
 

 

Automated Place and Route Methodologies 

 

For Multi-project Test Chips 

 

by 

 

Christopher Lieb 

 

 

 

 

A Thesis Presented in Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

 

 

 

 

 

 

 

 

 

 

Approved April 2015 by the 

Graduate Supervisory Committee: 

 

Lawrence T. Clark, Chair 

Keith Holbert 

Jae-sun Seo 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

May 2015 



 

 

i 

 

ABSTRACT 

 This work describes the development of automated flows to generate pad rings, 

mixed signal power grids, and mega cells in a multi-project test chip. There were three 

major design flows that were created to create the test chip. The first was the pad ring 

which was used as the staring block for creating the test chip. This flow put all of the 

signals for the chip in the order that was wanted along the outside of the die along with 

creation of the power ring that is used to supply the chip with a robust power source. 

The second flow that was created was used to put together a flash block that is 

based off of a XILIX XCFXXP. This flow was somewhat similar to how the pad ring 

flow worked except that optimizations and a clock tree was added into the flow.  There 

was a couple of design redoes due to timing and orientation constraints. 

Finally, the last flow that was created was the top level flow which is where all of 

the components are combined together to create a finished test chip ready for fabrication. 

The main components that were used were the finished flash block, HERMES, test 

structures, and a clock instance along with the pad ring flow for the creation of the pad 

ring and power ring. 

Also discussed is some work that was done on a previous multi-project test chip. 

The work that was done was the creation of power gaters that were used like switches to 

turn the power on and off for some flash modules. To control the power gaters the 

functionality change of some pad drivers was done so that they output a higher voltage 

than what is seen in the core of the chip. 



 

 

ii 

 

  

ACKNOWLEDGMENTS 

 First of all I would like to thank my parents for all of the dedication and support 

that they have given me throughout my college career. They have made it possible for me 

to further my education and career. 

 I would like to thank my advisor Dr. Lawrence Clark for the thesis topic, help in 

creating the HERMES block, and for the guidance and expertise knowledge he gave me 

throughout the pursuit my master’s degree. I also thank Dan Patterson for his work on the 

testing and creation of the Verilog used for the design flows.  

 Finally I would also like to thank Microchip for the use of their flash module as 

well as allowing us to tapeout a chip with them, and my colleagues Chandarasekaran 

Ramamurthy for designing part of the flow for HERMES, Vinay Vashishtha for creating 

part of the caches used by HERMES, and Srivatsan Chellappa for help with verification 

of the test chip and the creation of the test structures.   



 

 

iii 

 

TABLE OF CONTENTS 

 Page 

LIST OF FIGURES .............................................................................................................v 

LIST OF TABLES ............................................................................................................ vii 

LIST OF TERMS ............................................................................................................. viii 

CHAPTER 

1. INTRODUCTION ...........................................................................................................1 

1.1. Design Flow ...................................................................................................... 1 

1.2. Outline ............................................................................................................... 4 

2. PAD RING FLOW ..........................................................................................................5 

2.1. Pad Ring Usage ................................................................................................. 5 

2.2. Configuration and Pad Arrangement ................................................................. 5 

2.3. Pad Placement and Power Ring ....................................................................... 10 

2.4. Routing and Final Steps .................................................................................. 12 

2.5. Verification ...................................................................................................... 13 

3. FLASH BLOCK FLOW ...............................................................................................15 

3.1. Flash Block Function ....................................................................................... 15 

3.2. Configuration ................................................................................................... 16 

3.3. Floor Planning and Initial Placement .............................................................. 18 

3.4. Power ............................................................................................................... 20 



 

 

iv 

 

CHAPTER  Page 

3.5. Design Placement and Optimization ............................................................... 22 

3.6. CTS and Routing ............................................................................................. 23 

3.7. Verification ...................................................................................................... 28 

4. TOP LEVEL FLOW .....................................................................................................30 

4.1. Configuration and Input Files .......................................................................... 30 

4.2. Floor Planning and Initial Placement .............................................................. 31 

4.3. Power ............................................................................................................... 33 

4.4. Design Placement and Optimization ............................................................... 36 

4.5. Verification ...................................................................................................... 41 

4.6. After Verification ............................................................................................ 45 

4.7. Design Handoff ............................................................................................... 46 

5. PREVIOUS TEST CHIP WORK..................................................................................49 

5.1. Power Gaters ................................................................................................... 49 

5.2. Modified Pad Driver ........................................................................................ 53 

6. CONCLUSIONS ...........................................................................................................55 

REFERENCES ..................................................................................................................56 

 

  



 

 

v 

 

LIST OF FIGURES 

Figure  Page 

1.1– ASIC Flow Diagram [1].............................................................................................. 1 

2.1– IO Rows for the Pad Ring ........................................................................................... 6 

2.2– Example of Input File Syntax ..................................................................................... 8 

2.3– Example IO Output Files ............................................................................................ 9 

2.4 – Power Ring Metal Connections ............................................................................... 11 

2.5– Finished Pad Ring ..................................................................................................... 14 

3.1– Flash Block Diagram ................................................................................................ 15 

3.2– Global Configuration File ......................................................................................... 17 

3.3– Floorplan for Orientation of Flash Block (a) Horizontal (b) Vertical ...................... 19 

3.4– Power and Ground Grid for the Flash Modules ........................................................ 21 

3.5– Timing Output from preCTS Setup Optimization .................................................... 23 

3.6– Setup and Hold Timings for postCTS ....................................................................... 25 

3.7– Setup and Hold Timings for postRoute .................................................................... 27 

3.8– Final Timing Check .................................................................................................. 29 

4.1– Placements of Blocks in tc24 .................................................................................... 32 

4.2– (a) “-flip f” Option (b) “-flip s” Option .................................................................... 34 

4.3– Flash Block Power Domain Connections ................................................................. 35 

4.4– DRVs Left ................................................................................................................. 37 



 

 

vi 

 

Figure  Page 

4.5– Custom SDC File for tc24 Clock Tree ...................................................................... 38 

4.6– (a) Gridded Routes with Errors (b) Jogged Routes ................................................... 40 

4.7– Signoff Timing Summary ......................................................................................... 41 

4.8– Empty Areas Under HERMES and Test Structures ................................................. 45 

4.9– Flash Block Pins ....................................................................................................... 47 

4.10– Finished Design ...................................................................................................... 48 

5.1 – Power Gater Circuits ................................................................................................ 50 

5.2 – (a) Transistor and Metal 1 (b) Metal 1 and 2 (c) Metal 2 and 3 .............................. 51 

5.3 – (a) Metal 2 and 3 Connections (b) Guard Ring Added ............................................ 52 

5.4 – PMOS and NMOS Power Gaters ............................................................................. 53 

5.5 – Pad Driver Voltage Conversion ............................................................................... 54 

 

  



 

 

vii 

 

LIST OF TABLES 

Table  Page 

2.1 – Types of Cells Used ................................................................................................... 7 

5.1 – Transistor Sizes ........................................................................................................ 50 

5.2 – NMOS Power Gater Inverters Transistor Sizes ....................................................... 50 

5.3 – PMOS Power Gater Inverters Transistor Sizes ........................................................ 50 

 

  



 

 

viii 

 

