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ABSTRACT

Control engineering offers a systematic and efficient approach to optimizing the effec-

tiveness of individually tailored treatment and prevention policies, also known as adaptive

or “just-in-time behavioral interventions. These types of interventions represent promis-

ing strategies for addressing many significant public health concerns. This dissertation

explores the development of decision algorithms for adaptive sequential behavioral inter-

ventions using dynamical systems modeling, control engineering principles and formal

optimization methods. A novel gestational weight gain (GWG) intervention involving

multiple intervention components and featuring a pre-defined, clinically relevant set of

sequence rules serves as an excellent example of a sequential behavioral intervention; it is

examined in detail in this research.

A comprehensive dynamical systems model for the GWG behavioral interventions is

developed, which demonstrates how to integrate a mechanistic energy balance model with

dynamical formulations of behavioral models, such as the Theory of Planned Behavior

and self-regulation. Self-regulation is further improved with different advanced controller

formulations. These model-based controller approaches enable the user to have signif-

icant flexibility in describing a participant’s self-regulatory behavior through the tuning

of controller adjustable parameters. The dynamic simulation model demonstrates proof

of concept for how self-regulation and adaptive interventions influence GWG, how intra-

individual and inter-individual variability play a critical role in determining intervention

outcomes, and the evaluation of decision rules.

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive

Control framework is developed to generate sequential decision policies in the closed-

loop. Clinical considerations are systematically taken into account through a user-specified

dosage sequence table corresponding to the sequence rules, constraints enforcing the ad-
i



justment of one input at a time, and a switching time strategy accounting for the difference

in frequency between intervention decision points and sampling intervals. Simulation stud-

ies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-

scheduling to address nonlinearities in the model, and a cascade filter design for dual-

rate control system is introduced to address scenarios with variable sampling rates. These

extensions are important for addressing real-life scenarios in the GWG intervention.
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Chapter 1

INTRODUCTION
1.1 Motivation

Control engineering focuses on the modeling of a diverse range of dynamic systems

and the design of controllers that will make these systems behave in a desired manner. It

has a wide range of applications, from flight and propulsion systems in commercial airlin-

ers, to the cruise control present in many modern automobiles. Traditional applications of

control engineering include those systems that can be mechanical, electrical, fluid, chemi-

cal, industrial, aerospace, robotic, power systems and electronics. With the rise of mobile

and computerized technologies, and the increased access to the data and information, the

application of control engineering concepts to physical systems has increased extensively

in the past decade [15]. In recent years, there have been increasing interest on the appli-

cation of control to non-conventional areas, such as biology and medicine [16, 17], social

and behavioral science [1, 10, 15, 18–20], supply chains [21–23] and economics [24].

In this dissertation, we address the application of control engineering to adaptive se-

quential behavioral intervention problems in the field of behavioral medicine, the potential

of which still remains untapped. A behavioral intervention can be defined as a program

aimed at improving individual’s behavior for the purpose of preventing and treating dis-

ease, promoting health, and enhancing well-being [25]. These programs play a prominent

role in addressing many important public health concerns, including the abuse of alco-

hol, tobacco, and other drugs, sexually transmitted infections, cancer screening, mental

illness and obesity [26]. Most behavioral interventions are treatment packages made up of

multiple components; some components may be pharmacological, while others might be

behavioral (e.g., clinician counseling) or community-based (e.g. public alcohol associa-

tion) [15].
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Recently, adaptive interventions have been proposed as a new perspective on research-

based prevention and treatment [25]. Adaptive interventions are much like clinical prac-

tice [25, 27] which relies on periodic assessment to gauge whether the treatment selected

initially is in fact proving helpful. If it is not, adjustments in procedures will be necessary,

perhaps several times over the course of the treatment. Because adaptive interventions are

tailored to the specific needs of each individual, they have the potential for improved out-

comes by enhancing potency, increasing compliance, conserving resources (e.g., cost sav-

ings), and reducing any negative effects associated with treatment, in contrast to traditional

fixed interventions which provide the same dosages of prevention or treatment compo-

nents to all program participants without considering any individual dynamics [7,28]. This

is the motivating principle for adaptive interventions [25] , which are also referred to as

“just-in-time” interventions [27]. The use of adaptive interventions in which the dosage is

adapted according to the participant’s response over time demonstrates that they constitute

a form of engineering control system in behavioral health, which indicates the potential op-

portunity for employing control-oriented approach to the design of optimized behavioral

interventions, and this draws the attentions from the researchers in the field of both control

engineering and behavioral science [15,20,23,25,29–31]. Hence, control engineering can

have a crucial influence in developing and improving the efficacy of adaptive, time-varying

interventions [25].

1.2 Adaptive Interventions

With recent understanding and advancements in genetics (such as the human genome

project), metabolism and pharmacology, there has been increasing interest in the medical

community toward developing improved strategies for treating disease by relying on per-

sonalized medicine [32]. Adaptive interventions are interventions in which the type and the

dosage of the intervention offered to patients is individualized based on patient’s charac-
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teristics or clinical presentation, and then repeatedly adjusted over time in response to their

ongoing performance. This approach is based on the concept that patients differ in their

responses to interventions. In order for an intervention to be most effective, it should be

individualized and repeatedly adapted over time to individual progress [33]. An adaptive

intervention is a multi-stage process that can be operationalized via a sequence of decision

rules that recommend when and how much to adapt intervention so that it can link the

response of the individual with the specific levels and types of intervention components to

maximize long-term primary outcomes. These recommendations are based not only on pa-

tients’ characteristics but also on intermediate outcomes collected during the intervention,

such as the patient’s response or adherence [25].

There are many reasons for considering adaptive interventions. First, each individual

may vary in his/her response to intervention. Some may respond well to the same inter-

vention type, intensity or duration, while others may not. Second, the effectiveness of an

intervention may change over time due to dynamically evolving risk or resiliency (e.g.,

exogenous disturbances). Therefore, it is important to decide which intervention should

follow accordingly if the current one is no longer working. A third reason for considering

an adaptive intervention is the presence of comorbidities or its evolution, which require

decisions regarding which should be treated first or whether multiple disorders should be

treated simultaneously. The fact that relapse may be common is the fourth reason. Fifth,

the development of interventions in which the intensity of the treatment is reduced when

possible is mainly motivated by the high cost of intensive interventions combined with

possible burden and /or side effects. Finally, it is difficult to maintain adherence to inter-

ventions, which is another important reason to consider adaptive interventions [33].

Adaptive interventions resemble clinical practice in that different dosages of certain

preventions or treatment components are assigned to different individuals, and/or within

individuals across time, with dosage varying in response to the intervention needs of in-
3
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Figure 1.1: Sequential Decisions in the Intervention Project Active Adult Mentoring Pro-
gram (AAMP) [8].

dividuals. In order to determine intervention need and thus assign dosage, adaptive inter-

ventions use pre-specified decision rules based on each participant’s values on key charac-

teristics, called tailoring variables (the outcomes of the intervention) [25]. Adaptive inter-

ventions describe the use of individualized optimal strategies for prevention, treatment and

management of chronic and relapsing disorders.

1.3 Sequential Behavioral Interventions

In behavioral health problem settings, there are some unique clinical considerations

and constraints which are different from the ones in traditional problem arenas. Notably,

the multiple intervention components featured in adaptive interventions often require be-

havioral scientists formulating and evaluating decision rules that dictate the proper dosage

sequence, that is, the order in which each component should be augmented, reduced or kept

unchanged. This basically results from the fact that some intervention components have

to be introduced or augmented before the others. For example, Project Active Adult Men-

toring Program (AAMP) is an intervention to promote physical activity in older adults [8],

and it features four sequenced intervention components depicted in Figure 1.1. Prior to

the intervention (week 0), all participants receive self-monitoring component and are en-

couraged to track their behavior daily. At week 1, the gym membership is given to the

4



Table 1.1: Summary of Dosage Augmentations and Reductions per the IF-THEN Decision
Rules for GWG Adaptive Intervention [1].

Options Adaptation
Step down 3 reduction of other components
Step down 2 reduction of healthy eating active learning
Step down 1 reduction of physical activity active learning

Baseline base dose for all components
Step up 1 first augmentation of healthy eating active learning
Step up 2 second augmentation of healthy eating active learning
Step up 3 first augmentation of physical activity active learning
Step up 4 second augmentation of physical activity active learning
Step up 5 third augmentation of physical activity active learning

participants so that they can have access to the community exercise facility. From week 2

to 7, the initiation training focused on self-management skills for physical activity initiation

is offered, while week 8-12 emphasizes the maintenance training where content focused

on relapse prevention and developing a plan to transition to a home- or community-based

exercise routines [8]. This example illustrates that these four components are introduced

in an established pre-ordained sequence instead of any arbitrary sequence.

Another example of sequential decisions can be found in a gestational weight gain

(GWG) behavioral intervention, which is shown in Table 1.1, where an active learning

component for physical activity may not be offered until healthy eating active learning

component has reached full doses for the adaptation above the baseline program (step up

1 to 5); while the reduction sequence of the components above the baseline requires that

healthy eating active learning component will be sustained at its maximum doses until

physical activity active learning returns to the base level. Meanwhile, there are also re-

duction sequence rules below the baseline (step down 1 to 3) as specified in Table 1.1,

with the elimination of physical activity active learning first, followed by healthy eating

active learning, and other components; and the augmentation sequence from zero dose to
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baseline is in the opposite order. Clearly, the sequential decisions in GWG intervention

are more complicated than the ones in AAMP intervention, and however, all these unique

dosage sequences still have to be systematically addressed when the optimized adaptive

interventions are designed.

As mentioned earlier, behavioral interventions address a wide number of public healthy

disorders. Among these, GWG intervention is an excellent representative featuring se-

quential decision policies that address the augmentation and reduction rules. Therefore,

this dissertation uses the GWG problem as an example to exemplify and demonstrate how

a control-oriented approach can be employed to design and optimize a broad class of adap-

tive sequential behavioral interventions.

1.4 Excessive Gestational Weight Gain (GWG)

High pre-pregnancy body mass index (BMI) and excessive GWG have become increas-

ingly important public health concerns. Current research shows that excessive weigh gain

during pregnancy is associated with maternal obesity post-partum and a number of adverse

pregnancy outcomes, such as gestational diabetes mellitus, pregnancy-related hyperten-

sion, complications through labor and delivery, and macrosomia [5, 34]. Excessive GWG

is also a potential prenatal risk factor for childhood obesity [35]. Thus, preventing high

GWG during pregnancy can impact the etiology of obesity development for offspring at a

critical time in the life cycle. Meanwhile, most women are concerned about the health of

their baby during pregnancy; this also makes pregnancy an opportune moment in the life

course to promote healthy lifestyle behaviors for the purpose of weight management.

Among pregnant women, the prevalence of overweight and obesity (BMI ≥ 25 kg/m2

and BMI ≥ 30 kg/m2 respectively) has almost doubled in the last 20 years, from 29.7% in

1983 to 53.7% in 2011, with almost 50% of pregnant women in the United States now en-

tering their pregnancies as either overweight or obese [36]. The American College of Ob-
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stetricians and Gynecologists emphasizes the significance to limit excessive weight gain to

ensure the health of a woman and her infant [37]. In 2009, the Institute of Medicine (IOM)

published the revised recommendations [5] for how much weight a woman should gain dur-

ing pregnancy based on their pre-gravid BMI. Meanwhile, the World Health Organization

(WHO) [38] also advocate for preventive interventions among pregnant women to assist

them in meeting the IOM guidelines, and thereby optimizing both maternal and child out-

comes. The IOM recommends that overweight and obese pregnant women (OW/OBPW)

gain 6.5-10.6 kg (14.33-23.37 lbs) and 4.9-9 kg (10.80-19.84 lbs), respectively. With the

prevention efforts, despite of the fact that 20% of underweight women and 37% of normal-

weight women exceed the goals [39]; nearly 60% of overweight women and 50% of obese

women exceed the GWG guidelines [5]. These data indicates that the traditional inter-

ventions appear to reduce the risk of adverse pregnancy outcomes among normal weight

women [40, 41], and however, behavioral intervention studies show little to no evidence

for effectively intervening and preventing excessive GWG among overweight and obese

women. Therefore, there is a critical need to develop scalable, effective and affordable

interventions to help OW/OBPW prevent high GWG.

One potential reason for why the traditional interventions have had some success among

normal weight but not overweight and obese mothers is that OW/OBPW may have barriers

that require a higher dosage of intervention (i.e., more intensive approach) to managing

GWG in pregnancy. Although past GWG interventions have yielded some degree of ef-

fectiveness, a limitation of these interventions is that the majority have relied on a “one

size fits all” approach in which a single set of intervention components and dosage (i.e.,

fixed, time-invariant intervention) is delivered to all participants. Thus, whether or not an

intervention is effective for an individual depends on the components and dosage selected.

As pointed out earlier, adaptive interventions have the potential to be more effective, con-

serve resources (i.e., cost savings), and reduce stigma compared to fixed interventions [25],
7



because they are tailored to the specific needs and challenges of each woman.

1.5 Research Goals

The conceptual linkages between the problem of adaptive interventions and control en-

gineering can be understood by treating adaptive, time-varying interventions as closed-loop

control systems, with the outcome variable (also known as tailoring variable [25]) acting

as the controlled variable, the intervention representing the manipulated variables, and the

decision policies serving the role of feedback (and feedforward) control laws. The dynam-

ics of the intervention without decision policies can be treated as “open-loop” model to

design the controller which is able to assign optimized dosages based on the participant’s

response. If the measurements of external variables (e.g., disturbance) that influence par-

ticipant response are available, these can be incorporated in the controller algorithm in a

feedforward manner [23]. Therefore, this dissertation aims to providing a systematic and

efficient approach to designing and implementing the optimized adaptive sequential be-

havioral intervention for the prevention of GWG problem, relying on dynamical modeling,

control engineering principles, and formal optimization methods.

1.5.1 Dynamical Modeling

One of the primary goals of this research is to improve the understanding of behavioral

intervention to prevent excessive GWG by expressing these as dynamical systems. Dy-

namical system modeling considers how the system output variables (e.g. GWG) respond

to the changes of input variables (e.g. intensity and frequency of intervention components,

energy intake, physical activity) over time, which can be used to address the questions

regarding what variables to measure, how often, and the speed and shape of the outcome

responses as a result of decisions regarding the timing, spacing, and dosage levels of inter-

vention components.

Evidence suggests that many factors influence GWG including behavioral (energy in-
8
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Figure 1.2: General Conceptual Diagram of the Dynamical Systems Model for GWG
Change

take and physical activity), psychological (attitudes, subjective norms, perceived behav-

ioral control, intentions), sociodemographic (age, parity), and physical (BMI) factors [5].

Thus, GWG is a dynamical process; interventions are needed that consider how changes in

these factors influence changes in GWG.

To achieve this goal, a dynamical systems model for GWG is developed in this dis-

sertation, which relies on integrating a mechanistic energy balance model with dynamical

behavior model, illustrated in Figure 1.2 that shows a general diagram of the dynamical

systems model for GWG change. The energy balance model predicts the changes in body

mass as a result of energy intake and physical activity, while the behavioral model consid-

ers how maternal energy intake and physical activity are affected by behavioral variables,

such as attitude toward the behavior, subjective norms, and perceived behavioral control.

This model can be used to answer questions regarding how much to eat, how much phys-

ical activity to undertake, and how the dosages of the intervention components have an

impact on GWG.
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1.5.2 Controller Formulations for Self-Regulatory Process

The understanding of behavioral intervention can be extended towards the modeling

of self-regulatory process using control-oriented approach. Self-regulation describes how

success expectancies during the intervention influence a participant’s motivation to achieve

a goal. It assumes that human behavior is goal-directed and regulated by feedback control

processes, which is illustrated in Figure 1.3, where self-regulation is generally a feed-

back control loop. In this dissertation, the initial approach to modeling self-regulation is

a simple derivative-only controller, which relies on the rate of the improvement. Later in

the dissertation, advanced control engineering strategies are applied to the formulation of

self-regulatory process that offers significant flexibility in describing a participant’s self-

regulatory behavior through the tuning parameters.

Figure 1.4 illustrates how self-regulatory process along with behavior model play an

important role in depicting an individual’s behavior change. Self-regulation not only con-
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stitutes an inner control loop of the dynamical systems model, but also serves as a part

of open-loop model to design optimized adaptive intervention. This dynamical systems

model for GWG intervention which includes energy balance, the Theory of Planned Be-

havior, self-regulation, and intervention delivery dynamics where intervention acts upon

the three inputs to the behavioral model, can be used by behavioral scientists to evaluate

decision rules that would enable adaptive time-varying behavioral interventions, improve

the understanding of the optimal choices on the level and duration of intervention com-

ponents, and how intra-individual and inter-individual variabilities have a great impact on

the intervention outcomes, or serve as the basis for applying advanced control engineering

strategies (will be discussed in the ensuing subsection), such as Model Predictive Control

(MPC) to act as a decision framework for dosage selection in the adaptive interventions.
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1.5.3 Optimization-based Control for Sequential Decision Policies

In a control engineering approach to optimizing an adaptive time-varying intervention,

the controller assigns dosages of each intervention component to the participant as dictated

by model dynamics, problem constraints, and disturbances. We use control algorithms to

generate the intervention dosage levels required for the participant based on the open-loop

dynamical model. Usually, the simple approach used in adaptive interventions, such as

IF-THEN rules, will not yield good performance for a lagged response [15]. Therefore, we

try to rely on a well-designed control system to assign systematic dosages based on model

dynamics and performance requirements of the intervention.

Optimization-based control refers to the use of online, optimal trajectory generation

as feedback loop of a control system. The basic idea is to use a receding horizon control

technique (also called Model Predictive Control). This dissertation focuses on the develop-

ment of an intervention algorithm relying on Model Predictive Control (MPC) framework

which systematically personalize the sequence and composition of GWG adaptive sequen-

tial behavioral interventions, as depicted in Table 1.1. This control algorithm makes use

of feedback and feedforward control action by online optimization of a cost function us-

ing a receding horizon and well suited for designing behavioral interventions featuring

multiple intervention components. The feedforward control action of MPC is very use-

ful for addressing disturbances which may be known a priori or can be measured in the

course of the intervention, while the feedback control action can respond to unmeasured

disturbance. The discrete nature of the intervention dosage assignment indicates that Hy-

brid Model Predictive Control (HMPC) schemes [23, 42] should be considered. The novel

technical consideration featured in the HMPC controller design for such an adaptive lies in

how to systematically address the logical specifications associated with pre-defined dosage

sequence.

12
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Figure 1.5: Performance of Hybrid Model Predictive Control (HMPC) as a Decision Pol-
icy to Follow Set Point Change, Measured Disturbance (Energy Intake Increase), and Un-
measured Disturbance (Physical Activity Level Lowers at the Third Trimester). Reference
Values are Shown by Red Lines.

Figure 1.5 is a simulation example for GWG adaptive intervention. Based on the dy-

namical systems model developed and illustrated in Figure 1.4, we use the HMPC with

three-degree-of-freedom (3 DoF) to assign the optimized dosages, with 3 DoF tuning pa-

rameters αr = 0.9, αd = 0.1 , fa = 0.9. This case study assumes that the participant enters

the intervention with the baseline program at week 14. The adaptation of this GWG in-

tervention follows pre-defined augmentation and reduction rules, as depicted in Table 1.1.

Therefore, the HMPC algorithm assigns the optimized discrete dosages subject to the pro-

cess constraints and any other constraints that enforce the generation of pre-defined se-

13



quential decision policies. Other clinical considerations and constraints that are common

in behavioral health problem settings are introduced, and systematically taken into account

as well via an HMPC framework. The detailed development of HMPC algorithm for adap-

tive sequential behavioral intervention will be discussed in Chapter 4.

1.5.4 Gain-Scheduling Parameter Varying Control and Multi-Rate Digital Control

When the changes in process dynamics are nonlinear, it is possible to change the pa-

rameters of the controller by monitoring the operating conditions of the process. This idea

is called gain scheduling, perhaps one of the most popular nonlinear control design ap-

proaches which have been widely and successfully used, and this scheme was originally

used to refer to the changes in process gain only. Gain-scheduling is a nonlinear con-

trol strategy; it incorporates a set of linear controllers whose parameters are changed as a

function of operating conditions in a pre-programmed way.

In this dissertation, the dynamical systems model of GWG intervention is initially de-

veloped by the use of linear time-invariant equations. However, there might exist non-

linearity in the model. Such kind of problem can be addressed using the gain-scheduling

parameter varying control scheme that we introduced above.

Meanwhile, the real-life pilot study and clinical trial might involve measurements sam-

pled at multiple rates in this GWG intervention. This requires considering multi-rate digital

control system. Muti-rate systems occur when signals comprising a system are sampled

at different rates. Usually, such case arises when one process outputs are measurable only

with large intervals, while the other measurements must be utilized in order to design an

effective control system. For example, in the control of product compositions in distilla-

tion columns and packed-bed reactors, where sampling delays associated with composition

measurements can be quite significant. Temperatures which have some direct or indirect

relationships with the product compositions are measured in order to improve the speed of

14



the response. This also means that the temperatures are typically sampled at a faster rate

than the compositions. Multi-rate controllers usually offer better performance than single-

rate controllers due to the extra degrees of freedom they allow in manipulating control

variables [14]. Therefore, it is conducive to building a multi-rate control system for GWG

intervention that is able to make use of the fast sampling measurements to estimate the vari-

ables, while the slow sampling measurements can be used to make the extra adjustments

of the estimation of these variables.

1.6 Contributions of the Dissertation

This dissertation uses the GWG problem to exemplify and present how a control-

oriented approach can be employed to designing optimized adaptive sequential behavioral

intervention. It offers a novel and valuable intervention paradigm that systematically in-

dividualizes treatment and prevention policies. As discussed in the previous section, we

consider the initial problem of modeling the dynamics of such an intervention, with the

ultimate goal to develop a real-life implementation of the HMPC-based intervention that is

both practical and useful in behavioral settings.

In this dissertation, models corresponding to the behavioral models are developed on

the basis of the concept of fluid analogies, as developed in [43]. We focus on the following

modules which consist primarily of a network of production-inventory systems that is akin

to a supply chain,

• Energy balance model for gestational weight gain;

• The theory of planned behavior (TPB) and its fluid analogy (behavioral model);

• Self-regulation theory (behavioral model);

• Intervention delivery dynamics;

• Hypothetical decision rules or decision policies.
15
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Figure 1.6 illustrate the comprehensive fluid analogy and interrelationship between the

above systems for the energy intake loop.

As we can see, the dynamical systems model for behavioral intervention to manage

GWG requires incorporating both physiological and psychological considerations. For the

physiological component, we rely on the concept of energy balance to obtain the model that

describe the net effect of maternal energy intake from the food minus maternal energy con-

sumption through physical activity. For the psychological component, we consider a model

inspired by the Theory of Planned Behavior (TPB) for the dynamics of diet (energy intake)
16



and exercise (physical activity) behavior. Besides these two models, an intervention deliv-

ery module is required to relate the magnitude and duration of intervention components to

the inputs of the TPB models, and the self-regulation module is necessary to model how

success expectancies during the intervention influence a participant’s motivation to achieve

a goal.

The contributions of this dissertation in terms of controller formulations of self-regulatory

process can be summarized as follows:

• Development of two self-regulation structures on the basis of a two-degree-of-freedom

(2 DoF) Internal Model Control (IMC) strategy, associated with energy intake ref-

erence values and weight gain setpoints. The controller tuning rules are illustrated

through the simulation.

• Extension of self-regulation formulation by the use of cascade control to make use of

all the available measurements in the real-life clinical trial. Multiple cascade control

structures are designed and analyzed. Simulation examples are shown to demonstrate

the best suitable formulation, which is then compared with the previous 2 DoF IMC

strategy.

• Demonstration of the importance that intra-individual and inter-individual variabil-

ities play in the intervention outcomes using the improved self-regulatory process

that offers significant flexibility in describing individual’s self-regulatory behavior

through the tuning parameters.

The contributions of this dissertation in terms of Hybrid Model Predictive Control as

sequential decision policies in adaptive intervention can be summarized as follows:

• Development of a novel intervention algorithm relying on Hybrid Model Predictive

Control (HMPC) framework that is able to personalize and optimize the treatment of
17



behavioral interventions.

• Generation of sequential decision policies in adaptive intervention using Mixed Log-

ical Dynamics (MLD)-based HMPC schemes through a user-specified dosage se-

quence table involving the adapted intervention components, and the corresponding

definition of mixed-integer linear inequalities.

• Improvement of the HMPC algorithm by introducing a switching time strategy to

address the difference in frequency between intervention decision and sampling in-

tervals.

• Extension of the traditional MLD structure by introducing additional binary variables

to restrict the manipulation of only one input at a time. This extension makes our

HMPC algorithm for adaptive sequential interventions more generalizable.

The contributions of this dissertation associated with real-life GWG intervention sce-

nario are summarized in the following two points:

• Development of gain-scheduling for Model Predictive Control framework in GWG

intervention to address the potential nonlinearity within the model.

• Development of cascade filters for dual-rate GWG system by introducing an addi-

tional filter for the slowly-measured energy intake variable.

Although the prevention of excessive GWG is the focus of this dissertation as an il-

lustration and only represents a special case in behavioral interventions, the control engi-

neering techniques are developed in this dissertation without any loss of generality, and

hence can be applied to other adaptive sequential behavioral interventions, such as the for-

mulation of the self-regulation, and the HMPC formulation as sequential decision policies

involving multiple intervention components to achieve optimized dosage assignments.
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1.8 Dissertation Outline

Following this introduction, this dissertation continues Chapter 2 with modeling overview

which presents how to develop the dynamical systems model for the GWG problem.

The chapter focuses on the introduction and development of each module in the overall

schematic representation for an adaptive GWG intervention, and the illustration of how to

associate this dynamical model with production-inventory systems. The final section of

the chapter extends our work to discuss how our intervention not only manages GWG for

the mother, but also alters the obesogenic fetus environment to regulate infant birth weight

by including fetal energy balance model into our existing model.

In Chapter 3, advanced controller formulations for self-regulation are developed, in-

cluding two-degree-of-freedom (2 DoF) internal model control (IMC), three cascade con-

trol structures relying on IMC strategy. We analyze the “pros and cons” of each formu-

lation through the design structure and simulation examples. The simulation studies aim

at the illustration of how adaptive interventions deliver great degrees of efficacy accord-

ing to the participant’s unique changing needs and responses, leading to overall improved

and more effective intervention through the comparison with fixed interventions, and the

understanding of the variabilities within a participant and between the participants.

Chapter 4 presents an MLD-based HMPC scheme that offers a potential valuable frame-

work to design optimized adaptive sequential behavioral interventions. The unique clinical
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considerations and constraints in behavioral health problem settings are summarized, and

are systematically addressed through mixed-integer linear constraints in MLD structure.

These are achieved by the use of propositional logic, a user-specified dosage sequence

table, the manipulation of one input at a time, and a switching time strategy for assign-

ing dosages at time intervals less frequent than the measurement sampling interval. The

simulation studies are shown to verify how HMPC-based intervention assigns the opti-

mized discrete dosages, with its change following pre-defined dosage sequence, highlight

why HMPC-based intervention can adjust the dosages of the intervention components in

a timely manner through the comparison with adaptive intervention using decision rules,

and illustrate how to generate other different pre-defined dosage sequence in behavioral

intervention within the HMPC framework.

