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ABSTRACT

Since Duffin and Schaeffer’s introduction of frames in 1952, the concept of a frame

has received much attention in the mathematical community and has inspired several

generalizations. The focus of this thesis is on the concept of an operator-valued frame

(OVF) and a more general concept called herein an operator-valued frame associated

with a measure space (MS-OVF), which is sometimes called a continuous g-frame.

The first of two main topics explored in this thesis is the relationship between MS-

OVFs and objects prominent in quantum information theory called positive operator-

valued measures (POVMs). It has been observed that every MS-OVF gives rise to a

POVM with invertible total variation in a natural way. The first main result of this

thesis is a characterization of which POVMs arise in this way, a result obtained by

extending certain existing Radon-Nikodym theorems for POVMs. The second main

topic investigated in this thesis is the role of the theory of unitary representations of

a Lie group G in the construction of OVFs for the L2-space of a relatively compact

subset of G. For G = R, Duffin and Schaeffer have given general conditions that

ensure a sequence of (one-dimensional) representations of G, restricted to (−1/2, 1/2),

forms a frame for L2(−1/2, 1/2), and similar conditions exist for G = Rn. The second

main result of this thesis expresses conditions related to Duffin and Schaeffer’s for

two more particular Lie groups: the Euclidean motion group on R2 and the (2n+ 1)-

dimensional Heisenberg group. This proceeds in two steps. First, for a Lie group

admitting a uniform lattice and an appropriate relatively compact subset E of G, the

Selberg Trace Formula is used to obtain a Parseval OVF for L2(E) that is expressed in

terms of irreducible representations of G. Second, for the two particular Lie groups an

appropriate set E is found, and it is shown that for each of these groups, with suitably

parametrized unitary duals, the Parseval OVF remains an OVF when perturbations

are made to the parameters of the included representations.
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Chapter 1

INTRODUCTION

1.1 History

A frame for a complex, separable Hilbert space H is a sequence ξ1, ξ2, . . . of

members of H that provides a stable way of recovering a vector ξ from its inner

products with the sequence. The prototypical example is the case of an orthonormal

basis, in which case

ξ =
∑
j

〈ξ, ξj〉 ξj;

however, the elements of a frame need not be orthogonal, or even linearly indepen-

dent. The study of frames has its origins in the work of Paley and Wiener [40] and

others [23, 50] on bases of sines and cosines for L2(−1/2, 1/2), but the concept of

a frame was not defined explicitly or studied systematically until the landmark pa-

per of Duffin and Schaeffer entitled “A class of non-harmonic Fourier series” [25].

In this work, the authors established (1.) that a frame {ξj} provides, for every

ξ ∈ H, a basis-like expansion of the form ξ =
∑

j cjξj and (2.) a simple condition

on the real numbers {. . . , λ−1, λ0, λ1, λ2, . . . } such that the system of exponentials{
e2πiλn · : n ∈ Z

}
is a frame. Despite the fact that their work would later have many

applications, the study of frames lay mostly dormant for many years. The next ma-

jor development was the 1986 paper of Daubechies, Grossman, and Meyer entitled

“Painless nonorthogonal expansions” [21], which introduced wavelet frames and re-

ignited interest in the subject of frames overall. Sometimes called frame theory, the

study of frames now touches on areas as diverse as operator theory, pseudodiffer-

ential operators, multiple-access communication systems, tomography, compression,
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signal transmission with erasures (e.g., over the internet), phaseless reconstruction,

sampling, analog-to-digital conversion, and other topics. For further background,

standard references are [20, 33, 19, 31, 8]

Recently, several generalizations of frames have attracted the attention of those

in the frame community. One of them, called a g-frame by Sun [48] and an operator-

valued frame by Kaftal et al. [36], is a way to decompose ξ into a sequence of vectors,

rather than scalars, in such a way that ξ can be recovered stably from them. In the

former paper, the author establishes basic examples, facts, and terminology, and the

latter paper adds to this body by proving some results about parameterization of

OVFs. Since higher-dimensional information can be broken down into scalar compo-

nents, every OVF arises, in general non-uniquely, as a sort of direct sum of a sequence

of frames. However, it may be that no one of these direct-sum representations is more

natural than any other. Two classes of examples of OVFs are the fusion frames of

Casazza and Kutyniok [15] (see also [16]), which are operator-valued frames made

up of orthogonal projections on H, and the sets of “time-frequency localization op-

erators” of Dörfler et al. [24], which are related to the windowed Fourier transform

on Rd. Although claims have been made that some of these OVFs can simplify the

implementation of certain electronic systems, these claims have not to our knowledge

been brought into practice and may be premature. However, given the vast success

of the theory of frames, the subject of OVFs and related objects is still a potentially

fruitful topic for research.

Another generalization, and one that has had some success, is that of a frame

associated with a measure space (see [29]), or continuous frame, which can resolve

ξ into a family of scalars indexed by a set more general than a discrete one—for

example, a continuum. Sometimes called coherent states [3] in analogy with the

physics literature, frames associated with measure spaces are known to simplify the
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treatment of Calderon-Zygmund operators [28] and quasi-diagonalize certain classes

of pseudodifferential operators [31].

Overarching these two generalizations is an object called a continuous g-frame,

defined and studied independently by Abdollahpour and Faroughi [2] and Moran et al.

[39]. We will use instead the term operator-valued frame associated with a measure

space, or MS-OVF. Whereas an operator-valued frame decomposes ξ into a sequence

of vectors and a frame associated with a measure space may decompose ξ into a

continuum of scalars, an operator-valued frame associated with a measure space may

decompose ξ into a continuum of vectors. As observed in [32] and [39], OVFs and MS-

OVFs fit into the framework of a slight modification of a prominent object in quantum

information theory, called a framed positive operator-valued measure (POVM ) In the

latter document, the question of whether all framed POVMs correspond to some

MS-OVF, or equivalently whether a POVM has a Radon-Nikodym derivative with

respect to some σ-finite measure, arose. A positive answer to this question when the

POVM’s trace is finite and, respectively, when H is finite-dimensional is obtained

by Berezanskii and Kondratev in [9] and by Chiribella et al. in [18]; however, a

full characterization of Radon-Nikodym differentiability appears to be lacking in the

literature.

Two prominent examples of frames associated with measure spaces are the Fourier

transform for R restricted to L2(−1/2, 1/2) and the Fourier transform for the circle ap-

plied to L2(−1/2, 1/2). The former can be used to represent a vector in L2(−1/2, 1/2)

as a continuous superposition of vectors from the family
{
e2πiλ · : λ ∈ R

}
, and the

latter can be used to represent members of L2(−1/2, 1/2) as a discrete superposition

of vectors from the family {e2πin · : n ∈ Z}. One of several possible perspectives on

the L2 convergence of the latter is that it is a consequence of the Poisson Summa-

tion Formula. As shown in Duffin and Schaeffer’s paper [25], a family of the form

3



{
e2πiλn · : n ∈ Z

}
, with more general real numbers λn, is a frame as well, assuming

some mild conditions on the λn’s, so representing all vectors in L2(−1/2, 1/2) as su-

perpositions with respect to this family is also possible. This result was partially

extended to the L2-space of a ball in Rd centered at the origin for d ≥ 2 by Beurling

[10]. Both of these ideas extend easily to all connected, locally compact, Hausdorff

abelian groups, each of which is just a product of Rd and some compact abelian group

K.

There is considerable literature devoted to whether the concepts of Fourier series

and the Fourier transform for R extend to general locally compact, Hausdorff groups

G. If G is type I, second countable, and unimodular, then an analogue of the classical

Plancherel theorem due to Segal [44, 45] and Mautner [38] holds. If G is a Lie group

admitting a uniform lattice, then an analogue of the Poisson Summation Formula

called the Selberg Trace Formula (see Selberg [46, 47] and Arthur [4]) holds. The latter

is usually thought of as a pointwise formula relating linear forms for test functions on

G. The question of when it provides a reproducing formula for members of the L2-

space of some relatively compact subset of G, analogous to a Fourier series for the L2-

space of (−1/2, 1/2) in R, has not yet been addressed. This question is related to the

more developed subject of finding Fourier series for compact Riemannian manifolds,

but the two differ in the domain of functions considered. Another question not yet

explored is whether the circle of results of Duffin and Schaeffer [25] and Beurling [10]

extend to connected Lie groups beyond the abelian ones; i.e., whether decompositions

of functions in the L2-space of a relatively compact subset E of G in terms of general

irreducible unitary representations of G are possible.
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1.2 Outline

In Chapter 2, we give notation, terminology, and preliminary results necessary

to understand the rest of this thesis. An overview of the necessary concepts from

functional analysis and harmonic analysis is given, as well as some basic background

on frames and operator-valued frames. An example of an operator-valued frame for

the L2-space of a compact group is shown to follow from the Peter-Weyl theorem.

In Chapter 3, we give a study of MS-OVFs and POVMs. In Section 3.2, We first

reproduce much of the basic theory of MS-OVFs introduced in Abdollahpour and

Faroughi [2], including some basic facts about direct integrals of separable Hilbert

spaces. We then fill the void of examples in their paper by providing an explicit

example of an MS-OVF: namely, the example of the Fourier transform on a connected

semisimple Lie group G restricted to the L2-space of a relatively compact subset of

G. In Section 3.3, the relationship between POVMs and MS-OVFs is described,

and a characterization of MS-OVFs in terms of POVMs is obtained by extending the

Radon-Nikodym theorems of Chiribella et al. [18] and Berezanskii and Kondratev [9].

Section 3.4 provides a conclusion and proposes some directions for future research.

In Chapter 4, the subject of extending the work of Duffin and Schaeffer [25] and

Beurling [10] to a general connected Lie group G is explored. In Section 4.3, the idea

of a Fourier series for L2(−1/2, 1/2), which can be thought of as a consequence of the

Poisson Summation Formula, is extended, using the Selberg Trace Formula, to the L2-

space of certain relatively compact subsets of G, provided that G admits a so-called

uniform lattice. In Section 4.4, this idea is applied to and extended for the Euclidean

motion group for R2 and for the Heisenberg group: for each of these examples, an

appropriate relatively compact subset E of G is found, and the series coming from

the trace formula is modified to give a more general class of decompositions of L2(E),

5



which are similar to the decompositions of L2(−1/2, 1/2) in Duffin and Schaeffer

[25, Lemma III]. The decompositions obtained are expressed in terms of irreducible

unitary representations of G and are examples of operator-valued frames, so they

are given the name OVFs of representations. Section 4.5 provides a conclusion and

proposes some directions for future research.
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Chapter 2

PRELIMINARIES

2.1 Introduction

This chapter establishes some preliminary notation, terminology, and results needed

to understand the rest of the thesis. Important concepts include Hilbert spaces, mea-

sure spaces, topological groups, Fourier analysis, unitary representations, frames, and

operator-valued frames. The focus of this thesis will be on separable Hilbert spaces,

σ-finite measures, complex-valued functions, and on topological groups that are sec-

ond countable, locally compact, and Hausdorff. These conditions should be assumed

unless a statement is made to the contrary. In particular, these conditions on a topo-

logical group will be entailed when the terminology “locally compact group” is used.

Throughout this thesis, the symbols N,Z,R, and C will refer to the natural numbers,

the integers, the real numbers, and the complex numbers, with the natural num-

bers excluding 0, and the symbol T will denote the multiplicative group of complex

numbers of modulus one.

In Section 2.2, we give notation and terminology related to concepts from measure

theory, functional analysis, and harmonic analysis. In Section 2.3, we give a review

of frames and operator-valued frames and their basic properties. The concepts of an

analysis, synthesis, and frame operator are discussed, the frame algorithm for recon-

struction is discussed, and several examples of frames and operator-valued frames are

given.
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2.2 Measure Theory, Functional Analysis, and Harmonic Analysis

For the rest of this document we will follow the notational conventions of [27, 26]

unless an indication is made to the contrary.

As usual, a measurable space is denoted by an ordered pair, such as (X,Σ), and

a measure space is denoted by an ordered triple, such as (X,Σ, µ). Properties which

are true of all x ∈ X except possibly on a set of µ-measure zero are said to be true for

µ-almost every x, or µ-a.e. x. The symbol χE will denote the characteristic function

of a set E. The symbol Lp(X,µ), or Lp(X, dµ), for p ≥ 1 will denote the Banach

space of measurable functions f on X such that |f |p is µ-integrable. In particular,

if µ is the counting measure, then Lp(X,µ) is denoted by `p(X), and if additionally

X = N, then `p(X) is denoted by `p.

Hilbert spaces will be denoted by calligraphic letters, such as H and K. If H is a

Hilbert space, the inner product and norm on H will often be given a subscript: that

is, if ξ, η ∈ H, the inner product of ξ and η will be denoted by 〈ξ, η〉H, and the norm

of ξ will be denoted by ‖ξ‖H. When H is understood, the subscripts will be dropped.

Inner products will be conjugate linear with respect to the second variable. The

Banach space of bounded operators between H and K with the usual operator norm

is denoted L(H,K), with L(H,H) = L(H). The Hilbert-space adjoint of T ∈ L(H,K)

will be denoted T ∗. The set of positive operators from H to H will be denoted L+(H),

and the identity operator on H will be denoted IH.

For a Hilbert space H, the ideal in L(H) of trace-class operators on H will be

denoted L1(H), and if T ∈ L1(H), the trace of T is denoted Tr(T ). The Hilbert space

of Hilbert-Schmidt class operators on H will be denoted L2(H), with inner product

〈 · , · 〉HS and norm ‖ · ‖HS.

For a Hilbert space H and a measurable space (X,Σ), a map A : X → L(H)
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will be said to be weakly measurable if x 7→ 〈A(x)ξ, η〉 is measurable for all ξ, η ∈

H. If µ is a measure on (X,Σ), if A : X → L(H) is weakly measurable, and if

(ξ, η) 7→
∫
X
〈A(x)ξ, η〉 dµ(x) is a bounded sesquilinear map, then we say that A is

weakly integrable and we denote by
∫
X
A(x) dµ(x) (the weak integral of A with respect

to µ) the unique bounded operator S such that 〈Sξ, η〉 =
∫
X
〈A(x)ξ, η〉 dµ(x). This

notion of operator-valued integration is related to the commonly discussed concepts

of Pettis integration and Bochner integration, but we will have no need to discuss

these types of integration here.

If X is a locally compact, Hausdorff space, Cc(X) will denote the normed space

of continuous, compactly-supported functions on X, with the uniform norm, denoted

‖ · ‖∞. If X is additionally a real Ck manifold, then Ck
c (X) is the set of k-times contin-

uously differentiable, compactly-supported functions on X, where k ∈ {1, 2, . . . ,∞}.

If E is an open subset of X, then CE(X) := {f ∈ Cc(X) : suppf ⊂ E} and likewise

for Ck
E(X) :=

{
f ∈ Ck

c (X) : suppf ⊂ E
}

.

Throughout this thesis, the letter G will be used to denote a locally compact group.

The identity of G will be denoted 1G. Haar measure µ for G will be left Haar measure

unless a statement is made to the contrary. For µ, the notation dx will sometimes

be used in place of dµ(x), and we will denote by Lp(G) the space Lp(G, dµ), p ≥ 1.

The convolution product on L1(G) is denoted by (f ∗ g)(x) =
∫
f(y)g(y−1x) dy. The

symbol ∆G will denote the modular function of G: i.e., the unique function from G

into (0,∞) such that µ(Ex) = ∆G(x)µ(E) for all x ∈ G and all Borel E ⊂ G. We

remind the reader that the modular function is identically 1 when G is discrete or

abelian or compact, as well as in other cases.

A unitary representation (or simply, representation) of G is defined to be a ho-

momorphism π from G into U(Hπ), the group of unitary operators on some nonzero

Hilbert space Hπ, that is continuous when U(Hπ) is given the strong-operator topol-
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ogy. That is, a unitary representation is a map into U(Hπ) which satisfies π(xy) =

π(x)π(y) and π(x−1) = π(x)−1 = π(x)∗, and for which the map x 7→ π(x)ξ is contin-

uous for each ξ ∈ Hπ. The dimension of the space Hπ is called the dimension of the

representation. Unitary representations are often referred to as ordered pairs (π,Hπ),

and two unitary representations (π1,H1) and (π2,H2) are said to be (unitarily) equiv-

alent if there is a unitary U : H1 → H2 such that Uπ1(x)U∗ = π2(x) for every x ∈ G.

We will use the term “equivalent” in place of “unitarily equivalent” when speaking of

representations. Any one-dimensional example is a continuous map into U(C) ∼= T,

and is called a (one-dimensional) character of G.

A prominent type of representation of G arises from the action of G on a locally

compact, Hausdorff space S. If G acts continuously on S via (s, x) ∈ S ×G 7→ sx, if

there is aG-invariant measure µ on S, and if we defineH = L2(S, dµ), a representation

of G on H is given by the following:

[π(x)f ](s) = f(sx)

for x ∈ G, s ∈ S, and f ∈ H. The operator π(x) is a unitary operator for each

x ∈ G because µ is G-invariant, the map π is clearly multiplicative, and the map π is

continuous with respect to the strong-operator topology on H by the argument that

proves [26, Proposition 2.41]. If S = G, sx = sx, and µ is right Haar measure, π is

said to be the right regular representation. If S = G, sx = x−1s, and µ is left Haar

measure, π is said to be the left regular representation. If S = H\G, sx = sx, and

there exists a right-invariant measure µ on H\G (conditions for this are described in

[26, Theorem 2.49], with right cosets replacing left ones), then π is called the right

quasi-regular representation for (G,H). This representation is often denoted by R in

the literature, and by definition

[R(y)φ] (x) = φ(xy),
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for x ∈ H\G, y ∈ G, and φ ∈ L2(H\G, dµ). If S = G/H, sx = x−1s, and there

is a left-invariant measure µ on G/H, then π is the left quasi-regular representation

for (G,H). In the absence of a specification of “left” or “right,” a quasi-regular

representation will be assumed to be a right quasi-regular representation. Much of

the focus in harmonic analysis has been on these two types representations and, more

generally, on representations of G on L2-spaces of locally compact Hausdorff spaces

that admit a so-called quasi-invariant measure.

