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Abstract

This dissertation describes a process for interface capturing via an arbitrary-order,

nearly quadrature free, discontinuous Galerkin (DG) scheme for the conservative level

set method (Olsson et al., 2005, 2008). The DG numerical method is utilized to solve both

advection and reinitialization, and executed on a refined level set grid (Herrmann, 2008)

for effective use of processing power. Computation is executed in parallel utilizing both

CPU and GPU architectures to make the method feasible at high order. Finally, a sparse

data structure is implemented to take full advantage of parallelism on the GPU, where

performance relies on well-managed memory operations.

With solution variables projected into a 𝑘th order polynomial basis, a 𝑘 + 1 order

convergence rate is found for both advection and reinitialization tests using the method of

manufactured solutions. Other standard test cases, such as Zalesak’s disk and deformation

of columns and spheres in periodic vortices are also performed, showing several orders of

magnitude improvement over traditional WENO level set methods. These tests also show

the impact of reinitialization, which often increases shape and volume errors as a result

of level set scalar trapping by normal vectors calculated from the local level set field.

Accelerating advection via GPU hardware is found to provide a 30x speedup factor

comparing a 2.0GHz Intel Xeon E5-2620 CPU in serial vs. a Nvidia Tesla K20 GPU, with

speedup factors increasing with polynomial degree until shared memory is filled. A sim-

ilar algorithm is implemented for reinitialization, which relies on heavier use of shared

and global memory and as a result fills them more quickly and produces smaller speedups

of 18x.
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Chapter 1

Introduction

1.1 Motivation

A crucial problem in engineering is the modeling of fluid interactions involving im-

miscible interfaces. These flows occur in a variety of natural phenomena and technical

applications, for instance biological systems, lava flow, oil leaks, and medical sprays. In-

side jet turbines, internal combustion engines, and liquid rocket engines, fuel is dispersed

and atomized into air. For complete combustion of the fuel, the fuel must be evaporated

into the surrounding air. This task is aided through atomization, which is performed by

fuel injection. The quality of the mixture resulting from fuel injection and liquid atom-

ization therefore has a direct impact on the overall performance of the engine, as well as

pollutant production.

Unfortunately, experiments exploring the fundamental physics of multiphase flow and

mixing are difficult or impossible to perform at operating conditions, simply because op-

tical access is obstructed by the engine structure and a haze of fuel droplets surrounds the

interesting dynamics. Approaching the problem analytically yields a system of coupled

nonlinear partial differential equations, for which there are no known exact solutions or

solution methods for the vast majority of engineering applications. On the other hand,

(a) Pahoeoe fountain [13] (b) Deepwater Horizon oil
spill [26]

(c) Diesel jet [37]

Figure 1.1: Multiphase Flow Examples

1



numerical methods can be utilized to produce approximate solutions to these equations

and describe the flow, and have become increasingly accurate and capable as computa-

tional power has become more available. As a result, computational tools and simulations

that predict multiphase flows are vital to a multitude of engineering applications and our

understanding of the underlying physics.

Current state of the art simulations often rely on experimental data to describe atom-

ization in a statistical sense, thereby relying on tuning parameters to produce accurate

results. Since experiments at operating conditions are typically unfeasible or impossible,

the inference these simulations rely on leaves room for doubt. Therefore, developing a

simulation which solves the governing nonlinear partial differential equations directly,

from first principles, is essential.

Numerical simulation of the Navier-Stokes equations with appropriate interfacial mod-

eling has been the studied for several decades now. Interface models are discussed in more

detail in Ch. 2. For now, it is sufficient to say that the primary issues are mass conservation

and surface tension calculation with high order accuracy, as many methods suffer from

either producing non-negligible mass errors or being limited to low order. The conserva-

tive level set (CLS) method [28, 29] is used with a discontinuous Galerkin discretization

to achieve a high order representation of the phase interface while also offering a much

improved mass conservation.

The governing equations have historically been solved by a variety of numerical ap-

proaches, with finite difference, finite volume, and spectral methods being popular choices.

To avoid the need for extremely fine meshes to achieve a chosen accuracy, and therefore

reduce the necessary computing power, high order solvers are essential. Although they

are more computationally expensive on the same mesh size compared to low order meth-

ods, they converge on far coarser meshes, meaning accurate results can be achieved with

less computing power. Unfortunately, all of the above methods only achieve higher orders
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by increasing the size of the stencil. This presents a challenge and drawback for comput-

ing on a massively parallel scale, since it demands more runtime and programmer care

be spent on communication. Often the overhead cost of inter-processor communication

is significant compared to the cost of arithmetic operations immediately relevant to solv-

ing the equations. In recent years, discontinuous Galerkin (DG) methods have become

increasingly popular because they allow high order convergence rates while keeping a

compact stencil, only dependent on immediate neighbors. DG methods can, however, be

quite computationally expensive for each cell update. In many cases, their high order im-

plementations are prohibitively expensive since each solution variable update requires a

high number of floating point operations. Fortunately, this drawback makes DG methods

well suited to GPU architectures, which are ideal for performing many numerical opera-

tions with comparatively little memory transfer. Therefore, GPU hardware is leveraged

to mitigate the cost of high order DG methods.

GPUs have rose in popularity in high performance computing in recent years for their

ability to perform more operations per second with the same or less power, effectively

reducing the cost of a calculation. This is done through fine-grained parallelism, which

invokes many low clock-rate cores as opposed to fewer high clock-rate cores, as is the case

with CPUs. The fine-grained approach to parallelism requires a different programming

methodology than is traditional for course-grained parallelism, in particular typically re-

quiring greater care with memory access operations.

Since interface capturing indicates to the flowsolver regions subtended by each fluid

and supplies surface tension forces, it is essential to solve accurately. In fact, small errors

in interface position can result in large momentum errors, particularly when density ratios

are large. This dissertation details the methods and algorithms developed for the interface

capturing components of a predictive numerical laboratory for fluid flow fields involving

immiscible interfaces. This includes descriptions of the CLS method, the accurate CLS

3



(ACLS) method [9], an arbitrary order DG scheme, and implementations on both central

processing units (CPUs) and graphics processing units (GPUs). Following this description,

a series of verification results are provided, where the method of manufactured solutions

(MMS) and several simple analytical solutions are compared to simulation outputs. The

work follows a similar approach to Czajkowski and Desjardins [8] and Owkes and Des-

jardins [30], but extends their work in three ways. First, all spatially-dependent variables

are projected into the DG basis in order to achieve the full predicted convergence rate of

the DG method. Second, GPUs are leveraged for additional computing power. Lastly, the

method is implemented on the refined level set grid (RLSG) [15] to mitigate computational

effort.

1.2 Governing Equations

Herrmann [15] gives a good overview of the governing equations of a fluid interaction

involving immiscible interfaces. These are the Navier-Stokes’ equations, along with a

surface tension term 𝑻𝜎 that is nonzero only at the interface location 𝒙𝑓 .

𝜕𝒖𝜕𝑡 + 𝒖 · ∇𝒖 = −1𝜌∇𝑝 + 1𝜌∇ · (𝜇 (∇𝒖 + ∇T𝒖)) + 𝒈 + 1𝜌𝑻𝜎 (1.1)

𝑻𝜎 (𝒙) = 𝜎𝜅𝛿(𝒙 − 𝒙𝑓) �̂� (1.2)

The continuity equation for incompressible flow is

∇ · 𝒖 = 0. (1.3)

Here, 𝒖 is the velocity, 𝜌 is density, 𝑝 is pressure, 𝜇 is dynamic viscosity, 𝒈 is the gravita-

tional body force, 𝜎 is the surface tension constant, 𝜅 is the local surface curvature, and �̂�
is the local interface normal. As previously mentioned, accurate calculation of the surface

tension requires a good method for capturing the interface location and computing the

curvature and normals at high order.

4



1.3 Notation

Throughout this paper, Einstein notation is used with Latin indices to imply summa-

tion. It is convenient, however, to use Greek indices in situations where implied summa-

tion is not desired. For example,

𝑎𝑖𝑏𝑖 = ∑𝑖 𝑎𝑖𝑏𝑖
𝑎𝛼𝑏𝛼 ≠ ∑𝛼 𝑎𝛼𝑏𝛼.

5



Chapter 2

The Conservative Level Set Method

There are several approaches to modeling interface topology evolution. Interface

tracking is common in systems involving solids, while interface capturing is more popu-

lar in fluid systems. Of capturing methods, volume of fluid methods (VOF) and level set

methods are the most common. The VOF approach has the benefit of discretely conserv-

ing mass, while discretized level set methods do not share this property and often exhibit

strong violations of mass conservation. On the other hand, level sets are capable of be-

ing solved with high order numerical methods and have the benefit of straightforward

calculation of normals and curvature.

2.1 Traditional Level Set Method

The concept of level sets is to model the fluid interface, shown in Fig. 3.1, as an iso-

surface of some scalar function. The traditional level set method, described well by [9, 28,

31], transports the interface via the advection equation. The advection equation simply

states that since the interface, transported by the local flow velocity, remains along the

𝜙 = const. contour by definition, the material derivative is set equal to zero.

𝜕𝜙𝜕𝑡 + 𝒖 · ∇𝜙 = 0 (2.1)

A popular choice for the level set scalar profile, originally suggested by Chopp [5],

is the signed distance function, which satisfies the Eikonal equation |∇𝜙| = 1 and gives

|𝜙(𝒙, 𝑡)| = |𝒙 − 𝒙𝑓 |. The contour 𝜙 = 0 implicitly defines the location of the phase inter-

face, and the scalar is positive in one phase and negative in the other. This choice features

smooth gradients that allow the curvature to be easily calculated. Numerical representa-

tions of the advection equation, however, will not maintain the signed distance function

form of the level set scalar. In fact, without being treated, 𝜙 will become increasingly

distorted over time with sharper and sharper gradients. The inevitable result is numerical
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errors, reducing the accuracy of curvature and surface tension, resulting in mass losses/-

gains as well as momentum errors. For numerical accuracy, and much improved mass

conservation, it is necessary to periodically reinitialize 𝜙 to restore the original signed

distance profile. Several approaches to reinitialization exist, many of which are either

computationally expensive or move the interface front. A common PDE-based approach

developed by Sussman et al. [38] avoids explicitly locating the interface, and involves

solving a Hamilton-Jacobi equation that converges when the Eikonal equation is satis-

fied, thereby restoring the signed distance function form of the level set scalar.

𝜕𝜙𝜕𝜏 + 𝑆 (|∇𝜙| − 1) = 0 (2.2)

Here, 𝑆 is a sign function that approaches zero as 𝜙 → 0, so that in the theoretical limit

𝛥𝑥 → 0 mass is conserved. However, the discretized form of the equation does not con-

serve mass, and in many cases worsens the mass errors by transporting the 0-isosurface.

As a result, the numerical result of the traditional level set method can diverge greatly

from the exact solution.

2.2 The Conservative Level Set Method

Specifically to improve mass conservation while maintaining a smooth level set scalar,

a new formulation of the level set method was proposed by Olsson et al. [28, 29] where

the level set scalar 𝐺(𝒙, 𝑡) is treated as a conserved variable. This is done by rewriting the

advection equation, 𝜕𝐺𝜕𝑡 + 𝒖 · ∇𝐺 = 0,
in conservative form as 𝜕𝐺𝜕𝑡 + ∇ · (𝐺𝒖) = 0 (2.3)

using the solenoidal property of incompressible velocity fields, Eq. (1.3). In this form, the

level set scalar 𝐺(𝒙, 𝑡) is a conserved quantity.
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The interface is implicitly defined as a 0.5-isosurface of 𝐺, with 𝐺 > 0.5 on one side

of the interface and 𝐺 < 0.5 on the other. The level set scalar in the form of a Heaviside

function, jumping discontinuously from 0 to 1 across the interface, would conserve mass

exactly. To avoid numerical errors, however, a smeared out Heaviside function is used.

Olsson et al. suggest a hyperbolic tangent profile to accomplish this.

𝐺(𝒙, 𝑡) = 12 (tanh(𝜙(𝒙, 𝑡)2𝜀 ) + 1) (2.4)

Here, 𝜙(𝒙, 𝑡) is the signed distance function to the interface. The profile thickness is pro-

portional to 𝜀, which is set equal to half the cell width 𝛥𝑥 in practice. The reason for

this choice of profile, as opposed to piecewise function for example, is that a conserva-

tive reinitialization equation which restores the level set scalar to this form exists. As

with traditional level sets, the advection equation distorts 𝐺, in this case dissipating the

scalar. Over time, these errors distort the interface and reduce accuracy. Reinitialization

sharpens the level set scalar, restoring the initial profile. Olsson et al. [29] suggests a

conservative PDE which invokes a compression term along the direction normal to the

interface, and a diffusive term to prevent the profile from becoming too thin. These terms

are balanced such that the equation converges on a hyperbolic tangent profile with a

thickness parameter of 𝜀.
𝜕𝐺𝜕𝜏 + ∇ · (𝐺 (1 − 𝐺) �̂�) = ∇ · (𝜀 (∇𝐺 · �̂�) �̂�) (2.5)

Olsson computes the normal vector,

�̂� = ∇𝐺|∇𝐺| (2.6)

from the local level set scalar. [9] suggests the accurate conservative level set method

(ACLS) which instead requires the normal vectors be constructed from the interface ge-

ometry alone rather than the local 𝐺 field. With this approach, oscillations or variations
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𝜙

𝐺

𝐺 = 0.5
�̂�

Figure 2.1: Hyperbolic Tangent Profile With Flaw Away From Interface

throughout the domain that do not cross the 𝐺 = 0.5 threshold do not affect the nor-

mal vector field. With normal vectors unphysically varying throughout the domain (see

Fig. 2.1), reinitialization gathers 𝐺 away from droplets as it attempts to enforce a hyper-

bolic tangent profile on numerical noise. As a result, volume and shape errors increase,

and new interfaces can be formed. The ACLS method computes normals via Eq. (2.6) from

a signed distance function 𝜙, which itself is calculated from the level set scalar field 𝐺 in

the vicinity of the 0.5-isosurface and marched or sweeped out. Several possible methods

for calculating an arbitrary-order 𝜙 throughout the computational domain are discussed

in Ch. 4.

The preceding reinitialization equation, then, treats 𝐺 as a conserved variable and en-

forces the hyperbolic tangent profile with thickness 𝜀. When needed, it is to be evaluated

in pseudo-time, 𝜏 , either until convergence or for a user selected amount of pseudo-time.

Eqs. (2.3) and (2.5), together with interface normal calculation, represent the system of

equations to be solved and our formulation of the CLS method. Combining this approach

with an arbitrary-order Runge-Kutta (RK) discontinuous Galerkin (DG) method further

improves the accuracy and mass conservation of level set methods.

9



2.3 The Refined Level Set Grid

The simulation is performed on the refined level set grid (RLSG) proposed by Her-

rmann [15]. With the RLSG, the CLS equations are solved on a Cartesian mesh separate

from the flow solver, and cells are organized into blocks of a predefined size. To reduce

the necessary computational work, the CLS equations are only solved in cells and blocks

within a user defined distance from the interface. This is possible because advection and

reinitialization only need to be solved inside a region surrounding the interface itself.

That is, computational effort need not be wasted advecting contours that do not directly

affect the 0.5 isosurface. Five important bands are generated: a) the A-band, consisting

only of cells which contain the interface, b) the T-band, in which advection and reinitial-

ization are solved, c) the W-band, which contains all ghost cells immediately neighboring

the T-band, and d) the X-band, which extends beyond the T- and W- bands for volume

integration, and e) the Z-band, which contains the outermost ghost cells. For details on

band generation and parallelization of the refined level set grid, see [15].

10



Chapter 3

The Discontinuous Galerkin Method

The discontinuous Galerkin method is motivated by arbitrarily high convergence rates

that can be achieved with a small stencil, containing only immediate neighbors. A com-

pact stencil is beneficial for a variety of reasons, primarily because it makes parallelization

simpler (especially in the case of unstructured grids) and lowers inter-processor com-

munication costs. DG accomplishes a high-order compact scheme by allowing sub-cell

variation and storing information about derivatives locally in the form of basis function

coefficients. As a result, fluxes and volume terms indicate not only changes in cell aver-

ages, as with finite volume methods, but changes for all modes calculated through coupled

interactions between them. LeSaint and Raviart [17] proved DG can formally achieve a

𝑘+1 order convergence rate with 𝑘th degree polynomials for linear problems, while Cock-

burn and Shu [6] found this to also be achievable for nonlinear problems in practice. This

section describes the scheme construction.

3.1 Spatial Discretization

(a) Fluid Interface (b) Finite Volume (c) Discontinuous Galerkin

Figure 3.1: Interface Discretization

Originally developed by Reed and Hill [32], the discontinuous Galerkin numerical

method can be thought of as a generalization of the finite volume (FV) method. As with FV
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methods, the physical domain𝛺 is discretized into cells with domainℐ𝜅 . For the purposes

of this paper, the domain is mapped onto an equidistant Cartesian mesh (𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧).
𝛺 = 𝑁cells⋃𝜅=1 ℐ𝜅

The finite volume method then assigns an average of the solution variable to each cell.

On the other hand, the discontinuous Galerkin method includes more information by

performing a spectral decomposition of the solution variables within each cell. That is, 𝐺,

𝒖, and �̂� are projected into the basis {𝑏𝑖} as

𝒇(𝒙, 𝑡) = ∞
∑𝑖=1 𝒇𝜅𝑖 (𝑡) 𝑏𝑖 (𝝃) ≈ 𝑁𝑓

∑𝑖=1 𝒇𝜅𝑖 (𝑡) 𝑏𝑖 (𝝃) , (3.1)

where the series is truncated at 𝑁𝑓 . In this sense, a finite volume method is equivalent to

a discontinuous Galerkin method with 𝑁𝑔 = 𝑁𝑢 = 𝑁𝑛 = 1. The coefficients are found by

performing an inner product with the corresponding basis function (i.e., integrating the

input function multiplied by the basis with respect to sub-cell coordinates over the space

spanned by the cell).