LIST OF TERMS 

AP - Aluminum Layer 

APR - Auto Place and Route 

ASIC - Application-specific Integrated Circuit 

CMP - Chemical-mechanical Planarization 

CTS - Clock Tree Synthesis 

DECAP - Decoupling Capacitor 

DRC - Design Rule Check 

DRV - Design Rule Violation 

ECC - Error Correcting Code 

ECO - Engineering Change Order 

ESD - Electrostatic Discharge 

FPGA - Field-programmable Gate Array 

GDSII - Graphic Database System 

HDL - Hardware Description Language 

IC - Integrated Circuit 

IO - Input Output 

IP - Intellectual Property 

JTAG - Joint Test Action Group 

LEF - Library Exchange Format 

LIB - Liberty 

LVS - Layout vs. Schematic 

NMOS - N-type Metal-oxide Semiconductor 



 

 

ix 

 

PMOS - P-type Metal-oxide Semiconductor 

POC - Power on Clear 

PROM - Program Read Only Memory 

RC - RTL Compiler 

RTL - Register-Transfer Level 

SDC - Synopsys Design Constraint 

SoC - System on a Chip 

TAP - Test Access Port



 

 

1 

 

CHAPTER 1. INTRODUCTION 

1.1. Design Flow 

In integrated circuit (IC) design, there are many steps in the standard design cycle 

to produce a functioning chip. The design cycle is split up into three main sections. They 

are the front-end design which uses hardware description languages (HDL); verification, 

which is used to check that the design operates as intended; and finally, the back-end or 

physical design where the design is synthesized using standard and custom cells. Once 

the design is finished, the next steps are fabrication which turns the design into a physical 

device, putting the finished design in a package and the testing step which makes sure 

that the device is functional. 

Physical design is further broken down. Here is used and describe an application-specific 

integrated circuit (ASIC) physical design flow as seen in Figure 1.1. When followed, this 

 

Figure 1.1– ASIC Flow Diagram [1] 
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ASIC flow produces the design with the desired specifications after the appropriate 

iterations. The first step of the physical design is getting the design netlist, which is 

synthesized from the front-end design HDL files. This netlist has a list of all the standard 

and custom cells that are used and their connections that were specified by the HDL files. 

This netlist is then passed to the physical design tool which is Cadence Encounter. 

With the netlist, the next physical design steps are floor planning and placement. 

The floor planning and placement is one of the most critical sections when setting up an 

ASIC design. This is where the size and shape of the block is chosen and where all the 

main cells are placed within the block. Choosing the right floor plan and placement can 

take some trial and error. A bad floor plan and placement can result in problems, such as 

insufficient space for cells that are used for fixing timing problems or routing congestion 

problems which will degrade signal quality. In the worst case, some cells aren’t able to 

have their pins routed due to routing congestion or cell placement. The floor planning and 

placement that works best is one that has ample space for timing fixing cells and as well 

as routing which maintains the metal orientations. 

 When the floor plan is chosen and the design is placed, the clock that exists in the 

design is still an ideal clock. Thus a clock tree network must be synthesized. The clock 

tree is also important to the design since it synchronizes the data transfers between the 

different functioning elements. When the clock tree is synthesized, buffers are added or 

removed and gates are either up sized or down sized to balance the clock. This is crucial 

to avoid setup and hold problems between the functioning elements. 

After clock tree synthesis (CTS) has been completed, all the functioning elements 

need to be wired together. This is where the design is routed and all the pins are 



 

 

3 

 

connected as specified in the netlist. The design tool has information on where all the 

pins in the design are located based on the library exchange format (LEF) files. These 

files tell what layers the cells have, what type of placement sites they correspond too, and 

where the locations metal routes and vias are so that these routes and vias act as 

obstructions for other routes that are created later [2]   . The routes that are created are on 

a grid with different vertical and horizontal metals layers. 

At this point the timings for the design need to be checked and fixed to make sure 

that the design will work at the desired frequency. Both setup and hold timing checks are 

performed. If the timing checks are not done properly, then the data between two 

functional elements may not be captured correctly. This could be based on a hold 

problem where the data has not been held long enough or on a setup problem where the 

data arrived too late to be obtained. The way that Encounter fixes these problems depends 

on the nature of the problem. For setup problems, it adds or changes buffers to reduce the 

signals delay and for hold problems, Encounter adds cells that delay the signal. The latter 

is obviously easier. 

The final steps for the physical design are to add decoupling capacitors (DECAP) 

and filler cells, and then to run final verification checks. The DECAP and filler cells are 

placed to fill in empty areas to help with power integrity and increase the density for 

these areas to meet the density required. After these cells are placed, the final timing for 

the design is checked again to make sure that the hold and setup timing for the circuit are 

still met. This final timing is to make sure that the added cells or any other changes don’t 

skew the hold and setup timing to negatively impact the design. After the timing check, 

the final checks are geometry and connection checks to make sure that there are no cells 
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that are out of place as well as no shorted or unconnected wires. Once all the checks have 

passed and the design criteria have been met, the final step is to create a graphic database 

system (GDSII) of the finished design which is used to get the design fabricated. 

1.2. Outline 

 The first chapter provides the basic flow for a system on a chip (SoC) design to 

create a working design from register-transfer level (RTL). Chapter 2 provides the flow 

and its breakdown on how the pad ring for the entire chip was created. Chapter 3 shows 

how the flash block was synthesized as well as the problems that were encountered 

during its creation. Chapter 4 shows how everything is put together at the top level when 

the chip is synthesized with all the finished components. Chapter 5 talks about work that 

were done on a previous test chip and the conclusions are discussed in Chapter 6. 
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CHAPTER 2. PAD RING FLOW 

This chapter details the steps and data that are needed to create the basic flow for 

the pad ring which will later be used in Chapter 4 at the top level. 

2.1. Pad Ring Usage 

The pad ring is critical to any chip since it provides the means to send digital 

signals in and out of the chip. This is done using a pad driver that converts the digital 

signals from a usually higher external voltage to a low internal core voltage used by the 

chip while also providing electrostatic discharge (ESD) protection. These pad drivers 

connect up to the pads to get signals in and out of the chip, there are a couple of different 

types that can be used. The only type of bond pads that were available for the design were 

the wire-bond type. These wire-bond pads use wires for connections along the perimeter 

of the chip to connect to a package where the signals are brought in and out. The type of 

metal used for the wires are composed of gold. The reason gold is used is because it has a 

high resistance to corrosion and it has a high conductivity of electricity. These 

characteristics making it the most suitable for electrical connectors. 

2.2. Configuration and Pad Arrangement 

The first step in the creation of the pad ring starts with defining the size of the die, 

the number of metal layers from the design kit, and an input file that contains the signal 

ordering for the chip. The size of the die is chosen based on the process used and cost. 

There are then four input output (IO) rows dimensions that need to be calculated that fit 

along the outside edge of the die. These four IO rows are used for the pads, drivers, 

corners, and power connect cells as seen in Figure 2.1 on every edge of the die. 



 

 

6 

 

 

Figure 2.1– IO Rows for the Pad Ring 

 

With the IO rows now placed, the pads, drivers, and all the other cells are then 

placed in their corresponding locations, guided by the input file that was mentioned 

earlier. This input file has the signals in the order that is wanted for each of the dies pads 

on each side using the following syntax “Pad name, Power connect, Analog gap, Pin 

name and Side”.  

 “Pad name” is the name corresponding to the pads name from the Verilog. 

 ”Power connect” is the name from the Verilog corresponding to the power 

connect cell. However if the pad is not a power pad corresponding to 

PVDD1CDG_33 or PVSS3CSD_33 then this field is left blank. 
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 “Analog gap” defines the space in microns between the analog cell and the 

cell next to it in the same analog domain. This is needed for analog fillers 

to be placed. This value starts with the first power cut (PRCUT_33) cell 

but is not used for the last power cut cell if it is next to a digital cell. This 

is necessary since cells in the digital domain require that digital fillers be 

used. 