An important ingredient in the study of representations of G is their so-called

integrated form. That is, if (π,Hπ) is a representation of G and f ∈ L1(G), then for

a specified Haar measure dx we may define an operator on Hπ by

π(f) =

∫
G

f(x)π(x) dx,

interpreted as a weak integral. That this operator is well-defined for each such f and

π can be seen as follows. Let ((ξ, η)) be defined for ξ, η ∈ Hπ as
∫
G
f(x) 〈π(x)ξ, η〉 dx,

which is finite since
∫
G
|f(x) 〈π(x)ξ, η〉| dx ≤

∫
|f(x)| dx ‖ξ‖ ‖η‖. The map (ξ, η) 7→

((ξ, η)) is clearly sesquilinear, and by the inequality just given it is a bounded form.

Thus, there is a unique operator S ∈ L(Hπ) such that ((ξ, η)) = 〈Sξ, η〉. This is

the operator we mean when we say π(f). It is important to note that π, regarded

as a map from L1(G) into L(Hπ), is in fact a ∗-representation from the Banach ∗-

algebra L1(G) under convolution into L(Hπ) [26, Theorem 3.9]. This idea is crucial

in the proof of the Gelfand-Raikov theorem [26, Theorem 3.34], which states that

there are enough irreducible representations (defined in the next paragraph) of G to

separate points: i.e., if x and y are distinct points of G, then there is an irreducible

representation π of G such that π(x) 6= π(y).

Given a representation π of G on H we shall be interested in the case when there

is a sequence of proper, nontrivial closed subspaces {Hj}, each invariant under the
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action of π, such that H =
⊕
Hj. In this case we say π =

⊕
πj, where πj is

the representation on Hj given by πj(x) = π(x)|Hj . Whenever there is one such

subspace, such a decomposition is possible, because, as is easily shown, if M ⊂ H

is invariant under π, so is M⊥. In any case, if we have that π =
⊕

πj, we say that

each πj is a subrepresentation of π. Particularly interesting is when for each j the

subrepresentation (πj,Hj) is an irreducible representation meaning that no proper,

nontrivial, closed subspace of Hj is invariant under πj. Some representations, like the

right regular representation on T decompose into a direct sum of subrepresentations,

and some, like the right regular representation on R, do not.

If π can be decomposed as
⊕

πj, then although the πj’s are not unique in and

of themselves, the list of them is unique up to unitary equivalence. The number of

times in {0, 1, 2, . . . ,∞} that πj occurs, up to equivalence, in
⊕

πj is called its multi-

plicity. It will not be important to us here, but we note that similar decompositions

exist in general if we introduce an object called a direct integral of representations,

although these decompositions do not always possess the same uniqueness property.

In any case, decomposing a general representation π of G explicitly into irreducible

representations is a fundamental problem in harmonic analysis. Part of this problem

is to describe the so-called unitary dual Ĝ of G—the set of equivalence classes of

irreducible representations of G. However, such descriptions and decompositions are

only known for special classes of groups (e.g., connected semi-simple Lie groups and

connected nilpotent Lie groups, for two) and special representations (e.g., regular,

quasi-regular, actions on the L2-spaces described above).

Finally, we make a note about the Fourier transform on a locally compact abelian

group G. If ξ is a character on G and f ∈ L1(G), then we define

Ff(ξ) = f̂(ξ) =

∫
G

f(x)ξ(x) dx.
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If Ĝ is endowed with the operation of pointwise multiplication, then it, like G, is a

locally compact abelian group. The Plancherel Theorem for G, a fundamental result,

states that the map F above, restricted to L1(G) ∩ L2(G) extends uniquely to a

unitary isomorphism from L2(G) to L2(Ĝ), when Haar measure on Ĝ is appropriately

normalized. One special case of this of which we will make use is the case where

G is compact. In this case, Ĝ consists of a discrete set of characters κ1, κ2, . . . ,

and we will assume that Haar measure of G is normalized to 1. It follows from the

Plancherel Theorem that these characters, when considered as members of L2(G),

form an orthonormal basis for L2(G). Another important case is the case where

G = Rd. In this case, we identify a character ξω = e2πi〈ω, · 〉 with the real vector ω,

and the Fourier transform takes the form

Ff(ω) = f̂(ω) =

∫
f(x)e−2πi〈ω,x〉 dx

for f ∈ L1(Rd) ∩ L2(Rd). The dot product 〈ω, x〉 of two real vectors will sometimes

be written ω · x. If f is considered as a member of L2(Rd1 ×Rd2 × . . .Rdn), then the

symbol Fj will denote the Fourier transform of f with respect to the jth variable. For

example,

F1f(ω1, x2, x3, . . . , xn) =

∫
Rd1

f(x1, x2, . . . xn)e−2πiω1·x1 dx1.

This concludes this section.

2.3 Frame Theory

In this section, we review the concept of a frame and the concept of an operator-

valued frame. In Section 2.3.1 and Section 2.3.2, basic properties of frames and

operator-valued frames, respectively, are discussed, including the concepts of an anal-

ysis, synthesis, and frame operator. Methods of reconstruction using frames and
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operator-valued frames are discussed. For each type of object, several examples are

given, including the important example of a frame of exponentials (Example 2.3.3).

Throughout this section, the symbol H will denote a Hilbert space.

2.3.1 Frames

A frame for H is a sequence {ξj : j ∈ N} ⊂ H such that there are constants

B,A > 0 for which

A ‖ξ‖2 ≤
∑
j

|〈ξ, ξj〉|2 ≤ B ‖ξ‖2 (2.1)

for all ξ ∈ H. If it is known only that there is a B ≥ 0 such that

∑
j

|〈ξ, ξj〉|2 ≤ B ‖ξ‖2 (2.2)

for all ξ ∈ H, then we say {ξj} is a Bessel sequence. In this context, we may define a

bounded operator T : H → `2 by ξ 7→ {〈ξ, ξj〉}. Such a map is called a Bessel map or

analysis operator in the literature. The adjoint T ∗ is then called the synthesis operator

for the sequence. Further, we will call R = T ∗T the resolvent for the sequence. If {ξj}

is a Bessel sequence, {ξj} is a frame if and only if the analysis operator T is invertible.

In particular, this means that it is possible to approximately recover ξ from Tξ in

the presence of limited noise added to the vector Tξ—in fact, even if limited noise

is added to ξ before the application of T . Frames share this desirable property with

orthonormal bases, and, as we will see in Example 2.3.6, non-orthogonal frames can

sometimes be more convenient to work with than orthonormal bases. First let us

discuss a simple example of a frame.

Example 2.3.1. Let {ξj : j ∈ N} be an orthonormal system inH. We will now check

that {ξj} is a Bessel sequence, and for the particular case of an orthonormal basis,

calculate its synthesis and resolvent operators. To check (2.2), simply cite Bessel’s
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inequality:

∑
j

|〈ξ, ξj〉|2 ≤ ‖ξ‖2

for all ξ ∈ H. If in addition {ξj} spans H, then {ξj} is a frame with A = B = 1:

∑
j

|〈ξ, ξj〉|2 = ‖ξ‖2

for all ξ ∈ H. For the resolvent, we first need an adjoint for T . We claim that T ∗ is

given by the map S from `2 to H defined by

{cj} 7→
∑
j

cjξj. (2.3)

This sum converges in norm and is a bounded linear map since the |cj|’s are square-

summable. We will now check that T ∗ = S. Let η = {cj} ∈ `2. On one hand we

have,

〈ξ, Sη〉 =

〈
ξ,
∑
j

cjξj

〉

=
∑
j

cj 〈ξ, ξj〉 .

On the other hand,

〈Tξ, η〉`2 = 〈{〈ξ, ξj〉} , {cj}〉`2

=
∑
j

cj 〈ξ, ξj〉 .

Thus T ∗ is given by (2.3). The resolvent T ∗T is then

ξ 7→
∑
j

〈ξ, ξj〉 ξj, (2.4)

which is the identity operator on H.
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The above example implies that if {ξj} is an orthonormal basis for H, then it is

a frame with A = B = 1. Frames for which A = B are called tight frames. If in

addition A = B = 1, the frame is called a Parseval frame. All orthonormal systems

are Parseval frames for their closed span, but not all Parseval frames are orthonormal

bases, as the following example indicates.

Example 2.3.2. (The “Mercedes” frame.) Consider the frame in Figure 2.1, made

up of the three red vectors, for H = C2. Each red vector lies in R2, but together they

make a frame for C2. These vectors form a tight frame with A = B = 3/2. Scaling

each vector by
√

2/3 gives a Parseval frame whose members are nonorthogonal.

Figure 2.1: The “Mercedes” Frame

In the example above, the vectors ξ1, ξ2, and ξ3 all have length
√

2/3. For a

general H, if we were to require that {ξ1, ξ2, . . . } be a Parseval frame of unit vectors,

then the only possibility is that {ξj} is an orthonormal basis. Indeed, the truth of
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the equality ∑
j

|〈ξ, ξj〉|2 = ‖ξ‖2

for all ξ ∈ H implies that for any k we have

∑
j

|〈ξk, ξj〉|2 = |〈ξk, ξk〉|2 ,

which implies that |〈ξk, ξj〉| = 0 for all k 6= j.

We provide in the following example an important class of infinite-dimensional

frames that are in general non-orthogonal.

Example 2.3.3. (Frames of exponentials.) It is clear from the frame condition that

any ordering of a frame is also a frame, so that we may consider sequences indexed

by arbitrary discrete sets as frames. For x, λ ∈ Rd, let eλ(x) = e2πi〈λ,x〉. When Λ

is a discrete subset of Rd and E is a measurable subset of Rd, several authors have

investigated the question of when sequences of the form F (Λ) = {eλ : λ ∈ Λ} are

a frame for L2(E). The sequence F (Zd), for example, is an orthonormal basis for

L2(E) with E = (−1/2, 1/2)d, so it is of course also a Parseval frame for that space.

In Duffin and Schaeffer’s 1952 paper on non-harmonic Fourier series, the authors

describe for d = 1 a very general condition on Λ = {λj : j ∈ Z} such that F (Λ) is a

frame for L2(E), with E as above. Their conclusion: if there are M, δ > 0 such that

|λj − j| < M for all j and |λi − λj| > δ for all i 6= j, then F (Λ) is a frame for H.

It is often of interest to determine when a sequence Ψ = {ψj} that is a frame for H

is more strongly a Riesz basis for H, which means Ψ is the image of an orthonormal

basis {fj} for H under an invertible operator S : H → H. Every Riesz basis is a

frame since
∑

j |〈ξ, Sfj〉|
2 = ‖S∗ξ‖2, which is bounded below by a positive constant

times ‖ξ‖2 since S∗ is invertible. The famous “1/4-theorem,” due to [35], states that

F (Λ) is a Riesz basis for L2(E) if we have that supj |λj − j| is less than 1/4, and [7]
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has extended this result further. Another result in this circle of ideas is one of [10],

which describes a family of frames for the L2-space of the unit ball Bd in Rd. His

result is that if Λ is a subset of Rd such that supζ∈Rd dist(ζ,Λ) is less than 1/4, where

dist(ζ,Λ) is the Euclidean distance between the point ζ and the set Λ, then F (Λ) is

a frame for L2(Bd).

If Φ = {φi} and Ψ = {ψj} are frames for L2(X, dµ) and L2(Y, dν), respectively.

Then, the set Φ⊗Ψ of all products of the form φi⊗ψj is a frame for L2(X×Y, µ×ν),

where for φ ∈ L2(X) and ψ ∈ L2(Y ) the quantity φ⊗ψ is defined by (x, y) ∈ X×Y 7→

φ(x)ψ(y). Indeed, since L2(X)⊗L2(Y ) is norm-dense in L2(X × Y, µ× ν), it suffices

to prove the frame inequalities hold on all f of the form g ⊗ h, for g ∈ L2(X) and

h ∈ L2(Y ). Suppose the frame bounds for Φ are B1, A1 > 0 and the frame bounds

for Ψ are B2, A2 > 0. We have

∑
i,j

|〈f, φiψj〉|2 =
∑
i

|〈g, φi〉|2
∑
j

|〈h, ψj〉|2

and the right side is bounded below by A1A2 ‖g‖2 ‖h‖2 and above by B1B2 ‖g‖2 ‖h‖2.

Since ‖f‖2
L2(X×Y ) = ‖g‖2 ‖h‖2, Φ⊗Ψ is a frame for L2(X×Y ) with bounds A1A2 and

B1B2, as desired. This gives rise to an extension of the idea of frames of exponentials

to a locally compact abelian group.

Example 2.3.4. (Frames of characters for connected locally compact abelian groups.)

Suppose G is an abelian group. The Principle Structure Theorem for locally compact

abelian groups (as found in [34]) ensures that G has an open subgroup isomorphic to

Rd×K for some compact abelian group K. If we assume further that G is connected,

then this subgroup must be equal to G since it is also closed. Thus, if G is connected,

there is no loss in generality in assuming that G is equal to Rd ×K. Suppose Haar

measure of K is normalized to 1. Let eλ for λ ∈ Rd be the complex exponential
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in Example 2.3.3, and let Λ = {λ1, λ2, . . . } and E0 be subsets of Rd such that the

sequence of exponentials F (Λ) is a frame for L2(E0). Using [26, Proposition 4.6] all

characters π ofG are of the form πλ,l(x, k) = eλ(x)κl(k), where x ∈ Rd, λ ∈ Rd, k ∈ K,

l ∈ N, and {κl : l ∈ N} is a list of all characters of K. Further, {κl} is an orthonormal

basis for L2(K). By the remarks preceding this example, {πλj ,l} = {eλj ⊗ κl} is a

frame for L2(E0 × K). We will refer to a frame obtained in this way as a frame of

characters for L2(E).

For a general Bessel sequence {ξj}, calculations similar to those of Example 2.3.1

give the same results for T ∗ and R. Namely,

T ∗ : `2 → H : {cj} 7→
∑
j

cjξj

and

R : H → H : ξ 7→
∑
j

〈ξ, ξj〉 ξj. (2.5)

The proofs are given in [19, Lemma 3.2.1]. From this, we can make an alternative

characterization of the upper and lower bounds in (2.1). To wit, they are equivalent

to A ‖ξ‖2 ≤ ‖Tξ‖2
`2 and ‖Tξ‖2

`2 ≤ B ‖ξ‖2, respectively, which are equivalent to AIH ≤

T ∗T and T ∗T ≤ BIH, respectively, in the positive-semidefinite partial ordering. (In

this case, we call R the frame operator.) Now we see something important that

distinguishes tight frames from other types of frames: 1
A
T ∗T = IH. This means we

have the following simple reconstruction formula for obtaining ξ from Tξ:

ξ =
1

A

∑
j

〈ξ, ξj〉 ξj. (2.6)

For a more general reproducing formula that works for non-tight frames, simply ob-

serve that by (2.5) we have

ξ =
∑
j

〈ξ, ξj〉R−1ξj. (2.7)

19



(It turns out that G = {R−1ξj : j = 1, 2, . . . } is a frame as well, called the dual frame

of {ξj}, and has frame bounds 1
B

and 1
A

, and has the property that the dual frame of

G is again {ξj}.)

In light of the above, it is often desirable to invert R. For any positive operator S

whose spectrum is bounded below by a positive number A and above by B, one can

use the following recursive algorithm, found in [30], to compute approximants ξ(n) to

ξ given Sξ:

ξ(n) = ξ(n−1) +
2

A+B
S
(
ξ − ξ(n−1)

)
, (n ≥ 1), (2.8)

Using this method we get exponential convergence:

∥∥ξ − ξ(n)
∥∥ ≤ (B − A

B + A

)n
‖ξ‖ . (2.9)

In light of this convergence estimate, good bounds for the spectrum are essential to

fast convergence. As explored in [30], it is sometimes computationally desirable to

use the above algorithm when S is a frame operator, in which case the algorithm is

called the frame algorithm.

Remark 2.3.5. Two problems that computational mathematicians are interested

in are the efficiency of storing and retrieving information about a vector ξ using a

frame. To achieve efficient storage, the sequence Tξ should be essentially zero except

for a finite number of terms. To achieve efficient retrieval, the nth partial sum of

the series in Equation (2.7) should converge rapidly. This is of course only possible

for some vectors ξ. The frames of Duffin and Schaeffer, described in Example 2.3.3,

provide both efficient storage and efficient retrieval of k-times differentiable functions

f supported on (−1/2, 1/2) in the following senses. For storage, the nth term of

sequence {〈f, ψj〉} is equal to ∫ 1/2

−1/2

f(x)e−2πiλnx dx.
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Thus, integrating by parts k times gives a bound of
Cf

(n−M)k
for n > M and for an

appropriate constant Cf depending on f . For retrieval, the nth partial sum in (2.7)

then converges at a rate of roughly 1
k−1

Cf
(n−M)k−1 .

