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ABSTRACT 

Many methodological approaches have been utilized to predict student retention and 

persistence over the years, yet few have utilized a Bayesian framework. It is believed this 

is due in part to the absence of an established process for guiding educational researchers 

reared in a frequentist perspective into the realms of Bayesian analysis and educational 

data mining. The current study aimed to address this by providing a model-building 

process for developing a Bayesian network (BN) that leveraged educational data mining, 

Bayesian analysis, and traditional iterative model-building techniques in order to predict 

whether community college students will stop out at the completion of each of their first 

six terms. The study utilized exploratory and confirmatory techniques to reduce an initial 

pool of more than 50 potential predictor variables to a parsimonious final BN with only 

four predictor variables. The average in-sample classification accuracy rate for the model 

was 80% (Cohen’s κ = 53%). The model was shown to be generalizable across samples 

with an average out-of-sample classification accuracy rate of 78% (Cohen’s κ = 49%). 

The classification rates for the BN were also found to be superior to the classification 

rates produced by an analog frequentist discrete-time survival analysis model.
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Chapter 1 

Introduction 

In 1995, the United States, along with New Zealand, had the highest first-time 

graduation rates among 30 Organization for Economic Co-operation and Development 

(OECD) countries. By 2008, the United States had slipped to 14
th

 on the list. In 2009, 

President Obama sought to reverse this trend by challenging institutions of higher 

education to reclaim the top spot by 2020 (United States White House). This challenge 

has led to policy statements at both the national and local levels. For example, at the 

national level, in 2009 the Lumina Foundation established its Goal 2025 initiative aimed 

at increasing the percentage of adult Americans (ages 25-64) who hold a postsecondary 

degree or certificate to 60% by 2025. The College Board Advocacy and Policy Center 

issued a similar initiative, titled the College Completion Agenda, aimed at increasing the 

percentage of adults 24-35 that hold at least an associate degree to 55% by 2025. The 

reverberations of the President’s challenge can also be observed at a state level. For 

example, the Arizona Community College Presidents’ Council (ACCPC) set the goal of 

increasing the number of adults with a college degree in Arizona from 25% in 2010 to 30% 

in 2020 (Arizona Community Colleges, n.d.).  

The Great Recession has further heightened the perceived need for postsecondary 

education, creating immense pressure on institutions of higher education to drive the 

nation’s goal of increasing degree completion rates. In 2013, Georgetown University’s 

Center on Education and the Workforce predicted that 65% of all U.S. jobs will require 

some college-level education by 2020 (Carnevale, Smith, & Strohl, 2013).  Forty-seven 

percent (47%) will require an associate’s degree or higher. In comparison, only 28% of 



2 
  

U.S. jobs required an associate’s degree or higher in 1973.  As of 2011, only 39% 

of Americans ages 25 to 64 held an associate’s degree or higher (Lumina Foundation for 

Education, 2013). Postsecondary education results in higher incomes and lower 

unemployment rates, on average.  In 2012, the median weekly income for full-time U.S. 

workers aged 25 or older who earned an associate’s degree was 20% more than those 

who only earned a high school diploma, and their unemployment rate was 25% lower 

(U.S. Bureau Labor Statistics, 2013).  The average economic benefits are even greater for 

higher levels of educational attainment.   

To meet these growing needs, postsecondary institutions must become more 

effective at retaining and graduating the students they enroll rather than simply focusing 

on recruiting and enrolling more students. Exact national graduation rates are difficult to 

calculate due to the lack of a standardized methodology and common data set. In 2012, 

the National Student Clearinghouse Research Center conducted perhaps the most 

comprehensive study to date on graduation rates that included 1.9 million students who 

first enrolled at a U.S. postsecondary institution in 2006. The cohort included students at 

four-year and two-year public and private institutions. It also took into account students 

who may have started at one institution and graduated from a different institution. The 

authors found that only 54% of first-time, degree-seeking postsecondary students earned 

a degree or certification within six years (Shapiro et al., 2012). In other words, 

postsecondary institutions as a whole are failing to achieve their core mission with almost 

half of full-time degree-seeking students. The figure is even more sobering considering 

that not all students attend college full-time. The success rate was even lower for two-

year public institutions with a six-year graduation rate of 36%. This statistic is not 
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surprising given the fact that the nation’s community colleges tend to serve a much more 

diverse student body that is generally less academically prepared than students who 

attend four-year institutions. For example, Kopko and Cho (2013) reviewed the 2005-06 

academic year transcripts of 14,617 first-time postsecondary students at eight community 

colleges and only 16% were considered “college ready” in math, reading, and writing.  

The anemic retention and graduation rates of U.S. postsecondary institutions have 

directed the attention of policy makers and higher education leaders to the potential of 

“academic analytics”, a grafting of business intelligence practices to the field of higher 

education (e.g., Chacon, Spicer, & Valbuena, 2012; Wagner & Ice, 2012). For years the 

field of business has utilized advanced statistical modeling and data mining techniques to 

help optimize and inform business operations. The hope is that such techniques can be 

applied to higher education to help identify struggling students in real time in order to 

provide them with additional support before stopping or dropping out. However, despite 

all the attention it has received, academic analytics is still a nascent field. Efforts are 

currently underway to better define and circumscribe the practice of academic analytics 

(e.g., van Barneveld, Arnold, & Campbell, 2012; Siemens, 2012) although only a few 

institutions have actually operationalized such techniques (e.g., Wishon & Rome, 2012; 

Young, 2011).  

One of the earliest and perhaps best known applications of academic analytics is 

Purdue University’s Signals project (Arnold, 2010). Signals uses a “student success 

algorithm” to predict which students are “at risk” based on a combination of demographic 

variables and behavioral data (e.g., performance within a course). Administrators, faculty, 

and students receive alerts based on this information with the goal of providing “at-risk” 
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students with the additional resources they need to succeed. The student success 

algorithm is based on a logistic regression model with a dichotomized outcome variable 

of academic success (Campbell, 2007). Logistic regression has the advantage of being a 

well-established analytic technique that is widely available in mainstream statistical 

software programs used in the social sciences (e.g., SPSS; IBM Corp., 2013). However, it 

does not easily lend itself to providing dynamic updates of prior estimates once new 

information becomes available. New approaches are needed that permit such updating in 

order to better predict in real-time a student’s probability (i.e., risk) of stopping out of 

school. Traditional techniques such as logistic regression are also tethered to a frequentist 

paradigm. Alternative paradigms, namely Bayesian-based analysis, arguably provide a 

more suitable alternative to model student success; however the techniques have been 

rarely used toward that end. In sum, the field of educational research is in need of 

expanding beyond traditional techniques of modeling postsecondary student success to 

include the use of Bayesian analyses.  

Purpose of Research 

The purpose of this study is three-fold: 

(1)  Expand the budding corpus of academic analytics research and practice to 

include Bayesian approaches to modeling postsecondary students’ probability 

of stopping out of college; 

(2) Establish a model-building process for developing Bayesian networks (BNs; 

Pearl, 2000) that leverages educational data mining and traditional iterative 

model-building techniques
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(3)  Develop a final user-friendly model that can be used by non-methodologists 

to quickly and accurately calculate understandable estimates of students’ 

probability of stopping out of college. 

Toward that end, the aspiration aim of the study is to develop and evaluate a specialized 

form of BNs, dynamic Bayesian Networks (DBNs; Dean & Kanazawa, 1988), in order to 

generate probabilistic estimates of a whether a community college student will stop out of 

college prior to graduating or earning a degree. Stopping out will be operationally defined 

as any degree- or transfer-seeking student who takes at least one fall or spring semester 

off from school without earning an associate’s degree or certificate or transferring to a 4-

year college or university. A student’s probability of stopping out will be estimated at the 

completion of each fall and spring term over a three year period.  

In developing the final model, exploratory data analysis (EDA; Cleveland, 1993; 

Tukey, 1977) and educational data mining (EDM; Baker, 2010) techniques will be 

applied to a relatively large number of variables in order to identify, along with prior 

research, potentially meaningful predictor variables. The collection of variables will 

include ex post facto demographic data (e.g., age, gender, ethnicity), course placement 

exam data used to determine a student’s content knowledge in reading, math, and English 

(e.g., exam scores, course placement level), developmental and college-level course 

taking behaviors (e.g., credits attempted, number of courses withdrawn from, pass rates), 

and financial aid data (e.g., types of financial aid received, amount of federal loans 

received), among other data. The final BN was constructed via a series of three primary 

steps. First, an initial prototype of the model was developed within a discrete-time 
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survival analysis framework using established model building procedures. Second, the 

model from step one was translated into a fully Bayesian framework in order to leverage 

the power of Bayesian inference and subjective interpretations of probability. The final 

step converted the fully Bayesian models into a BN that can be more readily used to 

support real-time decision making.  

 



7 
  

Chapter 2 

Literature Review 

The current study is offered as an application of academic analytics that embraces 

aspects of both the EDM and traditional modeling paradigms. As such, the following 

chapter provides an overview of academic analytics (and its relation to learning analytics) 

and educational data mining. It also provides a comparison of traditional and EDM 

analytic methodologies, a synthesis of prior attempts to model student success, an 

introduction to Bayesian analysis in general and Bayesian networks in particular, as well 

as an introduction to discrete-time survival analysis. The chapter concludes with an 

overview of variables found by prior research to be significant predictors of 

postsecondary persistence, graduation, and/or transfer within the context of a survival 

analyses. The overall purpose of the chapter is to provide the reader with the theoretical, 

contextual, and historical information underpinning this study and its justification. 

An Overview of Academic Analytics 

At its broadest level academic analytics is the application of a business 

intelligence paradigm to the field of academics. The origin of the term “academic 

analytics” is credited to Goldstein and Katz in 2005 (Elias, 2011). In 2007, Campbell, 

DeBlois, and Oblinger expanded the conception of academic analytics to emphasize the 

analysis and use of data: “analytics marries large data sets, statistical techniques, and 

predictive modeling. It could be thought of as the practice of mining institutional data to 

produce ‘actionable intelligence’” (p. 42).   

It is important to note that academic analytics is distinct from learning analytics, 

although the two terms are often used interchangeably. A synthesis of the research (e.g., 
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Siemens, 2010, 2012; van Barneveld, Arnold, & Campbell, 2012) identifies academic and 

learning analytics as two distinct yet interrelated areas of thought distinguishable on two 

dimensions. The first dimension is the type of data that are collected and analyzed. 

Learning analytics is primarily interested in data produced by the learner. In contrast, 

academic analytics is concerned more broadly with data relevant to an academic 

institution. The second dimension that characterizes the two fields is the desired end 

product. The ultimate goal of learning analytics is to improve learning. This distinguishes 

itself from academic analytics which is geared more toward increasing institutional 

effectiveness. One dimension the two areas do not seem to differ on is the types of 

methodologies they use. Both apply a wide variety of methodologies including traditional 

(e.g., logistic regression) and more modern methods (e.g., naïve Bayesian classifiers) 

statistical techniques.  

van Barneveld, et al. (2012) further conceptualized learning analytics as a subset 

of academic analytics. From this perspective there will always be overlap between the 

two areas. For instance, the current study aims to predict the probability a student will 

stop out within three years of first enrolling. The results could be used to inform 

institutional practices, such as targeted interventions, intended to produce higher retention 

and graduation rates. This would arguably lead to improvements in both institutional 

effectiveness and student learning.  That said, the study is most appropriately classified as 

an application of academic analytics rather than learning analytics since its focus is not 

specifically on student learning. 
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Surprisingly, there is a dearth of published applications of academic analytics in peer-

reviewed literature. A search for the term “academic analytics” (unconstrained by date 

range limitations) in eight major research databases – ABI/INFORM, Academic Search 

Primer, Education Full Text, ERIC, JSTOR, Primary Search, PsycInfo, Sage Premier – 

returned only two peer-reviewed articles on the topic; in both, academic analytics was a 

brief reference and not a central focus of the article. There are several possible inferences 

one could form from this. The absence of published articles may indicate the lack of 

maturity in the field and that there has not been a long enough gestation period for 

research and practice to find its way onto the pages of journals and periodicals. This 

seems unlikely given that Goldstein and Katz’ initial articulation of academic analytics 

was almost a decade ago. A more likely explanation is that it is a field made up of 

practitioners, not researchers, who are more interested in applying academic analytics 

than publishing research related to it. This is evidenced by the large number of secondary 

reports in the popular and trade press on initiatives in academic analytics at work at 

various institutions of higher education (Grush, 2012; Kolowich, 2013; Marcus, 2012; 

Meyer, 2012; Parry, 2011; Parry, 2012; Young, 2011; Wagner & Ice, 2012) and an 

almost complete absence of peer-reviewed research in the name of academic analytics. In 

order to grow and mature the field it needs a body of researchers actively conducting and 

publishing research on its behalf. The current study attempts to take a small step in 

addressing this need by explicitly stating a priori that it is being conducted under the 

banner of academic analytics. 
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An Overview of Educational Data Mining 

Educational data mining is a relatively new field of study that applies traditional 

data mining techniques to educational data. The International Educational Data Mining 

Society defines EDM as, “… an emerging discipline, concerned with developing methods 

for exploring the unique types of data that come from educational settings, and using 

those methods to better understand students, and the settings which they learn in.” 

(http://www.educationaldatamining.org). This definition conveys that EDM is 

fundamentally a methodological field focused on analysis tools and techniques that are 

more oriented toward exploratory data analysis rather than theory- or hypothesis-driven 

analysis.  That being said, it would be overreaching to state that EDM exists in a state 

completely devoid of theory and hypotheses. As Romero and Ventura (2007) commented, 

“the application of data mining in educational systems is an iterative cycle of hypothesis 

formation, testing, and refinement” (p. 136). The same authors reinforced this point in a 

later work (Romero & Ventura, 2010) by writing, “EDM seeks to use these data 

repositories to better understand learners and learning, and to develop computational 

approaches that combine data and theory to transform practice to benefit learners” (p. 

601, italics added).   

At its roots EDM stems from the broader field of data mining. Data mining 

applies statistical techniques and modern computing in search of finding potentially 

meaningful patterns in large data sets (Witten, Frank, & Hall, 2011). As institutions of 

higher education deployed enterprise-wide software, e.g., student information systems 

and course/learning management systems, in the late 1990’s and early 2000’s, the amount

http://www.educationaldatamining.org/
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 of educational data captured increased exponentially. This produced new, fertile ground 

for the spread of data mining and related fields into the area of education.   

Although EDM has a distinct lineage and corpus of research (Baker, 2010; Baker 

& Yacef, 2009; Yacef, Baker, Barnes, & Beck, 2009), it is intimately related to academic 

and learning analytics (Siemens, 2011; Siemens and Baker, 2012) in that they are both 

focused on improving educational practices and developing and refining techniques for 

analyzing large data sets relevant to education. The current study embraces both 

perspectives. The overall purpose of the study is seen as falling under the overarching 

paradigm of academic analytics since its ultimate goal is to develop an effective model 

for predicting stopping out behaviors that could ultimately be used to improve 

institutional effectiveness. EDM is viewed as a collection of analytic techniques that will 

be used, along with “traditional” analytic techniques, in the name of meeting that purpose. 

The next section compares and contrasts non-traditional methodologies used by EDM 

and traditional methodologies typically used in educational research in order to lay a 

conceptual foundation for the techniques that will be utilized in the study. The specific 

analyses to be employed will be further elucidated in later sections. 

Comparing Traditional and Non-Traditional Methodologies 

Types of non-traditional analyses can be broadly grouped into two categories. The 

first category includes Bayesian-based techniques such as Bayesian networks and naïve 

Bayes classifiers. These techniques will be discussed later as part of a subsequent section. 

The second category is a group of methods stemming from the field of data mining. 

Generally speaking the primary purpose of data mining is to reveal previously unknown 

patterns among data (Nisbet, Elder, & Miner, 2009). These techniques differ from 



12 
  

traditional methods in multiple ways. First, and perhaps most noteworthy, they represent 

different statistical philosophies (Breiman, 2001). Breiman artfully illustrated the 

distinction between these philosophies (or “cultures”) with the use of a figurative black 

box: 

Think of the data as being generated by a black box in which a vector of input 

variables x (independent variables) go in one side, and on the other side the 

response variables y come out. Inside the black box, nature functions to associate 

the predictor variables with the response variables… (p. 199) 

 

Traditional model-based approaches stem from a statistical culture that wants to know 

what is happening in the black box. This perspective uses a deductive process. The 

analyst theorizes a priori what the phenomena are that underlie the relationships between 

x and y. Then, the analyst seeks to simulate how “nature functions” in the black box by 

selecting a model that is believed to serve as a simplified approximation of the 

phenomena dictating the relationships between x and y. The data are fed into the model 

and analyzed in an attempt to “confirm” (i.e., provide support for) the model and test an a 

priori hypothesis. In other words, traditional approaches are typically theoretically-driven, 

deductive, and confirmatory in nature. In contrast, data mining techniques tend to be 

atheoretical, inductive, and exploratory. Data mining techniques are based on a statistical 

culture that is less concerned with what happens in the black box. Instead, it focuses its 

attention on utilizing mathematical algorithms to uncover previously hidden relationships 

between x and y. It does not encumber itself with trying to confirm a pre-specified model 

believed to represent what is happing in the black box. At its core, data mining is 

exploratory and seeks to inductively “learn” the relationships between the variables 

directly from the data rather than presuppose the relationships in the form of a theorized 

model. In short, traditional approaches generally seek to explain “why” x and y 
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are related, while non-traditional approaches are mainly interested simply in “how” they 

relate. It is important to note that this distinction is not a true dichotomy but more a 

difference in degree.  

There are several other characteristics that distinguish these two methodological 

perspectives. Traditional techniques have a long history (Hald, 1990; Hald, 1998). In its 

formative years computers did not exist. This limited the field to approaches that were 

tractable and could be calculated by hand.  Although traditional techniques have greatly 

expanded with the advent of early and modern computing, the field is still tethered to 

some degree to approaches with historical precedence. One example is its strong 

allegiance to models with known distributions even when this requires having to comply 

with assumptions that range from onerous to unattainable. Data mining is a much 

younger field. Its history is inextricably bound with modern computing, descending from 

two branches of computer science: artificial intelligence and machine learning. As a 

result, data mining approaches were specifically designed to leverage the power of 

computers. Therefore, they typically utilize automated or semi-automated algorithms able 

to process large quantities of data without the reliance on known distributions and 

associated assumptions. A second difference is that data mining is more apt to be applied 

to complete data sets (e.g., data on all students from an institution’s learning management 

system) rather than sample data (e.g., data on a subset of the institution’s students 

collected as part of a sampling design). Therefore, concepts that sit at the heart of many 

traditional approaches, such as statistical significance, are less relevant to data mining 

approaches because the values of the population parameters (e.g., the mean of the 

complete data set) are known and do not need to be inferred. Third, data mining 
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approaches are more opportunistic. They tend to be applied to data that has already been 

collected for another purpose (usually by enterprise-level software, e.g., a student 

information or learning management system). In contrast, traditional techniques are 

generally applied as part of larger, pre-planned experimental or quasi-experimental 

design that includes both the collection and analysis of data. The net effect is that data 

mining techniques are more flexible and less structured than traditional techniques to 

account for the fact that the analyst will have little to no control over how the data are 

collected.  Lastly, data mining aims to use all available data even if the number of 

variables dramatically exceeds the number of cases (Brieman, 2001). This is a stark 

difference from traditional methods that are built on a fundamental tenet that the number 

of cases must be larger than the number of variables (usually many times larger). Data 

mining overcomes this requirement by employing automated sampling and replication 

techniques specifically designed to evaluate a massive number of variable combinations 

even with a relatively small number of cases (e.g., support vector machines). There are 

instances of similar procedures in traditional approaches (e.g., stepwise regression); 

however they are fewer in number and are usually discouraged from use in large part 

because they run counter to the philosophy of traditional methodologies (Cohen, Cohen, 

West, & Aiken, 2003).  

 It is important to note that these philosophical, historical, and operational 

differences between traditional and non-traditional methods are generalizations.  Some 

traditional techniques may display some or all of the characteristics of data mining and 

vice versa. It is also worth commenting that no one technique or family of techniques is 

“better” than the other.  In the words of Tukey (1969), “we ought to try to calculate what 
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will help us most understand our data, and their indications. We ought not to be bound by 

preconceived notions—or preconceived analyses.” (p. 83).  

 The current study follows Tukey’s words of wisdom and will use both traditional 

and non-traditional analytic approaches. The traditional methodologies will consist of 

correlational and logistic regression analyses (and related extensions). The non-traditional 

approaches will include Bayesian networks and data mining techniques.  These 

approaches will be discussed in more detail in later sections.  

An Overview of Prior Methodologies Used to Predict Student Success 

There is an extensive corpus of research on trying to predict and model 

retention/persistence
1
 and graduation of postsecondary students. Although there have 

been several thorough reviews of retention literature in general (e.g., Astin, 1975; 

Braxton, Hirschy, & McClendon, 2004; Pascarella & Terenzini, 2005; Tinto, 1975), there 

does not appear to be any published reviews of the methodological techniques used to 

predict and model retention and related variables. This section summarizes an extensive 

but by no means exhaustive review of publications predicting retention and/or graduation. 

The review included the following peer-reviewed journals: American Educational 

Research Journal, Computers & Education, Educational Researcher, Journal of College 

Student Retention, Journal of Educational Data Mining, Journal of Educational 

Measurement, Research in Higher Education, Review of Educational Research, Review 

of Research in Education, The Journal of Educational Research, The Journal of 

Experimental Education, and The Journal of Higher Education. Various keyword 

searches were also conducted using several search engines (e.g., Google, Library One 

Search). The results revealed a wide variety of methodological approaches used to predict
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 retention and/or graduation. Some of the methodological techniques include: Bayesian 

networks (Nandeshaw, Menzies, & Nelson, 2011), correlational analysis (e.g., Crawford, 

1930; Potthoff, 1931), decision trees (e.g., Herzog, 2006; Pittmann, 2008), discriminant 

analysis (Bers & Smith, 1991; Bianchi & Bean, 1980), growth curve modeling (e.g., 

Hausmann, Schofield, & Woods, 2007), linear regression (e.g., Astin, 1997; Bogan Eaton 

& Bean, 1995), logistic regression (e.g., Andrieu & St. John, 1993; Caison, 2007), naïve 

Bayes (e.g., Nandeshaw, Menzies, & Nelson, 2011; Zhang, Oussena, Clark, Hyensook, 

2010), neural networks (Herzog, 2006; Pittmann, 2008), support vector machines (e.g., 

Lykourentzou, Giannoukos, Nikolopoulos, Mpardis, & Loumos, 2009; Zhang, Oussena, 

Clark, Hyensook, 2010), and survival analysis (e.g., Flores & Horn, 2009; Murtaugh, 

Burns, & Schuster, 1999),  –among others. Among these methods, the four techniques 

utilized the most often were correlational analysis, linear regression, discriminant 

analysis, and logistic regression. An overview of each method is discussed below.   

Correlational analyses. One of the first published efforts to predict student 

success and retention was Thurstone’s 1921 article, A Cycle-Omibus Intelligence Test for 

College Students. In the article Thurstone advocated correlating students’ scores on 

“mental tests” with their academic success and retention status as a method of trying to 

predict the latter from the former. Over the next two decades (and beyond) an explosion 

of retention and student success correlational studies appeared in the published literature 

(e.g., Crawford, 1930; Edgerton & Troops, 1929; Freeman, 1931; Garrett, 1949; Landry, 

1937; Lillis, 2012; Mort, 1932; O’Brien, 1928; Odell, 1930; Potthoff, 1931; Prediger, 

1966; Schmid & Reed, 1966). 
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Strengths. The strength of correlational analysis is in its simplicity. It is very easy 

to compute and interpret. Correlational techniques also have broad applicability. They 

can be applied to calculate associations between variables of all types of measurement 

levels, including those with latent distributions (e.g., tetrachoric & polychoric 

correlations). Traditional bivariate correlations can also be expanded to analyze 

associations between more than two variables.   