𝒇𝜅𝑛 = ∫𝒦𝒇(𝒙𝜅 + 12𝛥𝑥𝑖𝜉𝑖) 𝑏𝑛(𝝃) d𝑉 (3.2)

The spatial position vector is mapped between sub-cell coordinates, 𝝃 ∈ 𝒦 = [−1, 1]3,
and physical coordinates 𝒙 ∈ 𝛺 using Eq. (3.3). This depends on the location of the cell

center 𝒙𝜅 and cell dimensions 𝜟𝒙, as shown in Fig. 3.2. The domain 𝒦 , with the surface

domain 𝜕𝒦 and neighbors 𝒦𝑓 are depicted in Fig. 3.3.

𝒦 → 𝛺 ∶ 𝑥𝛼 = 𝑥𝛼,𝜅 + 𝜉𝛼 𝛥𝑥𝛼2𝛺 → 𝒦 ∶ 𝜉𝛼 = 𝑥𝛼 − 𝑥𝛼,𝜅𝛥𝑥𝛼/2
(3.3)
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Figure 3.2: Position Vectors

The normalized Legendre polynomial basis is selected for their orthonormality prop-

erty, Eq. (3.4), removing the need to invert a mass matrix when solving equations.

∫𝒦𝑏𝑖𝑏𝑗 d𝑉 = 𝛿𝑖𝑗 (3.4)

They are constructed by performing Gram-Schmidt orthonormalization on the space of

3D monomials 𝜉𝛼𝜂𝛽𝜁𝛾 . Then, for a maximum monomial degree 𝑘, the number of terms in

the spectral expansion is 𝑁𝑓 = (𝑘𝑓 + 1)3.

K ∂x+K∂x-K

∂y+K

∂y-K

K x+K x-

K y+

K y-

Figure 3.3: The local cell domain 𝒦 , surface 𝜕𝒦 = ⋃𝑓=faces 𝜕𝑓𝒦 , and neighbors 𝒦𝑓
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These expansions are then substituted into Eq. (2.3) and Eq. (2.5). Writing derivatives

in terms of sub-cell coordinates via Eq. (3.3),

𝜕𝜕𝑥𝛼 = 2𝛥𝑥𝛼
𝜕𝜕𝜉𝛼 ,

performing an inner product with 𝑏𝑛 (integrate over the cell domain𝒦 ), taking advantage

of orthonormality, and using the divergence theorem results in a systems of coupled or-

dinary differential equations describing the time evolution the coefficients 𝑔𝑛 for all cells.

The RKDG method has been implemented in the context of the CLS method previously by

Czajkowski and Desjardins [8] and Owkes and Desjardins [30]. However, their method

held the velocity and normal vectors constant within a cell (𝑁𝑢 = 𝑁𝑛 = 1), expanding

only the level set scalar to full order in the discontinuous basis. By doing so, they were able

to easily calculate accurate normal vectors using a second order fast marching method,

but the result was an overall second order method (which is shown in Sec. 6.1). Here, all

variables are projected with full order into the DG basis, allowing for higher convergence

rates.

d𝑔𝜅𝑛d𝑡 = 𝑢𝜅,𝑗𝑘 𝑔𝜅𝑖 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉 − 2𝛥𝑥 ∮𝜕𝒦𝐺𝒖𝑏𝑛 ⋅ d ̂𝑺 (3.5)

d𝑔𝜅𝑛d𝜏 = 𝑛𝜅,𝑗𝑘 𝑔𝜅𝑖 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉 − 𝑛𝜅,𝑗𝑘 𝑔𝜅𝑖 𝑔𝜅𝑗 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖𝑏𝑗 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉
− 𝜀𝑔𝜅𝑖 𝑛𝜅,𝑎𝑘 𝑛𝜅,𝑑𝑙 ( 2𝛥𝑥)2 ∫𝒦

d𝑏𝑖d𝜉𝑎 𝑏𝑘𝑏𝑙 d𝑏𝑛d𝜉𝑑 d𝑉
− 2𝛥𝑥 ∮𝜕𝒦𝐺 (1 − 𝐺) �̂�𝑏𝑛 ⋅ d ̂𝑺 + 𝜀 ( 2𝛥𝑥)2 ∮𝜕𝒦 (∇𝜉𝐺 · �̂�) �̂�𝑏𝑛 ⋅ d ̂𝑺 (3.6)

All that remains is to determine appropriate flux functions and a time stepping mecha-

nism.

Note that all of the above volume integrals are written only in terms of the Legendre

polynomial basis functions and the local cell domain. They can therefore be analytically

evaluated prior to running the simulation and tabulated. It is found that they form sparse
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arrays (discussed in detail in Sec. 3.5), and therefore present an opportunity for consider-

able speedup. To complete the spatial discretization, all that remains is to write the flux

integrals in discrete form.

3.2 Flux Handling

The surface integrals in Eq. (3.5) and Eq. (3.6), of course, are evaluated along the cell

boundary. On this surface, however, exists a discontinuous jump for all variables de-

scribed by the DG expansion. This raises an important question in computational math-

ematics that is handled by a multitude of approaches: which solution ought to be used in

the integrand? For this discussion, a generalized form of these PDEs is considered.

𝜕𝐺𝜕𝑡 + ∇ · 𝒇(𝐺) = 0 (3.7)

Here, the flux 𝒇(𝐺) must be evaluated along cell boundaries. In this case, it boils down to

determining the set of coefficients for 𝐺, 𝒖, and �̂�, as well as a collection of precomputed

surface integral arrays, to be used in tensor multiplication routines.

Several different flux calculation methods are discussed in [6]. There are three cri-

terion used here to determine which numerical fluxes to use: the approach should be (a)

computationally inexpensive, (b) easily formulated in a quadrature-free sense, and (c) rep-

resent the mathematics accurately enough to achieve arbitrarily high convergence rates.

Upwinding

In the linear advection case, 𝒇(𝐺) = 𝐺𝒖, the simple upwind flux is chosen–it meets

all criteria and is the simplest to implement. The flux function is chosen by picking out

the direction in which information propagates, which is determined by the velocity. The
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use of a multidimensional upwind flux for a DG scheme is described by Marchandise et al.

[24] and repeated here.

̂𝒇 up(𝐺out , 𝐺in) = ⎧⎪⎨⎪⎩
𝒇out if 𝒖fc · �̂�𝜅 ≤ 0
𝒇 in if 𝒖fc · �̂�𝜅 > 0 (3.8)

Here, �̂�𝜅 is the outward face normal and 𝒖fc is the velocity 𝒖 evaluated at the face center.

𝑓out is the flux evaluated outside of the cell domain, while 𝑓 in is evaluated inside.

With this numerical flux, the advection equation with discontinuous Galerkin spatial

discretization becomes

d𝑔𝜅𝑛d𝑡 = 𝑢𝜅,𝑗𝑘 𝑔𝜅𝑖 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉 + 𝑢up,𝑗𝑘 𝑔up𝑖 2𝛥𝑥 ∫𝜕𝒦𝑁𝑗𝑏up𝑘 𝑏up𝑖 𝑏𝑛 d𝑆. (3.9)

The resulting system of coupled ODEs is now far more straightforward to solve compared

to the initial PDE. All that remains is to select an appropriate time-stepping mechanism.

One potential problem with an upwind flux for a discontinuous Galerkin method is

that the choice of ̂𝒇 is dependent on the sign of the velocity 𝒖. However, the DG formu-

lation permits sub-cell variation of the solution variables, allowing 𝒖 to change direction

entirely within the span of a cell face. In such situations, the choice of ̂𝒇 up becomes

ambiguous, although the face center value is still used in practice. It is found through

manufactured solutions tests that the error is largest in regions of converging velocity

fields, and such problems reduce the convergence rate of the 𝐿∞ norm to 𝑘th order, possi-

bly as a result of upwinding. Quadrature-based methods can select the upwind direction

independently for each quadrature point, possibly avoiding these problems.

Local Lax-Friedrichs

For nonlinear flux functions, such as the convective term 𝒇(𝐺) = 𝐺 (1 − 𝐺) �̂� in the

reinitialization equation, the upwind flux is no longer applicable. Instead, the local Lax-

Friedrichs method is implemented, as described by Cockburn and Shu [6]. Other possible
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choices, such as the Godunov flux or Enquist-Osher flux are far more difficult to evaluate

while avoiding quadrature. The flux is evaluated by

𝒇 · �̂�LLF(𝐺−,𝐺+) = 12 ((𝒇(𝐺−) + 𝒇(𝐺+)) · �̂� − 𝐶(𝐺+ − 𝐺−))
𝐶 = maxmin(𝐺−,𝐺+) ≤ 𝑠 ≤ max(𝐺−,𝐺+) |�̂� · 𝒇 ′(𝑠)| (3.10)

where the “±” superscript indicates the solution on the ± side of the face.

Inserting the nonlinear flux function into Eq. (3.10) gives

𝒇 · �̂�LLF(𝐺−,𝐺+) = 12 ((𝐺− (1 − 𝐺−) �̂�− + 𝐺+ (1 − 𝐺+) �̂�+) · �̂� − 𝐶(𝐺+ − 𝐺−))
𝐶 = maxmin(𝐺−,𝐺+) ≤ 𝑠 ≤ max(𝐺−,𝐺+) |(1 − 2𝑠) �̂� · �̂�|

(3.11)

Finally, this is used to evaluate the convective integral in Eq. (3.6),

∮𝜕𝒦𝐺 (1 − 𝐺) �̂�𝑏𝑛 ⋅ d ̂𝑺 =
12 ∫𝜕𝑓𝒦𝐺𝑓− (1 − 𝐺𝑓−) �̂�𝑓− · �̂�𝑓𝑏𝑛 d𝑆 + 12 ∫𝜕𝑓𝒦𝐺𝑓+ (1 − 𝐺𝑓+) �̂�𝑓+ · �̂�𝑓𝑏𝑛 d𝑆
− 𝐶𝑓2 ∫𝜕𝑓𝒦 (𝐺𝑓+ − 𝐺𝑓−) 𝑏𝑛 d𝑆
= 12 (𝑔𝑓+𝑖 �̂�𝑓+𝑘 + 𝑔𝑓−𝑖 �̂�𝑓−𝑘 ) · �̂�𝑓 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑓−𝑘 𝑏𝑛 d𝑆

− 12 (𝑔𝑓+𝑖 𝑔𝑓+𝑗 �̂�𝑓+𝑘 + 𝑔𝑓−𝑖 𝑔𝑓−𝑗 �̂�𝑓−𝑘 ) · �̂�𝑓 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑓−𝑗 𝑏𝑓−𝑘 𝑏𝑛 d𝑆
− 𝐶𝑓2 (𝑔𝑓+𝑖 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑛 d𝑆 − 𝑔𝑓−𝑖 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑛 d𝑆) ,

(3.12)

where the superscript 𝑓± refers to coefficients in the cell on the ± side of the face 𝑓 .

Reconstruction

The diffusive flux in the reinitialization equation is handled by yet a third approach,

called reconstruction. This method is necessary because the two previous approaches

rely on a preferred direction in which information is propogated, which does not hold

true for diffusive flux. A quadrature-free reconstruction method was suggested by Luo
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et al. [22]. This involves projecting the solution from two neighboring cells into one set

of coefficients that are associated with a basis extended across the two cells. That is,

coefficients associated with neighboring domains 𝒦+ and 𝒦− are projected into a single

domain 𝒦 bisected by the cell face, as shown in Fig. 3.4. In the 𝑥-direction,

̃𝜉 = ⎧⎪⎨⎪⎩
𝜉−−12 where − 1 ≤ 𝜉− ≤ 1
𝜉++12 where − 1 < 𝜉+ ≤ 1

̃𝜂 = ⎧⎪⎨⎪⎩
𝜂− where − 1 ≤ 𝜉− ≤ 1
𝜂+ where − 1 < 𝜉+ ≤ 1

(3.13)

The flux is then evaluated from the coefficients associated with the shared basis:

̂𝒇 recons.(𝐺−,𝐺+, �̂�−, �̂�+) = 𝒇(𝐺, ̃�̂�) . (3.14)

ξ-
ξ+

η-
η+

ξη~ ~

Figure 3.4: Two-Cell Projection in 𝑥-Direction

The orthonormality condition is then used to find the coefficients for 𝐺 and �̂� in the

shared basis across the 𝛼 face of a given cell.

𝑓𝛼𝑛 = 𝑓𝛼−𝑖,𝜅 ∫̃𝒦𝛼− 𝑏𝑖 ̃𝑏𝛼𝑛 d𝑉 𝛼 + 𝑓𝛼+𝑖,𝜅 ∫̃𝒦𝛼+ 𝑏𝑖 ̃𝑏𝛼𝑛 d𝑉 𝛼 (3.15)

Here, 𝒦𝛼± refers to the ± half of the domain 𝒦 . These coefficients are then used in the

relevant segment of the flux integral,

∮𝜕𝒦 (∇𝜉𝐺 · �̂�) �̂�𝑏𝑛 ⋅ d ̂𝑺 = ∫𝜕𝑓𝒦 (∇𝜉𝐺𝑓 · ̃�̂�𝑓) ̃�̂�𝑓 · �̂�𝑓𝑏𝑛 d𝑆 (3.16)
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which is summed along the faces 𝑓 . In the shared coordinate space, the cell face simply

lies along the centerline which bisects the extended dimension. For example, a face whose

normal is aligned with the 𝑥-axis is at ̃𝜉 = 0 in the new shared coordinate space. Changing

variables to this space gives the integral

= ∫̃𝜉𝑓=0(∇𝜉𝐺𝑓 · ̃�̂�𝑓) ̃�̂�𝑓 · �̂�𝑓𝑏𝑛 d𝑆𝑓 . (3.17)

The last step requires transforming ∇𝜉 → ∇ ̃𝜉 , which of course creates a factor of 1/2 in

the 𝜉𝑓 -direction. 𝜕𝜕𝜉𝛼 = (1 − 𝛿𝛼𝑓 /2) 𝜕𝜕𝜉𝛼 (3.18)

Finally, expanding the solution variables into their coefficient representation,

∮𝜕𝒦 (∇𝜉𝐺 · �̂�) �̂�𝑏𝑛 ⋅ d ̂𝑺 = ̃𝑔𝑓𝑖 ̃𝑛𝑓 ,𝑘𝑗 ̃�̂�𝑓𝑙 · �̂�𝑓 (1 − 𝛿𝑘𝑓 /2) ∫̃𝜉𝑓=0
𝜕 ̃𝑏𝑓𝑖𝜕𝜉𝑘 𝑏𝑗

𝑓𝑏𝑙𝑓𝑏𝑛 d𝑆𝑓 (3.19)

Combining Eqs. (3.6), (3.12), and (3.19) gives the form of the DG scheme for reinitial-

ization following spatial discretization and flux evaluation.d𝑔𝜅𝑛d𝜏 = 𝑛𝜅,𝑗𝑘 𝑔𝜅𝑖 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉 − 𝑛𝜅,𝑗𝑘 𝑔𝜅𝑖 𝑔𝜅𝑗 2𝛥𝑥 ∫𝒦 𝑏𝑘𝑏𝑖𝑏𝑗 𝜕𝑏𝑛𝜕𝜉𝑗 d𝑉
− 𝜀𝑔𝜅𝑖 𝑛𝜅,𝑎𝑘 𝑛𝜅,𝑑𝑙 ( 2𝛥𝑥)2 ∫𝒦

d𝑏𝑖d𝜉𝑎 𝑏𝑘𝑏𝑙 d𝑏𝑛d𝜉𝑑 d𝑉
− 1𝛥𝑥 (𝑔𝑓+𝑖 �̂�𝑓+𝑘 + 𝑔𝑓−𝑖 �̂�𝑓−𝑘 ) · �̂�𝑓 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑓−𝑘 𝑏𝑛 d𝑆
+ 1𝛥𝑥 (𝑔𝑓+𝑖 𝑔𝑓+𝑗 �̂�𝑓+𝑘 + 𝑔𝑓−𝑖 𝑔𝑓−𝑗 �̂�𝑓−𝑘 ) · �̂�𝑓 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑓−𝑗 𝑏𝑓−𝑘 𝑏𝑛 d𝑆
+ 𝐶𝑓𝛥𝑥 (𝑔𝑓+𝑖 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑛 d𝑆 − 𝑔𝑓−𝑖 ∫𝜕𝑓𝒦 𝑏𝑓−𝑖 𝑏𝑛 d𝑆)

+ 𝜀( 2𝛥𝑥)2 ̃𝑔𝑓𝑖 ̃𝑛𝑓 ,𝑘𝑗 ̃�̂�𝑓𝑙 · �̂�𝑓 (1 − 𝛿𝑘𝑓 /2) ∫̃𝜉𝑓=0
𝜕 ̃𝑏𝑓𝑖𝜕𝜉𝑘 𝑏𝑗

𝑓𝑏𝑙𝑓 𝑏𝑛 d𝑆𝑓

(3.20)

The coefficients associated with an extended basis, denoted with a tilde (e.g., ̃𝑔𝑓𝑖 ), are

calculated via Eq. (3.15).

One important aspect of the reconstruction flux that ought to be addressed is the num-

ber of degrees of freedom in the shared basis. In particular, is it necessary to preserve all
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degrees of freedom by enriching the shared basis in order to achieve predicted conver-

gence rates? With each cell having a basis of size (𝑘 + 1)3, in 3D, this would imply that in

order to capture all variations (plus a degree to model the jump across the cell interface)

the shared basis would need to be of size (2 ∗ 𝑘 + 2)3, 8 times larger than the original.