 “Pin name” is the signal name from the Verilog needed to create a top 

level pin. 

 “Side” corresponds to the side where the pad is going to be placed using 

Top, Right, Bottom, and Left for its values. 

Some examples of the syntax used for pad ring cells are shown in Figure 2.2 as 

well as descriptions for the cells used can be seen in Table 2.1. 

 

Cells Functions 

PAD60NA Bond pads that bring the signals in/out of the chip 

PDUW0812CDG_33 Pad drivers convert external to internal voltages 

PVDD2PR Power connect cells connects vdd! to power ring 

PVSS2PR Power connect cells connects vss! to power ring 

PRCUTA_33 Separates the analog and digital domain 

PDB2A_33 Pass voltage through the analog domain 

PVDD2POC_33 Enables the pads when external voltages are applied  

PVSS3CDG_33 vss! brought in through this pad 

PVDD1CDG_33 vdd! brought in through this pad 

PVDD2CDG_33 vddio! brought in through this pad 

Table 2.1 – Types of Cells Used 
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Figure 2.2– Example of Input File Syntax 

 

The descending order of the pads in this file will be placed in the pad ring in the 

arranged order of left to right for the top and bottom sides. For the left and right sides, the 

pads are arranged in the pad ring from bottom to top. These orders coincide with 

increasing chip dimensions in the x and y coordinates. The order can be changed to a 

clockwise or counter clockwise order by changing the “io_order” value from default to 

clockwise or counterclockwise in the pad IO file [3]   . This IO file is generated by 

running a Perl script from the latest file “generatePadPlacement_v18.pl” which produces 

two output files. The first file that is generated is the pad placement IO file and the 

second is the pin placement file that specifies to Encounter where to place the signal pins. 

Some examples of the files can be seen in Figure 2.3. 

 The order that is chosen for the arrangements of the pads is attributed to the high 

speed signals that the HERMES block uses. These high speed paths were chosen to be 

split evenly between the centers of the four sides. The non-high speed signals were then 

put on the outside of these high speed paths essentially putting them in the corners. This 

was done so that power pads could be interleaved between the high speed signals to 

supply enough power to sustain the high speed transitions of the signals as well as reduce 

the length of the connection wires. The order for the power to signals ratio is chosen to be 
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a vss! and vdd! cells next to each other followed by three high speeds cells, then a vddio! 

power cell followed by three more high speed cells. This was repeated until all of the 

high speed cells were used. 

 

 

Figure 2.3– Example IO Output Files 



 

 

10 

 

 

 The cells that were used for bringing the signals in and out of the design were the 

PDUW0812CDG_33 pad driver. These pad drivers have many different functions 

depending on how they are configured by setting the voltages at their pins. They can be 

configured as an output driver where signals are taken from the core and drive what will 

be seen on the pads or as an input driver where the signals seen on the pads drive what 

the core logic will see. 

2.3. Pad Placement and Power Ring 

The IO pad placement file is used first to place all the pads, drivers, and power 

connect cells in their corresponding IO rows. At this point, it is a good idea to check the 

design to make sure that there are no cells corresponding to the pad ring that seem out of 

place. If there are, it means that these cells weren’t used in the input file or the instance 

name corresponding to these cells has a different name than what was in the input file 

used to generate the pad placement file. If everything seems fine then filler cells are 

added between the pad drivers to complete the IO power ring. 

Once the power ring is created, the next step is to create the internal power ring 

that supplies power to the core of the devices. This power ring is created by using two 

rings around the core for power and ground. These are created on the second and third 

top most metal layers to allow power signals to pass under it. Once the power ring is 

created, the core power supply is routed using metal 1 since all the devices get their 

power from the first metal layer. 

With the core metal routed, the next step was to connect the power ring to the 

power drivers in the pad ring. This is where the power connect cells are used since the 
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power pad drivers only have their power coming out on metal 1 and metal 2. These 

power connect cells take the power on these metals and extend them all the way to the 

top most metals layers to allow easy access for connecting the power from the pads to the 

power ring. This is done by connecting them to the same metal layer as the pad ring and 

the metal above to allow the inner ring to be connected as can be seen in Figure 2.4. With 

the pad ring completed, the well tap cells are placed in the design to prevent latchup from 

occurring. This is done by tying the wells to their corresponding voltages which prevent 

them from drifting from their intended voltage. 

 

 

Figure 2.4 – Power Ring Metal Connections 
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2.4. Routing and Final Steps 

With the power in place, tie cells are added to the pad ring. These tie cells are 

used to tie the pins of the pad drivers to either power or ground to change them to input 

or output drivers as what was specified in the netlist. With the tie cells placed and 

everything in the locations that what was wanted, DECAP and filler cells are added to the 

core of the design. These cells are to fill in the empty areas to the core, improving better 

power integrity along with increasing the density in these areas, necessary to abide by the 

density rules for the die.  

At this point a trial route of the design is performed. This trial route is used since 

it is a quick way to make sure that the design can be routed. The trial route does not obey 

the rules required for metals routes (this is where the detailed route comes in). For the 

pad ring, there should be no congestion issues, so a failure here indicates a fundamental 

error. This detailed route removes all the trial routes and routes the design by connecting 

the pins of the devices as specified in the netlist. The detailed routing step also takes into 

account the other metal lines and rules required for the design such as metal orientations 

and grids used by the metal layers. 

With the design routed, the top level pins now need to be placed. The file that 

specifies the pins is used to place the top level pins in their correct location, over the pads 

on the aluminum (AP) layer. They were placed on the AP layer to make sure that the pads 

can be connected for packaging while also making sure that everything is hooked up 

correctly. There is known of at least one university project (outside ASU) that placed 

these pins on an intermediate layer, passed layout versus schematic (LVS), but had no 
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pad connections. With the pins connected, the final step is to check the design to make 

sure that everything is placed in the right spot without geometry or connection problems. 

2.5. Verification 

With everything checked, the design is streamed out as a GDSII file and imported 

into Virtuoso for LVS and design rule check (DRC). In Virtuoso, the power pins are 

changed to correspond to power (vdd!) and ground (vss!) along with the addition of a 

power on clear (POC) pin to match the power pins in the rest of the design. When this is 

completed, DRC checks were run to make sure that all the layers in the pad ring follow 

the layout ground rules. These rules are defined by the fabrication plant to make sure that 

the layer being used will be created properly without any problems arising due to the 

layout. Once the DRCs were checked and there were no major violations, then LVS was 

run to make sure that all the devices in the design were connected as specified in the 

netlist. If the LVS fails then there might be a shorted wire or devices that aren’t properly 

connected. If the LVS and DRC both pass then the pad ring flow is good and ready for 

use and the finished product can be seen in Figure 2.5. 
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Figure 2.5– Finished Pad Ring 
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CHAPTER 3. FLASH BLOCK FLOW 

This chapter discusses the flow and creation of the flash block that is used in test 

chip 24 along with the problems that were faced while synthesizing the block. 

3.1. Flash Block Function 

The design for the flash block is based on the Xilinx XCFXXP series of Platform 

Flash in-system programmable configuration program read only memory (PROM) that’s 

available to the general public. A high level block diagram of the Xilinx XCFXXP can be 

seen in Figure 3.1. The embedded flash PROM portion of this block is licensed by 

Microchip Technology’s SST division. The purpose for building this block is to test the 

key functionality to configure the Xilinx FPGA in radiation while also providing some 

hardness to this radiation by using temporal flip-flops and error correcting code (ECC).  