Limitations. Correlational analyses provide a measure of the linear association 

between variables. They are not true predictive methods. As a result, they lack the 

theoretical framework and techniques to formally predict retention and graduation. Early 

correlation studies are analogous to early combustible engines. They laid the framework 

and principles that continue to power many more sophisticated methodologies, but in and 

of themselves are often too simplistic to deal with today’s complex predictive modeling 

scenarios. They are also ill-suited for measuring nonlinear associations between variables. 

In addition to linearity, inferential tests of correlation coefficients are based on the 

assumptions that the two variables have a bivariate normal distribution and homogeneity 

of variance. While correlation analyses may be robust to violations of these assumptions 

in some situations, their use is limited in instances when these assumptions are not 

believed to reasonably hold.  

Linear regression. Linear regression (Cohen, et al., 2003; Tabachnick & Fidell, 

2007) extends correlational analyses to be able to better and more formally predict a 

continuous outcome variable from one or more continuous or categorical predictor 

variables.  The methodology has been widely applied in predicting retention and 

postsecondary academic success variables (e.g., Astin, 1964; Astin, 1997; Bogan Eaton &
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 Bean, 1995; Irvine, 1966; LeSure-Lester, 2004; Oseguera, 2006; Panos & Astin, 1968; 

Peng & Fetters, 1978; Schmid & Reed, 1966).  

Strengths. Linear regression, specifically multiple linear regression, has a number 

of advantages. First, it allows for the ability to predict a continuous outcome variable 

from multiple predictors that may themselves be related (correlated). This is major 

improvement over bivariate correlational analysis. Second, it can accommodate nonlinear 

relationships between the predictors and outcome variables and/or between predictor 

variables. That is, not all relationships need to be linear. Third, it provides a singular, 

best-fitting solution (in terms of minimizing the squared differences), alleviating the 

concern of having feigned optimized solutions (e.g., local maxima in maximum 

likelihood). Fourth, the actual and predicted values of the outcome are on the same scale, 

making the latter very easy to interpret. Fifth, linear regression provides a very intuitive 

measure of model of fit (R
2
) that is easy to understand. Sixth, it enables significance 

testing of the overall model and predictor variables. Lastly, it is a very well-established 

methodology based on a broad body of applied research. This can easily be taken for 

granted until one delves into new methodologies that have been sparsely researched and 

have not developed methods for addressing fundamental methodological issues (e.g., 

evaluating model fit, checking assumptions, etc.).  

Limitations. The main drawbacks to linear regression relate to its assumptions. 

The technique assumes errors have a mean of zero, are normally distributed, and have 

homogeneity of variance. This limits the methodology to continuous outcome variables 

since dichotomous outcomes would violate the assumptions that the error variance is 

homogenous and normally distributed. This is a major limitation to its use in retention 
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and graduation studies where the outcome variable is typically dichotomous (e.g., student 

graduated/did not graduate). Linear regression also assumes the absence of a perfect 

relationship between predictors, that the relationship between variables has been correctly 

specified (e.g., using a linear model if the relationship is linear), and the variables are 

measured without error. Although linear regression can handle various types of 

relationships between variables, the relationships must follow a known parametric form. 

Typical linear regression is not suited to handle nonparametric relationships. Lastly, in its 

most practiced form, multiple linear regression is constrained to a single outcome 

variable, further limiting its applicability.  

Predictive discriminant analysis. Discriminant analysis (DA; Cohen, et al., 2003; 

Tabachnick & Fidell, 2007) has two main strands: descriptive discriminant analysis 

(DDA) and predictive discriminant analysis (PDA). This section will focus solely on 

PDA. PDA has a different lineage than linear regression and stems from analysis of 

variance techniques. More specifically, PDA is a mirror image of multivariate analysis of 

variance (MANOVA). In MANOVA the goal is to evaluate whether a multivariate set of 

continuous variables significantly varies between categorical groups, e.g., whether the 

multivariate average of high school GPA, age, and SAT scores significantly vary between 

students who graduated from college and those who dropped out. In contrast, PDA aims 

to predict group membership based on the set of variables (e.g., if we know the 

multivariate average of high school GPA, age, and SAT scores, can we accurately predict 

whether a student graduated from college or dropped out). PDA became a popular 

technique in retention students in the mid-to-late 20
th

 century and has remained so due to 

its ability to predict non-continuous outcomes (e.g., Bers & Smith, 1991; Bianchi & 
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Bean, 1980; Campbell & Fuqua, 2009; Finnegan, Morris, & Lee, 2008; Folly Nicpon, 

Huser, Hull Blanks, Sollenberger, Befort, Robinson Kurpius, 2006;  Halpin, 1990; 

Krotseng, 1992; Pascarella & Terenzini, 1980; Robinson, 1969; Welsh, Petrosko, & 

Taylor, 2006). 

Strengths. Perhaps the greatest benefit of PDA is that it permits the use of a set of 

continuous variables to classify students into two or more groups. This is a distinct 

advantage over linear regression which is designed to predict continuous outcome values 

and not group membership. Another advantage of PDA is that it is a useful byproduct of 

MANOVA. Similar to linear regression, analysis of variance techniques have a long, 

well-explored history. Those who are familiar with MANOVA can readily apply PDA 

with a minimized learning curve. Lastly, PDA uses priors to adjust for known or 

hypothesized differences in frequencies of group membership in the population. This is 

important in cases where a much higher proportion of students are believed to be in one 

group versus another.  

Limitations. A major shortcoming of PDA is that, like linear regression, it is 

limited by some onerous assumptions. The first is that the relationship between predictor 

variables is multivariate normal. This excludes the use of non-continuous variables as 

predictors, which is a significant limitation since persistence and retention studies 

typically include continuous (e.g., high school GPA) and nominal variables (e.g., gender). 

Another assumption is homogeneity of the within-group covariance matrix across groups. 

This assumption is difficult to meet in practice (Cohen et al., 2003). Together these two 

assumptions dramatically diminish the utility of PDA compared to more flexible 

approaches like logistic regression, which is discussed next. A final notable drawback of 
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PDA is that the machinery of how the classification scores are estimated is more opaque 

and less intuitive than the estimation techniques employed by correlational analysis and 

linear regression.  

Logistic regression. Logistic regression is used for modeling the relationship 

between a discrete outcome variable and one or more predictor variables that are either 

continuous or discrete. Binomial logistic regression is when the outcome variable has two 

categories (e.g., retained, not retained) and multinomial regression is when it has more 

than two categories (e.g., persisted, transferred, dropped out). Logistic regression is 

typically used to predict the probability a student will or will not persist/be retained based 

on one or more predictors. It is arguably the most popular approach for modeling 

retention and persistence (e.g., Andrieu & St. John, 1993; Araque, Roldan, & Salguero, 

2009; Caison, 2005; Caison, 2007; Crisp & Nora, 2010; Delen, 2011; Feldman, 1993; 

Glynn, Sauer, & Miller, 2005; Hagedorn, Maxwell, & Hampton, 2001; Kuh, Cruce, 

Shoup, Kinzie, & Gonyea, 2008; Lowe & Rhodes, 2012; Perrine, 2009; Rohr, 2013; 

Sutton & Nora, 2008; Swenson Goguen, Hiester, & Nordstrom, 2010; Wang, 2009). 

At first blush, it may seem like the task of predicting persistence or retention 

could be handled by standard linear regression since the outcome variable of interest, the 

probability of an outcome occurring, is continuous. The shortcoming of this approach is 

that we do not actually observe the probability of a student persisting or not. All we 

observe is a binary outcome of whether a student did or did not persist. The benefit of 

logistic regression is that it is able to estimate the probability for each value of the 

outcome occurring. This is accomplished by modeling the logit of an outcome occurring 

rather than its probability. The logit is the natural log of the predicted probability of an 
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outcome occurring divided by the predicted probability of it not occurring. This ratio is 

referred to as the odds of an outcome occurring. The logit can be also expressed as a 

linear function of the predictor variables: 

𝑙𝑛(𝑜𝑑𝑑𝑠)̂ = 𝑙𝑛 (
�̂�(𝑜𝑢𝑡𝑐𝑜𝑚𝑒)

1−�̂�(𝑜𝑢𝑡𝑐𝑜𝑚𝑒)
) =  𝛽0 + 𝛽1𝑥1𝑖 + ⋯ 𝛽𝑘𝑥𝑘𝑖   (2.1) 

This permits applying the logic and conceptual understanding of linear regression to 

logistic regression. For instance, in this form, 𝛽0, is the mean logit value when the 

predictor variables are all zero, and the coefficient, 𝛽𝑘, is the expected logit change in the 

outcome variable for each one-unit change in 𝑥𝑘, holding all other predictor variables 

constant. Once the logit values are estimated they can be converted to a predicted 

probability using the following equation (one of several equivalent equations):  

�̂�(𝑜𝑢𝑡𝑐𝑜𝑚𝑒) =  
𝑒𝛽0+𝛽1𝑥1𝑖+⋯𝛽𝑘𝑥𝑘𝑖

1+ 𝑒𝛽0+𝛽1𝑥1𝑖+⋯𝛽𝑘𝑥𝑘𝑖
      (2.2) 

Similar to linear regression, the model fit and statistical significance of the overall 

model and the coefficients can be tested. However, in contrast to linear regression, there 

is no single accepted measure of model fit in logistic regression. Instead a variety of 

methods have been developed, ranging from pseudo-R
2
 metrics (e.g., 𝑅𝐿

2, Cox & Snell 

index, Nagelkerke index) to likelihood ratio significance tests. The reader is directed to 

Hosmer and Lemeshow (2000) and Cohen et al. (2003) for a full discussion on logistic 

regression model goodness-of-fit techniques.  

Strengths. The main benefit of logistic regression is that it provides a mechanism 

for predicting—in probabilistic terms—a categorical outcome variable based on a set of 

predictors that can be either continuous or categorical. This overcomes key weaknesses 

of correlational analysis (limited to simple non-directional models), linear regression 



23 
  

(limited to continuous outcome variables) and discriminant analysis (limited to 

continuous predictors). Comparing all four techniques, logistic regression, in general, is 

best equipped to model the most common student retention and success prediction needs 

– those that involve a categorical outcome variable and a set of predictor variables of 

various measurement levels. That said, discriminant analysis has been shown to be have 

more power than logistic regression when its assumptions are met (Cohen et al., 2003, p. 

485). This is also believed to be the case with linear regression (Tabachnick & Fidell, 

2007, p. 441). Another strength of logistic regression is that it is conceptually similar to 

linear regression. Learning logistic regression is a natural progression from linear 

regression that does not require learning a new philosophical or conceptual framework 

(the two also fall under the broader Generalized Linear Model framework, see Hilbe, n.d., 

for a brief overview). Analysts and researchers use what they know. The greater the 

degree of separation is between what they already know and what they need to learn to 

use a new technique, the less apt they are to learn and use it. This is in line with learning 

theories that view effective learning as being moderated by the extent to which new 

knowledge can be linked to prior knowledge (Driscoll, 2004). Another non-technical 

benefit of logistic regression is that it is available in SPSS (as an add-on module). It is my 

belief that the single best determinant of the broad adoption and use of a statistical 

technique in educational research is whether or not the technique is available in SPSS. 

SPSS is more than a software program; it is a cultural phenomenon within the field that 

sets the lens through which many non-methodologist researchers view the world. This 

does not distinguish logistic regression from correlation analyses, discriminant analysis, 

and linear regression, all of which are also available in SPSS. However, this does 
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distinguish it from more novel methods used to predict student persistence or graduation, 

such as Bayesian networks.  

Limitations. Perhaps the greatest limitation of logistic regression is the fact that it 

can be specified in so many forms, leading to confusion on various aspects and terms 

related to the technique (Peng & So, 2002). Aside from sports bookies, few people think 

in terms of odds ratios. An odds ratio represents a distinct concept but is close enough to 

common notions of probability to cause confusion. The concept of a logit also causes 

confusion to non-mathematicians due to its abstract nature. In comparison, linear 

regression provides an intuitive result that is on the same scale as the original outcome 

variable. Logistic regression also suffers from the absence of a singular method for 

assessing model fit. This is an instance where logistic regression’s similarity to linear 

regression is a limitation. Those familiar with linear regression have the proclivity to 

misinterpret pseudo R
2
 metrics as measure of variance accounted (Peng & So, 2002). 

Even the most robust method is rendered detrimental if its results are consistently 

misinterpreted.  

An Overview of Bayesian Analysis 

In comparison to the four techniques discussed in the prior section, Bayesian-

based analyses (Gill, 2009; Kruschke, 2011; Winkler, 1972) have rarely been used to 

model student success. This is despite the fact that Bayesian analyses are well suited for 

the task. They provide an efficient and intuitive mechanism for making inferences about 

the complex world around us in the absence of having all the information needed to make 

a decision with 100% accuracy. In short, they help us reason in the face of uncertainty. 

For example, let us assume a college freshman arrives at college and her academic 
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advisor must determine if she is prepared to take a college-level algebra course. It is 

impossible for the advisor to know whether or not the student would successfully pass the 

course since the event has yet to occur. Instead, the advisor must make a probabilistic 

judgment about whether or not he thinks the student will be successful based on the 

imperfect and incomplete data available to him (e.g., the student’s high school transcripts, 

placement test scores, results of his conversation with the student, his prior experience 

with similar students, etc.).  In both cases, Bayesian analyses, specifically Bayesian 

networks (BNs; Pearl, 2000; Pearl & Russell, 2001), provide a mechanism for leveraging 

human expertise, prior experiences (e.g., the advisor’s expertise) and the empirical data 

that are available (e.g., student’s placement test scores) to make probabilistic inferences 

about an outcome (e.g., the probability the student will be successful in a college-level 

algebra course). Before discussing the specifics of BNs, it is important to provide an 

overview of two fundamental topics that underlie the proposed use of Bayesian analysis: 

subjective probability and Bayesian inference.  

Subjective probability. There are two aspects of probability: its properties and its 

interpretation. The fundamental properties of probabilities are widely agreed upon and 

are summarized by the Kolmogorov axioms (Gill, 2009). There is far less agreement on 

the interpretation of probabilities; that is, what probabilities mean. Although there are a 

variety of interpretations (Hájek, 2012), the two most common perspectives in the social 

sciences (and many other fields) are the frequentist perspective and the subjective or 

personal perspective (Winkler, 1972). The frequentist perspective views probability as an 

almost law-like attribute that quantifies the likelihood of an outcome of an event 

occurring (e.g., the probability that a flipped fair coin will land on heads). It is viewed as



26 
  

 an unknown fixed value that is defined by the limiting relative frequency of an event 

occurring over repeated trials under identical conditions, and estimated as the relative 

frequency of the event occurring over a large number of such trials. As the number of 

trials increases, the difference between the estimated and true values of the probability 

shrinks. The two probabilities are theorized to eventually converge when the number of 

trials – conducted under identical conditions – reaches infinity. The true probability is, of 

course, an unobtainable theoretical limit that must be estimated using asymptotic 

assumptions. This is a relatively minor limitation given that the use of asymptotic 

assumptions is a standard, well-accepted practice in statistics (e.g., Weiss, 2008). A far 

greater limitation of the frequentist perspective of probability is its reliance on the 

assumption that the repeated trials must be conducted under identical conditions. This 

assumption is tenable in certain situations when near identical replications are possible 

(e.g., the probability of a defective widget being produced using a highly-calibrated, 

automated manufacturing process) but is not realistic in many other situations that are 

impossible to replicate (e.g., the probability of a given presidential candidate winning a 

specific election). Due to this limitation, Winkler (1972) called the frequentist 

interpretation of probability conceptual but not operational.  

The second perspective is a subjective or personal interpretation of probability. 

This perspective views probability as one’s degree of belief in the outcome of an event 

occurring. The subjective probability does not rely on the onerous assumption that all 

trials must be completed under identical conditions nor does it view probability as a fixed, 

unknown property of the world. Instead it views probability as an analyst’s subjective 

judgment of an event occurring based on prior knowledge and the data 
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available. To contrast the two perspectives, the frequentist interpretation of probability 

views the analyst as an automaton completely removed from the process of determining 

the probability of an outcome; whereas subjective probability views the analyst—her 

beliefs, prior experiences, expertise, knowledge of prior research, knowledge of the 

specific context in which the event will occur, etc.—as an active agent in the process. It is 

important to note that the injection of subjective judgment does not mean subjective 

probabilities are uniformed or capricious.  In reality, an analyst is never fully removed 

from the process, as has been well articulated in qualitative research (Bogdan & Knopp 

Biklen, 2007).  As noted by Denzin and Lincoln (2000), “all research is interpretive; it is 

guided by a set of beliefs and feelings about the world and how it should be understood 

and studied” (p. 19). The fundamental difference then between the two perspectives is 

that the subjective perspective makes these beliefs explicit, while the frequentist 

perspective does not. Another critical difference between these two interpretations is that 

the subjective interpretation is not burdened by the assumption of repeated trials under 

identical conditions. As a result, the subjective interpretation is both conceptual and 

operational, to use Winkler’s terms, making it more applicable for real-world use when 

such an assumption is unreasonable, such as when modeling student success.   

The Bayesian analyses used in this study, including the BNs, are based on the 

latter interpretation of probability. Prior subjective beliefs related to the probability of an 

outcome occurring are explicitly modeled as part of the mechanics of Bayes’ theorem and 

inference. The process for accomplishing this is discussed next.  

Bayesian inference. Bayesian inference allows us to reason under uncertainty 

through the use of Bayes' theorem. On a conceptual level, Bayes’ theorem provides a 
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process for inferring the probability of an unknown event based primarily on two pieces 

of known information: (1) prior beliefs on the probability of the event occurring, and (2) 

the probability of the data that are known given the unknown event.  By leveraging both 

pieces of information, Bayes’ theorem allows us to translate what we know into a 

probabilistic judgment about what we do not know. The theorem is expressed as follows 

(one of several equivalent forms, see Gill, 2009 pp. 10-11for a complete proof): 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
        (2.3) 

Although it is easier to initially think about probabilities in terms of a single 

outcome of a specific event (e.g., probability of graduating), in actuality, Bayes’ theorem 

deals with probability distributions.  A probability distribution is a function that 

expresses the probability for each mutually exclusive outcome of an event occurring. 

Building on our example, let us define A as a discrete random variable, “freshmen 

performance in a college-level math course.” We define the sample space (all possible, 

mutually exclusive outcomes) of the variable as {A1 = passed with a grade of C or better, 

A2 = did not pass with a grade C or better}. Let B be defined as a discrete random 

variable, “student’s recommended course based on an incoming placement test score” 

with a sample space of {B1 = placed in a college-level algebra course, B2 = did not place 

in a college-level algebra course}. With that in mind, let us deconstruct Bayes’ theorem. 

Starting with the right side of the equation, P(A) is known as the prior distribution. 

It represents the analyst’s belief of what the probability mass function (for discrete 

random variables) or probability density function (for continuous random variables) is for 

the sample space of A before a specific event occurs. In other words, it is the marginal 

distribution for A. In our example, this represents the advisor’s degree of 
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belief in what the probabilities are of a freshman passing (A1) or not passing (A2) a 

college-level algebra with a C or better without knowing anything about the student’s 

placement level (B). Prior distributions can take many forms (Gill, 2009). Conjugate 

priors follow a known distribution and, when paired with a specific likelihood function, 

produce a posterior distribution that is from the same family of distributions as the prior. 

They ensure the posterior distribution can be analytically calculated (which was essential 

to making Bayesian analysis tractable prior to the advent of modern computing and 

simulation techniques). Uninformed prior distributions are used when the analyst wants 

to minimize or neutralize the effect of the prior. For example, if the advisor has very little 

prior knowledge about what the probabilities are of a freshman passing or not passing a 

college-level algebra course, he may set the prior distribution to be uninform, making 

each outcome equally likely.  Informed prior distributions are based on preexisting 

knowledge or research relevant to the variable(s) under study (e.g., expert opinions, prior 

published research, analyst’s own experience, etc.). Hybrid prior distributions are a 

combination of informed and uniformed inputs. Our example uses informed priors based 

on the advisor’s previous experience working with numerous similar students. 

Turing back to the equation for Bayes’ theorem, the prior distribution is 

multiplied by the conditional probability of B given A, P(B|A), to form the numerator on 

the right side of the equation. In our example, this is the probability a student placed/did 

not place in a college-level algebra course given whether the student passed/did not pass 

a college-level algebra course. To restate this in terms of a particular outcome, it tells us 

the probability a student placed into a college-level algebra course given she passed a 

college-level algebra course. This is admittedly counterintuitive to think about the 
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probability of an earlier event (placement test results) given the results of a later event 

(success in algebra course). As a quick look ahead, this illustrates a key point that the 

direction of the arrows in a Bayesian Networks do not need to represent causal or 

chronological relationships between variables, only dependencies. Once B is known, 

P(B|A) can be re-expressed as the likelihood of A given B, L(A|B) (Box & Tiao, 1992; 

Levy, 2011). The likelihood can be broadly interpreted as the most likely value for A 

given B. Although the likelihood L(A|B) is not a true probability because it does not sum 

or integrate to one, it is proportional to P(B|A) (Winkler, 1972). The likelihood function 

plays a critical role by specifying the distributional function believed to govern the 

observed data.  

The denominator on the right side of the theorem is the marginal probability of B, 

P(B). In our example, this is the probability of a student placing (B1) or not placing (B2) 

in a college-level algebra course based on a placement test score. It serves as a 

normalizing constant to ensure the posterior distribution sums (or integrates) to one. The 

product of the prior distribution, P(A), and the likelihood function, L(A|B), divided by the 

marginal probability, P(B), produces the posterior distribution, P(A|B), displayed on the 

left side of the equation. The posterior distribution represents the conditional probability 

of A given B. In our example, this is the probability the student will pass or not pass a 

college-level algebra course given her placement test results. 

A limitation of the use of Bayes’ theorem is that calculating the posterior 

distribution can be intractable for even relatively simple models for several reasons. The 

first is that the marginal distribution of B can be difficult to calculate, especially if it 

relates to a continuous random variable that must be integrated. As noted above, P(B) is 
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typically known. When this is the case, it becomes a constant and can be dropped from 

the equation. This increases the computational efficiency of Bayes theorem. In most cases, 

the normalizing constant can be reintroduced later to properly scale the posterior 

distribution (Gill, 2009). Removing P(B) produces the following expression:  

P(A|B) ∝ L(A|B)P(A)        (2.4) 

This states that the probability of A given B is proportional to the product of the 

likelihood function and the prior distribution. This reduces the computational burden of 

estimating the posterior distribution, as will be discussed later. The second limitation is 

number of joint probabilities that have to be specified due to the fact that the number of 

probability statements in a joint distribution grows exponentially as the number of 

variables increases. For example, a joint distribution for n binary variables requires the 

estimation of 2
n
 probabilities. A model that contains 30 discrete variables would require 

the estimation of 1,073,741,824 probabilities – a sizable number for even modern 

computing power. The third limitation relates to the difficulty in calculating the posterior 

distribution for models of nontrivial size. All three of these limitations are addressed with 

the use of BNs, which will be discussed in the next section. 