Results shown in Sec. 6.1 indicate enrichment does reduce the error, but the original basis

size is sufficient to achieve 𝑘+1 convergence rates. This is an important finding, since the

number of arithmetic operations and amount of data storage required for integral arrays

over such a large basis can become prohibitively expensive.

3.3 Temporal Discretization

The DG spatial discretization and flux equations result in a system of 2𝑁𝑔𝑁cells ordinary

differential equations (ODEs) describing the time evolution of the DG coefficients. Despite

being a larger system of equations, ODEs are far more easily solved. At this point, a choice

of temporal discretization will complete the scheme.

Of course, simple forward Euler time stepping will solve the equations. However, a

more accurate choice will allow the method to achieve the full 𝑘 + 1 convergence rate.

To accomplish this, an explicit 𝑘+1 order Runge-Kutta total variation diminishing (TVD)

approach is implemented, as described by Cockburn and Shu [6] and Gottlieb [12].

1. set 𝑔(0)𝑚,𝜅 = 𝑔𝑛𝑚,𝜅
2. solve for intermediate stages

𝑔(𝑖)𝑚,𝜅 = 𝑖−1
∑𝑘=0 (𝛼𝑖,𝑘𝑔(𝑘)𝑚,𝜅 + 𝛥𝑡𝛽𝑖,𝑘𝐿({𝑔(𝑘)𝑚,𝜅})) , 𝑖 = 1, ..., 𝑁RK (3.21)

3. set 𝑔𝑛+1𝑚,𝜅 = 𝑔(𝑁RK)𝑚,𝜅
where [6, 12] provide stable values for 𝛼𝑖,𝑘, 𝛽𝑖,𝑘, which are reprinted in Table 3.1. Higher

order RK methods are described by Gottlieb [12], however the work here is limited to a
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maximum of 3rd order RK methods, which are found to be sufficient for 𝑘+1 convergence

rates in all tests shown in Ch. 6.

Table 3.1: Stable Values for 𝛼𝑖,𝑘, 𝛽𝑖,𝑘 Presented by Cockburn and Shu [6] and Gottlieb [12]

order 𝛼𝑖,𝑘 𝛽𝑖,𝑘
2 1 1

12 , 12 0, 12
3 1 1

34 , 14 0, 14
13 ,0, 23 0,0,23

Finally, the time step size is limited by CFL conditions, as found in a von Neumann

stability analysis. The CFL condition for convective terms is provided by [6]:

max |𝒇 ′(𝐺)| 𝛥𝑡𝛥𝑥 ≤ 12𝑘 + 1 (3.22)

The flux function derivatives, knowing that |�̂�| = 1 and the CLS method restricts

0 ≤ 𝐺 ≤ 1, are
advection: max |𝒇 ′(𝐺)| = max |𝒖|

reinitialization convective term: max |𝒇 ′(𝐺)| = 1 (3.23)

The diffusive term in the reinitialization equation restricts time step size by [21]:

𝜀 𝛥𝑡𝛥𝑥2 ≤ 𝛽(𝑘)(2𝑘 + 1)2 √𝑑 (3.24)

where 𝛽(𝑘) is a function of polynomial order (several values are given in Table 3.2). Note

that, in practice, 𝜀 = 𝛥𝑥/2 so that 𝛥𝑡 scales with 𝛥𝑥 rather than its square, making the

method feasible. Still, reinitialization is considerably more expensive than advection, and

is therefore executed as seldomly as possible. The reinitialization factor 𝐹 introduced by
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Owkes and Desjardins [30] is used, which relates the amount of reinitialization performed

to the advection time step size:

𝜏𝑓 − 𝜏𝑖 = 𝐹𝛥𝑡max (|𝒖 ⋅ �̂�|) (3.25)

We also introduce a reinitialization occurrence factor 𝑇𝑟, such that reinitialization is per-

formed only between real time intervals of length 𝑇𝑟.
Table 3.2: Stable Values for 𝛽 Presented by Lörcher et al. [21]

𝑘 1 2 3 4 5 6 7

𝛽 1.46 0.80 0.40 0.24 0.16 0.12 0.09

3.4 Slope Limiting

When employing polynomials of degree 𝑘 ≥ 4, reinitialization becomes unstable as

a result of the nonlinear compressive term, particularly near regions with intersecting

characteristics. That is, near discontinuous sign changes in the normal vector, high order

representations of the normal vector exhibit oscillations as a form of Gibbs phenomenon.

The oscillations in the normal vector combined with the compressive reinitialization term

introduces oscillations and spikes in the 𝐺 field. To mitigate this effect, a slope limiter is

used. As an alternative, it may be possible to locally truncate the polynomial order of the

normal vector.

We use the slope limiter introduced by van Leer [41, 42] and modified by Cockburn

and Shu [6], where high order (𝑘 > 1) contributions in a cell are discarded if the average

slope in that cell exceeds a multiple 𝜈 of the slope found through differences between

the neighbor averages. In that case, the linear component is then corrected to produce
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the minimum of the given slopes. That is, in 1D Eq. (3.26) describes the limiter, with the

minmod function defined by Eq. (3.27).

𝐺ℎ|𝐼𝑗 = 𝑔0𝑏0 + (𝛥𝑥2 𝑚(𝐺ℎ,𝑥|𝐼𝑗 , 𝜈
𝐺𝑗+1 − 𝐺𝑗𝛥𝑥 , 𝜈𝐺𝑗 − 𝐺𝑗−1𝛥𝑥 ) /𝑐1) 𝑏1 + 𝐻.𝑂.𝑇 . (3.26)

𝑚(𝑎1, 𝑎2, 𝑎3) = ⎧⎪⎨⎪⎩
𝑠min1≤𝑛≤3 |𝑎𝑛| if𝑠 = sign (𝑎1) = sign (𝑎2) = sign (𝑎3)
0 otherwise (3.27)

The average derivative, 𝐺ℎ,𝑥|𝐼𝑗 is evaluated before limiting from Eq. (3.28). The quan-

tity 𝑐1 is the coefficient in the normalized Legendre polynomial 𝑏1 = 𝑐1𝜉. In 2D, 𝑐1 = √3/2
while in 3D 𝑐1 = √6/4. If the return value of the minmod function is not equal to its first

argument, the higher order coefficients are set to zero. Otherwise, they are not changed.

This algorithm is repeated in each direction for a 2D or 3D simulation.

𝐺ℎ,𝑥|𝐼𝑗 = 𝛥𝑥2 𝑔𝑖 ∫𝒦
𝜕𝑏𝑖𝜕𝜉 d𝑉 (3.28)

The variable 𝜈 is user-set, and represents the ratio between the internally-calculated

derivative (Eq. (3.28)) and derivatives calculated from neighbors allowed before limiting

is enforced. van Leer originally set the quantity to 𝜈 = 1, while Cockburn & Shu use a

less restrictive 𝜈 = 2. It is found in practice that the high curvature of the hyperbolic

tangent profile near the 𝐺 = 0 isosurface results in over-limiting in those regions unless

𝜈 is set higher. That is, 𝜈 = 2 causes high curvature regions of the domain to be needlessly

limited. In fact, it can be shown that for a hyperbolic tangent profile, there will always be

regions where the slope limiter is active. For smooth functions, Taylor series and the cell

average definition, Eq. (3.29), can be used to approximate differences as in Eq. (3.30).

𝑓𝑖 = ∫𝒦𝑓 (𝒙𝑖 + 𝝃𝛥𝑥2 ) d𝑉 (3.29)
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𝐺𝑗+1 − 𝐺𝑗𝛥𝑥 ≈ 𝐺′𝑖 + 𝐺″𝑖 𝛥𝑥2 , 𝐺𝑗 − 𝐺𝑗−1𝛥𝑥 ≈ 𝐺′𝑖 − 𝐺″𝑖 𝛥𝑥2 (3.30)

This slope limiter will limit whenever 𝐺′𝑗 > 𝜈min(|𝐺𝑖+1−𝐺𝑖𝛥𝑥 | , |𝐺𝑖−𝐺𝑖−1𝛥𝑥 |). For regions where

𝐺 is strictly increasing, this is combined with Eq. (3.30) and simplified to

1 > 𝜈 (1 ± 𝛥𝑥2 𝐺″𝑖𝐺′𝑖 ) (3.31)

Inserting the hyperbolic tangent profile Eq. (2.4) and 𝜀 = 𝛥𝑥/2, results in a limiter will be

active whenever Eq. (3.32) is true. As a result, the limiter will apply throughout the region

described by Eq. (3.33).

|tanh ( 𝑥2𝜀)| > 𝜈 − 1𝜈 (3.32)

𝑥 > 𝛥𝑥 atanh(𝜈 − 1𝜈 ) (3.33)

The special case where 𝜈 = 1, Eq. (3.33) implies that the limiter will be active every-

where. When 𝜈 = 2, the limiter will be active everywhere outside a band of width 1.1𝛥𝑥
surrounding the 𝐺 = 0 isosurface. In fact, Eq. (3.33) implies that for a hyperbolic tan-

gent profile, any choice of 𝜈 will force the solution at some distance from the interface to

always be limited.

One common way to prevent the slope limiter from limiting in regions it ought not

is to use the corrected minmod function, suggested by Shu [36] to prevent limiting near

critical points.

𝑚(𝑎1, 𝑎2, 𝑎3) = ⎧⎪⎨⎪⎩
𝑎1 if |𝑎1| ≤ 𝑀𝛥𝑥2
𝑚(𝑎1, 𝑎2, 𝑎3) otherwise (3.34)

However, since reinitialization is particularly unstable anywhere there is a discontinuity

in the normal vector, critical points are precisely where the limiter is needed.

A second way to prevent the solution from being always limited near the interface is

to choose a larger value for 𝜈. In practice, it is found that 𝜈 = 2.5 is large enough to retain
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high order accuracy near the interface while not so large as to miss the issues that ought

to be corrected. It should be noted that while the limiter will not always activate near

the isosurface, it will do so when there are local maxima and minima. This is particularly

noticeable where the 𝐺 = 0 isosurface has high curvature.

3.5 Integral Array Calculation and Storage

The schemes for advection and reinitialization, Eqs. (3.9) and (3.20), are written in

terms of integrals dependent only on the basis functions and cell domain. These inte-

grals can be precomputed analytically using symbolic software and stored in an array for

reference later (see Ap. A). This avoids the use of quadrature, saving computation time.

A variety of software exists to analytically calculate integrals, such as Mathematica,

Maple, or SymPy. However, these tools are very general and designed to handle a wide

variety of integrand forms. For this task, many millions of integrals of polynomials must

be performed, so speed is essential while generality is not. In fact, there are so many high-

𝑘, 3D reinitialization integrals that the above tools are simply not feasible. To address

this, a specialized tool named PolyCracker was developed in C to quickly calculate only

integrals of polynomials. Briefly, PolyCracker tabulates relevant integrals of polynomials

using Eq. (3.35). Integrals of general polynomials, such as those in Ap. A, are calculated

from products and sums of these simple integrals along with associated coefficients, as

in Eq. (3.36). This approach, compared to the approach used by more general analytical

tools, performs on the order of 104 times faster, even in serial. PolyCracker has been

parallelized with MPI to further reduce calculation time.

𝙸𝚗𝚝[𝚔] = ∫1
−1 𝑥𝑘 d𝑥 = 1𝑘 + 1 (1 − (−1)𝑘+1) (3.35)

∫1
−1 𝑃 (𝑥, 𝑦, 𝑧) d𝑥 = ∑𝑖,𝑗,𝑘 𝑎𝑖,𝑗,𝑘𝙸𝚗𝚝[𝚒] ∗ 𝙸𝚗𝚝[𝚓] ∗ 𝙸𝚗𝚝[𝚔] (3.36)
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Importantly, the resulting 3D arrays are sparse, resulting from the orthogonality of the

Legendre polynomial basis (see Table 3.3 and Fig. 3.5). For reference, the advection volume

integrals are named Ax, Ay, and Az, and “-” face surface integrals are SAxm, SAym, and

SAzm, shown explicitly along with the analogous definitions for reinitialization shown in

Ap. A. Together, the high number of operations with comparatively few solution variables

and the integral array sparsity make this method ideal for GPU computation.

Table 3.3: Matrix Fill Fraction for Advection Integral Arrays

Polynomial 2D Simulation Integrals 3D Simulation Integrals

Degree # of elements Volume Surface # of elements Volume Surface

1 64 12.5% 50.0% 512 6.25% 25.0%

2 729 10.6% 40.7% 19683 4.30% 16.6%

3 4096 10.1% 35.9% 262144 3.63% 12.9%

4 15625 9.68% 33.6% 1953125 3.25% 11.3%

Similarly, reinitialization integral arrays are quite sparse, depending on the level of

enrichment. Table 3.4 and Table 3.5 show examples of matrix fill fractions for reinitializa-

tion integral arrays. Since the nonlinear and diffusive integral arrays involve 4 indicies

rather than 3, they are much larger and take much more time to compute. Still, they are

very sparse, especially in 3D simulations.

For computation speed and effective use of memory, it is beneficial to store these ar-

rays in a manner that takes advantage of the fact many elements are equal to zero. For a

CPU-based simulation, efficient memory management offers some improvement. How-

ever, for reasons that will be described later, efficient memory management on a GPU

is vital. Furthermore, the sparse structure of these arrays encourages a quadrature-free

formulation. A quadrature-based scheme, relying on numerical integration, evaluates the
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Figure 3.5: Sparsity illustration for 𝑘 = 2 3D advection integral arrays. Cubes are placed
at array locations containing nonzero elements.

integrals without separating coefficients and basis functions. As a result, such an ap-

proach does not know a priori that much of the work can be bypassed.

The sparsity found in the quadrature-free scheme automatically takes care of this if an

appropriate storage format is used. A compressed row storage (CRS) format, also called

compressed sparse row, based on [10] was chosen, such that the integrals to be stored

in 1D arrays along with several corresponding 1D arrays of ints giving nonzero entry

locations. By doing so, the amount of data that must be sent to the GPU is reduced and

parallelization on the GPU is simplified. For more details, refer to Ch. 5.

27



Table 3.4: Matrix Fill Fraction for 2D Reinitialization Integral Arrays

Polynomial Integral Fill Fractions

Degree # of elements B SB Cxx/yy Cxy

1 256 12.5% 50.0% 6.25% 10.9%

2 6561 13.5% 45.7% 9.02% 13.7%

3 65536 14.4% 43.8% 10.9% 15.7%

4 390625 14.1% 41.3% 11.5 15.8%

Table 3.5: Matrix Fill Fraction for 3D Reinitialization Integral Arrays

Polynomial Integral Fill Fractions

Degree # of elements B SB Cxx/yy/zz Cxy/yz/xz

1 4096 6.25% 25.0% 3.1% 5.5%

2 531441 5.42% 18.3% 3.3% 5.3%

3 16777216 5.66% 17.9% 4.3% 6.2%

4 244140625 6.05% 17.7% 5.0% 6.8%
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Chapter 4

Normal Vector Calculation

In order to complete the DG-CLS scheme, it is necessary to develop an arbitrary-order

approach for computing normal vectors and curvature. The focus of this chapter is normal

vectors, leaving curvature calculation to future work. As discussed in Ch. 2, the normal

vectors should be dependent on the level set scalar 𝐺 only in the vicinity of the interface

[9]. In contrast to the CLS method proposed in [29], ACLS requires local variations in the

𝐺 field that do not cross the 0.5-isosurface to not impact the normal vectors. To accomplish

this, the normals are calculated from a signed distance function, which is reconstructed

from the geometry implicitly described by the 𝐺 = 0.5 isosurface. To date, no method for

constructing a signed distance function at arbitrarily high order has been developed. This

chapter will describe various attempts to do so, the current CLS approach for calculating

normals from the local 𝐺 field, and possible avenues for future research.

4.1 The Fast Sweeping Method

This approach involves calculating the signed distance function directly from the

Eikonal equation, in order to calculate normal vectors by the following process:

1. Compute the signed distance function 𝜙 inside 𝒜 -band by inverting the hyperbolic

tangent profile for 𝐺, Eq. (2.4) (note the nonlinear integrand necessitates quadra-

ture).

𝜙𝑛 = 2𝜀∫𝒦 atanh(2𝑔𝑖𝑏𝑖 − 1) 𝑏𝑛 d𝑉 (4.1)

2. Compute 𝜙 outside 𝒜 -band by the fast sweeping method.

3. Compute ∇𝜙.

a) Project𝜙 into two (three for 3D) enriched polynomial spaces of order (3𝑘 + 2)3
extended across three-cell stencils, yielding 𝜙.
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b) Calculate ∇𝜙 from 𝜙.

4. Compute �̂� from Eq. (2.6) with ∇𝜙 (again the nonlinear integrand necessitates

quadrature).

𝑛𝑘𝑛 = ∫𝒦
d𝜙𝑘𝑖 𝑏𝑖

√∑3𝑗=1 (d𝜙𝑗𝑘𝑏𝑘)2 𝑏𝑛 d𝑉 (4.2)

Through 𝛺 \ 𝒜 , the physical domain outside the 𝒜 -band, the signed distance function

is determined by a special case of the Eikonal equation (which is a special form of a time-

independent Hamilton-Jacobi equation),

|∇𝜙| = 1, (4.3)

with 𝜙 ∈ 𝒜 as a Dirichlet boundary condition. The solution approach is developed for

the general Eikonal equation with 𝐹 (𝒙) > 0,
|∇𝜙| = 𝐹 (𝒙) (4.4)

for the purpose of allowing MMS verification in the future.

Finite difference based schemes often utilize the fast marching method (FMM). Com-

paratively, this method is quite efficient and scales with 𝑂(𝑛 log 𝑛). However, it is not

clear how this method might be generalized to a DG discretization. Here, the fast sweep-

ing method (FSM) is implemented. It is comparatively less efficient, despite having 𝑂(𝑛)
scaling. However, it’s DG formulation is more apparent and it is easily parallelized. Other

works have utilized the FSM to develop 2nd order DG Eikonal equation solvers [23, 45].