A fair question is what non-orthogonal frames do that orthonormal bases do not

do? One example comes from the area of Gabor analysis.

Example 2.3.6. If g ∈ L2(R) and a, b > 0, let gm,n(x) = e2πimbxg(x − na). The

set {gm,n : m,n ∈ Z} is called a Gabor system. Gabor systems are often used

in applications to decompose members f of L2(R) which are modeled as Schwarz-

class signals. In light of the previous Remark, it is of interest from a computational

standpoint to find Gabor systems that represent f efficiently. Given a Schwarz-class

function g such that {gm,n} is an orthonormal basis, the sequence
∑

m,n 〈f, gm,n〉 gm,n

will converge faster than any inverse power of (|m|+ |n|+ 1), but in practice, finding

such a g can be difficult or impossible. However, if the requirement of orthonormality

is loosened to the requirement of being a frame, finding such a g is easy. In fact, as

long as ab < 1, any g ∈ L2(R) will give rise to not only a frame but a tight frame [21].

Such frames are called Weyl-Heisenberg frames and are a type of wavelet frame. In

view of (2.6), the reconstruction formula corresponding to such a system is no more

complicated than reconstruction using an orthonormal basis and exhibits the same

property of rapid convergence just mentioned. Thus, non-orthogonal frames with

good storage-and-retrieval properties can be easier to find than orthonormal bases

with these properties.

2.3.2 Operator-Valued Frames

As suggested in the Section 1.1, frames are part of a larger family called operator-

valued frames, which behave in largely the same way as frames but may be more
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convenient for some purposes. Here we will define these objects and give two examples.

Like a frame, an operator-valued frame has an analysis, synthesis, and frame operator.

We describe the forms these operators take. Finally, we discuss the analogues of the

reconstruction formulas in (2.6), (2.7), and (2.8).

Let K1,K2, . . . be a sequence of Hilbert spaces and ‖ · ‖ = ‖ · ‖H and 〈 · , · 〉 =

〈 · , · 〉H. If {Tj : j ∈ N} is a sequence of bounded linear maps Tj : H → Kj such that

there exists B ≥ 0 such that

∑
j

‖Tjξ‖2
Kj ≤ B ‖ξ‖2 (2.10)

for all ξ ∈ H, we will say that {Tj} is an operator-valued Bessel sequence. Intuitively,

the difference between the Bessel sequences of the last section and those of this chapter

is that those of this chapter resolve the vector ξ into a square-summable sequence

of vectors {Tjξ} rather than a square-summable sequence of scalars {〈ξ, ξj〉}. More

precisely, {Tj} resolves ξ into a sequence {Tjξ} ∈ ΠjKj for which
∑

j ‖Tjξ‖
2
Kj < ∞.

In what follows, we will freely pass back and forth between identifying {Tj} as a map

(ξ 7→ {Tjξ}) from H into
⊕

j Kj and identifying {Tj} as a sequence of operators.

Also, for the rest of this section we will denote
⊕

j Kj by K, calling K the analysis

space of {Tj} and the Kj’s the component spaces of {Tj}.

Given an operator-valued Bessel sequence T = {Tj}, the analysis, synthesis, and

resolvent operators are defined as before, as T , T ∗, and T ∗T , respectively. At this

point it is pertinent to mention a difference between the Bessel sequences of the

last chapter and those of this chapter. Those of the last chapter are not formally

instances of those from this chapter, but they can be thought of as such by identifying

a Bessel sequence {ξj} with an operator-valued Bessel sequence {〈 · , ξj〉}. We do not

lose anything by making this identification, as the purposes of Bessel sequences and

operator-valued Bessel sequences are the same: to resolve a vector into constituent
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parts.

An operator-valued Bessel sequence T = {Tj} is then an operator-valued frame

for H if, in addition to (2.10), there is A > 0 such that

A ‖ξ‖2 ≤
∑
j

‖Tjξ‖2
Kj (2.11)

for all ξ ∈ H. That is, T is an operator-valued frame for H if and only if there are

B,A > 0 such that

A ‖ξ‖2 ≤
∑
j

‖Tjξ‖2
Kj ≤ B ‖ξ‖2

for all ξ ∈ H. This concept is due to [48], although the terminology is due to [36].

If A = B, we say that T is a tight OVF for H, and if A = B = 1, we say T is a

Parseval OVF. We give now two examples: one which is investigated in the literature

on frames and one which arises naturally from analysis on a compact group.

Example 2.3.7. (Time-frequency localization operators.) In this example we follow

[24]. If f, g ∈ L2(Rd), we define the windowed Fourier transform Vg to be

(Vgf)(t, ω) =

∫
Rd
f(x)g(x− t)e−2πiωx dx

We will use the notation S0(Rd) to mean
{
g ∈ L2(Rd) : Vgg ∈ L1(R2d)

}
, the Fe-

ichtinger algebra. Let φ be some function in S0(Rd). Let σ be a bounded function on

R2d with σ(x) ≥ 0 and compact support, and define the time-frequency localization

operator Hσ corresponding to σ by Hσf = V ∗φ σVφf . Let Kj = rangeHσ( · −j) ⊂ H for

j ∈ Z2d. If σ ∈ S0(R2d) and there are positive constants C1, C2 such that

C1 ≤
∑
j∈Z2d

σ( · − j) ≤ C2.

Then it is shown in [24] that
{
Hσ( · −j) : j ∈ Z2d

}
is an operator-valued frame for

L2(Rd). That is, there are constants B,A > 0 such that

A ‖f‖2
L2(Rd) ≤

∑
j∈Z2d

∥∥Hσ( · −j)f
∥∥2

Kj
≤ B ‖f‖2

L2(Rd)
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for all f ∈ L2(Rd).

Example 2.3.8. In this example we will use the treatment of the Peter-Weyl Theo-

rem in [26, Chapter 5] to describe an OVF arising from analysis on a compact group G.

By [26, Theorem 5.2], all irreducible representations of G are finite-dimensional. Fix-

ing once and for all representatives (π1,Hπ1), (π2,Hπ2), . . . for the elements of Ĝ, we

may make the following definition (as made in loc. cit.): f̂(πj) =
∫
G
f(x)πj(x

−1) dx.

For each j, let dj be the dimension of πj. The above integral defines a member

of L(Hπ), which is in general not a one-dimensional vector space. If we define

Fjf =
∫
G
f(x)πj(x

−1) dx, we may view Fj as a map between Hilbert spaces by identi-

fying each L(Hπj) with Kj := L2(Hπj). One interpretation of the Peter-Weyl theorem

(as found in loc. cit.) tells us that

f( · ) =
∑
j

Tr(f̂(πj)πj( · ))dj, (2.12)

with convergence in L2(G). We will now put this into the context of operator-valued

frames. Let Tj =
√
djFj. We claim that F ∗j a = Sja := Tr(aπj( · )), for a ∈ L(Hπj).

Indeed,

〈Fjf, a〉Kj =

∫
G

f(x)
〈
π(x−1), a

〉
Kj
dx

=

∫
G

f(x)Tr(a∗π(x−1))dx

=

∫
G

f(x)Tr(a∗π(x)∗)dx,

whereas

〈f, Sja〉H =

∫
G

f(x)Tr(aπj(x))dx

=

∫
G

f(x)Tr(πj(x)∗a∗)dx

=

∫
G

f(x)Tr(a∗πj(x)∗)dx.
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Thus, (T ∗j Tjf)(x) =
√
djTr((Tjf)πj(x)) = Tr(f̂(πj)πj(x))dj. Thus, by Equation (2.12),

f =
∑
j

T ∗j Tjf.

This means that T = {Tj} : H →
⊕

j Kj is well-defined since∑
j

‖Tjf‖2
Kj =

∑
j

〈
T ∗j Tjf, f

〉
H

=

〈∑
j

T ∗j Tjf, f

〉
H

= 〈f, f〉H <∞.

The equality with 〈f, f〉H means that T is an OVF, as desired, with frame bounds in

this case being A = B = 1. That is, T is a Parseval OVF. Moreover, T is orthogonal

in the sense that TkT
∗
j = 0 for k 6= j. Indeed, if a ∈ Kj, then g = T ∗j a is defined by

g(x) = Tr(aπj(x)) and thus is in the span of the matrix elements of the matrix-valued

function x 7→ πj(x). If k 6= j, then by the Schur Orthogonality Relations [26, 5.8], Tk

applied to g is zero.

Remark 2.3.9. As noted in [36] an OVF is easily expanded into an ordinary frame.

Indeed, if we are given an operator-valued frame {Tj : j ∈ N}, with each Tj mapping

into the Hilbert space Kj, and an orthonormal basis {ejk}k≥1 for each Kj, it is easily

seen that the set
{
T ∗j ejk : j, k ≥ 1

}
is an ordinary frame with the same frame bounds

as {Tj}. So what is the point of working with OVFs rather than frames? One reason,

to borrow a term from computer science, is that they provide some level of procedural

abstraction over frames. That is, treating an OVF as an OVF and not a frame allows

one to ignore how analysis is done on each of the Kj’s and focus instead on the whole

picture of how analysis is being done on H. This makes it possible to avoid a choice

of bases for the spaces Kj when the operators Tj are already simply expressed, as in

Example 2.3.7. Moreover, any such choice of bases may be somewhat arbitrary: for
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example, in Example 2.3.8, the space Kj corresponds to an irreducible representation

πj of G, so any proper decomposition of it must be a decomposition into subspaces

of Kj that are not πj-invariant.

If T is an OVF, it is possible to iteratively reconstruct of ξ from Tξ as in Sec-

tion 2.3.1. This can be accomplished by simply setting S = R = T ∗T in the algorithm

(2.8), as before, and the same convergence rate applies.

Since reconstruction depends on R, it is natural to ask what form R takes, which

depends on what form T ∗ takes. For both of these, the derivation is not appreciably

different from the rank-one case, which as we have said is done in [19, Lemma 3.2.1],

but for completeness we reproduce the details to encompass our more general situa-

tion.

Proposition 2.3.10. Let T = {Tj} be an operator-valued Bessel sequence Then if

η = {ηj} ∈
⊕

j Kj, we have T ∗η =
∑

j T
∗
j ηj, with convergence in the weak topology

on H.

Proof. Observe the following:

〈Tξ, η〉K = 〈{Tjξ}, {ηj}〉K

=
∑
j

〈Tjξ, ηj〉Kj

=
∑
j

〈
ξ, T ∗j ηj

〉
H .

Since also 〈Tξ, η〉K = 〈ξ, T ∗η〉H, we have that limn→∞

〈
ξ, T ∗η −

∑n
j=1 T

∗
j ηj

〉
H

= 0,

which is precisely the statement that
∑n

j=1 T
∗
j ηj tends weakly to T ∗η.

For R, then, T ∗Tξ = T ∗{Tjξ} =
∑

j T
∗
j Tjξ, with convergence in the weak topology

on H. This means that for all η ∈ H, 〈T ∗Tξ, η〉 = limn→∞

〈∑n
j=1 T

∗
j Tjξ, η

〉
, which is

precisely the same as saying that
∑

j T
∗
j Tj converges in the weak-operator topology
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to T ∗T . But by the equivalence of WOT- and SOT-convergence for increasing nets of

positive operators, we have that
∑

j T
∗
j Tj converges to T ∗T strongly. We have thus

proved the following proposition.

Proposition 2.3.11. Let T = {Tj} be an operator-valued Bessel sequence Then∑
j T
∗
j Tj converges in the strong-operator topology to T ∗T .

Thus, we have an explicit way to calculate Rξ. In a similar observation to one

made in Section 2.3.1, we may note that the frame bounds (2.11) and (2.10) are

equivalent to A ‖ξ‖2 ≤ ‖Tξ‖2
K and ‖Tξ‖2

K ≤ B ‖ξ‖2, respectively, which are equivalent

to AIH ≤ T ∗T and T ∗T ≤ BIH, respectively. As before, we then have the following

simple reconstruction formula when A = B:

ξ =
1

A
Rξ =

1

A

∑
j

T ∗j Tjξ.

Further, in the case A 6= B, we have

ξ = R−1Rξ =
∑
j

R−1T ∗j Tjξ. (2.13)
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Chapter 3

OPERATOR-VALUED FRAMES ASSOCIATED WITH MEASURE SPACES

AND POVMS

3.1 Introduction

In this chapter we describe two final levels of frame generalizations found in the

literature and give the relationship between them. The first is the concept of an

operator-valued frame associated with a measure space (MS-OVF), and the second is

the concept of a positive operator valued measure (POVM). In Section 3.2, we develop

MS-OVFs in much the same way as their introduction in Abdollahpour and Faroughi

[2] does, with some elaboration. The extra details we provide are a brief summary of

direct-integral theory and two examples of MS-OVFs, which are lacking in [2]. Then,

in Section 3.3, we discuss the relationship between POVMs and MS-OVFs and give

a characterization of MS-OVFs in terms of POVMs, extending the Radon-Nikodym

theorems of Chiribella et al. [18] and Berezanskii and Kondratev [9] mentioned in

Section 1.1. As in the last chapter, H will denote a Hilbert space.

3.2 Operator-Valued Frames Associated with Measure Spaces

Many frames of interest arise from selecting a discrete subset of a “continuous

frame,” or, frame associated with a measure space, in the terminology of [29]. That is,

given some measure space (X,Σ) and family {ψx : x ∈ X} ⊂ H with certain measur-

ability requirements, a frame is obtained by selecting a discrete subset {ψx1 , ψx2 , . . . }.

This is a process followed, for example, in wavelet and Gabor analysis [20]. Motivated

by the relationship between frames and continuous frames, we consider in this section
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an object which we call an operator-valued frame associated with a measure space

or MS-OVF, which is the “continuous” analogue of an operator-valued frame. This

concept was originally proposed by [2] under the term continuous g-frame, and we

will largely follow their development, with some elaboration. As in the last section,

we will indicate the form in which these objects arise in the literature and describe

the analogues of the analysis, synthesis, and resolvent operators, and the analogue of

the reconstruction formulas in (2.6), (2.7), and (2.8).

There are two equivalent common definitions of the direct integral of separable

Hilbert spaces with respect to a measure µ. For brevity we only present one. The

other can be found for example in [12]. For our definition, we need the definition of

a “measurable field of Hilbert spaces.”

Definition 3.2.1. [26, Chapter 7.4] Let (X,Σ) be a measurable space, let {K(x)}x∈X

be separable Hilbert spaces, and let τn ∈ Πx∈XK(x) (n = 1, 2, . . . ). We say that

({K(x)}x∈X , {τn}) (or {K(x)}x∈X for short) is a measurable field of Hilbert spaces if

1. for all x ∈ X, {τn(x)}n∈N is dense in K(x), and

2. x 7→ 〈τm(x), τn(x)〉 : X → C is measurable (m,n = 1, 2, . . . ).

Given a measurable field of Hilbert spaces {K(x)}x∈X , we say that an element

ξ ∈ Πx∈XK(x) is a measurable vector field if x 7→ 〈ξ(x), τn(x)〉 is measurable for

all n. It is important to note that the map x 7→ 〈ξ(x), η(x)〉 is always measurable

when ξ and η are measurable vector fields [26, Proposition 7.28]. Given a measure

space (X,Σ, µ), the direct integral of the spaces K(x) with respect to µ, denoted∫ ⊕
X
K(x)dµ(x) =: K, is just the set of measurable vector fields ξ ∈ Πx∈XK(x) such

that

∫
X

‖ξ(x)‖2
K(x) dµ(x) <∞,
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equipped with the inner product

〈ξ, η〉K =

∫
X

〈ξ(x), η(x)〉K(x) dµ(x),

modulo the null space of 〈 · , · 〉K. As noted in [26], K is actually complete with respect

to 〈 · , · 〉K, so that it is a Hilbert space.

Now we turn to defining an operator-valued Bessel field associated with a measure

space (and, subsequently, an operator-valued frame asssociated with a measure space).

Definition 3.2.2. Let (X,Σ, µ) be a measure space. Let ({K(x)}x∈X , {τn}) be a

measurable field of Hilbert spaces, and let H be a separable Hilbert space. Let

T (x) : H → K(x) be defined for µ-a.e. x, and let T = {T (x)}x∈X . We say that

(X, {K(x)}x∈X , {τn}, T, dµ)—or simply (T, dµ), or T , if the other components are

understood—is an operator-valued Bessel field if

1. for every ξ ∈ H, {T (x)ξ}x∈X ∈ Πx∈XK(x) is a measurable vector field, and

2. for every ξ ∈ H, ∫
X

‖T (x)ξ‖2
K(x) dµ(x) ≤ B ‖ξ‖2 . (3.1)

Operator-valued Bessel sequences map ξ into a sequence of vectors whose norms

are square-summable. The two items above say that operator-valued Bessel fields

take ξ into a field of vectors whose norms are square-integrable. The measurability

requirement is new because of the measure-theoretic nature of the situation at hand.