Bayesian networks. Now that the conceptual and mathematical underpinnings 

have been laid out, it is time to formally discuss Bayesian networks (also known as 

Bayesian inference networks or Bayesian belief networks). A Bayesian network is a 

graphical representation of dependent relationships between variables. Pearl (2000, p. 13) 

articulated the following purposes of BNs: 

1. To provide convenient means of expressing substantive assumptions; 

2. To facilitate economical representation of joint probability functions; an
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3. To facilitate efficient inferences from observations. 

Each purpose will be discussed in turn in the subsequent sections.  

Directed acyclic graphs: A convenient means of expressing substantive 

assumptions. BNs provide a visual representation of the relationships between variables 

relevant to a specific line of inquiry. This is conceptually similar to other methods of 

visually representing a statistical model and the relationship of its underlying variables, 

such as structured equation modeling and path diagrams (Kline, 2011).  BNs are depicted 

as directed acyclic graphs (DAGs)
2
. DAGs are comprised of unidirectional edges (arrows) 

and nodes. The nodes represent either observable or latent variables. The edges represent 

dependencies (i.e., joint probabilities) between nodes. The relationships do not need be 

specified as casual (A causes B) or temporal (A precedes B), although it can be beneficial 

to do so (Pearl, 2000; Taroni, Aitken, Garbolino, & Biedermann, 2006). 

If an arrow is drawn from one node, A, to another node, B, A is referred to as a 

parent of B and B its child. If an arrow is drawn from B to another node, C, A would be 

the ancestor of C and C the descendant of A. A node without any edges entering it is 

referred to as a root node. By definition, a BN must be acyclic and not include any 

feedback loops. That is, a node cannot be both its own ancestor and its own descendant 

(Taroni, Aitken, Garbolino, & Biedermann, 2006). A simple BN is presented in figure 1.  

 

 

 

 

Figure 1. A Bayesian network depicted as a directed acyclic graph (DAG).
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Similar to other modeling techniques, the decision of what variables to include in a BN 

and how to structure the connections between the variables in the DAG can be informed 

by many sources relevant to the research question(s) being investigated (e.g., theory, 

prior research, reasoned thought); however, there is a scarcity of literature on exploratory 

Bayesian network modeling building since the networks are typically used as 

confirmatory models. The exception is the data mining practice of “learning” the 

structure of a BN directly from the observed data using various algorithms (see 

Neapolitan, 2003, for a detailed presentation of BN learning algorithms). Once a BN is 

constructed it provides an effective means of visually depicting the variables under study 

(nodes), the nature of their relationships (edges), and a priori beliefs about the strength of 

those relationships (joint probability tables).  Next, we turn to the idea of conditional 

independence and the critical role it plays in BNs. 

Conditional independence: Facilitating economical representation of joint 

probability function. As noted above, specifying the full joint probability distribution for 

all variables in a model can quickly become intractable given the fact that the number of 

possible outcomes in a joint probability distribution increases exponentially. One of the 

main benefits of BNs is that it provides a method for dramatically reducing the number of 

probabilities that need to be specified. It does this through the use of conditional 

independence. Conditional independence states that the probability distributions of two 

random variables (or sets of variables), X and Y, are independent of each other once 

conditioned on a third variable (or set of variables), Z, such that P(X,Y | Z) = P(X|Z) 

P(Y|Z) (Mislevy & Gitomer, 1996). This holds true even if the two variables are 

originally dependent. Utilizing conditional independencies allows us to break the full 
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joint probability distribution for all the variables in a BN into smaller joint probability 

distributions containing only a subset of the variables. This reduces the number of 

probabilities that need to be specified and estimated, simplifying the process of 

estimating the posterior probability.   

As mentioned earlier, the dependencies among the nodes are codified in a DAG. 

It is relatively easy to identify conditionally dependent and independent relationships 

among the nodes of a small BN; however, it can become very difficult to identify them as 

the number of nodes and connections increase. Detection of such relationships is aided by 

the concept of directional-separation (commonly abbreviated as d-separation; Pearl, 2000; 

Taroni et al., 2006).   

Once we know the conditional independencies among the nodes, we are able to 

identify the subset of local joint probability distributions that need to be specified and 

later estimated. This is done with the aid of the chain rule and the Markov property. The 

chain rule states that a joint probability distribution of n variables can be expressed as the 

product of the conditional distributions of all the variables (Mislevy & Gitomer, 1996): 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑗|𝑥𝑗−1, … , 𝑥1)𝑛
𝑗=1         (2.5) 

where xj equals the j
th 

variable and n is the total number of variables. The Markov 

property specifies that the joint probability of a set of variables can be reduced to the 

conditional probability of a variable and the variable(s) that immediately precede it (i.e., 

its parents, PA), if the variable is independent of all other variables in the DAG given its 

parents (Pearl, 2000).  

If the Markov property is satisfied, the chain rule simplifies to: 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑗|𝑷𝑨(𝑥𝑗))𝑛
𝑗=1        (2.6)
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PA = the full set of parents for xj 

This reduces the maximum computational burden of specification from 2
n
 (for binary 

nodes) to 2
m
, with m being the number of variables in the largest local conditional 

probability distribution, 𝑃(𝑥𝑗|𝑷𝑨(𝑥𝑗)). The savings can be substantial especially for 

larger models, illustrating the efficiencies afforded by BNs. 

Bayesian updating: facilitating efficient inferences from observations. Once the 

structure of a BN has been articulated and the necessary prior and joint probabilities have 

been specified, data are incorporated into the model and used to update the posterior 

probabilities of the nodes with unknown states.  The elegance of BNs is that they 

facilitate bidirectional inferences (Mislevy & Gitomer, 1996; Pearl & Russell, 2001).  

The structure of the BN allows new information (e.g., observed data) to flow deductively 

down the arrows, while the use of Bayes’ theorem allows new information to flow 

inductively up the arrows. In short, once new information about the variables is known, 

BNs provide the ability to make probabilistic inferences about the still unknown values in 

the model wherever they reside.  

In Bayesian analyses in general the actual calculation of the posterior probabilities 

for continuous variables can be computationally difficult (i.e., “NP hard”; Charniak, 1991) 

due to the fact the denominator of Bayes’ theorem would require integration. A major 

advantage of a BN is that it facilitates efficient and tractable propagation of new 

information throughout the network by utilizing discrete variables. This means estimating 

the posterior distribution only requires summation not integration of the denominator of 

Bayes’ theorem. The summation of probabilities is easily handled by modern computer 

power and by the use of the methods covered in the prior section for breaking down a 



36 
  

large network into more manageable chunks for computational purposes. These 

techniques, along with the use of Bayes’ theorem and conditional independence, make 

BNs a powerful technique for efficiently making inferences about what is unknown given 

one’s prior beliefs and the observed data.  For illustrative purposes, a full example of a 

Bayesian network is provided in Appendix A. 

Dynamic Bayesian networks. Traditional Bayesian networks (as described 

above) assume the state of the world being modeled remains fixed over time. As new 

information is collected and propagated throughout the model, the posterior probabilities 

for the outcomes of an event change, but the structure and underlying probability 

distributions remain the same.  For instance, in our example above, we assume that the 

relationship between the outcome of a student’s placement test and success in a college-

level algebra course remains unchanged over time even if the student attempted the 

placement exam several times. Dynamic Bayesian networks (DBNs) are a special case of 

BNs that expand Bayesian inference and model building to include changes over time 

(Dean & Kanazawa, 1988; Reye, 2004). Over the last decade DBNs have gained 

popularity in the area of educational research and measurement as a method for modeling 

student proficiency in intelligent tutoring systems (Mayo & Mitrovic, 2001; Millán & 

Pérez de la Cruz, 2002; Reye, 2004; Zapata-Rivera & Greer, 2004) and educational 

gaming (Manske & Conati, 2002; Shute, 2011), among other areas.   

A DBN is comprised of two main components. The first component is a series of 

individual local BNs for given slices of time. Figure 2 illustrates a simple DBN. Let A be 

a latent random variable and B and C be observable random variables. The B  A C 

diverging clusters in the figure represent local BNs. In isolation, each one can be viewed 
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as a traditional BN subject to all the same conceptual (e.g., bidirectional flow of 

information) and operational (e.g., d-separation) properties previously described.  Each 

local BN represents the hypothesized model structure for a given point in time. As such, 

the nodes in figure 2 are identified with a subscript, t, to identify an increment of time. 

The unit of measurement does not need to represent chronological time in a literal sense; 

nor does it need to increase in discrete units (Murphy, 2002). It can represent any unit of 

change, e.g., days, number of interactions within a tutoring system, number of exam 

items answered, semesters in college, etc. It should reflect a unit of change that is most 

relevant to the nature of the research question and real-world phenomena being modeled.  

Typically, the structure of each local BN is a carbon copy of each other (as depicted in 

figure 2); however, this is not a requirement (Reye, 2004).  

Figure 2. A simple dynamic Bayesian network. 

The second component of a DBN is a series of nodes that form directed acyclic 

connections between the local networks over time. These nodes are typically specified as 

latent (hidden) random variables (Ghanmi, Mahjoub, & Ben Amara, 2011). Reye (2004) 

referred to these connections between time periods as the “belief net backbone” of a DBN 

(p. 75). The backbone passes information from one state in time to another. In figure 2, 

this is represented by the nodes At-1, At, At+1, At+n. The first time node in the backbone,   

At-1, represents the initial prior belief about the probability distribution of A. It can be a 
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single node or a full local BN. Applying the normal properties of a DAG, the arrow 

between nodes across time points (e.g., At-1  At) denotes a dependent relationship 

between the variables. It is also possible to have cross-time dependencies between nodes 

in backbone and those in the local BNs.  For instance, if we draw an arrow between Ct 

and At+1, this would indicate that the future probability distribution of A is directly 

dependent on the current states of both A and C. DBNs have the flexibility to take a 

variety of forms. See Ghanmi, Mahjoub, & Ben Amara (2011) and Murphy (2002) for 

presentations on various DBN structures of varying complexity.  

DBNs are updated using a two-step process. The first step is to pass information 

from time point t-1 (t = 0 when the previous time point is the prior) to time point t for all 

dependent nodes connected via the backbone. In our example this is achieved by simply 

conditioning the probability of At on At-1 (P(At | P(At-1)). The Markov property is used 

for more complex models. More specifically, the probability distribution of a set of 

backbone variables X at time point t conditioned on X at t-1, (P(Xt | P(Xt-1)), is equal to 

P(Xt | PA(Xt)), where PA represents the parents of Xt. The second step of the process is to 

propagate information throughout the local BN at time point t using Bayes’ theorem. For 

example, the posterior probability of At given Bt and Ct is expressed as: 

𝑃(𝐴𝑡|𝐵𝑡, 𝐶𝑡) =  
𝑃(𝐵𝑡,𝐶𝑡|𝐴𝑡)𝑃(𝐴𝑡)

𝑃(𝐵𝑡,𝐶𝑡)
       (2.7) 

𝑃(𝐴𝑡) =  𝑃(𝐴𝑡|𝑃(𝐴𝑡−1))  

Once the posterior distribution is estimated for At, it flows to the next time slice and 

becomes the prior for At+1. The model continues to update in this fashion across a finite 

number of time points as more information is collected. 
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Discrete-Time Survival Analysis: An Interim Step to Building Bayesian Networks. 

As previously mentioned, a major advantage of BNs over traditional techniques 

for modeling variables of student success is that they provide an effective means of 

visually depicting the variables under study and their relationships, they allow a priori 

beliefs about the strength of those relationships including those based on subjective 

interpretations of probability, and they can quickly provide updated probability estimates 

via Bayes’ theorem once new information is available. Where BNs are less advantageous 

than traditional analysis is they have been primarily limited in educational research to use 

as confirmatory models. In contrast to traditional analytic techniques, there is a shortage 

of literature and established practice in educational research on how to construct BNs in 

non-confirmatory situations. This severely diminishes their application in situations such 

as the current study that require exploratory model building. Exploratory BN modeling 

building techniques are discussed outside the realm of education (e.g., Neapolitan, 2003; 

van Gerven, Taal, & Lucas; 2008), but they tend to represent approaches and underlying 

perspectives that are foreign or antithetical to the frequentist, null-hypothesis significance 

testing perspective espoused by most educational researchers. The current study seeks to 

provide an example of a model building approach for BNs that scaffolds existing 

knowledge and practices in educational research with more modern approaches. This is a 

modest attempt to promote branching between the two perspectives without forcing 

educational researchers to choose between abandoning the use of BNs in instances when 

exploratory modeling building is required or the modeling building analytic perspective 

and practices they are already familiar with. 



40 
  

In pursuit of that goal, discrete-time survival analysis models (Singer & Willett, 

2003; also commonly referred to as a hazard model) was used as an exploratory step to 

inform the construction of the final BN used to predict students’ stopping out behavior. 

Although the use of survival analysis is relatively new in the area of educational research, 

it has quickly become a widely used longitudinal technique for predicting discrete 

outcomes of student persistence (Chen & DesJardins, 2008; Gross, Torres, Zerquera, 

2013; Ishitani, 2003; Murtaugh, Burns, & Schuster, 1999; Radcliffe, Huesman, Kellogg, 

2006; Ronco, 1994; Willett & Singer, 1991), transfer behaviors (Bahr, 2008; Bahr, 2012; 

Johnson & Muse, 2012), and degree attainment (Calcagno, Crosta, Bailey, & Jenkins, 

2007a; Calcagno, Crosta, Bailey, & Jenkins, 2007b; DesJardins, Ahlburg, & McCall, 

2002; DesJardins, McCall, Ahlburg, & Moye, 2002; Gross, Torres, Zerquera, 2013; 

Zwick & Sklar, 2005) among postsecondary students.  

The goal of a discrete-time survival analyses is to create a survivor function, 

𝑆(𝑡𝑖𝑗), that estimates the probability a randomly selected student will not experience an 

event (i.e., will “survive”) by a given time point.  At its most basic level the estimated 

values of the survivor function are equal to the proportion of students in the sample at 

time point j who have not experienced the event. For example, if the event is specified as 

stopping out of college, 𝑆(𝑡𝑖𝑗) estimates the probability that student i will persist (i.e., not 

stop out) to time point j. The survivor function cannot be directly estimated if the sample 

includes any “censored” data. Generally speaking, censored data are missing dependent 

variable values for a given student that are assumed to be the result of the study’s design 

and independent of the outcome (see Singer & Willett, 2003, for a more nuanced 
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definition and discussion of censored longitudinal data). In these instances the survivor 

function is estimated through the use of the hazard function, ℎ(𝑡𝑖𝑗):  

�̂�(𝑡𝑖𝑗) = �̂�(𝑡𝑖𝑗−1)[1 − ℎ̂(𝑡𝑖𝑗)]       (2.8) 

ℎ̂(𝑡𝑖𝑗) = P[𝑇𝑖 = 𝑗 |𝑇𝑖  ≥ 𝑗, 𝑿𝑖𝑗 = 𝒙]       (2.9) 

where ℎ̂(𝑡𝑖𝑗) is the predicted probability that student i will experience the event (𝑇𝑖; e.g., 

stop out) by time period j, conditioned on (1) the fact that student i has not already 

reached the event (𝑇𝑖  ≥ 𝑗) and (2) a set of student-level predictor variable values 

(𝑿𝑖𝑗 = 𝒙). The predictor variables may include both time-variant (e.g., term GPA) and 

time-invariant (e.g., gender) variables.  �̂�(𝑡𝑖𝑗) is therefore defined as the proportion of 

students who survived to time point j-1 multiplied by the probability a student will not 

stop out by time period j. The modeling of the hazard function can be accomplished 

through the use of the logit function: 

𝑙𝑜𝑔𝑖𝑡 ℎ̂(𝑡𝑖𝑗) = [𝛼1𝐷1𝑖𝑗 + 𝛼2𝐷2𝑖𝑗 + ⋯ +  𝛼𝐽𝐷𝐽𝑖𝑗] + [𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 + ⋯ + 𝛽𝑃𝑥𝑃𝑖𝑗]  (2.10) 

The logit of the hazard function for student i at time j is equal to the sum of the intercept 

values, an, at each time point plus the sum of the weighted p predictor variables for 

student i at time j. This generalized specification of a discrete-time survival analysis can 

be viewed as a longitudinal extension of normal logistic regression. A key advantage of 

this approach is that it produces results that are easily interpretable to those familiar with 

standard logistic regression. For example, 𝛽𝑃, represents the change in log odds 

associated with a one-unit increase in the value of xp for student i at time j, holding all 

other variables constant. Another advantage of the logistic specification of the hazard 
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function is that it can be easily extended to accommodate a polytomous response variable 

to model “competing risks” (Scott & Kennedy, 2005; Singer & Willett, 2003). 

Prior Research on Potential Predictor Variables 

There have been a small number of studies that specifically modeling 

postsecondary students’ stopping out behavior (e.g., DesJardins, Ahlburg, & McCall, 

2002; Gross, Torres, & Zerquera, 2013); however, it has been far more prevalent for 

researchers to study the inverse of stopping out – persistence, transfer, and graduation – 

and the its sister variable, dropping out (at a conceptual level, dropping out is viewed as a 

student who has permanently left the institution, whereas stopping out is a student’s first 

break in enrollment from which they may or may not return). As such, the literature 

review primarily centered on prior research related persistence, transfer, and graduation 

with the belief that knowledge gained from those studies would be directly relevant to the 

current study since they are inversely related to stopping out behaviors. 

Persistence, transfer, and graduation have been arguably the most widely studied 

topics in the educational literature; so much so that entire tomes have been written on 

these subjects and related topics (e.g., Braxton, et al., 2014; Habley, Bloom, & Robbins, 

2012; Pascarella & Terenzini, 1991; Pascarella & Terenzini, 2005; Seidman, 2012; Tinto, 

1994; Tinto, 2012). It is not the purpose of this study to provide yet another voluminous 

summary of such research. Not only would that be impractical, it would have only a 

limited benefit on informing which predictor variables to potentially include in the 

models under study since the significance and meaningfulness of predictor variables are 

inextricably tied to the context in which they are collected and  modeled. The more 

dissimilar the context is to the current study, the less relevant the results are to informing 
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it.  Ideally, the current study would be informed by research that mirrors its context, e.g., 

a sample of students at a community college of similar type, with data collected and 

defined in the same manner, analyzed using the same modeling techniques, etc. In reality, 

this approach is not practical since it is unlikely to find research with such a degree of 

similarity. Instead, the decision was made to conduct a review of studies that (a) had 

postsecondary students (of any type) as the target population and (b) employed discrete-

time survival analysis to predict postsecondary persistence, transfer, and/or degree 

attainment – all of which are inversely related to stopping out and are therefore of interest. 

Matching on these aspects of the context seemed to present an appropriate compromise 

given the focus of the study. Studies utilizing BNs were not included because, as 

previously mentioned, the author was not able to find any such studies except from one 

(Nandeshaw, Menzies, Nelson, 2011).  

 A review of prior research that met the criteria discussed above netted a set of 

variables that have been shown to be significant (p < .05) predictors of postsecondary 

persistence, transfer, and/or graduation. The magnitude, and in some cases direction, of 

the relationships varied by study and/or by time point within a study; because of this the 

below summary of research only focuses on the significance of the variables. These 

results will be used to inform the selection of potential predictor variables to include in 

the current study. The variable selection process is articulated in more detail in Chapter 3.  

Persistence. The following variables were found to be significant predictors of 

postsecondary persistence: Academic integration (Chen & DesJardins, 2008), age 

(Murtaugh, Burns, & Schuster, 1999), attendance at a freshmen orientation (Murtaugh, 

Burns, & Schuster, 1999), college GPA (Chen & DesJardins, 2008; DesJardins, Ahlburg,
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 & McCall, 2002; Gross, Torres, & Zerquera, 2013; Ishitani, 2003; Johnson, 2006; 

Murtaugh, Burns, & Schuster, 1999), cost of attendance (Gross, Torres, & Zerquera, 

2013), educational expectations (Chen & DesJardins, 2008; Ishitani, 2006), ethnicity 

(DesJardins et al., 1994; DesJardins, Ahlburg, & McCall, 2002; Gross, Torres, & 

Zerquera, 2013; Ishitani, 2003; Ishitani, 2006; Johnson, 2006; Murtaugh, Burns, & 

Schuster, 1999; Ronco, 1994), family income (Chen & DesJardins, 2008; DesJardins, 

Ahlburg, & McCall, 2002; Ishitani, 2003; Ishitani, 2006), entering college within a year 

of graduating high school (Johnson, 2006), federal work study recipient (Chen & 

DesJardins, 2008; Johnson, 2006), full-time enrollment (Johnson, 2006), gender (Gross, 

Torres, & Zerquera, 2013; Ishitani, 2003; Ishitani, 2006), high school GPA (Ishitani, 

2003; Murtaugh, Burns, & Schuster, 1999), high school academic intensity (Ishitani, 

2006), high school rank (Gross, Torres, & Zerquera, 2013; Ishitani, 2006), income level 

(Johnson, 2006), institutional type (Ishitani, 2006), living off campus (Gross, Torres, & 

Zerquera, 2013), number of developmental education credits attempted (Gross, Torres, & 

Zerquera, 2013), number of college credits attempted (Gross, Torres, & Zerquera, 2013), 

number of college transfer credits (DesJardins, Ahlburg, & McCall, 2002), parent’s 

educational expectations (Ishitani, 2006), parent’s educational level (Chen & DesJardins, 

2008; Ishitani, 2003; Ishitani, 2006),  residency (Murtaugh, Burns, & Schuster, 1999), 

SAT/ACT scores (Johnson, 2006), size of hometown (Ishitani, 2003), students identified 

as needing help with studying (DesJardins, Ahlburg, & McCall, 2002), and type of 

financial aid received (Chen & DesJardins, 2008; DesJardins, Ahlburg, & McCall, 2002; 

Gross, Torres, & Zerquera, 2013; Ishitani, 2006; Johnson, 2006).
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Degree attainment. The following variables were found to be significant 

predictors of postsecondary degree attainment: ACT scores (Radcliffe, Huesmann, & 

Kellogg, 2006), age (Calcagno, Crosta, Bailey, & Jenkins, 2007a; Calcagno, Crosta, 

Bailey, & Jenkins, 2007b), college GPA (DesJardins, Ahlburg, & McCall, 2002; Gross, 

Torres, & Zerquera, 2013), cost of attendance (Gross, Torres, & Zerquera, 2013), 

enrollment in developmental courses (Calcagno, Crosta, Bailey, & Jenkins, 2007), 

ethnicity (Calcagno, Crosta, Bailey, & Jenkins, 2007; DesJardins, Ahlburg, & McCall, 

2002; Radcliffe, Huesmann, & Kellogg, 2006), gender (Calcagno, Crosta, Bailey, & 

Jenkins, 2007), family income (DesJardins, Ahlburg, & McCall, 2002), financial aid 

needs unmet (Radcliffe, Huesmann, & Kellogg, 2006), full-time enrollment (Calcagno, 

Crosta, Bailey, & Jenkins, 2007), high school rank (Gross, Torres, & Zerquera, 2013), 

institution type (Gross, Torres, & Zerquera, 2013), living off campus (Radcliffe, 

Huesmann, & Kellogg, 2006), location of residence (Radcliffe, Huesmann, & Kellogg, 

2006), math placement test scores (Calcagno, Crosta, Bailey, & Jenkins, 2007), number 

of C grades earned in first term (Radcliffe, Huesmann, & Kellogg, 2006), number of 

college transfer credits (DesJardins, Ahlburg, & McCall, 2002), number of credits 

attempted (Gross, Torres, & Zerquera, 2013), number of developmental educational 

courses taken (Gross, Torres, & Zerquera, 2013; Radcliffe, Huesmann, & Kellogg, 2006), 

number of courses withdrawn from in first term (Radcliffe, Huesmann, & Kellogg, 2006), 

ratio of completed to attempted credits for first term (Radcliffe, Huesmann, & Kellogg, 

2006), students identified needing help with studying (DesJardins, Ahlburg, & McCall, 

2002), type of financial aid received (Calcagno, Crosta, Bailey, & Jenkins, 2007; 
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DesJardins, Ahlburg, & McCall, 2002; Gross, Torres, & Zerquera, 2013), and verbal 

placement test scores (Calcagno, Crosta, Bailey, & Jenkins, 2007). 