These studies are extended by exploring a generalized, arbitrary-order DG-FSM solver.

Overview

The fast sweeping method suggested by Boué and Dupuis [2] involves iterating

through the computational domain with alternating orderings (called sweeping), updating

the solution variable in a Gauss-Seidel sense. In 2D:
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1. 𝑖 = 1...𝑁imax, 𝑗 = 1...𝑁jmax

2. 𝑖 = 𝑁imax...1, 𝑗 = 1...𝑁jmax

3. 𝑖 = 𝑁imax...1, 𝑗 = 𝑁jmax...1
4. 𝑖 = 1...𝑁imax, 𝑗 = 𝑁jmax...1

A similar sequence is used in 3D, except with eight sweeps instead of four. By sweeping

in different orderings, the characteristics of the problem are more quickly mapped out

and information can be more quickly transported through the domain. These sweep or-

derings are repeated until reaching convergence, which occurs when the 𝐿∞ difference

between two sweeps is less than some 𝛿, which here is taken to be 10−11. The solution

values are updated by first determining the upwind direction, which is found using the

fact that the solution is non-decreasing along the characteristics [19, 40]. With the sig-

nal propagation direction determined from causality, the DG coefficients are updated by

solving a nonlinear system of algebraic equations. Here, Newton’s method is suggested,

while previously the 2nd order problem has been solved by Li et al. [19] and Zhang et al.

[45] using a quadratic solver.

Unfortunately, the DG form of the fast sweeping solver presented by [45] is unstable

unless provided with two pieces of information: 1) a good initial guess from a finite-

difference solver and 2) causality flags indicating characteristic directions. Luo [23] sug-

gests an alternative 2nd order DG fast sweeping solver that does not require an initial guess

and is far simpler to implement. However, it is not clear how to generalize his method

to arbitrarily high orders. The approach described by [45] is given here, simplified for

constant cell spacing, generalized for arbitrary DG order, and modified for computing the

signed distance function rather than unsigned.
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Finite-Difference Sweeper

Zhang produces the initial guess via a first-order finite difference based Godunov fast

sweeping solver, which also provides a first order approximation of the causality direc-

tions. That is, the FD sweeper provides upwind data telling each cell where it should

receive information from. This in essence maps out the characteristics, which are then

corrected from higher order terms by the DG sweeper.

The Eikonal equation is solved on a finite difference grid which exists on the vertices

of the DG cells, such that a function on node 𝐹 (𝑥𝑖, 𝑦𝑗) = 𝐹𝑖𝑗 . Integer causality flags caux𝑖𝑗
and cauy𝑖𝑗 are defined such that a value of 0 indicates information propagating from - to

+, 1 indicates the opposite, and 10 means information does not flow along the indicated

direction for the node (𝑖, 𝑗). These flags are initialized as 10 and stored, depending on the

situation, in arrays f lagx𝑖𝑗 and f lagy𝑖𝑗 . In 2D, Eq. (4.4) is squared and discretized as

(𝜑𝑖𝑗 − 𝑎𝛥𝑥 )2 + (𝜑𝑖𝑗 − 𝑏𝛥𝑦 )2 = 𝐹 2𝑖𝑗 (4.5)

where 𝑎 and 𝑏 are the solution 𝜙 at a neighboring node selected by upwinding. At interior

nodes, these values are updated along with caux and cauy using

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
𝑎 = 𝜑𝑖−1,𝑗 , caux𝑖𝑗 = 0 if 𝜑𝑖−1,𝑗 < 𝜑𝑖+1,𝑗
𝑎 = 𝜑𝑖+1,𝑗 , caux𝑖𝑗 = 1 otherwise

if 𝐺 > 0.5
⎧⎪⎨⎪⎩
𝑎 = 𝜑𝑖−1,𝑗 , caux𝑖𝑗 = 0 if 𝜑𝑖−1,𝑗 > 𝜑𝑖+1,𝑗
𝑎 = 𝜑𝑖+1,𝑗 , caux𝑖𝑗 = 1 otherwise

if 𝐺 < 0.5
(4.6)

with a similar definition for 𝑏 in the 𝑦-direction. At nodes bordering the edge of the

computational domain, a one-sided definition is used forcing all information to come from

the interior.
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Eq. (4.4) is then easily solved using the quadratic formula, with special cases to ensure

that 𝜙 is always non-decreasing/non-increasing.

𝜑𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑎𝛥𝑦2+𝑏𝛥𝑥2+𝛥𝑥𝛥𝑦√𝐹2𝑖𝑗(𝛥𝑥2+𝛥𝑦2)−(𝑎−𝑏)2𝛥𝑥2+𝛥𝑦2 , if − 𝛥𝑦𝐹𝑖𝑗 < 𝑏 − 𝑎 < 𝛥𝑥𝐹𝑖𝑗
𝑏 + 𝛥𝑦𝐹𝑖𝑗, if 𝑏 − 𝑎 ≤ −𝛥𝑦𝐹𝑖𝑗
𝑎 + 𝛥𝑥𝐹𝑖𝑗, if 𝑏 − 𝑎 ≥ 𝛥𝑥𝐹𝑖𝑗

if 𝐺 > 0.5

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑎𝛥𝑦2+𝑏𝛥𝑥2−𝛥𝑥𝛥𝑦√𝐹2𝑖𝑗(𝛥𝑥2+𝛥𝑦2)−(𝑎−𝑏)2𝛥𝑥2+𝛥𝑦2 , if − 𝛥𝑥𝐹𝑖𝑗 < 𝑏 − 𝑎 < 𝛥𝑦𝐹𝑖𝑗
𝑎 − 𝛥𝑦𝐹𝑖𝑗, if 𝑏 − 𝑎 ≤ −𝛥𝑥𝐹𝑖𝑗
𝑏 − 𝛥𝑥𝐹𝑖𝑗, if 𝑏 − 𝑎 ≥ 𝛥𝑦𝐹𝑖𝑗

if 𝐺 < 0.5
(4.7)

The causality arrays are updated via

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩

flagx𝑖𝑗 = caux𝑖𝑗, f lagy𝑖𝑗 = cauy𝑖𝑗 if − 𝛥𝑦𝐹𝑖𝑗 < 𝑏 − 𝑎 < 𝛥𝑥𝐹𝑖𝑗
f lagx𝑖𝑗 = 10, f lagy𝑖𝑗 = cauy𝑖𝑗 if 𝑏 − 𝑎 ≤ −𝛥𝑦𝐹𝑖𝑗
f lagx𝑖𝑗 = caux𝑖𝑗, f lagy𝑖𝑗 = 10 if 𝑏 − 𝑎 ≥ 𝛥𝑥𝐹𝑖𝑗

if 𝐺 > 0.5

⎧⎪⎪⎪⎨⎪⎪⎪⎩

flagx𝑖𝑗 = caux𝑖𝑗, f lagy𝑖𝑗 = cauy𝑖𝑗 if − 𝛥𝑥𝐹𝑖𝑗 < 𝑏 − 𝑎 < 𝛥𝑦𝐹𝑖𝑗
f lagx𝑖𝑗 = caux𝑖𝑗, f lagy𝑖𝑗 = 10 if 𝑏 − 𝑎 ≤ −𝛥𝑥𝐹𝑖𝑗
f lagx𝑖𝑗 = 10, f lagy𝑖𝑗 = cauy𝑖𝑗 if 𝑏 − 𝑎 ≥ 𝛥𝑦𝐹𝑖𝑗

if 𝐺 < 0.5
(4.8)

To initialize the sweeper, large positive values are assigned to 𝜑𝑖𝑗 at all nodes where

𝐺 > 0.5 and large negative values are assigned at all nodes where 𝐺 < 0.5. As previously

noted, inside the 𝒜 -band where 𝐺 is near 0.5 the signed distance function is calculated

from inverting the hyperbolic tangent profile and held constant through the sweeping

solver iterations.
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Discontinuous Galerkin Sweeper

A DG solver designed to give the coefficients𝜙𝜅𝑖 is described here. The initial condition

to the system is calculated from the FD-based Godunov solver described in the previous

section. The DG coefficients up to first order can be calculated explicitly by

𝜙0 = 12𝜑bl + 12𝜑tl + 12𝜑br + 12𝜑tr
𝜙𝑥 = − 12√3𝜑bl − 12√3𝜑tl + 12√3𝜑br + 12√3𝜑tr

𝜙𝑦 = − 12√3𝜑bl + 12√3𝜑tl − 12√3𝜑br + 12√3𝜑tr

𝜙𝑥𝑦 = + 16𝜑bl − 16𝜑tl − 16𝜑br + 16𝜑tr

(4.9)

where the 𝜙0, 𝜙𝑥, 𝜙𝑦, 𝜙𝑥𝑦 indicate the coefficients corresponding to the constant, linear

in 𝑥, linear in 𝑦, and proportional to 𝑥𝑦 basis functions, respectively. The superscripts

bl, tl, br, tr indicate the bottom-left, top-left, bottom-right, and top-right nodes, respec-

tively. Then, Eq. (4.4) is squared, variables changed to sub-cell coordinates, and discretized

by taking an inner product with a test function 𝑏𝑛. Here, the ideas of Cheng and Shu [3]

are followed to produce

( 2𝛥𝑥)2 ∫𝒦 |∇𝜉𝜙|2 𝑏𝑛 d𝑉 + 𝛼𝑓𝜅 ( 2𝛥𝑥)2 ∫𝜕𝑓𝒦 [𝜙]𝑓 𝑏𝑛 d𝑆 = ∫𝒦𝐹2𝑏𝑛 d𝑉 . (4.10)

where 𝛼𝑓 are called local causality constants by Zhang et al. [45]. His definition is modi-

fied to the following for the square of the Eikonal equation:

𝛼𝜎 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m(0,𝐻𝜎 (∇𝜙) |𝒦𝜎) = m(0, 2 𝜕𝜙𝜕𝑥𝜎 |𝒦𝜎) , if f lagσ𝑖𝑗 = 0& ave(|∇𝜙|2 |𝒦) ≠ 0
skip current cell, if f lagσ𝑖𝑗 = 0& ave(∇𝜙|𝒦) = 𝟎
0, if f lagσ𝑖𝑗 = 1 or f lagσ𝑖𝑗 = 10

(4.11)

where 𝐻𝜎 = 𝜕 |∇𝜙|𝜕𝜙𝜎 is the derivative of the Hamiltonian with respect to spacial deriva-

tives of 𝜙, the m(·, ·) function is a max where 𝐺 > 0.5 and min where 𝐺 < 0.5, and the
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derivative of 𝜙 in a neighboring cell is evaluated as the average over the cell. With these

definitions, the Legendre basis expansion is inserted into Eq. (4.10) to form a nonlinear

system of algebraic equations:

𝜙𝜅,new𝑖 𝜙𝜅,new𝑗 ( 2𝛥𝑥)2 ∫𝒦
𝜕𝑏𝑖𝜕𝜉𝑘

𝜕𝑏𝑗𝜕𝜉𝑘 𝑏𝑛 d𝑉 + 𝛼𝑓𝜅 𝜙𝜅,new𝑖 ( 2𝛥𝑥)2 ∫𝜕𝑓𝒦 𝑏in𝑖 𝑏in𝑛 d𝑆
= (𝐹 2)𝑛 + 𝛼𝑓𝜅 𝜙𝑓𝑖 ∫𝜕𝑓𝒦 𝑏out𝑖 𝑏in𝑛 d𝑆 (4.12)

where the {𝜙𝜅,new𝑖 } coefficients are updated from the current neighbors following the

Gauss-Seidel philosophy. Note also the two surface integrals in Eq. (4.12), one of which

evaluates 𝑏𝑖 on the inner side face and the other evaluates 𝑏𝑖 on the outer side of the face,

as denoted by superscripts. At this point, Zhang has a quadratic system of three equations

that he solves by substitution. Here, a larger system of 𝑁𝑔 equations must be solved.

Several solution attempts have been made thus far, the first being linearization by

changing 𝜙𝜅,new𝑗 → 𝜙𝜅𝑗 . This, however, caused divergence everywhere before converging

at unrealistic answers.

A second attempt involves solving for the 𝑛 = 1 coefficient first, and truncating the

equation such that there is no dependence on higher terms. This is followed by solving for

the 𝑛 = 2 coefficient, again truncating the equation to remove higher-order dependence.

This causes the solution to blow up in some cases, however. Consider, for instance, a

cell for which 𝐹 = 𝛼𝑥− = 𝛼𝑦− = 𝛼𝑦+ = 0 and 𝛼𝑥+«1, and note that the volume integral

at lowest order is equal to zero as a result of the derivative terms. From Eq. (4.12), the

solution is then set by a term divided by a small 𝛼. Furthermore, achieving high order

convergence rates is contingent on low order coefficients receiving corrections from high

order terms, as is done in advection and reinitialization.

The final attempt involved employing a tensor-based Newton’s method to find the

nearest root to Eq. (4.12) at every grid point 𝜅. Of course, the nonlinearity allows multiple
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roots to this system, so convergence on the correct one relies on the accuracy of the

previous iteration and FD solver.

𝑓𝑛 (𝝓) = 𝐴𝑛𝑖𝑗𝜙𝑖𝜙𝑗 + 𝐵𝑛𝑖𝜙𝑖 + 𝐶𝑛 = 0 (4.13)

From a first initial guess 𝝓(0), an improved approximation to the root 𝝓(𝑛+1) = 𝝓(𝑛) + 𝜹 is

found by iterating

𝑓𝑖 (𝝓(𝑛)) + 𝐽 (𝑛)𝑖𝑗 𝛿𝑗 = 0
𝜹 = − (𝐽 (𝑛))−1 𝒇 (𝑛) (4.14)

where the Jacobian 𝐽 (𝑛) is

𝐽 (𝑛)𝑖𝑗 = 𝜕𝑓𝑖 (𝝓(𝑛))𝜕𝜙𝑗 = 𝐴𝑖𝑙𝑗𝜙(𝑛)𝑙 + 𝐴𝑖𝑗𝑙𝜙(𝑛)𝑙 + 𝐵𝑖𝑗 (4.15)

This method, however, only provides 1st order convergence rates regardless of the con-

vergence criterion of Newton’s root finder as a result of errors in regions where charac-

teristics intersect. It is possible this can be avoided through a causality flag correction

routine.

Parallelization

Parallelization for the FSM solver is quite simple compared to parallelization of a FMM

solver. The domain is decomposed into blocks of cells, and the alternating sweeps are

executed within those blocks only. That is, instead of sweeping globally from 𝑖 = 1...𝑁imax,

the loops are executed within the local block from 𝑖 = 𝑁block imin...𝑁block imax. Then, inter-

processor communication of ghost cell values between neighboring blocks is performed

periodically. To avoid a high communication overhead, ghost cell update routines are

performed after every sequence of 4 sweeps in 2D or 8 sweeps in 3D.
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4.2 Time-Dependent Hamilton-Jacobi Solver

A classic approach to reconstructing the signed distance function for the traditional

level set method is solving a time-dependent Hamilton-Jacobi equation that converges

when the Eikonal equation is satisfied [38]. In this case, the PDE used for traditional

reinitialization (Eq. (2.2)) could be used before every CLS reinitialization call to calculate

the signed distance function, and in turn the normal vectors. Several arbitrary-order DG

Hamilton-Jacobi solvers exist [3, 4, 16, 18, 20, 43] and have proven successful on several

nonlinear PDEs. However, applying these methods to Sussman et al. ’s PDE for reinitial-

ization has not been successful since numerical instabilities destroy the solution starting

in regions with intersecting characteristics, with similar concerns shared by Grooss and

Hesthaven [14]. However, newer methods such as those by Cheng and Wang [4] and Liu

and Pollack [20] have yet to be explored.

4.3 Brute-Force Method

This approach is more straightforward than the previous methods for calculating the

signed distance function, but is far more expensive. Here, the signed distance function is

solved on the DG quadrature points or a much finer grid via a more traditional method

(e.g. finite-difference fast sweeping, brute-force search, etc.). Since it is performed on a

many times finer mesh, accuracy isn’t necessarily lost. However, since these methods are

generally lower-order, it is likely this algorithm will not scale along with the rest of the

method. As a result, this is not an attractive approach.

4.4 Gradient Calculation

Regardless of the previous algorithms used, the normal vectors are dependent on a

normalized gradient operation over either the local 𝐺 field or on the reconstructed 𝜙
field. To differentiate a field (here denoted 𝜙) across the computational domain, it is pos-

sible to do so by simply evaluating Eq. (4.16) locally, with the gradient represented by the
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coefficients via Eq. (4.17). However, this approach results in a loss of order since only

𝑁𝑔 − 1 degrees of freedom in 𝜙 contribute to d𝜙. To ensure that the derivative contains

𝑁𝑔 nonzero coefficients and to smooth out discontinuities across cells in the normal vec-

tor, 𝜙 is projected into an enriched polynomial space of order 𝑁𝑔𝑒𝑥 = (3𝑘 + 2)3 that is

extended across two neighbors in the direction of differentiation. This projection is han-

dled in a similar manner to the diffusive flux projection in the reinitialization equation

(see Sec. 3.2).

d𝜙𝛼𝑛 = 𝜙𝑖 2𝛥𝑥𝛼 ∫𝒦
d𝑏𝑖d𝜉𝛼 𝑏𝑛 d𝑉 (4.16)

𝜕𝜙𝜕𝑥𝛼 ≈ 𝑁𝑔
∑𝑖=1 d𝜙𝜅,𝛼𝑖 (𝑡) 𝑏𝑖 (𝝃) (4.17)

ξ-
ξ

ξ+

ξη

η-
η η+

~ ~

Figure 4.1: Three-Cell Projection in 𝑥-Direction

̃𝜉 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

13 (𝜉+ + 2) where − 1 < 𝜉+ ≤ 1
13𝜉 where − 1 ≤ 𝜉 ≤ 1
13 (𝜉− − 2) where − 1 ≤ 𝜉− < 1

̃𝜂 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜂+ where − 1 < 𝜉+ ≤ 1
𝜂 where − 1 ≤ 𝜉 ≤ 1
𝜂− where − 1 ≤ 𝜉− < 1

(4.18)
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In the 𝑥-direction, it can easily be seen that the coordinates are related by Eq. (4.18).

