression

of “Most birds,” it can compute the λ - expression of “Most,” given the λ -expression of

“birds.”

6.2.5 Generalization Algorithm

Generalization (Baral et al., 2011; Kwiatkowski et al., 2011) is used to learn the mean-

ings of unknown words from similar words with known meanings. It is used when Inverse-

λ is not enough to learn new meanings of words. Generalization helps NL2KR learn mean-

ings of words that are not even present in the training data set. As an example, if we want

to generalize the meaning of the word “drinks” with CCG category (S\NP)/NP), and the

lexicon already contains an entry for “eats” with the same CCG category and meaning

λy.λx.eat(x,y), the algorithm will extract the template (i.e. λy.λx.PLACEHOLDER(x,y))

and apply the template to drinks to get the meaning λy.λx.drink(x,y). NL2KR can rec-

ognize if we need to convert the word to lowercase and/or to its simple form in applying

the template. For example, for the word “eats,” NL2KR found that we need to convert

“eats” to its simple form “eat;” it will do the same with “drinks” to “drink” (not “drinks”)

in λy.λx.drink(x,y).

6.3 Architecture

The NL2KR system has two sub-parts, which depend on each other: (1) NL2KR-L for

learning and (2) NL2KR-T for translating, as shown in Figure 6.3.

The NL2KR-L module takes an initial lexicon consisting of some words and their mean-

ings in terms of λ -calculus expressions and a set of training sentences, along with their
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Figure 6.3: Architecture of NL2KR-L for Semantic Learning (left) and NL2KR-T for

Translation (right)

target formal representations as the input. It then uses a CCG parser to construct the parse

trees of the training sentences in English. Next, the learning sub-part of the system uses

Inverse-λ and Generalization algorithms (Baral et al., 2011) to learn meanings of words,

which are either not present in the initial lexicon or have alternate meanings. A parameter

learning method is then used to estimate a weight for each lexicon entry (word, its CCG

syntactic category and meaning), so that the joint probability of the sentences in the train-

ing set being translated to their given formal representation is maximized. Basic transla-

tion methodology is based on Probabilistic Combinatorial Categorical Grammars (PCCG)

(Zettlemoyer and Collins, 2005, 2007, 2009; Baral et al., 2011). The result of NL2KR-L is

a new lexicon, which contains a larger set of words, theirs meanings, and their weights.

The translation module (NL2KR-T) uses the lexicon output by the Learning module and

translates sentences in test data set using the PCCG parser. Meanings of each word used

in translation are either retrieved directly from the learning lexicon or generalized from it.

Since words can have multiple meanings and associated λ -calculus expressions, weights
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assigned to each lexical entry in the lexicon helps in deciding the more likely meaning of a

word in the context of a sentence.

Figure 6.4: NL2KR’s main GUI

6.3.1 Training Corpus

The training corpus is provided to the system as a text file with each line containing a

tab-separated pair of sentences in natural language and its corresponding translations in the

desired target formal language.

< NLSentence > \t < FLSentence >

Example:

Vincent loves Mia loves(vincent , mia)

John walks walk(john)

NL2KR supports two syntaxes of the target language (Table 6.4 and Table 6.5), which

users can select by checking the check box on NL2KR’s main GUI. The first syntax is

similar to first-order logic, while the second one can be used to represent a broader range

of languages.

In some cases, it might be hard to convert directly to some target languages. For exam-

ple, a procedural language like C. In such cases, we might have to use a simpler intermedi-
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Syntax Meaning Example

Function name(x1,x2, ...) function Function name of

variables x1,x2, .... The or-

der of x1,x2, ... can not be

changed

job(x)

]x.y λx.y ]x. job(x)

x@y x@y ]x. job(x)@y =

(λx. job(x))@y

Ax(y) ∀x(y) Ax(boxer(x)) = ∀x(boxer(x))

Ex(y) ∃x(y) Ex(boxer(x))= ∃x(boxer(x))

Table 6.4: Syntax I of the Target Language

ate language as the target language, which can be later directly converted to the originally

required language.

6.3.2 Initial Lexicon

The initial lexicon or dictionary is a text file with each line containing a lexical entry.

A lexical entry is a tab-separated sequence of the word, its CCG category, and its semantic

representation in the form of a λ -calculus expression, also referred to as its meaning.

< word > \t <CCGcategory > \t < λ − expression >

Example:

boxer N #x. boxer(x)

walks S\NP #x. walks(x)
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Syntax Meaning Example

f (Function name,x1,x2, ...) function Function name of

variables x1,x2, .... The or-

der of x1,x2, ... can not be

changed

f ( job,x) means job(x)

g(Function name,x1,x2, ...) function Function name of

variables x1,x2, .... The or-

der of x1,x2, ... cannot be

changed

g(and,x,y,z) = g(and,z,x,y)

means x∧ y∧ z

l(x,y) λx.y l(x, f ( job,x))

a(x,y) x@y a(l(x, f ( job,x)),y) =

(λx. job(x))@y

f ( f orall,x,y) ∀x(y) f ( f orall,x, f (boxer,x)) =

∀x(boxer(x))

f (thereexist,x,y) ∃x(y) f ( f orall,x, f (boxer,x)) =

∃x(boxer(x))

Table 6.5: Syntax II of the Target Language

6.3.3 Syntax Override

The Syntax Override is an optional text file, each line of which contains a tab-separated

pair of a word and its CCG category. The role of the syntax override file is to override the

category for that word in the CCG parse.

< word > \t <CCGcategory >

195



Example:

walk (S\NP)/NP

In the above example, “walk” is always forced to be a transitive verb, which takes noun

phrase inputs to its left and right.

6.3.4 Learning Interface

A screenshot of the learning interface has been presented in Figure 6.5. The system

takes the file paths of the training corpus, initial lexicon, and any syntax overrides as input.

Then, it produces a newly learned lexicon as output at the path specified in the text box,

labeled “Output”. If the user does not wish to specify any syntax overrides, a blank text file

may be supplied. The “Run NL2KR-L” button starts the learning process using the algo-

rithm explained in Sec. 6.4.2. Experiment configurations may be saved; previously saved

configurations may be retrieved using the “Save Configuration” and “Load Configuration”

buttons respectively. The “Save console” button saves the output log.

6.3.5 Translation Interface

The translation interface takes the file path of the test data in the “Data” field and the

lexicon output from the Learning phase in the “Lexicon.” It also takes the location of the

syntax override file provided by the user as input. Pressing “Run NL2KR-T” starts the

translation process. A screenshot of the system is shown in 6.6.

6.3.6 CCG Parser

Figure 6.7 shows the output of NL2KR’s CCG parser on the input sentence “Every

boxer walks.” Sentences can be specified individually as shown or as a batch file. The

parser also takes the location of user-specified syntax overrides as input. The parse tree

can be zoomed in/out, and its nodes can be moved around, making it easier to work with

complex parse trees.
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Figure 6.5: Screenshot of the Learning component of NL2KR. The system takes a training

corpus, initial lexicon, and any syntax overrides as input. Then, it produces a newly learned

lexicon as output at the path specified.

6.3.7 Availability and Dependency

The latest version of NL2KR system can be freely downloaded from

http://bioai.lab.asu.edu/nl2kr. The User Manual and examples of using the system is also

available at the downloading site.

6.4 Algorithms

6.4.1 CCG Parsing

The parse of a sentence contains information about the syntactic structure of a sentence,

according to a particular grammar. A CCG parser gives us the CCG category of each word

in the sentence and a parse tree which shows how they combine according to the rules of
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Figure 6.6: Screenshot of the Translation component of NL2KR. The system takes a test

corpus, lexicon output from the Learning phase, and any syntax overrides as input. Then,

it provides a log of the translation process on the console.

CCG. Figure 6.11 shows an example output of a CCG parser. In section 6.2.3, we saw how

we can use CCG to determine the order of combination of parts in a sentence and ascertain

which part should be the function and which the argument for their combination by lambda

application. CCG parsing module is used in both the learning and translation phases of

NL2KR. It can be used as a stand-alone CCG parser; the output graphs look like the one in

Figure Figure 6.11. It can be zoomed in/out, and its nodes can be moved around, making it

easier to work with complex sentences.

The C&C parser (Curran et al., 2007) consists of a supertagger that assigns each word

of the input sentence to a CCG category. The model for this tagger has been obtained by
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Figure 6.7: CCG Parser Screenshot.

training on the CCGbank (Hockenmaier and Steedman, 2007) corpus 2 . The C&C parser

gives a single best parse tree for each input sentence. This is sometimes a limitation because

one sentence can be parsed in many ways. An example of such a sentence is “He saw the

astronomer with a telescope.” Since we need our system to learn as many new words as

possible, we want to consider multiple good parses instead of just one. The ASPCGTK

parser (Lierler and Schüller, 2012) tries to overcome this limitation by giving all possible

semantically distinct parse trees of a sentence. It initially uses C&C’s POS tagger on the

input sentence and then uses the C&C supertagger to get all possible CCG categories of

each word in the sentence. Considering each CCG category as fluent and CCG operations

(i.e. forward application, backward application as explained in section 6.2.3) as actions,
2The CCGbank corpus contains CCG parses of the sentences in the Penn Treebank
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Figure 6.8: Lambda Application Screenshot.

it solves the CCG parsing problem with a simple planning solver implemented in ASP. All

successful plans correspond to valid parse trees. This way, it does not generate a single

best parse tree, but rather many good ones. This however falls onto the other end of the

spectrum. The number of parse trees generated can range from dozens to hundreds with no

preferential ordering among them. If we choose the top-k trees, and there are m trees with

same score (m>k), we cannot guarantee that the same trees will be returned consistently

across multiple runs. To rank trees more effectively, we need to have a more accurate

scoring system.

To handle these issues, we have developed two in-house parsers possessing outputs

as k weighted parse trees, where the parameter k is provided by the user. These parsers

also allows overriding of CCG category for particular words, thus putting more weight on

those derivations which are using overridden syntax. A particular word can have multiple
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Figure 6.9: Lambda Inverse Screenshot.

overrides; in that case, all of them receive equal weighting.

The two parsers use Stanford POS tagger (Toutanova et al., 2003) to assign parts-of-

speech to words in the sentence. We empirically found it to be more accurate in our experi-

ments than C&C’s POS tagger. Next, instead of using C&C’s supertagger direcly, they use

their own supertagger to assign CCG categories to each word, which is also based on the

C&C’s rich model as input. Using the model directly instead of through the supertagger al-

lows us to change the model as needed, according to domain requirements, like if the input

corpus contains a large number of statements which are commands, for example. These are

usually imperative statements, which are not so common in the usual corpora on which the

model has been derived from. Allowing reconfiguration of the model allows us to allow

proper parsing of imperative sentences as well by adding the correct category of imperative

verbs in the model.
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Figure 6.10: Generalization Screenshot.

Figure 6.11: CCG parse tree of ”John walked home”.
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The first parser was developed using beam search with the Cocke-Younger-Kasami(CYK)

algorithm. The second one uses an idea similar to that of ASPccgTk; it also formulates the

CCG parsing problem as a planning problem but represents it in Planning Domain Defini-

tion Language (PDDL) (McDermott et al., 1998). While the second one is not faster than

the first, it certain advantages: it is easier put additional soft constraints in CCG Parsing.

These constraints could come from additional semantic parsers. For example, one con-

straint could be that a certain phrase is modifying a word “A,” not the whole verb phrase.

In the following paragraphs, we will show more details about the second parser.

CCG parsing problem as a planning problem but represents it in PDDL. The applica-

tions in CCG grammar such as the forward and backward application operations, described

in PDDL as actions with preconditions and effects, have been shown in Figure 6.12 for il-

lustration. The rest of the knowledge in CCG parsing are encoded as planning domain and

fluents. The facts in a particular sentence are represented as factual input of the planning

problem.

The probability of each CCG category of each word in the sentence is used to compute

the total probability of the entire parse tree. The initial condition for the planning problem

consists of the various CCG categories assigned to each word along with their probabilities.

We then use Metric-FF (Hoffmann et al., 2003), a planner solver that can handle numeric

values, to solve the planning problem. Given the initial state specifying the categories of

each word, all possible CCG combinatory actions, and the goal of achieving a complete

sentence category (S) at the root of the parse tree(Figure 6.13), the planner finds all of the

plans. These plans correspond to valid parses and have a probability score associated with

them. As a result, we get a ranked list of parses. Using this solver gives us a huge advantage

in speed and the ability to handle numerical values properly.

In addition, the system also provides the user the ability to customize individual parses

unlike the C&C parser through the use of Syntax Overrides passed as an input into the
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parser. This will give the category a probability of one for the word in the supertagger. It

should be noted that the parse tree might still not have the specified category if it is not

compatible with the categories of the rest of the words.

For illustration, the steps involved in obtaining the parse of “John walked home” is

shown in Table 6.6. An overview of the planning process is shown in Figure 6.14.

One of the quality measures of a CCG parser is consistency. A CCG parser is consis-

tent if the order of the weighted parse tree remains same over multiple parses of the same

sentence, and sentences having similar structures have identical ordering of the derivations.

This has a direct impact on the translation process. Since a derivation in CCG defines the

structure of the sentence, a consistent CCG parser provides a better model for the rules,

which govern how the words combine together in the target language. If sentences hav-

ing similar structures are derived in different ways, the Generalization algorithm suffers,

leaving a negative impact on NL2KR’s performance. NL2KR’s CCG Parser achieves con-

sistency through the use of Stanford Dependency Parser and parsing algorithms. Stanford

parser provides the Part Of Speech (POS) tags for the constituents in a sentence which are

then fed to parsing algorithms to come up with the weighted parse trees. Parsing algorithms

inherently ensure that the order of the derivations of a sentence does not change over mul-

tiple parses. Because sentences having identical structures should have identical POS tags

for its constituents, NL2KR’s CCG parser exhibits near-consistent behavior.

6.4.2 Multistage Learning Approach

Learning the meanings of words is the major component of our system. The inputs of

the learning component are a set of training sentences, their target formal representations,

and an initial lexicon consisting of some words and their meanings in terms of λ -calculus

expressions. The output of algorithms is the final lexicon (dictionary), which is a list of

4-tuples (word, CCG category, meaning, weight).
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(: action forward_application

:parameters (?x ?y ?z - category ?l1 ?l2 - location)

:precondition

(and

(present ?x ?l1) (present ?y ?l2)

(next ?l1 ?l2)

(not (resolved ?l1)) (not (resolved ?l2))

(fa ?x ?y ?z)

)

:effect

(and

(not (present ?x ?l1))

(not (present ?y ?l2))

(present ?z ?l1)

(closing_needed ?l2)

)

)

(: action backward_application

:parameters (?x ?y ?z - category ?l1 ?l2 - location)

:precondition

(and

(present ?x ?l1) (present ?y ?l2)

(next ?l1 ?l2)

(not (resolved ?l1)) (not (resolved ?l2))

(ba ?x ?y ?z)

)

:effect

(and

(not (present ?x ?l1))

(not (present ?y ?l2))

(present ?z ?l1)

(closing_needed ?l2)

)

)

Figure 6.12: Forward and Backward application described as PDDL actions
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Table 6.6: CCG Parsing Steps : “John walked home”

Step Example
Label location of words John(L0) walked(L1) home(L2)

Tag words with part of speech
using Stanford Parser

John/NNP walked/VBD home/NN

Tag words with (multiple)
corresponding CCG

John: N/N(0.68), N(0.77)...

categories using C&C
Parser’s model trained on

walked: ((S\NP)/PP)/NP(0.42), S\NP)/NP(0.77)

CCGBank S\NP)/S(0.52)...
home: N/N(0.21), N(0.80)...

Solve parsing as planning
problem

Initial state: CCG categories of words

Actions: Combinatory rules of CCG
Eg. Forward and backward application, type raising etc.
Goal: Get S as final category
Plan:
1.SELECT (S\NP)/NP L1
2.SELECT N L0
3.SELECT N L2
4.TRANSFORM N NP L2
5.FORWARD APPLICATION
((S\NP)/NP) NP S\NP L1 L2
6.CLOSE L1 L2
7.TRANSFORM N NP L0
8.BACKWARD APPLICATION NP S\NP S L0 L1
9.CLOSE L0 L1

Get parse from plan See Figure 6.11
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(:goal

(and

(and

(resolved l1) (resolved l2) (resolved l3))

(or

(present s l0)

(present np l0)

)

)

)

Figure 6.13: Parsing goal defined in PDDL. Resolved is a fluent which indicates that a lo-

cation has successfully combined with another to yield a new category at the other location.

In this case, the goal will be achieved when the result of combination yields an S or a NP at

position zero(l0) and the rest of the words (l1,l2 and l3) have been successfully combined

in prior states.

Let us consider an example. Suppose the input sentence is How big is Texas and its

CCG parse tree is shown in Fig.6.15. Each word in the sentence is represented by a node

in the tree; its meaning is given right below as an λ -expression. Symbol ] is used to

represent λ . Meanings of phrases How big and is Texas are obtained by combining the

meanings of their words: How and big, and is and Texas, according to the CCG grammar.

For example, the CCG categories of is and Texas are (S\ NP)/NP and NP; they are com-

bined (through forward application) to form category NP of is Texas. This suggests that

in the lambda application to combine meanings ]x.x and stateid(texas) (of is and Texas

respectively), ]x.x is the function and the other is argument. The meaning of is Texas is

thus ]x.x@stateid(Texas) = stateid(Texas). Similarly, we have the meaning of How big is

(]x.]y.answer(x@y))@(]x.size(x)) = ]y.answer((]x.size(x))@y) = ]y.answer(size(y))
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Figure 6.14: CCG Parsing Overview

When we combine How big and is Texas, the meaning stateid(Texas) of is Texas must

be used as the function, as stated by CCG. However, stateid(Texas) does not have any free

variables, and thus cannot be used as a function. We therefore do not have any meaning

of How big is Texas. The meaning of the whole sentence How big is Texas is always

given in the training set; suppose that it is answer(size(stateid(Texas))). Since meanings

of How big and is Texas cannot be combined to have the meaning of How big is Texas,

at least one of them is incorrect. We can assume that one of them is correct and use the

inverse lambda algorithm (also need the meaning of parent, which is How big is texas)

to learn the other. For example, assuming the meaning ]y.answer(size(y)) of How big

is correct; the meaning of How big is Texas is known as answer(size(stateid(Texas)));

using inverse lambda algorithm, we can calculate the new meaning of is Texas, which
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Figure 6.15: CCG Parse of “How big is texas”.

is ]x.x@stateid(Texas). Note that we can verify the correctness of this calculation by

applying ]y.answer(size(y)) to ]x.x@stateid(Texas) to get back the correct meaning of the

whole sentence answer(size(stateid(Texas))).