 

Memory
(Flash)

Control 
and JTAG 
Interface

CLK

TCK

TDI

TMS

TDO

Address

Data

CEO

DATA/D0 (Serial/Parallel Mode)

D[7:1] (Parallel Mode)

CE

OE/RESET

CF
PORESET

CHKBITS[9:0]

Control

Clock

 

Figure 3.1– Flash Block Diagram 

 

Most of the memory from the flash PROM are used for ECC check bits and for 

non-volatile control registers. The rest of the memory is used for the field-programmable 
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gate array (FPGA) configuration data. The control and Joint Test Action Group (JTAG) 

interface in the design is used to implement the JTAG Test Access Port (TAP), flash 

memory controller, and all of the other functions that were required to interface with the 

flash memory and external system. 

3.2. Configuration 

The first thing that needs to be done is to get the configuration files which are the 

LEFs, Liberty (LIB) files, and generate a synthesized Verilog structured netlist which 

will be used for setting up the design. All of these files were obtained from our custom 

design or the foundry libraries except for one LEF file. This file corresponded to the 

dummy Microchip flash intellectual property (IP) in which the LEF was needed since 

without it the block corresponding to the Microchip flash couldn’t be placed in 

Encounter. The LEF we received was incorrect, so a LEF was generated based on the 

placeholder GDSII file of the dummy flash modules. Since the GDSII had no actual 

design in it but pin locations, the rest of the area inside of the flash module was put as a 

blocked layer to prevent metal routes from being routed into. 

Once all the files were obtained, they were referenced to in the global 

configuration file used by Encounter (Figure 3.2). This configuration file also passes the 

names of the power signals used by the entire block. These power signals are vdd! and 

vss! for the core power along with PAVrefBank0, PAVrefBank1, VPP_0, VPP_1, 

IN20U_0, IN20U_1, TM_0[0], TM_0[1], TM_1[0], and TM_1[1] power supplies used 

by Microchips flash modules. The last file that is referenced in the configuration file is 

the structural Verilog. 
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Figure 3.2– Global Configuration File 

 

This structural Verilog netlist is the output from the RTL Compiler (RC) tool that 

was used for synthesis. This RC tool takes the front-end Verilog and synthesizes it from a 

behavioral code based design into a structural gate-level representation which is the 

hardware equivalent implementation of the design [4]   . This design is comprised of cells 
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that are from the standard library along with our custom cells. While the Verilog is 

synthesized, the timing for the design is set for a certain speed. With the timing specified, 

a Synopsys design constraint (SDC) file is generated from RC which is used during 

timing optimizations and CTS [5]   . In fact, the RTL compiler generated netlist has 

dubious timing, so not much effort should be made there. The auto place and route (APR) 

optimization tool will do this based on accurate parasitic. 

3.3. Floor Planning and Initial Placement 

The original floor plan is chosen to be the height of the flash modules and the 

width of the core area that fit within the pad ring. With the floor plan created, the flash 

modules were placed on the left and right side of the block with their pins pointed to the 

inside. This allowed the logic that is connected to the flash modules to be in the center of 

the block. Having the logic in the center prevents wires from being routed over the flash 

modules and reduces the wire lengths between the blocks which helped with the timing of 

the circuit. This floor plan worked until it was later revealed that the process that we 

would be using was not the assumed 9 metal layers, but actually 7 metal layers. Due to 

this, the HERMES block had to be redone since it used routes up to the 9th metal layer. 

For HERMES to be able to be routed on the 7 metal layers, the orientation had to be 

changed from horizontal to vertical. This overlapped the area that was going to be used 

for the flash block and thus the flash block orientation was changed from horizontal to 

vertical as can be seen in Figure 3.3.  

Since the flash block orientation changed, both of the flash modules placements 

were chosen to be on the left side of the resized block. A gap is also put in between them 

as well as a gap on their right to allow for logic and metal wiring. At this point the 
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iterative nature of the design process became apparent. This floor plan worked until the 

design is placed at which point it was discovered that there wasn’t enough space for 

every component. Consequently, the floor plan was sized up by increasing the gap in 

between the two flash modules. This allowed all the components to be placed, although 

another problem was encountered later due to this floor plan. The latter problem was that 

the design couldn’t meet its timing specs due to that there was not enough space next to 

the pins to allow a good amount of the components to be placed next to them. Since these 

components couldn’t be placed by the pins, they were placed far away from them and the 

result was that it took more time for the signals to propagate to them. So to reduce the 

time it took for the signals to propagate to the pins, the gap on the right of the flash 

modules is increased to allow more components to be placed next to the pins as seen in 

Figure 3.3(b). 

 

Figure 3.3– Floorplan for Orientation of Flash Block (a) Horizontal (b) Vertical 
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3.4. Power 

Building the power grid for the design followed the flash modules placement. A 

good power grid is essential, since without it, there can be excessive voltage drops at the 

devices. These voltage drops can result in timing slowdown or as a worst case, resulting 

in the device failure. So to prevent these voltage drops, the power grid is made up of a 

metal grid with low enough resistance to ensure that enough power is supplied to all the 

devices in the block. The flash block grid is spaced on metal 5 and metal 6 with each 

section containing a vdd! and vss! as can be seen in Figure 3.4. This grid brings in 

powers from all sides of the block and is later connected to the power ring. When the 

power grid is created, if any metals that are located below it are of the same power, a via 

stack is created down to that metal to connect it to the grid. This gives a good power 

connect throughout the block at the lower metals where the devices mainly get their 

power from. 

The other powers that need to be accounted for were the powers being used by the 

flash modules which are VPP, VDD, VDD18, and GND as well as other special purpose 

powers. These powers need their own separate power grid besides GND which is 

connected to vss! since all the grounds in the design are common. Since these powers are 

specific to the flash modules, the power grid for these powers were only created over top 

of the flash modules as can be seen in Figure 3.4. Even though the flash modules were 

the same, different power supplies were furnished for each flash module.  

This is done by putting metal blockage layers on areas where the grid isn’t wanted 

while also leaving room for the metals to extend past the modules to be connected to 

later. The “addStripe” command is then run with the power nets for one of the flash 
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modules as well as a set to set distance to allow room for the other modules nets to be 

added. This command is run for each flash module on metals 5 and 6. After the power 

grids were created, they were connected to the flash modules by running the tools special 

route command which connects all the pins from the flash modules to their corresponding 

wires in the grid. Once the metal routes are created they were checked to make sure that 

they were connected to flash modules properly. 

 

 

 

Figure 3.4– Power and Ground Grid for the Flash Modules 
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3.5. Design Placement and Optimization 

Once all the power grids were in place and connected properly, the next step is the 

standard cell placement. When the tool runs the placement of the components, it looks at 

all the cells and tries to arrange them to minimize timing and area. This is done by taking 

cells that communicate with each other and placing them as close together as possible. 

 With the cells placed, the next step is to optimize the designs current timings with 

what are now very accurate wire estimates and to fix design rule violations (DRVs). 

These DRVs are problems in the design that do not meet the designs stand cell 

specifications such as a wire that has a bad slew rate, generally the result of under driven 

wires, or excessive fan-out for that driver. All of the DRVs were fixed by the tool for 

which it splits up the wires and adds buffers for a driver as needed. 