Chapter 5 improves the simulation work to address real-life scenarios in the GWG

intervention by introducing gain-scheduling parameter varying control for addressing the

nonlinearity within the model, and a cascade filter design for multi-rate control system.

Illustrative numerical examples are shown to highlight the basic workings of these two

enhancements.

We conclude the dissertation in Chapter 6 with a summary of the important conclusions

and advances achieved in this study. This chapter also includes the direction and comments

for future work.
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Chapter 2

MODELING OVERVIEW
2.1 Overview

It was established in the last chapter that gestational weight gain (GWG) interventions

serve as excellent examples of sequential behavioral interventions. This chapter describes

important aspects of the adaptive GWG problem that will be featured throughout the dis-

sertation and will be part of work developed in future chapters.

GWG is a strong predictor of adverse healthy outcomes, particularly obesity and dia-

betes for both childbearing women and their offspring. In this chapter, dynamical systems

modeling will be used to describe how an individually-tailored, behavioral intervention

that adapts to the needs of each woman impacts GWG. Thus, the initial approach is to es-

tablish a dynamical systems model for a behavioral intervention to manage GWG, which

demonstrates how to integrate a mechanistic energy balance model with some dynami-

cal behavioral models that incorporate some well-accepted concepts from psychology: the

Theory of Planned Behavior (TPB) and the principles of self-regulation. Some illustrative

decision rules are applied to the model to dictate when and how each intervention compo-

nent should be augmented, reduced or kept unchanged. Lastly, the extension of the GWG

dynamical model includes the fetal birth weight model, which demonstrates how the proper

design of adaptive intervention can reduce fetus exposure to an “obesogenic” intrauterine

environment that can promote healthy GWG and infant birth weight. The overall model

can play a useful role in the evaluation of decision policies; the application of the deci-

sion framework to the dynamical system and the corresponding simulations can aid the

intervention scientists to try out and select the decision rules.

Figure 2.1 [10] shows the overall schematic representation for an adaptive GWG in-

tervention which can be divided into five main segments: (1) a two-compartment energy
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Figure 2.1: Overall Schematic Representation for an Adaptive Gestational Weight Gain
(GWG) Intervention [10].

balance model predicting changes in body mass as a result of energy intake (EI) and phys-

ical activity (PA), (2) two Theory of Planned Behavior (TPB) models describing how ma-

ternal EI and PA, respectively, are affected by behavioral variables, (3) two self-regulation

modules illustrating how self-monitoring during the intervention influences a participant’s

motivation to achieve a goal, (4) an intervention delivery dynamics that relates the magni-

tude and duration of intervention components to the inputs of the TPB models, and (5) the

decision rules informing when and how to adapt intervention dosages for each overweight

and obese pregnant woman (OW/OBPW) and enabling tailoring of the intervention to the
24



specific needs of each woman. Each module is described in more detail in the ensuing

section.

2.2 Energy Balance Model

This section presents the maternal weight gain energy balance model derived from the

dynamic energy balance models for non-pregnant individuals. There are two main inputs

or factors in the problem of assessing GWG: (i) energy intake or diet; and (ii) physical

activity or exercise. The basic dynamics governing energy balance for GWG is based on

the two-compartment model developed by Thomas et al. [4]. Their work was built on the

basis of a valid population study.

2.2.1 Model Description

The energy balance model for GWG relies on the conservation of the energy, which

can be expressed as,

ES(t) = EI(t)−EE(t) (2.1)

where ES(t) represents the rate of energy stored, EI(t) is the rate of energy intake and

EE(t) is the rate of energy expenditure at time t, measured at daily intervals. The terms

of the energy balance equation in (2.1) ES, EI and EE will be developed by separating

maternal material, expressed in kg, into two compartments, maternal fat free mass (FFM)

and maternal fat mass (FM). The sum of maternal FFM and FM represents total body

mass (BM) or pregnancy weight (W ):

W (t) = BM(t) = FM(t)+FFM(t) (2.2)

In order to algebraically relate FFM to FM, Butte study data [2, 3] is applied. This

relationship can be formulated via the reported relationships between the changes in FFM
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Table 2.1: Expressions for Total Body Water as a Function of Gestational Weight per BMI
Category, from [2, 3].

BMI Category Total Body Water (TBW)(L)
Low BMI(≤ 19.8kg/m2) 0.489W+3.875

Normal BMI(19.8−26kg/m2) 0.4836W+2.853
High BMI(≥ 26kg/m2) 0.503W+4.885

and pregnancy weight(W ).

∆FFM = ∆FFM(W ) (2.3)

In formulating an explicit function of ∆FFM(W ), it requires consideration of how

FFM changes during pregnancy in relation to weight. The major change in FFM from

the pre-gravid state comes from growth of the uterus, breasts, intestines, blood volume [5]

which can be captured by quantifying changes in total body water (T BW ) and total body

protein (T BP).

Maternal total body water (T BW ) has been linearly related to GWG. The Butte study

measured T BW through dilution of an orally administered dose of deuterated water at

pregnancy and weeks 9, 22, 36 of gestation [2, 3]. Based on Butte’s data for the different

BMI categories, gestational body weight (W) is measured simultaneously and fit linearly

with T BW function. The T BW functions for each BMI category are listed in Table 2.1.

Total body protein (T BP) can be related to gestational weight for each BMI category

(Table 2.2), similar to the approach applied for T BW . In each BMI class, T BP was ob-

served to decrease in the first trimester and increase thereafter. Consequently, the approxi-

mation of T BP is done as a piecewise linear equation. The advantage of a piecewise linear

model is the tractability of solutions [4]. For the underweight BMI category, the derived
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piecewise linear model is:

T BP =





−0.05W +9.3 if W ≤ 52kg

0.1W +1.3 if 52 <W ≤ 57.7kg

0.08W +3.1 if W>57.7kg

(2.4)

The breakpoint of 52 kg is a local minimum of the T BP formula as a function of weight.

The breakpoint of 57.7 is a point of inflection as the T BP curve moves from concave up to

concave down. The T BP functions for all BMI categories are summarized in Table 2.2.

Now we can formulate FFM as a function of gestational weight by summing pre-gravid

FFM and the changes to FFM that occur during pregnancy. We modeled maternal FFM

as the sum of pre-gravid FFM (FFM(0)), T BW and T BP functions.

FFM = FFM(0)+∆FFM(W ) = FFM(0)+∆T BW (W )+∆T BP(W ) (2.5)

The expression of FFM in (2.5) is only a function of pregnancy weight (W) which is

also a function of FFM and FM expressed in (2.2), therefore (2.5) shows the relationship

between FFM and FM. Because the T BP function is defined as a piecewise function, the

resulting function between FFM and FM must also be defined as a piecewise function

with identical breakpoint.

By testing for the relation of total energy expenditures to W , FM, and FFM during ges-

tation, EE was found linearly related to FFM [2, 3]. Table 2.3 shows the EE(t) formulas

derived from data [2] that are used within the energy balance equation.

The ES term is separated into two compartments of body energy: FFM and FM. En-

ergy density of FM has been well established and documented in the literature as approx-

imately 9500 kcal/kg [44]. Energy density of FFM differs during pregnancy. Based on

chemical composition of tissues, 0.93% of FFM consists of glycogen. Analysis of the
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Table 2.3: Expressions for Total Energy Expenditure as a Function of Fat-free Mass (FFM)
per BMI Category, from [2, 3].

BMI Category Energy Expenditure (EE(t)(kcal/d))
Low BMI(≤ 19.8kg/m2) 12.3FFM+1822

Normal BMI(19.8−26kg/m2) 33.0FFM+1008.7
High BMI(≥ 26kg/m2) 10.5FFM+2403.8

Butte study data revealed that on average 16.7% of FFM during pregnancy consists of

protein. We calculated the energy density of FFM by using the energy density of 4380

kcal/kg for protein and 4200 kcal/kg for glycogen to arrive at the energy density of a kg of

FFM during pregnancy:

4380×0.167+0.0093×4200 = 771kcal/kg (2.6)

The ES term is expanded into the instantaneous change of the sum of the two compart-

ments (FFM an FM), multiplying by their respective energy densities as follows,

ES(t) = 771
dFFM(t)

dt
+9500

dFM(t)
dt

(2.7)

If we use ∆EI representing the average trimester dependent increase in energy intake

during gestation, we can have,

771
dFFM

dt
+9500

dFM
dt

= (1−g)(EI0 +∆EI(t))−EE (2.8)

where g is nutrient partitioning constant and EI0 is the initial energy intake.

The change ∆PA on the dimensionless physical activity level (PAL) from baseline is

used to express changes in physical activity; its effect on the energy balance model is
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obtained by multiplying EE(t) by (1+∆PA). Our final energy balance model is as follows,

771
dFFM

dt
+9500

dFM
dt

= (1−g)(EI0 +∆EI(t))− (1+∆PA(t))EE(t) (2.9)

2.2.2 Initialization

For the initialization of the model, one of the assumptions is that initially the maternal

energy is balanced, i.e. ES=0 in (2.1). Thus, we can estimate the initial energy intake EI0

using regression formulas for baseline energy expenditure EE0 data using doubly labeled

water (DLW) method from the Institute of Medicine (IOM)/ National academy of Sciences

(NAS) database [45].

EI0 = EI(0) = EE0 = EE(0) = 0.278W (0)2 +9.2893W (0)+1528.90 (2.10)

For the energy expenditure, the physical activity is modeled using the coefficient PAL(t)

which times the resting metabolic rate (RMR(t)) to describe the total energy expenditure

as follows,

EE(t) = PAL(t)RMR(t) (2.11)

There are different estimations and representations for RMR(0) available, and for the

dynamics of the simulation, a regression formula that fits the data obtained by Butt et al. [3]

is used,

RMR(0) = 248W (0)0.4356−5.09Age (2.12)

where the body mass W (0) is the pre-gravid weight, expressed in kg, and Age is expressed

in years. With the initial EE and RMR, we can calculate the dynamic physical activity

level PAL(0) through (2.11).
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Data from the National Health and Nutrition Examination Survey (NHANES) was used

to obtain the following body composition formula, the baseline maternal fat mass is ob-

tained by solving the equation (2.13) below for FM(0), where age is expressed in years

and height is expressed in cm.

W (0) = − 72.055453+2.4837412FM(0)−0.038273age+0.6555023height

+ FM(0)−0.002296ageFM(0)−0.013308heightFM(0)

− 0.0390627FM(0)2 +0.332×10−4ageFM(0)2

+ 0.2721×10−3heightFM(0)2 +0.2291×10−3FM(0)3

− 0.187×10−5heightFM(0)3 +3.5×10−7FM(0)4 (2.13)

Baseline fat-free mass (FFM(0)) is calculated by equation (2.14)

FFM(0) =W (0)−FM(0) (2.14)

2.2.3 Illustration of Energy Balance using Production-Inventory System

The production-inventory system in supply chain management is a classical problem

in enterprise systems that has application in many problem arenas, and it is established by

introducing fluid flow systems which are very common in process control. These types of

systems usually involve components such as: 1) process: liquid-holding tanks and pipes,

2) actuators: valves, 3) measured values (sensors): level and flow.

Figure 2.2 shows a level control diagram of production-inventory systems for the en-

ergy balance model. There are two inputs EI and PAL in the model. At the steady state

(no changes in EI and PAL), there exists no weight changes. When a woman increases

her EI as a consequence of pregnancy, the increased EI will be stored inside the body as

FFM and FM, the sum of which gives GWG. The two inputs EI and PAL can be manip-
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Figure 2.2: Energy Balance Model Illustration with the Concept of Production-inventory
Systems

ulated via adaptive interventions to manage GWG, such as lowering EI to reduce GWG,

and increasing PAL to consume GWG.

More detailed descriptions about production-inventory systems will be described in the

next few sections in this chapter.

2.3 Behavioral Model

In this section, we present a dynamic formulation of the Theory of Planned Behavior

(TPB) [46] to describe the behavioral component of human weight change interventions.

The model is based on the concept of fluid analogies, as developed in [43]. The Theory

of Planned Behavior (TPB) is a broadly used paradigm for describing the relationship

between behaviors and intentions.

2.3.1 Theory of Planned Behavior (TPB)

Icek Ajzen’s theory of planned behavior [46–48] stems from his earlier work with Mar-

tin Fishbein: the theory of reasoned action (TRA) [49]. Ajzen’s theory has been verified
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through many experimental results, and therefore it is well established in the psychology

literature.

In the framework of the TPB, intention is an indication of the readiness of a person

to perform a given behavior, and behavior is an observable response in a given situation

with respect to a given target. According to TPB, intention is influenced by the following

components:

• Attitude toward the behavior: This is the degree to which performing the behavior is

positively or negatively valued. It is determined by the strength of beliefs about the

outcome and the evaluation of the outcome.

• Subjective norm: This is the perceived social pressure to engage or not engage in

a behavior. It is determined by the strength of the beliefs what people want the

person to do, also called normative beliefs, and the desire to please people, also

called motivation to comply.

• Perceived behavioral control (PBC): This reflects the perception of the ability to

perform a given behavior, i.e. the beliefs about the presence of factors that may

facilitate or impede performance of the behavior. It is determined by the strength of

each control belief and the perceived power of the control factor.

In comparison to TRA [50], TPB states that intention is influenced by perceived be-

havioral control (PBC), while TRA does not.

A standard mathematical representation for TPB relies on Structural Equation Model-

ing (SEM) [11], the detail of which will be described in the subsection below.

2.3.2 Path Analysis Model for TPB

The field of Structural Equation Modeling (SEM) is substantial, but in this research,

we limit ourselves to a special case of SEM called path analysis, which is an approach
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Figure 2.3: Path Diagram for the TPB, Obtained from Structural Equation Modeling
(SEM) [11].

to modeling explanatory relationships between observed variables that are measured on a

sample of subjects, and are also called manifest variables.

Figure 2.3 shows the path diagram for TPB which comes from SEM [11] and depicts

the steady-state relationships between variables where ηi represents endogenous variables,

ξi exogenous variables, βi j and γi j are regression weights and ζi are disturbance variables.

The TPB represented as a path analysis model with a vector η of endogenous variables

and a vector ξ of exogenous variables is expressed as follows:

η = Bη +Γξ +ζ (2.15)
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(2.16)

where B and Γ are matrices of βi j and γi j regression weights, respectively, and ζ is a vector

of disturbance variables.

The exogenous variables ξ are expressed as follows,

ξ1 = b1× e1 (2.17)

ξ2 = n1×m1 (2.18)

ξ3 = c1× p1 (2.19)

where b1 represents the strength of beliefs about the outcome, e1 the evaluation of the

outcome, n1 the strength of normative beliefs, m1 the strength of the motivation to comply

to the different normative beliefs, c1 the strength of the control belief and p1 the perceived

power of the control factor.

2.3.3 Dynamic Fluid Analogy for TPB

The classical TPB model in path diagram expressed in the SEM equation (2.15) only

shows the static (i.e., steady state) relationship between variables that do not capture any

changing behavior over time. In order to expand TPB model to include its dynamic effects,

Navarro-Barrientos and Rivera in [43] presented how the path diagram associated with

TPB can be postulated as a fluid analogy which parallels the problem of the production-

inventory systems in supply chain management [21]. Figure 2.4 shows a dynamic TPB
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Figure 2.4: Fluid Analogy for the Theory of Planned Behavior (TPB).

model consisting of five inventories: attitude η1, subjective norm η2, perceived behavioral

control η3, intention η4 and behavior η5. The inflows of the inventories correspond to

the exogenous variables ξ1, ξ2, and ξ3. Each inventory is replenished by inflow streams

and depleted by outflow streams. The path diagram model coefficients γ11, . . . , γ33 are the

inflow resistances and β41, . . . , β54 are the outflow resistances, which can be physically

interpreted as those fractions of the inventories of the system that serve as inflows to the

subsequent layer in the path analysis model.

To generate the dynamical system description, the principle of conservation of mass is

applied to each inventory, where accumulation (represented by a derivative term) equals

mass inflows minus mass outflows:

Accumulation = In f low−Out f low (2.20)

Then a system of differential equations based on (2.20) can be obtained:
36



τ1
dη1

dt
= γ11ξ1(t−θ1)−η1(t)+ζ1(t) (2.21)

τ2
dη2

dt
= γ22ξ2(t−θ2)−η2(t)+ζ2(t) (2.22)

τ3
dη3

dt
= γ33ξ3(t−θ3)−η3(t)+ζ3(t) (2.23)

τ4
dη4

dt
= β41η1(t−θ4)+β42η2(t−θ5)+β43η3(t−θ6)

−η4(t)+ζ4(t) (2.24)

τ5
dη5

dt
= β54η4(t−θ7)+β53η3(t−θ8)−η5(t)+ζ5(t) (2.25)

where τi are time constants, θi are time delays, and ζi are disturbances. In this dynamical

TPB representation, the regression weights βi j and γi j from SEM correspond to gains of

the system. These parameters can be used to determine how fast (or slow) an individual

can transition between values for η1,...,η5 as a result of changes in the variables ξi. At

steady-state (i.e., when dηi
dt = 0), the dynamical model in equation (2.21) through (2.25)

corresponds exactly to the TPB SEM in (2.16) without approximation.

Higher-order derivatives with corresponding parameters can be used to enhance the

model in (2.21) - (2.25) to capture underdamped responses, inverse response, and the like.

For reasons of simplicity, these will not be considered in this dissertation, but are presented

in work describing weight change interventions with non-pregnant individuals [43].

2.3.4 Model Analysis for TPB Fluid Analogy

This subsection focuses on the model analysis in Laplace domain, which is neces-

sary when we apply the techniques of model-based control, such as internal model control

(IMC) and model predictive control (MPC) to design the controller in this research. In the

previous subsection, we present the dynamic TPB model based on the fluid analogy that

can be described by the first-order differential equations (2.21) through (2.25).
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With the attitude inventory equation (2.21), we can take the Laplace transform of (2.21)

and have the following equations,

τ1
dη1

dt
= γ11ξ1(t−θ1)−η1(t)+ζ1(t)

(τ1s+1)η1(s) = γ11e−θ1s
ξ1(s)+ζ1(s) (2.26)

η1(s) =
γ11

τ1s+1
e−θ1s

ξ1(s)+
1

τ1s+1
ζ1(s) (2.27)

Similarly, for the subjective norm inventory equation (2.22) and the PBC inventory

equation (2.23), Laplace transform can be applied and the following equations can be ob-

tained,

η2(s) =
γ22

τ2s+1
e−θ2s

ξ2(s)+
1

τ2s+1
ζ2(s) (2.28)

η3(s) =
γ33

τ3s+1
e−θ3s

ξ3(s)+
1

τ3s+1
ζ3(s) (2.29)

As discussed in section 2.3.3, intention is determined by attitude toward the belief,

subjective norm and PBC, its expression in Laplace domain can be obtained as follows,

η4(s) =
β41e−θ4s

τ4s+1
η1(s)+

β42e−θ5s

τ4s+1
η2(s)+

β43e−θ6s

τ4s+1
η3(s)+

1
τ4s+1

ζ4(s) (2.30)

The behavior inventory is influenced by PBC and intention inventories, and its expres-

sion in Laplace domain can be simplified by substituting η1(s), η2(s), η3(s), and η4(s)

above,
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η5(s) =
β54e−θ7s

τ5s+1
η4(s)+

β53e−θ8s

τ5s+1
η3(s)+

1
τ5s+1

ζ5(s)

=
β54e−θ7s

τ5s+1
[
β41e−θ4s

τ4s+1
η1(s)+

β42e−θ5s

τ4s+1
η2(s)+

β43e−θ6s

τ4s+1
η3(s)

+
1

τ4s+1
ζ4(s)]+

β53e−θ8s

τ5s+1
η3(s)+

1
τ5s+1

ζ5(s)

=
β54β41γ11e−(θ1+θ4+θ7)s

(τ5s+1)(τ4s+1)(τ1s+1)
ξ1(s)+

β54β42γ22e−(θ2+θ5+θ7)s

(τ5s+1)(τ4s+1)(τ2s+1)
ξ2(s)+

[
β54β43γ33e−(θ3+θ6+θ7)s

(τ5s+1)(τ4s+1)(τ3s+1)
+

β53γ33e−(θ3+θ8)s

(τ5s+1)(τ3s+1)
]ξ3(s)+

β54β41e−(θ4+θ7)s

(τ5s+1)(τ4s+1)(τ1s+1)
ζ1(s)+

β54β42e−(θ5+θ7)s

(τ5s+1)(τ4s+1)(τ2s+1)
ζ2(s)+

[
β54β43e−(θ6+θ7)s

(τ5s+1)(τ4s+1)(τ3s+1)
+

β53e−θ8s

(τ5s+1)(τ3s+1)
]ζ3(s)+

β54e−θ7s

(τ5s+1)(τ4s+1)
ζ4(s)+

1
τ5s+1

ζ5(s) (2.31)

The transfer function of this dynamic TPB model has eight inputs (three inflows and

five disturbances), and one output (behavior). It is a 1× 8 transfer function vector.

2.3.5 Illustration of Energy Balance and TPB using Production-Inventory Systems

The dynamic TPB model is built based on the the concept of fluid analogies. These

modules consist primarily of networks of production-inventory systems that are akin to

supply chains. Figure 2.5 shows a detail diagram of the dynamical system which incorpo-

rates both physiological and psychological factors illustrated by the use of the concept of

production-inventory systems.

The inputs for the behavioral model are the effects of intervention levels applied to the

three components of the TPB. The outputs of the behavioral model, the changes on behav-

ioral eating habits and exercise, are translated into changes on diet and physical activity,

respectively, which serve as the inputs to the energy balance model.
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2.4 Self-Regulation Principle

In social cognitive theory, human behavior is greatly motivated and managed by the

ongoing exercise of self-influence. The major self-regulative mechanism operates through

self-monitoring of one’s behavior, and its effects; judgment of one’s behavior related to

personal standards and environmental circumstances; and affective self-reaction [51] . This

section focuses on the introduction to self-regulation theory and how self-regulatory effect

is designed, modeled and integrated to the dynamical model.

2.4.1 Introduction to Self-Regulation

Compared to other living creatures, humans are known for having an extensive ability

to exert control over their inner states, processes, and responses [52]. People are able to

resist their own impulses, adapt their behavior to a range of standards, and change their

current behaviors in order to attain the goals [53]. The term self-regulation is often used

to refer widely to efforts by humans to have alterations of their thoughts, feelings, desires,

and actions in the perspective of such higher goals [9, 54]. Hence, self-regulation refers

to the person as an active agent and decision-maker, and is key for human to adapt to the

changing life [55].

Self-regulatory systems lie at the center of causal processes. They not only mediate the

effects of most external influences, but also provide the very basis for purposeful action.

Most human behavior is regulated by forethought. People form beliefs about what they

can do, they anticipate the likely consequences of prospective actions, they set goals for

themselves, and they otherwise plan courses of action that are likely to produce desired

outcomes. Through exercise of forethought, people motivate themselves and guide their

actions in an anticipatory proactive way [51].

Successful self-regulation requires the strategic mobilization of thought, feeling, and

action [56, 57], in particular when individual is facing obstacles and conflicts between
41
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Action per the Self-regulation Theory of Carver and Scheier [9].

goals, and self-regulation generally is inferred as a systematic process that involves con-

scious effort to influence thoughts, feelings, and behaviors in the service of achieving a

goal in case of a changing environment [58]. Self-regulation involves individual to man-

age their own change processes [59], including the conscious consideration of the relative

importance of potentially competing goals, and goal prioritization in particular [60].

2.4.2 Controller Design for Self-Regulation

Self-regulation theory in psychology has been largely influenced by the work of Carver

and Scheier [9] who proposed that human behavior is goal-directed and regulated by feed-

back control processes (Figure 2.6). Self-regulation reflects the capacity of individuals to

alter their own behavior, enabling people to adjust their actions to a broad range of so-

cial and situational demands. Individuals tend to engage in activities they believe they

can succeed in; this confidence in performance success will influence the inflow of PBC,

which reflects the individual’s perception of her ability to perform a given behavior. As a

result, self-monitoring and goal setting are core strategies of behavior modification. Self-

regulation is enhanced by repeated measurement and assessment of important outcomes in

42



an intervention.

In this work, self-regulation comes from repeated GWG measurement and EI mon-

itoring. There are three self-regulation loops in Figure 2.1 which are parametrized as

derivative-only controllers. Two of these controllers adjust the inflows to PBC in the TPB

models based on the discrepancies between the reference values and measured GWG. The

reason for this choice is that when a participant improves on her GWG, even though it may

lie outside the target boundaries, the presence of improvement will nonetheless strengthen

her confidence in aiming to maintain her GWG within target goal, which in turn, promotes

PBC, and hence behavior in both the EI and PA TPB models. However, if the participant

tries her best to only find that she cannot control her GWG as she desires, her control belief

will diminish, with PBC, as well as intention and behavior correspondingly reduced. The

expressions for the self-regulation control system used in this chapter are as follows:

e(t) = GWG(t)− IOM(t) (2.32)

∆ξ3(t) = Ke∆e(t) (2.33)

∆e(t) =
e(t)− e(t−T )

T
(2.34)

ξ3(t) = ξ3b(t)−∆ξ3(t) (2.35)

where e(t) represents the discrepancy between the reference values (IOM guidelines) and

the measured GWG; T is the sampling time at which the participant regularly checks her

weight; ∆e(t) expresses the rate of improvement; Ke is the controller gain which varies

at different periods in time and will depend on personal characteristics and baseline pa-

rameters; ξ3b(t) is the PBC inflow independent of self-regulatory control action. The self-
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Figure 2.7: Dynamical Systems Model for Behavioral Interventions Integrates the Mater-
nal Energy Balance Model, the Dynamic TPB Model and Self-regulation for the EI Loop
Illustrated by the Concept of Production-inventory Systems.

regulation can also be working based on the discrepancies between the energy intake ref-

erence value and the dietary record, and this constitutes the third derivative-only controller

in the self-regulation loop in Figure 2.1. Its expression can be obtained similarly, with the

expression of e(t) in equation (2.32) replaced by the expression of e(t) below,

e(t) = EI(t)−EIIOM(t) (2.36)

2.4.3 Illustration of Energy Intake, TPB and Self-regulation using Production-Inventory

Systems

As described in the previous subsection, self-regulation works as a controller in the

dynamical systems model for behavioral intervention to help promote individual’s PBC,

which in turn improves the outcome of the behavior: healthy eating and physical activ-
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ity. Figure 2.7 is a detail diagram of the dynamical system which incorporates the energy

balance model, the dynamic TPB model and self-regulation for the EI loop by the use

of the concept of production-inventory systems. There are two self-regulation loops as-

sociated with EI and GWG, respectively, influencing PBC. Self-regulator for diet will be

working based on the differences between the reference values of EI and the individual’s

dietary record; while self-regulator for GWG works based on the discrepancies between

the IOM guidelines and the individual’s measured GWG. Both of these two self-regulatory

loops help better adjust the individual’s PBC inflows to the TPB model, with the help of

self-monitoring.