Transfer. Fewer studies were found that used survival analysis to predict a 

student’s transfer behavior as a stand-alone outcome. Of the applicable articles that were 

found, age (Scott & Kennedy, 2005), college credit hours earned (Johnson & Muse, 

2012), college GPA (Johnson & Muse, 2012), English placement level (Bahr, 2008), 

ethnicity (Bahr, 2008; Johnson & Muse, 2012), gender (Johnson & Muse, 2012), having 

met with an advisor (Bahr, 2008), math placement level (Bahr, 2008), participation in a 

fraternity or sorority (Johnson & Muse, 2012), and residency (Johnson & Muse, 2012) 

were shown to be significant predictors of whether postsecondary students would transfer 

to a four-year institution.   
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Chapter 3 

Methods 

Participants 

The models were developed using three years of previously collected longitudinal 

data on 1,756 degree- or transfer-seeking students who first enrolled in fall 2009 at a 

large two-year public institution located in the southwestern United States. A second 

validation sample was used of 4,859 degree- or transfer-seeking students who first 

enrolled in fall 2010 at the same participating institution. The difference in the size of the 

two samples was due to the fact that the first sample only included students who had 

completed the course placement exams required by the participating institution. This was 

needed in order to evaluate whether the placement scores and/or levels were significant 

predictors of stopping out. In contrast, the fall 2010 did not have the same limitation 

since placement test scores and levels were not needed to validate the final model. As a 

result, the second sample was treated as if it was drawn from a different population of 

students than the fall 2009 sample was drawn from. Student privacy was maintained by 

anonymizing all of the data prior to its use.  

Dependent Variables 

The current study included a single dichotomous outcome variable with two mutually 

exclusive events: 

Stopped out: A student who did not graduate or transfer prior to a given term nor 

did he/she enroll in at least one course in that term.  

Not stopped out: A student who re-enrolled in at least one course in that term. 
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 If a student graduated or transferred after a given term he or she was removed 

from the risk set and treated as censored for all future terms. 

Longitudinal Time Points 

The probability of a student stopping out was calculated for each of the following time 

points: 

 Time 1: Probability of stopping out before the start of the 2
nd

  semester (spring 

2010) 

 Time 2: Probability of stopping out before the start of the 3
rd

  semester (fall 2010) 

 Time 3: Probability of stopping out before the start of the 4
th

  semester (spring 

2011) 

 Time 4: Probability of stopping out before the start of the 5
th

 semester (fall 2011) 

 Time 5: Probability of stopping out before the start of the 6
th

 semester (spring 

2012) 

 Time 6: Probability of stopping out before the start of the 7
th

  semester (fall 2012) 

Predictor Variables 

A pool of potential predictor (independent) variables was considered for inclusion 

in the predictive models. A broad array of variables was selected based on (a) prior 

research, (b) informed judgment by the author, and (c) availability of data. The final 

model in this study used a parsimonious subset of the variables. The exact subset of 

variables that were used was determined based on the results of variable selection 

methods and substantive considerations. The specific techniques that were used are 

described below. 
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Variable selection. The pool of potential variables was constructed by including 

any variable the author had access to that was either supported by prior research (as 

described in Chapter 2) or that was reasonably assumed to have a potential impact on a 

community college student’s probability of stopping out. The list was further reduced 

through the variable selection process described next.  

The current study employed traditional statistical modeling and educational data 

mining variable selection methods in an attempt to produce models of acceptable fit and 

classification accuracy while using the most parsimonious set of predictor variables. 

Educational research has historically relied most heavily on prior research and theory to 

identify variables to serve as independent variables. This stems from the general practice 

in educational research of specifying the variables of interest in advance of data 

collection, giving the researcher more direct control to limit the study to the variables of 

most interest. In contrast, educational data mining relies predominately on empirical 

techniques to select independent variables from a pool of available data. This follows 

from the fact that data mining typically involves the use of pre-existing data that were 

collected as part of every-day practices and not as the result of a research study based on 

a purposeful design. Since this study exclusively used pre-existing data that were not 

collected as part of a research design, it utilized data mining and traditional approaches to 

identify a parsimonious subset of variables from the broader aforementioned list of 

potential independent variables.  That said, the final decision of which variables to 

include in the models was determined by the researcher based on a synthesis of analytic 

results, substantive considerations, prior research, sound reasoning, and interpretability.  

In other words, the variable selection process was data informed and not solely 
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determined by the data. The researcher served as an active agent and final arbiter of the 

selection process, not a detached button-pusher driven solely by the data. As such, on a 

philosophical level the study adopted a Bayeisan paradigm of reasoning that readily 

paired observed data with subjective judgments to inform an outcome.  

Variable selection methods in educational data mining can be broadly classified 

into two categories: variable ranking and subset selection (Kantardzic, 2011; Nisbet, 

Elder, & Miner, 2009). Variable ranking consists of ranking each variable on one or more 

metrics and using a threshold to decide which variables to include in future analyses. For 

example, calculating the bivariate correlation between each independent variable and the 

dependent variable, and including only variables that have a correlation above a pre-

specified threshold. The current study pre-screened potential predictor variables using the 

variable ranking methods described below. Subset selection methods involve search 

algorithms that iterate over the entire pool of potential variables in order to identify a set 

that collectively best predict the outcome variable. For this study subset selection was 

accomplished using forward stepwise regression (Cohen, Cohen, West, Aiken, 2003).  

This technique is outlined in detail in subsequent sections as part of the discrete-time 

survival analysis modeling building process. 

 Variable ranking techniques. First, bivariate correlations were constructed 

between each potential predictor variable and the outcome variable. Predictor variables 

that had a non-significant correlation or a correlation weaker than ± .20 were considered 

for exclusion from the analysis. Although ±.20 is an arbitrary threshold, it seemed 

reasonable to consider excluding any variable that shares less than 5% of its variance 

with the outcome variable. Second, bivariate correlations were calculated between each 
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pair of predictor variables. If a correlation was stronger than ± .90, the variable that had 

the highest correlation with the dependent variables was retained and the other variable 

was removed from future analyses to eliminate concerns related to multicollinearity. 

Missing data. Although there are a variety of accepted techniques for imputing 

missing data (Enders, 2010), applying such techniques went beyond the scope of the 

current study. For the nominal variables, missing data were recoded into an “Unknown” 

category. This was a pragmatic decision to prevent a sizable loss of data due to the 

compounding effect of listwise deletion across all the variables. This also allowed the 

researcher to evaluate whether the Unknown category had a substantive relationship with 

any of the dependent variables. Any continuous predictor variable with greater than 10% 

missing data was removed from the analyses.  

 Initial pool of potential predictor variables. The variable selection process just 

described was applied to the below list of potential predictor variables. As previously 

mentioned, the initial pool of potential variables was selected based on prior research, 

informed judgment by the author, and availability of data. The variables are divided into 

two categories. The first category is time-invariant variables that are known at time point 

zero (prior to the start of Fall 2009) and remained fixed from that point on. The second 

category is time-variant variables whose values may change from one time period to the 

next (e.g., the grade point average for a specific term). Both categories include variables 

that may have high degrees of multicollinearity and/or represent the same construct only 

measured at different levels. For example, the ratio of credits successfully attempted and 

GPA are expected to have a high degree of multicollinearity. In such instances the intent 

was to identify the single variable that best serves as predictor of the outcome and 
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remove the redundant or overlapping variables. The measurement level of each variable 

is provided in parentheses.  

Time invariant variables.  

Age (ratio): The student’s age derived from his/her date of birth.   

Anticipated work hours (nominal): The student’s self-reported number of hours 

he/she anticipates working while in school. 

Developmental English placement (dichotomous): Indicates whether the student 

placed into a developmental (below college level) English course based on his/her 

English placement exam score. 

Developmental math placement (dichotomous): Indicates whether the student 

placed into a developmental (below college level) math course based on his/her 

math placement exam score. 

Developmental reading placement (dichotomous): Indicates whether the student 

placed into a developmental (below college level) reading course based on his/her 

reading placement exam score. 

English placement level (ordinal): Indicates the student’s English course 

placement rank based on his/her English placement exam score.  

First generation status (dichotomous): Indicates whether the student self-reported 

as being a first-generation student (neither parent earned a bachelor’s degree 

college).  

Gender (dichotomous): The student’s self-reported gender. 

High school graduation status (dichotomous): Indicates whether the student 

graduated from high school.
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Language now (dichotomous): Indicates whether English is the language the 

student spoke most often at the time the data were collected. 

Math placement level (ordinal): Indicates the student’s math course placement 

rank based on his/her math placement exam score.  

Median household income (ratio): A proxy of the student’s estimated median 

household income using U.S. Census 2011 inflation-adjusted dollars by zip code. 

Needs assistance with childcare information (dichotomous): Indicates whether the 

student self-reported during the time of registration as needing assistance with 

childcare information. 

Needs assistance choosing a major or career (dichotomous): Indicates whether 

the student self-reported during the time of registration as needing assistance with 

choosing a major or career. 

Needs assistance with commuter information (dichotomous): Indicates whether 

the student self-reported during the time of registration as needing assistance with 

commuter information. 

Needs assistance learning English (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with learning 

English. 

Needs assistance with financial aid (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with financial 

aid.  

Needs assistance with finding work (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance finding work.
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Needs assistance with math skills (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with math skills. 

Needs assistance with mentoring (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with mentoring. 

Needs assistance with reading skills (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with reading 

skills. 

Needs assistance with study skills (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with study skills. 

Needs assistance with writing skills (dichotomous): Indicates whether the student 

self-reported during the time of registration as needing assistance with writing 

skills. 

Needs assistance with work experience credit (dichotomous): Indicates whether 

the student self-reported during the time of registration as needing assistance with 

work experience credit. 

Number of developmental subjects placed into (interval): Indicates how many 

developmental subjects (English, math, reading) a student placed into. The values 

ranged from zero to three. 

Race/ethnicity (nominal): The student’s self-reported race/ethnicity. 

Reading placement level (ordinal): The student’s reading course placement rank 

based on his/her reading placement exam score. 
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U.S. military or dependent: Indicates whether the student self-reported as being a 

current or former member of the U.S. Armed Forces or a dependent of a current 

or former member of the U.S. Armed Forces. 

Time variant variables. 

Attempted credit hours (ratio): The number of credit hours the student attempted 

in a given term.  

Courses dropped (ratio): The number of courses dropped by the student in a given 

term. 

Courses successfully completed (ratio): The number of courses the student 

successfully passed (earned a C or equivalent or better) in a given term. 

Courses withdrawn (ratio): The number of courses withdrawn by the student in a 

given term. 

Cumulative attempted credit hours (ratio): The cumulative number of credit hours 

the student attempted as of a given term.  

Cumulative courses attempted (ratio): The cumulative number of courses 

attempted by the student as of a given term. 

Cumulative courses dropped (ratio): The cumulative number of courses dropped 

by the student as of a given term. 

Cumulative courses withdrawn (ratio): The cumulative number of courses 

withdrawn by the student as of a given term. 

Cumulative earned credit hours (ratio): The cumulative number of credit hours 

earned by the student as of a given term.
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Cumulative grade point average (ratio): The student’s cumulative grade point 

average as of a given term. 

Cumulative Pell grant amount (ratio): The cumulative amount of Pell grant funds 

the student received while attending the institution as of a given term. 

Cumulative ratio of earned to attempted credits (ratio): The cumulative ratio of 

the number of credit hours the student has earned divided by the number of credit 

hours attempted as of a given term. 

Cumulative ratio of earned to attempted developmental credits (ratio): The 

cumulative ratio of the number of developmental credit hours the student has 

earned divided by the number of developmental credit hours attempted as of a 

given term. 

Cumulative student loan amount (ratio): The cumulative amount of federal 

student loan funds the student received while attending the institution as of a 

given term. 

Full-time student (dichotomous): Indicates whether the student was enrolled in 12 

or more credit hours for a given term. 

Number of days registered prior to start of first course (ratio): Indicates how 

many days the student registered for courses prior to the start of their first course 

for a given term.  

Pell grant amount (ratio): The amount of Pell grant funds the student received for 

a given term. 

Pell grant received (dichotomous): Indicates whether the student received Pell 

grant funds for a given term.



57 
  

Primary time of attendance (nominal): Indicates whether the student primarily 

attended courses during the day, evening, or other for a given term. 

Primary time of attendance (dichotomized): Indicates whether the student 

primarily attended courses during the day during a given term. 

Ratio of earned to attempted credits (ratio): The ratio of the number of credit 

hours the student has earned divided by the number of credit hours attempted for a 

given term. 

Received need-based aid: Indicates whether the student received a Pell grant or 

federal subsidized loan during the prior term.  

Student loan amount (ratio): The amount of federal student loan funds the student 

received for a given term. 

Student loan received (dichotomous): Indicates whether the student received a 

federal student loan for a given term. 

Success rate in developmental courses (ratio): The proportion of developmental 

courses the student successfully passed (earned a C or equivalent or better) in a 

given term. 

Term grade point average (ratio): The student’s grade point average for a given 

term. 

Preliminary Exploratory Data Analyses 

The distribution of responses for each variable that passed the aforementioned 

variable ranking screening process was examined using univariate visual depictions (e.g., 

histograms, box plots, normal probability plots) and descriptive statistics (means, 

standard deviations, skewness, and kurtosis). The cell frequencies of each nominal 
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variable were examined. Sparsely populated response categories were collapsed into 

another response category if there was substantive justification to do so. If there was not 

sufficient justification, the responses related to the sparsely populated cells were recorded 

as Unknown. The frequency distributions of continuous variables were checked for 

potential nonsensical responses (e.g., an age > 100). If any nonsensical responses were 

found and they appeared to be isolated to a specific variable they were recoded as 

Unknown and presumed to be data entry errors in the underlying student information 

system the data were extracted from.  If there were nonsensical results across more than 

one variable for a given student the case would have been removed. There were no such 

instances in the data set.  For each independent variable, the pattern of correlations with it 

and each dependent variable (time point) was examined to evaluate whether a variable 

should potentially be analyzed as an interaction with time. For time-varying predictors, 

the correlation was examined between the lagged instance of the variable and the 

respective outcome. For example, the correlation was examined between the outcome for 

fall 2011 and student GPA for the prior term (spring 2011).  

Model Building Phase 1: Discrete-Time Survival Analysis 

 Following the preliminary data analysis, a binomial discrete-time survival 

analysis (Singer & Willett, 2003) was conducted.  As previously described, the discrete-

time survival analysis provides an established model building framework for informing 

the development of the BN.  

Life table. Prior to conducting a survival analysis a life table was constructed. 

The life table is a staple of survival analysis. It summarizes the number of students who 

were in the risk set at the start of a given time period, the estimated proportion that would
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 stop out (hazard function) during the time period and the estimated proportion that would 

not stop out (survivor function) at the end of the time period. The life table does not take 

into account any potential covariates/predictors. The life table is also useful for 

calculating the median lifetime. This is the number of time periods the model estimates 

would need to eclipse before 50% of students in the entire sample would experience the 

event (i.e., stop out). 

 Model building. The current study utilized an amalgamation of automated data 

mining subset selection techniques (stepwise regression), the model building approach 

articulated by Hosmer and Lemeshow (2000) for standard logistic regression, and the 

model building approach for discrete-time survival analysis specified by Singer and 

Willett (2003). To aid in the analysis, the data file was set up in “person-period” format 

in which there was a unique row of data for each time point for each student. Students 

who graduated or transferred before the start of a given term were treated as censored 

data and were excluded from the risk set for the following time period. The data were 

analyzed using SPSS. The model building approach consisted of the following steps: 

Step 1: To further whittle down the number of predictor variables for each time 

period, a forward stepwise logistic regression (Nisbet, Elder, & Miner, 2009) was 

conducted for all the potential predictor variables and the outcome variable for each time 

point using half of the students randomly selected from the entire sample. The forward 

stepwise regression utilized the likelihood ratio test (p-in < .05, p-out < .10). The process 

was then repeated using the remaining half of the sample. The results of both analyses 

were then used along with the researcher’s judgment to determine which variables to 
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include in the final exploratory model for each time point. The parameters for the final 

exploratory models were then estimated using the entire sample.  

Step 2: The results from the individual logistic regression analyses along with 

informed judgment by the researcher were used to select the predictors to include in the 

survival analysis that simultaneously analyzed the probability of each a student stopping 

out at each time point. Any variable that was a significant (p < .05) predictor of stopping 

out for two or more models from Step 1 was included in the survival analysis. The 

researcher also considered the inclusion of any variable that was of substantive interest 

even if it was not shown to be a significant predictor in two or more of the individual 

logistic regression models. The resulting survival analysis model was considered the 

preliminary main effects model.  

Step 3: The assumption that each continuous variable is linearly related to the 

logit was checked for all applicable variables in the preliminary main effects models. 

This was done by adding to the model an interaction term of the variable multiplied by 

the natural log of itself and conducting a nested χ 
2
 likelihood ratio test (Tabachnick & 

Fidell, 2007). A significant difference (p < .05) between the two models indicated that the 

assumption was not supported and that other specifications (e.g., quadratic) should be 

considered. The resulting model was considered the final main effects model. 

Step 4: The final main effects model included a general nonparametric 

specification of time. For the given model, this materialized as each time point being 

specified as a time-dependent intercept. Other specifications of time were also evaluated. 

Specifically, constant, linear, quadratic, and cubic specifications of time. Nested χ
2
 

goodness-of-fit tests were conducted to see if a more complex specification of time 
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significantly increased model fit. It was known a priori that the general specification of 

time would be the best fitting model and the constant specification of time would be the 

worst fitting model. These models served as the ceiling and floor to comparatively 

evaluate the remaining specifications of time. The question being pursued was whether 

the linear, quadratic, or cubic specifications offered a material improvement above the 

constant-only model without having markedly worse model fit compared to the model 

with a general specification of time.  

Step 5: Once the continuous variables and time were correctly specified, all 

substantively meaningful interactions with time were examined to see if they were 

significant (p < .05) using a nested χ 
2
 likelihood ratio test. Any significant interactions 

would be considered for inclusion in the full model. The result model was considered the 

final model. 

Step 6: The fit and classification accuracy of the final model were estimated using 

the full sample of students as described below. The outcome with the highest predicted 

probability was considered the predicted outcome for each student.  

Model fit. The fit of the final model was evaluated using the χ 
2
 goodness-of-fit 

test, Hosmer and Lemeshow test, and the Cox and Snell and Nagelkerke pseudo R
2 

statistics. A significant χ 
2
 goodness-of-fit test (p < .05) indicates that the full model fits 

the data better than an intercept-only model. Although this is a commonly used model fit 

metric, it is a low bar to clear. The Hosmer and Lemeshow test divides the rank-ordered 

predicted probabilities into g groups. A g x 2 (since the outcome variable is dichotomous) 

contingency table is constructed. A significance test is conducted on the null hypothesis 

that the observed and expected frequencies are equal across the groups. In other words, 
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that the model-produced frequency estimates are equal to the observed frequencies. A 

non-significant result provides support that the model fits the data. The pseudo R
2
 metrics 

are measures of effect size, similar to R
2
 in linear regression but do not indicate 

proportion of variance accounted for. Cox and Snell is unbound while Nagelkerke is a 

rescaled version of Cox and Snell that ranges from zero to one. Larger values indicate 

better data-model fit but there is no broadly accepted threshold on what a “good” value is. 

This makes the metrics difficult to interpret.  

Classification accuracy. The classification accuracy of the models was examined 

using the overall, marginal classification rates, and adjusted overall (i.e., Cohen’s κ; 

Cohen, 1960) classification rates. The area under the Receiver Operating Characteristic 

(ROC) curve was also calculated for the survival analysis model. For survival analysis 

models such as those examined in this phase of the study, the classification accuracy rates 

represent that aggregate accuracy of the model across all time points. For each time point, 

it is an evaluation of how well the model predicted the outcomes for students in the risk 

set at the start of that time point. The adjusted classification rates, Cohen’s κ (Cohen, 

1960), are interpreted as the percent of cases that are correctly classified over and above 

what would be expected based on “chance” alone. Specifically, Cohen’s κ is defined as: 

𝜅 =  
𝑝𝑜− 𝑝𝑒

1−𝑝𝑒
              (3.1) 

where 𝑝𝑜 represents the proportion of times the observed and model-predicted outcomes 

were in agreement, and 𝑝𝑒is the proportion of times we would expect the observed and 

predicted values to be in agreement simply by chance. Cohen (1960) defined chance as 

the joint probabilities of the marginal distributions of each category:
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𝑝𝑒 = 𝑝𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ∗  𝑝𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒      (3.2) 

where 𝑝 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 is the proportion of times an outcome (e.g., stopping out) 

occurred in the observed data, and 𝑝 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 is the proportion of times an 

outcome occurred in the predicted data. This provides a baseline measure of agreement 

that is then used to compare to the level of agreement produced by the model. A Cohen’s 

κ value of > .50 was seen as a desirable outcome for this study since it is past the 

midpoint between perfect agreement (𝑝𝑜 − 𝑝𝑒 = 1 − 𝑝𝑒) and chance agreement (𝑝𝑜 =

 𝑝𝑒).  The area under the Receiver Operating Characteristic (ROC) curve indicates the 

proportion of times a student who stopped out had a higher predicted probability of 

stopping out compared to the predicted probability of stopping out of a student who did 

not stop out. A value >=.70 is seen as being acceptable (Hosmer & Lemeshow, 2000). 

Unless stated otherwise, the aforementioned metrics represent “in-sample” classification 

accuracy rates; that is, the same sample that was used to fit the model parameter estimates 

was used to estimate the classification accuracy of the model. This is in contrast to “out-

of-sample” classification accuracy rates in which one sample is used to fit the model 

parameter estimates and then a second sample is applied to the model to calculate its 

accuracy. 

Model validation. A best practice in model building is to validate a model using 

a sample other than the one used to construct the model. For the current study, several 

forms of cross validation were employed. The first form consisted of validating the 

stability of the model across samples from the same population. This was achieved by 

randomly dividing the fall 2009 sample into two equally-sized subsamples: a model-

building sample and a within-population validation sample. The model was first 
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estimated (as described above) using the model-building sample. The model was then 

refitted using the within-population validation sample. The parameter estimates, model fit, 

and classification accuracy of the original and validation models were compared. Any 

large differences between the models were used to inform further model revisions. The 

final model was then estimated using the full 2009 sample.  

The second approached was viewed as a between-populations cross validation. 

This was used to evaluate the stability of the model across samples from presumably 

different populations. This involved re-fitting the final fall 2009 model with a complete 

second set of longitudinal data of new degree- or transfer-seeking students who started 

the same institution in fall 2010. The parameter estimates, model fit, and in-sample 

classification accuracy rates based the fall 2009 and fall 2010 samples were compared. 

Any large differences between the models were used to inform further model revisions. 

The final model fit and in-sample classification accuracy figures were estimated using all 

of the students from the original fall 2009 sample.  