After the DRVs were eliminated, an optimization is run to get the initial setup 

timings. These timings were reported in five different sections, with the smallest or most 

negative value as the worst in the design as can be seen in Figure 3.5. The first section 

gives the worst value of all the sections, the second part is the timing between two 

registers, the third section is the timing from pins into the block to a register, the fourth 

section is the timing from a register to the block output and the last section in the timing 

for the signals that comes into the block and goes out without interacting with a register 

(feedthrough signals). This first timing optimization gives a good indication for how the 

timing in the design will turn out since the design will not go through vast changes but 

only ones that tweak the design around.  

With the first vertical floor plan that was run, the timing for the design had 

negative slack which is unfixable. At this point, as mentioned, the width of the floor plan 
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was increased. This helped the negative slack due to cells being placed too far away from 

their signal pins which resulted in the design having a positive setup slack. After 

iteration, if the timing slack was slightly negative, then a couple of steps turned it 

positive. One of the steps was to run an incremental place design to try and get the cells 

in a slightly different placement, which helped the timing. The other step run was an 

optimization that tried to move the cells around to reduce the wire length which helped 

reduce the timing between the cells. 

 

 

Figure 3.5– Timing Output from preCTS Setup Optimization 

 

3.6. CTS and Routing 

Once the timing had a positive slack via the placement optimization, the CTS for 

the design was run. The CTS first removes all the trial routes so that the clock tree can be 

routed without being constrained by other signal wires. This is necessary since the clock 

tree route is the most important route and should thus not be constrained by other signal 
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routes. Once the clock tree is routed, the routes that were created are set to “fixed” so that 

other steps in the flow don’t upset the clock timing. If the route were changed or moved, 

the clocks timing to the cells downstream from the clock tree will get different times 

which negatively impact the timing, or worst-case, create a hold violation. 

After CTS, the design was reoptimized again using the clock tree defined clock 

timings. Now hold and setup optimizations can be run as shown in Figure 3.6. Before 

there was no timing information for the clock, which is required to define the hold 

timing. If either the hold or setup don’t meet the timing, i.e., don’t have a positive slack, 

then they were run again, this time with the incremental flag to drive the timings more 

positive. While fixing the timing, hold is more critical to fix than setup. This is because 

you can fix setup timings by slowing down the clock to the logic, while hold is defined 

by the logic as a race condition and can’t be fixed in the finished product. In the former 

case the design is a bit slow. In the latter case it is nonfunctional.  

Once CTS and the timing optimizations were finished, the design was finally able 

to be routed. This is done by doing a “global detailed route” that routes the design using 

the process rules. These rules are to keep the routes a certain distance apart from each 

other along with width restrictions. If these rules were not followed, then problems will 

occur during the manufacturing process of the chip. Examples of potential problems are 

wires shorting to each other if they are too close, wires not being connected correctly to 

each other due to variation during the processing of the chip for which the rules account 

for, or divots in the chip might occur during manufacturing if the metals are too wide.  
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Figure 3.6– Setup and Hold Timings for postCTS 
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When the routes were correct and there were no DRCs from the wiring, then the 

chip design setup and hold times were reoptimized for the final time. Since now that the 

finalized wires were placed instead of trial routes, the timing of these wires are now 

precisely known. These finalized wires have set timings because their capacitance and 

resistance can be extracted. This information is used to find the exact delays whereas the 

trial routes only had an estimated delay. The differences in the estimated delay to the 

finalized delay sometimes may make the setup and hold margins negative. If the 

optimizations can’t pull the timings positive then wire spreading is used to reduce the 

cross coupling capacitance between the lines. This helped by reducing the delay since 

line to line capacitance predominates and since the cross coupling capacitance is 

decreased by one over the spacing. This technique was used to decrease the delay and 

help the setup timing reach a positive slack as can be seen from the timing results seen in 

Figure 3.7. The timing was taken one step further, in which the smallest slack timings 

were checked using the tools timing display and the smaller buffers that the tool didn’t 

use were used to help get more positive slack. 

At this point, DECAP and filler cells are added to fill in the empty space. If there 

is not a high enough density throughout the chip then problems can arise in the 

fabrication process due to lithography and etching loading problems. One such problem 

can arise during the chemical-mechanical planarization (CMP) polishing processes. 

When the wafer is polished to create a smooth and even surface, if there are less dense 

areas on the chip, then these areas may cause non-uniformities in the surface of the die 

[6]    which can affect other processes later down the line resulting in the chip not 

functioning properly. 
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Figure 3.7– Setup and Hold Timings for postRoute 
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3.7. Verification 

Once the routing optimization and fill were done, the chip design was finished 

and the final timing needs to be checked one last time. This is to make sure that the chip 

was designed to work at its intended speed and that any other steps after the final 

optimizations didn’t affect the timing in a negative way. If the timing passed the checks 

for both hold and setup as can be seen in Figure 3.8, the design was then streamed out 

into a GDSII file and imported into Virtuoso. With the design in Virtuoso, DRC and LVS 

were run to make sure that there were no layout errors and that the design connections 

were appropriate.  

To ensure the integrity of these checks, no pins were changed or added to the 

layout at this point except for the power pins. The change that is needed for the power 

pins is that there was a colon in their name which is removed to follow the schematic. If 

the colon was not removed, then LVS reported an error since the powers don’t match in 

layout and schematic. Once both DRC and LVS pass, then the flash block is finished and 

ready for the top level which is discussed in the next section. 
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Figure 3.8– Final Timing Check 
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CHAPTER 4. TOP LEVEL FLOW 

This chapter discusses the flow and creation of the top level where all the internal 

components are connected together to create the finished test chip 24, along with the 

problems that were faced during synthesization. 

4.1. Configuration and Input Files 

Once all of the main internal blocks were finished and verified, they needed to 

have their LEFs generated. These LEF files could be generated in a couple of ways. One 

way is that every layer used in the block is put in the file. This way Encounter knows 

where all of the metals are located inside of the block. With the location of all the metal 

locations known, Encounter can create routes inside these blocks without worrying about 

shorting routes together. The only problem with this type of configuration for the LEF 

file is that it took a really long time to create. The other way to create the LEF file is to 

make every layer in the design as a blocked layer. This way Encounter can’t route in 

these layers and it took a short time to create the LEF file. Since every layer is blocked 

from being routed to, there’s an exception created for the pins. The exception is that cuts 

were made in the blocked layers where the pins were for Encounter to be able to route to 

them. The blocked layers type of LEF took a short time to create compared to the other 

way which took days to finish. A hybrid of these two types were chosen where metal 5 

and up were put in as detailed and metal 4 and below were completely blocked. This 

hybrid type of LEF was chosen since the time for its creation was manageable before the 

tapeout deadline where the design is sent out to the fabrication plant to be created. 

With the LEF files generated, they were passed to Encounter along with the other 

configuration files. These configuration files were generated or obtained the same way as 
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the flash block, where the Verilog file was generated by passing the RTL through RC as 

well as the SDC file. The global configuration file is also the same with specifying all the 

power domain names as well as the LEFs and LIBs needed for the design. The power 

domains include all of the same powers from the flash block as well as the internal 

powers vss!, vdd! and the pad ring power (vddio!). For the LEFs and LIBs, the same ones 

were passed for the standard library files as with the flash block plus some extra files. 

These extra files corresponded to the LEFs and LIBs of the completed flash, HERMES, 

clock, and test structure blocks that make up the main components of the internal design. 