2.5 Intervention Program and Delivery Modeling

A number of diverse behavioral interventions for GWG have been developed with

healthy eating (HE) and/or physical activity (PA) behavioral components [40, 41, 61–66];

however, the recommendation is that both elements should be included to improve effec-

tiveness [61]. In our research, we consider hypothetical interventions whose goals are to

provide OW/OBPW with advice and feedback about weight control, and promote both HE

and PA in order to manage GWG within the IOM guidelines (Table 2.4).

2.5.1 Intervention Components

The proposed intervention components in this research are informed by past research

and experience [66, 67], and include GWG, HE and PA education, goal-setting, self-

monitoring, active learning and behavioral modification. Evidence shows that these com-

ponents can effectively manage weight, and when people are taught how to use these strate-

gies, they are more likely to achieve their goals and positively impact outcomes [68–70].

Participants who are engaged in PA active learning have higher PA attitude, PBC, intention

and subjective norms, lower depression, and better body image compared to those who are

not actively engaged in these behaviors [69, 70].
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Table 2.5: Intervention Components for Hypothetical GWG Intervention.

Description Influence Frequency
I1(u1) Healthy Eating Education EI-TPB weekly
I2(u2) Healthy Eating Weekly Plan EI-TPB weekly
I3(u3) Healthy Eating Active Learning EI-TPB weekly
I4(u4) Goal Setting EI-TPB & PA-TPB weekly
I5(u5) Physical Activity Education PA-TPB weekly
I6(u6) Physical Activity Weekly Plan PA-TPB weekly
I7(u7) Physical Activity Session PA-TPB & Energy Balance bi-weekly
I8(y1) Daily Weight Scale PA & EI self regulation daily
I9(y2) Dietary Record EI self regulation daily
I10(y3) PA monitor output PA self-regulation daily

The list of intervention components for this hypothetical intervention is summarized

in Table 2.5. Intervention components can be classified according to two types. The first

consists of manipulated variables whose magnitude or “dosage” can be changed over time;

examples include healthy eating and physical activity education (I1 and I5), healthy eating

and physical activity weekly plans (I2 and I6), healthy eating active learning (I3), goal

setting (I4) and physical activity sessions (I7). The second type of intervention component

consists of signals that are used by either the closed-loop decision rules or influence the

participant’s self-regulation. These intervention components include daily weighting (I8),

dietary records (I9), and physical activity monitoring (I10). The role these components

play as either inputs to the TPB and energy balance models, or as outputs from the TPB

and energy balance models but inputs to the self-regulation modules and decision rules are

depicted in Figure 2.1.

2.5.2 Intervention Delivery Dynamics

How the intervention components act on the inflows to the TPB model is illustrated

in Figure 2.8. The modeling of the intervention delivery dynamics is treated like a pro-
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Δξ1
Perceived
Behavioral
Control

In(t)

ξE
3 (t)

ξE
3 (t)

ξE
3b(t)

ζE
3 (t)

k31I1(t − θE
31)

k3nIn(t − θE
3n)

I1(t)

Figure 2.8: Illustration of the Intervention Delivery Dynamics for PBC Inflow in EI-TPB
Model

duction inventory system, the concept of which is already explained in Section 2.2. We

treat each input (I1 . . . I7) as contributing to the inflows ξ1 . . .ξ3 for each of the two TPB

models. We would expect that the effect of the intervention on the beliefs, evaluations, and

other variables that comprise the inflows ξ1 . . .ξ3 accumulate and hence integration is re-

quired. At the intervention delivery level we include the possibility of delayed effects and

disturbances that could potentially undermine the intervention delivery. We illustrate these

concepts with the inflow to the PBC inventory for the energy intake TPB (EI-TPB) model.

The signal ξ E
3 includes the sum of a baseline PBC (ξ E

3b) as well as the change contributed

by intervention components such as healthy eating education, healthy eating weekly plans,

healthy eating active learning, and goal setting. Equation (2.37) shows the new inflow to

the PBC inventory for the energy intake TPB (EI-TPB) model under the influence of the

intervention,
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ξ
E
3 (t) = ξ

E
3b +

∫ t f

t0

[
n

∑
i=1

k3iIi(t−θ
E
3i)

]
dt +ζ

E
3 (t)

= ξ
E
3b +

∫ t f

t0
[k31I1(t−θ

E
31)+ k32I2(t−θ

E
32)

+k33I3(t−θ
E
33)+ k34I4(t−θ

E
34)]dt +ζ

E
3 (t) (2.37)

where n is the number of intervention components that fall into the category of manipulated

variables; Ii is the dosage of the corresponding intervention components; k3i correspond to

intervention gains that will be a function of personal characteristics or baseline conditions

such as age, social economic status, and social support; θ E
3i and ζ E

3 are the corresponding

time delay and disturbances. Since these intervention components are used to improve the

PBC in EI-TPB, all the gains are positive-valued.

Following from (2.37), we can obtain similar expressions for the other inputs in the

EI-TPB and PA-TPB models. We use the Laplace transforms and vector-matrix notation

to obtain

ξ (s) =
1
s

KI(s)I(s)+ξb +ζ
I(s) (2.38)

where ξ (s), ξb(s), and ζ I(s) are all 6×1 vectors, representing the new inflows, the baseline

inflows and disturbances respectively; I(s) is a 7×1 vector, representing the manipulated

intervention inputs, KI(s) is a 6×7 matrix for intervention gains. All are defined below,

ξ (s) =
[

ξ E
1 (s) ξ E

2 (s) ξ E
3 (s) ξ P

1 (s) ξ P
2 (s) ξ P

3 (s)

]T

(2.39)
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KI(s) =




kI
11 kI

12 kI
13 kI

14 0 0 0

kI
21 kI

22 kI
23 kI

24 0 0 0

kI
31 kI

32 kI
33 kI

34 0 0 0

0 0 0 kI
44 kI

45 kI
46 kI

47

0 0 0 kI
54 kI

55 kI
56 kI

57

0 0 0 kI
64 kI

65 kI
66 kI

67




(2.40)

kI
i j = ki je

−θ x
i js,x = E (for EI) or x = P (for PA) (2.41)

I(s) =
[

I1(s) I2(s) · · · I6(s) I7(s)

]T

(2.42)

ξb =

[
ξ E

1b ξ E
2b ξ E

3b ξ P
1b ξ P

2b ξ P
3b

]T

(2.43)

ζ
I(s) =

[
ζ E

1 (s) ζ E
2 (s) ζ E

3 (s) ζ P
1 (s) ζ P

2 (s) ζ P
3 (s)

]T

(2.44)

2.5.3 Illustration of Energy Intake, TPB, Self-regulation, and Intervention Delivery

Module using Production-Inventory Systems

The intervention delivery dynamics build the bridge between the magnitude / frequency

of intervention components and the behavioral variables in the TPB models, which makes

it easy to implement the intervention, track its status, and quantify its outcome in psycho-

logical view. As described in 2.5.2, the intervention delivery modeling is developed based

on the concept of the production-inventory systems, and can be integrated into Figure 2.7.

Figure 2.9 is the diagram of the dynamical systems model including energy balance

model, the behavioral TPB model, self-regulation and intervention delivery dynamics for
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Figure 2.9: Dynamical Systems Model for Behavioral Interventions Integrates the Ma-
ternal Energy Balance Model, the Dynamic TPB Model, Self-regulation and Intervention
Delivery Modeling for the EI Loop Illustrated by the Concept of Production-inventory
Systems.

the EI loop by the use of the concept of production-inventory systems. The outflows of the

inventories in intervention delivery dynamics work as the inflows to the TPB models.

2.6 Adaptive Interventions with Decision Rules

Adaptive interventions have been emerging as a new perspective on research-based

prevention and treatment. In adaptive interventions, different dosages of intervention com-

ponents will be assigned across time in response to the needs of each participant much like

clinical practice [25]. This section will focus on how to use the decision rules and tailoring

variables to adapt the intervention dosages to better help individuals achieve their goals.
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2.6.1 Adaptive Interventions

Adaptive intervention is a promising approach to prevention and treatment. They are

especially useful for prevention programs with numerous components aimed at different

aspects for the treatment. Adaptive interventions individualize therapy by the use of de-

cision rules for how the therapy level and type should vary according to measures of ad-

herence, and response collected during past treatment [25, 28]. In fixed interventions, the

same dosage is applied to all program participants without taking into account any of their

individual characteristics. In an adaptive, time-varying intervention, the frequency or in-

tensity of intervention dosages will change over time, based on the result of important

outcomes of the intervention (also known as tailoring variables [25]). Decision rules oper-

ationalize these changes, which can correspond to eliminating or adding some intervention

components based on participant response during the intervention, or altering the dosage

of existing components (for example, increasing the number of physical activity sessions).

As adaptive strategies play an increasingly important role as a methodological framework

for many important prevention problems, it is evident that much research is needed on the

analysis, design and effective implementation of these interventions.

Adaptive interventions have four key elements: sequence of decisions regarding par-

ticipant’s care, the set of treatment options at each decision point, tailoring variables and a

sequence of decision rules [33]. They can help researchers better treat patients who do not

have response to the initial treatment, increase the intervention effectiveness, deal with the

relapses problem, and improve the patient’s response [25].

2.6.2 Decision Rules

In our research, IF-THEN decision rules acting on values of tailoring variables (in this

case, GWG) obtained from a dynamical systems model illustrate how adaptive intervention

works for managing GWG. We implement the decision rules developed by Downs and
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Savage [6] which work on IF-THEN condition in order to maintain appropriate GWG

throughout pregnancy based on pre-pregnancy BMI status. The intervention starts at week

14. At the study entry, if the participant’s GWG is outside the IOM guidelines, she will

receive first augmentation from the base dosage; otherwise she will stay in the baseline

program. The assessment for adaptive intervention occurs every three weeks for the second

trimester, and every two weeks for the third trimester until week 35. Based on the outcome

of the previous intervention, the dosage and the frequency of the intervention components

will change according to the decision rules. The intervention level is maintained for three

assessment cycles before stepping down, but as soon as the participant fails to meet the

IOM guidelines at an assessment cycle, she is stepped up (Figure 2.10). We will mainly

focus on the augmentation of two intervention components (HE and PA) in active learning

session.

The baseline intervention (GWG Order 0) can be divided into two sessions. Session 1

includes education (printed HE, PA materials; additional online resources; HE/PA weekly

plans; face-to-face delivery), goals (goal education; set GWG, HE, PA goals with imple-

mentation intentions; instructors review goals and provide feedback), and self-monitoring

(instructor reviews GWG and HE/PA behaviors from past week; provides face-to-face dis-

cussion of problem-solving to overcome barriers), while session 2 contains active learning

(give women a scale to weigh food at home; PA session guided by instructor). Based on

the worst case under which the participant always fails to meet the GWG goal throughout

the whole intervention, we set eight GWG step ups, listed in Table 2.6.

2.6.3 Illustration of the Overall GWG Dynamical Systems Model using

Production-Inventory Systems

The overall GWG dynamical systems model in Figure 2.1 can also be illustrated with

the concept of production-inventory systems, which is shown in Figure 2.11 for the energy
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same as a
c=for women continuing to meet GWG goal, reduce to 1 session/wk with SM+AL

Figure 2.10: Flow Chart for IF-THEN Decision Rules (Adaptive Intervention) Developed
by Downs and Savage [6].

intake loop. The outflow of EI-TPB model serves as the inputs to the energy balance

model. There are two self-monitoring loops, dietary record and GWG measurement. The

decision rules operationalize the changes of these measurements and assign the dosages of

the intervention components that are the inflows to the intervention delivery dynamics, the

outflows of which are the new inflows to the EI-TPB model.

2.7 Simulation Study

In this section, we consider two case studies that rely on our proposed dynamical sys-

tems model in this chapter, to illustrate the benefits of the simulation framework and the

effect of self-regulation, and adaptive intervention operated by decision rules. All the

simulations consider a 25-year-old pregnant woman with pre-gravid parameters of height

(=1.6m) and her weight will change in different scenarios to illustrate how the adaptive

interventions work for the participants in different BMI categories. The maternal age was

selected using 2010 Data from the Center for Disease Control and Prevention illustrating

mean age of mother at first birth is 25.4 years [71].
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Figure 2.11: GWG System Illustration with the Concept of Production-inventory Systems
for Energy Intake Loop.

The first case study includes two hypothetical simulation scenarios, the one without in-

tervention (only self-regulation effect) and the other with the fixed behavioral intervention

in the model. In the second case study, we will implement our decision rules and simulate

the GWG adaptive interventions for OW/OBPW.

We assume that the participant will have a ramp increase in her EI from day 14 to day

91 (which approximates the energy intake increase with the time due to the pregnancy and

is treated as the disturbance in the system) and her EI will keep constant from day 92 to
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the delivery if there is no intervention.

slope = 15%× Initial EI
91−13

= 15%× Initial EI
78

(2.45)

In order to mimic a natural trend within the participant to increase EI and reduce PA

during the pregnancy, several external disturbance signals are considered in all simulations

to apply to the model. The first one is the behavior disturbance variable ζ5 within EI-

TPB model. This disturbance will have little influence at the beginning, but will play a

significant role later, because participant is more likely to refuse to reduce her EI at late

pregnancy. This disturbance signal ζ5 is represented in the simulation as sine wave function

starting at day 14 and parametrized as follows:

ζ5(t) = Asin[ω(t−14)+
π

2
]−A (2.46)

where A is the amplitude of the sine wave, while ω is the frequency. As output disturbance,

this directly lowers the participant’s EI behavior (top plot in Figure 2.12).

The next two disturbance signals are relevant with the natural PAL change during the

pregnancy. The participant is potentially engaged in less PA from the second to third

trimester as she gains weight without intervention (middle plot in Figure 2.12). The in-

tervention can help improve her PAL in the second trimester, and however she will still

decrease PA during her latter stage of pregnancy, especially one or two months prior to

delivery. The bottom plot in Figure 2.12 is the PAL disturbance signal with intervention.

Both disturbance signals above will directly lower PAL in the energy balance model in

(2.9).

2.7.1 Self-Regulation and Intervention Effect

In this section, we will have two hypothetical simulation scenarios with the women

having pre-gravid weight(=75kg), which places the participant (BMI=29.30) in the over-

weight BMI category. For the sake of simplicity, we will only focus on the effects that
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Figure 2.12: Disturbance Signals for ζ5 in the EI-TPB (top), PAL with no Intervention
and PAL (middle) with Intervention (bottom), respectively.

intervention components and self-regulation play on the inflow to PBC in the TPB models.

The intervention gains for the inflow of PBC in EI-TPB are set to 0.001 for all relevant

intervention components (KI
31, . . . , KI

34=0.001), while the ones for the PA-TPB model are

similarly fixed to 0.0075 (KI
64, . . . , KI

67=0.0075). In this study, dosages for all intervention

components are fixed according to the frequency stated in Table 2.5.

The decision on whether or not to start the intervention is made based on the discrep-

ancy between a threshold value and the participant’s weight. The threshold value in this

section is set as 20% above the upper bound of the IOM guidelines. The intervention starts

if the participant’s weight exceeds a threshold, and stops once the participant’s weight

enters within the threshold.
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Table 2.7 summarizes the model parameters in the simulation studies, including the

behavioral parameters, time constants τi, time delays θi, gains assumed for the participant,

and the disturbance signal parameters respectively. No time delay or disturbances are

assumed in the intervention delivery dynamics. All these values are hypothetical but have

been selected such that the simulated responses mimic those of an actual participant.

We assume that there is no self-regulation effect before the participant is aware of her

pregnancy (prior to day 14), and the participant increases her energy intake substantially

at day 14. Meanwhile, the self-regulation in this simulation will be associated with IOM

guidelines only. When the participant’s weight exceeds the threshold, Ke should have

a small magnitude. On the contrary, when the participant’s gestational weight is below

the threshold, Ke should correspondingly increase as a result of the improvement that the

participant has accomplished. The sign of Ke depends on the sign and magnitude of ∆e(t).

Because for overweight and obese women with weight above IOM guidelines, a positive

∆e(t) indicates that the participant is not making as great progress as she did the day before,

while a negative ∆e(t) indicates improvement. Therefore, Ke should be positive for (2.35)

to be computed properly. Table 2.8 lists the values for Ke used in the simulations.

2.7.1.1 No Intervention Scenario

The simulation scenario described in this section consists of using the dynamical sys-

tems model summarized in Figure 2.1 to examine the scenario where the intervention is not

applied. The assumption in this case is that the participant increases her energy intake once

she is aware of her pregnancy at day 14. Figure 2.13 shows the participant’s response for

the EI-TPB model and PA-TPB model, while Figure 2.14 shows the changes in maternal

body mass and the energy balance variables.

The scenario without intervention indicates that behavioral change is accomplished

by the self-regulation effect on PBC in the TPB models. The simulation results indicate
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Table 2.7: Model Parameters for the Simulation Studies. Time Constants (τi) are in Units
of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 4 c1 2 2
τ1 1 30 γ11 1 0.7
τ2 1 30 γ22 1 0.5
τ3 1 10 γ33 1 0.7
τ4 1 20 β41 1 0.34
τ5 1 30 β42 1 0.27

θ1 . . . θ3 0 0 β43 1 0.13
θ4 . . . θ6 5 10 β53 1 0.08
θ7, θ8 10 20 β54 1 0.42

A 0.12 0 ω
π

270 0

Table 2.8: Tabulation for Self-regulatory Controller Gains Ke Applied in the Simulations
in Section 2.7.1.

If-Else Condition EI-TPB PA-TPB
Day≤14 0 0

Day >14 and BM >threshold value 2 1
Day >14 and BM ≤ threshold value 4 2

that the PBC inflow in the EI-TPB model will stay constant until day 14. Following the

initial ramp increase in EI, the PBC inflow first ramps up (due to no weight increase at

the very beginning), and soon diminishes, indicating that the participant is not confident

of controlling her GWG. However, PBC inflow improves a little with the passage of time

as the participant checks her weight daily, compares her weight with the target data, and

realizes that the situation is not as bad as she expects. Because of self-regulation, the PBC

and intention inventories η3 and η4 increase gradually. However, the behavior in PA does

not improve overall as a consequence of the PAL disturbance in Figure 2.12 starting from
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second to third trimester, which can be seen from the energy expenditure (EE) profile in

Figure 2.14. In this scenario, we can see that the inflow of PBC eventually tries to reach the

initial levels, with GWG remaining outside IOM guidelines from second trimester up until

the time of delivery. This means that self-regulation alone has a limited effect on GWG

control, especially for women classified as overweight or obese.

2.7.1.2 Fixed Intervention Scenario

In this section, we consider how the implementation of fixed intervention can help the

participant adjust her GWG to remain within IOM guidelines. As noted previously, the

assumption in this simulation is that dosages of intervention components are fixed once the

intervention activation threshold is exceeded (body mass > 20% above the upper bound

set by the IOM guidelines). The intervention stops when the body mass is lower than the

threshold.

The simulation results for the intervention scenario in Figure 2.13 and Figure 2.14

show that the intervention starts at day 106 and ends at day 227. The whole process can be

divided into four stages. The first stage occurs during the first 14 days with constant PBC

inflows and no significant weight changes. The second stage starts from day 15 to the day

before the intervention. The participant increases her EI due to the pregnancy, which results

in decreases in PBC, intention and behavior. When the participant weight exceeds the

threshold value, the intervention starts; this is the third stage. In this stage, the PBC inflow

increases almost linearly as a result of the integrator in the intervention delivery dynamics.

When compared with the PBC curve for the intervention-only case in the TPB models,

we can see that at early intervention, the self-regulation effect tries to counteract the effect

of the intervention by lowering the expected increase in the PBC inflow, which means

the participant does not have much faith believing that she can succeed in controlling her

weight gain. However, as the intervention proceeds, the participant’s confidence is greatly
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Figure 2.13: Simulation Responses for the Energy Intake Behavior (EI-TPB) Model (left)
and Physical Activity Behavior (PA-TPB) Models (right). The Black Dashed Lines Rep-
resent the Case with no Intervention (Self-regulation only) while the Blue Solid Lines
Represent the Case with the Intervention. The Magenta Dashdot Lines in the TPB Model
Variables Show the Simulation Responses in these Variables when no Self-regulation is in
Effect.

enhanced as a result of the improvement contributed by the intervention. Consequently,

in the latter part of the third stage, self-regulation works together with the intervention to

enable better GWG control despite the existence of external disturbances. The fourth stage

occurs once the intervention stops. In this stage, the participant may feel initially aimless

with the termination of intervention. Meanwhile, it is late third trimester when she is more

likely to reduce her PA. However, the built-up PBC inflow during the intervention can still

almost keep constant, and her EE profile is still above the initial EE despite of its decrease

due to PAL disturbance. In this scenario, we can see that with the help of intervention and

self-regulation, it is possible for a woman to manage her GWG within the IOM guidelines

with the fixed intervention ending around two months before delivery, even in the presence

of disturbances.
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Figure 2.14: Simulation Responses for Maternal Energy Balance. Red Lines Represent
the 2009 IOM Guidelines Applied a Daily Basis; the Black Dashed Lines Represent the
Case with no Intervention (Self-regulation only) while the Blue Solid Line Represents the
Case with the Intervention and Self-regulation.
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2.7.2 Adaptive Interventions via Decision Rules

In the second part of the simulation, we will implement the decision rules discussed

in Section 2.6. Because the intervention is targeted mainly to the OW/OBPW, we set the

women pre-gravid weight as 70kg (BMI=27.34, overweight) and 80kg (BMI=31.25, obese)

for the two scenarios in this section. This adaptive intervention will only have effect on the

PBC inflows just as how it works in section 2.7.1, with the gains for the inflow of PBC in

EI-TPB as (KI
31, . . . , KI

34=0.0008), and the ones for the PA-TPB model fixed as (KI
64, . . . ,

KI
67=0.006). We assume that the participant will have a ramp increase just like the one in

(2.45) in Section 2.7.1.

The proposed hypothetical intervention aims to help the participant manage her GWG

within the IOM guidelines. The case study assumes the participant enters the intervention

with the baseline program at week 14 (day 98). The dosage of the intervention components

is adapted every so many weeks (e.g. 3-week cycle in the second trimester and 2-week cy-

cle in the third trimester) based on decision rules of whether she is meeting or not meeting

her GWG goal until week 35 (day 245) as described in the Section 2.6.

For the self-regulation, we will include not only the weight reference but also the EI

reference due to the self-monitoring components in the intervention, which is a little differ-

ent from the one used in Section 2.7.1. The self-regulation will influence the PBC inflow

of two TPB models. We assume self-regulation starts with the intervention when the coun-

seling, the GWG target and self-monitoring data are available. Because we have two sets

of reference values for the self-regulation, the corresponding gains Ke applied in the EI

self-regulation model are also changed and are listed in Table 2.9. Since no PA reference

data right now, the controller gains for PA self-regulation remain the same with the ones in

Table 2.8.

Table 2.10 summarizes the intervention dosages applied in the models. According to
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Table 2.9: Tabulation for Self-regulatory Controller Gains Ke Applied in the Simulations
in Section 2.7.2.

If-Else Condition EI-TPB PA-TPB
Day≤98 0 0

Day >98 and GWG >IOM threshold value 1 1
Day >98 and GWG ≤ IOM threshold value 2 2

Day≤98 0 -
Day >98 and EI >EI threshold value 0.0025 -
Day >98 and EI ≤ EI threshold value 0.005 -

the flow chart of decision rules described in Figure 2.10 and intervention dosage in Ta-

ble 2.5, we have 12 GWG order sequences (-3 to +8), where order 0 is baseline program,

order -1 ∼ oder -3 represent three reductions below baseline program, and order +1 ∼

order +8 refer to eight augmentations above baseline program. The parameters for the in-

tervention dosage in the decision rules are assigned to reflect how the dosages are changed

according to the decision rules, the participant’s response and outcome during the inter-

vention. All the other parameters in the model are the same as the ones in Table 2.7.

2.7.2.1 Simulation Study for Overweight Group

Figure 2.15 and Figure 2.16 show the simulation results for the behavioral variables

in EI-TPB and PA-TPB models, the dosage of the intervention components, the maternal

body mass, energy intake and energy expenditure for overweight participant with the deci-

sion rules implemented. We can see that the participant has a ramp EI increase from day 14

- 91 (first trimester). As discussed above, the adaptive intervention starts at week 14 (day

98) with the participant engaging in self-regulatory behaviors. The intervention dosages

(both healthy eating and physical activity) change according to the measured outcomes

during the previous treatment. If we simulate the EI based on the IOM guideline (upper,

lower bounds and average values), we can get the corresponding step EI inputs for all three
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trimesters (red line) which make the GWG follow the average IOM guideline (under the

assumption of zero change of PAL). With GWG energy balance model, the suggested EE,

FFM and FM can also be obtained as depicted in Figure 2.16.

The EI plot shows that the participant increases her EI very quickly in the first trimester,

and just before the intervention, the participant has already had higher EI than the EI refer-

ence values she should have for the third trimester suggested by IOM. This indicates that

this participant’s perceived control to control her GWG is low and explains why the PBC

inflow to the EI-TPB model reduces a little at the beginning of the intervention. However,

the PBC inflows to both TPB models improve as she progresses through her pregnancy

with the help of intervention adapted to her needs and self-regulation. At the entry of the

intervention, the participant’s GWG is within IOM guidelines even though her EI is above

the reference values. The initial dosage she receives is baseline program with order 0 (Fig-

ure 2.15). At this does of intervention, the participant still has high EI leading to GWG

above the IOM guidelines at the time of her second assessment cycle (3 weeks later). Thus,

her intervention is tailored and augmented (i.e., dose/components are increased). Her EI

and EE responses show that the participant gradually lowers her EI and tries to do more

PA, which leads to the increase of EE. At around day 245 (week 35) when the intervention

stops, she starts to reduce her PAL slightly which is mainly played by the PAL disturbance

in Figure 2.12, as most women (even those participating in interventions) tend to decrease

their PA in the third trimester as they approach delivery. However, the final value of PAL

is still above the initial PAL. As a result, with participation in the individually-tailored

adaptive intervention, she is able to control her EI within the EI reference values, and man-

age her GWG within the IOM guidelines at late pregnancy. This simulation study also

demonstrates how the interventions are adapted with decision rules applied to the model.
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Figure 2.15: Simulation Result for the Behavioral Variables for Energy Intake TPB (EI-
TPB) and Physical Activity TPB (PA-TPB) Models, and the Dosage of the Intervention
Components for Overweight Participant with the Decision Rules Implemented.
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Figure 2.16: Simulation Responses for the Maternal Body Mass, Energy Intake and En-
ergy Expenditure for Overweight Participants with the Decision Rules Implemented. Red
Dashed Lines Represent the 2009 IOM Guidelines Applied on a Daily Basis, Black Dash-
dot Lines Show the Simulation Response in these Variables in the Absence of an Interven-
tion.