The orthonormality condition is then used to find the 𝜙 coefficients on the extended basis,

where the extended domain 𝒦 is partitioned into three sub-domains 𝒦𝛼−, 𝒦𝛼 , and 𝒦𝛼+,

corresponding to the three original domains in the new extended space (see Fig. 4.1). 𝜙𝛼±𝑖
refers to coefficients in the cell sharing the 𝛼± face.

𝜙𝛼𝑛 = 𝜙𝛼−𝑖 ∫̃𝒦𝛼− 𝑏𝛼−𝑖 ̃𝑏𝑛 d𝑉 + 𝜙𝑖 ∫̃𝒦𝛼 𝑏𝑖 ̃𝑏𝑛 d𝑉 + 𝜙𝑗+𝑖 ∫̃𝒦𝛼+ 𝑏𝛼+𝑖 ̃𝑏𝑛 d𝑉 (4.19)

The resulting coefficients are then differentiated,

d𝜙𝛼𝑛 = 𝜙𝛼𝑖 2𝛥𝑥𝛼 ∫𝒦
𝜕�̃�𝑖𝜕𝜉𝛼 𝑏𝑛 d𝑉 (4.20)

Eqs. (4.19) and (4.20) are combined, allowing the entire projection and differentiation pro-

cedure to be executed with a single equation:

d𝜙𝛼𝑛 = 𝜙𝛼−𝑘 2𝛥𝑥𝛼 ∫̃𝒦𝛼− 𝑏𝛼−𝑘 ̃𝑏𝑖 d𝑉 ∫𝒦
𝜕 ̃𝑏𝑖𝜕𝜉𝛼 𝑏𝑛 d𝑉

+ 𝜙𝑘 2𝛥𝑥𝛼 ∫̃𝒦𝛼 𝑏𝑘 ̃𝑏𝑖 d𝑉 ∫𝒦
𝜕 ̃𝑏𝑖𝜕𝜉𝛼 𝑏𝑛 d𝑉

+ 𝜙𝛼+𝑘 2𝛥𝑥𝛼 ∫̃𝒦𝛼+ 𝑏𝛼+𝑘 ̃𝑏𝑖 d𝑉 ∫𝒦
𝜕 ̃𝑏𝑖𝜕𝜉𝛼 𝑏𝑛 d𝑉

(4.21)

The integral terms, summing 𝑖 = 1,𝑁𝑔𝑒𝑥 can be precomputed at an arbitrary level of

enrichment, thereby significantly reducing runtime for this routine.
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Chapter 5

GPU Programming Model

5.1 Programming Libraries

For accelerating computation with GPUs, there are a variety of libraries that follow

different ideologies and practices. Two low level examples are OpenCL and CUDA, the

former being open source and supported by a wide range of hardware, while the latter

is developed by Nvidia for Nvidia GPUs. For large codes, this makes OpenCL the more

attractive option since it is capable of being very portable to new and different architec-

tures. However, Nvidia has excellent debugging and optimization tools for CUDA, which

makes the development process quicker and easier. Since the kernel syntax is very sim-

ilar between the two, the software here is developed in CUDA, which can then be easily

ported to OpenCL.

It is worth noting that OpenCL and CUDA currently do not support Fortran [39]. It is,

however, possible for Fortran to call C functions. Since OpenCL readily supports host code

written in C, functions in C can easily act as a staging area between Fortran and OpenCL.

This is done by first giving C access to data allocated in Fortran, which is achieved by

sending pointers to that data as arguments to a C function.

Passing more complex data structures, such as arrays nested within arrays of derived

data types, is more complicated, but still manageable. Because Fortran pads arrays in

such a way that can be difficult to predict, it is simplest to send to C a pointer to the

start of each array within a derived data type. This process can be made more compact

by defining a derived data type in Fortran containing only a pointer, thereby allowing

Fortran to generate an array of pointers (which is not natively available). A pointer to the

first element of this array of pointers is then sent to C, which allows C to find the data

associated with each variable within an array of derived data types.
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5.2 CUDA and OpenCL algorithm

Using CUDA terminology, a GPU operates by executing a function called a kernel in

parallel on a cluster of threads, which are organized into blocks with resources allocated

to groups of 32 threads called warps. Threads and blocks then have associated integers

for identification. Eq. (3.9) is solved by assigning a single cell to each block, updating all

level set scalar coefficients for that cell. Then, threads within a block share the workload

of tensor-vector multiplication.

Block/Work-Group

read/Work-Item

Figure 5.1: CUDA/OpenCL Execution Model

Algorithm 1 GPU 3D Array Multiplication
tiX ← local ID of thread
ntX ← block size
term ← 0.0
for l ← start[n]+tiX, end[n] with step size ntX do

term += u[i2[l]] * g[i3[l]] * Z[l] ▷ multiply u and g coeff associated with l
end for
declare shared array partialsum of length ntX
partialsum[tiX] ← term ▷ save private result to shared array
return reduction_sum_within_tile(partialsum)

A second aspect of GPU programming is the use of different memory spaces for array

storage: i) global memory, which is available to all threads but invokes an additional 400-

600 clock cycles of latency when accessed [27] (for comparison, memory read/write time

itself is 8 operations per clock cycle), ii) shared memory, which is accessible to members

within the same block and may be accessed ∼100x faster than global memory [35] since

the latency is significantly reduced, and iii) small private registers, which is not shared
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between threads but is slightly faster than shared memory. An excellent description of

this is given by Scarpino [35]. Currently, integral arrays are stored in global memory.

Since all 𝑔 and 𝑢 coefficients associated with a cell are accessed frequently by a block,

storing solution variable coefficients in shared memory before calculating a given tensor

multiplication term provides a 10-15% speedup. Unfortunately, shared memory cannot

be dynamically allocated. Rather, the CPU must send a request to reserve variable sized

blocks of memory before queuing kernel execution.

In Alg. 1, Eq. (3.9) is considered a series of equations of the form

𝛥𝑔𝜅𝑛 + = ∑𝑁𝑢𝑘=1 𝑢𝜅𝑘 ∑𝑁𝑔𝑖=1 𝑔𝜅𝑖 𝑍𝑛,𝑘,𝑖 with coefficients for velocity u, level set scalar g,

and an integral array Z. Each thread has its own instance of the variable my_dg, in which

it sums together a subset of the above equation. Following the CRS format, a single

integer 𝑙 which corresponds to nonzero elements of the compressed array Z[l] is looped

over. Each call of the multiplication routine evaluates a term for one row 𝑛, looping

through a subset of Z bounded by two integers start[n] and end[n].

In order to take advantage of memory coalescence and evenly distribute the workload,

and hence reduce runtime, the local group of threads must align their access to the global

array Z by their local id number [27]. For example, thread 7 will access the array element

located immediately after the memory accessed by thread 6 and immediately before the

memory accessed thread 8. To accomplish this, threads begin the loop offset by their local

id and step through the loop by the local block size. Furthermore, the 0th thread should

access array elements that are multiples of 32, the warp size [7]. This optimization alone

provides an additional 10-15% speedup.

Finally, the CPU is easily able to reduce the number of repeated flux calculations by,

away from edges, computing only left-side fluxes. The result is then used to find the right-

side flux of the left neighbor. This same optimization is not so simple on the GPU when

cells are assigned single blocks, since there is no global syncronization between blocks
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or any guarantee of the order in which blocks are executed. As a result, multiple blocks

writing to an address of global memory often causes collisions, destroying the data. To

avoid repeated calculations on the GPU, left side fluxes are stored in separate global arrays,

which are kept on the GPU for a second kernel which only calculates right-side flux from

that information. Again, each block in this kernel is assigned a cell, and threads update

each coefficient according to the provided left-side flux of the corresponding right-side

neighbor.

The same process is repeated for reinitialization, with similar algorithms for the 2- and

4-index array multiplications. However, since more variables are necessary in a given

calculation (three different arrays rather than two) it is far easier to run out of shared

memory, which can reduce performance.
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Chapter 6

Code Verification and Results

Verification seeks to answer the question “Are the equations being solved correctly?”.

There are a multitude of approaches to verify that a given set of methods, algorithms,

and code are correctly solving the governing equations. Validation, which seeks to an-

swer “Are the correct equations being solved?”, has been performed extensively on the

governing Navier-Stokes equations and is therefore not considered here.

For this study, a testing suite of five techniques is developed. Several of these tests are

classic problems, while some are unique. The method of manufactured solutions is used to

give a rigorous verification that PDEs are being correctly solved and individual terms are

being handled correctly by the RKDG method. Zalesak’s disk is used to assess the ability

of RKDG-CLS to maintain sharp corners. Columns and spheres in reversible velocity fields

are used to demonstrate the RKDG-CLS scheme’s ability to maintain long, thin ligaments.

An analytical solution, called the circle test, is developed to assess reinitialization directly.

In all of these cases, grid convergence tests are also presented to demonstrate the 𝑘+1
convergence rate for the scheme and compare to WENO methods. Finally, the acceleration

provided by GPU hardware is examined.

6.1 The Method of Manufactured Solutions

The method of manufactured solutions (MMS) was originally developed by Salari and

Knupp [34] at Sandia National Laboratory. An excellent overview of the method is given

by Roache [33]. The motivation for MMS lies in the difficulty of obtaining analytical so-

lutions to the governing equations to many physical systems, fluid dynamics included. In

some cases, an analytical solution is found by making simplifying assumptions or requir-

ing certain geometry. However, it is typically desired to apply computational methods
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and simulations to complex scenarios in practice, making more robust verification tech-

niques essential.

MMS provides this rigorous technique by modifying the governing PDE with an ad-

ditional source term. Since no methods exist for analytically solving these nonlinear gov-

erning PDEs in general, there are no general solutions to test the numerical solver against.

So, MMS proposes that instead of attempting to find a solution to the problem, you modify

the problem to match a solution of your choosing. This means that the solution variables

𝐺, 𝒖, and �̂� become arbitrary and may be prescribed. Then, the governing PDE is modified

with a source term 𝑄(𝒙, 𝑡), which is computed exactly from the chosen solution variable

fields. The source function is then projected into the discontinuous basis via Eq. (3.2).

𝐹(𝐺, 𝜕𝐺𝜕𝑡 , 𝜕𝐺𝜕𝑥 , ...) = 0 → 𝐹(𝐺, 𝜕𝐺𝜕𝑡 , 𝜕𝐺𝜕𝑥 , ...) = 𝑄(𝒙, 𝑡)
𝑄(𝒙, 𝑡) = 𝐹(𝐺ex, 𝜕𝐺ex𝜕𝑡 , 𝜕𝐺ex𝜕𝑥 , ...)

(6.1)

It is important to remember that MMS tests do not evaluate the physics of the solver,

only the mathematics, since the governing equation is modified. So, in our case the CLS

method is not being evaluated (since the hyperbolic tangent profile plays no role), but the

RKDG discretization is.

This work focuses on time-independent exact solutions. The initial condition for MMS

is chosen to be 𝐺 = 0 everywhere, and the level set scalar 𝐺 converges over time to

the exact solution. Dirichlet boundary conditions are typically selected, assigning the

exact solution there. However, periodic boundary conditions may also be enforced if the

solution is also periodic. In practice, it is found that this often results in prohibitively long

simulations.
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Advection

To test the advection equation, Eq. (2.3), with MMS, it is modified with a source term.

𝜕𝐺𝜕𝑡 + ∇ · (𝐺𝒖) = 𝑄(𝒙, 𝑡) . (6.2)

The source term is evaluated from the exact solution and prescribed velocity field:

𝑄(𝒙, 𝑡) = 𝜕𝐺ex(𝒙, 𝑡)𝜕𝑡 + ∇ · (𝐺ex(𝒙, 𝑡) 𝒖ex(𝒙, 𝑡)) . (6.3)

Finally, RKDG scheme and code are tested on the unit-sized domain [0, 1]2 with the fol-

lowing exact solution, prescribed velocity, and resulting source term:

𝐺ex(𝑥, 𝑦) = 12 + sin(2𝜋𝑥) cos(2𝜋𝑦)
𝒖ex(𝑥, 𝑦) = (12 − sin(𝑥2 + 𝑦2)) �̂� + (cos(𝑥2 + 𝑦2) − 25) ̂𝒚

⟹ 𝑄(𝑥, 𝑦) = − 2 cos (𝑥2 + 𝑦2) 𝑥 (1/2 + sin (2𝜋𝑥) cos (2𝜋𝑦))
+ 2 (0.5 − sin(𝑥2 + 𝑦2)) cos (2𝜋𝑥) 𝜋 cos (2𝜋𝑦)
− 2 sin (𝑥2 + 𝑦2) 𝑦 (1/2 + sin(2𝜋𝑥) cos(2𝜋𝑦))
− 2 (cos(𝑥2 + 𝑦2) − 0.4) sin(2𝜋𝑥) sin(2𝜋𝑦) 𝜋

(6.4)

(a) MMS velocity field 𝒖 (b) MMS source term 𝑄
Figure 6.1: MMS Advection Test

The solution as it evolves through time via RKDG with 𝑘 = 4 polynomials is shown

in Fig. 6.2 along with the error at the final converged state at 𝑡 = 4.3. Comparing the
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final error to the velocity field in Fig. 6.1, it is found that the error predominantly lies in

compressive regions where velocity vectors converge.

Figure 6.2: Solution 𝐺 of MMS test case for 𝛥𝑥 = 1/40, RKDG-4 for𝑡 = 0.2, 0.5, 1.0, 2.0, 4.3 time units, and error 𝐸 at steady state (from top left to bottom
right).

Table 6.1: Error Norms of Advection MMS Test Case and Their Order of Convergence

Under Grid Refinement for RKDG-4

𝛥𝑥 𝐿∞ order 𝐿1 order

1/10 2.65e-5 - 3.37e-6 -

1/20 2.13e-6 3.6 1.03e-7 5.0

1/40 1.16e-7 4.2 3.32e-9 5.0

1/80 6.32e-9 4.2 1.07e-10 5.0

1/160 3.95e-10 4.0 3.43e-12 5.0

The errors produced for 𝑘 = 4 are listed in Table 6.1. The results show a 𝑘 + 1 order

convergence rate in the 𝐿1 norm with only a 𝑘th order convergence rate in the 𝐿∞ norm.
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Table 6.2: Error Norms of Advection MMS Test Case and Their Order of Convergence
Under Grid Refinement for Various Polynomial Orders𝑘𝑔 𝑘𝑢 𝛥𝑥 𝐿∞ order 𝐿1 order

1 0 1/10 7.96e-1 - 6.71e-2 -
1 0 1/20 3.00e-1 1.4 3.00e-2 1.1
1 0 1/40 4.03e-1 -0.4 1.78e-2 0.4
1 0 1/80 2.58e-1 0.6 9.26e-3 0.7
1 1 1/10 1.08e-1 - 2.38e-2 -
1 1 1/20 5.72e-2 0.9 7.32e-3 1.7
1 1 1/40 2.18e-2 1.4 2.09e-3 1.8
1 1 1/80 9.96e-3 1.1 5.70e-4 1.9
1 3 1/10 1.38e-1 - 2.51e-2 -
1 3 1/20 6.83e-2 1.0 7.44e-3 1.8
1 3 1/40 2.89e-2 1.2 2.06e-3 1.9
1 3 1/80 1.10e-2 1.4 5.45e-4 1.9
3 0 1/10 9.28e-1 - 8.01e-2 -
3 0 1/20 1.20 -0.4 4.30e-2 0.9
3 0 1/40 6.21e-1 1.0 2.29e-2 0.9
3 0 1/80 4.59e-1 0.4 1.13e-2 1.0
3 1 1/10 5.04e-2 - 5.34e-3 -
3 1 1/20 2.40e-2 1.1 1.31e-3 2.0
3 1 1/40 1.05e-2 1.2 3.28e-4 2.0
3 1 1/80 4.39e-3 1.3 8.31e-5 2.0
3 3 1/10 4.49e-4 - 7.76e-5 -
3 3 1/20 4.88e-5 3.2 5.69e-6 3.8
3 3 1/40 6.35e-6 2.9 3.79e-7 3.9
3 3 1/80 7.87e-7 3.0 2.47e-8 3.9

The reduced convergence for 𝐿∞ requires further study, but can possibly be attributed to

the upwind scheme or convergent velocity field.