4.2. Floor Planning and Initial Placement 

With the entire configuration files setup and loaded into Encounter and all of the 

main internal components of the chip completed, they were now combined together to 

create the full working chip. The first step was to use the pad ring flow described in 

Chapter 2 to create the pad ring along with the power ring. Once the pad ring was 

completed, the four major blocks which are flash, HERMIES, clock and test structures 

blocks were placed in the core area of the design as can be seen in Figure 4.1. The 

HERMES block was placed on the right since its pins were on the left. This allowed the 

routing and signal propagation to be around the same for all of HERMES signals to the 

pad ring. Next, the clock block was placed next to the HERMES pins in order to 

minimize the clock tree to HERMES. After the clock block was placed, the flash block 

was placed in the upper left. This was because the powers for the flash block were passed 

through the analog domain part of the pad ring which was chosen to be in the upper left 

part of the pad ring. Now that the major blocks were placed, the left over space under the 

flash block is used for the test structures. 
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Figure 4.1– Placements of Blocks in tc24 
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There was one problem that was encountered while placing the HERMES and test 

structures block. This problem was that the internal power grid corresponding to vdd! and 

vss! on the metal 1 was offset from the power grid used in the top level, whereas the flash 

and clock block aligned correctly to the internal power grids. This happened because 

during the creation of these blocks a different setting was used for the “FloorPlan” 

command that specified the orientation of the bottom rows in these designs.  

This setting is the “-flip” which specifies the orientation of the bottom row in the 

core area [7]   . HERMES and the test devices used the “-flip f” option which flipped the 

first row from the bottom and every other row as seen in Figure 4.2(a), whereas the flash 

block and top level used the “-flip s” option that flipped the second row from the bottom 

and every other row as can be seen in Figure 4.2(b). To fix this problem, the LEF files for 

HERMES and test structures blocks were modified so that the starting point of the blocks 

were offset by one row. This resulted in the internal power grid on metal 1 aligning to the 

power grid used at the top level. 

4.3. Power 

Once all of the components were placed, the power grid was created to bring in 

the power to all of the placed components. The first power grid that was created was the 

metal 1 vss! and vdd! grid which all of the devices use to power the transistors used in the 

blocks. The metal 1 grid was configured to extend pass the core and connect to the power 

ring. But before the metal 1 grid was put down, blocking layers were used over top of the 

flash and test structures blocks. However, the blocking layer over HERMES was missed 

which caused a problem which will be discussed later in Section 4.5. 
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Figure 4.2– (a) “-flip f” Option (b) “-flip s” Option 

 

 

Next the flash block power grids were created for the flash macros. With the 

power grid in the flash block already created, the grid needed to be connected up to the 

analog part of the pad ring where these powers were brought in. Since these powers are 

passed in above the flash block, routes on metals 2 through 5 are created between the 

flash block and the different power domains as can be seen in Figure 4.3.  
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Figure 4.3– Flash Block Power Domain Connections 
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With the flash block power domains connected properly, the rest of the power 

grid was created for the vss! and vdd! domains. Since HERMES and the test structures 

had been shifted up by one row, this offset the horizontal internal metal 5 power grids 

from the flash block. This couldn’t be fixed by shifting the blocks to align the power 

grids. Since if the blocks were shifted up or down, they would be shifted by two rows to 

keep the metal 1 power grid aligned as vss! and vdd!. Since HERMES and the test 

structures were offset by one, the power grids couldn’t be aligned. The way around this 

was to create two sections of the horizontal metal 5 power grids, one over the flash block 

and the other over HERMES and the test structures. This is fine since when the vertically 

metal 6 power grid was placed, it connected all of the metal 5 together. Also, it was not a 

problem for the metal 6 grid in the blocks as they aligned with each other since HERMES 

and the test structures blocks were offset vertically. 

4.4. Design Placement and Optimization 

Now that the power grid was created and connected properly, the design needed 

to be placed and optimized similarly to how the flash block is in Section 3.5. The first 

step was to run the command for place design so that the logic separately from HERMES, 

flash, test structures, and clock instances were put in the design. There was no need to 

worry about shortage of space for the placed components since they had all of the extra 

room between the 4 major instances that were manually placed earlier. With the design 

placed, the DRVs for the design were fixed before optimizing the setup timing. Initially 

there was a fair amount of DRVs which could have hurt the designs performance, but 

once the optimization is run to fix the DRVs, all but a couple were fixed by the tool as 

can be seen in Figure 4.4. The ones remaining were the ones that the tool couldn’t fix so 
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these DRVs were examined and the timing impact that was reported for these were very 

little. Therefore they were left alone since the small timing had a small impact on the 

design. After all of the DRVs were fixed, the initial setup timing for the design was 

optimized. 

 

Figure 4.4– DRVs Left 

Once the setup for the design was optimized, the next step was to create the clock 

tree. The clock tree was run slightly differently from what was run in Section 3.6 for the 

flash block. The difference was that a custom SDC file was created and passed to 

Encounter as can be seen in Figure 4.5. This custom SDC file has a list of pins where the 

origin of the clock started, which is at the pins from the pads ring. This took some trial 

and error to figure out that the pins needed to start at the origin of the clock. Initially the 

pins were chosen to be wherever the clock needed to be connected; this is the pins at the 

start and end of the clock. Once it was figured out that the pins were at the start of the 

clock tree, the pins corresponding to HERMES were grouped into one clock and the pins 

for the flash block into another. 

The SDC file also specified false paths in the design. If these paths were not set as 

false paths, then Encounter would use these paths to check the timings of the signals. 

This would give false timing since the paths are static. The reason that these paths were 
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false is because they were signals to choose between which blocks the pads are going to 

be used for getting signals in and out of the chip. These signal paths were going to be set 

before the blocks were going to be used and are not going to be changed when the blocks 

were in use. 

 

 

Figure 4.5– Custom SDC File for tc24 Clock Tree 
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Once the clock tree is routed, the design was optimized for setup and hold 

timings. There was a problem that was encountered while running the optimization for 

the hold timings, in which the tool froze and wouldn’t respond. It seemed like the tool 

couldn’t complete or start the optimization. Since the tool wasn’t able to complete the 

optimization for hold, this part of the optimization is skipped after it was determined that 

it is not necessary. This was due to the fact that the hold optimization is for the register 

cells at the top level and there were no register cells placed in the top level. 

After the optimizations, a check place command was run to check the placement 

of all the cells. This command is used to make sure that there are no overlapping cells and 

that everything in the design is in their correct place. If this command is skipped and 

there were cells that overlapped, this would have caused a large problem later which 

would be caught with the layout verification. The design would then have to be brought 

back to the check placement step to easily fix the problem, or else almost everything 

around the overlapping cells would have to be moved or shifted by hand. 

Now that the design was checked, it was routed to connect all of the devices 

together. This was needed since the CTS step removed them to put down the clock tree 

and also because the wires in the design are trial routes. After the design was routed, 

there were some errors that were reported. These errors were around the HERMES and 

the test structures blocks. The cause was that the wires being routed to the pins of these 

devices were being routed too close to the blockage layers. The problem was discovered 

to be that the pins from these blocks were off grid and that the tool tried to route the 

metal routes on grid as can be seen in Figure 4.6(a). Since the tool tried to route on grid it 

had to route in the areas that caused the error as seen by the red boxes. So to fix this 
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problem, the routing options were looked at. An option was found that sets routing on 

grid only as false. This fixed the problem since the tool was now allowed to route off grid 

to connect the off grid pins as can be seen in Figure 4.6(b). Once the routing was done, if 

any other steps that were taken to fix a problem that arose later, an engineering change 

order (ECO) was used. When an ECO was used, the design would be rerouted, but 

routing would only be run for wires that have problems or have been disconnected by the 

user or tool. This type of routing is what is wanted since the whole design doesn’t have to 

be routed but only the problem areas. 