The number B in the second condition is identical to the “upper frame bound” that

we have seen twice before. Identifying the operator-valued Bessel field T with a

linear map from H into Πx∈XK(x) as before (ξ 7→ {T (x)ξ}x∈X), these conditions are

equivalent to requiring that T be a bounded linear map from H into
∫ ⊕
X
K(x)dµ(x) =:

K. As before, we will often identify an operator-valued Bessel field T with this map.
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If, in addition to 1. and 2., there is A > 0 such that

A ‖ξ‖2 ≤
∫
X

‖T (x)ξ‖2
K(x) dµ(x), (ξ ∈ H) (3.2)

we say that T is an operator-valued frame associated with (X,µ), or an operator-valued

frame associated with a measure space if (X,µ) is understood. For short, we will use

the term MS-OVF. The following are two examples.

Example 3.2.3. (Fourier analysis on a connected semisimple Lie group.) Let π

be a representation on a locally compact group G and f ∈ L1(G), then the weak

integral
∫
G
f(x)π(x−1) dx is easily seen to define a bounded sesquilinear form on

Hπ × Hπ, and we will denote this operator by f̂(π). We impose on Ĝ the so-called

Mackey-Borel measurable structure. Suppose that representatives {(πp,Hp) : p ∈ Ĝ}

of Ĝ are chosen in such a way that {Hp} is a measurable field of Hilbert spaces

and for each measurable vector field p 7→ ξ(p) in ΠpHp and each x ∈ G, the map

p 7→ πp(x)ξ(p) is a measurable vector field. (This can be done by [26, Theorem 7.5]

and [26, Lemma 7.39].) The Plancherel Theorem for G [26, Theorem 7.44] implies

that if G is a unimodular, type I group, there is a measure µ on Ĝ, unique modulo

positive scalars such that

1. the Fourier transform f 7→ f̂ maps f ∈ L1(G) ∩ L2(G) into
∫ ⊕

L2(Hp) dµ(p),

and

2. for f ∈ L1(G) ∩ L2(G) one has the Parseval formula

‖f‖2
L2(G) =

∫ ∥∥∥f̂(πp)
∥∥∥2

HS
dµ(p). (3.3)

Let U be the map from L2(G) to itself defined by f(x) 7→ f(x−1). Observing that U

is unitary and replacing f with Uf in Equation 3.3 gives

‖f‖2
L2(G) =

∫
‖πp(f)‖2

HS dµ(p).
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In particular, this means that if E ⊂ G is open and relatively compact and L2(E) is

embedded naturally in L2(G), we have the same equality for all f ∈ L2(E). Thus,

the family {πp : p ∈ Ĝ} is an MS-OVF associated with (Ĝ, µ) if we can show that

µ-almost every πp is a bounded map from L2(E) into a space of Hilbert-Schmidt class

matrices. This is the case for connected semisimple Lie groups, which are known

to be unimodular and type I. Suppose π ∈ Ĝ. To prove that π is bounded, we

use Harish-Chandra’s regularity theorem, a reference for which is [6]. First, suppose

that f ∈ C∞E (G). Using the notation f ∗(x) = f(x−1) and the fact that π is a *-

representation of L1(G), we have

‖π(f)‖2
HS = Tr (π(f)∗π(f))

= Tr (π (f ∗ ∗ f)) .

Harish-Chandra’s regularity theorem states in particular that the map f 7→ Tr(π(f))

is a distribution and that it is given by Tr(π(f)) =
∫
f(y)Θπ(y) dy for some locally

integrable function Θπ. Since f ∗ ∗ f is in C∞c (G) and supported on E−1E, we have

‖π(f)‖2
HS =

∫
E−1E

(f ∗ ∗ f) (y)Θπ(y) dy

≤ ‖f ∗ ∗ f‖L∞(G) ‖Θπ‖L1(E−1E)

≤ ‖f‖2
L2(E) ‖Θπ‖L1(E−1E) .

Thus, π is bounded on a dense subset of L2(E), and thus on all of L2(E).

Example 3.2.4. [19, Section 11.1] Let H = L2(R) and G be the “ax + b” group:

R+ oR. Let X = G and µ be the Haar measure on G: dµ(a, b) = da db/a2, where da

and db denote Lebesgue measure. We say that ψ ∈ L2(R) is admissible if

Cψ :=

∫ ∞
−∞

∣∣∣ψ̂(γ)
∣∣∣2

|γ|
dγ <∞.
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Let ψ be admissible. Finally, for each (a, b) ∈ X, let T (a, b) : H → C be defined by

T (a, b)f =

∫ ∞
−∞

f(y)
1

|a|1/2
ψ

(
y − b
a

)
dy,

where dy again denotes Lebesgue measure. It can be shown [19, Proposition 11.1.1],

that for all f ∈ H, ∫ ∞
−∞

∫ ∞
−∞
|T (a, b)f |2 dµ(a, b) = Cψ ‖f‖2 .

Thus, if K(x) = C for each x, and if we enumerate the rationals by {ρn} and de-

fine τn ∈ Πx∈XK(x) to be a constant function identically equal to ρn, we have that

(X, {K(x)}x∈X , {τn}, T, dµ) is a tight (rank-one) operator-valued frame associated

with (R2, dµ).

For the remainder of this chapter, the tuple (X, {K(x)}x∈X , {τn}, T, dµ) will denote

an operator-valued Bessel field, and K will denote
∫ ⊕K(x) dµ(x). As before, we define

the synthesis operator of T to be T ∗ and the resolvent to be R = T ∗T . If we wish to

reconstruct ξ from knowledge of T and Tξ, we may again use the formula ξ = R−1Rξ,

which can again be calculated using the frame algorithm (2.8). Also, if A = B, then

R = AIH, so that ξ = 1
A
Rξ. Thus, we are interested again in R and T ∗.

Proposition 3.2.5. If η ∈ K, then we have T ∗η =
∫
X
T (x)∗η(x) dµ(x) in the sense

that for all ξ ∈ H, 〈ξ, T ∗η〉H =
∫
X
〈ξ, T (x)∗η(x)〉H dµ(x).

Proof. Observe that since x 7→ 〈T (x)ξ, η(x)〉K(x) is absolutely integrable, the same is

true of x 7→ 〈ξ, T (x)∗η(x)〉H. Thus,

〈ξ, T ∗η〉H = 〈Tξ, η〉K

=

∫
X

〈T (x)ξ, η(x)〉K(x) dµ(x)

=

∫
X

〈ξ, T (x)∗η(x)〉H dµ(x),
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From this follows an easy corollary identifying R.

Proposition 3.2.6. Let T be as above. Then we have

R = T ∗T =

∫
X

T (x)∗T (x) dµ(x).

Proof. Let ξ1, ξ2 ∈ H. Let η ∈ K be defined by η(x) = T (x)ξ2. Then, by this

definition and the preceding proposition, we have

〈ξ1, T
∗Tξ2〉H = 〈ξ1, T

∗η〉H

=

∫
X

〈ξ1, T (x)∗η(x)〉H dµ(x)

=

∫
X

〈ξ1, T (x)∗T (x)ξ2〉H dµ(x).

3.3 Positive Operator-Valued Measures

Given an MS-OVF (X, {K(x)}x∈X , {τn}, T, dµ), it is often of interest to study

partial resolvents of a vector ξ ∈ H. By definition, we take these to be vectors of the

form
∫
E
T (x)∗T (x)ξ dµ(x) for E ∈ Σ. As shown in Example 2.3.3 and Example 2.3.6,

these partial resolvents may converge quickly to ξ as the set E increases in a uniform

way to X. In order to study these partial resolvents, it is of use to consider the

partial resolvents of the frame operator itself: i.e., operators of the form MT (E) :=∫
E
T (x)∗T (x) dµ(x) for E ∈ Σ. The set function E ∈ Σ 7→ MT (E) ∈ L(H) has the

special property that it is σ-additive with convergence in the weak operator topology.

Indeed, for ξ ∈ H and pairwise disjoint members of Σ called E1, E2, . . . , we have by

monotone convergence

〈
MT

(
∪∞j=1Ej

)
ξ, ξ
〉

=
∞∑
j=1

〈MT (Ej)ξ, ξ〉 .
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(WOT convergence of
∑

jMT (Ej) follows from polarization.) Since the operators

MT (Ej) are positive, sums of the form
∑

jMT (Ej) are also SOT convergent, meaning

that partial resolvents
∑N

j=1MT (Ej)ξ of a vector ξ converge in norm to MT (X)ξ.

The map E 7→ MT (E) is an instance of an object with a special name in math-

ematical physics called a positive operator-valued measure (POVM ). The general

definition follows.

Definition 3.3.1. (As in [39].) Let (X,Σ) be a measurable space. IfM : Σ→ L+(H),

then we will say that (X,Σ,M), or simply M , is a positive operator-valued measure

if

1. M(∅) = 0, and

2. if E1, E2, · · · ∈ Σ are disjoint, then M (∪jEj) =
∑

jM(Ej), with the sum

converging in the weak operator topology.

The case of most interest to us is the case where there is an A > 0 such that

AIH ≤ M(X). In this case, we will say, as in [39], that M is a framed POVM,

which is a general way of performing analysis on H in the following sense. First,

the convergence property of M implies norm convergence of
∑

jM(Ej)ξ for pairwise

disjoint E1, E2, · · · ∈ Σ and ξ ∈ H. Thus, any vector ξ may be expressed as the

norm-convergent expansion M(X)−1M(X)ξ =
∑

jM(X)−1M(Ej)ξ for any pairwise

disjoint Ej’s whose union is X. If M = MT for some OVF T = {Tj}, then this

formula is just (2.13), and we can think of ξ as being represented by the sequence

{MT ({j})ξ : j = 1, 2, . . . } instead of the sequence {Tjξ}. As we will see in Re-

mark 4.4.4 and Remark 4.4.8, avoiding the latter sequences in favor of the former

sometimes offers an improvement in notational simplicity.

In the discrete case, given an OVF {Tj}, the POVM MT is defined by E ∈ P(N) 7→∑
j∈E T

∗
j Tj. Further, every framed POVM on (N,P(N)) arises in this way: given a

35



framed POVM M , just take Tj =
√
M({j}). Thus, OVFs and framed POVMs on N

are in some sense equivalent. Given an arbitrary measurable space (X,Σ), however,

such an equivalence may not in general hold. Every MS-OVF T associated with with

a σ-finite measure µ will give rise to a framed POVM via T 7→ MT , as above, but

it may be that not every framed POVM M arises from an MS-OVF associated with

some σ-finite measure. In the remainder of this section, we give a necessary and

sufficient condition for when M does.

The key question in this investigation is whether M is decomposable, meaning that

there is an integral decomposition

M(E) =

∫
E

Q(x) dµ(x)

for some σ-finite measure µ and weakly µ-measurable function Q : X → L+(H).

Given such a function, M arises from the maps T (x) =
√
Q(x) : H → rangeQ(x).

If {ξn} is an enumeration of the rational span of an orthonormal basis in H and

K(x) = rangeQ(x), then the sequence {τn} ⊂ Πx∈XK(x) given by τn(x) =
√
Q(x)ξn

is as in Definition 3.2.1, so {K(x)}x∈X is a measurable field of Hilbert spaces. The

family {T (x)}x∈X is then an operator-valued Bessel sequence because for ξ ∈ H,

〈T (x)ξ, τn(x)〉 =
〈√

Q(x)ξ, τn(x)
〉

=
〈√

Q(x)ξ, τn(x)
〉

= 〈Q(x)ξ, ξn〉 ,

a function which is measurable for all n. Another field of maps giving rise to M can

be obtained by post-composing each T (x) with a unitary U(x) where {U(x)}x∈X is

a measurable field of operators. By definition, this means that for every measurable

η ∈ Πx∈XK(x), the vector field {U(x)η(x)}x∈X is also measurable. For the question

of frame bounds for T , they are A and B if and only if AIH ≤M(X) ≤ BIH.
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The following is a simple criterion for decomposability.

Theorem 3.3.2. Let (X,Σ,M) be a POVM and suppose there is a σ-finite measure

µ on (X,Σ) such that

‖M(E)‖ ≤ µ(E)

for all E ∈ Σ. Then there exists a weakly measurable map Q : X → L+(H), defined

on a set of full µ-measure, with 〈Q(x)ξ, ξ〉 ≥ 0 for every ξ ∈ H and µ-a.e. x, such

that

M(E) =

∫
E

Q(x) dµ(x).

Proof. Let µξ,η(E) = 〈M(E)ξ, η〉 for each ξ, η ∈ H. Since |µξ,η(E)| ≤ µ(E) ‖ξ‖ ‖η‖,

µξ,η is a complex measure for each ξ and η. By the Radon-Nikodym theorem, there

therefore exists for each ξ, η ∈ H a µ-integrable function q( · ; ξ, η) : X → C, defined

on a set of full µ-measure, such that

µξ,η(E) =

∫
E

q(x; ξ, η) dµ(x)

When ξ = η, q( · ; ξ, η) is without loss of generality positive where defined.

Let {ej}∞j=1 be an orthonormal basis of H. Using sesquilinearity of (ξ, η) ∈ H ×

H 7→ µξ,η(E) and uniqueness of Radon-Nikodym derivatives, if a, b, c, and d are

rational complex numbers and ξ, ξ′, η, and η′ are in the finite rational complex span

M of {ej}. then there is a set

Ea,b,c,d,ξ,ξ′,η,η′

of full µ-measure such that for x in this set

q(x; aξ + bξ′, cη + dη′) =ac q(x; ξ, η) + bc q(x; ξ′, η)

+ ad q(x; ξ, η′) + bd q(x; ξ′, η′)
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Let X0 be the following intersection of such sets over all a, b, c, d ∈ Q + iQ and all

ξ, ξ′, η, η′ ∈M:

X0 = ∩Ea,b,c,d,ξ,ξ′,η,η′

Since each of these sets has full µ-measure, so does X0.

For each x ∈ X0, (ξ, η) ∈ M ×M 7→ q(x; ξ, η) defines a positive semidefinite

sesquilinear form on M. By Cauchy-Schwarz, then

|q(x; ξ, η)| ≤ q(x; ξ, ξ)1/2q(x; η, η)1/2

for all ξ, η ∈M. We may now observe the following integral inequalities:∫
E

|q(x; ξ, η)| dµ(x) ≤
∫
E

q(x; ξ, ξ)1/2q(x; η, η)1/2 dµ(x)

≤
(∫

E

q(x; ξ, ξ) dµ(x)

)1/2(∫
E

q(x; η, η) dµ(x)

)1/2

= 〈M(E)ξ, ξ〉1/2 〈M(E)η, η〉1/2

≤ ‖M(E)‖ ‖ξ‖ ‖η‖

≤ ‖ξ‖ ‖η‖µ(E)

Thus, there is a set Fξ,η of full µ-measure such that |q(x; ξ, η)| ≤ ‖ξ‖ ‖η‖ for x ∈ Fξ,η.

Letting X1 be the intersection of the sets Fξ,η as ξ, η range over M, X1 must have

full µ-measure. Thus, so does X2 = X1 ∩X0.

For x ∈ X2, q(x; · , · ) is a positive semidefinite bounded sesquilinear form. Hence-

forth, we will assume x belongs to this set. It is possible to extend the definition of

q(x; · , · ) to (ξ, η) ∈ H ×H using any sequences {ξn}, {ηn} in M converging to ξ, η:

q(x; ξ, η) ≡ lim
n→∞

q(x; ξn, ηn)

This limit converges and is independent of the sequences {ξn} and {ηn} by bounded-

ness onM×M. The extended form q(x; · , · ) is also positive semidefinite, bounded,
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and sesquilinear because it has these properties on the dense subsetM×M of H×H.

Thus, for µ-a.e. x, there is an operator Q(x) ∈ L+(H) with 〈Q(x)ξ, η〉 = q(x; ξ, η).

Thus,

〈M(E)ξ, η〉 =

∫
E

〈Q(x)ξ, η〉 dµ(x)

as desired.

The above criterion is also necessary. To see this, suppose (X,Σ,M) is decompos-

able into Q : X → L(H) and a σ-finite measure µ on (X,Σ). Let En be a partition of

X into µ-finite sets and Fn = {x ∈ X : n ≤ ‖Q(x)‖ < n + 1}. Then, the measure ν

defined by ν(E) =
∫
E
‖Q(x)‖ dµ(x) is finite on the countable collection of sets Ei∩Fj,

and ‖M(E)‖ ≤ ν(E).

One simple example of the above Theorem is when X = N. It is clear that

M is then decomposable, and a measure µ which dominates ‖M( · )‖ is given by

µ({j}) = ‖M({j})‖. Another example of the Theorem is the case when there is

a countable collection of subsets E1, E2, . . . of X such that X = U∞j=1Ej and M

is trace-class on each Ej. In this case, it is easily checked that the set function µ

given by µ(E) = Tr(M(E)) is σ-additive and dominates ‖M( · )‖. A proof of this

for the special case that Tr(M(X)) < ∞ that is similar to the proof of the above

Theorem can be found in Berezanskii and Kondratev [9]. In another particular case,

decomposability is satisfied if H is finite-dimensional, as observed in Chiribella et al.

[18].

We make here a couple of final remarks. First, as can be seen from the above

arguments, for any decomposable POVM M , we may assume that the measure µ

satisfies ‖M(E)‖ ≤ µ(E) and the operator-valued function Q : X → L(H) satisfies

‖Q(x)‖ ≤ 1. Second, in the case that M is decomposable, our decomposition implies

a well-known one called the Naimark decomposition, which states that any POVM
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can be represented as a map V from H into another separable Hilbert space K, a

projection-valued measure S : Σ→ L(K), and the adjoint of V . That is, one can write

M(E) = V ∗S(E)V for every E ∈ Σ. Indeed, first take V = T : H → K, as defined

in Section 3.3. Since K =
∫ ⊕
X
K(x) dµ(x), we may define (S(E)η)(x) for η ∈ K to be

χE(x)η(x). From these definitions it follows easily that V ∗S(E)V =
∫
E
Q(x) dµ(x).