Using the new meaning of is Texas, we can go further down to calculate new meanings

of is and Texas, and do the same thing for the branch of How big.

Through the example, we can come up with the simple learning idea: investigate all

possible meanings of the sentence, then extensively use inverse algorithm to learn new

meanings. However, if each of n words in the sentence have k meanings, we would have to

check kn combinations; each will form a parse tree similar to the one in Fig.6.15. For each
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Figure 6.16: Current meanings in learning sentence ”How big is texas”.

tree, we then have to check each node to see if we can use inverse algorithm to learn new

meanings. This naive approach can work in small examples, but it does not scale well.

Before introducing another approach, we need to define a few terminologies and prin-

ciples that will be followed.

1. At any time in the learning process, we call the meanings queried from the lexicon

current meanings (of words). These meanings can be from initial lexicon or learned

in previous learning iterations and saved to lexicon. For example, big has two current

meanings in Fig. 6.16.
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2. Applying these meanings to the sentence/parse tree (like the one in Fig.6.15), we

have the current meanings of phrases. For example, in Fig. 6.16, is Texas has two

current meanings.

3. If one current meaning of the whole sentence is the same as its given meaning (given

in the training set), we finish learning process.

4. We call the given meaning of the sentence the expected meaning.

5. Using this expected meaning (at the root of the tree) and current meanings of root’s

children, inverse algorithm gives us expected meaning of root’s children.

6. If one node does not have any expected meaning, we do not learn further down that

node.

7. We can repeat the process until we got expected meanings of the words (at leaf

nodes). These expected meanings will be saved to the lexicon and will be used as

current meanings in the next learning iteration.

Observing that two lambda expressions do not always combinable (i.e. ]y.answer(size(y))

to stateid(texas)), we propose a new learning algorithm. Instead of generating parse trees

for each sentence - which can yield up to approximately kn parse trees - we keep only one

parse tree; and at each node, we keep two priority queues: one for current meanings and

one for expected meanings. Each of these meanings is assigned one weight for ranking

purposes. This new approach has a lot of advantages compared the previous ones:

• Although the worst-case complexity is still similar to the previous, the average case

is better. Since two lambda expressions are not always combinable, if node A and

B each have k current meanings, their parent has less than k2 meanings. Thus, the

whole sentence has much less than kn current meanings on average.
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• It takes much less time to compute and less space to store the new structure.

• It is easier to keep track of the new meanings (newly learned in current learning

iteration) so that in each iteration, we can focus on learning and updating only new

meanings.

• More importantly, we can assign weight for each meaning and prioritize learning on

meanings with highest weights.

Figure 6.17: Expected meanings

The new learning process (named BottomUp-TopDown in Interactive Multistage Learn-

ing Algorithm below) is similar to that of the one in the previous example. First, the queues
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of current meanings are built from bottom up (Fig. 6.16). Then, the queues of expected

meanings are built top-down from the root. The difference is that one node can now have

multiple expected meanings. Fig 6.17 shows the first step of the top-down learning process.

The expected meaning of the whole sentence is ]y.answer(size(stateid(texas))). Using this,

we can learn the expected meaning of How big: ]y.answer(size(y)). Because How big does

not have any current meaning, we cannot learn any expected meaning of is Texas. Learning

on the branch of is Texas will be stopped due to the fact that there is no expected meaning to

continue on. On the How big branch, How does not have any current meaning, so we have

no expected meaning of big. Although big has two current meanings, only ]x.size(x) can

be used to compute expected meaning of How. The expected meaning ]x.]y.answer(x@y)

of How is saved to the lexicon, preparing for the next iteration.

In the next learning iteration, current meanings are again built bottom-up (see Fig.

6.18). This time, How has one current meaning, making How big, and then How big is

Texas, to have two current meanings. The first meaning of How big is Texas is indeed the

expected meaning given in the training set; we have successfully learned this sentence and

the learning process stops.

In the following, we present the Interactive Multistage Learning Algorithm (IMLA)

following the idea we have presented in the example above. However, IMLA has a few

more extra features:

1. When it cannot figure out the meanings of words using Inverse Lambda algorithm, it

will attempt Generalization.

2. After a word is generalized, it will be generalized again to get more (possibly) new

meanings once there is a relevant change in the lexicon. For example, if the word

Mississippi is generalized from Texas to have meaning stateid(Mississippi), it is kept

on a waiting list. If we learn (by inverse) a new meaning of Colorado (same category
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Figure 6.18: New iteration

NP as Mississippi), says riverid(Colorado), Mississippi will be generalized again to

get new meaning riverid(Mississippi).

3. Each current and expected meaning can be new or NOT new. We keep track of and

update this property accordingly so that at any learning iteration, we only concentrate

on the new meanings and not all of the meanings we have learned thus far.

4. We assign weights for each meaning we obtain, like high weights for meanings in

initial lexicon, high weights for meanings learned by inverse, and lower weights for

the ones learned by generalization, for example.
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Algorithm 1 IMLA algorithm
1: function IMLA(initLexicon,sentences, sentsMeanings)
2: regWords← /0
3: generalize← false
4: lexicon← initLexicon

5: repeat
6: repeat
7: repeat
8: for all s ∈ sentences do
9: newMeanings← BT(s,lexicon,sentsMeanings)

10: lexicon← lexicon ∪ newMeanings

11: for all n ∈ newMeanings do
12: ms← GENERALIZE(regWords, n)
13: lexicon← lexicon ∪ ms

14: end for
15: end for
16: until newMeanings = /0
17: if generalize=false then
18: generalize← true
19: for all t ∈ un f inishedSents do
20: words← GETALLWORDS(t)
21: ms← GENERALIZE(words)
22: lexicon← lexicon ∪ ms

23: regWords← regWords ∪ words

24: end for
25: end if
26: until newMeanings = /0
27: INTERATIVELEARNING

28: until un f inishedSents = /0 OR userBreak
29: lexicon← PARAMETERESTIMATION(lexicon,sentences)
30: return lexicon

31: end function

215



Interactive Multistage Learning Algorithm (IMLA) (Algorithm 1) runs many itera-
tions, each having multiple stages. In each iteration, (Stage 1) initially gets all sentences
that we have not finished learning and tries the BottomUp-TopDown algorithm (Algorithm
2) to learn all possible meanings (by Inverse-λ ). Each new meaning learned from this pro-
cess is used to generalize the words on a waiting list. Initially, this waiting list is empty and
will be added in stage 2. When no more new meanings are able to be learned through the
BottomUp-TopDown algorithm, IMLA enters stage 2.

(Stage 2) IMLA gets all of the sentences for which the learning is not finished (un-
finished sentences) and applies the generalization process on all of the words from those
sentences. At the same time, it puts these words onto the waiting list, so that from now on,
BottomUp-TopDown will try to generalize new meanings for them when it learns relevant
meanings. After that, IMLA will return to stage 1. Next time, after exiting stage 1, it goes
directly to stage 3.

(Stage 3) When both aforementioned stages cannot learn all of the sentences, the Iterative-
Learning process is invoked, and all of the unfinished sentences are shown on the interactive
GUI (Fig.6.19). Users can skip or provide more information on the GUI and the learning
process is continued.

After finishing all stages, IMLA calls the ParameterEstimation algorithm to add a
weight to each lexicon’s tuple. Please see 6.4.3 for more details.

IMLA attempts to learn with the BottomUp-TopDown algorithm first, where Inverse-λ
is used to get new meanings; this provides the highest quality meanings. When this fails,
IMLA tries Generalization and then retries the BottomUp-TopDown algorithm again.

BottomUp-TopDown learning algorithm: For a given sentence, the CCG parser is
used to get the CCG parse trees like the one of how big is Texas in Fig.6.19. For each parse
tree, two main processes are called, namely bottom up and top down. In the first process,
(Fig.6.3) all meanings of the words in the sentences are retrieved from the lexicon. These
meanings are populated as leaves of a parse tree (see Algorithm 6.19). These meanings are
combined in a bottom-up manner to have the meanings of phrases and the whole sentences.
We call these meanings current meanings.

In the top-down process, using Inverse-λ algorithm, the given meaning of the entire
sentence (called the expected meaning of the sentence) and the current meanings of the
phrases, we calculate the expected meanings of the each phrase from the root of the tree
to the leaves. For example, given the expected meaning of how big is Texas and current
meaning of how big, we use Inverse-λ algorithm to get the meaning (expected) of is Texas.
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This expected meaning is used alongside current meanings of is and/or Texas to calculate
the expected meanings of is and/or Texas. The expected meanings of leaf nodes we have just
learned will be saved to the lexicon and will be used in other sentences and in subsequent
learning iteration. The top-down process is ceased when the expected meanings are same as
the current meanings. Furthermore, in both the bottom-up and top-down processes, search
beam algorithm is used to speed-up the learning processes.

Algorithm 2 BottomUp-TopDown (BT) algorithm
1: function BT(sentence,lexicon,sentsMeanings)
2: parseTrees← CCGPARSER(sentence)
3: for all tree ∈ parseTrees do
4: t ← BOTTOMUP(tree,lexicon)
5: TOPDOWN(t,sentsMeanings)
6: end for
7: end function

Interactive learning:

Figure 6.19: Interactive learning GUI. The boxes under each node show the corresponding
phrases [CCG category], the expected meanings, and the current meanings. Clicking on
the red node will show the window to change the current meaning (CLE).
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In the interactive learning GUI, when users give additional meaning of word(s), the
Lambda Application or Inverse-λ is automatically called to update the new meaning to
related word(s). Once satisfied, users can switch back to the normal learning mode so that
NL2KR can continue learning automatically.

Let us look at an example of how this process works. Let us consider the question “How
big is Texas?” with meaning answer(size(stateid(Texas))) (see Fig.6.19).

If, at the beginning, NL2KR has the meanings of all three words how-λx.λy.answer(x@y),
big-λx.size(x) and Texas-stateid(Texas), in bottom-up process, meanings of how and big

are combined to have the current meaning of how big-λx.answer(size(x)). Since the mean-
ing of is is unknown and we do not have current meaning of is Texas, in the top-down pro-
cess, the expected meaning of How big is Texas-answer(size(stateid(Texas))) is known;
current meanings of how big is also known. Using them in the Inverse-λ algorithm, we can
have the expected meanings of is Texas-λx1.x1@stateid(texas). Using this expected mean-
ing and the current meaning Texas-stateid(Texas), we can calculate the expected meaning
of is-λx2.λx1.x1@x2. This newly learned expected meaning is saved into the lexicon. In
the next iteration, the meaning of all the words in the question are known. Combining them
all will give us the correct meaning of the entire question. Thus, the learning algorithm
stops and Iterative-Learning is never called.

If initially, we have only two meanings, Texas-stateid(Texas) and big-λx.size(x), NL2KR
initially attempts to learn, but is not able to finish learning the whole question; it calls
Iterative-Learning, which shows the interactive GUI (see Fig.6.19). If we provide that how

means λx.λy.answer(x@y), NL2KR will combine its meaning with big to have the mean-
ing how big-λx.answer(size(x)). It will then use Inverse-λ to figure out the meaning of is

Texas and then the meaning of is. Now, all of the meanings are combined to have the cur-
rent meaning answer(size(stateid(Texas))) of How big is Texas. This meaning is the same
as the expected meaning, so we know that the question is successfully learned. If users
choose Retry Learning, the program will go back to IMLA, find that all of the sentences
are learned, and then promptly exit.

6.4.3 Parameter Estimation

The Parameter Estimation module estimates a weight for each word-meaning pair such
that the joint probability of the training sentences being translated to their given represen-
tation is maximized. It uses Probabilistic Combinatorial Categorical Grammars (PCCG)
(Zettlemoyer and Collins, 2005, 2007, 2009).

Given a sentence S, its translation is M in argmaxM P(M|S;Θ) where P(M|S;Θ) is the
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probability of translation of S to M, given the parameter vector. As a particular translation
can be obtained using multiple parse trees, P(M|S;Θ) is defined as ∑T P(M,T |S;Θ). The
probability P(M,T |S;Θ) is defined using the feature vector f̄ (M,T,S) and a log linear
model as follows:

P(M,T |S;Θ̄) = e f̄ (M,T,S).Θ̄

∑(M,T ) e f̄ (M,T,S).Θ̄

The feature vector counts the number of times each lexical entry is used in a parse tree T .
A lexicon Λ and a set of training data (Si,Mi), i = 1, ..,n, where Si is a sentence and Mi is
its translation are used to find Θ that maximizes L(Θ,Λ), given by

P(M1|S1;Θ)×P(M2|S2;Θ)× ...×P(Mn|Sn;Θ)

Using this parameter estimation method, the lexicon is updated by adding weights for each
lexical entry.

Unlike the previous works, here, we add another step of parameter estimation. In-
stead of using the default initial values of parameters, we first calculate these values (initial
weights of each (word, CCG, meaning) tuple ) based on number of times the corresponding
tuples can be used to get the correct/incorrect meanings of the whole sentences. This step
helps our parameter estimation process converge much faster.

6.4.4 Translation Algorithm

6.4.5 Translation

The goal of this module is to convert input sentences into the target formalism using the
lexicon previously learned. The algorithm used in Translation module (Fig.3) is similar to
the bottom-up process in learning algorithm but the Generalization is used first to guess the
meanings of unseen words, and the validity of the output meanings is verified; then, they
are ranked.

6.5 Experimental Evaluation

We have used NL2KR on various domains, namely Jobs, GeoQuery, and BioKR. The
first two corpora are commonly used for the evaluation of sematic parsers. BioKR is a new
corpus where the meaning of a sentence is represented in Answer Set Programming (hence-
forth, ASP) language, unlike Prolog, which is used in the other two corpora. Evaluation
of NL2KR is done slightly differently from that of evaluation methods of other statistical
translation systems. Rather than just reporting performance numbers for our system, our
goal is to gauge the amount of effort compared to the return.
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Algorithm 3 Translation algorithm
1: function TRANSLATE(sentence, lexicon)
2: candidates← /0
3: parseTrees← CCGPARSER(sentence)
4: for all tree ∈ parseTrees do
5: GENERALIZE(tree);
6: t ← BOTTOMUP(tree)
7: candidates← candidates ∪ t

8: end for
9: out put ← VERIFY-RANK(candidates)

10: return out put

11: end function

We compare the performance of our system for the GeoQuery and Jobs corpus with the
following recently published, directly-comparable works, namely, the FUBL (Kwiatkowski
et al., 2011), UBL (Kwiatkowski et al., 2010), λ -WASP (Wong and Mooney, 2007), ZC07
(Zettlemoyer and Collins, 2007), and ZC05 (Zettlemoyer and Collins, 2005) systems. For
both of the corpora, we use the same setup as FUBL, ZC07, and ZC05. The BioKR corpus
initial experimentation has been done using 10 fold cross-validation.

6.5.1 Corpora

GeoQuery

GeoQuery (Zelle and Mooney, 1996) is a corpus containing questions which can be exe-
cuted against a database of the geographical information of the United States. It contains a
total of 880 questions their meanings in a Prolog. We follow the standard training/testing
split of 600/280. An example sentence meaning pair is shown below.

Question: How long is the Colorado river?

Meaning : answer(A,(len(B,A),const(B,riverid(colorado)),river(B)))

Jobs

The Jobs (Zelle and Mooney, 1996) dataset contains a total of 641 job related queries and
their translations in Prolog. The queries can be directly executed against a database of job
listings, where each of them specifies a list of criteria for searching jobs. An example sen-
tence meaning pair from the corpus is shown below.
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Question: What jobs are there for programmers that know assembly?

Meaning : answer(J, (job(J),title(J,T),const(T,’Programmer ’),

language(J,L),const(L,’assembly ’))))

BioKR Corpus

BioKR is a corpus of deep reasoning “How” biology questions, collected from a the Biol-

ogy Questions and Answers Site 3 for testing a reasoning-based QA system. The required

target language is Answer Set Programming(ASP) (Gelfond and Lifschitz, 1988) but since

the ASP format is long and clumsy, instead of converting to it directly, we use a more

concise intermediate language which can be directly converted into ASP (Table 6.7 Col 3.)

4

Recognizing and correctly parsing biological entities is a challenge for parsers trained

on usual English text. This problem is usually resolved by preprocessing the corpus to

replace all biological entities by place-holders. Our goal was to evaluate the translation

process in isolation, without being affected by an Entity Tagger’s perfomance. To do this,

we identified the substrings that were arguments of any predicates in the formal represen-

tation and replaced them by place-holders. For e.g. the sentence, “How does vitamin C

act in the body?” with translation“r2(’vitamin C’, work) ∧ scope(body) ∧ type(how)” was

replaced by the sentence, “How does ent0 act in the ent1?”. An example of a preprocessed

sentence in the corpus is shown in Table 6.7 Column 4. This corpus consisted of more than

100 manually annotated questions.

6.5.2 Initial Dictionary Formulation

GeoQuery First of all, we select a set of 100 structurally different sentences from the

training set and bootstrap the learning process with an initial dictionary. This dictionary

contains nouns for Geoquery entities (such as states, rivers, or cities, etc) and question
3http://www.biology-questions-and-answers.com
4Note that r3(x,y,z) is just a generic relation which means that x and z have the relation type y.

221



Table 6.7: BioKR Corpus

English Formal Lang.(ASP) Intermediate Lang. Preprocessed

How are sunlight

and sugar related

in photosynthesis

question(q1). has(q1, type,

how). has(q1, category, re-

lation). has(q1, param1,

sunlight). has(q1, param2,

sugar). has(q1, scope, pho-

tosynthesis)

r3(sunlight, related

sugar) ∧ type(how) ∧

scope(photosynthesis)

r3(ent0, related,ent1) ∧

type(how) ∧ scope(ent2)

words. The meanings of those words were easy to obtain; they follow simple patterns. We

then train the translation system on those selected sentences. Because that dictionary is not

enough for learning all the sentences, the learning process stops and shows the interactive

learning GUI, asking for further meanings. 45 more meanings were provided with the

help of the interactive learning GUI, increasing the total meanings initially given to 119

(119 word meanings tuples (Fig. 6.20, #<word, category, meaning >). From this, the

NL2KR system learned 1793 tuples, which clearly shows that the amount of initial effort

is substantially less compared to the return. These numbers illustrate the usefulness of the

NL2KR GUI, as well as the NL2KR learning component. One of our future goals is to

further automate the process and reduce the GUI interaction part.