 

Figure 4.6– (a) Gridded Routes with Errors (b) Jogged Routes 
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With the design routed, the next step was to run more optimizations. Since the 

tool was having problems with the optimization, the decision was made to skip this step 

as being unnecessary since the timing for the design was still good and the tool would 

have frozen. So the next step was to add the tie cells to the design whose purpose is to tie 

the inputs of specific cells to a constant voltage. Once the tie cells were placed, DECAP 

and filler cells were added to fill in the remaining area between the cells in the design. 

Since the tie cells were placed in after the routing step, ECO routing is run to connect 

them to their corresponding blocks. 

4.5. Verification 

Once everything was filled and routed in the design, the entire design needed to 

be check for errors. Thus a verify connectivity command was run to make sure that all of 

the devices were connected to as to what is specified in the Verilog netlist passed at the 

beginning of the design. If the verifying of the connectivity didn’t pass, an ECO is run to 

fix the connection issues. The next command that was run was to verify geometry. This 

command makes sure that all of the metals don’t have DRC errors and that all of the 

blocks were placed correctly. After the command was run and there were no errors, the 

designs timing was checked one last time to make sure that there was no negative timing. 

The report from the final timing showed a positive slack as can be seen in Figure 4.7. 

 

Figure 4.7– Signoff Timing Summary 
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Since the final timing is positive, the design was streamed out into a GDSII file 

and a Verilog file was also created. This Verilog file is used for final verification through 

simulation. The simulation checks were used to make sure that all of the added devices 

such as buffers, inverters or any other logic that were added into the design by Encounter 

didn’t change functionality. When the design was being verified through Verilog, an error 

was indicated saying that some of the cells weren’t connected. The problem was chased 

down to the tie cells. The code still had hard ties that set the logic to a zero or a one. So 

the verification software saw this and interpreted this as the tie cells in the design as not 

being connected. The Verilog code was looked at and it was found that the logic to where 

the tie cells were supposed to be connected was actually connected to the tie cells. So the 

design was still good once the coded hard ties were removed. This could have been 

avoided if the tie cells were set up in the RC tool instead of Encounter. 

The design was also checked by streaming the GDSII file into Virtuoso and 

checking the DRC’s and LVS to make sure that the design didn’t have problems that 

Encounter missed. While running DRC, a various amount of errors were reported. There 

was one major area that was showing errors as well as other errors in some random spots. 

The problem area was at the clock block, in which the power connections from the grid 

were too close to other metals in the block. Almost all of the connections from the power 

grid had to be removed to fix these errors. Since a good amount of the connections were 

removed, this could have hurt the power connectivity to the block. So the block was 

manually edited to move some of the wires to allow connections to the power grid. The 

other major DRCs that were reported were density errors which were fixed using fill after 

everything was verified. 
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Once all of the DRCs were fixed, LVS was run on the design using the Verilog 

file that was created from Encounter. When LVS was run it didn’t finish since it threw an 

error that different power supplies were shorted together. With power nets shorted 

together, this became a big problem since this could take a long time to debug. This is 

because the power nets are huge since they spread out over the whole chip. It would have 

taken an extremely long time to try and track down where the short was, since the short 

could be anywhere in the sea of metal routes. 

Luckily the tool had a short isolator to help find where the shorts were. It worked 

similarly to how the tool found the short by starting at the location of the power pin and 

following the metal route that it is put on. If another pin is encountered, it is compared to 

the first pin and if it doesn’t match then a short is detected. So to find the short, one of the 

pins is used as the starting spot. The metal touching the pin was then highlighted by the 

tool. The tool was then stepped thru to follow the different metal layers that were 

changed, like the transition from metal 1 to metal 2. While the different metal layers were 

stepped thru, a spot was eventually found where some metal wires were overlapping. 

This spot was where the custom cell brought power from the pad ring on the 

lower levels to the upper metals to be connected to the power ring. The reason that this 

short happened at this location was that the LEF that was generated was missing some 

blockage layers in certain areas. With these blockage layers not in the file, Encounter 

routed into the cell when the power grid was created essential shorting the routes 

together. So the metals that caused the short were cut out. Although when the tool was 

run again, the same type of short was encountered. This time all of the custom cells were 

looked at and any metals that were not supposed to be connected to them were removed. 
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LVS was then run again to see if all of the metal shorts are fixed. Unfortunately 

another short was encountered. This short was tracked down to the metal 1 that is in the 

HERMES block. This short was due to a power metal running through a custom cell that 

jogged the power metal slightly to allow connection to the devices in the cramped cell. 

The short could have been avoided when the power metals were put down in HERMES, 

in which a blockage layer should have been used like it was for the test structures and 

flash block. To fix the short the metal 1’s that were running through HERMES at the top 

level were cut out so that only the metal 1’s in HERMES were there. This was fine since 

HERMES had metal 1’s in these areas along with the custom jog needed for the custom 

cell. With the short in the HERMES block fixed, no additional shorts were found when 

LVS was run again. Now that LVS was able to run, it was able to check the layout to see 

if the design was connected the way that it was intended. The results showed that this was 

the case and that there were no problems with the connectivity in the layout.  

Now that the design was verified, there were some empty areas found that weren’t 

supposed to be empty. These areas in the design were below HERMES and the test 

structures as can be seen in Figure 4.8. These gaps were the result of the blocks being 

offset in the Encounter flow to fix the power grid offset problem. To fix these empty 

areas, filler and DECAP cells were added by copying the fill and DCAP cells that were 

already in the design to the empty areas below the HERMES and test structures blocks. 

Since these filler and DECAP cells were added into the design, this essentially changed 

the amount of devices in the design. So these filler and DECAP cells were also added 

into the Verilog file so that when LVS is run again, these devices were matched instead 

of throwing errors about extra devices being found. 
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Figure 4.8– Empty Areas Under HERMES and Test Structures 

 

4.6. After Verification 

Once, the empty spaces under the HERMES and the test structures were filled in, 

there were a couple of things that needed to be done before the chip was handed over to 

Microchip. The first thing that was added to the design was a guard ring. This guard ring 

is a metal wall around the design which purpose is to protect the chip from contaminants 

that try to seep in from the sides of the chip. When this ring is obtained from Microchip, 

it is checked to make sure that it fit. It fit but a problem was found. The via 5’s that 

connect metal layers 5 and 6 together were thick vias instead of small vias. The thick via 

5’s didn’t meet the design specifications so a new guard ring had to be regenerated. This 

new guard ring that was obtained had the correct vias and was put in the design. 

With the guard ring in, the next thing that was done to the design was to add the 

fill layers. This fill is used to meet the density requirements set by the fabrication plant by 
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filling the empty area of the design with every layer used. The way that the fill was added 

was by running the DRC tool with a fill rules file and exporting the results to a GDSII 

file. This was run with two different rule files, one for the metal layers and one for the 

other layers used. Once the two GDSII files were created, they were imported into 

Virtuoso and were put into the design. The DRC tool was run again but with the design 

rules file to make sure that the density errors seen before were gone. The results from the 

DRC run showed that no problems were reported with the fill added to the design. 

4.7. Design Handoff 

Now that everything in the design was finished, it was streamed out of Virtuoso 

into a GDSII file and sent to Microchip. Once they got the file, they swapped out the 

dummy flash module with their IP flash module. The design was then checked to make 

sure that the design was LVS and DRC clean once the real flash module was swapped in. 

Once LVS was run on the design, the results returned that everything was connected 

properly. Now that the design was LVS clean, DRC was run to make sure that no errors 

are reported. 