3.4 Conclusion and Future Work

In this chapter, we have discussed MS-OVFs and some of their basic properties.

Here, we have preferred to use the term “operator-valued frame associated with a

measure space” in place of the term “continuous g-frame” found in some papers, to

achieve consistency with the terms “operator-valued frame” and “frame associated

with a measure space” that are used elsewhere.

In Section 3.2, we followed the discussion of Abdollahpour and Faroughi [2] in

deriving the analysis, synthesis, and resolvent operators of an MS-OVF. We also

filled in some details about direct integrals of Hilbert spaces, stated the applicability

of the frame algorithm to MS-OVFs, and filled the void of examples of MS-OVFs in

[2] with Example 3.2.3 and Example 3.2.4.

In Section 3.3, we discussed the relationship between MS-OVFs and framed POVMs.

We found that every MS-OVF (T, dµ) corresponds to a natural framed POVM MT ,

and that every framed POVM M dominated by a measure µ arises as MT for some

MS-OVF (T, dµ). For the latter result, we proved an operator-valued version of the

Radon-Nikodym theorem, which is an extension of the results of Berezanskii and

Kondratev [9] and Chiribella et al. [18] and is of interest in its own right. In partic-

ular, this theorem may have some application in the domain of quantum information

theory, where the more specialized Radon-Nikodym theorem of [18], is evidently of

some interest.
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Given the close relationship between MS-OVFs and POVMs, it would be nat-

ural to try to find MS-OVFs with certain properties (symmetry, tightness, robust-

ness against erasures, etc.) by drawing upon the rich set of examples of POVMs

from the quantum-physics literature. Examples recently explored that correspond to

MS-OVFs, with references, include clean POVMs [14], symmetric, informationally-

complete POVMs [42], and covariant POVMs [17]. (For these and most other POVMs

in the physics literature M(X) = IH.) Although we have not discussed it here, a fruit-

ful vein for future work might be to investigate whether these MS-OVFs or others

from physics have any desirable properties with respect to the analysis of classical

signals, which is the usual domain of frame theory.

Besides these examples, another part of the theory of POVMs that may have

some impact on frame theory is its locally convex structure. The set M(X,H, 1)

of all framed POVMs on X with A = B = 1, is convex and, given the appropriate

topology, compact. By the Krein-Milman theorem, then, it is the closed convex hull

of its set of extreme points ∂M(X,H, 1). To be more explicit, the Choquet-Bishop-

DeLeeuw theorem [11] expresses each M ∈ M(X,H, 1) as a weak superposition of

extreme points using a probability measure νM on ∂M(X,H, 1):

〈M(E)ξ, η〉 =

∫
∂M(X,H,1)

〈N(E)ξ, η〉 dνM(N)

for ξ, η ∈ H. It is therefore of some interest to classify ∂M(X,H, 1). For locally

compact Hausdorff spaces X and finite-dimensional Hilbert spaces H, a complete

classification follows from a result of Arveson in [5] about completely positive maps.

Noting that it is possible to remove the topological requirement on X, we now state

this classification:

Theorem 3.4.1. Suppose H is a finite-dimensional Hilbert space. Then M is ex-

tremal in M(X,H, 1) if and only if there exist x1, x2, . . . xn ∈ X such that
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1. M(X\{x1, x2, . . . xn}) = 0, and

2. M({x1})H,M({x2})H, . . .M({xn})H are weakly independent, meaning their

tensor-squares in H⊗H are linearly independent.

Since we are also interested in this chapter in POVMs that have frame bounds A and

B not both equal to 1, we have obtained a preliminary result extending the one above

to the setM(X,H, A,B) of all POVMs on X framed by constant numbers A and B,

which is convex and compact in the same topology that was applied to M(X,H, 1).

The statement of the result is below, with H̃ being defined as the direct sum of

the eignenspaces corresponding to eigenvalues of M(X) that are neither minimal nor

maximal.

Theorem 3.4.2. Suppose H is a finite-dimensional Hilbert space. Then M is ex-

tremal in M(X,H, A,B) if and only if there exist x1, x2, . . . xn ∈ X such that

1. M(X\{x1, x2, . . . xn}) = 0, and

2. M({x1})H,M({x2})H, . . .M({xn})H, and H̃ are weakly independent.

The extreme points M in this extension vanish off a finite set of points in X, as

do Arveson’s, so the corresponding Choquet decompositions involve similar extreme

points. We expect this result will have an impact on frame theory, provided Arveson’s

does, but we felt that it needed more development before being included in the main

body of this thesis.
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Chapter 4

OPERATOR-VALUED FRAMES OF REPRESENTATIONS

4.1 Introduction

In this Chapter we explore the subject of extending the work of Duffin and Scha-

effer [25] and Beurling [10] to a general connected Lie group G. In analogy with the

case of frames of exponentials for L2(−1/2, 1/2), our goal is to obtain OVFs involving

representations of G for the L2-space of a relatively compact subset of G. Because

of their dependence on representations of G, these OVFs will be called OVFs of

representations. Unlike the well-known continuous decompositions provided by the

Plancherel Theorem, these decompositions will be discrete, and for the two groups

we consider—the Euclidean motion group for R2 and the Heisenberg group—these

OVFs are apparently new.

For motivation, consider the case of frames of exponentials in Rd. Letting Qd =

(−1/2, 1/2)d, it is easily seen that F (Zd) is a Parseval frame for the L2-space of any

measurable set E ⊂ Qd. Indeed, the inner products on L2(E) and L2(Qd) coincide

and F (Zd) is an orthonormal basis for the latter. If E is open, a rather more circuitous

idea for proving this Parseval condition, but one that will nonetheless be useful later,

is to first use the Poisson Summation Formula [26, Theorem 8.32] to prove it for all

f ∈ C∞E (G). This formula states that

∑
k∈Zd

f(x+ k) =
∑
n∈Zd

f̂(n)e2πin·x,

with pointwise convergence for all x ∈ E. Since the support of f is contained in E,
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all of the terms corresponding to k 6= 0 vanish:

f(x) =
∑
n∈Zd

f̂(n)e2πin·x.

Since the right-hand side converges in L2(E), f satisfies Parseval’s equality:

‖f‖2
L2(E) =

∑
n∈Zd

∣∣∣f̂(n)
∣∣∣2 .

Finally, since this is equality holds for all f in a dense subspace of L2(E), it holds for

all f ∈ L2(E).

If Λ is a non-degenerate lattice in Rd, it follows more generally that the family

F (Λ) is a tight frame for the L2-space of some non-empty open subset of Rd. This

can be shown using a kind of generalized Poisson Summation Formula, but we will

simply re-use the Parseval condition obtained above. Let Λ = TZd, where T is an

invertible operator from Rd to Rd, let E be an open set such that
(
T>
)−1

E ⊂ Qd,

and let f ∈ L2(E). For n ∈ Zd, denote the element Tn of Λ by λn. We compute the

inner product of f with an element of F (Λ):

〈f, eλn〉L2‘ =

∫
f(x)e−2πi〈λn,x〉 dx

=

∫
f(x)e−2πi〈Tn,x〉 dx

= |detT |−1

∫
f
(
(T−1)>x

)
e−2πi〈Tn,(T−1)>x〉 dx

= |detT |−1

∫
f
(
(T−1)>x

)
e−2πi〈n,x〉 dx.

Thus, the sum over n of the terms |〈f, eλn〉|
2, is

|detT |−2

∫ ∣∣f ((T−1)>x
)∣∣2 dx,

which is just |detT |−1 ‖f‖2
L2(E). This proves that F (Λ) is a tight frame for L2(E)

with frame bound |detT |−1.
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It follows from the theory of frames of exponentials that F (Λ′) can be a frame

even if Λ′ is not a lattice, as long as it is near Λ. Indeed, consider the family F (Λ+ε),

where ε is a sequence {εn : n ∈ Zd} with each εn ∈ Rd. Although it is not strictly

necessary, we restrict here to the case where
(
T>
)−1

E is a subset of the unit ball

Bd. In this case, if the elements of T−1ε are sufficiently small in norm, the result of

Beurling [10] guarantees that F (Zd + T−1ε) is a frame for L2(Bd), and therefore for

L2
(
(T>)−1E

)
. By the above inner product computation, then, F (Λ+ε) is, like F (Λ),

a frame for L2(E).

As we have mentioned, the focus of this chapter is on finding analogues of frames

of exponentials for a connected Lie group G . For the abelian case, simply note

that the above analysis does not change if G is a cartesian product of Rd with a

compact abelian group. By the analysis of Example 2.3.4, {eλn+εn ⊗ κl} is a frame

for L2(E ×K) if {eλn+εn} is a frame for L2(E) and {κl} is a list of all characters of

K. Thus, in the abelian case, it is possible to find frames of characters with respect

to any lattice or perturbed lattice in the Euclidean part of G.

In the remainder of this chapter, we will focus on the case when G is nonabelian.

First, in Section 4.3, the idea of a frame of exponentials for which Λ is a lattice

is extended, using a generalization of the Poisson Summation Formula called the

Selberg Trace Formula, to groups G admitting a uniform lattice and a relatively

compact reproducing set E ⊂ G. This construction results in a Parseval OVF of

representations for L2(E). Then, in Section 4.4, the two examples of the Euclidean

motion group for R2 and the Heisenberg group are considered. Both are shown to

admit Parseval OVFs of representations, and it is shown that under perturbations

in the parameters of the included representations, these Parseval OVFs continue to

behave as OVFs. These results resemble very closely Duffin and Schaeffer [25, Lemma

III], a result which is generalized in Lemma 4.4.2 and used in the proofs. For each
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OVF obtained in Section 4.4, it is also shown that decomposition with respect to the

corresponding POVM takes a particularly simple form.

4.2 Quotients of G and the Selberg Trace Formula

In this section we give some background on quotients of G, invariant measures,

and the Selberg Trace Formula. A reference for invariant measures is [26], and two

references for the latter are [22] and [4].

In analogy with the existence of Haar measure on G, it is sometimes possible to

find an invariant measure on the quotient space of G by a closed subgroup H: i.e.,

a nonzero measures µ for which µ(xyH) = µ(yH), x, y ∈ G. If we denote by dξ

a left-invariant Haar measure on H, an important ingredient in the theory of such

measures is the map PH : Cc(G)→ Cc(G/H) given by f 7→
∫
H
f(xξ) dξ. That images

under this map depend only on the coset in which x lives follows easily from left-

invariance of dξ, and continuity and compactness of support are also easily checked.

The following theorem, states when measures of the above type exist.

Theorem 4.2.1. (As stated in [26, Theorem 2.49].) Suppose H is a closed subgroup

of G. There is a left G-invariant Radon measure µ on G/H if and only if ∆G|H = ∆H .

In this case, µ is unique up to a constant factor, and if this factor is suitably chosen

we have ∫
G

f(x) dx =

∫
G/H

PHf(xH) dµ(xH) (4.1)

for all f ∈ Cc(G).

In this case, L2(G/H) is defined to be L2(G/H, dµ). Like the Haar measure,

dµ(xH) is sometimes denoted simply as dx.

Remark 4.2.2. If G/H admits such a measure, then as noted in [41, Chapter 8], the

map PH extends to a map from L1(G) to L1(G/H) and (4.1) holds for all f ∈ L1(G).
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There is one more basic fact about quotients of G of which we make use:

Proposition 4.2.3. [26, Lemma 2.46] If H is a closed subgroup of G and q : G →

G/H is the canonical quotient map and E is a compact subset of G/H, then there is

a compact set K ⊂ G such that q(K) = E.

Proof. Let V be an open, relatively compact neighborhood of 1G. Then the sets of

the form xV as x ranges over G form an open cover of G. Thus, the sets of the form

q(xV ) as x ranges over G form a cover of E. Since q is an open map, there must be

finitely many points x1, x2, . . . xn ∈ G such that q(x1V ), q(x2V ), . . . q(xnV ) cover E.

We now set K = q−1(E) ∩ ∪nj=1xjV . Since E is closed and q is continuous, q−1(E) is

closed. Since V is compact and group operations are continuous, the set ∪nj=1xjV is

compact. Thus, K is compact. It now remains to show that q(K) = E. But this is

clear because q(∪nj=1xjV ) ⊃ E.

An important result that is not mentioned in most introductory harmonic analysis

texts but will be useful here is the Selberg Trace Formula, or simply trace formula,

which is a generalization of the Poisson Summation Formula. Fundamental to the

setting of the trace formula is the concept of a lattice Γ in G: a discrete subgroup

of G such that Γ\G carries a right G-invariant measure µ for which µ(Γ\G) < ∞.

(Using right cosets is traditional in arithmetic geometry where the trace formula is

often used.) An important fact about every lattice Γ in G is that it is closed. To

see this, observe that since Γ is discrete, there is an open neighborhood U of 1G in

G such that U ∩ Γ = {1G}, and let {γi} be a net in Γ converging to x ∈ G. Then,

if V is an open neighborhood of 1G such that V V ⊂ U and W = V ∩ V −1, then

there is i0 such that i ≥ i0 implies γi ∈ Wx. This implies that for i, j ≥ i0 we have

γiγ
−1
j ∈ WW−1 ⊂ U . Since also γiγ

−1
j ∈ Γ, we have γi = γj for all i, j ≥ i0, so that

the net is eventually constant, which means that x ∈ Γ.
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We say that a lattice Γ in G is uniform if it is co-compact : i.e., the quotient Γ\G

is compact. The trace formula applies only if G is unimodular, but in the case that

G admits a uniform lattice, unimodularity is a straightforward consequence. This

follows from [22, Proposition 9.1.2], which we state below without proof.

Proposition 4.2.4. If G admits a unimodular closed co-compact subgroup, then G

is unimodular.

For the remainder of this chapter, Γ will be a uniform lattice, µ will be a right-

invariant measure with µ(Γ\G) = 1, Haar measure will be normalized according

to (4.1) with the counting measure given to Γ, q will be the canonical quotient map

G→ Γ\G, and R will be the right quasi-regular representation for (G,Γ). The Hilbert

space associated with R is HR = L2(Γ\G). It is known [22, Lemma 9.2.7] that R

decomposes discretely into irreducible subrepresentations with finite multiplicity. If

π ∈ Ĝ, let NΓ(π) be the multiplicity of π in R, and let the set of elements of Ĝ for

which NΓ(π) 6= 0 be denoted by ĜΓ. Then the trace formula is the following

Theorem 4.2.5. [22, Chapter 9] If f ∈ C∞c (G), then the operator R(f) is trace-class,

and

TrR(f) =
∑
π∈ĜΓ

NΓ(π)Tr π(f) =

∫
Γ\G

∑
γ∈Γ

f(x−1γx) dµ(Γx)

The theorem comes from the fact that both sides of the equation are equal to

TrR(f). We note that the sum in the middle term can be replaced by a sum over any

complete set of subrepresentations of R. We will only use theorem in the equavalent

form that (1.) R decomposes discretely and (2.) TrR(f) equals the right side.

4.3 A Class of Parseval OVFs of Representations

As in the case of frames of exponentials, some of the simplest examples of OVFs

of representations are ones that are Parseval. The purpose of this section is to give a
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sufficient condition on G for when nontrivial Parseval OVFs of representations of G

exist. First we define the term “OVF of representations.”

Let dx = dm(x) be Haar measure on G, let E ⊂ G be a non-empty, open, relatively

compact set, and let {πj : j ∈ N} be a set of representations of G on the Hilbert

spaces {Hj : j ∈ N}. Further, assume that {πj} has the property that, for each j and

all f ∈ L2(E), the operator πj(f) is a Hilbert-Schmidt class operator on Hj. If π is

such a representation, denote this map f ∈ L2(E) 7→ π(f) ∈ L2(Hj) as π̌. Then {πj}

will be called an OVF of representations for L2(E) provided there exist B,A > 0

such that

A ‖f‖2
L2(E) ≤

∑
‖πj(f)‖2

HS ≤ B ‖f‖2
L2(E) (4.2)

for all f ∈ L2(E). We will sometimes say in this case, abusing terminology slightly,

that {π1, π2, . . . } is an OVF for L2(E), meaning that {π̌1, π̌2, . . . } is an OVF for

L2(E). If A = B = 1 we will say that {πj} forms a Parseval OVF of representations.

As we have suggested, in the case that G = R, these are frames of exponentials.

By Proposition A.1, if G = Rd and Γ = Zd, then R decomposes as
⊕

j∈Zd ej. For

a general lattice Γ in Rd, R similarly decomposes as
⊕

λ∈Λ eλ, where Λ is the dual

lattice of Γ. Given the motivation in the introduction to this chapter, it makes sense

to say that the nonabelian analogue of a sequence of the form F (Λ), for some lattice

Λ, is a complete set of subrepresentations {πj}, with multiplicity, of R. We call such

a set a harmonic set of representations. Just as the sequence F (Λ) is a tight frame for

some L2-space in Rd when Λ is a lattice, a harmonic set of representations will form

a tight OVF for the L2-space of an appropriately chosen subset E of G. When such

an E exists and is nontrivial in measure, we will refer to the OVF {πj} as a harmonic

OVF for L2(E). With our choice of invariant measures, this OVF will actually be a

Parseval OVF.