Figure 6.20 shows the size of the learned dictionary, the initial dictionary, and the num-

ber of meanings humans need to derive using interactive GUI on three bases: (1) number

of unique meanings across all the entries in the dictionary, (2) number of unique <word,

category, meaning> entries, (3) and number of unique <word, category> pairs. Please

note that the reported initial dictionary includes the GUI driven meanings.

The total number of unique <word, category> pairs in the training corpus provides

a lower bound on the size of the ideal output dictionary, since each unique <word, CCG

category> pair must have at least one meaning.

222



Figure 6.20: Comparison of Initial and Learned dictionary for GeoQuery corpus on the

basis of the number of entries in the dictionary, number of unique <word, CCG category>

pairs and the number of unique meanings across all the entries. “GUI Driven” denotes the

amount of the total meanings given through interactive GUI and is a subset of the Initial

dictionary.

There were many words, such as “of” and “in,” that had multiple meanings for the

same CCG category. So one <word, category> may have multiple meanings. The ideal

dictionary can be much bigger than the lower bound. The learned dictionary contained

27 and 42 different CCG categories for GeoQuery and Jobs corpora respectively. The

minimum number of unique meanings for CCG category was 1 for both of them, whereas

the maximum went to 149 and 132 respectively.

We also evaluate the total effort one must spend for the experiments. To perform the

experimentations on GeoQuery corpus, a student, who had no prior knowledge about the
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system and CCG formalism, took 40 hours. However, he took around 20 hours for the

next experiment on Jobs corpus. Out of these 60 hours, a total of 3 hours were spent in

interactive learning mode. NL2KR expects users to know about Lambda application and

the six combinators of CCG.

Figure 6.21: Comparison of Initial and Learned dictionary for Jobs corpus.

Jobs For the Jobs dataset, we followed a similar process as that of the GeoQuery dataset.

120 structurally different sentences were selected, and an initial dictionary of size 127 was

constructed. From them, NL2KR yields a learned dictionary of size 1,572. Fig. 6.21

compares the initial and learned dictionary for Jobs. Again, we can see that the amount of

initial effort is substantially less in comparison to the return.
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System Recall Precision F1

ZC05 79.3 96.3 87.0

ZC07 86.1 91.6 88.8

λ -WASP 86.59 91.95 89.19

UBL 87.9 88.5 88.2

FUBL 88.6 88.6 88.6

NL2KR 92.1 91.1 91.6

Table 6.8: Geo880

System Recall Precision F1

UBL 81.8 83.5 82.6

FUBL 83.7 83.7 83.7

λ -WASP 75.6 91.8 82.9

NL2KR 92.4 81.0 86.3

Table 6.9: Geo250
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System Recall Precision F1

ZC05 79.3 96.3 87.0

ZC07 86.1 91.6 88.8

λ -WASP 86.59 91.95 89.19

UBL 87.9 88.5 88.2

FUBL 88.6 88.6 88.6

NL2KR 94.03 95.43 94.01

Table 6.10: Jobs640

System Recall Precision F1

NL2KR 93.0 98.0 95.0

Table 6.11: BioKR

6.5.3 Results and Discussion

Tables 6.8 , 6.9, and 6.10 present the comparison of the performances of NL2KR on the

GeoQuery and Jobs domain with other recent works. NL2KR obtained a 91.1% precision

value, 92.1% recall value, and a F1-measure of 91.6% on GeoQuery (Fig. 6.22, Geo880)

dataset. For Jobs corpus, the precision, recall, and F1-measure were 95.43%, 94.03%, and

94.01% respectively. Figure 6.22 shows those performances on a precision-recall space.

We draw the F1 curves (all points on a curve have same F1 score) in the figure to illustrate

the differences in F1-score of the systems.

In all cases, NL2KR achieves state-of-the-art recall and F1 measures, and it signifi-

cantly outperforms FUBL on GeoQuery. Table 6.11 shows the results for BioKR .
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Figure 6.22: Comparison of Precision, Recall and F1-measure on GeoQuery and Jobs

dataset.

We believe NL2KR’s high recall is due to the higher quality meanings learned by

NL2KR. These meanings are more general and reusable; meanings learned from one sen-

tence are more likely to be applied again in the context of other sentences. Another key

factor is the consistency of our CCG parser, which allows Generalization to work more

effectively in the process of translation. By consistency, words’ CCG categories and CCG

parse trees are similar in sentences, having similar syntactic structures.

Analyzing sentences that NL2KR was not be able to translate, we found that the culprit

is their structural differences. Their structures are not identical to any of the sentences

present in the training dataset, or they could not be constructed by combining word/CCG
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category pairs observed in the training sentences.

For sentences in which NL2KR gives the wrong translation, we found that NL2KR

usually has a correct meanings as one of the possible meanings. However, the correct

meanings were not the picked because their weights were not the top ones. It may be noted

that although our precision is lower than that of ZC05, ZC07, and WASP, we have achieved

significantly higher F1 measures than those of the others. For BioKR corpus, the number

of meanings for each word is lower than GeoQuery corpus, which contributes to the higher

precision in BioKR corpus.

6.6 Take Out Lessons

From our experience in developing and doing experiments with NL2KR, we have

learned some lessons (about how to use NL2KR more effectively) that we would like to

share with other users.

6.6.1 What Is a Good Corpus?

A good training set should have sentences ranging from easy to hard. This would help

NL2KR gradually enlarge the dictionary and require less input from user.

6.6.2 What Is Structure the Target Language Should Be?

Some target languages are not optimal for approaches like NL2KR. For example, con-

sider one translation in Prolog from Jobs640 corpus.

answer(J, job(J),language(J,L), const(L,’java ’))

Since J does not need to be fixed, we can replace J by X , but still have correct mean-

ings. In order to let NL2KR capture this property, we need to represent translation with

]x.answer(x, job(x), language(x, l),const(l,′ java′))). This way, when the translation is

]y.answer(y, job(y), language(y, l),const(l,′ java′))), NL2KR can still recognize the equiv-

alence.
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Suppose the meaning of the question is

answer(X ,count(B,state(B) ∧ loc(B,const(O,countryid(usa))),X)). As there are appear-

ances of variables X , B, and O, the meaning of words in the question must have those

variables. The quality of the translation system trained by NL2KR will depend on the qual-

ity of the initial dictionary. If we slightly, “arbitrarily” split the meaning, most of the time,

one word’s meaning (i.e. of “state”) will contain variable “B” and other words’ meanings

(i.e. “in”) will also contain “B.” Although the system can successfully learn the meaning

of each word in question, those meanings are very specific to this question and cannot be

used for similar sentences. In other words, the trained system more or less “remembers”

how to translate this question and is likely to not perform well with different questions.

The proper way to proceed, in our experience, is to use λ variables like x in

]x.answer(x, job(x), language(x, l),const(l,′ java′))). So for

]x.answer(x, job(x), language(x, l),const(l,′ java′))), we also need to either rewrite to elim-

inate variable l or introduce λ l to have something that looks like

]x.]l.answer(x, job(x), language(x, l),const(l,′ java′))).

6.6.3 How to Construct the Initial Lexicon

Constructing a good initial lexicon plays a crucial role in building a translation system.

For most users, we recommend to follow the guidelines below.

1. Pick a small number of sentences; start with easy ones.

Example

• how big is texas : answer(size(stateid(texas)))

• how large is texas : answer(size(stateid(texas)))

• where is dallas : answer(X , loc(cityid(dallas),X))

• what is the area of texas : answer(area(stateid(texas)))

229



2. Observe and find the common patterns:

• Texas = stated(Texas)

• Dallas = cityid(Dallas)

• Big ∼ size ∼ λx.size(x)

• Area ∼ area ∼ λx.area(x)

• Is ∼ no specific meaning, probably has λx.x meaning.

• The ∼ no specific meaning, probably has λx.x meaning.

• Of ∼ no specific meaning, probably has λx.x meaning.

• How ∼ answer( )

• Where ∼ answer(X, loc( ,X))

• What ∼ answer( )

3. Build the initial dictionary, starting with simple sentences, adding one by one. Use

the iterative GUI. Can start with empty initial dictionary.

4. Pay attention to the CCG parse trees - which is the argument, which is the function

of the lambda application.

5. Give the meaning that we are most confident of; try to use the interactive GUI to

figure out the others.

6. Skip the hard sentences until we gain more experience.

7. Update the initial dictionary after we successfully learned some sentences.
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6.6.4 Patterns for λ Expression

We also include in the NL2KR’s document many tricky and difficult patterns for λ

expressions that users can employ in their application. For example, constructing G′ from

G: G′ = λx.x@G gives us the property: G′@F = F@G. This technique, called flipping,

is very useful when the desired direction of λ -application is different from the one pointed

by CCG parse tree.

6.7 Related Work

Montague’s approach has been widely used in (Blackburn and Bos, 2005; Zettlemoyer

and Collins, 2005; Costantini and Paolucci, 2010; Baral et al., 2011; Kwiatkowski et al.,

2010, 2013; Tang and Mooney, 2001; Ge and Mooney, 2005; Kate and Mooney, 2006;

Wong and Mooney, 2006, 2007) to translate natural language to formal languages.

We now compare our system with (Zettlemoyer and Collins, 2005) (henceforth, ZC05)

and (Kwiatkowski et al., 2010)(henceforth, KZGS10), which are the most similar to our

work in that they also use Montague’s approach for converting natural language sentences

to logical form and uses CCG formalism to derive the syntactic mode of combination of the

constituents present in the sentence. However, the learning algorithms in ZC05 (henceforth,

Template Based GENLEX) and in KZGS10 (henceforth, Unification Based GENLEX) are

significantly different from IMLA.

Template Based GENLEX algorithm, along with an initial dictionary, requires the user

to provide the semantic templates for all words. A semantic template is a λ -expression (e.g.

λx.p(x) for an arity one predicate), which describes a particular pattern of representation

in that formal language. From these templates, the learning algorithm extracts the semantic

representation of the words from the formal representation of a sentence. Entries in lexicon

are created by pairing each possible substring in the natural language sentence with the

extracted meanings, and ranking the associations according to some goodness measure.
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However, manually coming up with semantic templates may not be a good idea, since

it is laborious and requires deep understanding of translation to the target language.

UBL (Kwiatkowski et al., 2010) learns the meanings in a brute force manner, restricting

the choices of formal representation. Given a sentence S and its representation M in the re-

stricted formal language, it breaks S into two smaller substrings S1,S2; M into two λ -terms

M1,M2 (which combine to produce M) using an algorithm called higher-order unification.

It then considers the meanings of the words/phrases as the pairs < S1,M1 > and <

S2,M2 >, and it recursively learns by breaking S1,M1,S2,M2 further. Because there are

many ways to break S as well as M, UBL needs to consider all possible splittings and

their combinations, “outputs a large number of entries” (Artzi et al., 2013) (word-meaning

pairs) which will obviously limit the scalability. More importantly, the algorithm to split

M imposes various restrictions which severely limits its applicability to new applications.

For example, it limits the number of conjunctions in a sentence, and forms of functional

application on the meaning represent language.

Consider a sentence “I want a flight to New York” with a meaning “h”. UBL first finds

all possible substring pairs such as

• “I” vs. “want a flight to New York”

• “I want” vs. “a flight to New York”

• ...

• “I want a flight to” vs. “New York”

• “I want a flight to New” vs. “York”

For each split, the corresponding CCG categories are assigned to each substring of the

pairs. The meaning “h” then also be split into to pairs of f and g such that h = f (g) or

h = λx. f (g(x)). For one particular mapping between two pairs, the process is repeated
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until all words are processed. Doing it this way, the CCG parse tree structure generated

is not necessarily making sense or “equivalent” to English grammar, or in author’s words

(Artzi et al., 2013), the “parse structure is latent”.

Though similar in spirit, NL2KR takes a different angle on the learning algorithm and

formulates the learning problem as a dynamic programming problem. Instead of inducing

CCG categories, our parser integrates information from state-of-the-art parsers like the

Stanford parser (Socher et al., 2013) to get linguistically robust parse trees.

For example, for the sentence “I want a flight to New York,” we will first get the CCG

parse tree. It then uses Inverse and Generalization algorithms to proceed in a “bottom-

up then top-down” fashion. It begins with meanings of words from the initial dictionary

and those obtained by Generalization, and uses the Inverse λ algorithm to find the missing

meanings of phrases/words.

For example, if meanings of I is known, inverse lambda algorithm will be used to learn

the meaning of want a flight to New York from a given meaning of the whole sentence. The

process is continued on the want a flight to New York branch. Meanings of want or a flight

to New York are used to learn the meanings of the other. The process stops when we cannot

learn anything more. Please see section 6.4.2 for more details.

Since Inverse Algorithm finds exact meanings of a phrase or a word, the output dictio-

nary is compact, which would help the system scale efficiently.

Moreover, this our allows us to keep CCG categories and semantics consistent with

intuition, thereby making the system more generic; given a new unseen sentence, it is more

likely to get the correct meaning. For example, assume that we already trained a translation

system and have an output lexicon. With a new sentence, which may have some words

that have not appeared in the training corpus, and thus are not in the output lexicon, the

stable CCG parser increases the chance to have the correct CCG categories of those words,

however. Since these CCG categories are used to look up other words in the lexicon for
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generalization, the chance of generalizing correct meanings is also increased.

Also, NL2KR does not impose any restrictions on the representation. The current learn-

ing algorithm uses a seed lexicon to bootstrap the learning process. Our approach allows us

to generate fairly complex λ -expressions if needed while maintaining good training speed,

without keeping restrictions like limiting the number of conjunctions (Kwiatkowski et al.,

2010).

6.8 Knowledge Parser

There has been a lot of advancement in the field of Natural Language Understanding

since the first attempt by Daniel Bobrow in form of the program STUDENT in 1964, which

was developed as an attempt to read and solve algebra problems of high school level (Bo-

brow, 1964; Russell et al., 1995; McCorduck, 2004). It was followed by systems like,

ELIZA in 1965, an interactive dialog system in English (Weizenbaum, 1976).

At that point of time researchers started focusing on the representation of text, which

is supported by introduction of Conceptual Dependency theory by Roger Shank in 1969

(Schank and Tesler, 1969), Augmented transition Network by William A. Woods in 1970

(Woods, 1970) and further advancements by Terry Winograd (Chrisley and Begeer, 2000).

Attempts were made towards Processing Natural Language (Chrisley and Begeer, 2000)

after that and a new level of intelligence was achieved after every attempt.

Project Halo is a long-term research program of Vulcan Inc to develop “Digital Aris-

totle” (Friedland et al., 2004), a program to understand and reason over various scientific

disciplines. Under project Halo, in 2004, Automated User-centered Reasoning and Acqui-

sition System (AURA) was reported to be the first program which can archive remarkable

scores in Advanced Placement exams in Biology, Chemistry and Physics. In later phase,

“Inquire Biology” introduced in 2013 (Chaudhri et al., 2013) as an intelligent book appli-

cation on tablet. It is an enhancement of the popular Campbell Biology book which can
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answer various questions posed by students.

The knowledge bases in AURA were manually constructed by experts in the fields,

which were very expensive and time consuming. Automatically construct such knowledge

bases would have huge impact on not only Natural Language Understanding but also many

other fields. Imagine how such knowledge base on common sense knowledge is helpful to

planning, predict actions from video footage or to digital assistant like Siri or Google Now.

However, automatically constructing such knowledge bases, presumably from text, is

a tough challenge that required years to be conquer as shown in its first step, representing

natural language sentences. In (Chaudhri et al., 2011), Chaudhri pointed out representing a

natural language sentences need more knowledge than what the sentence explicitly contains

as the analogy to an iceberg in Figure 7.2. Vocabulary knowledge and Explicitly Stated

Knowledge are shown at the tip of the iceberg. These respectively are the words in the

sentence and the sentence’s logical restatement. Hidden underwater are Linguistic and

Background (Core) knowledge, which are the knowledge needed to really understand the

sentence.

With this motivation in mind, we developed the initial version of a Knowledge Parser

(Sharma et al., 2015b,a) which convert sentences in natural language to a representation

which is useful for question answering, reasoning, etc. For representation, we start from

Knowledge Description Graphs and Component Library in KM (Clark and Porter, 2011)

and adding more vocabularies to handle logical symbols, values, conditions, etc.

Most of the current semantics parsers and role labeler concentrate on the first and sec-

ond layers in Figure 7.2. Some recent systems also provide Linguistic Knowledge (3rd

layer) from FrameNet, VerbNet, PropBank, etc. Since each system has its own strength

and its own format, which are not really compatible to the others, our goal is not building

another semantics parser but leveraging from existing systems. We want to take informa-

tion from many sources, combining them using a rich vocabulary ontology, searching and
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Figure 6.23: Iceberg of knowledge needed to represent a natural language sentence.

Vocabulary Knowledge: class, relation and function symbols representing each word

(phrase) in the sentence.

Explicitly Stated Knowledge: logical representation of the sentence using the vocabulary

knowledge.

Linguistic Knowledge: English knowledge required to understand the sentence.

Core Knowledge (Background Knowledge): all other knowledge needed to understand the

sentence.
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obtaining extra information if needed, to provide the knowledge in all four layers from

Vocabulary to Background knowledge (Figure 7.2).

Details of how Knowledge Parser was implemented can be found in the two papers:

Sharma et al. (2015b,a).

6.9 Conclusion

We presented the NL2KR system, which is a DIY kit to build translation systems that

convert sentences from natural language to their equivalent formal representations in a wide

variety of domains. We described the system algorithms and architecture and demonstrated

its effectiveness in GeoQuery, BioKR, and Jobs domains. The system also includes a CCG

parser, which can be used as a standalone parser and has certain advantages over its prede-

cessors.

237



Chapter 7

CONCLUSION AND DISCUSSION

7.1 Conclusion

In this dissertation, we developed a system to answering deep questions that goes be-

yond simple phrase matching in text. We defined and developed several modules toward

this challenge.

Initially, we defined the notion of Knowledge Description Graph (KDG), a graphical

structure containing information concerning events, entities, and classes. We proposed

formulations and algorithms to construct KDGs from a frame-based knowledge base.

We then defined the answers of various “How” and “Why” questions with respect to

KDGs and discussed deriving missing information when constructing KDGs from under-

specified knowledge bases. Moreover, we suggested how to obtain the answers from KDGs

using Answer Set Programming, and also how to answer many factual question types with

respect to the knowledge base.

Next, we considered how to construct the KDGs. We investigated two directions: (i)

from frame-based knowledge bases and (ii) from natural language text. In the frame based

knowledge bases that we investiaged, information from one instance is not only listed in

its classes but also buried in those of the ancestors and related classes. To get the complete

information, one must go through a process called “unification” to combine and unify the

information from all sources. In the process, redundant or conflicted data must be resolved.