Table 6.2 shows the resulting errors and convergence rates when 𝐺 and 𝒖 are given

different polynomial degrees. It is found that the convergence rate of the solution is lim-

ited by the smallest number of degrees of freedom given to a particular variable. That

is, the RKDG method only converges at a rate of min(𝑘𝑔, 𝑘𝑢) + 1. This particular finding

motivates the need for treating both velocity and normal vectors as DG variables.
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Reinitialization

The reinitialization equation is modified with a source term:

𝜕𝐺𝜕𝜏 + ∇ · (𝐺 (1 − 𝐺) �̂�) = ∇ · (𝜀 (∇𝐺 · �̂�) �̂�) + 𝑄(𝒙, 𝑡) . (6.5)

𝑄(𝒙, 𝑡) = 𝜕𝐺ex(𝒙, 𝜏)𝜕𝜏 + ∇ · (𝐺ex(𝒙, 𝜏) (1 − 𝐺ex(𝒙, 𝜏)) �̂�ex(𝒙, 𝜏))
− ∇ · (𝜀 (∇𝐺ex(𝒙, 𝜏) · �̂�ex(𝒙, 𝜏)) �̂�ex(𝒙, 𝜏)) . (6.6)

It should be noted that MMS does not require the normal vector to conform in any sense

to the normal of any surface in this system, since it does not verify CLS. As such, there is

also no need for it to be normalized. However, for evaluating the source term, the normal

is calculated from the exact solution chosen for𝐺, using direct differentiation as described

in Ch. 4. This is done to include error from that algorithm in our testing. In this case, the

exact solution to 𝐺 is chosen to be

𝐺ex(𝑥, 𝑦) = exp (14 sin (2𝜋𝑥) − 𝑦) − 𝑒−3/4𝑒3/4 − 𝑒−3/4 . (6.7)

This function is chosen for its nonlinear behavior, as well as a nicely behaving source

term (not too sharp anywhere) and normal that is defined everywhere in the domain

[−0.5, 0.5]2. The resulting source term is too long to write here, but a color plot is shown

in Fig. 6.3.

One important detail is that the scalar 𝜀 must be held constant rather than modified

with the grid spacing (as it would in flow simulations), since it appears in the reinitial-

ization equation itself. In practice, it represents the thickness of the hyperbolic tangent

profile and its value is changed along with the grid. However, changing it also changes

the governing equation, thereby invalidating convergence rates. In these tests, a value

of 𝜀 = 0.2 is used since it approximately balances the magnitudes of the convective and

diffusive terms. Unfortunately, a constant 𝜀 also results in timestep sizes proportional

49



to 𝛥𝑥2, as shown in Eq. (3.24). As a result, these tests can become expensive quickly.

Therefore, only 𝑘 = 1 results are presented here (circle tests go higher, however).

The results for this test are shown in Table 6.3. Convergence rates start low, but ap-

proach 𝑘+1 in both norms as the grid is refined. The results for unenriched diffusive flux

are shown in Table 6.4. The errors are much higher than those for the enriched case, but

the convergence rates are very similar.

(a) MMS normal vector field𝒏

b

(b) MMS source term 𝑄
Figure 6.3: MMS Reinitialization Test

Table 6.3: 2D RKDG-1 Reinitialization MMS Error Norms and Their Order of
Convergence Under Grid Refinement𝛥𝑥 𝐿∞ order 𝐿1 order

1/10 2.54e-2 - 4.73e-3 -
1/20 1.30e-2 1.0 2.24e-3 1.1
1/40 4.88e-3 1.4 6.87e-4 1.7
1/80 1.55e-3 1.7 1.94e-4 1.8

Table 6.4: Unenriched 2D RKDG-1 Reinitialization MMS Error Norms and Their Order of
Convergence Under Grid Refinement𝛥𝑥 𝐿∞ order 𝐿1 order

1/10 1.27e-1 - 2.42e-2 -
1/20 4.17e-2 1.6 8.80e-3 1.5
1/40 1.71e-2 1.3 3.03e-3 1.5
1/80 5.82e-3 1.6 9.50e-4 1.7
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Reinitialization’s 3D capabilities are evaluated with Eq. (6.8). The results, shown in

Table 6.5, show similar results approaching 𝑘 + 1 order convergence rates.

𝐺ex(𝑥, 𝑦, 𝑧) = exp (14 sin (√2𝜋 (𝑥 + 𝑧)) − 𝑦) − 𝑒−3/4
𝑒3/4 − 𝑒−3/4 . (6.8)

Table 6.5: 3D RKDG-1 Reinitialization MMS Error Norms and Their Order of
Convergence Under Grid Refinement𝛥𝑥 𝐿∞ order 𝐿1 order

1/10 2.24e-2 - 4.52e-3 -
1/20 1.39e-2 0.7 1.51e-3 1.6
1/40 5.02e-3 1.5 4.81e-4 1.7

6.2 Circle Test

To assess reinitialization and the normal calculation algorithm, a test case was devel-

oped which involves a circle of radius 𝑅0 placed at the origin of a unit-sized [−0.5, 0.5]2
domain. The level set scalar is initialized to

𝐺(𝒙) = 12 (tanh(𝑅0 −√𝑥2 + 𝑦22𝜀0 ) + 1) . (6.9)

Here, 𝜀0 refers to the initial thickness of the level set profile, here set larger than the thick-

ness 𝜀 after reinitialization to simulate correcting dissipative errors normally generated

by numerically solving the advection equation. Reinitialization then sharpens the inter-

face from thickness 𝜀0 → 𝜀, the latter used in Eq. (2.5). The conservative reinitialization

equation is designed to conserve 𝐺, which comes at the cost of not conserving the vol-

ume enclosed by the 𝐺 = 0.5 isosurface. In the context of our circle test, this means that

the profile thickness is sharpened, the 0.5-isosurface is transported outward in order to

conserve 𝐺. The new radius 𝑅 can be calculated by assuming that 𝐺 is transported only

in the set normal direction and not tangent to the interface. Then, the integral over 𝐺
from 𝑟 = 0,∞ remains unchanged under reinitialization and 𝑅 can be computed in terms
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of 𝑅0 , 𝜀0 , and 𝜀. Fig. 6.4 shows the resulting relationship between change in radius and

change in profile thickness. This advection of the interface performed by reinitialization

is also demonstrated by McCaslin and Desjardins [25].

∫∞
0 𝐺(𝑟, 𝑅, 𝜀) 𝑟 d𝑟 = ∫∞

0 𝐺(𝑟, 𝑅0, 𝜀0) 𝑟 d𝑟

-14
-12
-10
-8
-6
-4
-2
0
2
4
6

-3 -2 -1 0 1 2 3

103 𝛥
𝑅

102𝛥𝜀

𝜀0 = 0.030𝜀0 = 0.025𝜀0 = 0.020

Figure 6.4: Change in Radius Against Change in Profile Thickness

𝐺ex(𝒙) = 12 (tanh(𝑅 −√𝑥2 + 𝑦22𝜀 ) + 1) (6.10)

𝐸 = |𝐺ex (𝒙) − 𝐺(𝒙)| (6.11)

The results of a refinement study for 𝑘 = 3 polynomials are shown in Table 6.6, which

shows the 𝐿∞ and 𝐿1 norms of the level set scalar error at steady state together with

the associated convergence rates. The error is defined as the absolute value of the differ-

ence between the exact solution and final state of the level set scalar (ref. Eqs. (6.10) and

(6.11)). Reinitialization is evaluated for a circle of initial radius 𝑅0 = 0.25 and thickness

𝜀0 = 0.025 refined to 𝜀 = 0.0125. The final radius𝑅 is found to be 0.2530653 from Eq. (6.2).

The 𝐿1 and 𝐿∞ norms of the error appear to converge with 𝑘 + 1 order, with the coarsest

mesh exhibiting high error from under-resolution.
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Table 6.6: Error Norms of Circle Test and Their Order of Convergence Under Grid
Refinement for RKDG-CLS-3.𝛥𝑥 𝐿∞ order 𝐿1 order

1/20 2.16e-2 - 2.01e-3 -
1/40 1.04e-3 4.4 2.84e-5 6.1
1/80 6.19e-5 4.1 1.65e-6 4.1
1/160 3.77e-6 4.0 9.84e-8 4.1

6.3 Solid Body Rotations

Zalesak’s disk [44], involves the solid body rotation of a notched disk. This test prob-

lem is widely used to evaluate the ability of a level set method to maintain sharp corners.

A disk of radius 0.15, notch width 0.05, and notch height 0.25 is placed in a unit-sized

domain at (0.5,0.75). The disk is then rotated about the origin by the velocity field

𝒖(𝑥, 𝑦) = (0.5 − 𝑦) �̂� + (𝑥 − 0.5) ̂𝒚
The T-band is set to 8 cells, the W-band to 1 cell, and the X-band is set large enough

to fill the entirety of the disk (for straightforward volume and shape error calculation).

These parameters are shared by deforming column and sphere test cases. When the mesh

is updated after the interface is advected, new X-band cells are given the value of 𝐺 = 0. If

any new X-band cells were generated inside the disk, they would be given a value of𝐺 = 1.
In general, it is found that varying the X-band size has very little affect on the simulation,

while changing the T-band size (especially if it is too small) can have a moderate impact.

The impact of banding on conservation of 𝐺 is examined by calculating the fraction

of 𝐺 lost during the simulation via Eq. (6.12). This is done for the usual banding settings,

just described, and for the case where the T-band fills the entire domain. For the case

𝑘 = 2, 𝛥𝑥 = 1/100, 𝑇𝑟 = 0.0, 𝐹 = 0.0, the default band settings result in a𝐺 loss fraction of
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8.87e-7. With the T-band filling the entire domain, the conservation of 𝐺 is demonstrated

by the total 𝐺 loss fraction of 9.98e-14.

Fraction of 𝐺 lost = (∫𝛺𝐺𝑓 d𝑉 −∫𝛺𝐺0 d𝑉 )(∫𝛺𝐺0 d𝑉 )−1
(6.12)

Fig. 6.5 shows the shape of the interface for WENO-5 and RKDG-CLS at 𝑡 = 2𝜋, i.e.,

after one full rotation. As shown, the RKDG-CLS-4 results are vastly superior, even with

the same number of degrees of freedom. In fact, even after 45 rotations the RKDG-CLS-4

preserves the shape of Zalesak’s disk far better than WENO-5.

Figure 6.5: Zalesak’s disk. From left to right: LS-WENO-5 (𝛥𝑥 = 1/100 & 1 rotation)
[15]; RKDG-CLS-4 (𝛥𝑥 = 1/50 & 1 rotation); RKDG-CLS-4 (𝛥𝑥 = 1/100 & 1 rotation);

RKDG-CLS-4 (𝛥𝑥 = 1/50 & 45 rotations). Exact solution shown as a thin line.

Table 6.7 summarizes the shape error, defined as

𝐸 = ∫𝐴|𝐻(𝐺) − 𝐻(𝐺ex)| d𝐴∫𝐴𝐻(𝐺ex) d𝐴 (6.13)

and evaluated employing a recursive cell refinement algorithm using marching triangles

to calculate the phase interface position, and 𝐺ex denoting the exact solution, for different

RKDG-CLS-k. Overall shape errors are small, however, the convergence rate in this metric

appears to approach first order, independent of the order of the employed RKDG basis

functions. This appears to be due to the fact that shape errors for the RKDG-CLS methods

are confined to the sharp corner regions that represent a discontinuity in the solution

gradients and are thus captured with the employed Legendre basis functions at best with

first order. It should be noted though that even if the convergence rates appear be first
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Figure 6.6: Shape error 𝐸 as a function of scheme cost 𝐶 ; RKDG-CLS-2 (dotted line),
RKDG-CLS-3 (dashed line), RKDG-CLS-4 (solid line).

order for all analyzed 𝑘, increasing 𝑘 with a fixed 𝛥𝑥 reduces errors significantly. Of

course increasing 𝑘 increases the numerical cost of the scheme. The computational cost

𝐶 is approximated as proportional to the product of the number of degrees of freedom

𝑁2 (𝑘 + 1)2, the required time steps per time unit due to the CFL restriction 2𝑘 + 1, and

the number of operations per coefficient update in Eq. (3.9) 𝑘:

𝐶 ∼ 𝑁2 (𝑘 + 1)2 (2𝑘 + 1) 𝑘 . (6.14)

Fig. 6.6 shows that increasing the order 𝑘 of the scheme is preferable to increasing only the

number of mesh points per spatial direction𝑁 , even in a scenario where the error is being

dominated by discontinuities in the solution gradient and thus the full 𝑘+ 1 convergence

rate of the RKDG-CLS scheme is not obtainable.

Reinitialization’s affect on Zalesak’s disk is analyzed with three amounts of reinitial-

ization shown in Fig. 6.7, Table 6.7, and Table 6.8. In general, it is found that reinitialization

increases shape errors. This occurs because reinitialization smooths out the corners of the

notched disk, as Fig. 6.7 shows.

It is also found that some reinitialization improves volume conservation, but increas-

ing the amount of reinitialization further will increase the volume error. Reinitialization
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Figure 6.7: Interface shape of Zalesak’s disk after 1 rotation, 𝑘 = 3, 𝛥𝑥 = 1/100: no
reinitialization (blue); 𝑇𝑟 = 1.57, 𝐹 = 2.0 (red); 𝑇𝑟 = 0.79, 𝐹 = 4.0 (green)

is expected to improve volume conservation, but unphysically varying normal vectors

away from the interface cause some 𝐺 to be gathered outside the disk, slightly reducing

the overall mass. Normal vectors vary because they are dependent on local changes in

the 𝐺 field, rather than on the interface geometry alone. As a result, more frequent reini-

tialization will increase volume errors. This trend isn’t shared by the 𝑘 = 4 case, since it

employs limiters during reinitialization that degrade the accuracy in the sharp corners.

To address the issue of 𝐺-capturing by reinitialization, an arbitrarily high-order im-

plementation of the accurate conservative level set method [9] would depend on a method

for calculating high order DG normal vectors from only the interface geometry.

Table 6.7: Zalesak’s Disk Shape Errors and Convergence Rates for RKDG-CLS-k After 1
Rotation

𝑇𝑟, 𝐹 𝛥𝑥 𝑘 = 2 𝑘 = 3 𝑘 = 4𝐸 order 𝐸 order 𝐸 order
0.0, 0.0 1/50 1.08e-2 - 3.09e-3 - 1.39e-3 -

1/100 4.07e-3 1.4 9.95e-4 1.6 4.79e-4 1.5
1/200 2.38e-3 0.8 4.25e-4 1.2 1.58e-4 1.6
1/400 1.13e-3 1.1 1.76e-4 1.3 5.14e-5 1.6

1.57, 2.0 1/50 7.16e-3 - 2.97e-2 - 2.25e-2 -
1/100 2.67e-3 1.4 2.43e-3 3.6 3.91e-3 2.5
1/200 1.69e-3 0.7 6.86e-4 1.8 7.30e-4 2.4
1/400 8.78e-4 0.9 2.11e-4 1.7 1.70e-4 2.1

0.79, 4.0 1/50 1.29e-2 - 3.70e-2 - 3.73e-2 -
1/100 2.77e-3 2.2 4.07e-3 3.2 4.72e-3 3.0
1/200 1.46e-3 0.9 1.31e-3 1.6 9.17e-4 2.4
1/400 5.88e-4 1.3 7.42e-4 0.8 6.82e-4 0.4
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Table 6.8: Zalesak’s Disk Volume Errors and Convergence Rates for RKDG-CLS-k After 1
Rotation.

𝑇𝑟, 𝐹 𝛥𝑥 𝑘 = 2 𝑘 = 3 𝑘 = 4𝐸 order 𝐸 order 𝐸 order
0.0, 0.0 1/50 3.08e-3 - 4.43e-4 - 1.06e-5 -

1/100 4.87e-4 2.7 8.29e-5 2.4 9.23e-5 -3.1
1/200 1.43e-4 1.8 2.42e-5 1.8 4.95e-6 4.2
1/400 6.65e-5 1.1 1.30e-5 0.9 8.97e-7 2.5

1.57, 2.0 1/50 6.00e-4 - 1.87e-2 - 6.46e-3 -
1/100 6.79e-5 3.1 8.16e-4 4.5 2.35e-4 4.8
1/200 3.49e-5 1.0 2.13e-5 5.3 4.67e-5 2.3
1/400 2.62e-5 0.4 1.19e-6 4.2 5.74e-6 3.0

0.79, 4.0 1/50 4.22e-4 - 3.13e-3 - 1.16e-2 -
1/100 4.24e-4 0.9 3.10e-4 3.3 1.72e-4 6.1
1/200 1.52e-4 0.6 4.54e-5 2.8 1.52e-5 3.5
1/400 9.12e-5 0.7 2.71e-5 0.8 2.32e-5 -0.6
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Figure 6.8: Shape and volume errors for Zalesak’s disk. No reinitialization (blue),𝑇𝑟 = 1.57, 𝐹 = 2.0 (red), 𝑇𝑟 = 0.79, 𝐹 = 4.0 (green). 𝑘 = 2 (squares), 𝑘 = 3 (circles),𝑘 = 4 (triangles).

For comparison, Herrmann [15] reports volume errors for a banded fifth order WENO

method as 4.6e-3, 1.0e-3, 1.3e-4, and 7e-5 for 1002, 2002, 4002, and 8002 grids, respectively.

This is most closely comparable to the RKDG 𝑘 = 2 case with no reinitialization on meshes

with 4x fewer cells.
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Figure 6.9: Interface shape of column in a deformation field at 𝑡 = 𝑇 /2 (top row) and

𝑡 = 𝑇 (bottom row); from left to right: LS-WENO-5 with 𝛥𝑥 = 1/128 [15], RKDG-CLS-4

method with 𝛥𝑥 = 1/64 and 𝛥𝑥 = 1/128. Thin line marks reference solution.

6.4 Reversible Velocity Fields

Column in a Deformation Field

The column or circle in a deformation field problem introduced by Bell et al. [1] and

applied as a level set test problem by Enright et al. [11] tests the ability of the level set

method to resolve and maintain ever thinner filaments. A column of radius 𝑅0 = 0.15
and center (0.5, 0.75)𝑇 is placed inside a unit sized box. The velocity field is given by the

stream function

𝛹 (𝒙, 𝑡) = 1𝜋 sin2 (𝜋𝑥) sin2 (𝜋𝑦) cos (𝜋𝑡/𝑇 ) (6.15)

with 𝑇 = 8 and first stretches the column into ever thinner filaments that are wrapped

around the center of the box, then slowly reverses, and pulls the filaments back into the

initial circular shape.
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Fig. 6.9 shows the interface shape at the moment of maximum extension 𝑡 = 𝑇 /2 and

after full flow reversal at 𝑡 = 𝑇 , for the LS-WENO-5 scheme using 𝛥𝑥 = 1/128 [15], and

RKDG-CLS-4 using 𝛥𝑥 = 1/64 respective 𝛥𝑥 = 1/128. The RKDG-CLS-4 method gives

clearly superior results, is able to sustain the trailing filament well, and recovers the exact

solution of a circle well even on a twice coarser mesh as the LS-WENO-5 method. Finally,

Table 6.9 shows the shape error at 𝑡 = 𝑇 as a function of grid spacing 𝛥𝑥 for RKDG-CLS-2,

RKDG-CLS-3, and RKDG-CLS-4 methods.