2.7.2.2 Simulation Study for Obese Group

Figure 2.17 and Figure 2.18 show the simulation responses for the obese group. There

is no much big difference in the results between the overweight group and the obese one,

except for the intervention dosages, the day when GWG and EI enter the reference value,

and the ultimate body mass at delivery. The initial dosage she receives is augmentation +1,

due to her GWG outside IOM guidelines at the entry of the intervention. This explains why

she gets 2 levels as the initial dosage for PA sessions (I7) in Figure 2.17 instead of 1 level

dosage in the overweight case in Figure 2.15. The participant always has stepping up in
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Figure 2.17: Simulation Result for the Behavioral Variables for Energy Intake TPB (EI-
TPB) and Physical Activity TPB (PA-TPB) Models, and the Dosage of the Intervention
Components for Obese Participant with the Decision Rules Implemented.
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Figure 2.18: Simulation Responses for the Maternal Body Mass, Energy Intake and
Energy Expenditure for Obese Participants with the Decision Rules Implemented. Red
Dashed Lines Represent the 2009 IOM Guidelines Applied on a Daily Basis, Black Dash-
dot Lines Show the Simulation Response in these Variables in the Absence of an Interven-
tion.

dosage order, because her GWG is outside the IOM boundary throughout the whole inter-

vention. However, after the intervention stops, the participant’s built-up PBC and attitude

inflows of both TPB models are still working. With the help of the self-regulation effect,

the woman can both manage her GWG within the upper bound of the IOM guidelines and

reduce her EI to make it reach the upper bound of the EI reference values before the time

of delivery. The different simulation results between the overweight group and obese one

are caused by the woman’s pre-gravid weight. However, in the real life, there might be

other external disturbances and individual variations that will undermine the intervention,

and that is why the intervention does not always work on every participant. In this sce-

nario, the participant has pre-gravid mass at 80kg, and with the help of intervention and
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the self-regulation, she can still control her GWG within the IOM boundary at late third

trimester. If the participant’s pre-gravid weight is 95kg, the intervention fails to achieve

the GWG goals with the same model parameters.

2.8 Fetal Birth Weight Model

The obesity epidemic is a major public health concern affecting all ages. In this section,

we propose an intergenerational approach to prevent obesity. Dynamical systems modeling

based on the previous sections is used to describe how an individually-tailored, behavioral

intervention that adapts to the unique needs of each woman to reduce fetus exposure to

an “obesogenic” intrauterine environment can impact gestational weight gain (GWG) and

birth weight. This approach relies on integrating mechanistic energy balance, theory of

planned behavior, and self-regulation models to describe how internal processes can be

impacted by intervention dosages, and in turn, reinforce positive outcomes (engaging in

healthy eating and physical activity) to moderate GWG and impact birth weight. A sim-

ulated hypothetical case study from MATLAB with Simulink is presented to illustrate the

basic workings of the model and demonstrate how the proper design of an intervention that

varies based on the needs of the participant can promote healthy GWG and infant birth

weight.

2.8.1 Fetal Energy Balance Model

The energy balance model in Section 2.1 captures the weight change during the preg-

nancy for the mother. It addresses how the healthy diet (energy intake) and physical activity

help reduce the growth of GWG. GWG has immediate and lifelong health benefits such

as a reduced risk for postpartum weight retention in mother, adverse birth outcomes, and

obesity in both mothers and offspring as we discussed before. Meanwhile, the childhood

obesity epidemic is a major public health concern that is not limited to school age children

and adolescents, but also affects infants and toddlers. Furthermore, the prenatal period is
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an opportune time to intervene and break the intergenerational cycle of obesity by manag-

ing GWG. All these inspire us to integrate the fetal energy balance model into our current

one. It is meaningful to show how GWG impacts infant birth weight by improving our cur-

rent dynamical systems model which describes the influence of behavioral interventions

on weight gain during pregnancy.

The fetal energy balance model [7] is obtained in a similar way as how we dealt with

the maternal energy balance model [72]. It is based on a two-compartment (fat mass and

fat-free mass) model. The fetal energy balance model will rely on the conservation of the

energy, which is expressed as,

ES f (t) = EI f (t)−EE f (t) (2.47)

When expanding the ES f into the instantaneous change of the sum of the two compart-

ments (FFM and FM), the fetal fat mass can be calculated using the following full energy

balance model,

λFFM f
dFFM f

dt
+λFM f

dFM f

dt
= EI f (t)−EE f (t) (2.48)

where λFM f and λFFM f are the fetal caloric values of the fat and fat-free mass, both in

kcal/kg. Fetal energy expenditure EE f (t) is modeled with µ as the proportion that fetal

body mass contributes to energy expenditure (µ = 32kcal/kg/d),

EE f (t) = µ(FFM f (t)+FM f (t)) (2.49)

The formulation of fetal energy intake EI f (t) is expressed as a product of the total

maternal calories consumed per day EI(t) which will be changed due to the intervention,

percentage factor of daily glycemic index of maternal diet ge(t) and placental volume P(t).

EI f (t) = γge(t)P(t)EI(t) (2.50)
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where γ = 0.000234 which is introduced as a conversion constant measured in 1 ml−1,

ge(t) and P(t) are both functions of mother’s PAL.

The placental volume P(t) is calculated as follows [72],

P(t) =
P(140)K(t)exp(r(t−140))

P(140)exp(r(t−140))+K(t)−P(140))
(2.51)

where r is the unrestricted growth rate, K(t) is the carrying capacity, and P(140) is the

initial condition for the placental volume at day t = 140. The carrying capacity K(t) is

ranged from K(t) = 424 ml for non-exercising mothers to K(t) = 522 ml for high-intensity

exercising mothers, and it can be estimated as a function of PAL as follows,

K(t) = 73.7PAL(t)+337.8 (2.52)

The initial placental volume ranges from P(140) = 181 ml for non-exercising mothers to

P(140) = 255 ml for high-intensity exercising mothers and it can be estimated as a function

of the baseline PAL (PAL(0)) as follows,

P(140) = 55.6PAL(0)+115.9 (2.53)

The percentage impact of the average daily glycemic index of maternal diet ge(t) de-

pends on PAL, and is modeled as follows,

ge =
1

PALmin−PALmax
+1 (2.54)

where PALmin = 1.17 and PALmax = 2.55.

Thus, the final fetal energy balance model is,

λFFM f
dFFM f

dt
+λFM f

dFM f

dt
= γge(t)P(t)EI(t)−µ(FFM f (t)+FM f (t)) (2.55)

The change of mother’s EI and PAL during the intervention will influence fetal EI, placen-

tal volume and ultimately fetal FM and birth weight.
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2.8.2 Simulation Study

In this section, a simulated hypothetical case study will be presented illustrating the

basic workings of this model and demonstrate proof of concept for how self-regulation and

adaptive interventions with decision rules influence GWG during pregnancy, and in turn,

impact infant birth weight. Exploratory simulations of our adaptive GWG intervention

[10] will be generated from data based on an intergenerational fetal EB model [72] and

artificial parameters to examine the effects of creating a healthy maternal-fetus eating and

PA environment on infant birth weight.

Figure 2.19 summarizes the model diagrammatically, where the mechanistic energy

balance leads to a dynamical model with EI and PAL as inputs; maternal fat mass FMm,

fat-free mass FFMm, fetal fat mass FM f and fat-free mass FFM f as outputs. The outputs

add up to total body masses BMm and BM f for mother and fetus, respectively. The fetal

energy balance model will be the focus of this section as an extension of current GWG

intervention model, when we integrate self-regulation, TPB, intervention delivery modules

and decision framework. With this maternal-fetal energy balance model, the behavioral

scientist can not only track the mother’s GWG within the IOM guidelines, but also make

sure the fetus’ and infant’s birth weight within the reasonable target.

The simulations in this section are based on a hypothetical 25-year-old female with pre-

gravid body mass 75 kg, 160 cm in height, which classifies her as overweight (BMI=29.3).

The participant is sedentary at the time of conception (PAL = 1.65) and potentially engaged

in less PA from the second to third trimester as she gains weight. The intervention can help

improve her PAL during pregnancy. In this section, decision rules developed by the R01

research team will be used to evaluate GWG every four weeks. If a woman is within her

GWG goal, the intervention dosages will be sustained; however, if she is exceeding her

GWG goal, the intervention is adapted (i.e., “stepped up”) to increase potency. the case
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Table 2.11: Summary of Dosage Augmentations per the IF-THEN Decision Rules on
GWG and Fetal Weight Gain Control. (Notes: Baseline Intervention Includes Self-
monitoring, Education and Guidance)

Options Adaptation
Baseline intervention NA

Step up 1 Baseline + healthy eating component
Step up 2 Baseline + 1 + PA component
Step up 3 Baseline + 1+2 + self-monitoring component
Step up 4 Baseline + 1 + 2 + 3 + healthy eating component
Step up 5 Baseline + 1 + 2 + 3 + 4 + PA component
Step up 6 Baseline + 1 + 2 + 3 + 4 + 5 + healthy eating component

study still assume the participant enters the intervention with the baseline program at week

14 as described in Table 2.11.

The model parameters in the behavioral models are same as the ones in Table 2.7,

and the self regulatory controller gains are same as the ones in Table 2.9. The gains in

intervention delivery modules are same as the ones in Section 2.7.2.

Figure 2.20 shows two hypothetical simulation scenarios for a 25 year old, overweight

woman predicted maternal weight gain, EI, PAL, and fetal weight gain for the case study

described above when she (a) receives our adaptive intervention and (b) does NOT receive

our intervention. In both simulations, during the first trimester, we assume this overweight

woman will increase her EI as she is aware of her pregnancy and she will remain sedentary

with little or no activity (PAL is 1.65) throughout the first trimester. In the first scenario, the

intervention starts around day 100 with the participant receiving the baseline intervention.

At this dose of intervention, the participant still has high EI leading to GWG above the IOM

guidelines at the time of her second assessment cycle. Thus, her intervention is augmented

(i.e., dose/components are increased). Once the intervention is adapted, she gradually

lowers her EI. Meanwhile, the intervention also forces her to be involved in PA, leading
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Figure 2.20: Simulation Responses for the Maternal Body Mass, Energy Intake (EI), Phys-
ical Activity Level (PAL) and Fetal Birth Weight. Red Lines Represent the 2009 IOM
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to the increase of her PAL from sedentary (PAL = 1.65) at the start of the intervention to

moderately active (PAL = 1.70) around day 196 (i.e., the start of her third trimester). The

highest PAL that she achieves is 1.719 around day 230 (week 32), maintaining this level

of activity until day 250 (week 35). Around this time, she starts to reduce her PAL slightly

to 1.697 as most women (even those participating in interventions) tend to decrease their

PA in the third trimester as they approach delivery. However this final value of PAL is not

only still above the initial PAL 1.65, but also very close to the moderately active PAL range

(PAL = 1.7). Because this intervention was adapted to this participant’s specific needs, her

EI decreased and PA increased during the intervention, and her rate or speed of weight gain

slowed in the second trimester. As a result, with participation in the individually-tailored,

adaptive intervention, she meets her GWG goal at day 190, and keeps her EI within the

EI reference values at day 210. At time of delivery, she meets the IOM GWG guidelines

based on her pre-pregnancy classification of overweight, gaining a total of 7.31 kg. Further,

by modifying the intrauterine dietary intake and PA environment, her infant is born at 40

weeks gestation at 3.963 kg, which is within the range of normal and healthy birth weight.

The simulation result for the no-intervention case shows that without intervention, this

same woman gradually increases her EI from the start of her second trimester (3300 kcals)

to the end of her third trimester (3380 kcals). Without receiving an intervention, she in-

creased her EI by about 500 kcal during pregnancy, which is about 150 kcals higher than

recommended during the third trimester for an overweight (almost obese) woman. Also,

from the beginning of the second trimester to the end of the third trimester, her PAL de-

creases from 1.65 to 1.55, making her even more sedentary. Without intervention, she

gains 19.63 kg and exceeds the IOM GWG guidelines. Further, due to excessive GWG

(high EI and low PA), this mother delivers an infant weighing 4.611 kg (10.166 pound).

This infant would be considered macrosomic (birth weight greater than 90% for gestational

age), which has negative health outcomes for both mother and infant, especially for those
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born weighing more than 9 pounds 15 ounces as is in this case.

2.9 Chapter Summary

In this chapter, a comprehensive dynamical systems model for GWG adaptive behav-

ioral interventions has been proposed, which deals with the application of control engineer-

ing theory in the field of psychology and behavioral health. The model provides a helpful

and informative framework for better understanding, designing and optimizing interven-

tions geared to reduce overweight problems during pregnancy, and hence prevent possible

complications, both during and after delivery.

We showed two case studies, focusing on how self-regulation and intervention work

in a fixed intervention and how the decision rules are implemented to get the dosage tai-

lored according to participant’s GWG needs as an adaptive intervention, respectively. The

first study shows how self-regulation helps adjust PBC, which consequently changes the

participant’s intention and ultimately behavior with respect to healthy eating and physical

activity during pregnancy. The self-regulation effect is strong when a participant feels con-

fident in what she will do, and weak when she does not have faith in the success of the

task. When the fixed intervention in involved, its effect is first offset by self-regulation;

however, as the intervention outcomes improve, these two effects interact with each other

to greatly increase the PBC inflow in the TPB models. Consequently, the resulting behav-

ioral improvements counter the effect of natural disturbances that work to worsen behavior

during the latter stage of pregnancy.

The incorporation of intervention dosage adaptations via decision rules with our com-

prehensive dynamical model to simulate the GWG intervention that adapts to the needs

of OW/OBPW is the focus of the second case study. With the decision rules, the dosage

changes with the increase of time. Based on the participant responses during the inter-

vention, the existing intervention components are either augmented, diminished or kept
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unchanged. The simulation responses for the overweight and obese scenarios are very

similar. In this case study, if the parameters in behavioral models are same, the differences

in the dosages assigned, the maternal body mass, the energy intake and energy expenditure

are due to the pre-gravid weights. Meanwhile, the intervention does not guarantee that

every participant can achieve her GWG goals in the real life due to the external unmea-

sured disturbances, and the individual variations in the responses to the intervention. In

next chapter, we will evaluate how intra-individual and inter-individual variabilities play

an important role in the intervention outcomes. Meanwhile, well-designed clinical trials

will be required in order to accomplish the system identification tasks that will validate

the model and enable future evaluation of the decision rules and implementation of hybrid

model predictive control (HMPC) for this problem.

The chapter also extend GWG model to include fetal weight gain to simulate an in-

tergenerational GWG intervention that could have substantial effects on maternal fetus

eating and PA environment, GWG, and infant birth weight. The results from our case

study simulations showed how in response to our intervention, self-regulation helps ad-

just PBC, which consequently changes the participant’s intention and ultimately behavior

with respect to healthy eating and PA during pregnancy, thereby impacting both GWG and

infant birth weight. From these hypothetical simulations, we can better understand that

OW/OBPW may need interventions tailored to their specific needs to create a healthy in-

trauterine environment in an effort to meet GWG goals, which in turn, moderate infant

birth weight. Specifically in our simulation, after receiving two potential adaptations, this

participant met her GWG goal, delivering a healthy sized baby whereas the participant

who did not receive our intervention gained excessive weight and delivered a baby termed

macrosomic (large for gestational age).

In conclusion, this chapter demonstrates the potential for real-world applications of an

adaptive intervention to manage GWG in OW/OBPW and moderate infant birth weight and
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provides a plausible proof of concept of our approach. The ultimate goal is to validate this

simulation by examining the effectiveness of a real-life implementation of our intervention

on both GWG and infant birth weight (i.e., short term effects).
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Chapter 3

ADVANCED CONTROLLER FORMULATIONS FOR SELF-REGULATION
3.1 Overview

Self-regulation refers to the capacity of human beings to alter their behavioral response.

It is the process by which people attempt to constrain unwanted urges in order to gain

control of their behavior. Regulation means change, especially change to bring behavior

to meet some standard such as a goal. One very useful form of self-regulation is to change

one’s behavior in order to follow rules, match ideals, or pursue goals [73].

As discussed in Section 2.4, many theories of self-regulation are conceptualized on the

basis of negative feedback control systems. This is the basic regulator in control theory [9]

as we illustrated in Section 2.4. The explicit statement of this idea goes back to [74] in

psychobiologic homeostatic theories in 1991 and the cybernetic TOTE model presented by

Miller, Galanter, and Pribram [75] in 1960, who were the first theorists to argue for the

idea that feedback processes are important in macro-level human behavior. They presented

a picture of human behavior guided by plans and goals and self-regulated by discrepancy-

reducing feedback processes, which illustrated a feedback-based vision of behavior, and

inspired others to consider its usefulness. Action to reduce the incongruity is triggered by

perceived discrepancy between performance and an internal standard. In negative feedback

control, if performance does not match the internal standard, the person could be inspired

to take actions to improve his behavior; otherwise, he could not be stirred to action until

he receives feedback of a shortcoming [51].

In this chapter, Internal Model Control (IMC) is applied to the mathematical for-

mulation of self-regulation in which feedback processes are involved. Compared to the

derivative-only controller for self-regulation shown in Section 2.4.2, the improved con-

troller formulations will allow greater flexibility in the description of participant’s different
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self-regulation responses. It is an obvious fact that control system design is fundamentally

determined by the steady state and dynamic behavior of the process to be controlled. The

IMC viewpoint represents an alternative yet equivalent of the traditional feedback control

algorithm. Its name denotes the fact that the process model becomes an important part for

designing the controller.

This chapter will first introduce methods for designing feedback controllers as self-

regulation algorithms based on IMC, followed by the different cascade control designs

for inner and outer loops associated with corresponding setpoints in self-regulation. The

simulations presented in this chapter not only illustrate the basic workings of the GWG

model with improved self-regulation formulation, but also demonstrate proof of concept

for how self-regulation and time-varying adaptive interventions influence GWG during

pregnancy, and how intra-individual and inter-individual variabilities play an important

role in the intervention outcomes.

It should be noted that self-regulation is ubiquitous in behavioral science, and hence,

the controller formulations in this chapter are not limited to the GWG problem, but can

also be applied to other behavioral intervention problems.

3.2 Internal Model Control (IMC)

The IMC structure [76] given in Figure 3.1 is central to the discussions on the design

of controllers. Its conceptual usefulness lies in the fact that it allows us to concentrate on

the controller design without having to be concerned with control system stability provided

that the process model p̃(s) is a perfect representation of a stable process p(s).

While investigators have made use of concepts similar to those of IMC to design opti-

mal feedback controller since the late 1950s when Newton, Gould and Kaiser [77] pointed

out the transformation of the closed-loop structure into an open one in order to develop an

H2-optimal controller, it was Frank who was the first to anticipate the value of the control
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Figure 3.1: Schematic Representation of the Internal Model Control (IMC) Structure [12].

structure having in parallel the model and the plant and proposed utilization of the struc-

ture shown in Figure 3.1. However, it was Morari and Garcı́a [76, 78–82] who brought

the major contribution to this advanced control structure and placed the methodology in a

sound theoretical framework.

3.2.1 Introduction

The IMC approach to controlling a process works in a very human style. When the

controller tries to maintain a controlled variable close to a desired setpoint, it performs

a simple calculation based on the model of the process in order to set the proper value

of the manipulated variables. The controller calculates the difference between the actual

value of the controlled output and an estimation of the effect of the intended value of the

manipulated variable on the plant output. The calculation of this difference is the basic

information on which decision is made to set the amplitude of the manipulated variable

change that is sent to the plant. In fact, the controller determines the necessary change of

the manipulated variable on a model-based estimation of the disturbance. Feedback signals

of this procedure lead the closed loop system to have a desired behavior of the controlled
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variable. This fundamental control approach serves as the core of IMC.

Figure 3.1 [12] presents a schematic representation of the IMC structure, in which

p(s) represents the process (plant) transfer function between the manipulated variable and

the controlled variable, pd(s) the process transfer function between the disturbance and

the controlled variable, p̃(s) the mathematical model of the process, and q(s) the transfer

function of the IMC controller. From the block diagram in Figure 3.1, we can see that the

role of the parallel path containing the model p̃(s) is to generate the difference between the

actual process output and an estimation of the manipulated variable effect on the process

output. Assuming that there is no model/plant mismatch ( p̃(s) = p(s)), the difference

de(s) is the estimated effect of the disturbances (both measured and unmeasured) on the

controlled variable. If the process model is not perfect (p̃(s) 6= p(s)), the difference de(s)

includes both the effect of the disturbances on the output variable and the model-plant

mismatch.

A simple way to connect the feedback controller c(s) with the IMC controller q(s) is

to redraw Figure 3.1 as a simple feedback system, which is shown in Figure 3.2.

c(s) =
u(s)
e(s)

=
q(s)

1−q(s)p̃(s)
(3.1)

q(s) =
c(s)

1+ p̃(s)c(s)
(3.2)

The closed-loop relationships between variables in Figure 3.2 are given by equations

(3.3) - (3.5) below,

y(s) =
p(s)q(s)r(s)

1+(p(s)− p̃(s))q(s)
+

(1− p̃(s)q(s))pd(s)d(s)
1+(p(s)− p̃(s))q(s)

(3.3)

u(s) =
q(s)(r(s)− pd(s)d(s))
1+(p(s)− p̃(s))q(s)

(3.4)

e(s) =
(1− p̃(s)q(s))(r(s)− pd(s)d(s))

1+(p(s)− p̃(s))q(s)
(3.5)

In the absence of model-plant mismatch ( p̃(s) = p(s)), these transfer functions simplify
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Figure 3.2: Alternate IMC Configuration Expressed as Classical Feedback System [12].

to,

y(s) = p(s)q(s)r(s)+(1− p̃(s)q(s))pd(s)d(s) (3.6)

u(s) = q(s)(r(s)− pd(s)d(s)) (3.7)

e(s) = (1− p̃(s)q(s))(r(s)− pd(s)d(s)) (3.8)

An ideal control system will make the process output follow its setpoint, and perfectly

reject all disturbances so that they do not affect the output. Therefore, the ideal controller

that could accomplish this requires that,

p(s)q(s) = 1 and p̃(s) = p(s) (3.9)

This implies q(s) = p(s)−1 , which may not be physically realizable.

3.2.2 Two-Degree-of-Freedom (2 DoF) Internal Model Control

If both good tracking of setpoint r and good disturbance rejection d are important and

if the dynamic characteristics of the two inputs r and d are substantially different, it is

advantageous to introduce another controller block (Figure 3.3) [82]. The effect of r and d

on the controlled variable, the manipulated variable and the control error can be described
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Figure 3.3: Two-Degree-of-Freedom (2 DoF) IMC [12].

as,

y(s) =
pqr

1+qd(p− p̃)
r+

1− p̃qd

1+qd(p− p̃)
pdd (3.10)

u(s) =
qr

1+qd(p− p̃)
r− qd

1+qd(p− p̃)
pdd (3.11)

e(s) = r(s)− y(s)

=

[
1− pqr

1+qd(p− p̃)

]
r− 1− p̃qd

1+qd(p− p̃)
pdd (3.12)

For p = p̃, equation (3.10) - (3.12) become,

y(s) = pqrr+(1− p̃qd)pdd (3.13)

u(s) = qrr−qd pdd (3.14)

e(s) = (1− pqr)r− (1− p̃qd)pdd (3.15)

where qd is designed for disturbance rejection and qr for setpoint tracking.

3.2.3 2 DoF IMC Design for Self-Regulation

As introduced in the previous sections, IMC is a Q-parametrized, model-based con-

troller design approach [82] which enables the user to adjust the shape and the speed of

the closed-loop system response through the choice of IMC controller qx(s), where x cor-

responds to either a setpoint (r) or disturbance (d) response. In a two-degree-of-freedom
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Figure 3.4: Closed-loop System Implemented with Self-regulation Designed by Two-
Degree-of-Freedom (2 DoF) Internal Model Control (IMC).

(2 DoF) IMC implementation, the setpoint tracking and disturbance rejection responses

are tuned independently. This implies that controller design through IMC offers significant

flexibility in describing a participant’s self-regulatory behavior through the tuning of con-

troller adjustable parameters, and represents a substantial improvement to using a classical

feedback control approach [10].