Toward this goal, we proposed algorithms and formulations to solve the unification in a

recursive manner.

Towards the goal of building KDGs from natural language text, we developed the
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NL2KR system and Knowledge Parser. Knowledge Parser helps in converting natural lan-

guage to KDG specification, while NL2KR system helps in building translation systems

from natural language to formal language. The target languages are not solely tied to KDG

specification language, but rather can be in a wide range of formal language. NL2KR’s us-

ages, thus, are not limited to building KDGs but can be extended to many more translation

tasks: robot control, puzzle solving, etc. In this dissertation, we used NL2KR to convert

deep queries in natural language to one formal representation that is suitable for reasoning

(please see Chapter 6 for more details).

7.2 A Path to Natural Language Understanding

Regardless of converting natural language to KDGs, a parser called Knowledge Parser

(Sharma et al., 2015b,a) has been under development (not included in this dissertation).

Knowledge Parser takes information from many sources, creating a graphical semantic

representation of the input text like KDGs. With all of those modules, we are completing

one path to Natural Language Understanding (NLU).

Shown in Figure 7.1 is our suggested path to NLU, which centers around KDGs. Facts

from natural language text, knowledge bases, and prior knowledge all are converted to

KDGs, which can unify, enrich, and complete missing information as shown previously.

From there, we can answer factual questions, comparison question, and deep questions.

Moreover, we believe our approach can be used to solve a wide range of applications in

NLU, including (but not limited to):

1. Answering deep reasoning questions like “Why” and “How” questions

2. Solving reading comprehensions

3. Coreference Resolution

4. Machine translation
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Figure 7.1: A path to Natural Language Understanding.

5. Building common sense knowledge bases like ConceptNet but with richer informa-

tion.

6. Solving textual entailment problems

7. Making the computer understand text and reason the way humans do

8. Intelligent personal assistants like Siri

Among those applications, besides answering deep questions, we have been investi-

gating Coreference Resolution like Winograd Schema Challenge (Levesque et al., 2012).

Winograd Schema Challenge corpus contains pairs of sentences and questions, i.e. “The

man could not lift his son because he was too heavy. Who was heavy?”, that require human-

like reasoning to answer. In (Sharma et al., 2015c,b), we showed that many cases in Wino-

grad Schema Challenge can be solved by converting input sentences to KDGs, searching
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suitable background knowledge while converting to KDGs, and comparing and reasoning

those KDGs to draw conclusions (such as “he” means “the man” in previous example).

In the future, we will tackle the applications mentioned above, such as Reading Compre-

hension, building knowledge bases like ConceptNet. While doing that, as needed, we will

continue to improve various modules, like Knowledge Parser or Knowledge Hunting.

7.3 Toward a Complete Deep Question Answering System

7.3.1 Deep Question Categorization

In the collection of 1,839 questions and answers 1 , there are 265 ”How” questions and

89 ”Why” questions. Analyzing “How”questions, we found out:

1. 18 questions are actually factual questions, not deep, because they are “How long?”

and “How old?” For example, “How long is the incubation period of the HIV?”

2. 11 questions are closer to “Why” than ”How.” For example, “How can the fact that

fish and dolphins have similar organs and general shapes be explained?”

3. 9 questions are “How are they related” questions. i.e. “How are the concepts of

chromosome, chromatin, and chromatids related?”. These questions are discussed in

section 2.7.2.

4. 21 are “How different” questions; “How different are oxyhemoglobin and hemoglobin?”

The answering of these questions is discussed in section 3.7.2.

5. Approximately less than 20 questions do not directly match our “How” pattern. e.g.

(a) How to find the number of pairs of alleles involved in polygenic inheritance

using the number of phenotypical forms of the traits they condition.
1http://www.biology-questions-and-answers.com/
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(b) How is it possible to obtain the probability of emergence of a given genotype

formed of more than one pair of different alleles with independent segregation

from the knowledge of the parental genotypes?

(c) How can the hypothesis that asserts that chloroplasts and mitochondria were

primitive prokaryotes that associate in mutualism with primitive anaerobic eu-

karyotic cells be corroborated?

While it is not impossible to cast many of these questions to our known templates,

we still do not consider them matched because of several reasons. First, they ask for

more “abstract” knowledge, such as general knowledge about experiments or data

processing on top of the biological knowledge. Second, this “abstract” knowledge is

less likely to be encoded in the Knowledge Bases than the biological facts.

6. The rest of the 186 questions are either of the types mentioned in section 2.4 or com-

plex questions (less than 25 questions), which can be broken down to simpler ques-

tions of the aforementioned types. For example, “How have prokaryotic cells given

origin to aerobic eukaryotic cells and to photosynthetic aerobic eukaryotic cells?”

While we have a good coverage on “How”questions in the collection of 1,800 questions,

there are still some challenges that need to be addressed.

1. The relation R between X and Y of the question “How does X R Y ?” could be

complex. While determining R based on graph structures like KDG is easier than on

unstructured text, it is still a challenge for future work.

2. The collection of question is by no means exhausted. New types of “How”questions

obviously will come, and we will face similar challenges to the case of “Why”questions,

discussed below.
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As we discussed in section 2.7.3, Verberne (Verberne, 2006) listed four subtypes (possi-

bly overlapped) of “Why”questions asking about reason: cause, motivation, circumstance,

and purpose. The problem is that this method of categorizing questions into those subtypes

and content of the answers are not discussed. Moreover, there could be many more types

of “Why”questions. To properly solve the problem, we think much more pioneer research

(from many fields such as computer science and philosophy) are needed to:

1. List and categorize types of deep questions.

2. Identify the components and properties of the answers to those question types. This

needs to be done from both a social science/philosophy and computer science per-

spective like we observed in the case of “How does X work?”

From there, people can create the corpus of deep questions and their answers, so that

the machine learning techniques can be used to automate the question answering process.

Once we have “Why”questions categorized and their answers defined, we can analyze to

see if our formulations can be used to represent the answer.

7.3.2 Working with AURA Knowledge Base

The AURA Knowledge Base, in fact, does not satisfy the DAG assumption we need for

KDGs. Hence we have to do several preprocessing techniques.

We found thousands of cases in AURA where there two or more different instances

are cloned from each other; in other words, there is a circle in clone-from relation. For

example, instance b is cloned from a, c is cloned from b, and a is cloned from c. We

consider that all such instances are equivalent. Hence we choose one instance (i.e. a) to

replace all appearances of other instances (of b or c).

In AURA, a specific relation between two instances is always defined as a pair of pred-

icates R/R′. i.e. (A has− part B) and (B is− part− o f A) are two relations from A to B
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and from B to A; R and R′ are has− part and is− part−o f . While creating a rooted KDG

from AURA, we can make it a DAG by some steps:

1. Start from the root (given input), its order is 0.

2. Extend other nodes, assign them an increasing order such as 1,2,3, etc.

3. Remove all edges that “violate” the topological order. i.e. from a node with higher

order to a node with lower order.

Please note that KDGs only acyclic with respect to cpaths (consist of compositional

edges, participant edges, locational edges and class edges) can have cycles with respect to

behavioral edges. So if we have a cyclic series of events, E1 and E2, where E1 causes E2

and E2 cause E1, we can naturally represented by a loop of behavioral edges from E1 to

E2 and from E2 back to E1.

7.3.3 From Natural Language to KDGs

Automatically constructing KDGs (or the knowledge bases used to build KDGs), pre-

sumably from text, is a tough challenge that required years to be conquered as shown in

its first step, representing natural language sentences. As Chaudhri stated in (Chaudhri

et al., 2011), representing natural language sentences need more knowledge than what the

sentence explicitly contains. We illustrate this idea with the iceberg analogy in Figure 7.2.

The tip of the iceberg is Vocabulary Knowledge and Explicitly Stated Knowledge, which

is respectively the words in the sentence and the sentence’s logical restatement. Hidden

underwater is the Linguistic and Background Knowledge needed to really understand the

sentence.

Systems built by NL2KR will operate in the first two layers of the iceberg, above water;

they can only translate explicit knowledge represented by words in the text. They are not

sufficient for the task translating from text to KDGs since this task requires at least all four
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Figure 7.2: Iceberg of knowledge needed to represent a natural language sentence.

Vocabulary Knowledge: class, relation and function symbols representing each word

(phrase) in the sentence.

Explicitly Stated Knowledge: logical representation of the sentence using the vocabulary

knowledge.

Linguistic Knowledge: English knowledge required to understand the sentence.

Core Knowledge (Background Knowledge): all other knowledge needed to understand the

sentence.
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layers of the iceberg. Besides solving challenges from language sides such as pronoun

resolution or determining the category and hierarchy of instance mentioned in the text, it

also need to overcome many other challenges related to knowledge representation - such

as figuring out the unrelated data to filter out, determining the default and exception cases.

For example, take the given excerpt below. It needs to determine (1) which class/instance

should have the encoding of Calvin cycle: plant, algae, cyanobacteria, or some others; (2)

how to represent Krebs cycle for some bacteria, but not all of them.

“In plants, algae and cyanobacteria, sugars are produced by a subsequent sequence of

light-independent reactions called the Calvin cycle, but some bacteria use different mech-

anisms, such as the reverse Krebs cycle.”

The K-Parser (Sharma et al., 2015b,c,a) had been developed as our first attempt to

address some of the aforementioned challenges. Its ultimate goal is to parse natural text,

obtain some knowledge of the bottom two layers of the iceberg, presenting them in a format

like KDGs. However, K-Parser has obviously not yet entirely solved the task of translating

natural language to KDGs, an extremely challenging task that we believe will be active for

a long time.

7.3.4 Other Types of Evaluation

In chapter 2, we presented our three ways of evaluating the formulation of deep ques-

tions: by examples, conceptually by their components, and by their properties. Here, we

discuss about another possible way to evaluate: creating a corpus of deep questions and

their answers, and comparing the answers given by the “system” and gold standard answer,

automatically or manually by a human reader. There are still a lot of challenges to be solved

before we can have the whole end-to-end system to answer deep questions; but when we

have a whole system, we can evaluate it by the same method.

According to the best of our knowledge, there is no research categorizing deep ques-
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tions such as “How” and “Why” with respect to the answers they demand, and no corpus

has been created as such for evaluating such results. Hence the first challenge of this eval-

uation approach is to create a corpus of deep questions and their answers. This first task

itself has several challenges.

Since the answers later must come from a knowledge base, we must use some knowl-

edge bases that possibly contain the answers to deep questions. Unfortunately, almost all

of the knowledge bases we investigated are not built for answering deep questions and do

not have the necessary information to answer them (i.e. events, sub-events, event-event

relations, etc.) The exceptions are the knowledge base we are using (AURA, biology field)

and similar ones (i.e AURA in chemistry and physics), but they have very limited coverage.

Coming up with the questions now requires effort to manually analyze the knowledge base

to find the intersection of the questions we can possibly have; the formulation to answer

and the questions that the KB contains for the answers.

Moreover, in deciding if the knowledge base may contain the answers, there is one more

crucial prerequisite: what criteria of “correct” answers should be adopted. Identifying such

“correct” answers is exactly what we were trying to do in chapter 2.

While we do not have enough resource to overcome all of those challenges, we decided

that we should postpone this type of evaluation, at least until our work here - which paves

a way for formalizing answers to deep questions - is publicly accepted.

In chapter 4 and the published paper that it came from, our contribution and focus are

proposing the ASP rules in deriving missing information. We, hence, evaluated our results

by formal proves. In future work when we are working on a whole end-to-end system

with a bigger knowledge base, we could use another evaluation method. We could build

a gold standard corpus of information that should be enhanced, then compare our results

of the gold standard to have precision and recall. However, those results are not always

comparable to the ones of related works (please see chapter 4 for more details), as the
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technique and performance are tied to the KB’s representation. Considering the efforts and

the benefits of the “machine learning” style evaluation at this point, we held it off and focus

on emergent topics.

7.3.5 Future Work

In chapter 2, we defined the answers to several deep questions. For future work, we

will expand to many more types of deep questions. First, we plan to continue working on

defining the answers to some “Why” questions mentioned in section 2.7.3. Those ques-

tions asked for cause (“Why did the flower get dry?”), motivation “Why do you water

the flower?”), circumstance (“Why should we be able to finish this today?”) and purpose

(“Why do people have eyebrows?”). Secondly, we are going to automatically identify the

label of a path in a KDG. For example, based on the semantics of its nodes and edges, we

automatically identify if a path is explaining “create” or “help” properties.

Another possible future project is constructing a larger KDG database, possibly from

text. From there, we can further pursue aforementioned Question Answering approaches or

work on new NLU applications such as reading comprehension or the Winograd challenge.

For the NL2KR system, we plan to improve the Inverse Lambda theory to cover more

cases, further automatize the creation of an initial dictionary, and use word sense disam-

biguation to improve translation.

7.4 Summary

• In Chapter 1, we introduced the motivation and listed specific contributions of the

dissertation.

• In Chapter 2, we defined the KDG structure and its sub-structures to answer some

deep questions. We also investigated the properties of those structures.

• In Chapter 3, we proposed formulations and algorithms to solve the cloning and uni-
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fication problem. Additionally, we reimplemented and improved the factual Question

Answering in (Baral and Liang, 2012) using our new formulations.

• In Chapter 4, we showed our implementations of KDG and deep Question Answering

using Answer Set Programming.

• In Chapter 5, we talked about the reasoning needed to complete the missing infor-

mation in knowledge bases used to construct KDGs.

• In Chapter 6, we introduced the NL2KR system, which can be used to build systems

that translate natural language to formal language.

• In Chapter 7, we concluded the contributions in this dissertation, and we discussed

the applications to Natural Language Understanding and possible directions for fu-

ture work.
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Proof 13 (Proof for proposition 1) We now prove 2 statements which together prove the
proposition.

1. G1 is a subgraph of G2.
We are proving all nodes and edges of G1 is also in G2.
Let A be a node in G1. By definition of rooted KDG, there is a cpath in G from X to
A. Since there is also a cpath in G from Z to X, there is a cpath in G from Z to A.

By definition of rooted KDG, A must be in KDG(Z).

⇒ G2 contains A since G2 is constructed from KDG(Z) and there is a cpath from X
to A.

Let E be an edge of G1, from A to B. As we have already proved, nodes A and B of
G1 are also in KDG(Z) and G2. By definition of rooted KDGs, the edge E must be
in the KDG(Z) and also in G2.

Conclusion: G1 is a subgraph of G2

2. G2 is a subgraph of G1
Similary, we are proving all nodes and edges of G2 is also in G1.

Let A be a node in G2. According to definition of rooted KDG, there is a cpath in
KDG(Z) from X to A. Because KDG(Z) is a subgraph of G, that cpath is also in G.

⇒ There is a cpath in G from X to A.
⇒ A is a node in G1.

Similar to previous case, any edge E in G2 is also in G1. Conclusion: G1 is a
subgraph of G2
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B.1 Proofs

Proof 14 (Lemma 11) If X is an instance in KB, ΠKB does not contain the fact class(X)
and at least one fact has(X ,S,V ) or has(Y,S,X). Rule a2, a3 give us that ins(X) must be
true in all answer set of ΠKB.

If ins(X) is in any answer set of ΠKB, it must have been introduced by either rule a2 or
a3. This means that X is not a class in KB: X must be an instance in KB.

Proof 15 (Lemma 12) Because of the KB’s representation, X is an instance-of Y iff ΠKB
contains has(X , instance o f ,Y ) or has(X ,clean instance o f ,Y ). From rules a4 and a5, it
is easy to see that: X is an instance-of Y iff ΠKB |= instance o f (X ,Y )

Forward direction Suppose that X is a tc-instance-of Y . According to Definition 20,
there exists a set of classes {C1,C2, ...,Ck = Y} where all of the following conditions are
satisfied:

• x is an instance of C1

• Ci is a subclass of Ci+1 (0 < i < k)

Since Ci is a subclass of Ci+1, the ΠKB must contain has(Ci,superclass,Ci+1).
The rules a4 and a5 make sure that ΠKB’s answer sets contain instance o f (X ,C1).
The rule a6 makes sure that ΠKB’s answer sets contain tc instance o f (X ,C1).
The rule a7 makes sure that ΠKB’s answer sets contain tc instance o f (X ,C2), and then

again contain tc instance o f (X ,C2), then tc instance o f (X ,C3),...,tc instance o f (X ,Ck)
or tc instance o f (X ,Y ).

Backward direction Suppose that an answer set of ΠKB contains tc instance o f (X ,Y ).
It must be introduced by either rule a6 or a7.

If tc instance o f (X ,Y ) is introduced by a6, the answer set must also contain
instance o f (X ,Y ). So X is a tc-instance-of Y .

If tc instance o f (X ,Y ) is introduced by a7, the answer set must also contain
tc instance o f (X ,M1) and has(M1,superclass,Y ). Again, the tc instance o f (X ,M1) must
come from either a6 or a7.

If it comes from a7, the answer set must also contain tc instance o f (X ,M2) and
has(M2,superclass,M1),...

Such classes Mi are limited in the hierarchy graph and let
tc instance o f (X ,Mk−1) be the last one of the form that comes from a7.

The tc instance o f (X ,Mk) in the body of the rule (that gives tc instance o f (X ,Mk−1)
) must come from a6. This means that X is an instance of Mk.

Together with the facts that Mi is the superclass of Mi−1 (k≥ i≥ 1) and that the answer
set contains has(Mi,superclass,Mi−1), Definition 21 gives us that X is a tc-instance-of Y .

Proof 16 (Lemma 14) Using Lemma 12, proving this proposition is straight-forward from
Definition 21 and rules a10,a11 and a12.

Proof 17 (Proposition 3) We will prove that x is a node in G∗(w) iff an answer set of ΠKB
contains connect(w,x,w). We prove this in two cases:

• w = a which is not g-cloned from any node. (Similar to a1 in Figure 3.4)

• w = b which is g-cloned from a. (Similar to b1 in Figure 3.4)
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The case where w = c, c is microcloned from more than one node can be proven similarly
to second case above.

In each case, we prove in two directions:

• Forward direction: If x is a node in G∗(w), there exists an answer set ΠKB that
contains connect(w,x,w).

• Backward direction: If an answer set of ΠKB contains connect(w,x,w), x is a node
in G∗(w).

Forward direction: If x is a node in G∗(a). Let ANS is any answer set of ΠKB, ANS
contains connect(a,x,a).

1. When a is not g-cloned from any node, G∗(a) = G(a) (Definition 28).

2. Because x is a node in G(a), there exists a path in G(a) from a to x containing nodes
c1 = a,c2, ...,ck = x. All the edges are inheritable edges, except the last one from
ck−1 to ck; it could be either non-inheritable or inheritable.