The impact of reinitialization is examined by changing the frequency with which reini-

tialization is performed, as well as the number of reinitialization iterations performed with

each call. A comparison of several schemes is shown in Fig. 6.10, Table 6.9, and Table 6.10.

In this case, reinitialization increases both volume and shape errors. In contrast to Zale-

sak’s disk, the column is deformed, which causes more 𝐺 to be left behind in a trail behind

the droplet. As with before, local variations in the level set scalar cause reinitialization to

gather 𝐺 away from the interface. This often results in what is here called streaking (see

Fig. 6.12), and with the added potential for lost 𝐺 and streaks that deform the interface,

both volume errors and shape errors are increased. This result further demonstrates the

need for accurately calculated normals.

For comparison, Owkes and Desjardins [30] perform this test, showing 𝑘 = 2, 𝑇𝑟 =
0.0, 𝐹 = 0.5 volume errors of 𝐸 = 8.9𝑒 − 3, 4.1𝑒 − 3, 4.6𝑒 − 3 for 𝛥𝑥 = 1/64, 1/128, 1/256,
respectively. Our results, in Table 6.10, show similar volume errors even with no reini-

tialization. Similarly, they show volume errors for 𝑇𝑟 = 0.0, 𝐹 = 0.5, 𝛥𝑥 = 1/128 against

polynomial orders 𝑘 = 1, 2, 3 as 𝐸 = 9.4𝑒 − 3, 4.1𝑒 − 3, 5.4𝑒 − 3, respectively. Again,

very similar results are found in the tests lacking reinitialization shown here. They show

tremendous improvement comparing cases with reinitialization against without, show-

ing for 𝑘 = 2, 𝛥𝑥 = 1/64, 𝑇𝑟 = 0.0 volume errors of 𝐸 = 2.12𝑒 − 2, 8.9𝑒 − 3, 6.2𝑒 − 3 for

𝐹 = 0.0, 0.5, 1.0, respectively. This further motivates the projection of all variables to the
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Figure 6.10: Interface shape of column in a deformation field for 𝑘 = 3, 𝛥𝑥 = 1/128 at𝑡 = 𝑇 /2 (left, middle zoomed) and 𝑡 = 𝑇 (right); no reinitialization (blue);𝑇𝑟 = 0.5, 𝐹 = 2.0 (red); 𝑇𝑟 = 0.25, 𝐹 = 4.0 (green)

same polynomial order, since it drastically improves volume conservation even before

reinitialization is performed. However, our results also show volume errors increasing

with reinitialization rather than decreasing, as a result of the normal vector dependency

on the local level set scalar.

Herrmann [15] reports volume errors for a banded fifth order WENO method as 3.1e-1,

4.6e-2, 1.0e-2, and 2.8e-3 for 1282, 2562, 5122, and 10242 grids, respectively. The perfor-

mance of the RKDG method is far superior, as even the 𝑘 = 2 case with no reinitialization

on a 2562 mesh produces a smaller error than any of the WENO tests performed.

This test also shows both shape and volume errors increasing with reinitialization,

with a jump in error for 𝑘 = 4 since the slope limiter is active for these tests. When

reinitialization is active, the error diminishes with grid refinement, but increasing the

polynomial degree has little affect in most cases. On the other hand, when reinitialization

is not active, increasing the polynomial degree does reduce the error. This is likely because

small discrepancies in the high order polynomials introduce greater opportunity for error

in the normal vectors, and in turn the level set field. The 𝑘 = 4 tests do not necessarily

follow this trend since the active slope limiter often truncates cells to a piecewise linear

solution.

Streaking is also affected by the band sizes chosen for the RLSG. Presently, new X-

band cells are given values of either 0 or 1, depending on which side of the interface
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Table 6.9: Deforming Column Shape Errors and Convergence Rates for RKDG-CLS-k
After Full Flow Reversal at 𝑡 = 𝑇

𝑇𝑟, 𝐹 𝛥𝑥 𝑘 = 2 𝑘 = 3 𝑘 = 4𝐸 order 𝐸 order 𝐸 order
0.0,0.0 1/64 5.12e-2 - 1.47e-2 - 6.46e-3 -

1/128 1.05e-2 2.3 2.76e-3 2.4 1.33e-3 2.3
1/256 1.88e-3 2.5 6.21e-4 2.2 2.54e-4 2.4

0.5,2.0 1/64 9.07e-2 - 9.76e-2 - 2.37e-1 -
1/128 2.11e-2 2.1 1.91e-2 2.4 5.66e-2 2.1
1/256 4.62e-3 2.2 4.59e-3 2.1 1.00e-2 2.5

0.25,4.0 1/64 8.36e-2 - 1.14e-1 - 4.53e-1 -
1/128 2.61e-2 1.7 2.83e-2 2.0 1.32e-1 1.8
1/256 4.41e-3 2.6 5.51e-3 2.4 2.29e-2 2.5

Table 6.10: Deforming Column Volume Errors and Convergence Rates for RKDG-CLS-k
After Full Flow Reversal at 𝑡 = 𝑇

𝑇𝑟, 𝐹 𝛥𝑥 𝑘 = 2 𝑘 = 3 𝑘 = 4𝐸 order 𝐸 order 𝐸 order
0.0,0.0 1/64 6.00e-3 - 8.25e-3 - 5.36e-3 -

1/128 4.81e-3 0.3 2.58e-3 1.7 1.65e-3 1.7
1/256 1.43e-3 1.8 7.91e-4 1.7 4.71e-4 1.8

0.5,2.0 1/64 8.60e-2 - 9.23e-2 - 1.06e-1 -
1/128 1.82e-2 2.2 1.51e-2 2.6 2.75e-3 5.3
1/256 3.46e-3 2.4 3.29e-3 2.2 2.08e-3 0.4

0.25,4.0 1/64 6.40e-2 - 8.57e-2 - 2.24e-1 -
1/128 1.54e-2 2.1 1.67e-2 2.4 1.84e-2 3.6
1/256 2.51e-3 2.6 3.47e-3 2.3 1.48e-3 3.6

Table 6.11: Deforming Column Volume and Shape Errors for𝑇𝑟 = 0.5, 𝐹 = 2.0, 𝑘 = 2, 𝛥𝑥 = 1/128 at Flow Reversal at 𝑡 = 𝑇 Against T-band Size
T-band size volume error shape error

8 1.74E-02 2.11E-02
15 1.59E-02 1.94E-02
128 1.55E-02 1.91E-02

they lie. Ideally, the transport band (T-band) is made large enough for this assumption

to take place sufficiently far away along the hyperbolic tangent profile that the jump has

little effect. However, since locally-dependent normals gather 𝐺 away from the interface,

often destroying the hyperbolic tangent profile, this becomes much more difficult. Fig. 6.12
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Figure 6.11: Shape and volume errors for deforming column. No reinitialization (blue),𝑇𝑟 = 0.5, 𝐹 = 2.0 (red), 𝑇𝑟 = 0.25, 𝐹 = 4.0 (green). 𝑘 = 2 (squares), 𝑘 = 3 (circles), 𝑘 = 4

(triangles).

Figure 6.12: Streaking exhibited after full flow reversal for𝑇𝑟 = 0.5, 𝐹 = 2.0, 𝑘 = 2, 𝛥𝑥 = 1/128. 𝐺 = 0.5 isosurface indicated with a white line.
T-band sizes of 8, 15, and 128 (full domain), respectively.

shows a comparison between two different band sizes and the impact on streaking and the

resulting interface. Both volume and shape errors decrease as the T-band size is increased,

shown in Table 6.11. This is the result of 𝐺 being smeared out by advection, making it

necessary for advection and reinitialization to handle 𝐺 fluxes farther and farther from

the interface. This can be remedied by more reinitialization, which would pull 𝐺 closer

to the vicinity of the interface by restoring the hyperbolic tangent profile. However, as

Table 6.9 and Table 6.10 indicate, more reinitialization often increases errors if the normal

vectors are calculated from the local level set scalar. This is because small variations

in 𝐺 away from the interface result in large variations in the normals, which in turn

causes reinitialization to gather 𝐺 away from the interface. With an ACLS approach, it is

expected that reinitialization will properly restore the hyperbolic tangent profile and in

turn allow for smaller T-band sizes without sacrificing accuracy.
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Sphere in a Deformation Field

Figure 6.13: Sphere in a deformation field interface shape at 𝑡 = 𝑇 /2 (top row) and 𝑡 = 𝑇
(bottom row); from left to right: LS-WENO-5 with 𝛥𝑥 = 1/128, RKDG-CLS-4 with

𝛥𝑥 = 1/32 and 𝛥𝑥 = 1/128.
To demonstrate the performance of the RKDG-CLS method in three dimensions, the

sphere in a deformation field case proposed by [11] is performed. A sphere of radius

𝑅0 = 0.15 is placed at (0.35, 0.35, 0.35)𝑇 inside a unit box, whose time dependent velocity

field is given by

𝑢 = 2 sin2(𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡/𝑇 )
𝑣 = − sin(2𝜋𝑥) sin2(𝜋𝑦) sin(2𝜋𝑧) cos(𝜋𝑡/𝑇 )
𝑤 = − sin(2𝜋𝑥) sin(2𝜋𝑦) sin2(𝜋𝑧) cos(𝜋𝑡/𝑇 ) ,

(6.16)

with 𝑇 = 3. Fig. 6.13 shows the interface shape at 𝑡 = 𝑇 /2, the time of maximum defor-

mation, and 𝑡 = 𝑇 after full flow reversal, for the LS-WENO-5 method using 𝛥𝑥 = 1/128
and RKDG-CLS-4 using 𝛥𝑥 = 1/32 respective 𝛥𝑥 = 1/128. Again, RKDG-CLS-4 yields

superior results, even on a four time coarser mesh compared to the LS-WENO-5 method.
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Figure 6.14: Sphere in a deformation field interface shape at 𝑡 = 𝑇 /2 (top row) and 𝑡 = 𝑇
(bottom row), all RKDG-CLS-3 with 𝛥𝑥 = 1/64; from left to right: No reinitialization;𝑇𝑟 = 1.0, 𝐹 = 1.0; 𝑇𝑟 = 0.5, 𝐹 = 1.0.

Even without reinitialization of the RKDG-CLS method, volume conservation is signifi-

cantly improved compared to LS-WENO-5. Whereas the latter loses 27.4% of volume at

𝑡 = 𝑇 using 𝛥𝑥 = 1/128, the former loses only 0.27% using 𝛥𝑥 = 1/32. Results are shown

in Table 6.12, Table 6.13, Table 6.14, Table 6.15.

Table 6.12: Deforming Sphere Shape Errors and Convergence Rates for RKDG-CLS-k
After Full Flow Reversal at 𝑡 = 𝑇

(a) Varying reinit factor (b) Varying mesh (c) Varying DG order643 mesh, 𝑘 = 2 𝑇𝑟 = 1.0, 𝐹 = 1.0, 𝑘 = 2 𝑇𝑟 = 1.0, 𝐹 = 1.0, 643𝑇𝑟, 𝐹 𝐸 𝛥𝑥 𝐸 order 𝑘 𝐸
0.0,0.0 4.17e-2 1/32 6.76e-2 - 1 1.06e-1
1.0,1.0 7.14e-2 1/64 7.14e-2 -0.1 2 7.14e-2
0.5,1.0 4.86e-2 1/128 5.72e-2 0.3 3 3.19e-2

Similar to previous tests, it is found that without reinitialization, error is reduced both

by grid refinement and increasing polynomial degree. Adding reinitialization accentuates

variations in 𝐺, resulting in deformations and streaking in the interface, as shown in

Fig. 6.14. This causes both shape errors and volume errors to increase with reinitialization.
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Table 6.13: Deforming Sphere Volume Errors and Convergence Rates for RKDG-CLS-k
After Full Flow Reversal at 𝑡 = 𝑇

(a) Varying reinit factor (b) Varying mesh (c) Varying DG order643 mesh, 𝑘 = 2 𝑇𝑟 = 1.0, 𝐹 = 1.0, 𝑘 = 2 𝑇𝑟 = 1.0, 𝐹 = 1.0, 643𝑇𝑟, 𝐹 𝐸 𝛥𝑥 𝐸 order 𝑘 𝐸
0.0,0.0 3.12e-3 1/32 1.35e-1 - 1 1.23e-1
1.0,1.0 3.17e-2 1/64 3.17e-2 2.1 2 3.17e-2
0.5,1.0 3.63e-2 1/128 2.50e-3 3.7 3 1.40e-2

Table 6.14: Deforming Sphere Shape Errors and Convergence Rates for RKDG-CLS-k
with no Reinit. After Full Flow Reversal at 𝑡 = 𝑇

𝛥𝑥 𝑘 = 2 𝑘 = 3𝐸 order 𝐸 order
1/32 6.70e-2 - 3.41e-2 -
1/64 4.17e-2 0.7 1.78e-2 0.9
1/128 3.45e-2 0.3 1.14e-2 0.6

Table 6.15: Deforming Sphere Volume Errors and Convergence Rates for RKDG-CLS-k
with no Reinit. After Full Flow Reversal at 𝑡 = 𝑇

𝛥𝑥 𝑘 = 2 𝑘 = 3𝐸 order 𝐸 order
1/32 4.91e-2 - 3.83e-3 -
1/64 3.12e-3 4.0 2.12e-3 0.9
1/128 1.94e-3 0.7 1.61e-3 0.4

With reinitialization present, shape errors are not necessarily reduced by grid refinement,

although even in these cases increasing the polynomial degree reduces the error.

6.5 GPU Acceleration

The CUDA algorithm for DG advection was executed on a Nvidia Tesla K20 and com-

pared to the original algorithm running in serial on an Intel Xeon E5-2620. Both algo-

rithms take advantage of sparsity and are implemented on equidistant Cartesian meshes

in unit sized domains. Verification of the method has been performed for the CPU algo-

rithm via MMS, Zalesak’s disk, time-reversing velocity fields, and the circle test as de-

scribed in previous sections of this chapter, so this test is limited to computation speed
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and assurance that the CPU and GPU give equivalent results (within 105 times machine

epsilon at double precision). This is done by randomizing the level set scalar and velocity

coefficients, then performing a single RK advection step and comparing the CPU and GPU

runtime and output.

Runtimes are calculated for the algorithms of interest alone, and speedup factors calcu-

lated for how much a given algorithm is accelerated by being executed on GPU hardware

rather than the CPU. This is done to more easily isolate the performance boost provided

by the GPU, noting that other routines outside the main solver may also be adapted to

GPU hardware. This is particularly important for the random coefficients test shown here.

Since the test only performs a single Runge-Kutta step, the bulk of the runtime is spent

on initialization and does not well represent the total runtime found in practice.
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Figure 6.15: Compute Time and Speedup of One 2D Advection RK Step
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Figure 6.16: Compute Time and Speedup of One 3D Advection RK Step
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These tests produce several interesting trends, shown in Table B.1, Table B.2, Fig. 6.15,

and Fig. 6.16. First, low degree polynomials show little benefit from the GPU, and some-

times even result in slower runtimes, simply because the integral arrays are not large

enough for all threads to be operating simultaneously. A similar drawback arises if spar-

sity is not exploited, where the GPU instead slows down computation by a factor of 42x

for 𝑘 = 4 and 𝛥𝑥 = 80 in 3D since many threads end up multiplying by zero, wasting

significant FLOPs. One way to remedy this in practice is to use smaller work-group sizes

when dealing with low-degree polynomials. However, this solution has limitations since

GPUs are most efficient when the block size is a multiple of 32 (the warp size) [27].

Second, the data indicates the GPU is increasingly advantageous as it is given more

work. This is demonstrated in Fig. 6.15 and Fig. 6.16 since speedup increases with grid size.

With more degrees of freedom and operations, whether from refining the grid or increas-

ing the number of polynomials, the total speedup increases until a certain point where

it levels off at an approximately constant speedup factor. This implies that at 𝛥𝑥 = 1/10
there are not enough blocks for warps on the GPU to effectively mask memory latencies

with massive parallelism.

Finally, higher 𝑘 in general produces higher speedup factors. This compliments the

effectiveness of high-order DG and reflects the streaming memory model on the GPU,

where one warp’s memory latencies are masked by another’s floating-point operations.

However, 𝑘 = 4 and 𝑘 = 5 produce similar speedup factors, indicating that at that point

the integral arrays are large enough that parallelization along the array elements is suffi-

cient to fully occupy the GPU. At 𝑘 = 6, the speedup factors drop since the level set scalar

and velocity arrays become too large to fit entirely in shared memory. And finally, the

𝑘 = 5, 6, 803 grid data points are not calculated since the total global memory required

for all variables is too large to fit on the Nvidia Tesla K20 simultaneously. In practice,
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this would be avoided by either executing the main kernel multiple times in sequence on

different subsets of the mesh, or by performing the calculations on multiple GPUs.

Table 6.16: GPU Event Timing

Event Time (ms)

Kernel Create 0.1628

Data Send 336.9

Compute 4763

Data Receive 20.14

Total 4784

Note: these events may overlap, so the total compute time is not necessarily the sum of

event times.