In this section, 2 DoF IMC approach [82] is applied to the modeling of self-regulation

for EI and PA, respectively, which is shown in Figure 3.4. Self-regulation is implemented

as a controller that adjusts the PBC inflows to the TPB models based on the discrepancies

between reference values and measured outcomes (e.g., GWG or dietary record). There

are two sets of reference trajectories applied to the model: EI reference values (r1) and

IOM guidelines (r2) in Table 2.4, which are the setpoints for EI self-regulation and PA

self-regulation, respectively. This self-regulation approach does not specify a PA setpoint

target per se, but PA is adjusted to achieve a weight target (which is also influenced by the
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EI controller). For simplicity, we consider the case where there is no time delay and no

model-plant mismatch. Consequently, the Laplace transfer function between PBC inflow

(ξ3(s)) and behavior outflow (η5(s)) in the TPB model is as follows,

η5x(s)
ξ3x(s)

= [
β x

54β x
43γx

33
(τx

5s+1)(τx
4s+1)(τx

3s+1)
+

β x
53γx

33
(τx

5s+1)(τx
3s+1)

], (3.16)

x = E (for EI) or P (for PA) (3.17)

where η5EI represents the participant’s behavior EI, and η5PA is the participant’s behavior

PA. Meanwhile, the EB model is reasonably approximated as the sum of two integrating

systems, as noted below,

∆W (s) =
KE

s
∆EI(s)+

KP

s
∆PAL(s) (3.18)

The closed-loop expressions for the manipulated variables (PBC inflows in EI-TPB and

PA-TPB adjusted by self-regulation: ξ SR
3EI and ξ SR

3PA) and controlled variables (EI and W )

are,

ξ
SR
3EI(s) = qr1(s)r1(s)−qd1(s)(∆EId(s)+ p̃1(s)∆ξ

I
3EI(s)) (3.19)

EI(s) = p̃1(s)qr1(s)r1(s)

+ (1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s)) (3.20)

ξ
SR
3PA(s) = qr2(s)r2(s)−qd2(s)p̃2(s)∆ξ

I
3PA(s)−qd2(s)p̃d(s)[p̃1(s)qr1(s)r1(s)

+ (1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s))]−qd2(s)∆W d(s) (3.21)

W (s) = p̃2(s)qr2(s)r2(s)+(1− p̃2(s)qd2(s))[p̃d(s)p̃1(s)qr1(s)r1(s)

+ p̃2(s)∆ξ
I
3PA(s)+∆W d(s)

+ p̃d(s)(1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s))] (3.22)

where p̃1(s) is the EI-TPB model, p̃d(s) is the approximated EB model for the EI input,

p̃2(s) is the PA-TPB model cascading with the approximated EB model for the PA input,
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and they are expressed as,

p̃1(s) =
β E

54β E
43γE

33

(τE
5 s+1)(τE

4 s+1)(τE
3 s+1)

+
β E

53γE
33

(τE
5 s+1)(τE

3 s+1)
(3.23)

p̃d(s) =
KE

s
(3.24)

p̃2(s) =
KP

s
[

β P
54β P

43γP
33

(τP
5 s+1)(τP

4 s+1)(τP
3 s+1)

+
β P

53γP
33

(τP
5 s+1)(τP

3 s+1)
] (3.25)

Meanwhile, in (3.19) - (3.22), ∆EId(s) is the EI increase due to pregnancy (a disturbance

variable); ∆W d(s) is the output weight disturbance; ∆ξ I
3EI(s) and ∆ξ I

3PA(s) are PBC inflow

changes by intervention in EI-TPB and PA-TPB, respectively; qr1(s), qr2(s), qd1(s), and

qd2(s) are the controllers that constitute the 2 DoF IMC and augmented with the filters

in the closed loop system to follow setpoint changes and reject disturbances, which are

defined as,

qr1(s) = p̃1(s)−1 fr1(s) =
1

(λr1s+1)3 p̃1(s)−1 (3.26)

qr2(s) = p̃2(s)−1 fr2(s) =
1

(λr2s+1)3 p̃2(s)−1 (3.27)

qd1(s) = p̃1(s)−1 fd1(s) =
1

(λd1s+1)3 p̃1(s)−1 (3.28)

qd2(s) = p̃2(s)−1 fd2(s) =
4λd2s+1
(λd2s+1)4 p̃2(s)−1 (3.29)

where qr1(s), qr2(s), and qd1(s) are augmented with Type I filters (no offset to steps) be-

cause the two setpoints and EI increase are all step changes; qd2(s) is augmented with a

Type II filter [82], because the EB model is approximated as a sum of integrators in (3.18),

and this makes ∆EId(s) as a Type II (asymptotically ramp) output disturbance for the PA

closed loop system. If qd1 rejects EI disturbance (∆EId(s)) too slowly, then qd2(s) can

reject this Type II EI disturbance and output disturbance ∆W d(s). λr1 , λr2 , λd1 and λd2 are

the filter parameters, respectively. These parameters are all functions of personal charac-

teristics or baseline conditions, such as age, social economic status, and social support.
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 Figure 3.5: Example of Different Self-regulation Responses (Scenarios 1 and 2) Resulting
from Changes in Tuning Parameters for the Self-regulation Structure of Figure 3.4. Red
Dash Lines Represent Setpoints Applied on a Daily Basis; Blue Solid Lines and Black
Dash-dot Lines Represent the Two Scenarios with Self-regulation, respectively; Pink Dot
Lines Represent the Disturbance. Parameters for Scenario 1 are: λr1 = 5,λr2 = 10,λd1 =
5,λd2 = 10; Parameters for Scenario 2 are: λr1 = 15,λr2 = 20,λd1 = 10,λd2 = 20.
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Figure 3.5 shows simulation examples with two different self-regulation responses for

a participant in the absence of the intervention (∆ξ I
3EI = 0, and ∆ξ I

3PA = 0). We examine

how the controlled variables and manipulated variables respond to the step change dis-

turbance in EI at day 5, a weight step setpoint change at day 200, an EI step setpoint at

day 420, and a ramp disturbance change in weight at day 650, respectively. Different re-

sponses can be obtained by adjusting the parameters λd1 , λd2 , λr1 , and λr2 . Specifically, in

the examples, Scenario 1 has lower values of λd1 , λr2 , λr1 , and λd2 , than Scenario 2; thus

scenario 1 displays faster responses to rejecting EI disturbances, following weight and EI

setpoint changes, and rejecting weight ramp disturbances, respectively. The IMC approach

to defining self-regulation thus allows simulations to be readily defined for different types

of dynamical systems responses, which in turn would describe individual participant re-

sponses.

3.3 Cascade Control

In the previous section, we use two one-loop control for each self-regulation associ-

ated with EI reference values and IOM guidelines, respectively. However, there are other

scenarios where 1) both EI reference values and IOM guidelines are associated with EI

self-regulation loop, or 2) not only IOM guidelines but also PA monitoring output might

influence PA self-regulation loop. The former one constitutes the cascade control for the

modeling of EI self-regulation, while the latter one requires the cascade control design for

the modeling of PA self-regulation, both of which are the focus in this section.

3.3.1 Introduction

Cascade control can improve control system performance over single-loop control

whenever either: (1) disturbances affect a measurable intermediate or secondary process

output that directly affects the primary process output that we would like to control; or (2)

the gain of the secondary process, including the actuator, is nonlinear [12]. The first case
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corresponds more closely to the dynamical systems model for the GWG problem. The

application of cascade control can help better limit the effect of the disturbances entering

the secondary variable on the primary output.

Cascade control can be usefully applied to any process where a measurable secondary

variable directly influences the primary controlled variable through some dynamics. Mean-

while, [12] states that it is not necessary for the inner loop dynamics to be faster than the

outer loop dynamics.

3.3.2 Cascade Structures and Controller Designs

Figure 3.6 is the standard IMC cascade structure. This is a specific form of a 2 DoF

control structure which can be used if in addition to the output to be controlled (y1), another

process output (y2) can be measured. It is usually to design q2 first with the out loop open

and then design q1 for the new plant consisting of the closed inner loop combined with

p1 [82].

The closed-loop relationship between variables in Figure 3.6 are given by equations

(3.30) - (3.32) below,

u1 =
[1− (p2− p̃2)q2]q1(r−d1)−q1(p1− p̃1)(1− p̃2q2)d2

1+(p2− p̃2)q2 +q1(p1− p̃1)p2
(3.30)

y2 =
p2q1(r−d1)+(1− p̃2q2)d2

1+(p2− p̃2)q2 +q1(p1− p̃1)p2
(3.31)

y1 =
p1 p2q1r+(1− p̃2q2)p1d2 +[1− p̃1 p2q1 +(p2− p̃2)q2]d1

1+(p2− p̃2)q2 +q1(p1− p̃1)p2
(3.32)

If there is no model-plant mismatch (p2 = p̃2 and p1 = p̃1), equations (3.30) - (3.32)

can be simplified into,

u1 = q1(r−d1) (3.33)

y2 = p̃2q1(r−d1)+(1− p̃2q2)d2 (3.34)

y1 = p̃1 p̃2q1r+(1− p̃2q2)p̃1d2 +(1− p̃1 p̃2q1)d1 (3.35)
94



-
-

p2(s)

p̃1(s)

p1(s)q1(s)
r(s) u(s) y1(s)

d1(s)

q2(s)

p̃2(s)

-
-

d2(s)

+u1(s)

u2(s)

y2(s)

d̃2(s)

d̃1(s)

+
++

++
+ +

Figure 3.6: IMC Cascade Structure [12].

u2 = u−u1 =−q2d2 (3.36)

Based on the equations above, the inner loop controller q2 should be chosen to invert

p̃2 as described in the previous section, while the outer loop controller q1 should approxi-

mately invert the entire process model p̃1 p̃2.

3.3.3 Cascade Control Design for Self-Regulation

There are two IMC design schemes associated with the EI self-regulation using cascade

control proposed in this dissertation. In this section, we will first introduce each of them,

and compare which one is better and simpler to design. After the cascade control is applied

for the modeling of EI self-regulation, the weighted IMC cascade control for EI and PA

self-regulations are explored and simulated with an illustration. Finally, this cascade con-

trol design will then also be implemented to the modeling of self-regulation using both PA

monitoring output data and IOM guidelines, which will be discussed in Section 3.3.3.3.

3.3.3.1 IMC Cascade Control for Energy Intake Self-regulation Loop

Figure 3.7 is the two DoF IMC cascade control for both inner loop and outer loop in EI

self-regulation. The inner loop is the standard 2 DoF IMC design, with qr2 and qd2 as the
95



-
-

p2(s)

p̃1(s)

p1(s)qr2(s)
r(s) y1(s)

d1(s)

qd2(s)

p̃2(s)

-
-

d2(s)

u1(s) u2(s) y2(s)

d̃2(s)

d̃1(s)

qr1(s)

qd1(s)

+
+

+
+

+ +
++

Figure 3.7: IMC Cascade Structure 1 for EI Self-regulation.

controllers to follow setpoint change and reject measured disturbance, respectively. When

tuning the inner loop with the outer loop open, we use the EI reference values in Table 2.4

as the setpoint. When the outer loop is closed, it tries to change the setpoint (EI reference

value) for the closed-loop system in the inner loop (u1). The setpoint for the whole EI

self-regulation r is the IOM guidelines, and qr1 and qd1 are 2 DoF IMC design for the outer

loop to follow setpoint change and eliminate disturbance and model-plant mismatch. The

closed-loop relationship between variables are given by,

y2(s) = p2u2 +d2 (3.37)

u2(s) = qr2u1−qd2[(p2− p̃2)u2 +d2]

=
qr2u1−qd2d2

1+qd2(p2− p̃2)
(3.38)

y1(s) = p1y2 +d1

= p1 p2u2 + p1d2 +d1

=
p1 p2qr2u1− p1 p̃2qd2d2

1+qd2(p2− p̃2)
+d1 (3.39)

u1(s) = qr1r−qd1[(p1− p̃1)y2 +d1]

= qr1r−qd1[(p1− p̃1)(p2u2 +d2)+d1] (3.40)
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where p2 and p̃2 are EI-TPB plant and model, d2 are measured disturbance (EI increase

with the time due to the pregnancy), u2 and y2 are manipulated variable (PBC inflow to

EI-TPB) and secondary controlled variable (energy intake) in the inner loop, respectively.

p1 and p̃1 are the energy balance model and the estimated energy balance model in (3.18)

for the EI input, u1 and y1 are the manipulated variable (EI reference values recommended

by the out loop IMC controllers) and primary controlled variable (GWG) in the outer loop.

Rearrange equations (3.38) and (3.40), the expression for the manipulated variable u1

can be obtained,

[1+qd2(p2− p̃2) + qd1(p1− p̃1)p1 p2qr2]u1 = [1+qd2(p2− p̃2)]qr1r

+ qd1(p1− p̃1)(p1 p2qd2−1)d2

− qd1[p1− p̃1 +1+qd2(p2− p̃2)]d1 (3.41)

Assume there is no model-plant mismatch (p1 = p̃1 and p2 = p̃2), then equation (3.41)

simplifies to,

u1(s) = qr1r−qd1d1 (3.42)

The other variables and control error are,

u2(s) = qr1qr2r−qr2qd1d1−qd2d2 (3.43)

y2(s) = qr1qr2 p̃2r−qr2qd1 p̃2d1−qd2 p̃2d2 +d2 (3.44)

y1(s) = qr1qr2 p̃1 p̃2r+(1−qr2qd1 p̃1 p̃2)d1 + p̃1(1−qd2 p̃2)d2 (3.45)

e(s) = r− y1

= (1−qr1qr2 p̃1 p̃2)r− (1−qr2qd1 p̃1 p̃2)d1− p̃1(1−qd2 p̃2)d2 (3.46)

The ideal controllers will make the closed-loop system track the setpoint change and

reject disturbances, and therefore, the controllers in this IMC cascade structure 1 should

be designed such that qr1qr2 invert the entire process model p̃1 p̃2 (EI TPB model cascades
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with the estimated energy balance model for EI input), qr2qd1 also invert the entire process

model p̃1 p̃2, and qd2 inverts the estimated energy balance model for EI input p̃2, which can

be expressed below,

qd2(s) = p̃−1
2 fd2 (3.47)

qr1(s) = p̃−1
1 fr1 (3.48)

qr2(s) = p̃−1
2 fr2 (3.49)

qd1(s) = p̃−1
1 fd1 (3.50)

where fd1 , fd2 , fr1 and fr2 are either type I or type II low-pass filters, based on the types of

the corresponding measured disturbances and setpoints.

Figure 3.8 is the another version of IMC cascade control for EI self-regulation. The

difference between this one and the previous one is how the model is placed for the outer

loop. The definition of the variables, the signals, the models and the plants are same with

the one in Figure 3.7, except that p̃ is the model for the entire plant (closed- loop system

in the inner loop cascading energy balance for EI input). The closed-loop relationship

between variables in Figure 3.8 are,

y2(s) = p2u2 +d2 (3.51)

u2(s) = qr2u1−qd2[(p2− p̃2)u2 +d2]

=
qr2u1−qd2d2

1+qd2(p2− p̃2)
(3.52)

y1(s) = p1y2 +d1

= p1 p2u2 + p1d2 +d1

=
p1 p2qr2u1− p1 p̃2qd2d2

1+qd2(p2− p̃2)
+d1 (3.53)
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Figure 3.8: IMC Cascade Structure 2 for EI Self-regulation.

u1(s) = qr1r−qd1(y1− p̃u1)

= qr1r−qd1

[
p1 p2qr2u1− p1 p̃2qd2d2

1+qd2(p2− p̃2)
+d1− p̃u1

]
(3.54)

Rearranging equation (3.54), the expression of u1 without approximation can be ob-

tained,

u1(s) =
[1+qd2(p2− p̃2)]qr1r+qd1 p1 p2qd2d2−qd1[1+qd2(p2− p̃2)](p1d2 +d1)

[1+qd2(p2− p̃2)](1−qd1 p̃)+qd1 p1 p2qr2

(3.55)

If there is no model-plant mismatch, we will get the expression for p̃ below,

p̃2(s) = p2 (3.56)

p̃(s) = qr2

[
p2

1+qd(p2− p̃2)

]
p1 = qr2 p̃1 p̃2 (3.57)

The manipulated variables u1, u2, the controlled variables y1, y2, and the control error

can be simplified as,

u1(s) = qr1r+qd1 p̃1 p̃2qd2d2−qd1 p̃1d2−qd1d1 (3.58)

u2(s) = qr2u1−qd2d2

= qr1qr2r+(qd1qd2qr2 p̃1 p̃2−qd1qr2 p̃1−qd2)d2−qd1qr2d1 (3.59)
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y2(s) = qr1qr2 p̃2r+(qd1qd2qr2 p̃1 p̃2
2−qd1qr2 p̃1 p̃2−qd2 p̃2 +1)d2

−qd1qr2 p̃2d1 (3.60)

y1(s) = qr1qr2 p̃1 p̃2r+(1−qd1qr2 p̃1 p̃2)d1

+(qd1qd2qr2 p̃2
1 p̃2

2−qd1qr2 p̃2
1 p̃2−qd2 p̃1 p̃2 + p̃1)d2 (3.61)

e(s) = r− y1

= (1−qr1qr2 p̃1 p̃2)r− (1−qd1qr2 p̃1 p̃2)d1

−(qd1qr2 p̃1 p̃2−1)(qd2 p̃2−1)p̃1d2 (3.62)

The ideal controllers to make the closed-loop system follow setpoint changes and de-

cline disturbances should have control error equal to zero. If we compare the control error

in equation (3.62) with the one in equation (3.46), we will see that the design of the con-

trollers are same, which are listed in equations (3.47) - (3.50), except that the effect of

disturbance d2 on the control error will also be influenced by the tuning in d1. In (3.46),

d2 is rejected by tuning the controller qd2 to offset its effect on primary controlled variable,

and control error, while in (3.62), d2 is declined by tuning not only the controller qd2 , but

also qd1qr2 .

Even though the designs of the controllers in these two IMC cascade control structures

(Figure 3.7 and Figure 3.8) are similar, the structure 1 in Figure 3.7 is preferred. This

is because it not only expresses the manipulated variables, controlled variables and the

control error in a simpler manner, but also makes the model p̃1 in Figure 3.7 independent

of the closed-loop system in the inner loop, compared with p̃ in Figure 3.8 that will be

designed relying on the tuning parameters in the controller qr2 in the inner loop as indicated

in (3.57).
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3.3.3.2 Weighted IMC Cascade Control for Energy Intake and Physical Activity

Self-Regulation

In the previous subsection, the two structures of the IMC cascade control for EI self-

regulation are analyzed and compared. This section will mainly focus on the application

of the IMC cascade structure 1 in Figure 3.7 to design the self-regulation in GWG model.

Figure 3.9 shows the IMC design for self-regulation loops in GWG model, where pEB

is the energy balance model, pw is the model to split the output GWG based on the weight

(w%, w between 0 and 100) which shows how much weight loss is contributed by EI self-

regulation and PA self-regulation, respectively. p3 and p̃3 are PA-TPB process and model

respectively; p̃4 is the estimated energy balance model for PA input, qd3 and qr3 are two

controllers for the PA self-regulation to reject disturbances and follow setpoint w%× r(s).

The other blocks are same as what is illustrated in Figure 3.7. The expressions of these

models are as follows,

p̃1(s) =
KE

s
(3.63)

p̃2(s) =
β E

54β E
43γE

33

(τE
5 s+1)(τE

4 s+1)(τE
3 s+1)

+
β E

53γE
33

(τE
5 s+1)(τE

3 s+1)
(3.64)

p̃3(s) =
β P

54β P
43γP

33

(τP
5 s+1)(τP

4 s+1)(τP
3 s+1)

+
β P

53γP
33

(τP
5 s+1)(τP

3 s+1)
(3.65)

p̃4(s) =
KP

s
(3.66)

Meanwhile, qr1(s), qr2(s), qr3(s),qd1(s), qd2(s), and qd3(s) are the IMC controllers aug-

mented with the filters in the closed loop system to follow setpoint changes and reject

disturbances, which are defined as,

qr1(s) = p̃1(s)−1 fr1(s) =
1

(λr1s+1)2 p̃1(s)−1 (3.67)

qd1(s) = p̃1(s)−1 fd1(s) =
2λd1s+1
(λd1s+1)2 p̃1(s)−1 (3.68)

101



-
-

p2(s) p̃1(s)qr2(s)

w% × r(s)

y1(s)

qd2(s)

p̃2(s)

-
-

d2(s)

u1(s) u2(s)

y2(s)

d̃2(s)

d̃1(s)

qr1(s)

qd1(s)

- -
p̃3(s)

p3(s)qr3(s)
u3(s)

y(s)

d̃3(s)qd3(s)

pEB(s)

(1 − w%) × r(s)

pw(s)

p̃4(s)

uPA(s)

uEI(s)

+
++

+
+

+

+
+

Figure 3.9: IMC Cascade Structure for Self-regulation Loops in GWG Model, with
Weight Parameter Fraction w% for the Setpoint.

qr2(s) = p̃2(s)−1 fr2(s) =
3λr2s+1
(λr2s+1)3 p̃2(s)−1 (3.69)

qd2(s) = p̃2(s)−1 fd2(s) =
3λd2s+1
(λd2s+1)3 p̃2(s)−1 (3.70)

qr3(s) = (p̃3(s)p̃4(s))−1 fr3(s) =
1

(λr3s+1)4 (p̃3(s)p̃4(s))−1 (3.71)

qd3(s) = (p̃3(s)p̃4(s))−1 fd3(s) =
4λd3s+1
(λd3s+1)4 (p̃3(s)p̃4(s))−1 (3.72)

where qr1(s) and qr3(s) are augmented with Type I filters (no offset to steps); qd1(s), qd2(s),

qd3(s), and qr2(s) are augmented with Type II filters [82] in order to have no offset to ramp

disturbance or setpoint change.

The cascade control (upper level) can better describe the two control loops in EI self-

regulation with two setpoints (EI reference value for inner loop and IOM guidelines for

outer loop), while the 2 DoF IMC design (lower level) is used to model PA self-regulation.

If there is no intervention assumed, the increase of PBC in both EI-TPB and PA-TPB are

contributed by self-regulation. The increase of PBC in EI-TPB leads to the decrease of EI

and GWG, and the increase of PBC in PA-TPB results in the higher PAL and lower GWG.
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Because the energy balance model does not indicate how much proportion of the reduced

GWG is contributed by the change behavior of EI or PA, we have to rely on the weighted

IMC cascade control structure to solve this problem. The weight parameter (w%) is used

to illustrate the percentage of the reduced GWG resulting from the improved PA behavior

by self-regulation, which also serves as the setpoint for the PA self-regulation loop, and the

setpoint for the EI self-regulation is therefore updated as (1−w%)× r(s) (both setpoints

are shown in Figure 3.9). The sum of these two setpoints gives the IOM guidelines.

Figure 3.10 shows a simulation example of self-regulation responses for a participant in

the absence of the intervention (∆ξ I
3EI = 0, and ∆ξ I

3PA = 0) using the cascade IMC structure

with weight parameter fraction (w% = 0.6). In this examples, EI will have a step change

disturbance at day 5, weight gain will a have step setpoint change at day 200, and a ramp

disturbance at day 400. The EI reference values are now generated by the controllers qr1

and qd1 . With fast tuning of qr2 (qr2 = 1), the participant will be able to follow the EI

setpoint assigned by the outer loop controllers. Meanwhile, the closed-loop system can

also reject step EI disturbance and ramp weight disturbance by augmenting qd2 with Type

I filter, and qd1 and qd3 with Type II filters. The step change in weight step point is -5 kg,

and the weight parameter w% = 0.6, therefore, the behavior improvement in PA will lead

to 3 kg weight loss, and the behavior improvement in EI will result in 2 kg weight loss.

Although we do not have systematic guidelines to determine the weight parameter (w%)

so far, this information might be available after the clinical trial for this GWG intervention

is performed.

3.3.3.3 IMC Cascade Control for Physical Activity Self-regulation Loop

If PA monitoring data is available, it can also help inform PA self-regulation, so as

to motivate the participant to achieve her GWG goal. Because this PA self-regulation

is associated with IOM guidelines, and PA monitoring data, this constitutes the cascade
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Figure 3.10: Example of Self-regulation Response Using the Cascade IMC Structure
of Figure 3.9 with Weight Parameter Fraction (w% = 0.6) for Selected Tuning Parameters.
Red Dash Lines Represent Setpoints Applied on a Daily Basis; Blue Solid Lines Represent
the Participant’s Response with Self-regulation; Pink Dot-dash Lines Represent the Dis-
turbance. Parameters for this Simulation are: λr1 = 10,λr2 = 1,λr3 = 10,λd1 = 15,λd2 =
15,λd3 = 15.
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control for PA self-regulation, and it is very similar to the cascade control scheme for EI

self-regulation depicted in Figure 3.7.

Figure 3.11 is the IMC cascade structure for GWG model, with PA self-regulation

associated with PA monitoring data and IOM guidelines. Instead of having cascade control

in EI self-regulation, this IMC cascade structure for GWG model will have IOM guidelines

(r2) as setpoint for the outer loop of PA self-regulation, while the PA setpoint (r3) in the

inner loop of PA self-regulation will be generated by the outer loop controller qr2 and qd2 .

Meanwhile, additional PA disturbance (∆PAd) is added into this cascade control structure,

which will have the same effect as the EI disturbance (∆EId) in the EI self-regulation loop.

The closed-loop expressions for the manipulated variables (PBC inflows in EI-TPB and

PA-TPB adjusted by self-regulation inputs ξ SR
3EI and ξ SR

3PA) and controlled variables (EI, PA,

and W ) are,

ξ
SR
3EI(s) = qr1(s)r1(s)−qd1(s)(∆EId(s)+ p̃1(s)∆ξ

I
3EI(s)) (3.73)

ξ
SR
3PA(s) = qr3(s)qr2(s)r2(s)−qr3(s)qd2(s)∆W d(s)

− qr3(s)qd2(s)p̃d1(s)[(1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s))

+ p̃1(s)qr1(s)r1(s)]−qd3(s)[p̃3(s)∆ξ
I
3PA(s)+∆PAd(s)] (3.74)

EI(s) = p̃1(s)qr1(s)r1(s)

+ (1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s)) (3.75)

PA(s) = p̃3(s)qr3(s)qr2(s)r2(s)− p̃3(s)qr3(s)qd2(s)∆W d(s)

− p̃3(s)qr3(s)qd2(s)p̃d1(s)[(1− p̃1(s)qd1(s))(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s))

+ p̃1(s)qr1(s)r1(s)] (3.76)
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W (s) = (1− p̃3(s)qr3(s)qd2(s)p̃d2)[p̃d1(s)p̃1(s)qr1(s)r1(s)+∆W d(s)

+ p̃d1(s)(1− p̃1(s)qd1(s)(∆EId(s)+ p̃1(s)∆ξ
I
3EI(s))]

+ p̃d2(s)(1− p̃3(s)qd3(s))[p̃3(s)∆ξ
I
3PA(s)+∆PAd(s)]

+ p̃3(s)qr3(s)qr2(s)p̃d2(s)r2(s) (3.77)

where p̃1(s) is the EI-TPB model, p̃3(s) is PA-TPB model, p̃d1(s) is the approximated EB

model for the EI input, p̃d2(s) is the approximated PA model for the PA input, and they are

expressed as,

p̃1(s) =
β E

54β E
43γE

33

(τE
5 s+1)(τE

4 s+1)(τE
3 s+1)

+
β E

53γE
33

(τE
5 s+1)(τE

3 s+1)
(3.78)

p̃3(s) =
β P

54β P
43γP

33

(τP
5 s+1)(τP

4 s+1)(τP
3 s+1)

+
β P

53γP
33

(τP
5 s+1)(τP

3 s+1)
(3.79)

p̃d1(s) =
KE

s
(3.80)

p̃d2(s) =
KP

s
(3.81)

Meanwhile, in (3.73) - (3.77), ∆EId(s) is the EI increase due to pregnancy (a disturbance

variable); ∆PAd(s) is the PA disturbance (input disturbance for energy balance model);

∆W d(s) is the output weight disturbance; ∆ξ I
3EI(s) and ∆ξ I

3PA(s) are PBC inflow changes

by intervention in EI-TPB and PA-TPB, respectively; qr1(s), qr2(s), qr3(s),qd1(s), qd2(s),

and qd3(s) are the controllers that constitute the 2 DoF IMC and augmented with the filters

in the closed-loop system to follow setpoint changes and reject disturbances, which are
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Figure 3.11: IMC Cascade Structure for GWG Model, with PA Self-regulation Loop
Associated with PA Monitoring Results and IOM Guidelines.

defined as,

qr1(s) = p̃1(s)−1 fr1(s) =
1

(λr1s+1)3 p̃1(s)−1 (3.82)

qr2(s) = p̃d2(s)
−1 fr2(s) =

1
(λr2s+1)2 p̃d2(s)

−1 (3.83)

qr3(s) = p̃3(s)−1 fr3(s) =
1

(λr3s+1)3 p̃3(s)−1 (3.84)

qd1(s) = p̃1(s)−1 fd1(s) =
1

(λd1s+1)3 p̃1(s)−1 (3.85)

qd2(s) = p̃d2(s)
−1 fd2(s) =

3λd2s+1
(λd2s+1)3 p̃d2(s)

−1 (3.86)

qd3(s) = p̃3(s)−1 fd3(s) =
1

(λd3s+1)3 p̃3(s)−1 (3.87)

where qr1(s), qr2(s), qr3(s), qd1(s) and qd3(s) are augmented with Type I filters (no off-

set to steps) because the setpoints, EI and PA disturbance are all step changes; qd2(s) is

augmented with a Type II filter [82], because the EB model is approximated as a sum of

integrators in (3.18), and this makes ∆EId(s) and ∆PAd(s) as Type II (asymptotically ramp)
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Figure 3.12: Example of Self-regulation Response Using the Cascade IMC Structure
per Figure 3.11 with Selected Tuning Parameters for Fast Tuning of PA. Red Dash Lines
Represent Setpoints Applied on a Daily Basis; Blue Solid Lines Represent the Participant’s
Response with Self-regulation; Pink Dot Lines Represent the Disturbance. Parameters for
this Simulation are: λr1 = 15,λr2 = 20,λr3 = 1,λd1 = 10,λd2 = 10,λd3 = 10.

output disturbances for the PA closed loop system. If qd1 and qd3 rejects EI disturbance

(∆EId(s)) and PA disturbance (∆PAd(s)) too slowly, then qd2(s) can reject these Type II

disturbances and output disturbance ∆W d(s).