3. ANS contain has(ci,S,ci+1) where (i = 1..k−1 and (ci,S,ci+1) in the edge between
ci and ci+1 in G(a) in KB) because that is how KB is represented.

4. ANS contain hasc((ci,S,ci+1),a) because of rule a25.

5. If all of the edges in the path are inheritable edges, rule a21 and a22 make ANS
contain connectI(c0,ck,a). a23 makes ANS contain connect(c0,ck,a), which is
connect(a,x,a).

6. If the last edge in the path is a non-inheritable edge, a21 and a22 make ANS con-
tain connectI(c0,ck−1,a). a23 makes ANS contain connect(c0,ck−1,a); then, a24
introduces connect(c0,ck,a) into ANS.

Backward direction: If the answer set ANS of ΠKB contains connect(a,x,a), x is a
node in G∗(a).

1. When a is not g-cloned from any node, G∗(a) = G(a) (Definition 28).

2. connect(a,x,a) in ANS has to be introduced by either a23 or a24. Assuming it is
introduced by a24 (the other case is simpler and can be solved similarly), ANS must
contain connectI(a,c2,a), hasc((c2,S,x),a) and noninheritable(S). connectI(a,c2,a)
must be introduced by a21 and a22.

3. If connectI(a,c2,a) is introduced by a21, a = c2. If connectI(a,c2,a) is introduced
by a22, ANS must contain connectI(a,c3,a), hasc((c3,S3,c2),a) and not contain
noninheritable(S3). connectI(a,c3,a) again can be introduced by either a21 or
a22,....

4. We then have a chain of facts connectI(a,c2,a), connectI(a,c3,a), ..., connectI(a,ck,a)
where the last one must be introduced by a21. So, a= ck must be true. Moreover, ANS
contain hasc((ci,Si,ci−1),a) (3≤ i≤ k) and do not contain any noninheritable(Si).
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5. Thus, there exists a path through inheritable edges from ck = a to c2, then through a
non-inheritable edge c1 = x. x is a node in G(a).

Forward direction: If x is a node in G∗(b). There exists an answer set ANS of ΠKB
containing connect(b,x,b).
According to Definition 28, x is introduced into G∗(b) by three cases:

1. x is in G(b).

2. x is the destination node of one edge in edge∗(v,{G∗(a)}) where v is a node in G(b).

3. x is in G(t) of G∗(a)) where t is in edge∗(v,{G∗(a)}).

The first case, where x is in G(b), can be proven similarly to the case of G(a). We
now consider the next two cases. Case 2: x is the destination node of one edge in
edge∗(v,{G∗(a)})

Let (v′, S, x) be the edge G∗(a) that contributes (v, S, x) to edge∗(v,{G∗(a)}); v is
microcloned from v′. According to lemma 9, there must exists a path of inheritable edges
from C to v.

1. Let ANS be an answer set of ΠKB.

2. Let M = NG(b)(v,S) be the set of nodes in G(b) that are connected from v through
edges of type S.

3. Let A = {a} be the set of nodes that b is g-cloned from.

4. Let N = NG∗(a)(A,S) = NG∗(a)({a},S), be the set of nodes in G∗(a) which are con-
nected from a through edges of type S.

5. x must be in MINsubsume(N \subsume M). This leads to conclusion that there does not
exist any node in M that subsumes x.

6. Since v in b is microcloned from v′ in a, ANS must contain microclone((v,b),(v′,a)).
ANS also must contain hasc(v′,S,x),a) because (v′, S, x) is an edge in G∗(a). Rule
a16 makes ANS contain may have((v,S,x),b,(v′,a)).

7. Since there does not exist any node in M that subsumes x, ANS does not contain
has(v,S,x′) and subsume(x′,x) (v′ 6= v,x 6= x′). Rule a17 dictates for ANS NOT to
contain may not have((v,S,x),b).

8. Since x is the minimal node in N \subsume M, there does not exist any other node in
the set that subsumes x, but x does not subsume it back. ANS, thus, does not have
may not have2((v,S,x),b), the head of rule a19.

9. Rule a20 makes sure that an answer set ANS of ΠKB that contains edge s(v,S,x),b,(v′,a))
exists.

10. Rule a26 puts hasc(v,S,x),b) into ANS.

11. Since a path of inheritable edges from C to v exists, rules a21 and a22 put connectI(b,v,b),
and then connectI(b,x,b) into ANS. Rule a23 makes sure ANS contains connect(b,x,b).
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Case 3: x is in G(t) of G∗(a)) where t is in edge∗(v,{G∗(a)})

1. Similarly to previous case, an answer set ANS containing connectI(b, t,b) exists.

2. Because x is in G(t), there exists a path from t to x, where only the last edge can be
non-inheritable or inheritable (the others are inheritable).

3. Rule a22 puts into ANS the facts connectI(b, t = ti,b), connectI(b, t2,b), ...,
connectI(b, tk,b), and ti is the node on the path from t to x. tk is the last node before x.
Rule a24 or the group of a22 and a23 then puts connectI(b,x,b) into ANS depending
on whether the last edge is non-inheritable.

Backward direction: If the answer set ANS of ΠKB contains connect(b,x,b), x is a
node in G∗(b).
If x is in G(b), then obviously x is in G∗(b). We will consider only the case that x is not in
G(b).

1. Similarly to the backward direction proof in case of G∗(a), the fact connect(b,x,b)
must be introduced by rules a23 or a24. Assume that it comes from a24 (the other
case is simpler and can be solved similarly).

2. Also like the case of G∗(a), rules a21, a22, a23, and a24 ensure that there must be a
set of nodes c1 = x,c2,c3, ...,ck = b where ANS satisfies all following conditions:

(a) Contains connect(b,ci,b), 1≤ i≤ k

(b) Contains connectI(b,ci,b), 1 < i≤ k,
(c) Contains hasc((c2,S1,c1),b) and noninheritable(S)

(d) Contains hasc((ci+1,Si,ci),b) but not noninheritable(Si), 1 < i < k

3. Since c1 is not in G(b) but ck = b is in G(b), ci (1 ≤ i ≤ k) must come to G(b)
due to c j. Now, let t = c j−1 and v = c j. G(b) contains v but not t. ANS contains
hasc((v,S, t),b) but not noninheritable(S).

4. Because t and v are in different object graphs G(a) and G(b), ΠKB and ANS do not
contain has(v,S, t). v is not in G∗(a) and ANS does not contain hasc((v,S, t),a). The
fact hasc((v,S, t),b) thus must not come from a25 and a27, but rather from a26. ANS,
thus, contains edge s((v,S, t),b,(v′, f )).

5. Rule a20 then gives us that ANS contains may have((v,S, t),b,(v′, f )),
not mayhave((v,S, t),b) and
not mayhave2((v,S, t),b).

6. may have((v,S, t),b,(v′, f )) is introduced by rule a16, which means ANS must con-
tain hasc((v′,S, t), f ), micro clones((v,b),(v′, f )) and must not contain
noninheritable(S).

7. Tracing back micro clones((v,b),(v′, f )) from rules a13, a14, and a15, we conclude
that micro clones((b,b),( f , f )) must be true, which leads to f = a because b is only
microcloned from a.
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8. Now, we have that v in b is microcloned from v′ in a. Because ANS does not contain
not mayhave((v,S, t),b), we can conclude that t is not subsumed by any node t ′ in
NG(b)(v,S). Furthermore, since ANS does not contain not mayhave2((v,S, t),b), we
can conclude that no other node t ′′ is in NG∗(a)({v′},S) \subsume NG(b)(v,S). Hence t is
in one edge s∗b(x,{G∗(a)}) and therefore in G∗(b) (Definition 28).

9. t is the node c j−1 in the set c1 = x,c2, ...ck. Consider the fact hasc((c j−1,S j−2,c j−2),b).
This fact must come from rule a25, a26, or a27.

(a) If hasc((c j−1,S j−2,c j−2),b) comes from a25, KB contains has(c j−1,S j−2,c j−2)
and hasc((c j−1,S j−2,c j−2), f ) will be true for any context f . c j−2 is the child
of c j−1 = t in the G(t) in G∗(a). By Definition 28, c j−2 is also in G∗(b).

(b) If hasc((c j−1,S j−2,c j−2),b) comes from a26, like the case of c j−2 = t, c j−2 is
also in G∗(b).

(c) If hasc((c j−1,S j−2,c j−2),b) comes from a27. ANS must contain
edge s((x,Sx,v),b,(x′, f )),
hasc((c j−1,S j−2,c j−2), f ),
connect(v,c j−1, f ,
connect(v,c j−2, f . This means that G(v) in G∗( f ) is added to G∗(b) because v
is in some edge s set at x of G(b) , and c j−2 is a node in G(v) in G∗( f ). By
Definition 28, c j−2 is also in G∗(b).

10. Similarly, we can prove c j−3, ...,c1 = x is in G∗(b)

Proof 18 (Lemma 16) We are going to prove that x is a node in G(w) iff an answer set of
ΠKB contains relate(w,x):

• Forward direction: If x is a node in G(w), there exists an answer set ΠKB containing
relate(w,x).

• Backward direction: If an answer set ΠKB contains relate(w,x), x is a node in
G∗(w).

Forward direction: If x is a node in G(w), let ANS be any answer set of ΠKB; ANS
contains relate(w,x).

1. Because x is a node in G(w), there exists a path in G(w) from w to x containing nodes
c1 = w,c2, ...,ck = x. All the edges are inheritable, except the last edge from ck−1 to
ck, which could be either non-inheritable or inheritable.

2. ANS contains has(ci,S,ci+1) where (i = 1..k−1 and (ci,S,ci+1) in the edge between
ci and ci+1 in G(a) in KB) because KB is represented as such.

3. ANS contains relatedI(w = c1,w = c1) because of rule a29.

4. ANS contains relatedI(c1,c2) because of rule a30. Similarly, ANS contains
relatedI(c1,c3),...

5. If the edge from ck−1 to ck is inheritable, ANS contains relatedI(c1,ck). Otherwise,
it only contain up to relatedI(c1,ck−1)
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6. In both cases, rule a31 and a32 make ANS contain relate(c1 = w,ck = x)

Backward direction: If the answer set ANS of ΠKB contains relate(w,x), x is a node in
G(w).

1. The fact relate(w,x) must be introduced by rules a31 or a32. Assume that it comes
from a32 (the other case is simpler and can be solved similarly).

2. Rules a29, a30, a31, and a32 ensure that there must be a set of nodes c1 = x,c2,c3, ...,ck =
w so ANS satisfies all following conditions:

(a) Contains relateI(w,ci,b), 1 < i≤ k
(b) Contains has(c2,S1,c1),b) and noninheritable(S1)

(c) Contains has(ci+1,Si,ci) but not noninheritable(Si), 1 < i < k

3. The path from w to x through the edges has(ci+1,Si,ci), 1≤ i < k has:

(a) Last edge as non-inheritable.
(b) All other edges as inheritable.

4. By definition, x is in G(w).

Proof 19 (Proposition 4) This proof is based on the proof of proposition 3. We will prove
that x is a node in G∗(w) iff an answer set of Π′KB contains connect(w,x,w). We prove this
in cases of G(a) and G(b), each in two ways:

• Forward direction: If x is a node in G∗(w), there exists an answer set of Π′KB con-
taining connect(w,x,w).

• Backward direction: If an answer set of Π′KB contains connect(w,x,w), x is a node
in G∗(w).

Forward direction: If x is a node in G∗(a). Let ANS be any answer set of Π′KB; ANS
contains connect(a,x,a).

1. ANS must contain context(w) (definition 30)

2. Rule a28 makes sure ANS contain other context(). For example, if w = b, ANS must
also contain context(a), where b is g-cloned from a.

3. Each rule a1 - a27, if modified, would contain a maximum of two facts of the form
context(C) and relate(C,X). Given x and G(w), these facts are satisfied in ANS; the
modified rules become the original a1 - a27.

4. The proof in this case (Π′KB) is then similar to that of the previous case of ΠKB(proving
proposition 3)

Backward direction: The extra facts of the form context(C) and relate(C,X) only give
us more ammunition and do not change the proof of proposition 3.
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B.2 Program Π (Rules - without Modification for Efficiency)

noninheritable(prototype_participants;
prototype_participant_of;
prototype_scope;
prototype_of;
cloned_from;
clone_built_from;
instance_of;
clean_instance_of;
big_nodes).

% grab all instances
% class(C) :- has(X, instance_of , C).
ins(X) :- has(X,S,V),
% context(C), relate(C, X),
not class(X).
ins(V) :- has(X,S,V),
% context(C), relate(C, X),
not class(V).

% ------------------------------------------------
% step 0:
% ------------------------------------------------
instance_of(X,Y) :- has(X,instance_of ,Y).
instance_of(X,Y) :- has(X,clean_instance_of ,Y).
tc_instance_of(X,Y) :- instance_of(X,Y).
tc_instance_of(X,Y) :- tc_instance_of(X,M), has(M, superclass , Y).

% ------------------------------------------------
% step 1: decide - what clones from what
% ------------------------------------------------
g_cloned_from(X,Y) :- X!=Y, has(X,cloned_from ,Y).
g_cloned_from(X,Y) :- X!=Y, has(X,clone_built_from ,Y).
g_cloned_from(X,Y) :- X!=Y, tc_instance_of(X,M), has(Y,prototype_of ,

M).

% ------------------------------------------------
% step 2: Sumsume. V1 subsumes V2 if V1 is more specific.
% ------------------------------------------------
% V1 does not subsume V2 if there exist a class C that V2 is tc-

instance -of but V1 is not.
not_subsume(V1,V2) :-
ins(V1), ins(V2),
tc_instance_of(V2 ,C),
not tc_instance_of(V1 ,C).

subsume(V1 ,V2) :-
ins(V1), ins(V2),
not not_subsume(V1 ,V2).

% ------------------------------------------------
% step : Define microclones
% --------------------------------------
% We let V1 microclones from V2 if V1 subsumes it, so later V1 gets

expanded.
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% microclones ((X1,C), (X2,F)) reads as X1 in C is microcloned from
X2 in F.

% Case 1:
microclones ((X2,X2), (X1,X1)) :-
% context(X1), context(X2),
ins(X1), ins(X2),
g_cloned_from(X2,X1).

% Case 2:
microclones ((V2,C), (V1,F)) :-
% context(C), context(F),
ins(X1), ins(X2),
ins(V1), ins(V2),
microclones ((X2,C), (X1,F)),
has(X1 , S, V1),
has(X2 , S, V2),
not noninheritable(S),
subsume(V1 ,V2).

% Case 3:
microclones ((V2,C), (V1,F1)) :-
% context(C), context(F1), context(F2),
ins(X1), ins(X2),
ins(V1), ins(V2),
microclones ((X,C), (X1,F1)),
microclones ((X,C), (X2,F2)),
has(X1 , S, V1),
has(X2 , S, V2),
X1 != X2 ,
not noninheritable(S),
subsume(V1 ,V2).

% % Define edges ^*_C(x)
% % --------------------------------------
% % may_have(X, S, V, C) reads as (X, S, V) is in edges ^*_C(x).

% X may have value V from Y if: X microclones value V from some
instance Y

% may_have ((X,S,V),C,(Y,F)): we may have (X,S,V) in C from Y in F
may_have ((X,S,V),C,(Y,F)) :-
% context(C), context(F),
hasc((Y,S,V),F),
microclones ((X,C), (Y,F)),
not noninheritable(S).

% Result of set difference with respect to subsume: KB has the edge
(X, S, V1), may have (X, S, V2) from Xj but V1 subsume V2.

% V is in N \_{subsume} M if may_have ((X,S,V), C,(Y,F)) and not
may_not_have ((X, S, V), C)

may_not_have ((X, S, V2), C) :-
% context(C), context(F),
has(X, S, V1), may_have ((X, S, V2), C, (Xj , F)),
subsume(V1 , V2),
X != Xj,
V1 != V2.
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% Select the most specific node(s)
% --------------------------------------
% Equally specific nodes
equ((X, S, V1), (Xi , Fi), (X, S, V2), (Xj , Fj), C) :-
may_have ((X, S, V1), C, (Xi, Fi)), may_have ((X, S, V2), C, (Xj, Fj))

,
subsume(V2 , V1), subsume(V1 , V2),
not may_not_have ((X, S, V1), C), not may_not_have ((X, S, V2), C),
Xi != X, Xj != X, Xi != Xj.

% Most specific nodes: nodes that are not subsumed by any node ,
except its equally specific ones.

may_not_have2 ((X, S, V1), C) :-
may_have ((X, S, V1), C, (Xi,_x)), may_have ((X, S, V2), C, (Xj, _)),
subsume(V2 , V1), not_subsume(V1 , V2),
V1 != V2 , Xi != X, Xj != X.

% Because of the imperfection of AURA KB, we have to remove the
upperbound of the rule to make it work in some cases.

1 { edges_s ((X, S, V1), C, (Xj, Fj)): equ((X, S, V), (Xi, Fi), (X, S
, V1), (Xj, Fj), C);

edges_s ((X, S, V), C, (Xi , Fi))} 2 :-
may_have ((X, S, V), C, (Xi, Fi)),
not may_not_have ((X, S, V), C),
not may_not_have2 ((X, S, V), C).

% ------------------------------------------------
% step : Construct
% --------------------------------------
% Add all the existing nodes from x
hasc((X, S, V), C) :-
% context(C), relate(C,X),
ins(C),
has(X, S, V).

% Add the edge from x to the most specific nodes
hasc((X, S, V), C) :-
% context(C), context(F),
edges_s ((X, S, V), C, (Xi , F)).

% Add all other nodes in G(V) in G*(F) if (X,S,V) is added through
edges_s( )

hasc((Z1 , SZ , Z2), C) :-
% context(C), context(F),
edges_s ((X, S, V), C, (Xi , F)),
hasc((Z1 , SZ , Z2), F),
connect(V, Z2 , F),
connect(V, Z1 , F).

% ------------------------------------------------
%
% ------------------------------------------------
% ConnectI from X to Y if there is a chain of inheritable edges from

X to Y
connectI(X, X, C) :- ins(X),
% context(C), relate(C, X),
ins(C).
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connectI(X, Z, C) :-
% context(C),
connectI(X,Y,C),
hasc((Y, S, Z), C),
not noninheritable(S).
% Connect from X to Y if there connectI there is a chain of edges

from X to Y; the optional last edge is noninheritable.connect(X,
Y, C) :- connectI(X, Y, C).

connect(X, Y, C) :-
% context(C),
connectI(X,Y,C).
connect(X, Z, C) :-
% context(C),
connectI(X,Y,C),
hasc((Y, S, Z), C),
noninheritable(S).