Model Building Phase 2: Migrating to a Fully Bayesian Approach 

The final model from the discrete-time survival analysis in Phase 1 was translated 

into a fully Bayesian analog and estimated using WinBUGS (Lunn, Thomas, Best, & 

Spiegelhalter, 2000). There were several reasons for taking this approach. The first was to 

provide a mechanism to more thoroughly evaluate the relationship between each 

predictor and the outcome variable without being constrained by the frequentist concern 

of whether a statistic test has sufficient power. The second reason was to pave a path for 

making subjective interpretations of the predicted probabilities, although this is not a 

requirement of using such models. 
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Model building. The Bayesian models were constructed using the following steps: 

Step 1: The final discrete-time survival analysis model from Phase 1 was 

recreated in WinBUGS as a logistic regression function using normally distributed 

uninformed, diffuse priors for the coefficients of each intercept and predictor (μ = 0, σ
2
 = 

1000).  The variance of the prior distributions were specified in terms of precision, τ = 1 / 

σ
2
, as required by WinBUGS. The convergence of the model was examined using three 

chains. Ten thousand (10,000) draws were made for each chain. One thousand draws 

from each chain were discarded as a “burn in” sample (Gill, 2009). Every third draw was 

also removed to account for potential autocorrelations. For each parameter, the mixing of 

the trace plots of the three chains and the Brooks-Gelman-Rubin diagnostic plots (Brooks 

& Gelman, 1998) were reviewed (Gill, 2009). Chain values that overlap and mix well 

were viewed as providing support for convergence. Brooks-Gelman-Rubin ratio values 

around one were seen as providing support of convergence by indicating there is little 

variance between the three chains of parameter draws. The in-sample classification 

accuracy of the model was evaluated as described below. The odds ratio and 

corresponding 95% credibility intervals were constructed and evaluated for the posterior 

distribution of each intercept and predictor parameter.  Odds ratio credibility intervals 

that spanned the value of one were seen as providing evidence that the variable was not 

systematically related to the outcome variable and should be considered for removal.   

Step 2: This step represented the ambitious goal of expanding the resulting model 

from Step 1 to a dynamic fully Bayesian model. This was seen as ambitious because, to 

the author’s knowledge, little work has been done to circumscribe the process for 

estimating a dynamic fully Bayesian discrete-time survival analysis using data structured
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 in a person-period format within WINBUGS. As with all new journeys of unforged paths, 

the author was optimistic as to its outcome while at the same time acknowledging the 

route was filled with potential challenges that made the ultimate outcome unknown. As a 

first step, the resulting model from Step 1 was modified to include a new predictor 

variable, Prior Logit, which represented the expected logit value for student i at time t-1.  

This variable was included to serve as a mechanism for incorporating information into 

the model about a student’s probability of stopping out at time t-1 in order to inform the 

same student’s probability for stopping out at time t. For t = 1, Prior Logit was set as 0 

(equaling a 0.5 predicted probability of stopping out) and the prior distribution of the 

coefficient parameter was set as diffuse, (μ = 0, σ
2
 = 1000). For t > 1, Prior Logit equaled 

the estimated expected value of the posterior distribution of student i stopping out at time 

t-1. The prior distribution for the parameter at t was the posterior distribution of the same 

parameter at time period t-1. The model was estimated and evaluated using the same 

approach outlined in Step 1. 

 Classification accuracy. The in-sample classification accuracy of the fully 

Bayesian models were checked using the posterior distribution of the predicted outcome 

variable for each student.  If the mean predicted probability was >= .50 the student was 

classified as having stopped out; otherwise a student was classified as having not stopped 

out. The overall, marginal, and adjusted overall in-sample classification rates where then 

calculated for each model using the same methods described in Phase 1.  

Model Building Phase 3: Confirmatory Bayesian Networks
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The final phase of the model building process used the results of the fully 

Bayesian models to create a confirmatory BN.  

Model building. The creation of the BNs was as follows: 

Step 1: Based on the results from Phase 2, the nodes and casual structure of the 

local BNs at each time point were constructed in the software program Netica (Norsys 

Software Corp.,1992-2010). As discussed in the next chapter, the pursuit of a dynamic 

Bayesian network model in Phase 2 Step 2 was unsuccessful. Accordingly the resulting 

model from Phase 2 was that from Step 1. All continuous variables were discretized to fit 

within the BN framework and to increase the computational efficiency of updating new 

information added to the model. Prior term GPA was recoded into four categories: 0.0 – 

1.0, 1.1 – 2.0, 2.1 – 3.0, 3.1 – 4.0. This approach to grouping the values was used for 

interpretative reasons since it is common to evaluate GPA in one-point increments from 0 

to 4. Number of credit attempted the prior term was re-coded into five categories: 0.5 – 

3.0, 3.1 – 6.0, 6.1 – 9.0, 9.1 – 12.0, > 12.0. These categories were chosen since they 

roughly represent the natural range of courses and corresponding credits students take in 

a given term (one course through more than four). The minimum number of credits 

attempted (for students who did not stop out the prior term) was 0.5. Number of days 

registered before first course was discretized into quartiles since there was no a prior 

belief or rationale for otherwise grouping the values. 

Step 2: Given the person-period structure of the data set, the dynamic “backbone” 

(Reye, 2004) was created by simply adding an indexing node to the model. Each level of 

the indexing node represented one of the six discrete time points. 
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Step 3: The parameters (i.e., conditional probability tables; CPT) were learned 

with Netica using a randomly selected half of the sample.  

Step 4: The remaining half of the sample was used to evaluate the in-sample 

classification accuracy of the model using the same methods outlined above for the 

discrete-time survival analysis. The in-sample classification accuracy rates were then 

estimated using the full sample. 

Step 5: As a between-populations model stability cross-validation, the model was 

re-fitted using the fall 2010 sample. In other words, the model nodes and structure were 

based on the final fall 2009 sample but the CPTs were learned using the fall 2010 sample. 

The fall 2009 and 2010 in-sample classification accuracy rates were then compared. 

Rates that were reasonably similar across samples were seen as evidence of the 

generalizability of the model across populations. A limitation of this approach is that it 

does not provide insight on how accurately the model predicts stopping out behaviors for 

students not in the sample used to construct the model CPTs. To address this, the out-of-

sample classification accuracy rates were calculated by first processing the fall 2010 data 

through the model learned with the fall 2009 sample, and then running the fall 2009 data 

through the model built on the CPTs learned with the fall 2010 sample. The rates were 

then compared and averaged.  

Step 6: A second, more parsimonious model was estimated using the same 

procedures outlined in Steps 1-5. Results from Phase 2 were used to inform the reduction 

of the predictor variables. The classification accuracy of the model was examined using 

the process outlined in Step 5. 
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Step 7: The parameter estimates and associated odds ratios were estimated for the 

modified reduced model using the logistic regression based survival analysis technique 

from Phase 1. This was done to produce the odds ratios for each predictor variable to aid 

in the interpretation of its relationship with the outcome variable across all time points.  
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Chapter 4 

Results 

Sample 

The sample included 1,756 new degree or transfer-seeking students at a large 

community college located in the southwestern United States. Of students who reported 

their gender, 45% were female and 55% were male. The range of student ages, as of their 

first term at the college (fall 2009), was 18 to 70 with a mean of 21.32 (SD = 6.97). The 

most common self-reported race/ethnicity was White (44%), followed by Hispanic/Latino 

(24%) and Black/African American (8%). Approximately one-fifth of the students 

selected their race/ethnicity as “Other” or it was unknown.  

Model Building Phase 1: Discrete-Time Survival Analysis 

Life table. The full life table is presented below (Table 1). Figure 3 and 4 display 

the hazard and survival functions, respectively, for the model. The hazard function 

indicates that students were most likely to stop out prior to their third term (fall 2010) and 

were least likely to stop out prior to their sixth term (spring 2012) over a three year 

period. The survival function summarizes the percentage of students who were estimated 

to not stop out by a given term. Only 16% of students were estimated not to stop out by 

the sixth semester, according to the model. The median lifetime for the present model 

was 1.74. In other words, it was estimated that 50% of students had stopped out after 1.74 

semesters.  
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Table 1 

 

Life Table for Survival Analysis Model without Covariates 

      Number of Students   Percentage of Students 

Time 

Period 

Time 

Interval Time Interval 

Enrolled  

at Start of 

Time 

Period 

(Risk Set) 

Stopped 

Out 

During 

Time 

Interval 

Stopped 

Out 

Cumulative 

Censored 

(Graduated 

or 

Transferred)   

Stopped Out 

During 

Time 

Interval  

(Hazard 

Func.) 

Still 

Enrolled at 

End of 

Time 

Interval 

(Survivor 

Func.) 

0 [0, 1) [0, Fall 2009) 1,756 0 0 0 
 

0% 100% 

1 [1, 2) 
[Fall 2009, 

Spring 2010) 
1,756 570 570 77 

 
32% 68% 

2 [2, 3) 
[Spring 2010, 

Fall 2010) 
1,109 387 957 22 

 
35% 44% 

3 [3, 4) 
[Fall 2010, 

Spring 2011) 
700 142 1,099 9 

 
20% 35% 

4 [4, 5) 
[Spring 2011, 

Fall 2011) 
549 159 1,258 53 

 
29% 25% 

5 [5, 6) 
[Fall 2011, 

Spring 2012) 
337 55 1,313 44 

 
16% 21% 

6 [6, 7) 
[Spring 2012, 

Fall 2012) 
238 56 1,369 43 

 
24% 16% 

Note. [ = Included in the time interval. ) = Not included in the time interval.  



  
 

 

7
2 

 

 

 

 

Figure 3. Percentage of students who stopped out by a given time point of the survival analysis model without covariates.  
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Figure 4. Cumulative percentage of students who did not stop out by a given time point. 
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Preliminary logistic regression models for each time point. As part of the first 

step of the iterative modeling building process, a forward stepwise logistic regression was 

conducted for all the potential predictor variables that made it through the 

aforementioned screening using half of the students randomly selected from the entire 

sample. The models were then re-fitted using the remaining half of the sample. The 

results of both analyses were then used along with the researcher’s judgment to determine 

which variables to include in the final exploratory model for each outcome variable. The 

parameters for the final exploratory models were then estimated using the entire sample. 

The results of each final exploratory model based on the full sample are described below.  

Time point 1: Spring 2010. The model that predicted whether a student would 

stop out prior to spring 2010 included seven predictor variables: Number of attempted 

credit hours during the prior term (excluding credits withdrawn from), whether the 

student received need-based aid the prior term, prior term GPA, how far in advance the 

student registered for his/her first course the prior term, whether the student graduated 

high school, total amount of federal subsidized loans the student received the prior term, 

and whether the estimated median household income for the zip code the student resided 

in was equal to or greater than the median household income for the sample. The model 

fit statistics indicated the model fit the data well, R
2
Cox and Snell = .37, Nagelkerke R

2
 

= .52, Hosmer and Lemeshow χ
2
 (8) = 4.49, p = .81.  The model correctly classified 82% 

of the sample. The marginal classification rates and the Cohen’s κ statistic are presented 

in Table 2. The parameter estimates are provided in Table 3. 
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Table 2 

  

Classification Accuracy for Preliminary Logistic Regression Model for Spring 2010 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 966 102 90% 43% 

 Yes 191 347 64% 9% 

 Overall % 

Correct 
      82% 53% 61% 

Note. Classification cut off value .50.  
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Table 3 

Parameter Estimates for Preliminary Logistic Regression Model for Spring 2010 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.24 0.02 177.82 1 < .01 0.79 0.76 0.82 

Received Need-Based Aid Prior Term -1.08 0.18 37.91 1 < .01 0.34 0.24 0.48 

Prior Term GPA -0.44 0.05 67.37 1 < .01 0.64 0.58 0.71 

Days Reg. Before 1
st
 Course Prior Term < -0.01 < 0.01 4.60 1 .03 1.00 0.99 1.00 

Cumulative Federal Sub. Loan Accepted Prior Term < -0.01 < 0.01 9.44 1 < .01 1.00 1.00 1.00 

Graduated High School -0.24 0.20 1.35 1 .25 0.79 0.53 1.18 

Est. Household Income >= Median -0.27 0.14 3.52 1 .06 0.76 0.58 1.01 

Constant 2.83 0.26 121.92 1 < .01 16.99 
  

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval.  
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Time point 2: Fall 2010. The model that predicted whether a student would stop 

out prior to fall 2010 included four predictor variables: Number of attempted credit hours 

during the prior term (excluding credits withdrawn from), whether the student received 

need-based aid the prior term, prior term GPA, and the Pell grant amount the student 

received the prior term. The model fit statistics indicated the model adequately fit the 

data, R
2
Cox and Snell = .20, Nagelkerke R

2
 = .27, Hosmer and Lemeshow χ

2
 (8) = 4.93, p 

= .77.  The model correctly classified 75% of the sample. The marginal classification 

rates and the Cohen’s κ statistic are presented in Table 4. The parameter estimates are 

provided in Table 5. 

Table 4 

 

Classification Accuracy for Preliminary Logistic Regression Model for Fall 2010 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 622 78 89% 43% 

 Yes 197 190 49% 9% 

 Overall % 

Correct 
      75% 52% 47% 

Note. Classification cut off value .50. 
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Table 5 

 

Parameter Estimates for Preliminary Logistic Regression Model for Fall 2010 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.17 0.02 75.50 1 < .01 0.85 0.82 0.88 

Received Need-Based Aid Prior Term 0.62 0.21 8.39 1 < .01 1.85 1.22 2.81 

Prior Term GPA -0.28 0.06 19.41 1 < .01 0.76 0.67 0.86 

Pell Grant Amount Accepted Prior Term < -0.01 < 0.01 2.65 1 .10 1.00 1.00 1.00 

Constant 1.13 0.17 47.31 1 < .01 3.10 
  

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval.  
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Time point 3: Spring 2011. The model for predicting whether a student would 

stop out by spring 2011 included seven predictor variables: Number of attempted credit 

hours during the prior term (excluding credits withdrawn from), cumulative GPA for all 

prior terms, prior term GPA, high school graduation status, whether the student received 

need-based aid the prior term, whether the student requested help finding work during 

time of registration, and whether the student requested for assistance of any type (e.g., 

tutoring, career services, etc.) on the institution’s incoming registration form. The model 

fit statistics indicated the model adequately fit the data, R
2
Cox and Snell = .20, 

Nagelkerke R
2
 = .31, Hosmer and Lemeshow χ

2
 (8) = 12.28, p = .14.  The model 

correctly classified 84% of the sample. The marginal classification rates and the Cohen’s 

κ statistic are presented in Table 6. The parameter estimates are provided in Table 7. 

Table 6 

 

Classification Accuracy for Preliminary Logistic Regression Model for Spring 2011 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 515 27 95% 67% 

 Yes 87 52 37% 2% 

 Overall % 

Correct 
      83% 69% 45% 

Note. Classification cut off value .50. 
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Table 7 

 

Parameter Estimates for Preliminary Logistic Regression Model for Spring 2011 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.16 0.03 29.04 1 < .01 0.85 0.81 0.90 

Received Need-Based Aid Prior Term -1.05 0.25 17.87 1 < .01 0.35 0.21 0.57 

Prior Term GPA -0.37 0.12 9.89 1 < .01 0.69 0.55 0.87 

Graduated High School -0.56 0.35 2.54 1 .11 0.57 0.29 1.14 

Requested Help -0.38 0.26 2.09 1 .15 0.69 0.41 1.14 

Cumulative GPA for Prior Terms -0.34 0.16 4.26 1 .04 0.72 0.52 0.98 

Requested Assistance Finding Work 0.55 0.29 3.60 1 .06 1.73 0.98 3.05 

Constant 2.59 0.53 24.31 1 < .01 13.30 
  

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval. 
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Time point 4: Fall 2011. The model that predicted whether a student would stop 

out prior to fall 2011 included five predictor variables: Number of attempted credit hours 

during the prior term (excluding credits withdrawn from), cumulative GPA for all prior 

terms, the number of hours the student intended to work during the term as reported at the 

time of enrolling at the institution, total amount of federal subsidized loans the student 

received for all prior terms, and total Pell grant amount the student received during the 

prior term. The model fit statistics indicated the model adequately fit the data, R
2
Cox and 

Snell = .14, Nagelkerke R
2
 = .20, Hosmer and Lemeshow χ

2
 (8) = 8.09, p = .43.  The 

model correctly classified 72% of the sample. The marginal classification rates and the 

Cohen’s κ statistic are presented in Table 8. The parameter estimates are provided in 

Table 9. 

Table 8 

 

Classification Accuracy for Fall 2011 Preliminary Logistic Regression Model 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 308 29 91% 52% 

 Yes 109 50 31% 5% 

 Overall % 

Correct 
      72% 57% 35% 

Note. Classification cut off value .50. 
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Table 9 

 

Parameter Estimates for Fall 2011 Preliminary Logistic Regression Model 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.11 0.03 14.06 1 < .01 0.90 0.85 0.95 

Pell Grant Amount Accepted Prior Term < -0.01 < 0.01 2.40 1 .12 1.00 1.00 1.00 

Prior Term GPA -0.27 0.09 8.11 1 < .01 0.77 0.64 0.92 

Anticipated Work Hours: < 30 / Week   6.97 2 .03    

Anticipated Work Hours: >= 30 / Week -0.04 0.38 .01 1 .92 0.96 0.46 2.01 

Anticipated Work Hours: Unknown -2.00 0.76 6.97 1 .01 0.14 0.03 0.60 

Cumulative Federal Sub. Loan Accepted Prior Term < 0.01 < 0.01 4.39 1 .03 1.00 1.00 1.00 

Constant 0.85 0.25 11.62 1 < .01 2.33 
  

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval.
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Time point 5: Spring 2012. The model that predicted whether a student would 

stop out prior to spring 2012 included three predictor variables: Number of attempted 

credit hours during the prior term (excluding credits withdrawn from), prior term GPA, 

and the cumulative number of developmental credit hours attempted for all prior terms. 

The model fit statistics indicated the model adequately fit the data, R
2
Cox and Snell = .15, 

Nagelkerke R
2
 = .25, Hosmer and Lemeshow χ

2
 (8) = 5.48, p = .71.  The model correctly 

classified 84% of the sample. The marginal classification rates and the associated 

Cohen’s κ statistic are presented in Table 10. The parameter estimates are provided in 

Table 11. 

Table 10 

 

Classification Accuracy for Spring 2012 Preliminary Logistic Regression Model 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 230 8 97% 73% 

 Yes 40 15 27% 1% 

 Overall % 

Correct 
      84% 74% 37% 

Note. Classification cut off value .50. 



 

 
 

8
4 

Table 11 

 

Parameter Estimates for Spring 2012 Preliminary Logistic Regression Model 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.12 0.05 12.01 1 < .01 0.86 0.78 0.94 

Cumulative Dev. Edu. Credits Attempted Prior Terms -0.09 0.03 7.75 1 < .01 0.91 0.86 0.97 

Prior Term GPA -0.40 0.14 8.17 1 < .01 0.67 0.51 0.88 

Constant 1.00 0.40 6.40 1 .01 2.72 1.00 0.40 

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval. 
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Time point 6: Fall 2012. The model that predicted whether a student would stop 

out prior to fall 2012 included three predictor variables: Number of attempted credit 

hours during the prior term (excluding credits withdrawn from), cumulative GPA for all 

prior terms, and whether the student’s intent during the time of registration was to 

transfer to a four-year institution. The model fit statistics indicated the model adequately 

fit the data, R
2
Cox and Snell = .11, Nagelkerke R

2
 = .16, Hosmer and Lemeshow χ

2
 (8) = 

11.58, p = .17.  The model correctly classified 75% of the sample. The marginal 

classification rates and the Cohen’s κ statistic are presented in Table 12. The parameter 

estimates are provided in Table 13. 

Table 12 

 

Classification Accuracy for Fall 2012 Preliminary Logistic Regression Model 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 128 11 92% 56% 

 Yes 37 19 34% 4% 

 Overall % 

Correct 
      75% 60% 38% 

Note. Classification cut off value .50.
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Table 13 

 

Parameter Estimates for Fall 2012 Preliminary Logistic Regression Model 

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Prior Term Attempted Credits -0.09 0.05 3.67 1 .06 0.92 0.84 1.00 

Intent to Transfer -0.62 0.35 3.15 1 .08 0.54 0.27 1.07 

Prior Term GPA -0.34 0.14 6.05 1 .01 0.71 0.54 0.93 

Constant 0.74 0.39 3.68 1 .06 2.10 
  

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval.
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Summary of individual logistic regression models. A summary of the 

parameter estimates from the individual logistic regression equations is presented in 

Table 14. The results from the individual logistic regression analyses along with 

informed judgment by the researcher were used to select the predictors to include in the 

survival analysis that simultaneously analyzed the probability of a student stopping out at 

each time point. The decision was made to include the following predictors in the model: 

a student’s high school graduation status, the primary time they attended courses at the 

institution the preceding term, number of attempted credit hours during the prior term 

(excluding credits withdrawn from), whether the student received need-based aid the 

prior term, prior term GPA, and how far in advance the student registered for their first 

course the prior term. As discussed earlier, any variable that was found to be a significant 

predictor of stopping out for two or more time periods was included in the survival 

analysis model. In keeping with a Bayesian philosophical paradigm, primary time of 

attendance, high school graduation status, and the number of days in advance a student 

registered for courses in the prior term were added based on the researcher’s belief they 

were variables of interpretive value despite the fact the first two variables were not found 

to be significant predictors in any of the individual logistic models and the third variable 

was only found to be a significant predictor for one time period (spring 2010).  
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Table 14 

 

Summary of Parameter Estimates for Individual Logistic Regression Models 

  Model 

Predictor 

Spring 

2010 Fall 2010 

Spring 

2011 Fall 2011 

Spring 

2012 Fall 2012 

Anticipated Work Hours: < 30 / Week             

Anticipated Work Hours: >= 30 / Week       -0.04     

Anticipated Work Hours: Unknown       -2.00*     

Cumulative Dev. Edu. Credits Attempted Prior 

Terms 
        -0.10*   

Cumulative Federal Sub. Loan Accepted Prior 

Term 
< 0.01     < 0.01*     

Cumulative GPA for Prior Terms     -0.34*       

Days Reg. Before 1
st
 Course Prior Term -0.01*           

Est. Household Income >= Median -0.27           

Graduated High School -0.24   -0.56       

Intent to Transfer           -0.62 

Pell Grant Amount Accepted Prior Term   < 0.01   < 0.01     

Prior Term Attempted Credits -0.24* -0.17* -0.16* -0.11* -0.16* -0.09 

Prior Term GPA -0.44* -0.28* -0.37* -0.27* -0.40* -0.34* 

Received Need-Based Aid Prior Term -1.10* 0.62* -1.05*       

Requested Assistance Finding Work     0.55       

Requested Help     -0.38       

Note.*p < .05.  
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Preliminary main effects survival analysis model. The six variables mentioned 

above were used to estimate the preliminary main effect survival analysis model. The 

model fit statistics indicated the survival analysis model fit the data well, R
2
Cox and 

Snell = .36, Nagelkerke R
2
 = .48, Hosmer and Lemeshow χ

2
 (8) = 10.34, p = .24.  The 

model correctly classified 79% of the sample. The marginal classification rates and the 

Cohen’s κ statistic are presented in Table 15. The area under the receiver operating 

characteristic (ROC) curve was .81, 95% CI [.79, .82], p < .01. The parameter estimates 

are provided in Table 16. The results were considered the preliminary main effects model. 