The appropriate choice of domain will turn out to be any (G,Γ) reproducing set :
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a set E ⊂ G such that E is non-empty, open, and relatively compact, and such that

EE−1 is disjoint from every conjugate of Γ − {1G}. Existence of E is equivalent to

existence of an open, relatively compact, non-empty set U ⊂ G such that ∪g∈Gg−1Ug

intersects Γ only in the point 1G. (For example, given U , take E to be a measurable

set with EE−1 ⊂ U .) In the case G is abelian, U can be chosen to be any open subset

of a lattice tile.

We now re-state the main result we wish to focus on.

Theorem 4.3.1. Let G be a Lie group admitting a uniform lattice Γ, and let E

be a (G,Γ) reproducing set. Then any decomposition of R into subrepresentations

{π1, π2, . . . } (listed with multiplicities) gives that {πj} forms a Parseval OVF of rep-

resentations for L2(E).

This begins with the preliminary result:

Lemma 4.3.2. Let E ⊂ G be non-empty, open, and relatively compact, and let

H = L2(E). Then Ř : f 7→ R(f) is a bounded linear map from H into L2(HR).

Proof. Let f ∈ H. Let us apply R(f) to some φ ∈ HR. For x ∈ G,

(R(f)φ) (Γx) =

(∫
G

f(y)R(y) dy φ

)
(Γx)

=

∫
G

f(y) (R(y)φ) (Γx) dy

=

∫
G

f(y)φ(Γxy) dy

=

∫
G

f(x−1y)φ(Γy) dy.

By Remark 4.2.2, we may continue as follows:

=

∫
Γ\G

∑
γ

f(x−1γy)φ(Γγy) dµ(Γy)

=

∫
Γ\G

(∑
γ

f(x−1γy)

)
φ(Γy) dµ(Γy).
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For each x, y ∈ G, the sum defining K(x, y) :=
∑

γ f(x−1γy) is finitely supported,

and thus convergent. Further, it depends only on the cosets of x and y. Treating K as

a function on Γ\G× Γ\G, R(f) is then a kernel integral operator on HR with kernel

K. As a result, R(f) has the following (possibly infinite) Hilbert-Schmidt norm:

‖R(f)‖2
HS =

∫
Γ\G

∫
Γ\G

∣∣∣∣∣∑
γ∈Γ

f(x−1γy)

∣∣∣∣∣
2

dµ(Γx) dµ(Γy). (4.3)

If q : G → Γ\G is the canonical quotient map and F is a subset of G of finite Haar

measure, then by Remark 4.2.2 again,∫
G

χF (x) dx =

∫
Γ\G

∑
γ∈Γ

χF (γx) dµ(Γx),

which is greater than or equal to
∫

Γ\G χq(F ) dµ. By Proposition 4.2.3, there is a

compact set K ⊂ G such that q(K) = Γ\G. Thus, given S ⊂ Γ\G and taking

F = q−1(S) ∩ K in the above yields
∫
K
χS ◦ q(x) dx ≥

∫
Γ\G χS dµ. That is,

∫
K
g ◦

q(x) dx ≥
∫

Γ\G g dµ for all characteristic functions g on Γ\G, and thus all non-negative

measurable functions on Γ\G. The right-hand side of (4.3) then becomes bounded

by ∫
Γ\G

∫
K

∣∣∣∣∣∑
γ∈Γ

f(x−1γy)

∣∣∣∣∣
2

dx dµ(Γy) ≤
∫
K

∫
K

∣∣∣∣∣∑
γ∈Γ

f(x−1γy)

∣∣∣∣∣
2

dx dy.

The sum in the integrand vanishes off the set Γ0 = Γ ∩ KEK−1, which is compact

and discrete, hence finite. An application of the Cauchy-Schwarz inequality yields

the following upper bound for ‖R(f)‖2
HS:

‖R(f)‖2
HS ≤ |Γ0|

∫
K

∫
K

∑
γ∈Γ0

∣∣f(x−1γy)
∣∣2 dx dy

≤ |Γ0|
∑
γ∈Γ0

∫
K

∫
G

∣∣f(x−1γy)
∣∣2 dx dy

≤ |Γ0|2m(K)||f ||2L2(E),

as desired.
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Now, the decomposition R =
⊕

πj and the definition of R(f) yield a unitary

V :
⊕
Hj → HR for which, as an operator on

⊕
Hj,

V ∗R(f)V =
⊕

πj(f).

It follows that each πj(f) is a Hilbert-Schmidt class operator on Hj and that

‖R(f)‖2
HS =

∑
‖πj(f)‖2

HS . (4.4)

The condition for the operators {πj}, which respectively map into the Hilbert

spaces L2(Hj), to form a Parseval OVF for L2(E) is

‖f‖2
L2(E) =

∑
‖πj(f)‖2

HS . (4.5)

In view of (4.4), this equality follows from ‖f‖2
L2(E) = ‖R(f)‖2

HS, a sufficient condition

for which is that E is a (G,Γ) reproducing set. Verification of this sufficiency is

achieved in the following lemmas.

Lemma 4.3.3. Let M ∈ L1(HR) and E be an non-empty, open, relatively compact

subset of G. Then the function fM : E → C defined by fM(x) = Tr(R(x−1)M) is

bounded, and Ř∗M = fM .

Proof. First it will be shown that fM is well-defined. If M has eigenvalues {λj : j ∈

N} and corresponding eigenbasis {ej} ⊂ HR, and U is any unitary operator on HR,

then

|Tr(UM)| ≤
∑
j

∣∣∣〈UMej, ej〉HR
∣∣∣

≤
∑
j

‖UMej‖HR

=
∑
j

‖Mej‖HR =
∑
j

|λj|.
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Thus, fM(x) =
∑

j 〈R (x−1)Mej, ej〉 converges absolutely to a bounded function on

E.

It will now be shown that

〈R(f),M〉L2(HR) =
〈
f, fM

〉
L2(E)

.

The right-hand side is equal to∫
E

f(x)Tr(M∗R(x)) dx.

As implied by the above estimates, the series Tr(M∗R(x)) = Tr(R(x−1)M), expanded

using {ej}, converges absolutely to a bounded function. This means the integrand is

dominated by a multiple of |f(x)| and, since f ∈ L2(E) ⊂ L1(E), it follows from the

dominated convergence theorem that

〈
f, fM

〉
L2(E)

= Tr

(∫
E

f(x)M∗R(x) dx

)
which is just

Tr

(
M∗

∫
E

f(x)R(x) dx

)
.

The latter is equal to 〈R(f),M〉L2(HR), as desired.

Lemma 4.3.4. Let E be a (G,Γ) reproducing set and f ∈ L2(E). Then (4.5) holds.

Proof. Suppose f ∈ C∞E (G). By Theorem 4.2.5, R(f) is trace-class. Thus, with

the notation fx(y) = f(yx), Lemma 4.3.3 implies that the function Ř∗R(f) has the
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following very specific form:

(Ř∗R(f))(x) = Tr
(
R
(
x−1
)
R(f)

)
= Tr

(
R
(
x−1
) ∫

G

f(y)R(y) dy

)
= Tr

(∫
G

f(y)R(y) dy R
(
x−1
))

= Tr

(∫
G

fx(y)R(y) dy

)
= Tr (R(fx))

=

∫
Γ\G

∑
γ∈Γ

fx(y
−1γy) dµ(Γy) (4.6)

= fx(1G)µ(Γ\G) +

∫
Γ\G

∑
1G 6=γ

fx(y
−1γy) dµ(Γy),

where (4.6) follows from the Selberg Trace Formula (Theorem 4.2.5) applied to the

function fx. If x is such that suppfx is disjoint from all conjugates of Γ−{1G}, then

the integral term vanishes and the right-hand side becomes fx (1G), which is just

f(x). But this will happen if x ∈ E, since suppfx ⊂ Ex−1 ⊂ EE−1, which has the

desired disjointness property.

Hence, for x ∈ E and f ∈ C∞E (G), (Ř∗R(f))(x) = f(x). Consequently, ‖R(f)‖2
HS =〈

Ř∗R(f), f
〉
H = ‖f‖2

H for all f in a dense subspace of H = L2(E), and hence for all

of H. As noted above, the desired Parseval frame condition (4.5) follows from this

equality.

This section has established that if G is a Lie group that admits a uniform lattice

Γ and a (G,Γ) reproducing set E, and if {πj : j ∈ N} is a list (with multiplicities)

of the subrepresentations of the quasi-regular representation for (G,Γ), then {πj} is

a Parseval OVF of representations for L2(E). In the next section we will see some

examples of groups meeting the conditions above, and what the corresponding OVFs

are. We will also see some examples of non-harmonic OVFs which are in a sense
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nonabelian analogues of frames of exponentials associated with near-lattices.

4.4 OVFs of Representations for Two Particular Groups

As we have indicated, all that is needed to specify a harmonic frame of represen-

tations for G is a uniform lattice Γ and a (G,Γ) reproducing set E. In this section

we introduce some examples of OVFs of representations, both harmonic and not, for

two specific groups—the real Heisenberg group Hn and the Euclidean motion group

for R2.

4.4.1 The Heisenberg Group

The real Heisenberg group G = Hn, or simply the Heisenberg group, is defined as

Rn×Rn×R with the group law (x, ξ, t)(x′, ξ′, t′) = (x+x′, ξ+ξ′, t+t′+ 1
2
(x·ξ′−x′ ·ξ)).

In this section we introduce some OVFs of representations of this group.

A harmonic OVF

Our first example of OVFs of representations of the Heisenberg group will be a har-

monic one. In this section the discrete subgroup Γ consists of ordered triples in

Zn × Zn × 1
2
Z and the reproducing neighborhood E will be D × (−1/4, 1/4), where

D = (−1/2, 1/2)n × (−1/2, 1/2)n. For given x, ξ ∈ Rn, the operation (x′, ξ′, t′) 7→(
x′, ξ′, t′ + 1

2
(x · ξ′ − x′ · ξ)

)
can be represented as a linear transformation on R2n+1

with determinant 1, so Haar measure on Hn is just a product of Lebesgue measures.

It is necessary to verify that E really is a (Hn,Γ) reproducing set. To see this, first

observe that Γ− {0}2n+1 = Γ1 ∪ Γ2 with Γ1 = (Z2n − {0}2n)× 1
2
Z and Γ2 = {0}2n ×(

1
2
Z− {0}

)
. Since the first 2n scalar components of EE−1 lie in (−1, 1) and since the

orbit of Γ1 under conjugation in G consists only of members of (Z2n − {0}2n) × R,

EE−1 is disjoint from this orbit. On the other hand, Γ2 is in the center of Hn, so it is
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equal to its orbit under conjugation. If (x, ξ, t) ∈ Hn, then (x, ξ, t)−1 = (−x,−ξ,−t),

so if (x, ξ, t), (x′, ξ′, t′) ∈ E and if (x, ξ, t)(x′, ξ′, t′)−1 ∈ Γ2, then x = x′, ξ = ξ′, and

t− t′ ∈ 1
2
Z− {0}, which is impossible since t, t′ ∈ (−1/4, 1/4). Thus, EE−1 does not

intersect Γ2.

Let {πj} be a list, with multiplicities, of irreducible subrepresentations of R. Then,

according to Theorem 4.3.1, {πj} is a harmonic OVF. Specifically,

‖f‖2
L2(E) =

∑
j

‖πj(f)‖2
HS (4.7)

for all f ∈ L2(E). We are interested in what form these πj’s take, and fortunately,

there are known formulas for all the representations of G. Up to equivalence, the

infinite-dimensional representations of Hn have the form (see [49]) ρω : Hn×L2(Rn)→

L2(Rn)

(ρω(x, ξ, t)φ) (y) = e−2πiω(t+x·y+ 1
2
x·ξ)φ(y + x)

with ω ∈ R∗ = R − {0} and φ ∈ L2(Rn). The others are the (one-dimensional)

characters, given by χb,β(x, ξ, t) = e−2πi(b·x+β·ξ) for b, β ∈ Rn. To decompose L2(Γ\Hn)

into R-invariant subspaces, observe first that g ∈ L2(Γ\Hn) may be viewed as a

function on Hn that is invariant under left translations in Γ. Such a function satisfies,

in particular, g(x, ξ, t) = g(x, ξ, t + 1/2). Thus, L2(Γ\Hn) =
⊕

k∈ZK2k, where K2k

is the R-invariant space {h ∈ L2(Γ\Hn) : h(x, ξ, t) = e4πikth(x, ξ, 0)}. The action

of R on K0 factors through the action of the right regular representation of R2n on

L2(T2n), and can therefore be shown to decompose into the sum

⊕
a,α∈Zn

χa,α.

Further, it is shown in [49] that the action of R on K2k, k 6= 0, splits into |2k|n

irreducible actions, each of which is equivalent by a Weil-Brezin-Zak transform to the
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action of ρ2k on L2(Rn). Thus,

R ∼=
⊕
a,α∈Zn

χa,α ⊕
⊕
k∈Z∗
|2k|nρ2k,

where Z∗ = Z−{0}. From this it follows that {χa,α : a, α ∈ Zn}∪{ρ2k : k ∈ Z∗}, with

ρ2k repeated |2k|n times for each k 6= 0, is a harmonic OVF. This may be summarized

by the frame condition:

‖f‖2
L2(E) =

∑
a,α∈Zn

|χa,α(f)|2 +
∑
k 6=0

|2k|n ‖ρ2k(f)‖2
HS

for all f ∈ L2(E).

Non-harmonic OVFs of representations

We will show in this section that some non-harmonic OVFs of representations of the

Heisenberg group can be obtained by perturbing the parameters used to index the

harmonic one above, just as a non-harmonic frame of exponentials can be obtained

by replacing the parameters j indexing the exponentials {e2πij · : j ∈ Z} by nearby

real numbers {λj : j ∈ Z}. More precisely, we wish to prove the following result

about replacing the equispaced parameters a, α, and 2k with the real n-vectors {ba :

a ∈ Zn} ⊂ Rn and {βα : α ∈ Zn} ⊂ Rn and real numbers {ωk : k ∈ Z∗}.

Theorem 4.4.1. Suppose {ba : a ∈ Zn} and {βα : α ∈ Zn} are sequences of real

n-vectors and {ωk : k ∈ Z∗} is a sequence of real numbers. Define

M = max

{
sup
a∈Zn
‖ba − a‖∞ , sup

α∈Zn
‖βα − α‖∞ , sup

k 6=0
|ωk − 2k|

}
.

If M > 0 is sufficiently small, then there exist A = A(M) > 0 and B = B(M) such

that

A ‖f‖2
L2(E) ≤

∑
a,α

|χba,βα(f)|2 +
∑
k 6=0

|2k|n ‖ρωk(f)‖2
HS ≤ B ‖f‖2

L2(E) (4.8)

holds for all f ∈ L2(E).
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For this we will need two lemmas, the first of which is a generalization of Duffin

and Schaeffer [25, Lemma III] and provides explicit frame bounds for a perturbation

of a frame of exponentials in Rn.

Lemma 4.4.2. Let E = (−1/2, 1/2)n and identify L2(E) with the set of functions in

L2(Rn) vanishing off E. Given M > 0 there is a number T (M) > 0 such that if {µj}

and {λj} are sequences in Rn such that supj ‖µj − λj‖∞ < M and

A ‖f‖2
2 ≤

∑
j

∣∣∣f̂(λj)
∣∣∣2 ≤ B ‖f‖2

2 (4.9)

for all f ∈ L2(E), then∑
j

∣∣∣f̂(µj)− f̂(λj)
∣∣∣2 ≤ T (M)

∑
j

∣∣∣f̂(λj)
∣∣∣2

for all f ∈ L2(E). Further, T (M) may be taken so that T (M)→ 0 as M → 0.

Proof. Suppose f ∈ L2(E), h = f̂ , and {λj} and {µj} are as above. The function

h extends to a function on Cn that is analytic: h(z) =
∫
E
f(y)e−2πiz·y dy. Thus, we

may apply Taylor’s theorem:

h(µj)− h(λj) =
∞∑
k 6=0

h(k)(λj)

k!
(µj − λj)k,

where k ∈ {0, 1, . . . }n is a multi-index. Denoting k1 + k2 + . . . kn by |k|, we next

multiply and divide by ρ|k| in each term, where ρ is some positive number, distribute

a factor of (k!)1/2, and apply Cauchy-Schwarz.

|h(µj)− h(λj)|2 =

∣∣∣∣∣
∞∑
k=1

h(k)(λj)

ρ|k|(k!)1/2

ρ|k|(µj − λj)k

(k!)1/2

∣∣∣∣∣
2

≤
∞∑
k=1

∣∣h(k)(λj)
∣∣2

ρ2|k|k!

∞∑
k=1

(ρM)2|k|

k!
. (4.10)

Consider the term ∑
j

∣∣h(k)(λj)
∣∣2 .
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Since h(k)(x) =
∫
E
f(y)(−2πiy)ke−2πix·y dy, the function h(k) is the Fourier transform

of g ∈ L2(E), where g(y) = f(y)(−2πiy)k, and we have

A ‖g‖2
2 ≤

∑
j

∣∣h(k)(λj)
∣∣2 ≤ B ‖g‖2

2 .

Since ‖g‖2
2 ≤ (2π)2|k| ‖f‖2

2 and since ‖f‖2
2 ≤

1
A

∑
j |h(λj)|2 we get

∑
j

∣∣h(k)(λj)
∣∣2 ≤ (2π)2|k|B

A

∑
j

|h(λj)|2 .