% ------------------------------------------------
% Define context
% ------------------------------------------------
context(Y) :- context(X), g_cloned_from(X,Y).

% % Only nodes in G(b1) are related to the context b1
relateI(X, X) :- context(X).
relateI(X, Z) :-
% context(X),
relateI(X,Y),
has(Y, S, Z),
not noninheritable(S).

relate(X,Y) :-
% context(X),
relateI(X,Y).
relate(X, Z) :-
% context(X),
relateI(X,Y),
has(Y, S, Z),
noninheritable(S).

% #show context /1.

% #show class /1.
% #show ins/1.

% #show tc_instance_of /2.

% #show subsume /2.
% #show not_subsume /2.

% #show g_cloned_from /2.

% #show microclones /2.

% #show may_have /3.

% #show may_not_have /2.
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% #show equ/5.

% #show may_not_have2 /2.

% #show edges_s /3.

% #show connectI /3.
% #show connect /3.

% #show hasc /2.

B.3 Program Π′ (Rules - with Modification for Efficiency)

noninheritable(prototype_participants;
prototype_participant_of;
prototype_scope;
prototype_of;
cloned_from;
clone_built_from;
instance_of;
clean_instance_of;
big_nodes).

% grab all instances
% class(C) :- has(X, instance_of , C).
ins(X) :- has(X,S,V),
context(C), relate(C, X),
not class(X).
ins(V) :- has(X,S,V),
context(C), relate(C, X),
not class(V).

% ------------------------------------------------
% step 0:
% ------------------------------------------------
instance_of(X,Y) :- has(X,instance_of ,Y).
instance_of(X,Y) :- has(X,clean_instance_of ,Y).
tc_instance_of(X,Y) :- instance_of(X,Y).
tc_instance_of(X,Y) :- tc_instance_of(X,M), has(M, superclass , Y).

% ------------------------------------------------
% step 1: decide - what clones from what
% ------------------------------------------------
g_cloned_from(X,Y) :- X!=Y, has(X,cloned_from ,Y).
g_cloned_from(X,Y) :- X!=Y, has(X,clone_built_from ,Y).
g_cloned_from(X,Y) :- X!=Y, tc_instance_of(X,M), has(Y,prototype_of ,

M).

% ------------------------------------------------
% step 2: Sumsume. V1 subsumes V2 if V1 is more specific.
% ------------------------------------------------
% V1 does not subsume V2 if there exist a class C that V2 is tc-

instance -of but V1 is not.
not_subsume(V1,V2) :-
ins(V1), ins(V2),
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tc_instance_of(V2 ,C),
not tc_instance_of(V1 ,C).

subsume(V1 ,V2) :-
ins(V1), ins(V2),
not not_subsume(V1 ,V2).

% ------------------------------------------------
% step : Define microclones
% --------------------------------------
% We let V1 microclones from V2 if V1 subsumes it, so later V1 gets

expanded.
% microclones ((X1,C), (X2,F)) reads as X1 in C is microcloned from

X2 in F.
% Case 1:
microclones ((X2,X2), (X1,X1)) :-
context(X1), context(X2),
ins(X1), ins(X2),
g_cloned_from(X2,X1).

% Case 2:
microclones ((V2,C), (V1,F)) :-
context(C), context(F),
ins(X1), ins(X2),
ins(V1), ins(V2),
microclones ((X2,C), (X1,F)),
has(X1 , S, V1),
has(X2 , S, V2),
not noninheritable(S),
subsume(V1 ,V2).

% Case 3:
microclones ((V2,C), (V1,F1)) :-
context(C), context(F1), context(F2),
ins(X1), ins(X2),
ins(V1), ins(V2),
microclones ((X,C), (X1,F1)),
microclones ((X,C), (X2,F2)),
has(X1 , S, V1),
has(X2 , S, V2),
X1 != X2 ,
not noninheritable(S),
subsume(V1 ,V2).

% % Define edges ^*_C(x)
% % --------------------------------------
% % may_have(X, S, V, C) reads as (X, S, V) is in edges ^*_C(x).

% X may have value V from Y if: X microclones value V from some
instance Y

% may_have ((X,S,V),C,(Y,F)): we may have (X,S,V) in C from Y in F
may_have ((X,S,V),C,(Y,F)) :-
context(C), context(F),
hasc((Y,S,V),F),
microclones ((X,C), (Y,F)),
not noninheritable(S).
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% Result of set difference with respect to subsume: KB has the edge
(X, S, V1), may have (X, S, V2) from Xj but V1 subsume V2.

% V is in N \_{subsume} M if may_have ((X,S,V), C,(Y,F)) and not
may_not_have ((X, S, V), C)

may_not_have ((X, S, V2), C) :-
context(C), context(F),
has(X, S, V1), may_have ((X, S, V2), C, (Xj , F)),
subsume(V1 , V2),
X != Xj,
V1 != V2.

% Select the most specific node(s)
% --------------------------------------
% Equally specific nodes
equ((X, S, V1), (Xi , Fi), (X, S, V2), (Xj , Fj), C) :-
may_have ((X, S, V1), C, (Xi, Fi)), may_have ((X, S, V2), C, (Xj, Fj))

,
subsume(V2 , V1), subsume(V1 , V2),
not may_not_have ((X, S, V1), C), not may_not_have ((X, S, V2), C),
Xi != X, Xj != X, Xi != Xj.

% Most specific nodes: nodes that are not subsumed by any node ,
except its equally specific ones.

may_not_have2 ((X, S, V1), C) :-
may_have ((X, S, V1), C, (Xi,_x)), may_have ((X, S, V2), C, (Xj, _)),
subsume(V2 , V1), not_subsume(V1 , V2),
V1 != V2 , Xi != X, Xj != X.

% Because of the imperfection of AURA KB, we have to remove the
upperbound of the rule to make it work in some cases.

1 { edges_s ((X, S, V1), C, (Xj, Fj)): equ((X, S, V), (Xi, Fi), (X, S
, V1), (Xj, Fj), C);

edges_s ((X, S, V), C, (Xi , Fi))} 2 :-
may_have ((X, S, V), C, (Xi, Fi)),
not may_not_have ((X, S, V), C),
not may_not_have2 ((X, S, V), C).

% ------------------------------------------------
% step : Construct
% --------------------------------------
% Add all the existing nodes from x
hasc((X, S, V), C) :-
context(C), relate(C,X),
ins(C),
has(X, S, V).

% Add the edge from x to the most specific nodes
hasc((X, S, V), C) :-
context(C), context(F),
edges_s ((X, S, V), C, (Xi , F)).

% Add all other nodes in G(V) in G*(F) if (X,S,V) is added through
edges_s( )

hasc((Z1 , SZ , Z2), C) :-
context(C), context(F),
edges_s ((X, S, V), C, (Xi , F)),
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hasc((Z1 , SZ , Z2), F),
connect(V, Z2 , F),
connect(V, Z1 , F).

% ------------------------------------------------
%
% ------------------------------------------------
% ConnectI from X to Y if there is a chain of inheritable edges from

X to Y
connectI(X, X, C) :- ins(X),
context(C), relate(C, X),
ins(C).
connectI(X, Z, C) :-
context(C),
connectI(X,Y,C),
hasc((Y, S, Z), C),
not noninheritable(S).
% Connect from X to Y if there connectI there is a chain of edges

from X to Y; the optional last edge is noninheritable.connect(X,
Y, C) :- connectI(X, Y, C).

connect(X, Y, C) :-
context(C),
connectI(X,Y,C).
connect(X, Z, C) :-
context(C),
connectI(X,Y,C),
hasc((Y, S, Z), C),
noninheritable(S).

% ------------------------------------------------
% Define context
% ------------------------------------------------
context(Y) :- context(X), g_cloned_from(X,Y).

% % Only nodes in G(b1) are related to the context b1
relateI(X, X) :- context(X).
relateI(X, Z) :-
context(X),
relateI(X,Y),
has(Y, S, Z),
not noninheritable(S).

relate(X,Y) :-
context(X),
relateI(X,Y).
relate(X, Z) :-
context(X),
relateI(X,Y),
has(Y, S, Z),
noninheritable(S).

% #show context /1.

% #show class /1.
% #show ins/1.
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% #show tc_instance_of /2.

% #show subsume /2.
% #show not_subsume /2.

% #show g_cloned_from /2.

% #show microclones /2.

% #show may_have /3.

% #show may_not_have /2.

% #show equ/5.

% #show may_not_have2 /2.

% #show edges_s /3.

% #show connectI /3.
% #show connect /3.

% #show hasc /2.
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Proof 20 (Corollary 4) Let x and y be two nodes in the KDG(z). We will prove that
there exists an ordering edge from x to y iff all answer sets of ΠG(z)∪Πpath contain
doconnects(x,y). Cases of dcconnects(x,y), d pconnects(x,y), dlconnects(x,y), and
dclconnects(x,y) can be proved similarly. We prove this in two directions:

• Forward direction: If there exists an ordering edge from x to y , all answer sets of
ΠG(z)∪Πpath contain doconnects(x,y).

• Backward direction: If an answer set of ΠG(z)∪Πpath contains doconnects(x,y),
there exists an ordering edge from x to y.

Forward direction: If there exists an ordering edge from x to y , all answer sets of
ΠG(z)∪Πpath contain doconnects(x,y).

1. Our knowledge base representation makes sure that

(a) Both of x and y are events: event(x) and event(y) are presented in all answer
sets (of the program ΠG(z)∪Πpath)

(b) has(X ,S,Y ) must be true where S is one of the predicates for compositional
edges defined in rule e2.

2. Rule e7, then, makes sure all answer sets containing doconnects(x,y).

Backward direction: If an answer set of ΠG(z)∪Πpath contains doconnects(x,y), there
exists an ordering edge from x to y.

1. If the answer set contains doconnects(x,y), it must be introduced by rule e7.

2. Both x and y must be events and there exists an edge of type S where ordering edge(S)
is true.

3. Hence, there exists an ordering edge from x to y.

Proof 21 (Corollary 5) This can be proved using Corollary 4.
If there exists a cpath edge from x to y, according to corollary 4, all answer sets contain

either dcconnects(x,y), d pconnects(x,y), or dlconnects(x,y). Rules c1, c2 or c3 make sure
dcpath connects(x,y) is true in all answer sets.

In the backward direction, when dcpath connects(x,y) is true, it must be introduced by
rule c1, c2 or c3. This means at least one of the three dcconnects(x,y), d pconnects(x,y),
and dlconnects(x,y) must be true. Using Corollary 4, we conclude that there exists a cpath
edge from x to y.

Proof 22 (Proposition 7) If there exists a cpath from x to y, there must be a list of different
nodes N0,N1, ...,Nk where

1. N0 = x

2. Nk = y, k > 0
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3. There exists a cpath edge from Ni to Ni+1, 0≤ i < k

Rule c4 makes cpath connects(N0,N1) true. Rule c5 makes cpath connects(N0,N2) true,
then cpath connects(N0,N3) true, then ..., cpath connects(N0,Nk) = cpath connects(x,y)
true.

In the backward direction, when cpath connects(x,y) is true, it must be introduced by
rule c4 or c5. We can, then, argue that the answer set contains a set of facts
dcpath connects(Ni+1,Ni) where

1. N0 = y

2. Nk = x, k > 0

This mean there exists a cpath from x to y through Nk−1,Nk−2, ...,N1.

Proof 23 (Proposition 8) Let q1 be the question “How does xc work?”. Let x be a node
in the KDG(z) so that xc is x’s class. Let K be a (z,x) KDG. Let minnumstep be the
length of the cpath from z to x in K. We are going to prove that here exists an answer set of
Π1(q1,z,numstep) containing:

ans(q1,zx kdg(q1,z,x),node,N)

and
ans(q1,zx kdg(q1,z,x),edge,has(I,Predicate,J))

where numstep≥ minnumstep; N is any node of K, and (I,Predicate,J) is any edge of K.

• By splitting program Π1(q,z,numstep)=ΠG(z)∪Πpath∪ΠQ(q)∪Π1
answer(numstep)

to two strata, ΠG(z)∪Πpath and ΠQ(q)∪Π1
answer(numstep), we have that the answer

set of ΠG(z)∪Πpath is included in a answer set of Π1(q,z,numstep). We thus still
can use Corollary 4, Corollary 5 and Proposition 7 with Π1(q,z,numstep)

• Since there exists a cpath from z to x, all answer sets of Π1(q,z,numstep) must have
cpath connects(z,x).

• Since x is an instance of XClass, Π1(q,z,numstep) must have has(x, instance o f ,xc).

• Encoding of the question q1 ΠQ(q1) will be

question(q1).
has(q1 , type , how).
has(q1 , category , work).
has(q1 , param1 , xc).

• Rule z1 introduces zx kdg(q1,z,x) to all answer sets of Π1(q,z,numstep).

• Let N0,N1, ...,Nminnumstep to be the nodes on the cpath from z to x of K, N0 = z,
Nminnumstep = x. Rule p1 gives
selected path1(z,x,z,0) = selected path1(N0,Nminnumstep,N0,0), to all answer sets.
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• Rule p2 makes sure at least one answer set containing selected path1(z,x,N1,1),
then at least one answer set containing both
selected path1(z,x,N1,1) and
selected path1(z,x,N2,2), then at least one answer set containing all
selected path1(z,x,N1,1),
selected path1(z,x,N2,2), and
selected path1(z,x,N3,3). ...

• There will be at least one answer set containing all
selected path1(z,x,N1,1), ...,selected path1(z,x,Ni, i), ...,
selected path1(z,x,Nminnumstep,minnumstep). Let that answer set be ANS. Note that
numstep≥ minnumstep.

• ANS will contain completed path1(zx kdg(q1,z,x)). The body of rule p4 thus will
not be satisfied.

• For any node N of K, it is either in the cpath from z to x or in KDG(x). In the first
case, ANS will contain selected path1(z,x,N, i),0≤ i≤ minnumstep. In the second
case, there must be a cpath from x to N, ANS will contain cpath connects(x,N).

• Rule a1 and a2 will make sure that ANS contains ans(q1,zx kdg(q1,z,x),node,N).

• Rule a3 ,then, will make sure that ANS contains
ans(q1,zx kdg(q1,z,x),edge,has(I,Predicate,J)), with (I,Predicate,J) is any edge
of K.

Proof 24 (Proposition 9) Let q1 be the question “How does xc work?”. Let x be a node
in the KDG(z) so that xc is x’s class. Suppose there exists at least one (z,x) KDG where
the length of cpath from z to x is less than or equal numstep. Let A be an answer set of
Π1(q1,z,numstep), let V = {n : ans(q1,zx kdg(q1,z,x),node,n) ∈ A} and
E = {(i,Predicate, j) : ans(q1,zx kdg(q1,z,x),edge,has(i,Predicate, j)) ∈ A}.

We are going to prove that there exists a (z,x) KDG K so that V is K’s set of nodes and
E is K’s set of edges. We will first point out the (z,x) KDG K that contains the set of nodes
V and set of edges E. Later we will prove that K does not contains any more node (not in
V ).

1. From rule a1 or a2, we know that A must contain zx kdg(q1,z,x), and either
cpath connects(x,N) or selected path1(z,x,N, i).

2. From rule p4, we know that A also contain completed path1(zx kdg(q1,z,x)).

3. p3 then gives us that A contains selected path1(z,x,x, t), t ≤ numstep. p1 gives us
that A contains selected path1(z,x,z,0).

4. Let N0 = x, rule p2 shows that A must contains

(a) selected path1(z,x,N1, t−1)
(b) dcpath connects(N1,N0)

(c) cpath connects2(N1,z)
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This means that there exists a cpath from N1 to z, and a cpath edge from N1 to N0.

5. Use previous step repeatedly, we have a list of nodes N0,N1, ...,Nt , where N0 =
x,Nt = z, that forms a cpath from z to x. Let K be the (z,x) KDG forms by that
cpath and KDG(x). Similar to previous proof, we can prove that A must contain
ans(q1,zx kdg(q1,z,x),node,N) where N is any node in KDG(x).

6. V thus contains all the nodes of K.

7. Now let us assume that V contains node N′ that is not in K. N′ must be introduced
by either rule a1 or a2.

8. A contains either cpath connects(x,N′) or selected path1(z,x,N′, i).

9. If A contains cpath connects(x,N′), there must exist a cpath from x to N′. N′ must
be in KDG(x), contradiction.

10. If A contains selected path1(z,x,N′, i), similarly to previous steps, we can prove
that there exists a list of node N′0,N

′
1, ...,N

′
i that forms a cpath from z to N′ (N′0 = N′,

N′i = z). This cpath and the cpath formed by N0,N1, ...,Nt all start at z, so they must
share some nodes and fork some node Nk = N′k′ . This means their next nodes Nk−1
and N′k′−1 are different from each other.

11. A, then, contains both selected path1(z,x,Nk−1, l +1) and
selected path1(z,x,N′k′−1, l + 1), where l is the length of cpath from z to Nk = N′k′ .
This is contradict to the upper-bound limit ( = 1) of rule p2.

12. V thus contains no such node N′, so contains no edge that is not in E.

13. V is thus K’s set of nodes and E is K’s set of edges.

Propositions 10 to 17 can be proved similarly to Propositions 8 and 9 above.
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ID Sentence Meaning
1 List jobs in loc1 λ x.answer(x,job(x) ∧ loc(x,loc1))
2 List jobs in area1 λ x.answer(x,job(x) ∧

area(x,area1))
3 Show jobs using language1 λ x.answer(x,job(x) ∧ lan-

guage(x,language1))
4 List jobs requiring reqdeg1 λ x.answer(x,job(x) ∧

req deg(x,reqdeg1))
5 List jobs requiring reqdeg1 using

language1
λ x.answer(x,job(x) ∧
req deg(x,reqdeg1) ∧ lan-
guage(x,language1))

6 Are there any jobs in loc1 λ x.answer(x,job(x) ∧ loc(x,loc1))
7 Are there any jobs specializing in

area1 with company1
λ x.answer(x,job(x) ∧
area(x,area1) ∧ com-
pany(x,company1))

Table D.1: Sentences and Their Meanings in JobsCompact7 Corpus

D.1 Training on JobsCompact7 Corpus

In this section, we will show details of how the learning algorithm works in each it-
eration. We demonstrate step-by-step of the learning process on a small corpus, which is
extracted from Jobs corpus.