Table 15 

 

Classification Accuracy for Preliminary Main Effects Survival Analysis Model 

  

Predicted Stopped 

Out 

Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed Stopped 

Out 

No 3009 273 92% 52% 

 Yes 718 630 47% 6% 

 Overall % Correct       79% 58% 49% 

Note. Classification cut off value .50. 
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Table 16 

 

Parameter Estimates for Preliminary Main Effects Survival Analysis Model 

 α, β SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Time1: Spring 2010 1.36 0.14 96.91 1 < .01 3.91 2.98 5.13 

Time2: Fall 2010 1.83 0.16 136.39 1 < .01 6.22 4.58 8.45 

Time3: Spring 2011 1.17 0.18 42.64 1 < .01 3.22 2.27 4.57 

Time4: Fall 2011 1.73 0.18 94.18 1 < .01 5.63 3.97 7.97 

Time5: Spring 2012 0.84 0.22 14.57 1 < .01 2.31 1.50 3.55 

Time6: Fall 2012 1.19 0.22 29.90 1 < .01 3.30 2.15 5.07 

Graduated High School: Yes -0.16 0.11 2.04 1 .15 0.85 0.68 1.06 

Primarily Time of Attendance: Day 0.41 0.09 18.95 1 < .01 1.50 1.25 1.80 

Prior Term Attempted Credits -0.16 0.01 243.10 1 < .01 0.85 0.84 0.87 

Days Reg. Before 1
st
 Course Prior Term < 0.01 < 0.01 8.64 1 < .01 1.00 1.00 1.00 

Received Need-Based Aid Prior Term: Yes -0.37 0.08 21.35 1 < .01 0.69 0.59 0.81 

Prior Term GPA -0.37 0.03 137.20 1 < .01 0.69 0.65 0.73 

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval. α = Intercept parameter for time point. β = Parameter for predictor variable.
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Final main effects survival analysis model: linearity assumption. The survival 

analysis as specified in the preliminary main effects survival analysis model assumed that 

continuous predictor variables were linearly related to the predicted logit. This 

assumption was tested for the three continuous variables in the model – prior term 

attempted hours, number of days registered before first course, and prior term GPA – by 

adding to the model an interaction term of the variable multiplied by the natural log of 

itself and conducting a nested χ
2
 likelihood ratio test (Tabachnick & Fidell, 2007). None 

of the interactions were significant, providing support that the values of the predictor 

variables were linearly related to the predicted logit. The resulting model was considered 

the final main effects model. 

Preliminary final survival analysis model: Specification of time. The final 

main effects model included a general nonparametric specification of time. Other 

specifications of time were also evaluated. Specifically, constant, linear, quadratic, and 

cubic specifications of time were also estimated. The results are presented in Table 17.  

Each successive model produced a significant increase in model fit compared to the 

preceding model. The largest difference in -2 Log Likelihood values was between the 

cubic and general specifications of time. Given the general specification had significantly 

and markedly better fit than the cubic specification with relatively little additional cost 

(three degrees of freedom), the decision was made to keep time specified in a general, 

nonparametric form. The resulting model was considered the preliminary final survival 

analysis model. 
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Table 17 

 

Examination of Various Specifications of Time for Preliminary Final Survival Analysis Model 

  
      

Hosmer and Lemeshow 

Test   

Nested Likelihood 

Ratio Test 

Specification of 

Time 

-2 Log 

likelihood 

(LL) 

Cox 

and 

Snell R
2
 

Nagelkerke 

R
2
 Χ2 df p 

 

Δ - 2LL df p 

Constant Only 

Model 
4414.32 0.35 .47 3.50 8 .90 

 
-- -- -- 

Linear 4411.11 0.35 .47 4.92 8 .77 
 

3.20 1 .05 

Quadratic 4399.66 0.35 .47 2.88 8 .94 
 

11.45 1 < .01 

Cubic 4392.00 0.35 .47 7.65 8 .47 
 

7.67 1 < .01 

General 

(Nonparametric) 
4356.50 0.36 .48 10.34 8 .24 

 
35.50 3 < .01 
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Final survival analysis model: Interactions with time. A subsequent model was 

estimated to evaluate whether there were any significant interactions between the 

predictors and time in the preliminary survival analysis and time. There were no 

significant interactions for any of the predictors across all time points. The only 

significant relationships that were found were between the second time point (spring 

2010) and the number of credits attempted the prior term and the second time point and 

the prior term GPA. The decision was made to exclude predictor-by-time interactions 

from the final survival analysis model given the limited and localized presence of the 

interactions. The parameter estimates and classification accuracy rates for the resulting 

model with a general specification of time and no time-by-predictor interactions are the 

same as the results as the preliminary main effects model (see Tables 15 and 16). 

Fitted logit, hazard, and survival functions for predictors. The fitted logit, 

hazard, and survival functions were inspected for each of the predictor variables in the 

final survival analysis model. The logit function depicts the change in logits for students 

who stopped out compared to those who did not for each one-unit increase in predictor 

variable, holding all other variables constant. The hazard function provides the expected 

change in the probability of stopping out for each one-unit increase in predictor variable, 

holding all other variables constant. The survival function illustrates the change in the 

cumulative probability of a student not stopping out for each one-unit increase in the 

predictor variable, holding all other variables constant. The fitted, hazard, and survival 

functions for each predictor variable in the final survival analysis model are discussed 

below.
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High school graduate. The high school graduate variable is dichotomous and 

indicates whether or not a student graduated from high school. Not graduating high 

school served as the reference category. The parameter estimate (on the logit scale) for 

the variable was -0.16 and was not significant, p = .15. The corresponding odds was 0.85, 

95% CI [0.68, 1.06]. The parameter estimates for the variable at each time point along 

with the hazard and survival rates are presented in Table 18.  

Primary time of attendance (prior term). Primary time of attendance for the prior 

term represents whether the student primarily took courses in the day (classes that started 

prior to 4:30pm) or evening during the prior term. Attending courses primarily during the 

day was the reference category. The parameter estimate for the variable (on the logit 

scale) was 0.41 and was significant, p < .01. The corresponding odds ratio was 1.50, 95% 

CI [1.25, 1.80].  This indicates that the odds of stopping out were 1.5 times greater for 

students who did not primarily attended courses in the day, holding all other variables 

constant. The parameter estimates for the variable at each time point along with the 

hazard and survival rates are presented in Table 19.  

Term attempted hours (prior term). Term attempted hours represents the number 

of credit hours (excluding courses the student withdrew from) that the student attempted 

during the prior term. The parameter estimate for the variable (on the logit scale) was  

-0.16 and was significant, p < .01. The corresponding odds was 0.85, 95% CI [0.84, 0.87].  

This indicates that the odds of stopping out decreased by a factor of 0.85 for each 

additional credit hour a student attempted during the prior term, holding all other 

variables constant. The parameter estimates for the variable at four values—3, 6, 9, and 

12—along with the hazard and survival rates are presented in Table 20. 
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Days registered before start of first course (prior term). As the name implies, the 

variable denotes the number of days in the prior term a student registered for courses 

before the start of his/her first course for that term. For example, a value of 30 means that 

in the prior term a student registered for courses a month before the start of the earliest 

course they registered for that term. The parameter estimate for the variable (on the logit 

scale) was -0.003 and was significant, p < .01. The corresponding odds ratio was 1.00, 95% 

CI [1.00, 1.00].  Although the parameter estimate was significant, the odds ratio and 

associated 95% confidence interval provide evidence that the variable is not a meaningful 

predictor of whether a student will stop out. The parameter estimates, hazard and survival 

rates for the variable at three time points—0 days, 45 days, and 90 days—are presented in 

Table 21.  

Received need-based aid (prior term). The variable represents whether a student 

received need-based financial aid during the prior term. Not receiving need-based aid 

served as the reference category. The parameter estimate for the variable (on the logit 

scale) was -0.37 and was significant, p < .01. The corresponding odds ratio was 0.69, 95% 

CI [0.59, 0.81].  This indicates that the odds of stopping out were 0.69 times lower for 

students who received need-based aid in the prior term compared to students who did not, 

holding all other variables constant. The parameter estimates for the variable at each time 

point along with the hazard and survival rates are presented in Table 22.  

Term GPA (prior term). Term GPA provides a student’s grade-point average (on 

a 0-4 point scale) for the prior term. The parameter estimate for the variable (on the logit 

scale) was -0.37 and was significant, p < .01. The corresponding odds was 0.69, 95% CI 

[0.65, 0.73].  This indicates that the odds of stopping out decreased by a factor of 0.69 for
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 each additional one-point increase in a student’s GPA, holding all other variables 

constant. The parameter estimates along with the hazard and survival rates are presented 

for four values of the variable – 1, 2, 3, and 4 – in Table 23. 
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Table 18 

 

Fitted Logit, Hazard, and Survival Estimates for Graduated High School 

    

Graduated from High School  

(Earned a High School Diploma) 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj No Yes 

 

No Yes 

 

No Yes 

[Fall 2009, Spring 2010) 1.36 1.36 1.20 
 

.80 .77 
 

.20 .23 

[Spring 2010, Fall 2010) 1.83 1.83 1.67 
 

.86 .84 
 

.03 .04 

[Fall 2010, Spring 2011) 1.17 1.17 1.01 
 

.76 .73 
 

.01 .01 

[Spring 2011, Fall 2011) 1.73 1.73 1.57 
 

.85 .83 
 

< .01 < .01 

[Fall 2011, Spring 2012) 0.84 0.84 0.68 
 

.70 .66 
 

< .01 < .01 

[Spring 2012, Fall 2012) 1.19 1.19 1.03   .77 .74   < .01 < .01 

 

Table 19 

 

Fitted Logit, Hazard, and Survival Estimates for Primary Time of Attendance During Prior Term 

    Primary Time of Attendance During Prior Term 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj Day Not Day 

 

Day Not Day 

 

Day Not Day 

[Fall 2009, Spring 2010) 1.36 1.36 1.77 
 

.80 .85 
 

.20 .15 

[Spring 2010, Fall 2010) 1.83 1.83 2.23 
 

.86 .90 
 

.03 .01 

[Fall 2010, Spring 2011) 1.17 1.17 1.57 
 

.76 .83 
 

.01 < .01 

[Spring 2011, Fall 2011) 1.73 1.73 2.13 
 

.85 .89 
 

< .01 < .01 

[Fall 2011, Spring 2012) 0.84 0.84 1.24 
 

.70 .78 
 

< .01 < .01 

[Spring 2012, Fall 2012) 1.19 1.19 1.60   .77 .83   < .01 < .01 
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Table 20 

 

Fitted Logit, Hazard, and Survival Estimates for Number of Credits Attempted During Prior Term 

    Number of Credits Attempted Prior Term (Excl. Withdrawals) 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj 3 6 9 12 

 

3 6 9 12 

 

3 6 9 12 

[Fall 2009, Spring 

2010) 
1.36 1.36 0.42 -0.06 -0.53 

 
.80 .60 .49 .37 

 
.20 .40 .51 .63 

[Spring 2010, Fall 

2010) 
1.83 1.83 0.88 0.41 -0.07 

 
.86 .71 .60 .48 

 
.03 .12 .21 .33 

[Fall 2010, Spring 

2011) 
1.17 1.17 0.22 -0.25 -0.73 

 
.76 .55 .44 .33 

 
.01 .05 .12 .22 

[Spring 2011, Fall 

2011) 
1.73 1.73 0.78 0.31 -0.17 

 
.85 .69 .58 .46 

 
<.01 .02 .04 .12 

[Fall 2011, Spring    

   2012) 
0.84 0.84 -0.11 -0.59 -1.06 

 
.70 .47 .36 .26 

 
< .01 .01 .03 .09 

[Spring 2012, Fall 

2012) 
1.19 1.19 0.25 -0.23 -0.70   .77 .56 .44 .33   < .01 < .01 .02 .06 

 

Table 21 

 

Fitted Logit, Hazard, and Survival Estimates for Number of Days Registered Before Start of First Course Prior Term 

    Number of Days Registered Before Start of First Course in Prior Term 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj 0 45 90 

 

0 45 90 

 

0 45 90 

[Fall 2009, Spring 2010) 1.36 1.36 1.23 1.09 
 

.80 .77 .75 
 

.20 .23 .25 

[Spring 2010, Fall 2010) 1.83 1.83 1.69 1.56 
 

.86 .84 .83 
 

.03 .04 .04 

[Fall 2010, Spring 2011) 1.17 1.17 1.03 0.90 
 

.76 .74 .71 
 

.01 .01 .01 

[Spring 2011, Fall 2011) 1.73 1.73 1.59 1.46 
 

.85 .83 .81 
 

< .01 < .01 < .01 

[Fall 2011, Spring 2012) 0.84 0.84 0.70 0.57 
 

.70 .67 .64 
 

< .01 < .01 < .01 

[Spring 2012, Fall 2012) 1.19 1.19 1.06 0.92   .77 .74 .72   < .01 < .01 < .01 
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Table 22 

 

Fitted Logit, Hazard, and Survival Estimates for Received Need-Based Aid in the Prior Term 

    Received Need Based Aid in the Prior Term 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj No Yes 

 

No Yes 

 

No Yes 

[Fall 2009, Spring 2010) 1.36 1.36 1.00 
 

.80 .73 
 

.20 .27 

[Spring 2010, Fall 2010) 1.83 1.83 1.46 
 

.86 .81 
 

.03 .05 

[Fall 2010, Spring 2011) 1.17 1.17 0.80 
 

.76 .69 
 

.01 .02 

[Spring 2011, Fall 2011) 1.73 1.73 1.36 
 

.85 .80 
 

< .01 < .01 

[Fall 2011, Spring 2012) 0.84 0.84 0.47 
 

.70 .62 
 

< .01 < .01 

[Spring 2012, Fall 2012) 1.19 1.19 0.83   .77 .70   < .01 < .01 

 

Table 23 

 

 

Fitted Logit, Hazard, and Survival Estimates for Prior Term GPA 

    Prior Term GPA 

    Logit Hazard 

 

Hazard 

 

Survival 

Time Period αj 1.00 2.00 3.00 4.00 

 

1.00 2.00 3.00 4.00 

 

1.00 2.00 3.00 4.00 

[Fall 2009, Spring 

2010) 
1.36 1.36 0.62 0.25 -0.12 

 
.80 .65 .56 .47 

 
.20 .35 .44 .53 

[Spring 2010, Fall 

2010) 
1.83 1.83 1.09 0.72 0.34 

 
.86 .75 .67 .59 

 
.03 .09 .14 .22 

[Fall 2010, Spring 

2011) 
1.17 1.17 0.43 0.05 -0.32 

 
.76 .60 .51 .42 

 
.01 .03 .07 .13 

[Spring 2011, Fall 

2011) 
1.73 1.73 0.99 0.61 0.24 

 
.85 .73 .65 .56 

 
< .01 .01 .02 .06 

[Fall 2011, Spring 

2012) 
0.84 0.84 0.10 -0.28 -0.65 

 
.70 .52 .43 .34 

 
< .01 < .01 .01 .04 

[Spring 2012, Fall 

2012) 
1.19 1.19 0.45 0.08 -0.29 

 
.77 .61 .52 .43 

 
< .01 < .01 .01 .02 
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Model validation. The between-population model stability cross validation of the 

final survival analysis model was evaluated by re-fitting the model using the fall 2010 

sample. All other aspects of the model (e.g., predictors, specification of time, etc.) were 

kept the same. The fall 2010 sample model fit statistics indicated the model did not fit the 

data well, R
2
Cox and Snell = .34, Nagelkerke R

2
 = .46, Hosmer and Lemeshow χ

2
 (8) = 

28.72, p < .01. The significant Hosmer and Lemeshow χ
2
 statistic indicates that there was 

a significant difference between the observed and model predicted values. This is not a 

completely unexpected occurrence whenever a new data set is used to validate a model. 

Although a non-significant Hosmer and Lemeshow χ
2
 statistic was desirable, a significant 

value does not dramatically diminish the value of using the data set to evaluate the 

stability of the parameter estimates across samples. Table 24 provides a comparison of 

the parameter estimates for the fall 2009 and fall 2010 samples. For the fall 2009 sample, 

the terms ranged from spring 2010 (Time1) to fall 2012 (Time6). For the fall 2010 

sample, the terms spanned spring 2011 (Time1) to fall 2013 (Time6).   

In most instances the parameter values were similar for the two samples. The 

most notable difference was between the parameter estimates for the Time5 intercepts. 

The odds ratio for the fall 2010 sample (4.19) was almost twice as large as the odds ratio 

for the fall 2009 sample (2.31). There was also a noticeable difference in the odds ratios 

for the predictor primary time of attendance. The odds ratio for the fall 2009 sample (1.50) 

was 25% greater than the odds ratio for the fall 2010 sample (1.20). Table 25 provides a 

comparison of the classification accuracy rates between the fall 2009 and 2010 samples, 

both estimated using the final survival analysis model. The overall in-sample 

classification accuracy rates were similar for both samples. As for the marginal rates, the 
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model more accurately predicted students who stopped out in the fall 2009 sample 

compared to the fall 2010 sample. Although the difference in parameter estimates and 

classification rates are not immaterial, the results were reasonably close to support the 

generalizability of the final survival analysis model across samples. 

Table 24 

 

Comparison of Parameter Estimates for Final Survival Analysis 

 
Fall 2009 Sample Fall 2010 Sample 

Variables α,β OR α,β OR 

Time1 1.36* 3.91 1.27* 3.55 

Time2 1.83* 6.22 1.98* 7.26 

Time3 1.17* 3.22 1.19* 3.30 

Time4 1.73* 5.63 1.54* 4.66 

Time5 0.84* 2.31 1.43* 4.19 

Time6 1.19* 3.30 1.63* 5.10 

Graduated High School -0.16 0.85 -0.20* 0.82 

Primarily Time of 

Attendance: Not Day 
0.41* 1.50 0.18* 1.20 

Prior Term Attempted 

Credits 
-0.16* 0.85 -0.15* 0.86 

Days Reg. Before 1st 

Course Prior Term 
< -0.01* 1.00 < -0.01* 1.00 

Received Need-Based Aid 

Prior Term 
-0.37* 0.69 -0.43* 0.65 

Prior Term GPA -0.37* 0.69 -0.37* 0.69 

Note. Q = Quartile. OR = Odds ratio.* p < .05. α = Intercept parameter for time point. β = Parameter for 

predictor variable.
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Table 25 

 

Comparison of Classification Accuracy for Final Survival Analysis 

Percent Correctly Classified Fall 2009 Sample Fall 2010 Sample 

Overall 79% 78% 

Did Not Stop Out 92% 92% 

Stopped Out 47% 42% 

% Improvement (Cohen's κ) 49% 46% 

Note. Classification cut off value .50.  

Model Building Phase 2: Migrating to a Fully Bayesian Approach 

The final survival analysis model was re-estimated using the fall 2009 sample and 

a fully Bayesian model in WinBUGS. The model estimated the final survival analysis 

model in order to more thoroughly evaluate the relationship between each predictor and 

the outcome variable. The WINBUGS code is provided in Appendix B. The model was 

examined using three chains, each with 10,000 draws. Every third draw was thinned to 

account for potential autocorrelations. The first 1,000 draws from each chain were 

discarded as burn in. The trace plots of the three chains overlapped and mixed well for 

each of the parameters (see Appendix C). The Brooks-Gelman-Rubin diagnostic plots 

(see Appendix C) and associated values provided support for convergence. The Brooks-

Gelman-Rubin ratio values were around one for all the parameters, indicating there was 

little variance between the three chains of parameter draws. The remaining 9,999 

iterations (after thinning and removing the burn in sample) were used to plot the posterior 

distributions of the parameters. The density plots of the posterior distributions for the 

parameters are provided in Appendix C. The mean, standard deviation, and 95% 

credibility intervals of the distributions are presented in Table 26. The model correctly 
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classified 79% of the sample. The marginal classification rates and the Cohen’s κ statistic 

are presented in Table 27.  

Table 26 

 

Summary Statistics for Posterior Distributions of Intercept and Predictor Parameters for 

Bayesian Final Survival Analysis Model Using Fall 2009 Sample 

 βmean βSD 

MC 

Error ORmean 

95% Credibility 

Interval  

for OR 

Variables Lower Upper 

Time1: Spring 2010 1.37 0.14 < 0.01 3.97 2.99 5.15 

Time2: Fall 2010 1.83 0.16 < 0.01 6.33 4.57 8.46 

Time3: Spring 2011 1.17 0.18 < 0.01 3.27 2.26 4.59 

Time4: Fall 2011 1.73 0.18 < 0.01 5.74 3.95 8.07 

Time5: Spring 2012 0.83 0.22 < 0.01 2.36 1.48 3.53 

Time6: Fall 2012 1.19 0.22 < 0.01 3.38 2.15 5.06 

Graduated High School -0.16 0.11 < 0.01 0.86 0.68 1.07 

Primarily Time of 

Attendance: Not Day 
0.41 0.09 < 0.01 1.51 1.25 1.80 

Prior Term Attempted 

Credits 
-0.16 0.01 < 0.01 0.85 0.84 0.87 

Days Reg. Before 1st 

Course Prior Term 
< -0.01 < 0.01 < 0.01 1.00 0.99 1.00 

Received Need-Based 

Aid Prior Term 
-0.37 0.08 < 0.01 0.69 0.59 0.81 

Prior Term GPA -0.37 0.03 < 0.01 0.69 0.65 0.73 

Note. SD = Standard deviation. OR = Odds ratio. MC = Monte Carlo.  
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Table 27 

 

Classification Accuracy for Bayesian Final Survival Analysis Model with Fall 2009 

Sample 

  

Predicted Stopped Out Correctly 

Classified 

Expected 

Agreement 

% 

Improv. 

(Cohen's 

κ) No Yes 

Observed 

Stopped Out 

No 3,008 274 92% 52% 

 Yes 718 630 47% 6% 

 Overall % 

Correct 
      79% 58% 49% 

Note. Classification cut off value .50.  

Final survival analysis model with dynamic predicted probability parameter. 

Numerous attempts were made to estimate a dynamic fully Bayesian model using a 

person-period format in WINBUGS as previously outlined in the Methods section. 

Unfortunately, the author was unable to get any of the attempts to successfully run in 

WINBUGS. It is unknown whether the dozens of failed attempts were due to the author 

misspecifying the models, a lack of expertise needed to “trick” WINBUGS into running a 

DBN in a person-period format, or if WINBUGS is simply not able to estimate such a 

model as specified. The second potential cause is believed to be the most likely source of 

the failed attempts.  This is an area for future exploration. Regardless of the cause, this 

had two net effects. The first was that the results from Phase 2, Step 1 were used to 

inform Phase 3.The second, related effect is that it forced the author to pivot to using a 

BN instead of a DBN for Phase 3. It is arguable that a BN specified in a person-period 

format with longitudinal data is still a DBN. However, this deviates from the prior 

articulation of the DBN presented in chapters two and three (e.g., see Figure 2 on page 

37). Therefore the results from Phase 3 will be viewed as BNs to maintain continuity of 

thought. 
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Model Building Phase 3: Confirmatory Bayesian Network 

 Two confirmatory BNs were constructed. The first BN represented a discretized 

version of the final survival analysis from Phase 2, Step 1. The continuous variables were 

discretized to fit within the BN framework and allow for the efficient updating of 

predictor probabilities in real time.  The second featured a reduced model that pared some 

of the predictors from the discretized final model based on the results of the Phase 2 non-

dynamic Bayesian analyses. The results of both models are detailed below. 