Summing (4.10) over all j and using the above gives

∑
j

|h(µj)− h(λj)|2 ≤T (M,ρ)
∑
j

|h(λj)|2

with

T (M,ρ) =
B

A

∞∑
k 6=0

(2π)2|k|

ρ2|k|k!

∞∑
k=1

(ρM)2|k|

k!
.

Letting T (M) = T (M, 1/
√
M), we see by dominated convergence that T (M)→ 0 as

M → 0.

Next, we need a lemma that computes the quantity ‖ρω(f)‖2
HS for f ∈ L1(Hn) ∩

L2(Hn) and ω 6= 0.

Lemma 4.4.3. Let ρω be an infinite-dimensional representation of the Heisenberg

group Hn, and f ∈ L1(Hn) ∩ L2(Hn). Then

‖ρω(f)‖2
HS = |ω|−n

∫ ∫
|F3f(u,w, ω)|2 du dw.

Proof. For f ∈ L1(Hn) ∩ L2(Hn) and b, β ∈ Rn and ω ∈ R the (Euclidean) Fourier

transform of f at (b, β, ω) is

f̂(b, β, ω) =

∫ ∫ ∫
f(x, ξ, t)e−2πi(b·x+β·ξ+ωt) dx dξ dt.
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Let F1, F2, and F3 denote the corresponding Fourier transforms with respect to the

first, second, and third variable, respectively. Applying ρω(f) to some φ ∈ L2(Rn)

gives (∫ ∫ ∫
f(x, ξ, t)ρω(x, ξ, t) dx dξ dt φ

)
(y)

=

∫ ∫ ∫
f(x, ξ, t) (ρω(x, ξ, t)φ) (y) dx dξ dt

=

∫ ∫ ∫
f(x, ξ, t)e−2πiω(t+ξ·x/2−ξ·y)φ(y − x) dx dξ dt.

Substituting x← y − x and continuing, we get∫ ∫ ∫
f(y − x, ξ, t)e−2πiω(t+ξ·(y−x)/2−ξ·y)φ(x) dx dξ dt

=

∫ ∫ ∫
f(y − x, ξ, t)e−2πiω(t−ξ·(x+y)/2) dξ dt φ(x) dx.

Thus, ρω(f) is an integral operator on L2(Rn) with kernel

Kf
ω(y, x) =

∫ ∫
f(y − x, ξ, t)e−2πiω(t−ξ·(x+y)/2) dξ dt

= F2F3f(y − x,−ω(x+ y)/2, ω),

where F2 is the Fourier transform with respect to the second variable in the triple

Rn ×Rn ×R. The square of the Hilbert-Schmidt norm of this operator is as follows:

‖ρω(f)‖2
HS =

∫ ∫
|Kf (y, x)|2 dx dy.

The substitution u = y−x and v = −1
2
ω(x+y) together with the Euclidean Parseval

Formula for Rn gives

‖ρω(f)‖2
HS =

∫ ∫
|F2F3f(u, v, ω)|2 |ω|−n du dv

= |ω|−n
∫ ∫

|F3f(u,w, ω)|2 du dw,

as desired.
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Now to the proof of the theorem.

Proof. Let f ∈ L2(E). The symbols p, q, and r will denote the quadratic forms

q(f) =
∑
a,α

|χba,βα(f)|2

and

r(f) =
∑
k 6=0

|2k|n ‖ρωk(f)‖2
HS

and

p(f) = q(f) + r(f).

The result to be proven, in effect, is that for M > 0 sufficiently small, the seminorm

p1/2 is equivalent to ‖ · ‖L2(E).

By Lemma 4.4.2 applied to f( · , · , 1
2
· ) in L2((−1/2, 1/2)2n+1), if ˜ is a map from

J = Zn × Zn × 2Z to R2n+1 and the number

M ′ = sup
z∈J
‖z̃ − z‖∞

is sufficiently small, there is T = T (M ′) such that

∑
z∈J

∣∣∣f̂(z̃)− f̂(z)
∣∣∣2 ≤ T (M ′)

∑
z∈J

∣∣∣f̂(z)
∣∣∣2

for every f ∈ L2(E). By the triangle inequality, this means that the quantity

∑
z∈J

∣∣∣f̂(z̃)
∣∣∣2 (4.11)

is bounded above and below by the quantity

(
1± T (M ′)1/2

)2∑
z∈J

∣∣∣f̂(z)
∣∣∣2 =

(
1± T (M ′)1/2

)2 ‖f‖2
L2(E) .

Thus, it suffices to show that p(f) is bounded above and below by positive multiples

of (4.11) for some z̃’s for which M ′ = M .
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Let us now consider the terms of the form ‖ρω(f)‖2
HS for ω 6= 0. By Lemma 4.4.3

such a term is equal to

‖ρω(f)‖2
HS =

1

|ω|n

∫ ∫
|F3f(u, v, ω)|2 du dv.

Further, the facts that g = F3f( · , · , ω) is supported on D and is square-integrable

imply that ‖ρω(f)‖2
HS may be written using the 2n-dimensional Fourier series expan-

sion of g as

‖ρω(f)‖2
HS =

1

|ω|n
∑

a,α∈Zn
|F1F2F3f(a, α, ω)|2 =

1

|ω|n
∑
a,α

∣∣∣f̂(a, α, ω)
∣∣∣2

for any ω 6= 0.

Consider |r(f)− φ(f)|, where

φ(f) =
∑
k 6=0

∑
a,α

∣∣∣f̂(a, α, ωk)
∣∣∣2 (4.12)

=
∑
k 6=0

|ωk|n ‖ρωk(f)‖2
HS .

The quantity has the following upper bound:

|r(f)− φ(f)| ≤
∑
k 6=0

∣∣∣∣∣∣∣∣2kωk
∣∣∣∣n − 1

∣∣∣∣ |ωk|n ‖ρωk(f)‖2
HS

≤ sup
k 6=0

∣∣∣∣∣∣∣∣2kωk
∣∣∣∣n − 1

∣∣∣∣∑
k 6=0

|ωk|n ‖ρωk(f)‖2
HS

= sup
k 6=0

∣∣∣∣∣∣∣∣2kωk
∣∣∣∣n − 1

∣∣∣∣φ(f).

For M � 1, a bound may be obtained by replacing |ωk|n by |2k|n − nM |2k|n−1. A

corresponding bound on the supremum terms is nM/(|2k|−nM), which is decreasing

in |k|. Thus, the supremum term is less than C(M) = nM/(2− nM), which goes to

zero as M goes to zero. In other words,

(1− C(M))φ(f) ≤ r(f) ≤ (1 + C(M))φ(f). (4.13)
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The inequality

(1− C(M))(φ(f) + q(f)) ≤ p(f) ≤ (1 + C(M))(φ(f) + q(f)) (4.14)

results from adding (1 − C(M))q(f) ≤ q(f) ≤ (1 + C(M))q(f) to (4.13). For each

b, β ∈ Rn, the quantity χb,β(f) is equal to f̂(b, β, 0), so

q(f) =
∑

a,α∈Zn

∣∣∣f̂(ba, βα, 0)
∣∣∣2

for Haar measure as above. Thus, combining the above with (4.14) and (4.12) gives

(1− C(M))
∑
z∈J

∣∣∣f̂(z̃)
∣∣∣2 ≤ p(f) ≤ (1 + C(M))

∑
z∈J

∣∣∣f̂(z̃)
∣∣∣2 ,

where, when k = 0, (a, α, 2k)̃ = (ba, βα, 0) and, when k 6= 0, (a, α, 2k)̃ = (a, α, ωk).

For these values of z̃, the number M ′ is equal to M , and

(1− C(M))(1− T (M)1/2)2 ‖f‖2
L2(E)

≤ p(f)

≤ (1 + C(M))(1 + T (M)1/2)2 ‖f‖2
L2(E) ,

as desired.

Observe that by making the perturbations small, A and B can be made as close

to one as desired, resulting in a “nearly Parseval” OVF of representations. Thus,

viewing the list of representations {χba,βα} ∪ {ρωk} with the appropriate number of

repetitions, the desired result about OVFs of representations on Hn is obtained: all

that is needed to specify one is a sequence of numbers satisfying a Duffin-Schaeffer

type stability condition.

Remark 4.4.4. (POVM formulation.) If T = {πj} is an OVF of representations as

above, each πj is a map taking f ∈ L2(E) to a kernel integral operator on L2(Rn).
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As claimed in Section 3.3, representing g ∈ H by the sequence S = {Sjg}, for some

OVF {Sj} for H, is sometimes more complicated notationally than representing g

by the sequence {S∗jSjg}, and the latter representation corresponds to doing analysis

using the POVM MS. In this Remark, we show that representing f by functions of

the form π̌∗j π̌jf is particularly simple.

The terms in question are in fact similar to terms appearing in an exponential-

frame expansion of L2(E). To see this, first note that if χb,β is one of the Heisenberg

group’s characters and χ̌b,β : L2(E) → C is the corresponding restriction to L2(E),

then, just as in Fourier analysis of T2n+1,

(χ̌∗b,βχ̌b,βf)(x, ξ, t) =

∫ ∫ ∫
f(y, η, t)e−2πi(b·y+β·η) dy dη dt e2πi(b·x+β·ξ)

= (F1F2F3f)(b, β, 0)e2πib·xe2πiβ·ξ.

Thus the character terms in the frame inequality (4.8) correspond to an exponential-

frame expansion of (x, ξ) 7→
∫
R f(x, ξ, t) dt. Second, we consider the infinite dimen-

sional irreducible representations ρω : Hn → U(K), with K = L2(Rn). Suppose

ρ̌ω : L2(E) → L2(K) is the corresponding restriction to L2(E), f ∈ L2(E), and Tω,

ω 6= 0, is the map Tωf(x, ξ, t) = |ω|−nF3f(x, ξ, ω)e2πiωt. Then ρ̌∗ωρ̌ω = Tω. To see

this, observe first that by Lemma 4.4.3

‖ρω(f)‖2
HS = |ω|−n

∫
R2n

|F3f(x, ξ, ω)|2 dx dξ,

so that the right side is equal to 〈ρ̌∗ωρ̌ωf, f〉L2(E). But by Fubini’s theorem, this

quantity is also equal to 〈Tωf, f〉L2(E), so that ρ̌∗ωρ̌ω = Tω. We note that Tω is 1/|ω|n

times the orthogonal projection Qω onto the space

Kω = {f ∈ L2(E) : f(x, ξ, t) = f(x, ξ, 0)e2πiωt}.

Thus, letting e(b, β, ω) be the function (x, ξ, t) ∈ E 7→ e2πi(b·x+β·ξ+ωt), the sum over

all terms of the form π̌∗j π̌j then has the following expression in terms of orthogonal
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projections:∑
a,α

χ̌∗ba,βαχ̌ba,βα +
∑
k 6=0

|k|nρ̌∗ωk ρ̌ωk =
∑
a,α

Pe(ba,βα,0) +
∑
k 6=0

|k/ωk|nQωk .

Remark 4.4.5. It is a simple extension of Remark 2.3.5 to note that for functions

f ∈ Cm
E (G), the rank-one terms in partial sums of Sf converge rapidly, meaning on

the order of 1/(|a|2 + |α|2)m/2. Further, the norms of the terms of the form ρ̌∗ωk ρ̌ωkf

will converge to zero at the same rate ‖ρωk(f)‖HS does, by the Principle of Uniform

Boundedness. For the latter, letting ∂3 be the partial derivative with respect to t,

|F3f(x, ξ, ω)| ≤ 1

|2πω|m
|F3∂

m
3 f(x, ξ, ω)| ,

so ‖ρωk(f)‖HS goes to zero at a rate of 1/|ωk|m. This property may be important if

these OVFs are to have any computational use.

4.4.2 The Euclidean Motion Group for R2

In this section we will investigate OVFs of representations for the Euclidean mo-

tion group on Rn, denoted E(n), with n = 2. This group is defined to be HoK with

H = R2 and K being the matrix group SO(2) and hk being the matrix product kh.

A harmonic OVF

By the uniqueness of Haar measure, Haar measure for G = E(2) is just a product of

Lebesgue measure for R2 and invariant measure on the circle K, which we normalize

to 1. Let Γ be the lattice Z2×{1K} which is uniform and let E ⊂ G be D/2×SO(2),

where D is the open disc of radius 1 centered at the origin. To check that E is a

(G,Γ) reproducing set, simply observe that gEg−1 = E, so that gEE−1g−1 is disjoint

from Γ− {1G} for all g ∈ G iff EE−1 = D× SO(2) disjoint from Γ− {1G}.

As before, if {πj} is a complete list, with multiplicity, of subrepresentations of R,

then {πj} forms a harmonic OVF. It is shown in Appendix A that R =
⊕

l∈Z2 ρl,
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where ρλ for the column vector λ ∈ R2 is the representation of G on L2(K) given by

(ρλ(h, k)φ) (k0) = e−2πiλk0 ·hφ(k−1k0)

for all φ ∈ L2(K). (Two such ρλ’s are equivalent if and only if the parameters λ ∈ R2

have the same length, so the given direct sum has repetitions in it.) Thus, we have

the Parseval condition

‖f‖2
L2(E) =

∑
l∈Z2

‖ρl(f)‖2
HS (4.15)

for all φ ∈ L2(K). As stated in Appendix A, the representation ρλ is irreducible for

all λ 6= 0.

Non-harmonic OVFs of representations

The purpose of this section is to show existence of a class of non-harmonic OVFs of

representations for the group E(2). Specifically, we wish to find conditions on the

parameters λl ∈ R2 (l ∈ Z2) such that {ρλl} is an OVF of representations:

A ‖f‖2
L2(E) ≤

∑
l∈Z2

‖ρλl(f)‖2
HS ≤ B ‖f‖2

L2(E) (4.16)

for all φ ∈ L2(K). For this we need the following lemma.

Lemma 4.4.6. If f ∈ L2(E), then ‖ρλ(f)‖2
HS =

∫
K

∫
K

∣∣F1f(λk, k′)
∣∣2 dk dk′, where

F1f(ω, k) denotes the Fourier transform of f( · , k) at ω ∈ R2.

Proof. We first show that ρλ(f) is a kernel integral operator on L2(K) by applying it

to a function φ ∈ L2(K).(∫
K

∫
H

f(h, k)ρλ(h, k) dh dk φ

)
(k0) =

∫
K

∫
H

f(h, k) (ρλ(h, k)φ) (k0) dh dk

=

∫
K

∫
H

f(h, k)e−2πiλk0 ·hφ(k−1k0) dh dk

=

∫
K

∫
H

f(h, k0k
−1)e−2πiλk0 ·hφ(k) dh dk,
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where in the last step, we have used the fact that K is unimodular, so that d(k−1) =

dk. From the above we can see that ρλ(f) is an integral kernel operator on L2(K),

as claimed, with kernel

Φ(k, k0) =

∫
H

f(h, k0k
−1)e−2πiλk0 ·h dh.

The corresponding Hilbert-Schmidt norm is therefore

‖ρλ(f)‖2
HS =

∫
K

∫
K

|Φ(k, k0)|2 dk dk0.

Making the substitution k ← k−1k0 yields

‖ρλ(f)‖2
HS =

∫
K

∫
K

∣∣Φ(k−1k0, k0)
∣∣2 dk dk0

=

∫
K

∫
K

∣∣F1f(λk0 , k)
∣∣2 dk dk0.

which is the desired result.

We now prove (4.16) for appropriate {λl}l∈Z2 . In the following proof the norm

‖ · ‖ applied to a vector in R2 will be taken to be the Euclidean norm.

Theorem 4.4.7. Suppose {λl}l∈Z2 is a subset of R2. Then, if M = supl∈Z2 |‖λl‖ − ‖l‖|

is sufficiently small, there exist B,A > 0 such that (4.16) holds for all f ∈ L2(E).

Proof. Combining Equation (4.15) with Lemma 4.4.6, we get the following Parseval

frame condition:

‖f‖2
L2(E) =

∑
l∈Z2

∫
K

∫
K

∣∣F1f(lk, k′)
∣∣2 dk dk′.

We wish to prove that if M is sufficiently small, then the quantity

∑
l∈Z2

∫
K

∫
K

∣∣F1f(λkl , k
′)
∣∣2 dk dk′
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is bounded above and below by positive multiples of ‖f‖2
L2(E). Let κl ∈ R2 be defined

for l = 0 to be λ0 and for l 6= 0 to be

κl =
‖λl‖
‖l‖

l.

Let k′ ∈ K. By Lemma 4.4.2, there is T (M) depending only on

M = sup
l∈Z2

‖κl − l‖∞

such that ∑
l∈Z2

|F1f(κl, k
′)−F1f(l, k′)|2 ≤ T (M)

∑
l∈Z2

|F1f(l, k′)|2 .

Let k ∈ K. By the proof of the same Lemma, the same function T works in the

inequality

∑
l∈Z2

∣∣F1f(κkl , k
′)−F1f(lk, k′)

∣∣2 ≤ T (M(k))
∑
l∈Z2

∣∣F1f(lk, k′)
∣∣2 , (4.17)

where M(k) = supl∈Z2

∥∥κkl − lk∥∥∞. We make the definition

M ′ = sup
l∈Z2

∥∥κkl − lk∥∥ .
Then

M ′ =

∥∥∥∥‖λl‖‖l‖ lk − lk
∥∥∥∥

=

∣∣∣∣‖λl‖‖l‖ − 1

∣∣∣∣ ∥∥lk∥∥
= |‖λl‖ − ‖l‖| .