Training Sentences and CCG Parse Trees We start with JobsCompact7, its sentences,
and their translations shown in Table D.1. In the real sentences in Jobs corpus, there are en-
tities like “Java” “C++.” We pre-processed the sentences with named entity recognizers and
replaced them by their tag. For example, “Java” is replaced by “language1” (or language2
if language1 has already appeared in the same sentence). JobsCompact7 contains only pre-
processed sentences. While preprocessing, we keep the list of replaced words/phrases for
each sentences so that we can replace “language1” or “company1” to the original word
later. Please note that we actually use syntax II (please see section 6.3.1) in the experi-
ments, but here we show λ -expressions (in figures) in the form similar to syntax I only for
display purposes.

First of all, we check the CCG parse trees of all the sentences in the corpus. Their CCG
parsing trees are shown in D.1 - D.18

Initial Dictionary As we can see in the CCG trees, the words “List” or “Show” are
always the child of the root node (S); they combine with the rest of the sentence to make
the full sentence. Moreover, from Table D.1, “List” or “Show” seems to have the meaning
λx.answer(x, ...). We construct the initial dictionary in Table D.2, where the word’s CCG
categories are from the CCG parse trees. We will explain the meaning of each word and
why we chose it.

• The meaning of “List” is λ p. λ x.answer(x,p @ x), which means that we are answer-
ing something, and we are expecting a lambda expression p to explain more about
what we are answering. The first unbound variable (u if p has the form λu.() ) in p
will be replaced by x.

• “jobs” simply means λ x.job(x).
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Word CCG Meaning
List S/S λ p. λ x.answer(x,p @ x)
jobs N λ x.job(x)
area1 N λ x.area(x,area1)
company1 N λ x.company(x,company1)
language1 N λ x.language(x,language1)
loc1 N λ x.loc(x,loc1)
reqdeg1 N λ x.req deg(x,reqdeg1)
least N λ x.x

Table D.2: Initial Dictionary for JobsCompact Corpus

• “area1”, “company1” or “language1”... means λ x.area(x,area1), λ x.company(x,
company1) or λ x.language(x, language1). These meanings can be generated auto-
matically by a small script from our list of entities: area, company, language, loca-
tion, etc.

• “least” means λ x.x, which tells that “least” does not have any particular meanings in
the translation; whatever combines with it will keep its meaning. Giving this trivial
meaning of “least” is optional since the learning algorithm can generalize this kind
of meaning later.

Iteration 0: In the following is the log of the NL2KR training on JobsCompact7 corpus.
As we can see, the lambda expressions are represented in the representation mentioned in
previous section; λx. job(x) is represented by l(x, f ( job,x)).
INFO: ****** Reading lexicon file: C:\ Users\Nguyen\Documents\

workspace\NL2KR\PCCG_New\corpora \6 sentences\dict.txt
INFO: Parsing line 0: List S/S l(p, l(x, f(answer , a(p,x))))
INFO: Skipping line 1: // requiring (NP\NP)/NP l(p, l(q, l(x, g(and

, a(q,x), a(p,x)))))
INFO: Parsing line 2: jobs N l(x, f(job ,x))
INFO: Parsing line 3: area1 N l(x, f(area ,x,area1))
INFO: Parsing line 4: company1 N l(x, f(company ,x,company1)

)
INFO: Parsing line 5: language1 N l(x, f(language ,x,

language1))
INFO: Parsing line 6: loc1 N l(x, f(loc ,x,loc1))
INFO: Parsing line 7: reqdeg1 N l(x, f(reqdeg ,x,reqdeg1))
INFO: Parsing line 8: least N l(x,x)
INFO: Skipping line 9: // using (S\NP)/S l(p, l(q, l(x, g(and

, a(q,x), a(p,x)))))
INFO: LearningProcess: 8 initial lexicon read.
INFO: ****** Reading training file: C:\ Users\Nguyen\Documents\

workspace\NL2KR\PCCG_New\corpora \6 sentences\train.txt
INFO: Parsing line 0: List jobs in loc1 l(x,f(answer ,g(and , f(job ,

x), f(loc , x, loc1))))
INFO: Parsing line 1: List jobs in area1 l(x,f(answer ,g(and , f(job ,

x), f(area , x, area1))))
INFO: Parsing line 2: Show jobs using language1 l(x,f(answer ,g

(and , f(job , x), f(language , x, language1))))
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INFO: Parsing line 3: List jobs requiring reqdeg1 l(x,f(answer ,g
(and , f(job , x), f(reqdeg , x, reqdeg1))))

INFO: Parsing line 4: List jobs requiring reqdeg1 using language1
l(x,f(answer ,g(and , f(job , x), f(reqdeg , x, reqdeg1), f(

language , x, language1))))
INFO: Parsing line 5: Are there any jobs in loc1 l(x,f(answer ,g

(and , f(job , x), f(loc , x, loc1))))
INFO: Parsing line 6: Are there any jobs specializing in area1 with

company1 l(x,f(answer ,g(and , f(job , x), f(area , x, area1), f(
company , x, company1))))

INFO: Skipping line 7: //Are there any jobs requiring a reqdeg1 for
company1 in loc1 l(x,f(answer ,g(and , f(job , x), f(reqdeg , x,
reqdeg1), f(company , x, company1), f(loc , x, loc1))))

INFO: Skipping line 8: //Are there any jobs in loc1 requiring at
least a reqdeg1 and knowing language1 l(x,f(answer ,g(and , f(
job , x), f(loc , x, loc1), f(reqdeg , x, reqdeg1), f(language , x,
language1))))

INFO: LearningProcess: 7 training data read.
INFO: ****** Learning lexicon ...

Iteration 1: In the following is the log of learning iteration 1. Let us look more care-
fully at the first 5 lines where the sentence 1 (List jobs in loc1) is learned.
INFO: Trying to learn ’S’ [List jobs in loc1]: expected = {1} [l(x,

f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)], current =
{0} []

INFO: Trying to learn ’S’ [jobs in loc1]: expected = {1} [l(x, g(and
, f(job , x), f(loc , x, loc1)))(0.0)], current = {0} []

INFO: Trying to learn ’S\NP ’ [in loc1]: expected = {1} [l(x0 , l(x, g
(and , a(x0, x), f(loc , x, loc1))))(0.0)], current = {0} []

INFO: Trying to learn ’(S\NP)/NP ’ [in]: expected = {1} [l(x1 , l(x0 ,
l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs in area1]: expected = {1} [l(x,
f(answer , g(and , f(job , x), f(area , x, area1))))(0.0)], current

= {0} []
INFO: Trying to learn ’S’ [jobs in area1]: expected = {1} [l(x, g(

and , f(job , x), f(area , x, area1)))(0.0)], current = {0} []
INFO: Trying to learn ’S\NP ’ [in area1]: expected = {1} [l(x0 , l(x,

g(and , a(x0, x), f(area , x, area1))))(0.0)], current = {0} []
INFO: Trying to learn ’(S\NP)/NP ’ [in]: expected = {1} [l(x1 , l(x0 ,

l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []
INFO: Trying to learn ’S’ [Show jobs using language1 ]: expected =

{1} [l(x, f(answer , g(and , f(job , x), f(language , x, language1)))
)(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 ]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(reqdeg , x, reqdeg1))))
(0.0)], current = {0} []

INFO: Trying to learn ’S’ [jobs requiring reqdeg1 ]: expected = {1} [
l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1)))(0.0)], current =
{0} []

INFO: Trying to learn ’S\NP ’ [requiring reqdeg1 ]: expected = {1} [l(
x0, l(x, g(and , a(x0, x), f(reqdeg , x, reqdeg1))))(0.0)], current
= {0} []

INFO: Trying to learn ’(S\NP)/NP ’ [requiring ]: expected = {1} [l(x1 ,
l(x0 , l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 using
language1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x), f(
reqdeg , x, reqdeg1), f(language , x, language1))))(0.0)], current
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Figure D.8: Current status of learning sentence 1 in iteration 0

= {0} []
INFO: Trying to learn ’S’ [jobs requiring reqdeg1 using language1 ]:

expected = {1} [l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1), f(
language , x, language1)))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [Are there any jobs in loc1]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)],
current = {0} []

INFO: Trying to learn ’S’ [Are there any jobs specializing in area1
with company1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x),
f(area , x, area1), f(company , x, company1))))(0.0)], current =
{0} []

INFO: Learned ’in : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 , x), a(
x1, x)))))’ by inverse

INFO: Learned ’requiring : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 ,
x), a(x1 , x)))))’ by inverse

INFO: We learned 2 new lexicon(s):

Shown in Figure D.8 is what we already known in sentence 1. We have the meanings of
“List”, “jobs,” and “loc1.” The current meanings of those words are shown below each leaf
node (in italics). The bottom-up process (subsection 6.4.2) combines the current meanings
from leaf nodes to root; since the meaning of “in” is unknown, we do not have current
meanings of “in loc1”, “jobs in loc1,” and “List jobs in loc1.” However, we do know the
expected meaning of “List jobs in loc1” (show on top of root node, in bold).

Shown in Figure D.9 is the top-down process (subsection 6.4.2) to learn expected mean-
ings, which corresponds to the first 5 lines in the log. Using inverse lambda, we use the
current meaning of “List” to learn an expected meaning of “jobs in loc1” (shown on top
of node “jobs in loc1” in bold). Then, we continue using inverse lambda with the cur-
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Figure D.9: Current status of learning sentence 1 in iteration 1

rent meaning of “jobs” to get an expected meaning of “in loc1.” Similarly, we obtain an
expected meaning of “in” λ p. λ q. λ x.q @ x ∧ p @ x.

Here we know the most in 3 sentences:

1. List jobs in loc1

2. List jobs in area1’

3. List jobs requiring reqdeg1

From those sentences, we can learn the meaning of the two words “in” and “requiring.”
For other sentences, we do not have enough information for the inverse learning to start.

Iteration 2:
SEVERE: =========================== Iteration 2

===========================
INFO: Trying to learn ’S’ [List jobs in loc1]: expected = {1} [l(x,

f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)], current =
{1} [l(x, f(answer , g(and , f(job , x), f(loc , x, loc1))))( -1.0)]

INFO: Trying to learn ’S’ [List jobs in area1]: expected = {1} [l(x,
f(answer , g(and , f(job , x), f(area , x, area1))))(0.0)], current

= {1} [l(x, f(answer , g(and , f(job , x), f(area , x, area1))))
(-1.0)]

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 ]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(reqdeg , x, reqdeg1))))
(0.0)], current = {1} [l(x, f(answer , g(and , f(job , x), f(reqdeg ,
x, reqdeg1))))(-1.0)]

INFO: We learned 0 new lexicon(s):
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In this iteration, using the meanings that we have learned so far, we got the current
meanings of each sentence. The current meanings of the three sentences mentioned above
contain their expected meanings. For example, in the first line of the log for iteration 2, for
sentence “List jobs in loc1,” we have 1 expected meaning
l(x, f (answer,g(and, f ( job,x), f (loc,x, loc1)))) and 1 current meaning:
l(x, f (answer,g(and, f ( job,x), f (loc,x, loc1)))). Since these two meanings are equal, we
have finished learning this sentence. In this iteration, we verify that we have finished learn-
ing the 3 sentences and learn no new words.

Iteration 3:
SEVERE: =========================== Iteration 3

===========================
INFO: Learned ’in : (S\NP)/NP : l(x, x)’ by generalization
INFO: Learned ’requiring : (NP\NP)/NP : l(x, x)’ by generalization
INFO: Learned ’Are : S/S : l(p, l(x, f(answer , a(p, x))))’ by

generalization
INFO: Learned ’Are : S/S : l(x, x)’ by generalization
INFO: Learned ’any : NP/N : l(x, x)’ by generalization
INFO: Learned ’there : S/S : l(x, x)’ by generalization
INFO: Learned ’List : S/S : l(x, x)’ by generalization
INFO: Learned ’using : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 , x),

a(x1 , x)))))’ by generalization
INFO: Learned ’using : (S\NP)/NP : l(x, x)’ by generalization
INFO: Learned ’specializing : S\NP : l(x, x)’ by generalization
INFO: Learned ’in : ((S\NP)\(S\NP))/NP : l(x, x)’ by generalization
INFO: Learned ’with : (NP\NP)/NP : l(x, x)’ by generalization
INFO: Learned ’Show : S/S : l(p, l(x, f(answer , a(p, x))))’ by

generalization
INFO: Learned ’Show : S/S : l(x, x)’ by generalization
INFO: We learned 14 new lexicon(s):

Because we cannot learn any new words in the previous iteration, we begin using Gen-
eralization. In this iteration, we learn 14 new meanings through generalization. These
meanings are generalized from two sources:

1. The meanings we learned by inversion in the previous iteration such as “in” and
“requiring.” For example, meanings l(p, l(q, l(x,g(and,a(q,x),a(p,x))))) of “for” is
from this source.

2. The trivial meanings defined (in trivialTemplates.txt file) which contain l(x,x) (means
λ x.x)

Iteration 4:
SEVERE: =========================== Iteration 4

===========================
INFO: Trying to learn ’S’ [Show jobs using language1 ]: expected =

{1} [l(x, f(answer , g(and , f(job , x), f(language , x, language1)))
)(0.0)], current = {4} [l(x, f(answer , g(and , f(job , x), f(
language , x, language1))))(-2.0), l(x, f(answer , a(f(language , l(
x, f(job , x)), language1), x)))(-2.0), l(x, g(and , f(job , x), f(
language , x, language1)))(-2.0), f(language , l(x, f(job , x)),
language1)( -2.0)]

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 using
language1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x), f(
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reqdeg , x, reqdeg1), f(language , x, language1))))(0.0)], current
= {4} [l(x, f(answer , g(and , a(f(reqdeg , l(x, f(job , x)), reqdeg1
), x), f(language , x, language1))))( -2.0), f(language , f(reqdeg ,
l(x, f(job , x)), reqdeg1), language1)( -3.0), l(x, g(and , a(f(
reqdeg , l(x, f(job , x)), reqdeg1), x), f(language , x, language1))
)( -3.0), l(x, f(answer , a(f(language , f(reqdeg , l(x, f(job , x)),
reqdeg1), language1), x)))(-2.0)]

INFO: Trying to learn ’S’ [jobs requiring reqdeg1 using language1 ]:
expected = {2} [l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1), f(
language , x, language1)))(0.0), l(x, f(answer , g(and , f(job , x),
f(reqdeg , x, reqdeg1), f(language , x, language1))))( -1.0)],
current = {2} [l(x, g(and , a(f(reqdeg , l(x, f(job , x)), reqdeg1),
x), f(language , x, language1)))( -2.0), f(language , f(reqdeg , l(x

, f(job , x)), reqdeg1), language1)( -2.0)]
INFO: Trying to learn ’NP ’ [jobs requiring reqdeg1 ]: expected = {1}

[l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1)))( -1.0)], current =
{1} [f(reqdeg , l(x, f(job , x)), reqdeg1)( -1.0)]

INFO: Trying to learn ’NP\NP ’ [requiring reqdeg1 ]: expected = {1} [l
(x0, l(x, g(and , a(x0, x), f(reqdeg , x, reqdeg1))))( -1.0)],
current = {1} [l(x, f(reqdeg , x, reqdeg1))(-1.0)]

INFO: Trying to learn ’(NP\NP)/NP ’ [requiring ]: expected = {1} [l(x1
, l(x0, l(x, g(and , a(x0, x), a(x1, x)))))( -1.0)], current = {1}
[l(x, x)( -1.0)]

INFO: Trying to learn ’NP ’ [reqdeg1 ]: expected = {1} [l(x0 , l(x, g(
and , a(x0 , x), f(reqdeg , x, reqdeg1))))(-2.0)], current = {1} [l(
x, f(reqdeg , x, reqdeg1))(0.0)]

INFO: Trying to learn ’N’ [reqdeg1 ]: expected = {1} [l(x0 , l(x, g(
and , a(x0 , x), f(reqdeg , x, reqdeg1))))(-2.0)], current = {1} [l(
x, f(reqdeg , x, reqdeg1))(0.0)]

INFO: Trying to learn ’N’ [reqdeg1 ]: expected = {1} [l(x0 , l(x, g(
and , a(x0 , x), f(reqdeg , x, reqdeg1))))(-2.0)], current = {1} [l(
x, f(reqdeg , x, reqdeg1))(0.0)]

INFO: Trying to learn ’S’ [Are there any jobs in loc1]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)],
current = {2} [l(x, f(answer , a(f(loc , l(x, f(job , x)), loc1), x)
))( -4.0), f(loc , l(x, f(job , x)), loc1)( -4.0)]

INFO: Trying to learn ’S’ [there any jobs in loc1]: expected = {2} [
l(x, g(and , f(job , x), f(loc , x, loc1)))( -1.0), l(x, f(answer , g(
and , f(job , x), f(loc , x, loc1))))(-1.0)], current = {1} [f(loc ,
l(x, f(job , x)), loc1)( -3.0)]

INFO: Trying to learn ’S’ [any jobs in loc1]: expected = {2} [l(x, g
(and , f(job , x), f(loc , x, loc1)))( -2.0), l(x, f(answer , g(and , f
(job , x), f(loc , x, loc1))))( -2.0)], current = {1} [f(loc , l(x, f
(job , x)), loc1)( -2.0)]

INFO: Trying to learn ’S\NP ’ [in loc1]: expected = {2} [l(x0 , l(x, g
(and , a(x0, x), f(loc , x, loc1))))( -3.0), l(x0, l(x, f(answer , g(
and , a(x0 , x), f(loc , x, loc1)))))(-3.0)], current = {1} [l(x, f(
loc , x, loc1))(-1.0)]

INFO: Trying to learn ’(S\NP)/NP ’ [in]: expected = {2} [l(x1 , l(x0 ,
l(x, g(and , a(x0, x), a(x1, x)))))( -3.0), l(x1, l(x0, l(x, f(
answer , g(and , a(x0 , x), a(x1 , x))))))( -3.0)], current = {1} [l(x
, x)( -1.0)]

INFO: Trying to learn ’NP ’ [loc1]: expected = {2} [l(x0 , l(x, g(and ,
a(x0 , x), f(loc , x, loc1))))( -4.0), l(x0, l(x, f(answer , g(and ,

a(x0, x), f(loc , x, loc1)))))( -4.0)], current = {1} [l(x, f(loc ,
x, loc1))(0.0)]

INFO: Trying to learn ’N’ [loc1]: expected = {1} [l(x0 , l(x, g(and ,
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a(x0, x), f(loc , x, loc1))))( -4.0)], current = {1} [l(x, f(loc , x
, loc1))(0.0)]

INFO: Trying to learn ’N’ [loc1]: expected = {2} [l(x0 , l(x, g(and ,
a(x0, x), f(loc , x, loc1))))( -4.0), l(x0, l(x, f(answer , g(and , a
(x0, x), f(loc , x, loc1)))))( -4.0)], current = {1} [l(x, f(loc , x
, loc1))(0.0)]