To investigate the expense of different operations on the GPU, CUDA event timers are

used to calculate the duration of various routines. The results are shown in Table 6.16 for

the degree 3 polynomial, 40x40x40 grid advection case. As perhaps an unexpected result,

compute time overwhelmingly dominates the execution time. In other applications, the

memory transfer overhead between the CPU and GPU take up a significant portion of the

runtime. However, this case involves a high work to data ratio, since the scheme requires

numerous arithmetic operations relative to the amount of relevant calculated data, espe-

cially at higher orders. As a result, optimizations that focus on decreasing compute time

and internal memory operations are more beneficial than memory transfer optimizations,

contrary to the usual case for GPU algorithms.

Finally, it is worth noting that this test produces a lower bound for speedup factors

compared to full simulations. This is because this test only performs a single Runge-Kutta

step, rather than a full time step. As a result, the CPU-GPU communication overhead

is emphasized. For example, the sphere in deformation field under advection alone with
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𝑘 = 4 and 𝛥𝑥 = 1/32 produces a speedup factor of 33.1x, compared to approximately 30x

expected from the results in Table B.2.

This test is repeated for reinitialization, with the results shown in Table B.3, Fig. 6.17,

and Fig. 6.18. In this case, the speedup factors are not as high for multiple reasons. First,

the tests stop at 3rd order here because the integral arrays are much larger. For 𝑘 = 4 3D,

even unenriched flux arrays take up more global memory than is available on the Tesla

K20. The speedup up to 𝑘 = 3 shown in the tables is very similar to that of the speedups

for advection at the same order, and it may continue to scale alongside advection. In

practice, individual integral terms could be evaluated in sequence with the integral arrays

copied every time step, but this would greatly slow the process. Another possibility is

that the reinitialization kernel does not continue to speed up and match the factors found

in advection because the parallelization implementation results in reinitialization relying

on more shared memory than is available. This is because reinitialization’s nonlinear and

diffusive terms depend on the product of two variables rather than one, both of which

are brought to local memory. At higher orders, these arrays are too large to fit in shared

memory, resulting in some elements being automatically placed in global memory. If the

added latency is not sufficiently hidden by parallel operations, the GPU will lose some

efficiency. In this case, the operation could be improved by modifying the compressed

data structure with an additional variable, indicating where the second-outermost index

changes values. Then, the corresponding variable would be stored in a local register one

coefficient at a time, rather than attempting to store all coefficients in shared memory.

However, since this reduces the length of the loop being parallelized, it increases the risk

of reducing occupancy of the GPU.
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Figure 6.17: Compute Time and Speedup of One 2D Reinitialization RK Step
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Figure 6.18: Compute Time and Speedup of One 3D Reinitialization RK Step
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Chapter 7

Concluding Remarks

7.1 Summary

In order to construct an interface capturing method for a predictive numerical lab-

oratory for multiphase flows, an arbitrary-order, nearly quadrature-free, discontinuous

Galerkin, conservative level set approach is presented for modeling interface transport

and topology evolution. This involves solving the advection equation, Eq. (2.3), to trans-

port the interface and reinitialization, Eq. (2.5), to maintain the hyperbolic tangent pro-

file, Eq. (2.4), in a mass conserving fashion. These two partial differential equations are

discretized spatially by performing a spectral decomposition within cells, via Eq. (3.1).

Numerical fluxes are handled using Eqs. (3.8), (3.10), and (3.14). The result is two sets of

systems of ODEs, Eq. (3.9) for advection and Eq. (3.20) for reinitialization. These systems

are stepped through time using a 𝑘+1 stage Runge-Kutta method, Eq. (3.21), which is sub-

ject to CFL constraints Eqs. (3.22), (3.23), and (3.24). The RKDG-CLS scheme for advection

is executed on the GPU using CUDA, via Alg. 1. Finally, normal vector fields required by

reinitialization are calculated using direct differentiation of the local level set scalar field

via Eq. (4.21) and normalized via Eq. (4.2). Ap. A lists integrals that are precomputed and

stored in arrays.

The method was tested using the method of manufactured solutions, Zalesak’s disk,

and deforming columns and spheres in a time-reversing vortex. In general, it was found

that the RKDG method can solve both the advection and reinitialization equations with

the arbitrarily high convergence rates of 𝑘 + 1 predicted by the method. However, in-

terface transport tests showed normal vectors calculated from the local level set field to

be inadequate, since they amplify noise and existing error in the system, resulting in in-

creased shape and volume errors. In practice, therefore, it is necessary for normals to
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be evaluated in an ACLS sense for reinitialization to properly mitigate dissipative errors

without introducing errors from level set trapping.

By taking advantage of sparsity, threading, and coalesced memory access on the GPU,

an overall speedup of 30x between GPU/CPU for the advection routine, advocating the

applicability and benefit of GPUs in numerical algorithms, particularly calculations inde-

pendent from one another. Sec. 6.5 indicated that more work given to the GPU results in

more speedup, especially when increasing polynomial order, up until the point where the

amount of local memory on a chip is insufficient. This compliments the results in Fig. 6.6,

showing that the discontinuous Galerkin conservative level set method is more effective

at higher orders. Reinitialization showed similar speedup potential, but the integral arrays

for higher orders were too large to fit on the GPU all at once.

7.2 Future Work

Future work involves development of several algorithms and techniques, as well as op-

timization of existing ones. Normal vectors and curvature ought to be calculated from the

interface geometry alone, which can be done through a variety of methods. This would in-

clude investigation into newer Hamilton-Jacobi solvers [4, 20], and possibly a brute force

approach. The GPU timing results call attention to avenues for future software develop-

ment, which ought to target reducing pressure on the shared and global memory spaces.

There is also some potential benefit to investigating a multitude of other accelerator pro-

gramming paradigms and libraries. Finally, coupling the entire scheme to a parallel flow

solver, ideally a DG-based one, would present a complete fluid simulation for engineering

applications involving multiphase flows.
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Appendix A

Precomputed Integrals
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A.1 Advection

For advection, the precomputed integrals are:

Ax𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑘 𝜕𝑏𝑛𝜕𝜉 d𝜉d𝜂d𝜁 (A.1)

Ay𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑘 𝜕𝑏𝑛𝜕𝜂 d𝜉d𝜂d𝜁 (A.2)

Az𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑘 𝜕𝑏𝑛𝜕𝜁 d𝜉d𝜂d𝜁 (A.3)

SAxm𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(+1, 𝜂, 𝜁) 𝑏𝑘(+1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.4)

SAxp𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(−1, 𝜂, 𝜁) 𝑏𝑘(−1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.5)

SAym𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, +1, 𝜁) 𝑏𝑘(𝜉, +1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.6)

SAyp𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, −1, 𝜁) 𝑏𝑘(𝜉, −1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.7)

SAzm𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, +1) 𝑏𝑘(𝜉, 𝜂, +1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.8)

SAzp𝑖,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, −1) 𝑏𝑘(𝜉, 𝜂, −1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.9)

A.2 Reinitialization

Reinitialization requires the integrals precomputed for advection, plus:

Bx𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑗𝑏𝑘 𝜕𝑏𝑛𝜕𝜉 d𝜉d𝜂d𝜁 (A.10)

By𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑗𝑏𝑘 𝜕𝑏𝑛𝜕𝜂 d𝜉d𝜂d𝜁 (A.11)

Bz𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑖𝑏𝑗𝑏𝑘 𝜕𝑏𝑛𝜕𝜁 d𝜉d𝜂d𝜁 (A.12)
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Cxx𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜉 𝑏𝑘𝑏𝑙 𝜕𝑏𝑛𝜕𝜉 d𝜉d𝜂d𝜁 (A.13)

Cyy𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜂 𝑏𝑘𝑏𝑙 𝜕𝑏𝑛𝜕𝜂 d𝜉d𝜂d𝜁 (A.14)

Czz𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜁 𝑏𝑘𝑏𝑙 𝜕𝑏𝑛𝜕𝜁 d𝜉d𝜂d𝜁 (A.15)

Cxy𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑘𝑏𝑙 (𝜕𝑏𝑖𝜕𝜉 𝜕𝑏𝑛𝜕𝜂 + 𝜕𝑏𝑖𝜕𝜂 𝜕𝑏𝑛𝜕𝜉 ) d𝜉d𝜂d𝜁 (A.16)

Cxz𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑘𝑏𝑙 (𝜕𝑏𝑖𝜕𝜉 𝜕𝑏𝑛𝜕𝜁 + 𝜕𝑏𝑖𝜕𝜁 𝜕𝑏𝑛𝜕𝜉 ) d𝜉d𝜂d𝜁 (A.17)

Cyz𝑖,𝑘,𝑙,𝑛 = ∫1
−1∫

1
−1∫

1
−1 𝑏𝑘𝑏𝑙 (𝜕𝑏𝑖𝜕𝜉 𝜕𝑏𝑛𝜕𝜂 + 𝜕𝑏𝑖𝜕𝜂 𝜕𝑏𝑛𝜕𝜉 ) d𝜉d𝜂d𝜁 (A.18)

Sxm𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(+1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.19)

Sxp𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(−1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.20)

Sym𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, +1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.21)

Syp𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, −1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.22)

Szm𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, +1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.23)

Szp𝑖,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, −1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.24)

SBxm𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(+1, 𝜂, 𝜁) 𝑏𝑗 (+1, 𝜂, 𝜁) 𝑏𝑘(+1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.25)

SBxp𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(−1, 𝜂, 𝜁) 𝑏𝑗 (−1, 𝜂, 𝜁) 𝑏𝑘(−1, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.26)

SBym𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, +1, 𝜁) 𝑏𝑗 (𝜉, +1, 𝜁) 𝑏𝑘(𝜉, +1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.27)

SByp𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, −1, 𝜁) 𝑏𝑗 (𝜉, −1, 𝜁) 𝑏𝑘(𝜉, −1, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.28)

SBzm𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, +1) 𝑏𝑗 (𝜉, 𝜂, +1) 𝑏𝑘(𝜉, 𝜂, +1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.29)

SBzp𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1 𝑏𝑖(𝜉, 𝜂, −1) 𝑏𝑗 (𝜉, 𝜂, −1) 𝑏𝑘(𝜉, 𝜂, −1) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.30)
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SCxX𝑖,𝑗,𝑘,𝑛 = 12 ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜉 |𝜉=0𝑏𝑗 (0, 𝜂, 𝜁) 𝑏𝑘(0, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.31)

SCxY𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜂 |𝜉=0𝑏𝑗 (0, 𝜂, 𝜁) 𝑏𝑘(0, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.32)

SCxZ𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜁 |𝜉=0𝑏𝑗 (0, 𝜂, 𝜁) 𝑏𝑘(0, 𝜂, 𝜁) 𝑏𝑛(−1, 𝜂, 𝜁) d𝜂d𝜁 (A.33)

SCyX𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜉 |𝜂=0𝑏𝑗 (𝜉, 0, 𝜁) 𝑏𝑘(𝜉, 0, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.34)

SCyY𝑖,𝑗,𝑘,𝑛 = 12 ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜂 |𝜂=0𝑏𝑗 (𝜉, 0, 𝜁) 𝑏𝑘(𝜉, 0, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.35)

SCyZ𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜁 |𝜂=0𝑏𝑗 (𝜉, 0, 𝜁) 𝑏𝑘(𝜉, 0, 𝜁) 𝑏𝑛(𝜉, −1, 𝜁) d𝜉d𝜁 (A.36)

SCzX𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜉 |𝜁=0𝑏𝑗 (𝜉, 𝜂, 0) 𝑏𝑘(𝜉, 𝜂, 0) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.37)

SCzY𝑖,𝑗,𝑘,𝑛 = ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜂 |𝜁=0𝑏𝑗 (𝜉, 𝜂, 0) 𝑏𝑘(𝜉, 𝜂, 0) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.38)

SCzZ𝑖,𝑗,𝑘,𝑛 = 12 ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜁 |𝜁=0𝑏𝑗 (𝜉, 𝜂, 0) 𝑏𝑘(𝜉, 𝜂, 0) 𝑏𝑛(𝜉, 𝜂, −1) d𝜉d𝜂 (A.39)

Pr2to1Xm𝑖,𝑛 = ∫0
−1∫

1
−1∫

1
−1 𝑏𝑖(2𝜉 + 1, 𝜂, 𝜁) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.40)

Pr2to1Xp𝑖,𝑛 = ∫1
0 ∫1

−1∫
1

−1 𝑏𝑖(2𝜉 − 1, 𝜂, 𝜁) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.41)

Pr2to1Ym𝑖,𝑛 = ∫1
−1∫

0
−1∫

1
−1 𝑏𝑖(𝜉, 2𝜂 + 1, 𝜁) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.42)

Pr2to1Yp𝑖,𝑛 = ∫1
−1∫

1
0 ∫1

−1 𝑏𝑖(𝜉, 2𝜂 − 1, 𝜁) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.43)

Pr2to1Zm𝑖,𝑛 = ∫1
−1∫

1
−1∫

0
−1 𝑏𝑖(𝜉, 𝜂, 2𝜁 + 1) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.44)

Pr2to1Zp𝑖,𝑛 = ∫1
−1∫

1
−1∫

1
0 𝑏𝑖(𝜉, 𝜂, 2𝜁 − 1) 𝑏𝑛(𝜉, 𝜂, 𝜁) d𝜉d𝜂d𝜁 (A.45)
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A.3 Normal Calculation

Fast Sweeping Method

For the fast sweeping method, the precomputed integrals are:

AveX𝑖 = 14 ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜉 d𝜉d𝜂 (A.46)

AveY𝑖 = 14 ∫1
−1∫

1
−1

𝜕𝑏𝑖𝜕𝜂 d𝜉d𝜂 (A.47)

fsm_Va𝑛,𝑖,𝑗 = ∫1
−1∫

1
−1 (𝜕𝑏𝑖𝜕𝜉 𝜕𝑏𝑗𝜕𝜉 + 𝜕𝑏𝑖𝜕𝜂 𝜕𝑏𝑗𝜕𝜂 ) 𝑏𝑛 d𝜉d𝜂 (A.48)

fsm_SLa𝑛,𝑖 = ∫1
−1 𝑏𝑖(−1, 𝜂) 𝑏𝑛(−1, 𝜂) d𝜂 (A.49)

fsm_SLb𝑛,𝑖 = ∫1
−1 𝑏𝑖(+1, 𝜂) 𝑏𝑛(−1, 𝜂) d𝜂 (A.50)

fsm_SRa𝑛,𝑖 = ∫1
−1 𝑏𝑖(+1, 𝜂) 𝑏𝑛(+1, 𝜂) d𝜂 (A.51)

fsm_SRb𝑛,𝑖 = ∫1
−1 𝑏𝑖(−1, 𝜂) 𝑏𝑛(+1, 𝜂) d𝜂 (A.52)

fsm_SLa𝑛,𝑖 = ∫1
−1 𝑏𝑖(𝜉, −1) 𝑏𝑛(𝜉, −1) d𝜉 (A.53)

fsm_SLb𝑛,𝑖 = ∫1
−1 𝑏𝑖(𝜉, +1) 𝑏𝑛(𝜉, −1) d𝜉 (A.54)

fsm_SRa𝑛,𝑖 = ∫1
−1 𝑏𝑖(𝜉, +1) 𝑏𝑛(𝜉, +1) d𝜉 (A.55)

fsm_SRb𝑛,𝑖 = ∫1
−1 𝑏𝑖(𝜉, −1) 𝑏𝑛(𝜉, +1) d𝜉 (A.56)
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Projection

For 3-cell projection, the precomputed integrals are:

fsm_DXm𝑘,𝑛 = 𝑁𝑔𝑒𝑥
∑𝑖=1 ((∫1

−1∫
−1/3

−1 𝑏𝑘(3𝜉 + 2, 𝜂) 𝑏𝑖(𝜉, 𝜂) d𝜉d𝜂) (A.57)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉/3, 𝜂)𝜕𝜉 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
fsm_DXc𝑘,𝑛 = 𝑁𝑔𝑒𝑥

∑𝑖=1 ((∫1
−1∫

1/3
−1/3 𝑏𝑘(3𝜉, 𝜂) 𝑏𝑖 (𝜉, 𝜂) d𝜉d𝜂) (A.58)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉/3, 𝜂)𝜕𝜉 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
fsm_DXp𝑘,𝑛 = 𝑁𝑔𝑒𝑥

∑𝑖=1 ((∫1
−1∫

1
1/3 𝑏𝑘(3𝜉 − 2, 𝜂) 𝑏𝑖(𝜉, 𝜂) d𝜉d𝜂) (A.59)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉/3, 𝜂)𝜕𝜉 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
fsm_DYm𝑘,𝑛 = 𝑁𝑔𝑒𝑥

∑𝑖=1 ((∫−1/3
−1 ∫1

−1 𝑏𝑘(𝜉, 3𝜂 + 2) 𝑏𝑖(𝜉, 𝜂) d𝜉d𝜂) (A.60)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉, 𝜂/3)𝜕𝜂 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
fsm_DYc𝑘,𝑛 = 𝑁𝑔𝑒𝑥

∑𝑖=1 ((∫1/3
−1/3∫

1
−1 𝑏𝑘(𝜉, 3𝜂) 𝑏𝑖(𝜉, 𝜂) d𝜉d𝜂) (A.61)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉, 𝜂/3)𝜕𝜂 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
fsm_DYp𝑘,𝑛 = 𝑁𝑔𝑒𝑥

∑𝑖=1 ((∫1
1/3∫

1
−1 𝑏𝑘(𝜉, 3𝜂 − 2) 𝑏𝑖(𝜉, 𝜂) d𝜉d𝜂) (A.62)

(∫1
−1∫

1
−1

𝜕𝑏𝑖(𝜉, 𝜂/3)𝜕𝜂 𝑏𝑛(𝜉, 𝜂) d𝜉d𝜂))
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Appendix B

GPU Timing Data
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