Figure 3.12 and Figure 3.13 show two simulation examples of self-regulation responses
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Figure 3.13: Example of Self-regulation Response Using the Cascade IMC Structure
per Figure 3.11 with Selected Tuning Parameters for Slow Tuning of PA. Red Dash Lines
Represent Setpoints Applied on a Daily Basis; Blue Solid Lines Represent the Participant’s
Response with Self-regulation; Pink Dot Lines Represent the Disturbance. Parameters for
this Simulation are: λr1 = 15,λr2 = 20,λr3 = 4,λd1 = 10,λd2 = 10,λd3 = 10.
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for a participant in the absence of the intervention (∆ξ I
3EI = 0, and ∆ξ I

3PA = 0) using the

cascade IMC structure in PA self-regulation discussed above. Specifically, in the exam-

ples, we can examine how the controlled variables and manipulated variables respond to

the step change disturbance in EI at day 5, a weight step setpoint change at day 150, an

EI step setpoint at day 300, a ramp disturbance change in weight at day 450, and a PA

step disturbance at day 600 respectively. By introducing two additional controllers qr3 and

qd3 , the formulation of this self-regulation can make use of PA monitoring data obtained in

the real clinical trial, and the controllers in the outer loop will be able to calculate the PA

setpoint (r3) according to the weight setpoint (IOM guidelines r2) in the PA self-regulation

loop, and better decline the external PA disturbance ∆PAd . When the participant can fol-

low the PA setpoint assigned by the controller in a fast manner (Figure 3.12), she should

also be able to achieve her weight gain goal. If the tuning parameter λr3 is greater, the

participant could not completely follow PA setpoint change generated by the controller,

which is the case in Figure 3.13. As a result, her PBC inflow to PA-TPB and PAL exhibits

significant oscillatory responses, while her weight gain also displays relatively small os-

cillations around the GWG setpoint. The EI profile in both cases is not effected by the

tuning of λr3 . From the comparison, we can also conclude that the simulation response

for the controlled variables and the manipulated variables with fast tuning parameter λr3

in Figure 3.12 are very similar to the one shown in Figure 3.5. Therefore, for the sake of

simplicity, the self-regulation formulation in Section 3.2.3 will be used.

3.4 Simulation Studies

The overall schematic representation of the GWG simulation model using 2 DoF IMC

design for self-regulation depicted in Section 3.2.3 can also be visualized as a network of

production-inventory systems that is akin to a supply chain, as shown in Figure 3.14. The

outflows of the TPB models are an individual’s behaviors (EI and PA), which serve then as
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Figure 3.14: Adaptive Gestational Weight Gain Intervention Simulation Model, Repre-
sented as a Network of Production Inventory Systems.

the inflows to the EB model. There are two self-regulation loops associated with EI refer-

ence values and IOM guidelines, which adjust the PBC inventory in the two TPB models.

Based on the measurements of important outcomes (in this case, GWG), decision rules

adapt the intervention dosages which are the inflows to the intervention delivery dynamics,

the outflows of which are the new inflows to the two TPB models.

In this section, we consider three hypothetical simulation scenarios that rely on our pro-

posed simulation model in Figure 3.14. The first study focuses on the comparison of the

responses of a participant among cases involving no intervention, a fixed intervention and

an adaptive intervention; the latter illustrates how adaptive interventions adjust the levels
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and types of intervention components determined by the decision rules in the response to

individual’s unique needs, and assist pregnant women in meeting the IOM GWG guide-

lines. The second simulation study is a participant-focused scenario where the main goal is

to analyze the different behavioral responses due to intra-individual variability by changing

the parameters in the behavioral models that allow the evaluation of various combination of

self-regulation and behavioral improvements under the influence of intervention. The third

study aims at understanding the inter-individual variability by assuming the participants

all have the same EI increase but with different pre-gravid BMI categories, self-regulation

responses, and behavioral improvements through PBC changes.

All the simulations are based on hypothetical 25-year-old females. Maternal age was

selected using 2010 data from the Center for Disease Control and Prevention that indicates

that the mean age of mothers at first birth is 25.4 years [71]. For the sake of simplicity, we

will only focus on the effects that intervention components and self-regulation play on the

PBC inflow to the TPB models. In both the intervention and non-intervention treatment,

we assume the age of gestation at time of delivery to be 40 weeks. We stage a scenario that

with no intervention, the participant will experience a ramp increase in her energy intake

(EI) from day 35 to day 91, and her EI will keep constant throughout the remaining of the

pregnancy. The participant is sedentary at the time of conception with PAL = 1.65, and

potentially engaged in less PA from second to third trimester as she gains weight in the

absence of intervention. Despite the fact that the intervention can help improve her PAL

in the second trimester, we will consider that there will still be a decrease in her PA during

the latter stage of pregnancy (especially one or two months prior to delivery) due to the

fact that pregnant women can be reluctant to carry out PA at late third trimester. These are

two PA disturbances that will be present in both the intervention and no intervention cases,

and which will consequently lower her energy expenditure (EE) in the EB model.

The simulation study assumes that the participant enters the GWG intervention with the
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Table 3.1: Summary of Dosage Augmentations for a Representative GWG Adaptive Inter-
vention Consisting of IF-THEN Decision Rules in Section 3.4

Options Adaptation
Baseline Intervention NA

Step up 1 Baseline + HE Active Learning Component
Step up 2 Baseline + 1 + PA Active Learning Component
Step up 3 Baseline + 1+2 + HE Active Learning Componentt
Step up 4 Baseline + 1 + 2 + 3 + PA Active Learning Component
Step up 5 Baseline + 1 + 2 + 3 + 4 + HE Active Learning Component

baseline program at week 14 (day 98); at this time she starts engaging in self-regulatory

behavior (e.g., weighing herself to monitor GWG, and using dietary records to monitor EI

and a pedometer to monitor PAL). The dosage of the intervention components is adapted

every four weeks based on decision rules of whether she is meeting her GWG goal or not

until the end of week 37 (day 265). We focus on the augmentation of two of the intervention

components previously described in [10]; these are HE and PA active learning which are

shown in Table 3.1.

3.4.1 Contrasting Fixed versus Adaptive Interventions

This portion of the simulation study described in this section consists of an evalua-

tion of the adaptive intervention via IF-THEN decision rules depicted in Table 3.1, and a

comparison of the response of a given participant to the adaptive intervention, a traditional

fixed intervention, and a scenario involving no intervention. For the fixed intervention case,

only the baseline portion of the adaptive intervention is provided to the participant along

with self-regulation; there occurs no augmentation on either the HE or PA active learn-

ing components. For the case of no intervention, we consider that there is no significant

self-regulation at work; the assumption in this case is that this participant is not actively

monitoring her weight, EI, or PA.
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Table 3.2: Model Parameters for the Simulation Studies in Section 3.4.1. Time Constants
(τi), Delays (θi), and Self-regulation Adjustable Parameters (λr, λd) are in Units of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 4 c1 2 2
τ1 1 30 γ11 1 0.7
τ2 1 30 γ22 1 0.5
τ3 1 10 γ33 1 0.7
τ4 1 20 β41 1 0.34
τ5 1 30 β42 1 0.27

θ1 · · ·θ3 0 0 β43 1 0.15
θ4 · · ·θ6 0 0 β53 0 0.08
θ7, θ8 0 0 β54 1 0.42

k11 · · ·k17 0 - θ11 · · ·θ17 0 -
k21 · · ·k27 0 - θ21 · · ·θ27 0 -

k31 0.001 - θ31 0 -
k32 0.001 - θ32 0 -
k33 0.003 - θ33 0 -
k34 0.001 - θ34 0 -

k35 · · ·k37 0 - θ35 · · ·θ37 0 -
k41 · · ·k47 - 0 θ41 · · ·θ47 - 0
k51 · · ·k57 - 0 θ51 · · ·θ57 - 0
k61 · · ·k63 - 0 θ61 · · ·θ63 - 0
k64 · · ·k66 - 0.005 θ64 · · ·θ66 - 0

k67 - 0.015 θ67 - 0.015
λr 80 100 λd 90 140
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The simulation is based on a participant with pre-gravid parameters of height 170 cm

and weight 80 kg, which classifies her as overweight (BMI=27.68). Table 3.2 summarizes

the model parameters in the simulation study, including the behavioral parameters, time

constants τi, time delays θi, gains for the participant, and filter parameters in IMC design,

respectively. All these values are hypothetical but have been selected such that the simu-

lated responses mimic those of an actual participant. For all three scenarios, the participant

has a ramp increase in her EI in the first trimester, and she will remain sedentary throughout

the first trimester.

Figure 3.15 shows the participant’s response in the PBC inflows to the EI-TPB and

PA-TPB models, the participant’s weight, EI, the change of PAL, EE, and the dosages of

HE active learning and PA active learning for the cases with an adaptive intervention via

IF-THEN decision rules, a fixed intervention, and no intervention, respectively. The inter-

ventions (adaptive and fixed) start at week 14 with the participant receiving the baseline

program; this remains unchanged in the fixed intervention case. However, this baseline

intervention is not enough for this participant due to her high EI , which leads to her

GWG outside the IOM guidelines at the time of her second assessment circle (week 18).

The intervention dosage gets augmented in the adaptive case, as dictated by the decision

rules and her past and current responses. Meanwhile, because of her increased dosage,

the participant’s PBC inflows to the TPB models increase almost linearly as a result of the

integrating action from the intervention delivery dynamics. The slope of PBC profile in

both EI-TPB and PA-TPB is steeper in the adaptive intervention than the fixed intervention

because of dose augmentation. Therefore, the participant experiences a faster decrease

in EI, and increases her EE by involving herself in more PA, leading to an increase of

her PAL from sedentary (PAL=1.65) at the start of the intervention to moderately active

(PAL=1.70) around day 200, remaining at around this level throughout her pregnancy even

in the face of PA disturbances. All these lead to her GWG increasing more slowly in the
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adaptive intervention case. Therefore, the participant is able to meet her GWG goal at day

215, and keep her EI within the IOM guidelines by day 230. At late pregnancy, the partic-

ipant achieves her GWG and EI targets just a little below the average settings. The fixed

intervention can only help this participant meet her GWG goal at day 240, but she cannot

manage her EI within the reference values prior to the end of the pregnancy.

In the scenario with no intervention, the participant will not experience a change in

PBC inflows to the TPB models during the pregnancy. Because the increases in EI are

not corrected in any way, her weight gain increases very fast. Starting from the second

trimester, she is not willing increase her PA; her PAL and EE decrease, which accelerates

the increase of her GWG. At the time of delivery, this participant increases her GWG by

around 20 kg; meanwhile her EI is also outside the EI reference values.

The following conclusions can be drawn from the simulation results in this study:

• If no intervention is offered during pregnancy, most overweight and obese partic-

ipants will not be able to regulate their GWG within the IOM guidelines due to

difficulty engaging in healthy eating and physical activity.

• Traditional fixed interventions can offer some degree of effectiveness; nevertheless,

they assign the same dosage to participants without considering their personal needs

and individual response. As will be shown in Sections 7.2 and 7.3, fixed interven-

tions are sometimes efficient and useful in the preventing excessive GWG among

overweight pregnant women who have strong self-regulation and high PBC change,

while most overweight and obese pregnant women may require an intensive inter-

vention to manage their weight over the course of pregnancy; fixed interventions

with lower dosage sometimes are insufficient for them.

• In adaptive interventions, IF-THEN decision rules use measurements of important

outcomes to address the individual’s needs. The tailoring variables (GWG) are as-
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Figure 3.15: Simulation Responses Contrasting Adaptive, Fixed, and no Intervention for
a Given Participant (Section 7.1). Red Dot Lines Represent the 2009 IOM Guidelines
Applied on a Daily Basis; the Blue Solid Lines Represent the Case with Adaptive Inter-
ventions via IF-THEN Decision Rules, the Black Dash-dot Lines Represent the Case with
Fixed Interventions, and the Dash Pink Lines Represent the Case with no Intervention.
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sessed periodically and therefore, the intervention is adjusted on an ongoing basis if

it is necessary. Thus, adaptive interventions can provide individually-tailed dosages

to the participant according to her unique needs and responses collected via self-

monitoring, which leads to better intervention effectiveness and results.

3.4.2 Understanding within Participant Variability

The simulations in this section focus on understanding intra-individual variability by

examining the effects of both adaptive and fixed interventions on a participant exhibiting

various types of behavioral responses. The participant considered is overweight with pre-

gravid body mass 75 kg, 160 cm in height. By changing some of the parameters in the TPB

and self-regulation behavioral models, the participant will display differing GWG profiles

as a consequence of the differences in the speed and shape of the behavioral responses,

which ultimately influences her GWG through the energy balance model. We consider the

following four scenarios:

1. The participant shows strong self-regulation response and behavioral improvement

through the intervention.

2. The participant has strong self-regulation response, but does not show as much be-

havioral improvement as she does in the first scenario.

3. The participant has high behavioral improvement through the influence of the inter-

vention on PBC, intention and behavior, but shows weak self-regulation through a

very slow response in this facet of the model.

4. The participant shows weak self-regulation response as in the earlier case, and does

not improve her behavior as much as she does in the first and third scenarios as a

consequence of the intervention.
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Table 3.3: Model Parameter Changes for the Within-individual Variability Simulation
Study in Section 3.4.2.

Scenario Parameter EI-TPB PA-TPB
1 Table 3.2 Table 3.2 Table 3.2
2 ∆τ3 4 10

∆β43 -0.2 -0.09
3 ∆λd 20 70
4 ∆τ3 4 10

∆β43 -0.2 -0.09
∆λd 20 70

The model parameters in Table 3.2 are selected in the first (base) scenario, except that

λd = 80 in the EI-TPB model so that the participant exhibits strong EI self-regulation. The

parameters for the remaining three scenarios involve selected parameter deviations from

the first scenario, which is summarized in Table 3.3.

Figure 3.16 shows the participant’s response for the maternal body mass, EI and EE

for the four scenarios under the influence of adaptive interventions (blue lines) and fixed

interventions (black lines); Figure 3.17 presents the dosages of HE active learning and PA

active learning for the four adaptive intervention scenarios, respectively. The simulation

results indicate that when the participant has both strong self-regulation and behavioral

improvement resulting from the intervention (scenario 1), she is able to manage her GWG

within the IOM guidelines with either a fixed or adaptive interventions. However, her EI

is almost barely within the reference values at the time of her delivery for the fixed inter-

vention case. If the intervention does not have much influence on this same participant by

reducing the gain and increasing the time constant in TPB models (scenario 2), she is still

able to control her GWG with strong self-regulation responses during the interventions, but

her EI is outside the reference values for fixed interventions. Because adaptive interven-

tions augment dosages to meet the participant’s need, her EI reaches the average bound of
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Figure 3.16: Simulation Response for the Participant’s Weight, Energy Intake and Energy
Expenditure for the Four Scenarios with Parameters Listed in Table 3.3. The Red Dashed-
dotted Lines Represent the 2009 IOM Guidelines Applied on a Daily Basis; the Blue Thick
Solid Lines Represent the Scenarios with Adaptive Interventions via IF-THEN Decision
Rules, and Black Thin Dashed Lines are the Scenarios with Fixed Interventions.
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the reference values at late pregnancy. The third scenario demonstrates the importance of

self-regulation during the interventions by showing that the participant cannot achieve ei-

ther her GWG or EI goals with a fixed intervention with slow self-regulation, even though

the intervention helps improve her PBC and behavior. Meanwhile, as a consequence of the

increased potency provided by an adaptive intervention, the participant succeeds in regulat-

ing her GWG and EI within its corresponding reference values, respectively. Nonetheless,

the improvements she makes in the adaptive intervention are not as efficient and effective

as the ones in the first and second scenarios. As is seen in Figure 3.16, her GWG and EI

start to reach the upper bound of the reference values in the late third trimester, while these

occur in the early third trimester in the first two scenarios. The fourth scenario combines

the bad elements of the second and third scenarios as a worst case situation which might

happen to a participant with sluggish self-regulation and poor behavioral improvement as a

result of the intervention. The fixed intervention fails to assist this participant in achieving

her GWG and EI goals in this scenario as well. In the adaptive intervention, the participant

receives the maximum dosage at late of the pregnancy by having her dosages augmented

at each assessment cycle, as is shown in Figure 3.17, which leads to her GWG and EI

reaching the upper bound of the reference values towards the end of her pregnancy.

In closing, this section has sought to understand variability within a participant by con-

sidering different behavioral and self-regulation responses that may occur during the in-

tervention. Although a fixed intervention may be helpful and sufficient for an overweight

pregnant woman who possesses both strong self-regulation and behavioral response, it fails

to prevent excessive GWG when the participant demonstrates any weak response during

the intervention. Adaptive interventions may enable delivery of interventions with greater

degree of efficacy and personalization, which is demonstrated in all four evaluated scenar-

ios. Meanwhile, self-regulation is as important as the influence of intervention dosages on

the participant’s behavioral change through PBC and intention during the interventions.
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3.4.3 Understanding Variability between Participants

The simulations in this section are intended to explore variability between participants

that are distinguished not only by different self-regulation and intervention effects, but

also by having different pre-pregnancy BMI categories. By assuming that all participants

experience the same EI increase in their first trimester, we can observe how weight gain

and EI differs between these participants during the second and third trimesters, and better

understand how fixed and adaptive interventions will work for women with different BMI,

overweight and obese in particular. This section examines the following four hypothetical

participants:

1. overweight with pre-gravid weight 75 kg, height 160 cm (BMI=29.30), strong self-

regulation responses and high PBC change resulting from an intervention.

2. overweight with pre-gravid weight 80 kg, height 170 cm (BMI=27.68), weak self-

regulation responses and low PBC change resulting from an intervention.

3. obese with pre-gravid weight 90 kg, height 165 cm (BMI= 33.06), strong self-

regulation responses and high PBC change resulting from an intervention.

4. obese with pre-gravid weight 80 kg, height 160 cm (BMI= 31.25), weak self-regulation

responses and low PBC change resulting from an intervention.

As was illustrated in the intra-participant variability study of Section 7.2, the model

parameters in Table 3.2 are used to define the characteristics of the first participant, except

that λd = 80 in the EI-TPB model so that the participant exhibits strong EI self-regulation.

Meanwhile, the parameters for the other three participants are based on deviations for

selected parameters from the first participant, as summarized in Table 3.4.
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Table 3.4: Model Parameter Changes for the Inter-individual Variability Simulation Study
in Section 3.4.3

Participant Parameter EI-TPB PA-TPB
1 (BMI=29.30) Table 3.2 Table 3.2 Table 3.2
2 (BMI=27.68) ∆λd 20 60
3 (BMI=33.06) ∆τ3 0 -2

∆γ33 0 0.1
∆γ53 0 0.01
∆λd 5 30

4 (BMI=31.25) ∆τ3 0 2
∆γ33 0 0.1
∆λd 20 60
p1 1 0

Figure 3.18 shows the participants’ responses for weight and EI, Figure 3.19 is the

participants’ response for PBC from the EI-TPB and PA-TPB models, while Figure 3.20

shows the dosages of HE and PA active learning for the four overweight and obese partic-

ipants under the influence of adaptive and fixed interventions, respectively.

The simulation results demonstrate how different participants respond to a similar in-

crease in EI in the first trimester while subject to a fixed or adaptive intervention with self-

regulation. When we compare the simulation results for the first and second participants

who belong to the same BMI category (but have different self-regulation responses and pre-

gravid parameters) we can see that both participants increase their EI by approximately 470

kcal in the first trimester which is much higher than they are supposed to increase as per

the IOM EI reference values. The first participant has stronger self-regulation response,

but one less dosage augmentation in PA active learning than the second participant. This

means that the higher PBC increase witnessed in the EI-TPB model is contributed by her

strong EI self-regulation. The PBC increase in the PA-TPB model is almost the same for

both participants, because the first participant’s stronger self-regulation is equivalent to the
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influence of one more augmented PA active learning dose assigned to the second partici-

pant during the intervention. Thus, the first participant is able to control her weight gain

earlier and faster within the IOM guidelines as a consequence of her strong self-regulation

and high PBC influence, even though she receives less augmentation from the intervention

than the second participant. A fixed intervention can enable the first participant to achieve

her GWG goal within the guideline with the help of strong self-regulation and high PBC

change from the influence of the intervention. However, it fails to assist the second partic-

ipant in meeting her GWG goal.

The third participant is not in the same BMI category as the second participant, because

of her high pre-pregnancy weight. Given the same amount of energy intake increase in the

first trimester, the obese participant needs to reduce her weight gain (IOM guidelines: 4.4

- 7.0 kg) as well as have a greater EI reduction (EI increase reference values: 227 - 326

kcal) than the overweight participants (6.0-8.6 kg for GWG and 269 - 364 kcal for EI),

as is indicated in Table 2.4. From the simulation results, we can see that the third partic-

ipant receives the same dosages as the second participant who is overweight during the

adaptive intervention. Therefore, the difference in PBC changes between these two partic-

ipants is a consequence of their differing behavioral and self-regulation responses during

the intervention. As is shown in the PBC inflow figures, the third participant increases her

PBC inflows faster in both TPB models as a result of her stronger self-regulation, high

gains and low time constant in the PA-TPB model. This explains why both her GWG and

EI achieve the corresponding reference values earlier than the second participant. This

comparison with an adaptive intervention illustrates that self-regulation and the behavioral

improvements under the influences of intervention play a key role in the outcome of the

interventions, and strong self-regulation and high PBC changes enable the participants to

outperform the other peers who have better pre-gravid condition than them. Nevertheless,

fixed interventions do not succeed in supporting both participants to meet their GWG goals.
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Figure 3.18: Simulation Response for the Participant’s Weight Change, and Energy Intake
Change for the four Participants with Parameters Listed in Table 3.4. The Red Dashed-
dotted Lines Represent the 2009 IOM Guidelines Applied on a Daily Basis; the Blue Thick
Solid Lines Represent the Scenarios with an Adaptive Intervention via IF-THEN Decision
Rules, and the Black Thin Dashed Lines are the Scenarios with a Fixed Intervention.
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Figure 3.20: Simulation Response for the Participant’s Intervention Components Dosages
for the Four Participants with Parameters Listed in Table 3.4. The Blue Lines Represent
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128



Even though both are obese, the fourth participant actually has a better pre-pregnancy

condition (with lower BMI and higher baseline value for the PBC inflow to EI-TPB model)

than the third participant. With the same EI profile in the first trimester, their weight gains

are same at the beginning of the intervention, and their GWG IOM guidelines and EI

reference values are also same. However, the fourth participant has weak self-regulation,

a little greater time constant and smaller gain in the TPB models which decelerates the

behavioral response. This is indicated by her slower PBC inflow increase in both EI-TPB

and the PA-TPB models although she receives one more HE active learning dose than the

third participant during the intervention. As a result, she receives the strongest dosages by

getting her intervention augmented at each assessment cycle, as is shown in Figure 3.20.

But this is still barely able to help her achieve GWG goal, with her GWG and EI reaching

the upper bound of the corresponding reference values at the very late of her pregnancy.

Fixed interventions fail to help her control GWG and EI at all.

The comparison of simulation results between the first participant (overweight) and

the third participant (obese) indicates the effect that pre-pregnancy condition has on the

intervention outcomes. When both participants have strong self-regulation responses and

high PBC changes during the intervention, even though the first participant receives one

less augmentation in PA active learning which results in her lower PBC changes in PA-TPB

model, she is still able to achieve GWG goal and EI reference values earlier than the third

participant. This concludes that the pre-pregnancy BMI will determine if the participant

can perform better during the intervention only when they both have similar self-regulation

and behavioral response.

Through the different responses from these diverse participants, we can better under-

stand why fixed interventions do not succeed in the prevention of excessive GWG among

overweight and obese pregnant women, and why adaptive interventions represent a promis-

ing approach to prevention and treatment. While the pre-gravid BMI is an important index
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to indicate if the participant has healthy diet and active exercise life before pregnancy,

high BMI does not mean the participant will fail to manage her GWG during the interven-

tions. The key factors which determine if adaptive interventions are efficient, effective and

successful for a particular overweight or obese participant are the strong self-regulation

and fast behavioral improvement through high PBC change during the intervention. Only

when both participants display same self-regulation and behavioral responses during the

intervention, does pre-gravid BMI play an important role in the speed of the improvements

and effectiveness of the interventions.

3.5 Chapter Summary

The aim of this chapter is to introduce how to use advanced control engineering ap-

proaches to design self-regulation schemes in behavioral systems, and the GWG problem

in particular. Various control-oriented formulations were proposed, in order to find the

most suitable one for this GWG dynamical system.

To accomplish this goal, we first introduced internal model control (IMC) and its 2 DoF

design structure by the use of nominal model (estimated model). The control results are

shown in the simulation examples and these illustrate the flexibility to tune the controllers

to achieve different speed of setpoint tracking and disturbances rejection by varying the

tuning parameters. On the basis of this 2 DoF IMC design, we extend the formulation

of self-regulation by the use of cascade control, in order to better make use of all the

measurements which might be available in the real-life clinical trial. Two different IMC

design schemes for EI self-regulation using cascade control were first proposed, developed

and analyzed, so that it is convenient and straightforward for the user to pick which one

is easy to design and implement. After PA self-regulation is integrated into the control

system, a new weight parameter fraction is introduced to illustrate how much each self-

regulation contributes to tracking setpoint change. The formulation of this self-regulation
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will be useful once we have a systematic way to get the estimation of the weight parameter

fraction through the clinical trial. The second formulation of self-regulation using cascade

control involves the measurements of PA monitoring data. The outer loop of PA self-

regulation using IOM guidelines as setpoint will inform the inner loop of PA setpoint,

which allows the participant to achieve her GWG goal, while making both EI and PA

follow the corresponding reference values. When the tuning parameters in the inner loop

for PA self-regulation is smaller, the participant is able to track the PA setpoint generated

by the outer loop PA self-regulation quickly, and the corresponding simulation result in

this formulation is very similar to the one in 2 DoF IMC design of self-regulation.

With the significant flexibility in describing a participant’s self-regulatory behavior

through the tuning of contorller adjustable parameters, the simulation studies in this chapter

focus on the evaluation and comparison between fixed versus adaptive interventions, and

the understanding of variability within and between participants. The simulation results

not only illustrate how adaptive interventions deliver greater degrees of efficacy according

to a participant’s changing needs and responses (leading to overall improved and more ef-

fective interventions) but also indicate why fixed interventions may have limited success

among overweight and obese pregnant women in the prevention of excessive GWG.