Discretized survival analysis model. The modified (discretized) survival 

analysis model was replicated as a BN using Netica. A diagram of the model is provided 

in Figure 5. The conditional probability tables (CPTs) were learned using Netica and the 

fall 2009 sample. The CPTs are provided in Appendix D. The model correctly classified 

85% of the sample. The marginal classification rates and the associated Cohen’s κ 

statistic are presented in Table 28. The classification accuracy was then cross-validated 

by re-learning the CPTs for the model using the fall 2010 sample. The model correctly 

classified 82% of the fall 2010 sample. A comparison of the in-sample classification 

accuracy rates are provided in Table 28.
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Figure 5. Modified (discretized) final survival analysis model specified as a Bayesian 

network. 
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Table 28 

 

Comparison of Classification Accuracy for Modified Final Survival Analysis Model as a 

Bayesian Network  

Percent Correctly 

Classified Fall 2009 Sample Fall 2010 Sample 

Overall 85% 82% 

Did Not Stop Out 94% 93% 

Stopped Out 64% 54% 

% Improvement (Cohen's 

κ) 
65% 56% 

Note. Classification cut off value .50.  

Reduced discretized survival analysis model. High school graduation status and 

the number of days registered prior to the start of the first course the prior term were 

removed from the model based on the fully Bayesian analysis results.  The 95% 

credibility interval of the odds ratios for both variables spanned both sides of one, 

indicating the variables were not systematically associated with the outcome variable. A 

diagram of the reduced model is provided in Figure 6. The CPTs were learned via Netica 

using the fall 2009 sample. The CPTs are provided in Appendix E. The model correctly 

classified 81% of the sample. The marginal classification rates and the associated 

Cohen’s κ statistic are presented in Table 29. The classification accuracy rates were then 

cross-validated by re-learning the model CPTs using the fall 2010 sample. The model 

correctly classified 79% of the fall 2010 sample. A comparison of the in-sample 

classification accuracy rates are provided in Table 29.
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Figure 6. Reduced, modified (discretized) final survival analysis model specified as a 

Bayesian network. 

 

Table 29 

 

Comparison of Classification Accuracy for Reduced, Modified Final Survival Analysis 

Model as a Bayesian Network 

Percent Correctly 

Classified Fall 2009 Sample Fall 2010 Sample 

Overall 81% 79% 

Did Not Stop Out 91% 91% 

Stopped Out 54% 50% 

% Improvement (Cohen's 

κ) 
55% 51% 

Note. Classification cut off value .50. 
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Out-of-Sample Classification Accuracy. As a further evaluation of the 

generalizability of the reduced model, the fall 2009 and fall 2010 out-of-sample 

classification accuracy rates for both the reduced BN were calculated as described in the 

previous chapter.  This differed from the in-sample approach used to calculate all of the 

previously reported classification rates. For example, the fall 2010 in-sample 

classification accuracy rates presented in the preceding section were based on the model 

CPTs learned from the fall 2010 sample. In contrast, the out-of-sample fall 2010 

classification accuracy rates were based on the model CPTs learned from the fall 2009 

sample. A comparison of the out-of-sample and in-sample classification accuracy rates 

are provided in Table 30.  

Table 30 

 

Comparison of Out-of-Sample and In-Sample Classification Accuracy for Modified & 

Reduced Final Survival Analysis Model as a Bayesian Network  

  Out-of-Sample   In-Sample 

  

Learned 

using Fall 

2009 

Cohort 

Learned 

using Fall 

2010 

Cohort   

 

Learned 

using Fall 

2009 

Cohort 

Learned 

using Fall 

2010 

Cohort 
 Percent Correctly 

Classified 

Fall 2010 

Cohort 

Fall 2009 

Cohort Avg. 

 

Fall 2009 

Cohort 

Fall 2010 

Cohort Avg. 

Overall 78% 78% 78% 
 

81% 79% 80% 

  Did Not Stop Out 90% 89% 90% 
 

91% 91% 91% 

  Stopped Out 46% 51% 49% 
 

54% 50% 52% 

% Improvement 

(Cohen's κ) 
47% 51% 49%   55% 51% 53% 

 

Odds ratios. The parameter estimates and associated odds ratios were estimated 

for the modified reduced model using the logistic regression based survival analysis 

technique from Phase 1. This was done to produce the odds ratios for each predictor 
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variable to aid in the interpretation of its relationship with the outcome variable across all 

time points. The results are presented in Table 31.  
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Table 31 

Parameter Estimates for Modified & Reduced Final Survival Analysis Model  

 B SE Wald df p OR 

95% CI for OR 

Variables Lower Upper 

Time 1: Spring 2010 0.92 0.09 97.10 1 < .01 2.50 2.08 3.00 

Time 2: Fall 2010 1.33 0.11 148.09 1 < .01 3.78 3.05 4.69 

Time 3: Spring 2011 0.62 0.13 21.83 1 < .01 1.86 1.43 2.41 

Time 4: Fall 2011 1.25 0.14 82.69 1 < .01 3.50 2.67 4.59 

Time 5: Spring 2012 0.30 0.18 2.68 1 < .01 1.35 0.94 1.92 

Time6: Fall 2012 0.72 0.19 14.44 1 < .01 2.05 1.42 2.97 

Primary Time of Attendance: Not Day 0.45 0.09 23.25 1 < .01 1.56 1.30 1.87 

Prior Term Attempted Credits: 0.5 – 3.0     226.48 4 < .01       

Prior Term Attempted Credits: 3.5 – 6.0 -0.66 0.11 33.88 1 < .01 0.52 0.41 0.65 

Prior Term Attempted Credits: 6.5 – 9.0 -1.12 0.12 83.55 1 < .01 0.33 0.26 0.41 

Prior Term Attempted Credits: 9.5 – 12.0 -1.42 0.13 126.43 1 < .01 0.24 0.19 0.31 

Prior Term Attempted Credits: 12+ -2.01 0.15 187.29 1 < .01 0.13 0.10 0.18 

Received Need-Based Aid Prior Term -0.42 0.08 27.95 1 < .01 0.66 0.56 0.77 

Prior Term GPA: 0.0 – 1.0     183.82 3 < .01       

Prior Term GPA: 1.1 – 2.0 -0.71 0.12 35.19 1 < .01 0.49 0.39 0.62 

Prior Term GPA: 2.1 – 3.0 -1.20 0.11 114.29 1 < .01 0.30 0.24 0.38 

Prior Term GPA: 3.1 – 4.0 -1.43 0.11 162.26 1 < .01 0.24 0.19 0.30 

Note. SE = Standard error. OR = Odds ratio. CI = Confidence interval. 
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Chapter 5 

 

Discussion 

 

Methodological Conclusions 

 

Model building process. Fully Bayesian analyses and BNs along with the 

broader category of data mining methodologies, are powerful methodological techniques 

that offer a great deal of promise to the field of education and social sciences as a whole. 

However, these techniques have gone relatively underutilized in the field of education for 

the purposes of predicting student success. This is presumably because educational 

researchers frequently are not aware of these techniques or are aware of them but may not 

be sure how to incorporate them into their methodological toolboxes. The purpose of this 

study was to help address this need by providing a model-building approach for 

developing BNs that leveraged educational data mining, Bayesian analysis, and 

traditional iterative model-building techniques. This was accomplished through a three-

phased approach. The first phase was designed to help researchers reared in the social 

sciences leverage a statistical perspective (frequentist) and methodology (logistic 

regression) they are familiar with to build a survival analysis model using a form of 

logistic regression. The second phase scaffolded those efforts into the realm of Bayesian 

analysis. There is a growing body of work on a variety of sophisticated Bayesian-based 

survival analyses (e.g., Ibrahim, Chen, & Sinha, 2001). The drawback of these efforts is 

that they represent a significant learning curve to those raised in the frequentist 

perspective, making them difficult to quickly adopt and use. The approach taken in this 

paper sought to address this by providing a gentle path into the world of Bayesian 

analysis by simply translating the logistic regression survival analysis developed in Phase
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 1 into a fully Bayesian framework. The original intent was for Phase 2 to include a 

dynamic fully Bayesian model to inform the development of a DBN. Unfortunately, the 

author was not able to successfully estimate such as model despite numerous attempts to 

do so. As a result, the third phase took the findings from the first two phases and 

converted them into a discretized BN. This was to accomplish a key goal of this study: to 

leverage the benefits of BNs – visual representation of variable dependencies, economical 

estimation of conditional probabilities, and efficient bidirectional updating – to provide a 

user-friendly model that can be used by non-methodologists to quickly and accurately 

calculate understandable estimates of a student’s probability of stopping out by a given 

term.  

To this researcher, a key requirement of all research is that it must be made 

accessible to those who can benefit from it or else it will remain largely unused and sit as 

inert words on a page. The current study fulfilled this mission by starting with a pool of 

more than 50 potential predictor variables and six outcome variables (time points) and 

reduced it to a BN with only four predictor variables that produced reasonably good 

levels of classification accuracy. The graphical nature of the BN, as displayed in Netica, 

gives any potential user, from academic counselors to faculty to administers, the ability to 

quickly estimate a student’s probability of stopping out prior to a given term by only 

knowing fives bits of information – whether the student primarily attended courses in the 

day during the prior term, whether he/she received need-based aid the prior term, what 

his/her prior term GPA was, the number of credit hours he/she attempted the prior term, 

and what their next term is – and clicking the corresponding values in the appropriate 

nodes in the BN. This makes the results accessible to a broader audience of front-line 
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staff who are not researchers but have the ability to apply the results to make data-

informed decisions aimed at increasing student success. For example, let us assume an 

academic counselor is scheduled to meet with two students after the completion of their 

first term at the institution to help them plan their schedule for the upcoming term. In 

preparation for the meetings, the counselor pulls up each student’s information in the 

institution’s student information system. The counselor sees that the first student 

attempted 15 credits during her first term, primarily attending courses during the day, 

earned a 3.5 GPA, and did not receive need-based aid. He opens the BN in Figure 6 in 

Netica and clicks the appropriate node values for the information he has just pulled on the 

student. The model uses the inputs to almost instantaneously estimate that the student’s 

probably of stopping out prior to the next term is 10%. He then enters in the information 

for the second student. This student is more of a non-traditional student in that he only 

attended part time the prior term (attempting 6 credit hours), mostly during the evening. 

He received need-based aid and also earned a 3.5 GPA. With five quick clicks of a mouse 

the counselor sees that the student’s predicted probability of stopping out prior to next 

term is 64%. The counselor is surprised to see that the predicted probability of the second 

student stopping out is approximately 6.5 times greater than the predicted probability of 

the first student stopping out even though they had the same GPA. He knows (based on 

training from his local institutional research office) that the results are not deterministic 

“truths” but are rather probabilistic estimates that simply provide one additional bit of 

information to help inform his meetings with both students. Based on this information he 

decides to spend some extra time with the second student inquiring about his experiences 

during the prior term in search of corroborating or disconfirming evidence that the 
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student might be danger of stopping out. For example, he may discover that the student is 

working full time to pay for tuition and thus is only able to enroll part time during the 

evening. Armed with this information the counselor could then try to pair the student 

with resources (e.g., scholarship opportunities, on-campus jobs with flexible schedules, 

etc.) to help him remain enrolled and successful at the institution.  

Classification accuracy. There were some similarities and differences in in-

sample classification accuracy rates between the differing modeling techniques that are 

worthy of brief discussion. Comparing the fall 2009 rates for the non-discretized final 

model, the overall (79%), marginal (92% did not stop out; 47% stopped out), and 

adjusted (49%) classification rates were equivalent for the frequentist survival analysis 

and its Bayesian analog. This was expected since the latter utilized uninformed priors and 

therefore based its estimates on the same framework (logistic regression) and data used in 

the frequentist survival analysis. Of more interest is the comparison of the average in-

sample classification rates across the fall 2009 and 2010 samples between the modified 

(discretized) final model estimated via the frequentist survival analysis and the same 

model estimated using a BN. The overall, marginal, and adjusted classification rates for 

the frequentist survival analysis were 78%, 91% (did not stop), 47% (stopped out), and 

49%, respectively. The corresponding average in-sample rates for the BN were 84%, 94% 

(stopped out), 59% (did not stop out), and 61%, respectively. This translates into the BN 

being approximately 7% better at classifying students overall, 3% better at predicting 

who would not stop out, and 26% better at predicting who would stop out. In terms of 

adjusted classification accuracy, the BN produced a 23% improvement over the 
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frequentist survival analysis model. The latter two figures represent large, material 

differences in the two classification rates.  

For the reduced, modified survival analysis model, the magnitudes of the 

differences in in-sample classification accuracy rates shrank but were still large enough to 

be meaningful. The reduced BN was approximately 3% better at classifying students 

overall, showed no improvement predicting who would not stop out, was 13% better at 

predicting students who would stop out, and had an improvement of 10% in terms of 

adjusted classification rate. The most noticeable difference across both models was in 

terms of correctly classifying students who stopped out.  This is also the most important 

difference since the primary goal of the model was to predict students in danger of 

stopping out.  Increasing the accuracy of predicting these students by 26% and 13% – 

averaged across to separate samples – is a sizable increase worthy of note. It is unknown 

if this is an anomaly of the specific model and/or samples utilized or if this is indicative 

of a more generalized benefit of adopting a BN for modeling a discrete-time survival 

analysis with discrete predictors. This is an area that warrants additional research.  

An attempt was made to contextualize the in-sample classification accuracy rates 

based on the results found in prior research. Surprisingly and unfortunately, out of all the 

similar studies reviewed and referenced in Chapter 3, only one published the 

classification accuracy rates. Radcliffe, Huesman, & Kellogg (2006) utilized a discrete-

time survival analysis to predict attrition of student athletes at a U.S. university. The 

resulting model correctly classified 72% of students overall, 67% of students who 

dropped out, and 73% of student who were retained.  Comparatively, the results of the 

current study produced higher overall and marginal classification rates for students who 
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did not stop out/were retained, but had lower marginal rates for students who 

stopped/dropped out. Of course, a single study is not sufficient to adequately 

contextualize the results of this study, especially considering they are applied to different 

populations (student athletes at a university compared to degree- or transfer-seeking 

students at a community college). This can only be done if and when more authors of 

similar studies make a concerted effort to publish classification rates.  

The classification rates for the reduced BN were also shown to be resilient when 

predicting stopping out behaviors for students who were not in the sample used to learn 

the model CPTs. The out-of-sample overall, marginal, and adjusted classification rates 

averaged across both samples were 78%, 90% (did not stop out), 49% (stopped out), and 

49%, respectively. These were only slightly lower than the in-sample overall, marginal, 

and adjusted classification rates averaged across both samples of 80%, 91% (did not stop 

out), 52% (stopped out), and 53%. In comparative terms, these represent decreases of 3%, 

1% (did not stop out), 6%, and 8%, respectively. These relatively small decreases support 

the generalizability of the model across samples.  

Substantive Conclusions 

 

 The current study aimed to produce a parsimonious model for predicting whether 

degree- or transfer-seeking students would stop out following each of their first six 

semesters at a community college. The iterative model-building process whittled down a 

pool of more than 50 potential predictors to a final set of four predictors through the 

combination of traditional and non-traditional techniques.  

The first of the four final predictors was whether a student primarily attended 

courses in the day during the prior term. The results of the logistic regression-based 



 

 118   
 

survival analysis for the fall 2009 sample indicated that the odds of stopping out were 

1.56 higher for students who primarily did not take their courses during the day the prior 

term, holding all other variables in the model constant. This makes sense when 

considered in the context that students typically take courses in the evening because their 

time during the day is filled with other activities such as work or caring for dependents. 

Attending courses in the evening is not believed to be the direct cause of stopping out, 

but rather is a variable the institution has access to that serves as a proxy for a host of 

unobserved and unavailable variables (e.g., competing commitments between school and 

work, diminished time to focus on studies, etc.) that have an effect on whether students 

remain enrolled at the institution. Surprisingly, none of the prior literature reviewed as 

part of Chapter 2 used primary time of attendance as a predictor.  

The second predictor was the number of credits a student attempted the prior term 

(excluding credits the student withdrew from). The more credits a student attempted the 

prior term, the less likely they were to stop out, holding all other variables in the model 

constant. Compared to the reference group of students who attempted 0.5 – 3.0 credits, 

the odds ratios based on the fall 2009 sample for students who took 3.5 – 6.0, 6.5 – 9.0, 

9.5 – 12.0, and more than 12 credits were 0.52, 0.33, 0.24, 0.13, respectively. This means 

that the odds of stopping out for a student who attempted more than 12 credits the prior 

term was 87% less compared to the odds of stopping out for a student who only 

attempted 0.5 – 3.0 credits. That is a substantial difference especially considering this 

variable only refers to the number of credits attempted, not the number of credits passed. 

It is clear from the results that a student’s enrollment intensity is strong indicator of 

whether a student will stop out prior to the next term for the samples evaluated. These 
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results are similar to those found by Gross, Torres, and Zerquera (2013) and Calcagno, 

Crosta, Bailey, and Jenkins (2007). Gross et al., found the annual number of credits 

attempted (modeled as a continuous variable) to be inversely related to the probability of 

stopping out as part of a broader competing risks model. Calcagno et al. modeled 

dropping out as part of a competing risks model and found student enrolled full-time had 

significantly lower odds of dropping out.  

The third predictor was whether a student received need-based aid the prior term. 

Need-based aid was defined as Pell grants and/or subsidized federal student loans. Using 

data from the fall 2009 sample, the odds of stopping out for students who received such 

aid the prior term was 34% lower than students who did not receive similar aid, holding 

all other variables in the model constant. There are several possible explanations for this. 

One is that the receipt of need-based aid may have alleviated some or all of the financial 

burden of attending college. This may have manifested itself in requiring these students 

to work less, freeing up more time for them to focus on activities associated with not 

stopping out (e.g., studying, which leads to higher GPAs, which in turn is associated with 

persistence). Another possible explanation may be that the students who are able to 

successfully navigate the process of filing for Pell grants and/or federal subsidized 

student loans are also able to successfully navigate the “process” of attending college. 

Successfully applying for need-based aid and successfully navigating the college 

environment both require the capacity to deal with at times complex bureaucratic 

processes that require attention to detail, follow through, and an adherence to externally 

mandated deadlines. It is possible that the receiving need-based aid serves as a proxy for 

a student’s ability to succeed in such environments. Alternatively, receiving need-based 
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aid may serve as an indirect indicator of student motivation since students who received 

such aid had enough motivation to apply for it. It is reasonable to assume some 

proportion of students who did not receive need-based aid would have qualified for such 

aid but were not motivated enough to apply for it. These students may also be less 

motivated to persist. Although there is a collection of prior research that has evaluated the 

relationship between various specifications of persistence, stopping out, or dropping out 

and various types of financial aid (Chen & DesJardins, 2008; DesJardins, Ahlburg, & 

McCall, 2002; Gross, Torres, & Zerquera, 2013; Ishitani, 2006; Johnson, 2006), none of 

the prior studies reviewed specifically looked at students who received need-based aid as 

defined by this study. The closest comparison was the work of Chen and DesJardins 

(2008) who found no significant main effect between students who received a Pell grant 

and dropping out.  

The last predictor of the four that were found to be significant predictors of 

stopping out behavior was a student’s GPA for the prior term. The higher a student’s 

GPA was the prior term, the less likely they were to stop out. Based on the fall 2009 

sample, students who had GPAs of 1.1 – 2.0, 2.1– 3.0, and 3.1 – 4.0 the prior term had 

odds ratios of 0.49, 0.30, and 0.24, respectively, compared to the reference group of 

students who had a prior term GPA of 0.0 – 1.0. The direction of these results is intuitive 

and is supported by prior research (Chen & DesJardins, 2008; DesJardins, Ahlburg, & 

McCall, 2002; Gross, Torres, & Zerquera, 2013; Ishitani, 2003; Johnson, 2006; Murtaugh, 

Burns, & Schuster, 1999). We would expect students with lower GPAs to stop out at 

higher rates compared to students with higher GPAs since GPA is a key indicator of 

student success. A student who is not succeeding in the classroom is less likely to 
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remain enrolled at the institution for a variety of reasons. One reason is that students at 

most institution who have extremely low GPAs (e.g., 0.0 – 1.0) in successive semesters 

are barred from re-enrolling for lack of making satisfactory academic progress. Another 

reason is that few people continue to persist at something they are not successful at doing, 

especially when there are direct (e.g., tuition) and in-direct (e.g., lost wages) costs for 

engaging in the activity.  

The four predictors did a reasonably good job at accurately predicting whether or 

not a student would stop out following each of their first six semesters at the participating 

community college. The final BN utilizing the four predictors was found to correctly 

classify 80% of students averaged across the fall 2009 and 2010 samples. The 

classification rate is respectable but needs to be evaluated by taking into account the 

expected agreement by “chance” alone. The average adjusted classification rate, as 

measured by Cohen’s κ, was 53%, meaning the model was 53% better at correctly 

classifying students than is estimated could be achieved using no model at all. This meets 

the previously stated goal of the study to develop a parsimonious model that had an 

adjusted classification accuracy rate of greater than 50%.  

 The model-building process used to ultimately produce the final BN provided 

some other substantive discoveries along the way. First, no significant interactions were 

found between any of the predictors and outcome variable across all time points. The 

only significant interactions were between the number of credits attempted the prior term 

and prior term GPA with stopping out prior to the second semester. This provides 

evidence that the relationship between the predictors and outcome variable are relatively 

fixed over time with the caveat that prior term attempted credits and GPA may have a 
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greater effect predicting students who are likely to stop out during the transition period 

between their first to second semesters. Additionally, the results speak to the benefits of 

marrying both traditional and non-traditional perspectives and techniques when modeling 

student stopping out behaviors. Taking a purely traditional approach would have made it 

unwieldy to narrow down the more than 50 potential predictor variables into a 

parsimonious subset to use in the final model. While taking a purely data mining 

approach would have resulting in the exclusion of the variable primary time of attendance 

even though it was found to be a significant and meaningful predictor since none of the 

preliminary stepwise regression models identified it as such.  It was only added, despite 

the stepwise regression results, based on the researcher’s belief in its value as a predictor. 

This follows the traditional philosophy that variable selection is primarily dictated by the 

researcher based on prior research and informed judgment. Neither approach taken on its 

own would have successfully guided us to the same final model that resulted from this 

study. It was only through the blending of these two paradigms that the final, meaningful 

model was derived.  

Limitations 

The study had a number of key limitations. First, the size of the fall 2009 sample 

was limited due to the initial inclusion of 50+ predictor variables. This resulted in a large 

loss of students due to missing data, especially since the researcher only included 

students who had completed the required placement tests. By contrast the fall 2010 

sample was more than two-and-half times larger due to the fact it only required pulling 

data on six predictor variables, none of which required students to have completed the 

placement tests. There are not believed to be any meaningful qualitative differences 
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between the two samples, although it is possible there were some differences and that had 

a material effect on the early exploratory analyses and resulting models.  

Second, as mentioned earlier, the intent of the study was to provide an easy to 

follow path for those currently unfamiliar with Bayesian analyses. A drawback of this 

approach is that it did not utilize more sophisticated Bayesian-based survival analyses 

(Ibrahim, Chen, & Sinha, 2001). Of particular disappoint was the inability to estimate a 

dynamic model as original intended. It is possible that one of those techniques would 

have resulted in a more accurate and meaningful model than the one produced by this 

study.  