Unfortunately errors were reported, around the outside of the Microchip flash 

modules that were swapped in. The errors were the result of the wires being routed into 

part of the flash modules where no blockage layers were used as can be seen in Figure 

4.9. This was the case since the flash modules were manually created and these areas 

were missed from putting in these blockage layers. Also this could have been avoided if 

during the routing step of the flash block, the flag for allowing the routes to be routed off 

grid were used. Since the tool keeps the routes on grid, it routed into the flash module. 

These routes were routed too close to a wide power route inside the flash module. 
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Figure 4.9– Flash Block Pins 

Since these error locations were now known to be where the actual flash modules 

were put in, the routes next to the flash pins that were causing the errors were edited by 

moving them to fix the DRC errors. Almost all of the errors were fixed except for a 

couple that would have required a good amount of other routes to be moved. This would 

have taken a couple of days to correct, but these were waived since the deadline for the 

finished design was the next day. Once all of the major DRCs were fixed, the finalized 

design as can be seen in Figure 4.10 was resent to Microchip for them to add their flash 

modules back in. After Microchip had put the modules back in, they sent the completed 

design to the fabrication plant to be manufactured. This was the last thing that was done, 

so now all that was left was to wait for the design to be produced and sent back in a 

couple of months. 
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Figure 4.10– Finished Design  
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CHAPTER 5. PREVIOUS TEST CHIP WORK 

This chapter talks about work that was done on a previous test chip which is 

similar to the one that’s discussed in the previous Chapters. The main parts will talk 

about power gaters and a modified pad driver. 

5.1. Power Gaters 

The previous test chip was used to see if toggling the power of the flash module 

could bring it out of latchup that was caused by radiation. So to toggle the power to the 

flash modules, power gaters were created to toggle the power to these devices. When the 

power gaters were created, hspice simulations were ran to see what sizes the transistors 

would need to be so that their resistance would be less than 1Ω when under a 9mA load. 

This 1Ω or less resistance was needed since the data sheet for the flash modules had this 

required for the power connections. 

The simulation results showed the sizes for a 1Ω resistance through the devices 

are presented in Table 5.1. The size of the n-type metal-oxide semiconductor (NMOS) 

with a body voltage of zero volts resulted in almost twice the size of the p-type metal-

oxide semiconductor (PMOS). So another simulation was run with the NMOS having a 

body voltage of 1.2 volts to play with the body biasing. This change resulted in a drop in 

the size needed to almost the same size of the PMOS. Since the PMOS and NMOS sized 

were about the same, the smaller size was chosen for design simplicity. 

Once the size of the power gater transistors were found, the sizes of the inverters 

to drive them were calculated and are show in Figure 5.1. The resulting calculations were 

found to be a 5 times stepup for each inverter for the NMOS power gater as seen in Table 

5.2 and 3.5 times stepup for each inverter for the PMOS power gater as seen in Table 5.3. 
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Transistor Type Size Applied Voltage Vbias 

PMOS 4220 µm 2.5 V 2.5 V 

NMOS 7040 µm 1.2 V 0 V 

NMOS 4320 µm 1.2 V 1.2 V 

 

Table 5.1 – Transistor Sizes 

 

 Inv 1 Inv 2 

PMOS 132 µ 660 µ 

NMOS 54 µ 264 µ 

 

Table 5.2 – NMOS Power Gater Inverters Transistor Sizes 

 

 Inv 1 Inv 2 Inv 3 

PMOS 90 µ 330 µ 1050 µ 

NMOS 40 µ 125 µ 450 µ 

 

Table 5.3 – PMOS Power Gater Inverters Transistor Sizes 

 

 

Figure 5.1 – Power Gater Circuits 
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The layout for the power gater transistor as seen as in Figure 5.2(a) were created 

so that when they were tiled next to each other, the conections were joined together and 

were spread throughout the connected devices. The connections across the metals, except 

for metal 3 are seen in Figure 5.2. Once all the transistors were tiled together and the size 

of the corresponding transistor created as what was calculated from Table 5.2 and Table 

5.3, the alternating connections from metal 2 to metal 3 were added for the power 

connections as seen in Figure 5.3(a). 

 

 
Figure 5.2 – (a) Transistor and Metal 1 (b) Metal 1 and 2 (c) Metal 2 and 3 
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Figure 5.3 – (a) Metal 2 and 3 Connections (b) Guard Ring Added 

 

Once the NMOS and PMOS were connected to create the inverter, a guard ring 

was created around the transistors as well as the power gaters transistor. This guard ring 

tied the substrates of the corresponding transistors to their intended voltages through 

metal 1 and 2 connections as seen in Figure 5.3(b). This was done to separate the 

transistors from the rest of the chip and to provide protection for the transistors from 

latching up. The inverters were then connected together to their corresponding power 

gaters as seen in Figure 5.4. With all of the componects connected together, connections 

for the power and control were created. The power connections use metal 2 and were 

made with wide connections to reduce the resistence. 
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Figure 5.4 – PMOS and NMOS Power Gaters 

 

5.2. Modified Pad Driver 

Once the power gaters were completed, there needed to be a way to control these 

devices. During the simulation of these devices, two different voltages were used. One 

was the core internal low voltage and the other was the high voltage used in the pad 

drivers. The one that worked best for controlling the power gaters was the high voltage. 

The only problem with this approach was that there were no high voltage signals in the 

core where the power gaters were going to be used. So to get the high voltage as control 

signals into the core area of the chip, the pad drivers were modified to output the high 

voltage instead of the low core voltage. 

The main uses of the pad drivers are to convert the high external voltages to low 

core voltages used by the internal devices and vice versa. This is done by using four 

inverters as seen in Figure 5.5. Inverters 1 and 2 on the left are using the high voltage 



 

 

54 

 

which translates the external voltage on the pad to the high voltage that these inverters 

are using. Inverters 3 and 4 work in the same way as inverters 1 and 2 in which they 

translate the high voltage at their inputs to the core low voltage that they use. So to get 

the high voltage out of the pad driver, inverters 3 and 4 were removed and inverter 2 was 

upsized to help drive the strength. The output of this driver was then connected to the 

power gaters to control them. 

PAD
Output to 

Core

High Voltage Low Voltage

1 2 3 4

Figure 5.5 – Pad Driver Voltage Conversion 
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CHAPTER 6. CONCLUSIONS 

This thesis has presented a couple of different flows for the creation of a finished 

test chip. The first flow was one laid the beginning base for the test chip by generating 

the pad ring which was used to get signals in and out of the chip. It also created the base 

for the power grid by creating the power ring that supplies power to the core devices. 

Even though problems were encountered during the flow, it can be improved on by 

incorporating the tie cells into the RC to when the Verilog was converted. 

The second flow was the flash block flow that was generated to create a custom 

design for testing purposes. The flash block flow showed that a bad placement of the 

design can result in the design not being created properly for the specifications that are 

wanted. It also showed the flow for optimizations and workarounds to try and get the 

timings of the block to a positive slack if they were negative. This flash block flow 

helped make the top level flow easier since it followed this flow once everything was 

worked out. 

The final flow that was discussed was the top level flow which took all of the 

major components and put them together to create a working test chip. This flow worked 

well except for some problems that were faced. These problems were the blocks that 

were offset from the power grid, wires being shorted together, and routes being too close 

to blockage layers. These problems could have been avoided if the options used were 

coherent as well as the blockage layers that were used correctly. Despite all the problems 

that were encountered, the chip was able to be created and successfully tapeout, as well 

as all of the pitfalls that were encountered to be used as a learning experience to be avoid 

while creating another test chip. 
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