We expect pilot testing and clinical trials to inform the refinement of some structural

aspects of the simulation model, such as the proper structure of the self-regulation problem,

and how additional measurements (e.g., physical activity) can influence the problem as

illustrated in Section 3.3.3.3. The GWG model integrating IMC design for self-regulation

in this chapter can be used by behavioral scientists to evaluate decision rules for adaptive

interventions, to understand the optimal choices on the level and duration of intervention

components, or as the open-loop model for the implementation of Hybrid Model Predictive

Control (HMPC) algorithms acting as decision frameworks for such interventions.
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Chapter 4

OPTIMIZED ADAPTIVE BEHAVIORAL INTERVENTIONS WITH SEQUENTIAL

DECISION POLICIES USING HYBRID MODEL PREDICTIVE CONTROL
4.1 Overview

As introduced in Chapter 2, in an adaptive, time-varying intervention, the frequency or

intensity of intervention dosages will change over time, based on the result of important

outcomes of the intervention (also known as tailoring variables [25]). Decision rules op-

erationalize these changes, eliminating / adding some intervention components based on

participant response during the intervention, or altering the dosage of existing components.

Control engineering can offer a systematic and efficient approach to optimizing the ef-

fectiveness of such individually tailored treatment and prevention policies, which is also

known as “just-in-time” behavioral interventions. In a control engineering approach to op-

timizing an adaptive time-varying intervention, the controller assigns the dosages of the

intervention components to the participant as dictated by model dynamics, problem con-

straints, and disturbances. This chapter presents a control-oriented approach to the problem

using Model Predictive Control (MPC) algorithm which offers an appealing framework for

designing optimized, time-varying adaptive interventions. The discrete magnitude nature

of the intervention dosage assignment dictates the need for Hybrid Model Predictive Con-

trol (HMPC) schemes. The clinical and resource considerations in these behavioral health

problem settings (e.g., the augmentation/reduction of the components follow a certain pre-

defined dosage sequence) are significant challenges which have remained largely unex-

plored in literature. The goal of this chapter is to develop an HMPC-based intervention

decision algorithm that can automatically assign optimized intervention dosages to modify

individual’s behavior while systematically addressing these unique clinical considerations

and constraints, relying on a Mixed Logical Dynamical (MLD) structure with constraints
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as an HMPC formulation to control the linear hybrid systems. This control algorithm

makes use of feedback and feedforward control action by online optimization of a cost

function using a receding horizon strategy, which is well suited for designing behavioral

interventions.

In order to achieve this goal, the dynamical systems model developed for GWG inter-

vention in the previous chapters is used as an illustration to exemplify how to design HMPC

algorithm acting as a sequential decision framework for adaptive interventions. Figure 4.1

shows the overall schematic representation for GWG intervention in this chapter. It is very

similar to Figure 2.1 in Chapter 2, except that the decision policy is accomplished by hy-

brid model predictive control (HMPC) in lieu of “IF-THEN” decision rules to optimize the

behavioral intervention and improve participant response. The individual self-regulation

strategies described in Figure 3.4 in Chapter 3 remain in this chapter as well.

The simulation studies are presented to demonstrate the effectiveness for implementing

adaptive behavioral interventions involving multiple components by the use of HMPC,

the proper generation of postulated dosage sequence, and the potential benefits of HMPC

framework for optimized adaptive interventions in contrast to adaptive intervention using

simple decision rules.

4.2 Hybrid Dynamical Systems

Hybrid systems are dynamical systems that involve the interaction between continuous

and discrete dynamics. The term hybrid has also been applied to describe processes that

involve continuous dynamics and discrete (logical) decisions, such as for instance on/off

switches or valves, gears or speed selectors, evolutions dependent on if-then-else rules

[23,42]. These binary or discrete behaviors can be expressed by binary constraints that can

be a part of the state, output, input and the like. Below are some examples of such hybrid

dynamical systems, summarized from [42].
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Figure 4.1: Schematic Representation for an “Adaptive” Optimized Gestational Weight
Gain (GWG) Intervention by Hybrid Model Predictive Control (HMPC) [1].

1. Piecewise linear dynamic systems

Consider the following piecewise linear time-invariant dynamic system in which the

state equation is updated relying on binary variables δi,

x(t +1) =





A1x(t)+B1u(t) if δ1(t) = 1

...

Anx(t)+Bnu(t) if δn(t) = 1

(4.1)

y(t) = Cx(t)+Du(t) (4.2)
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where δi are 0-1 binary variables (i = 1,2, · · · ,n), and δ1 +δ2 + · · ·+δn = 1.

2. Piecewise linear output functions

In practical applications, it frequently happens that a process can be modeled as a

linear dynamic system cascaded by a nonlinear output function. Think of the case

where the output from a linear system may be under conditions like saturations, for

example. In other words, y can take only certain values which can be described by

boolean logic. An example is shown below,

x(t +1) = Ax(t)+Bu(t) (4.3)

y(t) =





C1x(t)+D1u(t) if δ = 0

C2x(t)+D2u(t) if δ = 1
(4.4)

3. Discrete inputs

Control laws typically provide command inputs ranging on a continuum. However,

in application frequently one has to deal with command inputs which are inherently

discrete. Such cases include the dosage the doctor prescribes for the patients, and

the number of intervention sessions in the behavioral interventions. Consider, for

instance, the following system:

x(t +1) = Ax(t)+Bu(t) (4.5)

u(t) =





u1 if δ = 0

u2 if δ = 1
(4.6)

4. Qualitative outputs

Some systems have qualitative (i.e., categorical) outputs based on a certain crite-

ria. Consider the following example, in which, y has qualitative outputs based on
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different values of the state x.

x(t +1) = Ax(t)+Bu(t) (4.7)

y(t) =





Excellent if x(t)≤ x1

Good if x1 ≤ x(t)≤ x2

Acceptable if x2 ≤ x(t)≤ x3

Fail if x3 ≤ x(t)≤ x4

(4.8)

where xi is the constant within the boundary of the state x(t), (i = 1,2,3,4).

Hybrid systems have been the topic of intense research activity in recent years, primar-

ily because of their importance in applications [83]. For this class of systems, several con-

trol approaches have been proposed in the literature. However, optimal control approaches

for hybrid systems are the most promising ones at the moment, and have been thoroughly

investigated in recent years [84, 85]. Many results can be found in the control-engineering

literature. A computational approach based on ideas from dynamic programming and con-

vex optimization is presented in [85]. [42,86] address a model predictive control technique

for hybrid systems, which is able to stabilize the mixed logical dynamical (MLD) system

on desired reference trajectories, and solves the online optimization procedures through

Mixed Integer Quadratic Programming (MIQP).

In this chapter, we study and discuss the solution to an MPC for linear hybrid systems

with discrete inputs only, where the system is described as a mixed logical dynamical

(MLD) system.

4.2.1 Mixed Logical Dynamical (MLD) Systems

Hybrid systems represent a combination of logic, finite-state machines, linear discrete-

time dynamic systems and constraints [42]. The mixed logical dynamical (MLD) modeling

framework is based on the idea of translating logic relations, discrete/logic dynamics, A/D
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(analog to digital (logic)), D/A conversion and logic constraints into mixed integer linear

inequalities. These inequalities are combined with the continuous dynamical part which is

described by linear difference equations. The resulting MLD-based model framework is

described by the following equations,

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)+Bdd(k) (4.9)

y(k) = Cx(k)+d′(k)+ν(k) (4.10)

E2δ (k)+E3z(k) ≤ E5 +E4y(k)+E1u(k)−Edd(k) (4.11)

where x = [xT
c xT

d ]
T , xc ∈ Rnc , xd ∈ {0, 1}nd , n

4
= nc + nd is the state of the system in-

cluding continuous xc and 0-1 xd; u = [uT
c uT

d ]
T , uc ∈ Rmc , ud ∈ {0, 1}md , m

4
= mc +md

represents m inputs of the system (both continuous commands uc and discrete commands

ud). y is the output and d, d′ and ν represent measured disturbances, unmeasured distur-

bances and measurement noise signals, respectively. δ ∈ {0,1} and z∈Rrc are discrete and

continuous auxiliary variables that are introduced in order to convert logical/discrete deci-

sions into their equivalent linear inequality constraints. The dimension of these auxiliary

variables and the number of linear constraints in (4.11) depends on the specific character

of the discrete logical / discrete decisions that would be enforced in the particular hybrid

system. This framework permits the user to include and prioritize constraints and the gen-

eral rules in the description of the model. The MLD system (4.9) - (4.11) is assumed to

be well posed if for a given state x(k) and a given input u(k), the inequalities (4.11) have a

unique solution for δ (k) and z(k). Relying on propositional logic, one can convert boolean

logic and discrete decisions into linear inequalities (4.11). The detail description of MLD

form and the conversion techniques can be found in [42].

137



4.2.2 MPC Prediction

Equations (4.9) - (4.11) extend the MLD framework shown in [42] through the in-

clusion of both measured and unmeasured disturbances. Here, we consider a stochastic

disturbance model for unmeasured disturbance d′,

xw(k) = Awxw(k−1)+Bww(k−1) (4.12)

d′(k) = Cwxw(k) (4.13)

We consider differenced forms of the disturbance and system models as follows,

∆x(k) = A∆x(k−1)+B1∆u(k−1)+B2∆δ (k−1)+B3∆z(k−1)

+ Bd∆d(k−1) (4.14)

∆xw(k) = Aw∆xw(k−1)+Bw∆w(k−1) (4.15)

The following equations can be obtained if propagating equations (4.10), (4.14), and

(4.15),

X(k) = ÃX(k−1)+ B̃1∆u(k−1)+ B̃2∆δ (k−1)+ B̃3∆z(k−1)

+ B̃d∆d(k−1)+ B̃w∆w(k−1) (4.16)

y(k) = C̃X(k)+ν(k) (4.17)

where

X(k) = [∆xT (k) ∆xT
w(k) yT (k)]T

Ã =




A 0 0

0 Aw 0

CA Aw I




; B̃i =




Bi

0

CBi



, i = 1,d;

B̃w =




0

I

I




; C̃ = [0 0 I]
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Here ∆∗ (k) = ∗(k)−∗(k−1) and ∆w(k) is a white noise sequence.

If the prediction horizon of this MPC model is p, the moving horizon is m, the future

value of output y(k+1) is,

y(k+1) = C̃X(k+1)

= C̃ÃX(k)+C̃B̃1∆u(k)+C̃B̃2∆δ (k)+C̃B̃3∆z(k)+C̃B̃d∆d f lt(k)

= C̃ÃX(k)+C̃B̃1u(k)+C̃B̃2δ (k)+C̃B̃3z(k)+C̃B̃dd f lt(k)−C̃B̃1u(k−1)

− C̃B̃2δ (k−1)−C̃B̃3z(k−1)−C̃B̃dd f lt(k−1) (4.18)

The future value of output y(k+2),

y(k+2) = C̃ÃX(k+1)+C̃B̃1∆u(k+1)+C̃B̃2∆δ (k+1)

+ C̃B̃3∆z(k+1)+C̃B̃d∆d f lt(k+1)

= C̃Ã2X(k)+ [(C̃ÃB̃1−C̃B̃1)u(k)+C̃B̃1u(k+1)]

+ [(C̃ÃB̃2−C̃B̃2)δ (k)+C̃B̃2δ (k+1)]+ [(C̃ÃB̃3−C̃B̃3)z(k)

+ C̃B̃3z(k+1)]+ [(C̃ÃB̃d−C̃B̃d)d f lt(k)+C̃B̃dd f lt(k+1)]

− C̃ÃB̃1u(k−1)−C̃ÃB̃2δ (k−1)−C̃ÃB̃3z(k−1)−C̃ÃB̃dd f lt(k−1)

(4.19)

The prediction equations for the future output over the prediction horizon p are ob-

tained similarly, with the assumption that ∆u(k + i) = 0, i > m− 1, therefore, the future

value of output y(k+m+1) is as follows,

y(k+m+1) = C̃Ãm+1X(k)+ [C̃ÃmB̃1∆u(k)+C̃Ãm−1B̃1∆u(k+1)+ · · ·

+ C̃ÃB̃1∆u(k+m−1)]+ [C̃ÃmB̃2∆δ (k)+C̃Ãm−1B̃2∆δ (k+1)

+ · · ·+C̃B̃2∆δ (k+m)]+ [C̃ÃmB̃3∆z(k)+C̃Ãm−1B̃3∆z(k+1)

+ · · ·+C̃B̃3∆z(k+m)]+ [C̃ÃmB̃d∆d f lt(k)+C̃Ãm−1B̃d∆d f lt(k+1)

+ · · ·+C̃B̃d∆d f lt(k+m)] (4.20)
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Rearranging equation above, and expressing it with the terms related to control efforts,

auxiliary binary variables, auxiliary continuous variables and measured disturbance.

y(k+m+1) = C̃Ãm+1X(k)+ [(C̃ÃmB̃1−C̃Ãm−1B̃1)u(k)+(C̃Ãm−1B̃1

− C̃Ãm−2B̃1)u(k+1)+ · · ·+(C̃Ã2B̃1−C̃ÃB̃1)u(k+m−2)

+ C̃ÃB̃1u(k+m−1)]+ [(C̃ÃmB̃2−C̃Ãm−1B̃2)δ (k)+(C̃Ãm−1B̃2

− C̃Ãm−2B̃2)δ (k+1)+ · · ·+(C̃ÃB̃2−C̃B̃2)δ (k+m−1)

+ C̃B̃2δ (k+m)]+ [(C̃ÃmB̃3−C̃Ãm−1B̃3)z(k)+(C̃Ãm−1B̃3

− C̃Ãm−2B̃3)z(k+1)+ · · ·+(C̃ÃB̃3−C̃B̃3)z(k+m−1)

+ C̃B̃3z(k+m)]+ [(C̃ÃmB̃d−C̃Ãm−1B̃d)d f lt(k)+(C̃Ãm−1B̃d

− C̃Ãm−2B̃d)d f lt(k+1)+ · · ·+(C̃ÃB̃d−C̃B̃d)d f lt(k+m−1)

+ C̃B̃dd f lt(k+m)]−C̃ÃmB̃1u(k−1)−C̃ÃmB̃2δ (k−1)

− C̃ÃmB̃3z(k−1)−C̃ÃmB̃dd f lt(k−1) (4.21)
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The future value of output y(k+ p) is

y(k+ p) = C̃ÃpX(k)+ [(C̃Ãp−1B̃1−C̃Ãp−2B̃1)u(k)+(C̃Ãp−2B̃1

− C̃Ãp−3B̃1)u(k+1)+ · · ·+(C̃Ãp−m+1B̃1−C̃Ãp−mB̃1)u(k+m−2)

+ C̃Ãp−mB̃1u(k+m−1)]+ [(C̃Ãp−1B̃2−C̃Ãp−2B̃2)δ (k)

+ (C̃Ãp−2B̃2−C̃Ãp−3B̃2)δ (k+1)+ · · ·+(C̃ÃB̃2−C̃B̃2)

δ (k+ p−2)+C̃B̃2δ (k+ p−1)]+ [(C̃Ãp−1B̃3−C̃Ãp−2B̃3)z(k)

+ (C̃Ãp−2B̃3−C̃Ãp−3B̃3)z(k+1)+ · · ·+(C̃ÃB̃3−C̃B̃3)

z(k+ p−2)+C̃B̃3z(k+ p−1)]+ [(C̃Ãp−1B̃d−C̃Ãp−2B̃d)d f lt(k)

+ (C̃Ãp−2B̃d−C̃Ãp−3B̃d)d f lt(k+1)+ · · ·+(C̃ÃB̃d−C̃B̃d)

d f lt(k+ p−2)+C̃B̃dd f lt(k+ p−1)]−C̃Ãp−1B̃1u(k−1)

− C̃Ãp−1B̃3δ (k−1)−C̃Ãp−1B̃3z(k−1)−C̃Ãp−1B̃dd f lt(k−1) (4.22)

Now the p step ahead prediction equations of MPC can be obtained by propagating

(4.18) - (4.22), along with linear inequality constraints described in (4.11), resulting in the

following prediction equations,

Y (k+1) = ΦX(k)+H1U(k)+H2δ̄ (k)+H3Z(k)+HdD(k)−H11u(k−1)

− H21δ (k−1)−H31z(k−1)−Hd1d f lt(k−1) (4.23)

Ē5 ≥ Ē2δ̄ (k)+ Ē3Z(k)+ Ē4Y (k)+ Ē1U(k)+ ĒdD(k) (4.24)

Equation (4.24) can be further simplified if we substitute Y (k) and rewrite as,

Ẽ5 ≥ Ẽ2δ̄ (k)+ Ẽ3Z(k)+ Ẽ4X(k)+ Ẽ1U(k)+ ẼdD(k)

−Ẽ41u(k−1)− Ẽ42δ (k−1)− Ẽ43z(k−1)− Ẽ4dd f lt(k−1) (4.25)

where d f lt represents the filtered value of the measured disturbance obtained using a dis-

crete time filter, which will be described later in the presentation of three-Degree-of-

Freedom (3 DoF) tuning approach in Section 4.3.4. Y (k+1), U(k), δ̄ (k), Z(k) and D(k) are
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future values of outputs, inputs, auxiliary binary variables, auxiliary continuous variables

and filtered measured disturbances as given below:

Y (k+1) = [yT (k+1) yT (k+2) · · ·yT (k+ p)]T (4.26)

U(k) = [uT (k) · · · uT (k+m−1)]T (4.27)

δ̄ (k) = [δ T (k) · · · δ
T (k+ p−1)]T (4.28)

Z(k) = [zT (k) · · · zT (k+ p−1)]T (4.29)

D(k) = [d f lt
T (k) · · · d f lt

T (k+ p−1)]T (4.30)

Φ, H∗∗, H∗, Ē∗, and Ẽ∗ are the appropriate coefficients matrices that can be generated from

the equations (4.11), (4.18) - (4.22) above. They are given below,

Φ =




C̃Ã

C̃Ã2

...

C̃Ãp




(4.31)

Hi1 =




C̃B̃i

C̃ÃB̃i

C̃Ã2B̃i

...

C̃Ãp−1B̃i




i = 1, 2, 3, d (4.32)
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Ã

p−
3 B̃

d
··
·

C̃
Ã
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Ēi = diag{Ei, · · · ,Ei}, i = 2, 3, d (4.35)

Ē4 = diag{−E4, · · · ,−E4} (4.36)

Ē5 = [E5 E5 · · · E5]
T (4.37)

Ē1 =




−E1 0 · 0

0 . . . · ...
... · · · · −E1

...
...

...
...

0 · · · · −E1




(4.38)

Ẽi = (Ē4H̄i + Ēi), i = 1, 2, 3, d (4.39)

Ẽ4 = Ē4Φ̄ (4.40)

Ẽ4i = Ē4H̄i1, i = 1, 2, 3, d (4.41)

Ẽ5 = Ē5 (4.42)

H̄ j =




[0]ny

H j(1 : (p−1)ny, :)


 , j = 1, 2, 3, d, 11, 21, 31, d1 (4.43)

Φ̄ =




C̃

Φ(1 : (p−1)ny, :)


 (4.44)

Here ny is number of outputs, [0]ny denotes matrix with ny rows that have all the elements 0

and ∗(1 : (p−1)ny, :) is read as row 1 to row (p−1)ny of the matrix ∗with all the columns.

4.3 Hybrid Model Predictive Control (HMPC)

As is illustrated in Figure 4.2, MPC solves a finite horizon optimal control problem

using the model prediction to obtain the control move over a finite horizon under given

constraints. Hybrid model predictive control (HMPC) works the same way as MPC, except
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Figure 4.2: Basic Structure of MPC [13].

that the model used is the linear hybrid dynamical system. Here, we rely on the MLD

model to generate the prediction equations of future outputs, which is shown in the previous

section.

4.3.1 Objective Functions

In this work, we rely on a quadratic cost function of the form

J
4
=

p

∑
i=1
‖(y(k+ i)− yr)‖2

Qy
+

m−1

∑
i=0
‖(∆u(k+ i))‖2

Q∆u
+

m−1

∑
i=0
‖(u(k+ i)−ur)‖2

Qu

+
p−1

∑
i=0
‖(δ (k+ i)−δr)‖2

Qd
+

p−1

∑
i=0
‖(z(k+ i)− zr)‖2

Qz
(4.45)

The optimization problem consists of finding the sequence of control actions u(k), · · · ,u(k+

m−1),δ (k), · · · ,δ (k+ p−1) and z(k), · · · ,z(k+ p−1) that minimize J

min
{[u(k+i)]m−1

i=0 , [δ (k+i)]p−1
i=0 , [z(k+i)]p−1

i=0 }
J (4.46)

subject to mixed integer constraints according to (4.11) and various process constraints. In

(4.45), Qy, Q∆u, Qu, Qd and Qz are penalty weights on the control error, move size, control
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signal, auxiliary binary variables and auxiliary continuous variables, respectively. There-

fore, the first term is used to minimize the prediction error, the second term is the move

suppression, the third to the fifth terms are to keep control signal, auxiliary binary variables

and auxiliary continuous variables at their setpoint, respectively. In most practical prob-

lems, only the first three terms of the objective function (control error, move size, control

signal) are considered. However, in order to maintain generality of the MPC formulation,

we include the last two terms.

4.3.2 General Process Constraints

The general process constraints in HMPC include the manipulated variable constraints,

manipulated variable rate constraints, and output variables constraints, which are listed

below,

ymin ≤ y(k+ i) ≤ ymax, 1≤ i≤ p (4.47)

umin ≤ u(k+ i) ≤ umax, 0≤ i≤ m−1 (4.48)

∆umin ≤ ∆u(k+ i) ≤ ∆umax, 0≤ i≤ m−1 (4.49)

The objective function in (4.45) and the linear hybrid system described by the MLD

model (4.9) - (4.11) are governed by both binary and continuous variables. Therefore,

(4.45) along with the linear hybrid system dynamics (4.9) - (4.11) , and linear inequality

constraints described in (4.47) - (4.49), the solution to this optimization problem forms a

mixed integer quadratic program (MIQP).
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4.3.3 Hybrid MPC Controller Move

By the use of vector and matrices form, the MPC problem in (4.45) - (4.49) can be

rewritten as,

min
{U(k),δ̄ (k),Z(k)}

J
4
= ‖(Y (k+1)−Yr)‖2

Q̂y
+‖(RuU(k)−Ru0u(k−1))‖2

Q̂∆u

+ ‖(U(k)−Ur)‖2
Q̂u

+‖(δ̄ (k)− δ̄r)‖2
Q̂d

+‖(Z(k)−Zr)‖2
Q̂z

(4.50)

subject to mixed integer constraints according to (4.25) and various process constraints,

Ymin ≤ Y (k+1) ≤ Ymax (4.51)

Umin ≤ U(k) ≤Umax (4.52)

∆Umin ≤ ∆U(k) ≤ ∆Umax (4.53)

where,

Q̂∗ =




Q∗ 0 · 0
... . . . · ...

0 · · · · Q∗




; Ru =




I 0 · · · 0 0

−I I · · · 0 0

0 −I . . . ...
...

...
... . . . . . . ...

0 0 · · · −I I




; Ru0 =




I

0
...

0




Yr, Ur, δ̄r and Zr are the reference vectors for the outputs, inputs, auxiliary binary variables

and auxiliary continuous variables as given below,

Yr = [yT
r (k+1) yT

r (k+2) · · · yT
r (k+ p)]T (4.54)

Ur = [uT
r (k) uT

r (k+1) · · · uT
r (k+m−1)]T (4.55)

δ̄r = [δ T
r (k) δ

T
r (k+1) · · · δ

T
r (k+ p−1)]T (4.56)

Zr = [zT
r (k) zT

r (k+1) · · · zT
r (k+ p−1)]T (4.57)
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Substituting (4.23) for Y (k+1) into (4.50), and rearranging the cost function in (4.55)

so that one group having all the quadratic terms of the decision variables U(k), δ̄ (k), Z(k);

while the other group consisting of the linear terms with constraints in (4.25), (4.51) -

(4.53) resulting in the definition of MPC problem into a standard mixed integer quadratic

program (MIQP) as follows:

min
Ξ(k)

J
4
=

1
2

Ξ(k)T HΞ(k)+GT
Ξ(k) (4.58)

SΞ(k) ≤ b (4.59)

where Ξ(k) = [U(k)T δ̄ (k)T Z(k)T ]T is the vector of the decision variables, H and

G are coefficient matrices for the quadratic and linear terms of the objective function,

respectively, and S and b represent the coefficient matrices for the linear constraints. The

coefficient matrices H, G, S and b are defined using Φ, H∗, H∗∗, Ẽ∗, and Ē∗, and they can

be obtained below.

Let all the other terms that are unrelated with U(k), δ̄ (k) and Z(k) as R1 in (4.23),

which gives,

Y (k+1) = H1U(k)+H2δ̄ (k)+H3Z(k)+R1 (4.60)

where R1 = ΦX(k)+HdD(k)−H11u(k−1)−H21δ (k−1)−H31z(k−1)−Hd1d f lt(k−1).