Third, the study did not engage in any advanced data mining techniques for 

determining the cut off points for discretizing continuous data (e.g., ChiMerge; 

Kantardzic, 2011). The cut offs were instead selected based on interpretive considerations 

or for ease of use (e.g., quartiles). Utilizing data mining techniques may have resulted in 

enhancing the predictive power of a variable or aided in the identification of a predictor 

that was otherwise determined to have a non-significant relationship with the outcome 

variable. For example, it is possible that specifying the number of days a student 

registered for their first course the prior term in quartiles, as was done, did not maximize 

its predictive potential. There may be have been a better, non-intuitive cut off, such as 

dichotomizing the variable around the value of a specific day threshold (e.g., 8 days 

before the start of a course), that could have been identified through the aid of a data 

mining algorithm.  

Fourth, the study only included data that were readily available to the researcher. 

Other variables have been shown to be significant predictors of college persistence, such
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 as high school GPA (Ishitani, 2003; Murtaugh, Burns, & Schuster, 1999) and 

engagement in an institution’s learning management system (Campbell, 2007), but were 

not obtainable for this study.   

Fifth, the current study did not evaluate any potential interactions between 

predictor variables. This was driven by a desire to keep the study somewhat constrained 

in scope so as not to distract from the primary focus of developing a model building 

process that utilizes traditional and non-traditional techniques to model student 

progression. It is possible that there were significant predictor-by-predictor interactions in 

the sample data that could have enriched the meaningfulness and/or classification 

accuracy of the final model. For similar reasons, the model treated students who 

graduated or transferred prior to a given term as censored. Strictly speaking, students 

should only be treated as censored if the missing dependent variable values for those 

students are assumed to be the result of the study’s design and independent of the 

outcome (Singer & Willett, 2003). That was not the case in this study. In such instances a 

competing risk model is recommended (Scott & Kennedy, 2005). The desire to keep the 

study focused in scope also lead to the decisions to not impute missing data and to only 

use uninformed priors for the fully Bayesian analysis. Both of these represent limitations 

of the study.  

Lastly, although the final BN produced respectable levels of classification 

accuracy, it still misclassified 48% of students who stopped out, averaging across the fall 

2009 and 2010 samples. In other words, the model failed to correctly identify almost half 

of the students of most import. This level of marginal accuracy needs to be improved 

before the model can be more broadly and accurately used as a tool to benefit students by
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 identifying those likely to stop out and providing them with the additional resources 

needed in an attempt to prevent them from actually do so.  More importantly, the 

accuracy rates need to be compared to the accuracy rates produced by the status quo 

method of reasoning in the face of uncertainty. In other words, the utility of the model is 

not how well it does compared to an ideal (100% agreement) but rather whether it 

provides meaningful improvement to an institution’s current ability to accurately and 

efficiently predict students’ stopping out behaviors. For example, how much more 

accurately and efficiently, if at all, can academic advisors predict whether a student will 

stop out in a given term with the aid of the BN compared to making the judgment without 

it? This is an area that deserves future exploration.  

Recommendations for Future Methodological Research 

This study laid the groundwork for several lines of future inquiry. One area for 

future research is to compare the classification accuracy rates of logistic regression- 

based discrete-time survival analysis with discretized predictors and those from an 

equivalent BN for a wide range of models and samples to examine whether the latter 

consistency produces increased level of classification accuracy even when the models 

and data are fundamentally the same, as was found in this study. There are several lines 

of inquiry this might follow. For example, one line of inquiry might be to investigate 

whether the differences are the result of one or more of the predictors in the model 

(indicating the difference is more a function of specific predictors than the modeling 

approaches); whereas another line of inquiry might examine whether the differences 

manifest from distinctions in machinery of the different modeling techniques. 

Additionally, it would be of merit to explore the effect different cut off values for
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 classifying student’s predicted outcome has on classification accuracy. This study used a 

predicted probability of >= .50 to classify student’s predicted outcome as stopping out. 

This assumes an equal cost of misclassifying students as false positives (predicting 

students will stop out when in fact they do not) and false negatives (predicting students 

will not stop out when they do). It is arguable that there is a greater cost associated with 

false negatives since it could result in students at risk of stopping out being missed by an 

early alert system meant to identify students in need of additional resources. The effect of 

various cut scores should be explored in this context. Another channel for additional 

research is to extend the current research to multinomial (i.e., competing risks) discrete-

time survival analysis and associated BNs for outcomes with more than two categories 

(e.g., Scott & Kennedy, 2005). For example, separately modeling the probably of a 

student stopping out, persisting, graduating, or transferring prior to a given term. Future 

research should also explore more advanced methods for accounting for missing data 

(e.g., Enders, 2010), as well as more thoroughly explore the relationships between 

predictor-by-time interactions and predictor-by-predictor interactions and stopping out 

behaviors. Although the current study did not find the widespread presence of significant 

predictor-by-time interactions, it did find evidence suggesting prior term GPA and 

number of credits attempted may have a greater effect predicting students who are likely 

to stop out during the transition period between their first to second semesters. Further 

investigation is called for to more definitively determine the nature and magnitude of the 

effect, if any. Lastly, there is a need to create a similar model-building process for more 

advanced Bayesian-based survival analyses (e.g., Ibrahim, Chen, & Sinha, 2001), 
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including the use of informed priors and DBNs, in a way that is readily digestible for 

researchers most familiar with frequentist methodologies.    
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Footnotes 

     
1
There are differences of opinion on the definitions of retention and persistence. For 

the sake of simplicity, the two terms will be used interchangeably in this paper to mean a 

continuing student who re-enrolls at the same institution the following semester. 

 
     2

Technically speaking, directed acyclic graphs (DAGs) are more accurately expressed 

as acyclic directed graphs (ADGs) according to graphing theory (Almond, DiBello, 

Moulder, & Zapata-Rivera, 2007); however, DAG is the more common expression and 

therefore will be used throughout this paper.   
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APPENDIX A 

A STEP-BY-STEP ILLUSTRATION OF A BAYESIAN NETWORK 
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Figure A.1 provides a hypothetical Bayesian network. The BN was created using 

the software program Netica. Node A is the probability a student suffers from math 

anxiety {A1 = No, A2 = Yes}. Node B is the probability a student passed an algebra course 

in high school {B1 = No, B2 = Yes}, which is hypothesized to be dependent on whether 

she has a math anxiety. Node C represents whether a student placed into college-level 

algebra course based on her placement test score {C1 = No, C2= Yes}. It is also believed 

to be dependent on the presence or absence of a math anxiety. Node E indicates the 

probability a student in a college algebra course will get assistance from the tutors in the 

college’s math center {E1 = No, E2 = Yes}. Finally, Node D is the probability a student 

will pass or fail a college algebra course with a grade of C or better {D1 = No, D2 = Yes}. 

The structure makes explicit that success in a college algebra course is dependent on a 

student’s performance on the placement exam and whether he/she gets help from a tutor.   

 
Figure A.1.  A hypothetical Bayesian network of success in a college-level 

algebra course. 

 

Before the collection of any information, marginal (prior) distributions need to be 

specified for the root nodes (A, E) and joint probabilities for the non-root nodes (B, C, D). 

To illustrate this point, the marginal and joint probabilities for the fictitious BN in figure 

A.1 are presented in Table A.1.  

 

Priors can come from a variety of sources. In this instance the priors were 

“informed” based on the advisor’s 15-year experience advising college students. To 

highlight a few of the probabilities, the advisor estimates that one out of every five 

students has math anxiety.  He estimates that only 10% of students with math anxiety 

have passed a high school algebra course compared to 70% of students without math 

anxiety. In his experience, math anxiety also adversely influences a student’s 

performance on the placement exam. Additionally, he has discovered that tutors can have 

a significant positive impact on a student’s ability to successfully pass a college algebra 

course. He believes that students who do not place into a college-level algebra course but 

utilize a tutor have a 50% chance of successfully passing the course compared to only a 

10% chance for those who do not place into the course and do not use a tutor. 

Unfortunately, based on his experience, only a small percentage of students (2%) seek 

help from a tutor. 

(C) Placed into College Alg.

No
Yes

50.0
50.0

(E) Help from Tutor

No
Yes

50.0
50.0

(D) Successfully Passed College Alg.

No
Yes

50.0
50.0

(A) Math Anxiety

No
Yes

50.0
50.0

(B) Passed HS Algebra Course

No
Yes

50.0
50.0
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Table A.1  

Marginal and joint probabilities for the Bayesian network displayed in figure A.1. 

Math Anxiety 

 No Yes 

 0.8 0.2 

 
 

  
 

 Passed HS Algebra Course 

Math Anxiety No Yes 

No 0.3 0.7 

Yes 0.9 0.1 

 
  

 

Placed into College Alg. 

Course 

Math Anxiety No Yes 

No 0.4 0.6 

Yes 0.95 0.05 

 
  Placed into College Algebra Course = No 

 

Success in College Alg. 

Course 

Help from 

Tutor 
No Yes 

No 0.9 0.1 

Yes 0.5 0.5 

 
  Placed into College Algebra Course = Yes 

  
Success in College Alg. 

Course 

Help from 

Tutor 
No Yes 

No 0.25 0.75 

Yes 0.1 0.9 

 
  Help from Tutor 

 No Yes 

 0.98 0.02 

  

Figure A.2 represents the conditional probabilities for each node based on the 

prior and joint probability distributions in Table A.1. According to the initial probabilities 

in Node C, a student has a 42.4% chance of successfully passing a college-level algebra
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 course based solely on prior beliefs about the variables in the model. The advisor then 

receives a copy of the student’s high school transcript and sees that she did not pass a 

high school college algebra course. Knowing this, the outcome of B becomes known and 

is fixed to “No.” This information propagates throughout the network and decreases the 

probability of passing the college-level algebra course to 34.3% (see figure A.3.a). Next, 

the advisor finds out in talking to the student that she does not have math anxiety. This 

information is entered into the model and results in increasing the probability of success 

to 49.5% (figure A.3.b). This increase in probability illustrates that a student’s passing 

grade in a high school algebra course is no longer relevant (at least in terms of this model) 

to the student’s probability of successfully passing a college-level algebra course once it 

is known that she does not have a math anxiety because knowing A makes B and D 

conditionally independent. The advisor reviews the student’s placement test scores and 

determines that she did not place into the algebra course, decreasing the probability of 

success in a college-level algebra course all the way down to10.8% (figure A.3.c). As a 

result, he recommends that she enroll in a pre-algebra course. However, he is impressed 

by her stated level of motivation and determination to succeed (two variables not 

included in the model), so he tells her that she may enroll in a college algebra course if 

she feels she can handle the challenge as long as she agrees to see a tutor three times a 

week at the college’s math center. Based on the BN model, this would increase her 

chance of success to 50% (figure A.4.d).  

 

 
Figure A.2.  A hypothetical Bayesian network of success in a college-level algebra course 

after incorporating in prior and joint probability distributions. 

 

 

 

 

 

 

 

 

(C) Placed into College Alg.

No
Yes

51.0
49.0

(E) Help from Tutor

No
Yes

98.0
2.00

(D) Successfully Passed College Alg.

No
Yes

57.6
42.4

(A) Math Anxiety

No
Yes

80.0
20.0

(B) Passed HS Algebra Course

No
Yes

42.0
58.0
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A.3.a 

 
A.3.b 

 
A.3.c 

 
A.3.d 

 
Figure A.3 Propagation of evidence through a hypothetical Bayesian network of success 

in a college-level algebra course. 
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APPENDIX B 

WINBUGS CODE 
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#Final Survival Analysis Model 

 

model 

{ 

for (i in 1:n) { 

 

   # Linear regression on logit 

   logit(p[i]) <- b.Time1_S10*Time1_S10[i] + 

    b.Time2_F10*Time2_F10[i]+ 

    b.Time3_S11*Time3_S11[i] + 

    b.Time4_F11*Time4_F11[i] + 

    b.Time5_S12*Time5_S12[i] + 

    b.Time6_F12*Time6_F12[i] + 

       b.HighSchoolGrad_Recoded*HighSchoolGrad_Recoded[i] +  

       b.PrimaryTimeAttend_PriorTerm_Dich*PrimaryTimeAttend_PriorTerm_Dich[i]+ 

       b.PriorTermAttemptedActual*PriorTermAttemptedActual[i]+ 

    b.PriorTerm_Days_Reg_B4_1stCrs*PriorTerm_Days_Reg_B4_1stCrs[i]+ 

       b.PriorTermGPA*PriorTermGPA[i]+ 

       b.PriorTerm_Received_Need_Based_Aid*PriorTerm_Received_Need_Based_Aid[i] 

    

# Likelihood function for each data point 

   StoppedOut[i] ~ dbern(p[i]) 

} 

 

#Set diffuse priors for distribution of beta coefficients 

b.Time1_S10 ~ dnorm(0.0,0.001) 

b.Time2_F10 ~ dnorm(0.0,0.001) 

b.Time3_S11 ~ dnorm(0.0,0.001) 

b.Time4_F11 ~ dnorm(0.0,0.001) 

b.Time5_S12 ~ dnorm(0.0,0.001) 

b.Time6_F12 ~ dnorm(0.0,0.001) 

b.HighSchoolGrad_Recoded ~ dnorm(0.0,0.001) 

b.PrimaryTimeAttend_PriorTerm_Dich ~ dnorm(0.0,0.001) 

b.PriorTermAttemptedActual ~ dnorm(0.0,0.0001)  

b.PriorTerm_Days_Reg_B4_1stCrs ~ dnorm(0.0,0.001)  

b.PriorTermGPA ~ dnorm(0.0,0.001)  

b.PriorTerm_Received_Need_Based_Aid ~ dnorm(0.0,0.001) 

 

#Odds Ratios 

OR_Time1_S10 <- exp(b.Time1_S10) 

OR_Time2_F10 <- exp(b.Time2_F10) 

OR_Time3_S11 <- exp(b.Time3_S11) 

OR_Time4_F11 <- exp(b.Time4_F11) 

OR_Time5_S12 <- exp(b.Time5_S12) 

OR_Time6_F12 <- exp(b.Time6_F12) 

OR_HighSchoolGrad_Recoded <- exp(b.HighSchoolGrad_Recoded) 

OR_PrimaryTimeAttend_PriorTerm_Dich <- exp(b.PrimaryTimeAttend_PriorTerm_Dich) 

OR_PriorTermAttemptedActual <- exp(b.PriorTermAttemptedActual) 

OR_PriorTerm_Days_Reg_B4_1stCrs <- exp(b.PriorTerm_Days_Reg_B4_1stCrs) 

OR_PriorTermGPA <- exp(b.PriorTermGPA) 

OR_PriorTerm_Received_Need_Based_Aid <- exp(b.PriorTerm_Received_Need_Based_Aid) 

} 

 

list( n = 4630)
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#Set Initial Values 

list( 

 b.Time1_S10 = 0, 

 b.Time2_F10 = 0, 

 b.Time3_S11 = 0, 

 b.Time4_F11 = 0, 

 b.Time5_S12 = 0, 

 b.Time6_F12 = 0, 

 b.HighSchoolGrad_Recoded=0,  

 b.PrimaryTimeAttend_PriorTerm_Dich=0,  

 b.PriorTermAttemptedActual=0,  

 b.PriorTerm_Days_Reg_B4_1stCrs=0,  

 b.PriorTermGPA=0, 

 b.PriorTerm_Received_Need_Based_Aid=0) 

 

list( 

 b.Time1_S10 = -0.1, 

 b.Time2_F10 = -0.1, 

 b.Time3_S11 = -0.1, 

 b.Time4_F11 = -0.1, 

 b.Time5_S12 = -0.1, 

 b.Time6_F12 = -0.1,  

 b.HighSchoolGrad_Recoded=-0.1,  

 b.PrimaryTimeAttend_PriorTerm_Dich=-0.1,  

 b.PriorTermAttemptedActual=-0.01,  

 b.PriorTerm_Days_Reg_B4_1stCrs=-0.1,  

 b.PriorTermGPA=-0.1) 

 

list( 

    b.Time1_S10 = 0.1, 

 b.Time2_F10 = 0.1, 

 b.Time3_S11 = 0.1, 

 b.Time4_F11 = 0.1, 

 b.Time5_S12 = 0.1, 

 b.Time6_F12 = 0.1,  

 b.HighSchoolGrad_Recoded=0.1,  

 b.PrimaryTimeAttend_PriorTerm_Dich=0.1,  

 b.PriorTermAttemptedActual=0.1,  

 b.PriorTerm_Days_Reg_B4_1stCrs=0.1,  

 b.PriorTermGPA=0.1) 
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APPENDIX C 

WINBUGS OUTPUT FOR FULLY BAYESIAN SURVIVAL ANALYSIS MODEL 

 



 

 152   
 

Autocorrelation Plots 

OR_HighSchoolGrad_Recoded chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_PrimaryTimeAttend_PriorTerm_Dich chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
OR_PriorTermAttemptedActual chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_PriorTermGPA chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
OR_PriorTerm_Days_Reg_B4_1stCrs chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_PriorTerm_Received_Need_Based_Aid chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
OR_Time1_S10 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_Time2_F10 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
OR_Time3_S11 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_Time4_F11 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
OR_Time5_S12 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

OR_Time6_F12 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 



 

 153   
 

b.HighSchoolGrad_Recoded chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.PrimaryTimeAttend_PriorTerm_Dich chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
b.PriorTermAttemptedActual chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.PriorTermGPA chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
b.PriorTerm_Days_Reg_B4_1stCrs chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.PriorTerm_Received_Need_Based_Aid chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
b.Time1_S10 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.Time2_F10 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
b.Time3_S11 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.Time4_F11 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
b.Time5_S12 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 

b.Time6_F12 chains 1:3

lag

0 20 40

   -1.0

   -0.5

    0.0

    0.5

    1.0

 
 
 



 

 154   
 

Brooks-Gelman-Rubin (BRG) Plots 
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Density Plots 
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b.HighSchoolGrad_Recoded chains 1:3 sample: 9999
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b.Time4_F11 chains 1:3 sample: 9999

    1.0     1.5     2.0

    0.0

    1.0

    2.0

    3.0

 
b.Time5_S12 chains 1:3 sample: 9999

   -0.5     0.0     0.5     1.0     1.5

    0.0

    0.5

    1.0

    1.5

    2.0

 

b.Time6_F12 chains 1:3 sample: 9999

    0.0     0.5     1.0     1.5     2.0

    0.0

    0.5

    1.0

    1.5

    2.0
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Trace Plots 

OR_HighSchoolGrad_Recoded chains 1:3

iteration

1001 2500 5000 7500 10000

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

 
OR_PrimaryTimeAttend_PriorTerm_Dich chains 1:3

iteration

1001 2500 5000 7500 10000

    1.0

    1.5

    2.0

    2.5

 

OR_PriorTermAttemptedActual chains 1:3

iteration

1001 2500 5000 7500 10000

   0.82

   0.84

   0.86

   0.88

    0.9

 

OR_PriorTermGPA chains 1:3

iteration

1001 2500 5000 7500 10000

    0.6

   0.65

    0.7

   0.75

    0.8
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OR_PriorTerm_Days_Reg_B4_1stCrs chains 1:3

iteration

1001 2500 5000 7500 10000

   0.99

 0.9925

  0.995

 0.9975

    1.0

 1.0025

 

OR_PriorTerm_Received_Need_Based_Aid chains 1:3

iteration

1001 2500 5000 7500 10000

    0.4

    0.6

    0.8

    1.0

 

OR_Time1_S10 chains 1:3

iteration

1001 2500 5000 7500 10000

    2.0

    4.0

    6.0

    8.0

 

OR_Time2_F10 chains 1:3

iteration

1001 2500 5000 7500 10000

    2.0

    4.0

    6.0

    8.0

   10.0

   12.0
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OR_Time3_S11 chains 1:3

iteration

1001 2500 5000 7500 10000

    0.0

    2.0

    4.0

    6.0

    8.0

 

OR_Time4_F11 chains 1:3

iteration

1001 2500 5000 7500 10000

    2.5

    5.0

    7.5

   10.0

   12.5

 

OR_Time5_S12 chains 1:3

iteration

1001 2500 5000 7500 10000

    1.0

    2.0

    3.0

    4.0

    5.0

 

OR_Time6_F12 chains 1:3

iteration

1001 2500 5000 7500 10000

    0.0

    2.0

    4.0

    6.0

    8.0
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b.HighSchoolGrad_Recoded chains 1:3

iteration

1001 2500 5000 7500 10000

  -0.75

   -0.5

  -0.25

    0.0

   0.25

    0.5

 

b.PrimaryTimeAttend_PriorTerm_Dich chains 1:3

iteration

1001 2500 5000 7500 10000

    0.0

    0.2

    0.4

    0.6

    0.8

 

b.PriorTermAttemptedActual chains 1:3

iteration

1001 2500 5000 7500 10000

   -0.2

  -0.18

  -0.16

  -0.14

  -0.12

 

b.PriorTermGPA chains 1:3

iteration

1001 2500 5000 7500 10000

   -0.5

   -0.4

   -0.3

   -0.2
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b.PriorTerm_Days_Reg_B4_1stCrs chains 1:3

iteration

1001 2500 5000 7500 10000

  -0.01

-0.0075

 -0.005

-0.0025

8.67362E-19

 0.0025

 

b.PriorTerm_Received_Need_Based_Aid chains 1:3

iteration

1001 2500 5000 7500 10000

   -0.8

   -0.6

   -0.4

   -0.2

-5.55112E-17
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APPENDIX D 

CONDITIONAL PROBABILITY TABLES FOR BAYESIAN NETWORKS 
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Conditional Probability Tables for Modified (Discretized) Final Survival Analysis Model 

as a Bayesian Network  

 

The conditional probability table for the Stopping Out parameter is not presented below 

due to its size. 

 

Time Period (Index_Cat) 

Time1 Time2 Time3 Time4 Time5 Time6 

0.37 0.24 0.15 0.12 0.07 0.05 

 

Primary Time of Attendance Prior Term (PrimaryTimeAttend_PT_Dich) 

Day NotDay 

0.81 0.19 

 

Received Need-Based Aid Prior Term (Received_Need_Based_Aid_PT) 

No Yes 

0.57 0.43 

 

Graduated High School (HighSchoolGrad_Recoded) 

No Yes 

0.12 0.88 

 

Prior Term GPA (PriorTermGPA) 

ZeroToOne OneToTwo TwoToThree ThreeToFour 

0.23 0.14 0.30 0.33 

 

Number of Credit Hours Attempted Prior Term (AttemptedActual_Credits_PT) 

ZeroToThree ThreeToSix SixToNine NineToTwelve TwelvePlus 

0.21 0.16 0.17 0.23 0.22 

 

Number of Days Registered Before First Course Prior Term (Days_Reg_B4_1stCrs_PT) 

FirstQuartile SecondQuartile ThirdQuartile FourthQuartile 

0.26 0.25 0.17 0.32 
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Conditional Probability Tables for the Reduced, Modified (Discretized) Final Survival 

Analysis Model as a Bayesian Network 

 

The conditional probability table for the Stopping Out parameter is not presented below 

due to its size. 

 

Time Period (Index_Cat) 

Time1 Time2 Time3 Time4 Time5 Time6 

0.37 0.24 0.15 0.12 0.07 0.05 

 

Primary Time of Attendance Prior Term (PrimaryTimeAttend_PT_Dich) 

Day NotDay 

0.81 0.19 

 

Received Need-Based Aid Prior Term (Received_Need_Based_Aid_PT) 

No Yes 

0.57 0.43 

 

Prior Term GPA (PriorTermGPA) 

ZeroToOne OneToTwo TwoToThree ThreeToFour 

0.23 0.14 0.30 0.33 

 

Number of Credit Hours Attempted Prior Term (AttemptedActual_Credits_PT) 

ZeroToThree ThreeToSix SixToNine NineToTwelve TwelvePlus 

0.21 0.16 0.17 0.23 0.22 

 