INFO: Trying to learn ’N’ [loc1]: expected = {2} [l(x0 , l(x, g(and ,
a(x0, x), f(loc , x, loc1))))( -4.0), l(x0, l(x, f(answer , g(and , a
(x0, x), f(loc , x, loc1)))))( -4.0)], current = {1} [l(x, f(loc , x
, loc1))(0.0)]

INFO: Trying to learn ’S’ [Are there any jobs specializing in area1
with company1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x),
f(area , x, area1), f(company , x, company1))))(0.0)], current =
{0} []

INFO: Trying to learn ’S’ [there any jobs specializing in area1 with
company1 ]: expected = {2} [l(x, g(and , f(job , x), f(area , x,

area1), f(company , x, company1)))( -1.0), l(x, f(answer , g(and , f(
job , x), f(area , x, area1), f(company , x, company1))))(-1.0)],
current = {0} []

INFO: Trying to learn ’S’ [any jobs specializing in area1 with
company1 ]: expected = {2} [l(x, g(and , f(job , x), f(area , x,
area1), f(company , x, company1)))( -2.0), l(x, f(answer , g(and , f(
job , x), f(area , x, area1), f(company , x, company1))))(-2.0)],
current = {0} []

INFO: Trying to learn ’S\NP ’ [specializing in area1 with company1 ]:
expected = {2} [l(x0, l(x, g(and , a(x0, x), f(area , x, area1), f(
company , x, company1))))( -3.0), l(x0 , l(x, f(answer , g(and , a(x0 ,
x), f(area , x, area1), f(company , x, company1)))))( -3.0)],

current = {0} []
INFO: Trying to learn ’(S\NP)\(S\NP)’ [in area1 with company1 ]:

expected = {2} [l(x1, a(x1, l(x0, l(x, g(and , a(x0, x), f(area , x
, area1), f(company , x, company1))))))( -4.0), l(x1, a(x1, l(x0, l
(x, f(answer , g(and , a(x0, x), f(area , x, area1), f(company , x,
company1)))))))( -4.0)], current = {1} [f(company , l(x, f(area , x,
area1)), company1)( -2.0)]

INFO: Trying to learn ’NP ’ [area1 with company1 ]: expected = {2} [l(
x1, a(x1, l(x0, l(x, g(and , a(x0, x), f(area , x, area1), f(
company , x, company1))))))( -5.0), l(x1 , a(x1 , l(x0 , l(x, f(answer
, g(and , a(x0, x), f(area , x, area1), f(company , x, company1)))))
))( -5.0)], current = {1} [f(company , l(x, f(area , x, area1)),
company1)( -1.0)]

INFO: Trying to learn ’NP\NP ’ [with company1 ]: expected = {2} [l(x2 ,
l(x1 , a(x1 , l(x0, l(x, g(and , a(x0, x), a(x2, x), f(company , x,

company1)))))))( -5.0), l(x2, l(x1, a(x1, l(x0, l(x, f(answer , g(
and , a(x0 , x), a(x2 , x), f(company , x, company1))))))))(-5.0)],
current = {1} [l(x, f(company , x, company1))(-1.0)]

INFO: Trying to learn ’(NP\NP)/NP ’ [with]: expected = {2} [l(x3 , l(
x2, l(x1, a(x1, l(x0, l(x, g(and , a(x0, x), a(x2, x), a(x3, x))))
))))( -5.0), l(x3, l(x2, l(x1, a(x1, l(x0, l(x, f(answer , g(and , a
(x0, x), a(x2, x), a(x3, x)))))))))( -5.0)], current = {1} [l(x, x
)( -1.0)]

INFO: Trying to learn ’NP ’ [company1 ]: expected = {2} [l(x2 , l(x1 , a
(x1, l(x0, l(x, g(and , a(x0, x), a(x2, x), f(company , x, company1
)))))))( -6.0), l(x2, l(x1, a(x1, l(x0, l(x, f(answer , g(and , a(x0
, x), a(x2, x), f(company , x, company1))))))))( -6.0)], current =
{1} [l(x, f(company , x, company1))(0.0)]

INFO: Trying to learn ’N’ [company1 ]: expected = {1} [l(x2 , l(x1 , a(
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x1, l(x0, l(x, g(and , a(x0, x), a(x2, x), f(company , x, company1)
))))))( -6.0)], current = {1} [l(x, f(company , x, company1))(0.0)]

INFO: Trying to learn ’N’ [company1 ]: expected = {2} [l(x2 , l(x1 , a(
x1, l(x0, l(x, g(and , a(x0, x), a(x2, x), f(company , x, company1)
))))))( -6.0), l(x2, l(x1, a(x1, l(x0, l(x, f(answer , g(and , a(x0,
x), a(x2 , x), f(company , x, company1))))))))( -6.0)], current =

{1} [l(x, f(company , x, company1))(0.0)]
INFO: Trying to learn ’N’ [company1 ]: expected = {2} [l(x2 , l(x1 , a(

x1, l(x0, l(x, g(and , a(x0, x), a(x2, x), f(company , x, company1)
))))))( -6.0), l(x2, l(x1, a(x1, l(x0, l(x, f(answer , g(and , a(x0,
x), a(x2 , x), f(company , x, company1))))))))( -6.0)], current =

{1} [l(x, f(company , x, company1))(0.0)]
INFO: Learned ’reqdeg1 : N : l(x0 , l(x, g(and , a(x0 , x), f(reqdeg , x

, reqdeg1))))’ by inverse
INFO: Learned ’company1 : N : l(x2 , l(x1 , a(x1 , l(x0 , l(x, g(and , a(

x0, x), a(x2, x), f(company , x, company1)))))))’ by inverse
INFO: Learned ’company1 : N : l(x2 , l(x1 , a(x1 , l(x0 , l(x, f(answer ,

g(and , a(x0 , x), a(x2, x), f(company , x, company1))))))))’ by
inverse

INFO: Learned ’in : (S\NP)/NP : l(x1 , l(x0 , l(x, f(answer , g(and , a(
x0, x), a(x1, x))))))’ by inverse

INFO: Learned ’requiring : (NP\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0
, x), a(x1, x)))))’ by inverse

INFO: Learned ’with : (NP\NP)/NP : l(x3 , l(x2 , l(x1 , a(x1 , l(x0 , l(x
, g(and , a(x0, x), a(x2, x), a(x3, x))))))))’ by inverse

INFO: Learned ’with : (NP\NP)/NP : l(x3 , l(x2 , l(x1 , a(x1 , l(x0 , l(x
, f(answer , g(and , a(x0, x), a(x2, x), a(x3, x)))))))))’ by
inverse

INFO: Learned ’loc1 : N : l(x0 , l(x, g(and , a(x0 , x), f(loc , x, loc1
))))’ by inverse

INFO: Learned ’loc1 : N : l(x0 , l(x, f(answer , g(and , a(x0 , x), f(
loc , x, loc1)))))’ by inverse

INFO: Learned ’requiring : (NP\NP)/NP : l(x3 , l(x2 , l(x1 , a(x1 , l(x0
, l(x, g(and , a(x0, x), a(x2, x), a(x3, x))))))))’ by
generalization

INFO: Learned ’requiring : (NP\NP)/NP : l(x3 , l(x2 , l(x1 , a(x1 , l(x0
, l(x, f(answer , g(and , a(x0, x), a(x2, x), a(x3, x)))))))))’ by
generalization

INFO: Learned ’with : (NP\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 , x),
a(x1 , x)))))’ by generalization

INFO: We learned 12 new lexicon(s):

In this iteration, using the new generalized meanings, we can learn all of the remaining
sentences. We actually have all of the needed meanings for one sentence in those remain-
ing, so we only need to verify; for the rest, we must use inverse learning to derive the
missing meanings.

Once we learn one word by inversion, we use this meaning to generalize new meanings
for words on the waiting list (subsection 6.4.2). Overall, we learn 12 new meanings in this
iteration.

Iteration 5:
SEVERE: =========================== Iteration 5

===========================
INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 using

language1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x), f(
reqdeg , x, reqdeg1), f(language , x, language1))))(0.0)], current

298



= {88} ...
INFO: Trying to learn ’S’ [Are there any jobs in loc1]: expected =

{1} [l(x, f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)],
current = {20} ...

INFO: Trying to learn ’S’ [Are there any jobs specializing in area1
with company1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x),
f(area , x, area1), f(company , x, company1))))(0.0)], current =
{16} ...

INFO: We learned 0 new lexicon(s):

Similar to iteration 2, here we verify learning of the remaining sentences.
Iteration 6:

SEVERE: =========================== Iteration 6
===========================

INFO: We fully learned 7 of 7 sentences: [0, 1, 2, 3, 4, 5, 6]
INFO: Incompleted learning sentences: []
INFO: Lexicon Learning costs: 00h:00m:01s:238ms

After verifying that all sentences have been learned, we cease the lexicon learning pro-
cess and begin the parameter estimation.

Parameter Estimation:
INFO: ****** Parameter estimation ...
INFO: Current Parser:SPARSE
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Parse all the sentences again to get all possible parse trees
INFO: Updating the feature vector table
INFO: Initial theta = [0.0, 1.3862943611198906 , 1.3862943611198906 ,

2.0794415416798357 , 1.3862943611198906 , 0.6931471805599453 ,
0.6931471805599453 , 0.6931471805599453 , 0.0, 1.0986122886681098 ,
-1.0, 2.8903717578961645 , -1.0, 1.0986122886681098 ,
0.6931471805599453 , 0.0, 0.0, -1.0, 0.0, -1.0, 1.791759469228055 ,
0.6931471805599453 , 0.0, 0.0, 1.0986122886681098 ,

1.3862943611198906 , 1.0986122886681098 , 0.0, 0.0, -1.0, -1.0,
2.0794415416798357 , 1.791759469228055 , 1.0986122886681098 ,
1.3862943611198906 , 1.3862943611198906]

INFO: Number of features = 36
INFO: Using simple parameter estimation.
INFO: Parameter Estimation costs: 00h:00m:01s:285ms
INFO: ****** Evaluation on training set ...
INFO: Generalizing using = [using : (S\NP)/NP : l(x1 , l(x0 , l(x, f(

answer , g(and , a(x0 , x), a(x1 , x)))))), using : (S\NP)/NP : l(x,
x)]

INFO: Generalizing requiring = [requiring : (S\NP)/NP : l(x1 , l(x0 ,
l(x, f(answer , g(and , a(x0, x), a(x1, x)))))), requiring : (S\NP)
/NP : l(x, x)]
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ID Sentence Meaning
1 List jobs in loc1 λ x.answer(x,job(x) ∧ loc(x,loc1))
2 List jobs in area1 λ x.answer(x,job(x) ∧

area(x,area1))
3 Show jobs using language1 λ x.answer(x,job(x) ∧ lan-

guage(x,language1))
4 List jobs requiring reqdeg1 λ x.answer(x,job(x) ∧

req deg(x,reqdeg1))
5 List jobs requiring reqdeg1 using

language1
λ x.answer(x,job(x) ∧
req deg(x,reqdeg1) ∧ lan-
guage(x,language1))

6 Are there any jobs in loc1 λ x.answer(x,job(x) ∧ loc(x,loc1))
7 Are there any jobs specializing in

area1 with company1
λ x.answer(x,job(x) ∧
area(x,area1) ∧ com-
pany(x,company1))

8 Are there any jobs requiring a re-
qdeg1 for company1 in loc1

λ x.answer(x,job(x) ∧
req deg(x,reqdeg1) ∧ com-
pany(x,company1) ∧ loc(x,loc1))

9 Are there any jobs in loc1 requiring
at least a reqdeg1 and knowing lan-
guage1

λ x.answer(x,job(x) ∧ loc(x,loc1)
∧ req deg(x,reqdeg1) ∧ lan-
guage(x,language1))

Table D.3: Sentences and Their Meanings in the JobsCompact9 corpus.

INFO: Evaluation costs: 00h:00m:01s:199ms
INFO: ****** Correct Parse :7 out of 7
INFO: Total training costs: 00h:00m:03s:734ms

The parameter estimation process learns the weights for each meaning in the lexicon.
After that, it evaluates the training set and observes that we can correctly translate 7 out of
7 sentences.

Shown in Figure D.10 to Figure D.16 are the meanings of each word in the sentences
and how they are combined for the correct meanings of the entire sentences.

D.2 Training on JobsCompact9 Corpus

Now we add 2 more sentences to JobCompact7 to create the JobCompact9 corpus; these
two sentences are more complex than the rest. The new training corpus is shown in Table
D.3. The CCG parse trees of the two new sentences are shown in Figure D.17 and D.18.

Using the same initial dictionary as JobsCompact7, we cannot learn the two new sen-
tences, since they have new word “requiring” with different CCG category than the word
“requiring” in other sentences. Because this word has different categories, its meaning
cannot be generalized from the previous. Moreover, the two sentences also have other un-
known words; the inverse algorithm cannot be used to learn the meaning of “requiring.”
The solution is either making sure that the two sentences miss only the meaning of “requir-
ing” or providing the meaning of “requiring” and allow the algorithm to learn many other
words in the two sentences.

We choose to provide the meaning of “requiring” λ p. λ q. λ x.q @ x ∧ p @ x, which
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Word CCG Meaning
List S/S λ p. λ x.answer(x,p @ x)
requiring (NP \ NP)/NP λ p. λ q. λ x.q @ x ∧ p @ x
jobs N λ x.job(x)
area1 N λ x.area(x,area1)
company1 N λ x.company(x,company1)
language1 N λ x.language(x,language1)
loc1 N λ x.loc(x,loc1)
reqdeg1 N λ x.req deg(x,reqdeg1)
least N λ x.x

Table D.4: Initial Dictionary for JobsCompact9 Corpus

is the same as the meanings of “in” and “for” in previous case. The new initial dictionary
thus is shown in Table D.4.

Learning on the new corpus is a little bit different from the previous.
SEVERE: =========================== Iteration 1

===========================
INFO: Trying to learn ’S’ [List jobs in loc1]: expected = {1} [l(x,

f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)], current =
{0} []

INFO: Trying to learn ’S’ [jobs in loc1]: expected = {1} [l(x, g(and
, f(job , x), f(loc , x, loc1)))(0.0)], current = {0} []

INFO: Trying to learn ’S\NP ’ [in loc1]: expected = {1} [l(x0 , l(x, g
(and , a(x0, x), f(loc , x, loc1))))(0.0)], current = {0} []

INFO: Trying to learn ’(S\NP)/NP ’ [in]: expected = {1} [l(x1 , l(x0 ,
l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs in area1]: expected = {1} [l(x,
f(answer , g(and , f(job , x), f(area , x, area1))))(0.0)], current

= {0} []
INFO: Trying to learn ’S’ [jobs in area1]: expected = {1} [l(x, g(

and , f(job , x), f(area , x, area1)))(0.0)], current = {0} []
INFO: Trying to learn ’S\NP ’ [in area1]: expected = {1} [l(x0 , l(x,

g(and , a(x0, x), f(area , x, area1))))(0.0)], current = {0} []
INFO: Trying to learn ’(S\NP)/NP ’ [in]: expected = {1} [l(x1 , l(x0 ,

l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []
INFO: Trying to learn ’S’ [Show jobs using language1 ]: expected =

{1} [l(x, f(answer , g(and , f(job , x), f(language , x, language1)))
)(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 ]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(reqdeg , x, reqdeg1))))
(0.0)], current = {0} []

INFO: Trying to learn ’S’ [jobs requiring reqdeg1 ]: expected = {1} [
l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1)))(0.0)], current =
{0} []

INFO: Trying to learn ’S\NP ’ [requiring reqdeg1 ]: expected = {1} [l(
x0, l(x, g(and , a(x0, x), f(reqdeg , x, reqdeg1))))(0.0)], current
= {0} []

INFO: Trying to learn ’(S\NP)/NP ’ [requiring ]: expected = {1} [l(x1 ,
l(x0 , l(x, g(and , a(x0, x), a(x1, x)))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [List jobs requiring reqdeg1 using
language1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x), f(
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reqdeg , x, reqdeg1), f(language , x, language1))))(0.0)], current
= {0} []

INFO: Trying to learn ’S’ [jobs requiring reqdeg1 using language1 ]:
expected = {1} [l(x, g(and , f(job , x), f(reqdeg , x, reqdeg1), f(
language , x, language1)))(0.0)], current = {0} []

INFO: Trying to learn ’S\NP ’ [using language1 ]: expected = {1} [l(x0
, l(x, g(and , f(language , x, language1), a(x0, x))))(0.0)],
current = {0} []

INFO: Trying to learn ’(S\NP)/NP ’ [using]: expected = {1} [l(x1 , l(
x0, l(x, g(and , a(x1, x), a(x0, x)))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [Are there any jobs in loc1]: expected =
{1} [l(x, f(answer , g(and , f(job , x), f(loc , x, loc1))))(0.0)],
current = {0} []

INFO: Trying to learn ’S’ [Are there any jobs specializing in area1
with company1 ]: expected = {1} [l(x, f(answer , g(and , f(job , x),
f(area , x, area1), f(company , x, company1))))(0.0)], current =
{0} []

INFO: Trying to learn ’S’ [Are there any jobs requiring a reqdeg1
for company1 in loc1]: expected = {1} [l(x, f(answer , g(and , f(
job , x), f(reqdeg , x, reqdeg1), f(company , x, company1), f(loc , x
, loc1))))(0.0)], current = {0} []

INFO: Trying to learn ’S’ [Are there any jobs in loc1 requiring at
least a reqdeg1 and knowing language1 ]: expected = {1} [l(x, f(
answer , g(and , f(job , x), f(loc , x, loc1), f(reqdeg , x, reqdeg1),
f(language , x, language1))))(0.0)], current = {0} []

INFO: Learned ’in : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 , x), a(
x1, x)))))’ by inverse

INFO: Learned ’requiring : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x0 ,
x), a(x1 , x)))))’ by inverse

INFO: Learned ’using : (S\NP)/NP : l(x1 , l(x0 , l(x, g(and , a(x1 , x),
a(x0 , x)))))’ by inverse

INFO: We learned 3 new lexicon(s):

Knowing more allows us to fully learn 4 sentences (previously 3) in iteration 1. After
verification in iteration 2 and generalization in iteration 3, we learn the remaining sentences
in iteration 4. In iteration 5, 5 remaining sentences are found be finished. In iteration 6, all
sentences are finished and parameter estimation is called.

Complete parse tree with meanings of the two new sentences are shown in Figure D.19
and D.20
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