Since M ′ ≥ M(k) for all k, the number supk∈K T (M(k)) can be made smaller than

some 0 < C � 1 by taking M ′ to be small. Thus, integrating (4.17) over k and k′
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and applying the triangle inequality gives

(1− C1/2)2
∑
l∈Z2

∫
K

∫
K

∣∣F1f(lk, k′)
∣∣2 dk dk′

≤
∑
l∈Z2

∫
K

∫
K

∣∣F1f(κkl , k
′)
∣∣2 dk dk′

≤ (1 + C1/2)2
∑
l∈Z2

∫
K

∫
K

∣∣F1f(lk, k′)
∣∣2 dk dk′.

But this is the desired inequality because the first and last quantities are multiples

of ‖f‖2
L2(E), and in the middle quantity κl can be replaced by λl.

We have thus proved, in analogy with the corresponding result for the Heisenberg

group, that for appropriate λl’s and E, the list {ρλl} is an OVF of representations for

L2(E). Further, these representations are irreducible if no λl is equal to 0. We also

make the note that the OVFs above are again “nearly Parseval” if the perturbations

|‖λl‖ − ‖l‖| are chosen to be small.

Remark 4.4.8. (POVM formulation.) As in the Heisenberg case, if T = {ρλl}

is an OVF of representations as described in this section, then representing f ∈

L2(E) by {ρ̌∗λl ρ̌λlf} can be considerably simpler notationally than representing f by

{ρλl(f)}. This again corresponds to doing analysis with the POVM MT , as defined

in Section 3.3, rather than by T directly.

Consider a term of the form ρ̌∗λρ̌λ. We will show that this product is the simple

kernel integral operator Sλ : L2(E)→ L2(E) given by

(Sλf)(h′, k′) =

∫
H

(∫
K

e−2πi(h−h′)·λk dk

)
f(h, k′) dh.
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Indeed, for f ∈ L2(E), we may apply Fubini’s theorem in the following:

〈Sλf, f〉L2(E) =

∫
D/2

∫
K

(Sλf)(h′, k′)f(h′, k′) dh′ dk′

=

∫
D/2

∫
K

∫
D/2

∫
K

e−2πi(h−h′)·λk dk f(h, k′) dh f(h′, k′) dh′ dk′

=

∫
K

∫
K

∫
D/2

f(h, k′)e−2πih·λk dh

∫
D/2

f(h′, k′)e2πih′·λk dh′ dk dk′

=

∫
K

∫
K

∣∣F1f(λk, k′)
∣∣2 dk dk′

= ‖ρλ(f)‖2
HS

= 〈ρ̌∗λρ̌λf, f〉L2(E) .

Thus, ρ̌∗λρ̌λ = Sλ, as claimed.

Remark 4.4.9. As in Remark 4.4.5, if the frame operator of {ρλl}l∈Z2 is applied to a

function f with a certain smoothness property, then the terms in the resulting series

expansion have a certain decay property. For completeness of discussion, we will now

describe a result of this form with precision. Assume f ∈ C2m
E (G). In this case, f

is 2m-times differentiable with respect to its first argument (G = R2 × SO(2)). We

will use the notation 41 to denote the Laplacian with respect to R2. We claim that∥∥ρ̌∗λlρλl(f)
∥∥
L2(E)

and ‖ρλl(f)‖HS go to zero on the order of |l|−2m. By the Principle of

Uniform Boundedness, it suffices to show that ‖ρλl(f)‖HS goes to zero on the order
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of |l|−2m. Given the formula in Lemma 4.4.6, we consider the integrand
∣∣F1f(λk, k′)

∣∣.
∣∣F1f(λk, k′)

∣∣ =

∣∣∣∣∫
D/2

e−2πih ·λkf(h, k′) dh

∣∣∣∣
=

1

‖λ‖2
2

∣∣∣∣∫
D/2

(
41e

−2πih ·λk
)
f(h, k′) dh

∣∣∣∣
=

1

‖λ‖2
2

∣∣∣∣∫
D/2

e−2πih ·λk41f(h, k′) dh

∣∣∣∣
= . . .

=
1

‖λ‖2m
2

∣∣∣∣∫
D/2

e−2πih ·λk4m
1 f(h, k′) dh

∣∣∣∣
Thus, for each integer m > 0, ‖ρλ(f)‖2

HS is bounded by

1

‖λ‖4m
2

‖ρλ(4n
1f)‖2

HS

which goes to zero with order 4m as λ→∞. Taking the square root gives the desired

result.

4.5 Conclusion and Future Work

In this chapter we have constructed several types of OVFs of representations. In

Section 4.3, we have constructed harmonic OVFs of representations of any Lie group

G admitting a uniform lattice and a reproducing set E. In Section 4.4, we found a

reproducing set E for the two examples of the Heisenberg group Hn and the motion

group E(2), and found that, for a natural parameterization of Ĝ, the corresponding

Parseval OVFs of representations remain OVFs of representations after perturbations

of the representations’ parameters.

Since an element f of a Hilbert space H is uniquely specified by {Tjf} when {Tj}

is an OVF for H, one intriguing consequence of the latter result is a condition on

{πj} such that f ∈ L2(E) is uniquely specified by {πj(f)}. Another consequence of

our results is that, as discussed in the subsections titled “POVM Formulation,” it is
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sometimes easier to represent f by {π̌∗jπj(f)} than it is to represent f by {πj(f)},

providing a motivation for sometimes doing analysis using a POVM instead of the

corresponding OVF. Finally, we note here that by making the perturbations in the

representations’ parameters small, the frame bounds A and B can be made as close

to 1 as desired, resulting in a “nearly Parseval” OVF of representations. In view of

(2.9), the frame algorithm for OVFs with A ≈ B converges quickly, a property which

would be desirable in any computational implementation of these OVFs.

In a thread related to the work undertaken in Section 4.4, one could consider,

instead of the integer lattices of that section, more general lattices. In the case of the

motion group, this is not particularly difficult, although doing it introduces a small

degree of notational difficulty. In the case of the Heisenberg group, a modification

of the results of [49] on the subrepresentations of R is needed. Following these ideas

would provide a more satisfactory and complete theory than the one we have given.

Another interesting vein for future research may be the extension of our pertur-

bative result to other Lie groups. One case in which this may be possible is the case

when G is simply connected and nilpotent. In this case, let g be the corresponding

Lie algebra, with real dual space g∗, and denote by Ad(x) : g → g the action taking

Y ∈ g to the tangent vector to the curve t 7→ x[exp tY ]x−1 at t = 0. The co-adjoint

action Ad∗ of G on g∗ is defined by Ad∗(x) = [Ad(x−1)]∗. By [37], there is a continu-

ous bijection from the space of co-adjoint orbits g∗/G to Ĝ, where the latter is given

the so-called Fell topology. Further, by [13], this map is actually a homeomorphism.

Thus, in this case, it may be possible to perturb some elements of Ĝ by considering

them as elements of g∗/G, which is a quotient space of a metric space.

Perhaps more interesting than the analysis of L2(E) would be an analysis of spaces

of the form L2(E/K), where K is a closed subgroup of G. The space G/K is an

example of a G-space—i.e., a locally compact, Hausdorff space acted on continuously
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by the left action of G. In fact, as shown in [26, Proposition 2.44], if G is σ-compact,

every G-space is homeomorphic to one of this form. Suppose K is compact, q :

G → G/K is the canonical quotient map, PK : Cc(G) → Cc(G/K) is defined as

in Section 4.2, and {πj} is an OVF of representations for L2(E). Define π′j(f) for

f ∈ CE/K(G/K) to be
∫
G
f ◦ q(x)πj(x) dx. Since {πj} is an OVF of representations

and f ◦ q is supported on the compact set EK, we have that∑
j

∥∥π′j(f)
∥∥2

HS

is bounded above and below by a nonzero multiple of∫
G

|f ◦ q(x)|2 dx.

Using Theorem 4.2.1, this bound becomes |K|
∫
G/K
|f(xK)|2 dµ(xK). Since these

bounds hold on a dense subset of L2(E/K), they hold on all of L2(E/K). As an

example, let G = E(2), K = {0} × SO(2), and E = D/2 × SO(2). In this case, the

quotient E/K can be identified with D/2, so {π′j} forms an OVF for L2(D/2). It

would be interesting to see if this analysis extends to other quotient spaces.

Given an OVF of representations {πj} for L2(E), a fruitful vein for future research

may be the question of the existence of “Gabor systems” for L2(G) derived from {πj}.

As described in Example 2.3.6, a Gabor system for L2(R) is a system of vectors of

the form gm,n(x) = e2πimaxg(x − nb) for some a, b > 0 and some generator function

g ∈ L2(R). Given ab < 1, {gm,n} is a (tight) frame for L2(R). One way to interpret

this is that gm,γ(x) = χm(x)g(γ−1x), where {χm} forms a frame of exponentials

for the appropriate L2-space, and γ is a member of some lattice Γ1. Under this

interpretation, the question is whether operators Gj,γ specified by f ∈ L2(G) 7→∫
G
f(x)πj(x)g(γ−1x) dx, for some generator function g ∈ L2(G), form an OVF for

L2(G). Such an analysis of L2(G) would presumably be of interest as a possible

discrete replacement for the (generally continuous) Fourier transform on L2(G).
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Finally, we mention a possible research direction related to harmonic OVFs and

sampling theory. By the Poisson Summation Formula, if f ∈ C∞c (R) and γ > 0, then

∑
k

f̂(γk)e2πiγkx = f(x) +
∑
j 6=0

f(x+ j/γ),

so that if f is supported on a set of measure larger than 1/γ, the series on the left

does not reconstruct f exactly, but rather up to some additional terms which are

translates of f . The situation is similar for the Selberg Trace Formula for (G,Γ),

which states that for f ∈ C∞c (G),

∑
j

Tr

(∫
G

f(y)πj(yx
−1) dy

)
= f(x) +

∫
Γ\G

∑
1G 6=γ

f(x−1γx) dµ(Γx).

If the support of f is contained in some reproducing set, then all of the terms on the

right-hand side except the first one vanish. But if the support of f is not contained in

such a set, some of the terms may not vanish. In the case of the Poisson Summation

Formula, one is interested in how large the resulting reconstruction error inside L2(E)

is. In this case, this is easily done: the error is∥∥∥∥∥∑
j 6=0

f( · + j/γ)

∥∥∥∥∥
2

L2(−1/2γ,1/2γ)

=

∫
|x|≥1/2γ

|f(x)|2 dx.

In the more general case, though it is not so easy to quantify this reconstruction error.

Given that general members f of C∞c (G) may be of interest, a fruitful question to

pursue may be how large this error term is in terms of the support or other properties

of f .
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APPENDIX A

A DECOMPOSITION OF THE QUASI-REGULAR REPRESENTATION FOR

(E(2),Z2)
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In this appendix we derive a decomposition of the quasi-regular representation for
(E(2),Z2) into subrepresentations. To do this, we must make a brief digression into
the topic of induced representations.

Let G be a locally compact group, H be a closed subgroup, q be the canonical
projection of G onto G/H, σ be a unitary representation of H on Hσ, and the inner
product and norm of Hσ be 〈 · , · 〉σ and ‖ · ‖σ. We denote by C(G,Hσ) the space of
continuous functions from G to Hσ. Let

F0 = {f ∈ C(G,Hσ) : q(suppf) is compact and

f(xξ) = σ(ξ−1)[f(x)] for all x ∈ G, ξ ∈ H}.

Suppose there exists a left invariant measure µ on G/H. The representation σ ↑GH
is defined to be the unique extension of the G-action of left translation on F0 to the
completion H of F0 with respect to the inner product

〈f, g〉 =

∫
G/H

〈f(x), g(x)〉σ dµ(xH).

(Note that this inner product is well-defined since 〈f(x), g(x)〉σ depends only on the
coset of x.) That this process yields a unitary representation of G is checked in [26,
Section 6.1].

Denoting by 1 the trivial representation of H on C, then F0 can be identified with
Cc(G/H) and H can be identified with L2(G/H). It is then clear that 1 ↑GH is the left
quasi-regular representation L for (G,H).

Let q′ be the canonical projection of G onto H\G and F ′0 be defined by

F ′0 = {f ∈ C(G,Hσ) : q′(suppf) is compact and

f(ξx) = σ(ξ)[f(x)] for all x ∈ G, ξ ∈ H}.

Then the same process, with right-translation in place of left-translation, yields a
unitary representation of G that will will denote G

H ↑ σ. Suppose there exists a right-
invariant measure µ′ on H\G. If we again denote the trivial representation of H on
C by 1, then G

H ↑ 1 is the right quasi-regular representation R for (G,H).
We recite here a property of F ′0 that will useful: it follows from [26, Proposition 6.1]

that for every h ∈ F ′0, there is α ∈ Cc(G) such that

h(x) =

∫
H

α(ηx) dη,

where dη denotes Haar measure on H.
We can now show the unitary equivalence of R and L when G and H are uni-

modular. In this case, both G/H and H\G admit invariant measure µ and µ′, which
we may normalize according to the normalization of dx, the normalization of dη, and
Theorem 4.2.1. We first claim that the map U : F0 → F ′0 given by f(x) 7→ f(x−1) is
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an isometry. First, we note that

〈Uf, Ug〉L2(H\G) =

∫
H\G

f(x−1)g(x−1) dµ′(Hx)

=

∫
H\G

∫
H

α(ηx) dη dµ′(Hx)

=

∫
G

α(x) dx,

where α is chosen as above with h(x) = (fg)(x−1) and we have used Theorem 4.2.1
in the last step. On the other hand, with α>(x) = α(x−1), and using unimodularity
of G and H, we have

〈f, g〉L2(G/H) =

∫
G/H

f(x)g(x) dµ(xH)

=

∫
G/H

(fg)(x) dµ(xH)

=

∫
G/H

∫
H

α(ηx−1) dη dµ(xH)

=

∫
G/H

∫
H

α>(xη−1) dη dµ(xH)

=

∫
G/H

∫
H

α>(xη) dη dµ(xH)

=

∫
G

α>(x) dx

=

∫
G

α(x) dx.

Thus, U is an isometry. If λ is the action of left G-translation acting on F0 and ρ is
the action of right G-translation acting on F ′0, then ρU = U−1λ. Thus, if U is the

unique unitary extension of U mapping L2(G/H) onto L2(H\G), then RU = U
−1
L,

as desired.
For the remainder of this appendix, we will focus on decomposing L for unimodular

groups G and H, specializing at the end to G = E(2) and H = Z2 × {1K}. For this,
there are a few preliminary results that will be useful, two of which we mention
without proof.

Proposition. [26, Proposition 6.9] If {σi} is any family of representations of H,
then (

⊕
σi) ↑GH and

⊕
σi ↑GH are unitarily equivalent.

Proposition. [26, Theorem 6.14] Suppose H is a closed subgroup of G, K is a closed
subgroup of H, and σ is a unitary representation of K. Then the representations
σ ↑GK and σ ↑HK↑GH are unitarily equivalent.
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Proposition A.1. Let H/G and G/H is compact and suppose {(σi,Hi)} is a decom-
position of the left regular representation λ on the group G/H into subrepresentations.
Then 1 ↑GH=

⊕
σi, where σi(x) = σi(q(x)).

Proof. We have chosen to assume G/H is compact so that we can restrict our atten-
tion to direct sums of representations. Notice that if we define λ(x) = λ(q(x)), we
have λ = 1 ↑GH . Next, observe the following

λ(x)|Hi = λ(q(x))|Hi = σi(q(x))|Hi = σi(x)|Hi .

These equalities prove that λ decomposes as
⊕

σi. We note that the representations
σi are also irreducible if the representations σi are.

Suppose G = H oK, with H abelian, K compact, and Γ a co-compact subgroup
of H. In what follows, we identify H × {1K} with H and Γ × {1K} with Γ. The
decomposition of L is then given by

L ∼= 1 ↑GΓ
∼= 1 ↑HΓ ↑GH
∼=
(⊕

χ
j

)
↑GH ,

where χj is a character of H/Γ and χ
j

is the character on H given by χ
j
(h) = χj(hΓ).

We will denote χ
j

by νj. Continuing, the above is unitarily equivalent to⊕
νj ↑GH .

If G = E(n), the index set for j is just Zn, and νj is part of the larger family
νλ : Rn → C given by νλ(x) = e−2πiλ·x for λ ∈ Rn. For n > 2, the representations
νλ ↑GH will not in general be irreducible. However, when n = 2, all of them are, except
when λ = 0, as explained in [1, Section 6.1.2]. This author also proves, for n = 2,
that νλ ↑GH is equivalent to a representation ρλ acting on L2(K) by

(ρλ(h, k)φ) (k0) = e−2πiλk0 ·hφ(k−1k0)

for h ∈ H, k ∈ K, and φ ∈ L2(K). Thus, for the quasi-regular representation for
(E(2),Z2) we have the decomposition

R =
⊕
j∈Z2

ρj, (A.1)

as desired.

Remark. We note here that when j = 0, the representation ρ0 is reducible as the
direct sum of characters of K ∼= T, but we choose not to decompose ρ0 so that
all the representations occurring in the (A.1) can be “perturbed” in the sense of
Theorem 4.4.7.
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