Substituting (4.60) into (4.50), we have,

min
Ξ(k)

J
4
= ‖(H1U(k)+H2δ̄ (k)+H3Z(k)+R1−Yr)‖2

Q̂y

+ ‖(RuU(k)−Ru0u(k−1))‖2
Q̂∆u

+‖(U(k)−Ur)‖2
Q̂u

+‖(δ̄ (k)− δ̄r)‖2
Q̂d

+ ‖(Z(k)−Zr)‖2
Q̂z

(4.61)

Let R = R1−Yr, (4.61) becomes,
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min
Ξ(k)

J
4
= ‖(H1U(k)+H2δ̄ (k)+H3Z(k)+R)‖2

Q̂y
+‖(RuU(k)−Ru0u(k−1))‖2

Q̂∆u

+ ‖(U(k)−Ur)‖2
Q̂u

+‖(δ̄ (k)− δ̄r)‖2
Q̂d

+‖(Z(k)−Zr)‖2
Q̂z

(4.62)

= [U(k)T HT
1 + δ̄ (k)T HT

2 +Z(k)T HT
3 +RT ]Q̂2

y [H1U(k)+H2δ̄ (k)

+ H3Z(k)+R]+ [U(k)T RT
u −u(k−1)T RT

u0]Q̂
2
∆u[RuU(k)−Ru0u(k−1)]

+ [U(k)T −UT
r ]Q̂2

u[U(k)−Ur]+ [δ̄ (k)T − δ̄
T
r ]Q̂2

d[δ̄ (k)− δ̄r]

+ [Z(k)T −ZT
r ]Q̂

2
z [Z(k)−Zr] (4.63)

= RT Q̂yR+U(k)T HT
1 Q̂yR+ δ̄ (k)T HT

2 Q̂yR+Z(k)T HT
3 Q̂yR

+ RT Q̂yH1U(k)+U(k)T HT
1 Q̂yH1U(k)+ δ̄ (k)T HT

2 Q̂yH1U(k)

+ Z(k)T HT
3 Q̂yH1U(k)+RT Q̂yH2δ̄ (k)+U(k)T HT

1 Q̂yH2δ̄ (k)

+ δ̄ (k)T HT
2 Q̂yH2δ̄ (k)+Z(k)T HT

3 Q̂yH2δ̄ (k)+RT Q̂yH3Z(k)

+ U(k)T HT
1 Q̂yH3Z(k)+ δ̄ (k)T HT

2 Q̂yH3Z(k)+Z(k)T HT
3 Q̂yH3Z(k)

+ U(k)T RT
u Q̂∆uRuU(k)−u(k−1)T RT

u0Q̂∆uRuU(k)

− U(k)T RT
u Q̂∆uRu0u(k−1)+u(k−1)T RT

u0Q̂∆uRu0u(k−1)

+ U(k)T Q̂uU(k)−UT
r Q̂uU(k)−U(k)T Q̂uUr

+ UT
r Q̂uUr + δ̄ (k)T Q̂d δ̄ (k)− δ̄

T
r Q̂d δ̄ (k)− δ̄ (k)T Q̂d δ̄r + δ̄

T
r Q̂d δ̄r

+ Z(k)T Q̂zZ(k)−ZT
r Q̂zZ(k)−Z(k)T Q̂zZr +ZT

r Q̂dZr (4.64)

In (4.64), all the terms that do not contain U(k), δ̄ (k), or Z(k) can be treated as constant,

because they are not the decision variables Ξ(k) in the optimization problem. Rearranging

(4.64), we can have the following equation with quadratic terms in (4.66) as the first part,

linear terms in (4.67) as the second part, constant terms as the third part, as expressed in

(4.65).

min
Ξ(k)

J
4
= Quadratic Terms+Linear Terms+Constant Terms (4.65)
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where

Quadratic Terms = U(k)T (HT
1 Q̂yH1 +RT

u Q̂∆uRu + Q̂u)U(k)

+ δ̄ (k)T (HT
2 Q̂yH2 + Q̂d)δ̄ (k)+ δ̄ (k)T HT

2 Q̂yH1U(k)

+ Z(k)T (HT
3 Q̂yH3 + Q̂z)Z(k)+Z(k)T HT

3 Q̂yH1U(k)

+ U(k)T HT
1 Q̂yH2δ̄ +Z(k)T HT

3 Q̂yH2δ̄ (k)

+ U(k)T HT
1 Q̂yH3Z(k)+ δ̄ (k)T HT

2 Q̂yH3Z(k) (4.66)

Linear Terms = 2[RT Q̂yH1−u(k−1)T RT
u0Q̂∆uRu−UT

r Q̂u]U(k)

+ 2[RT Q̂yH2− δ̄
T
r Q̂d]δ̄ (k)+2[RT Q̂yH3−ZT

r Q̂z]Z(k) (4.67)

Now the expression for the coefficient matrix H are obtained based on (4.66),

H = 2




H1
T Q̂yH1 + R̂uQ̂∆uR̂u + Q̂u H1

T Q̂yH2 H1
T Q̂yH3

H2
T Q̂yH1 H2

T Q̂yH2 + Q̂d H2
T Q̂yH3

H3
T Q̂yH1 H3

T Q̂yH2 H3
T Q̂yH3 + Q̂z




(4.68)

The linear terms in (4.67) has constant R,

R = ΦX(k)+HdD(k)−H11u(k−1)−H21δ (k−1)−H31z(k−1)−Hd1d f lt(k−1)−Yr

(4.69)

Substituting the expression of R into (4.67), the expressions for the coefficient matrices of

G are,

G = 2[g1 g2 g3]
T (4.70)

where,
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g1 = X(k)T
Φ

T Q̂yH1−Yr
T Q̂yH1−Ur

T Q̂u +D(k)T Hd
T Q̂yH1−

u(k−1)T (Ru0
T Q̂∆uRu +H11

T Q̂yH1)−δ (k−1)T H21
T Q̂yH1−

z(k−1)T H31
T Q̂yH1−d f lt(k−1)T Hd1

T Q̂yH1 (4.71)

g2 = X(k)T
Φ

T Q̂yH2−Yr
T Q̂yH2− δ̄

T
r Q̂d +D(k)T Hd

T Q̂yH2−

u(k−1)T H11
T Q̂yH2−δ (k−1)T H21

T Q̂yH2− z(k−1)T H31
T Q̂yH2−

d f lt(k−1)T Hd1
T Q̂yH2 (4.72)

g3 = X(k)T
Φ

T Q̂yH3−Yr
T Q̂yH3−Zr

T Q̂z +D(k)T Hd
T Q̂yH3−

u(k−1)T H11
T Q̂yH3−δ (k−1)T H21

T Q̂yH3− z(k−1)T H31
T Q̂yH3

−d f lt(k−1)T Hd1
T Q̂yH3 (4.73)

Similarly, substituting equation (4.23) into (4.51), ∆U(k) = RuU(k)−Ru0u(k−1) into

(4.53) give,

Ymin ≤ ΦX(k)+H1U(k)+H2δ̄ (k)+H3Z(k)+HdD(k)−H11u(k−1)

−H21δ (k−1)−H31z(k−1)−Hd1d f lt(k−1)≤ Ymax (4.74)

∆Umin ≤ RuU(k)−Ru0u(k−1)≤ ∆Umax (4.75)

Rearranging the linear inequality in MLD framework (4.24), the process constraints in

(4.74), (4.52), and (4.75), the expression for S and b can be obtained,
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S =




s1

s2

−s2




(4.76)

where,

s1 = [Ẽ1 Ẽ2 Ẽ3] (4.77)

s2 =




H1 H2 H3

Im(nu) [0]m(nu)×p(nd) [0]m(nu)×p(nz)

Ru [0]m(nu)×p(nd) [0]m(nu)×p(nz)




(4.78)

4.3.4 MPC with Three-Degree-of-Freedom (3 DoF)

The conventional MPC tuning rules rely on changing p (the prediction horizon), m (the

control horizon) and penalty weights (such as Q∆u, (move suppression)) which may not

be very intuitive. The MPC formulation in this chapter features three-degree-of-freedom

(3 DoF) tuning in which it allows the user to meet the performance requirements such as

adjusting the speed of setpoint tracking, anticipated measured disturbance rejection and

unmeasured disturbance rejection independently [23] in the closed-loop system by varying

parameters αr, αd and fa, respectively. These parameters can be adjusted between values

0 and 1, which in turn alter the response of Type I or Type II filters which supply filtered

signal to the controller (for setpoint tracking and measured disturbance rejection) or adjust

the observer gain (for unmeasured disturbance rejection). Therefore, the controller can

be detuned relative to optimal but is more robust. Figure 4.3 shows a 3 DoF controller

block diagram of MPC where P, Pd are the system plant and measured disturbance plant,

the observer block has tuning parameter fa for tuning unmeasured disturbance rejection,

model block is used to predict the future values of controlled variables, f (q,αr), f (q,αr)

are the filters for reference and measured disturbance signals, and optimizer block is to
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Figure 4.3: Three-Degree-of-Freedom (3 DoF) Controller Block Diagram of MPC.

generate the control signal based on future predicted errors, and constraints.

4.3.4.1 Reference Trajectory and Setpoint Tracking

The output reference trajectory Yr is generated using the filter f (q,α j
r ), with which one

can detune a controller to vary the speed and the shape of the closed-loop response. Based

on the system in this work, we can use a Type I filter as shown below,

f (q,α j
r ) =

(1−α
j

r )q

q−α
j

r
, 1≤ j ≤ ny (4.80)

where q is the forward shift operator. The speed of setpoint tracking can be adjusted by

choosing α
j

r between [0, 1) for each individual output j. The smaller the value for α
j

r ,

the faster the output response for setpoint tracking. This adjustment is more intuitive and

convenient than adjusting move suppression weights (Q∆u) that directly affect the manip-

ulated variables and consequently, the effect on a specific controlled variable response is

more difficult to predict.
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4.3.4.2 Measured Disturbance Rejection

The proposed formulation relies on an externally generated forecast of the measured

disturbance as in (4.30); this forecast is filtered and provided as an anticipated signal to

the control algorithm. The speed desired to reject measured disturbances can be adjusted

independently by using a filter f (q,α j
d), 1≤ j≤ ndist for each measured disturbance signal,

where ndist is the number of measured disturbances and α
j

d is a tuning parameter between

[0, 1) for each j-th measured disturbance. The lower the value for α
j

d , the faster the speed

of measured disturbance rejection. The type of measured disturbance will determine the

form of the transfer function f (q,α j
d). Type I filter in the form of equation (4.80) is used

to decline step disturbance signal, while Type II filter is used to reject ramp disturbance

signal [82], which is defined in (4.81) - (4.83) below. Type II filter structure should also be

used when integrating system dynamics are present [22].

f (q,α j
d) = (β0 +β1q−1 + · · ·+βωq−ω)× (1−α

j
d)q

q−α
j

d

(4.81)

βk =
−6kα

j
d

(1−α
j

d)ω(ω +1)(2ω +1)
, 1≤ k ≤ ω (4.82)

β0 = 1− (β1 + · · ·+βω) (4.83)

4.3.4.3 Unmeasured Disturbance Rejection

It is necessary to calculate the coefficient matrix G for the linear term of the objective

function (4.58) and b at the right-hand side of constraint equation (4.59) at each time step in

the proposed MPC problem described in (4.58) - (4.59). This requires initial states X(k) of

the augmented system at each time instance. The augmented states X(k) can be estimated

from the current measurements y(k) with unmeasured disturbance rejection achieved by

a suitably designed state observer / filter. The unmeasured disturbances can be applied

externally and can also come from the model-plant mismatch. In this formulation, the

separation of the effect of measured and unmeasured disturbance of the state estimation
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is required in order to have true multiple-degree-of-freedom tuning for these controller

modes. Reference tracking is not a part of the prediction equation and hence, by definition,

is independent of both αd and fa. To decouple the effects of measured and unmeasured

disturbance rejection, we track the measured disturbance and filtered measured disturbance

separately, and propose a two-step procedure for estimating the augmented states X(k). In

the first step, state estimation is accomplished utilizing the model, the actual (unfiltered)

measured disturbance signal d, and a filter K f as follows,

X(k|k−1) = ÃX(k−1|k−1)+ B̃1∆u(k−1)+ B̃d∆d(k−1) (4.84)

X(k|k) = X(k|k−1)+K f (y(k)−C̃X(k|k−1)) (4.85)

Since we rely on the unfiltered measured disturbance d in (4.84), the second term in

(4.85) represents the effect of unmeasured disturbances only; the choice for K f will define

the speed and character of unmeasured disturbance rejection. In the second step, we es-

timate an augmented state of the system by considering the filtered measured disturbance

signal d f lt and the contribution of the unmeasured disturbance (i.e., the prediction error)

from (4.85) as follows,

X f lt(k|k−1) = ÃX f lt(k−1|k−1)+ B̃1∆u(k−1)+ B̃d∆d f lt(k−1) (4.86)

X f lt(k|k) = X f lt(k|k−1)+K f (y(k)−C̃X(k|k−1)) (4.87)

where X f lt(k|k) in (4.87) is the estimate corresponding to both filtered measured distur-

bance and unmeasured disturbance, with its first term capturing the effect of the filtered

measured disturbances and its second term capturing the effect of the unmeasured distur-

bances. This approach allows the tuning for measured disturbances specified through α
j

d

does not influence unmeasured disturbance rejection, while the unmeasured disturbance

filter matrix K f does not affect measured disturbance rejection. X f lt(k|k) is used in (4.70)
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and (4.79) to calculate the coefficient matrices G and b that appear in the MPC problem

(4.58) - (4.59).

The optimal value of the filter gain K f could be found by solving an algebraic Riccati

equation which requires the estimation of covariance matrices for the unmeasured distur-

bance. However, such information is not available and known accurately. Therefore, we

apply the parametrization of the filter gain in [87], which enables specifying the speed

of unmeasured disturbance rejection for each output channel independently by the user

while keeping with the setpoint tracking and measured disturbance modes. For the case of

Aw = diag{α1, α2, · · · , αny}, we rely on the following parametrization of the filter gain,

K f =




0

Fb

Fa




(4.88)

where

Fa = diag{( fa)1, · · · ,( fa)ny} (4.89)

Fb = diag{( fb)1, · · · ,( fb)ny} (4.90)

( fb) j =
( fa) j

2

1+α j−α j( fa) j
, 1≤ j ≤ ny (4.91)

( fa) j is a tuning parameter that lies between 0 and 1; the speed of unmeasured disturbance

rejection is proportional to the tuning parameter ( fa) j. As ( fa) j approaches zero, the state

estimator increasingly ignores the prediction error correction, and the control solution is

mainly determined by the deterministic model (4.84) and the the feedforward anticipation

signal. On the other hand, the state estimator tries to compensate for all prediction error

as ( fa) j approaches 1, and hence the controller becomes extremely aggressive. Thus, the

adjustment of ( fa) j allows the user to directly influence unmeasured disturbance rejection

for each output response individually, which is more intuitive and convenient than tuning

with move suppression in the traditional MPC formulation.
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4.4 HMPC Algorithm for Sequential Decision Policies

This section presents the design procedure for an HMPC-based intervention which have

multiple intervention components featuring sequential decision policies. We will use GWG

interventions to illustrate how to design the logical specification associated with proposed

dosage sequence. Meanwhile, other clinical considerations and constraints which are com-

mon in adaptive interventions will also be examined and addressed, so that this HMPC

algorithm for sequential decision policies can work for any other adaptive sequential in-

terventions. This problem relies on the use of Mixed Logical Dynamical (MLD) for the

control of hybrid systems that we introduced earlier in this chapter, and the improved three-

degree-of-freedom (3 DoF) tuning formulation of Nandola and Rivera [23] is implemented.

4.4.1 Clinical Considerations and Constraints

As we discussed in Chapter 2, the adaptive intervention for GWG features multiple in-

tervention components, emphasizing health eating (HE) habits and physical activity (PA).

The control design problem presented in this chapter is based on the practical operational

constraints and clinical considerations. In order to illustrate how to analyze these con-

straints and requirements, GWG adaptive intervention using “IF-THEN” decision rules is

illustrated in Figure 4.4, with its postulated sequenced rules depicted in Table 4.1, which

will act on the values of tailoring variables (in this case, GWG) measured through self-

monitoring by the participant. The decision rules are used to evaluate GWG every two

weeks from week 14 through week 36 during pregnancy. If a participant is achieving her

GWG goal, the intervention dosage will be sustained or reduced. However if her GWG

exceeds the IOM guidelines, a more intensive intervention is necessary for her to increase

potency, and therefore, her intervention gets augmented.

The adaptation rules in Table 4.1 play an important role in deriving the following clin-

ical constraints and considerations when we design the HMPC-based GWG intervention
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Figure 4.4: IF-THEN Decision Rules for Time-varying GWG Intervention Evaluation for
Adapting Intervention.

strategy:

1. This adaptive intervention aims to personalizing the intervention in order to pre-

vent excessive GWG. Therefore, GWG is controlled variable in this design problem

where the overall goal is to support the participant to meet the GWG IOM guidelines

(setpoint).

2. Intervention adjustment based on the participant’s changing needs is facilitated by

feedback of the measured GWG daily in the self-monitoring process.

3. The intervention components are delivered in pre-determined discrete doses, with

HE active learning in {0, 1, 2, 3}, PA active learning in {0, 1, 2, 3, 4}, and other

components in {0, 1}.

4. The intervention should be patient-friendly, and therefore, its change or adaptation

cannot be too aggressive. This can be readily enforced by the use of move size

constraints, and the high and low limits on manipulated variables.
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Table 4.1: Summary of Dosage Augmentations and Reductions per the IF-THEN Deci-
sion Rules for GWG Adaptive Intervention [1] for the Simulations in Section 4.5.1 and
Section 4.5.2.

Options Adaptation
Step down 3 reduction of other components
Step down 2 reduction of healthy eating active learning
Step down 1 reduction of physical activity active learning

Baseline base dose for all components
Step up 1 first augmentation of healthy eating active learning
Step up 2 second augmentation of healthy eating active learning
Step up 3 first augmentation of physical activity active learning
Step up 4 second augmentation of physical activity active learning
Step up 5 third augmentation of physical activity active learning

5. The intervention starts at week 14, and is adapted every two weeks, which means that

the intervention decisions (Tsw = 14) are made at frequencies other than the regular

sampling intervals (e.g., daily weight scale, Ts = 1).

6. Only one component can have dosage change at each decision point.

7. The augmentation and/or reduction of the intervention is specified in a certain pre-

defined dosage sequence, rather than the arbitrary change of the dosages within the

limits.

The ensuing subsections will develop a procedure to formulate HMPC for this opti-

mized GWG intervention and illustrate how to address these requirements and rules above.

4.4.2 Discrete Magnitude of Dosages

The discrete values of the intervention components in the system for this GWG in-

tervention can be represented logically through binary δ (k) and continuous z(k) auxiliary

variables:

160



δi(k) = 1⇔ zi(k) = i−1; i ∈ {1,2,3,4} (4.92)

u1(k) =
4

∑
i=1

zi(k)
4

∑
i=1

δi(k) = 1 (4.93)

δ j(k) = 1⇔ z j(k) = j−5; j ∈ {5,6,7,8,9} (4.94)

u2(k) =
9

∑
j=5

z j(k)
9

∑
j=5

δ j(k) = 1 (4.95)

δ`(k) = 1⇔ z`(k) = `−10; ` ∈ {10,11} (4.96)

un(k) =
11

∑
`=10

z`(k)
11

∑
`=10

δ`(k) = 1; n ∈ {3,4,5,6,7} (4.97)

where (4.92) and (4.93) describe that one of four possible levels (0, 1, 2, 3) of HE active

learning component (u1(k)) must be assigned for each participant; (4.94) and (4.95) state

that one of five levels (0, 1, 2, 3, 4) of PA active learning component (u2(k)) are available

to be assigned to the participants; and (4.96) and (4.97) represents two discrete doses (0, 1)

of all the other five components (i.e., goal setting u3(k), HE education u4(k), PA education

u5(k), HE weekly plan u6(k), PA weekly plan u7(k)). (4.92) - (4.97) can be converted into

linear inequalities as Ei matrices (i ∈ {1,2,3,4,5,d}) in (4.11).

4.4.3 Switching Time Strategy

As a result of clinical and resource considerations, it is often desirable to make deci-

sions at frequencies other than the regular sampling interval. For example, in Figure 4.5,

the participant visits the clinic only on the days which are marked in red, and however the

measurements are still taken on a daily basis. Therefore, it is necessary for the controller

to recognize at which time points the intervention can be adapted, and during which time

frames the intervention has to stay the course. In other words, the control decisions are

required to be made at an a priori known integer multiple Tsw of the system sample time

Ts, in addition to the previously discussed constraints. This requirement is different from

specifications of multirate control as all variables in this work are sampled at the same
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Switching Time (Tsw)Sampling Time (Ts)

Figure 4.5: Diagrammatic Illustration of the Switching Time Strategy in Section 4.4.3.

rate. It is also distinct from move blocking strategies [88] used for computational burden

reduction. This algorithm is referred to in this work as a switching time strategy [29]. It

is achieved by enforcing control move size constraints ∆u(k) to be zero over the control

horizon except when decisions have to be made, as indicated in Figure 4.5. By taking the

receding horizon nature of HMPC into account, this can be written as time-dependent lin-

ear equality constraint: ATsw(k)u(k) = 0, i ∈ {0, 1, ... , m− 1}. The matrix ATsw(k) has a

block-diagonal structure, for example,



?

? ?

? ?

0

? ?

? ?

? ?

. . .

0

? ?

? ?







u(k)

u(k+1)
...

u(k+m−1)



=




?

0
...

0




(4.98)

where rows with ? entries and 0 are assigned by the algorithm. The rest of the entries in

the matrix are zero. This matrix is generated dynamically at each sampling instant k using

the following steps:
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1. Given the control horizon m and switching time Tsw(≤ m), calculate the number of

blocks numblocks= bm−1
Tsw
c+1. If the numblocks≥ 3, define number of block ex-

cluding the first and last block: midblocks= numblocks−2. The term ‘switching

sample’ will be used to denote sample when the control is allowed to change its value

i.e. iff rem( k
Tsw

) = 0, where rem is the remainder.

2. The matrix ATsw(k) is populated by 0,1 or−1 to implement the move size restriction,

and its size is determined by length of control horizon and size of numblocks:

ATsw(k) ∈ R(Tsw+midblocks×(Tsw−1)+rem(m−1
Tsw )+1)×m.

3. The rows in ATsw(k) corresponding to switching samples will be set to zero; other-

wise the rows will be populated to implement ∆u(k+ i) = 0.

4. Finally, the first sample u(k) is assigned the previously calculated optimal value i.e.

u(k) = u∗ when k does not corresponds to the switching sample (as per the receding

horizon framework).

While mathematically the switching time strategy described in this section is similar

to move blocking strategies used in MPC [88], the difference, besides the process of gen-

erating the matrix ATsw(k), lies in the fact that in move blocking, the goal is to reduce the

computational burden by decreasing the dimensions of the decision variable, whereas here

the requirement is to apply controls only at specified samples, while the dimension of the

decision variable remains the same. This is enforced as a constraint in the optimization

problem shown in (4.45).

4.4.4 Sequential Decision Policies

Adaptive behavioral interventions are usually made up of many intervention compo-

nents (u1, ...,un), the dosages of which are treated as manipulated variables. As an illus-

tration, we assume there are seven (n = 7) components (u1, u2, · · · u7) which are aug-
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mented or reduced during the GWG intervention, as described in Table 4.1. They are

Healthy Eating (HE) active learning (as u1(k) ∈ {0,1,2,3}), Physical Activity (PA) active

learning (as u2(k) ∈ {0,1,2,3,4}), and all the other five components (goal setting u3(k),

HE/PA eduction u4(k),u5(k), and HE/PA weekly plan u6(k),u7(k)) which serve as part

of baseline program, are augmented and reduced at the same time, and are only available

in two doses (u3(k) = u4(k) = · · · = u7(k) ∈ {0,1}). Therefore, we can simply use the

dosage of goal setting u3(k) to represent these five components. Meanwhile, in the base-

line program, all these seven components enter at the same time with a base dosage as

u j(k) = 1, j ∈ {1,2, · · · ,7}.

The multiple intervention components in this problem require the need to address the

decision regarding which component should be first augmented or reduced at each deci-

sion point (considered in this illustration as on a bi-weekly basis) when the dosage can

be updated per the individual’s measured outcomes and performance. There can be many

predefined dosage sequences available according to the requirements of different interven-

tion programs. In this dissertation, we assume that the augmentation and/or reduction of

the GWG intervention follows the dosage sequences specified in Table 4.1. Therefore, u2

will be augmented from its base dose only after u1 reaches its maximum dose, while u1

will not be reduced from full dosage until u2 returns back to its base dose (augmentation

and reduction sequence above baseline). When the participant’s response and performance

is very optimistic during the intervention, the intervention can also be reduced from the

baseline program, with u2 eliminated first, followed by u1 and u3; the augmentation se-

quence for the components to be added from zero dose to base dose will be in the opposite

order, with u3 added first, followed by u1 and u2 (augmentation and reduction sequence be-

low baseline). Meanwhile, the patient-friendly requirement that only one component can

be altered at each intervention decision indicates the necessity to involve the functionality

of allowing the selection of one input change (if ∆ui(k) 6= 0, then ∆u j(k) = 0 for j 6= i;
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i, j ∈ {1,2, ...,n}, where n is the number of intervention components, k is the sampling

time). In this GWG problem as an example, because dosages of u3(k),u4(k), · · · ,u7(k) re-

main the same throughout the intervention, we can assume n = 3. The logic in the sequen-

tial decision policies restricts how the future dosage can be specified over time based on the

current dosage the participants receive, and their performance during the intervention. The

decision on how to properly assign the dosages will be dictated by the HMPC controller

with user-specified objective function, and the clinical considerations and constraints asso-

ciated with these logical conditions embedded into the dynamical model. The underlying

logical specification can be converted into linear inequalities relying on the generation of a

sequence table and the selection of a single input in multi-input scenario [29]. This section

mainly focuses on the design procedure for how to handle the logical specifications associ-

ated with sequential decision policies relying on MLD structure with constraints as HMPC

formulation, and the design of such an HMPC controller is illustrated on a GWG interven-

tion involving several components with a clinically proposed dosage sequence illustrated

earlier in Table 4.1.

4.4.4.1 Generation of a Sequence Table

Table 4.2 is the sequence table derived from augmentation/reduction rule table (Ta-

ble 4.1). It summarizes the proposed dosage sequence according to the description men-

tioned previously, which elucidates how the dosages will change during the intervention.

For instance, if the participant is currently receiving the intervention with dosage sequence

2, then in the next decision point (two weeks later), her intervention can have three op-

tions: (1) it can be augmented to sequence 3, 4, or 5 based on the move size ∆u2(k); (2)

it can get reduced to sequence 1 or 0 according to the move size ∆u1(k); or (3) it can re-

main unchanged. The HMPC controller should be able to determine the optimized discrete

dosages according to the participant’s response and the user-specified objective function,
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and subject to the general process constraints in (4.51) - (4.53) and the clinical constraints

associated with the dosage sequence.

With the help of information in Table 4.2, the following logical conditions are generated

and embedded into the dynamical model using binary variables (δ (k)) in MLD model, so

that only the dosage combinations in Table 4.2 are selected,

Ω = (δ1∧δ5∧δ10)⊕ (δ1∧δ5∧δ11)⊕ (δ2∧δ5∧δ11)⊕

(δ2∧δ6∧δ11)⊕ (δ3∧δ6∧δ11)⊕ (δ4∧δ6∧δ11)⊕

(δ4∧δ7∧δ11)⊕ (δ4∧δ8∧δ11)⊕ (δ4∧δ9∧δ11) (4.99)

where (δ1∧δ5∧δ10) stands for dosage sequence -3 in Table 4.2 (u1 = u2 = · · ·= u7 = 0), in

which δ1 = 1 means u1 = 0 is selected, δ5 = 1 means u2 = 0, and δ10 = 1 means un = 0 (n

∈ {3,4,5,6,7}); (δ1∧δ5∧δ11) represents dosage sequence -2 in Table 4.2; (δ2∧δ5∧δ11)

represents dosage sequence -1 in Table 4.2; and the like. The nine combinations in (4.99)

above are the nine dosage sequences in Table 4.2. Ω in (4.99) can be expressed in the lin-

ear inequalities in (4.11). This limits the possibilities of the dosage combinations to nine

instead of a possible
(4

1

)
×
(5

1

)
×
(2

1

)
= 40 combinations. For problems with larger dimen-

sions than those shown in this example, the generation of Table 4.2 and its corresponding

logical conditions in (4.99) can be efficiently automated.

4.4.4.2 Manipulating One Input at a Time when Move Size | ∆u |≤ 1

The GWG adaptive interventions require that at each intervention decision, there is

only one component being altered. This is necessary, because it can prevent the participant

from being uncomfortable due to any dramatic intervention adaptation and hence unable

to follow up with the pace of the intervention. For example, when the participant is hav-

ing intervention with dosage “step up 1”, in the next assessment cycle, her intervention

can only be augmented to “step up 2” instead of “step up 3”, even though the adaptation
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from“step up 1” to “step up 3” meet combination constraint in (4.99), the manipulated vari-

able bounds and move size constraint that we specified so far. This basically implies that

the controller can only choose one component to be altered at each intervention decision.

Therefore, with the logical specification for Ω in (4.99), we can rely on the mathemati-

cal explanation in either (4.100) or (4.101) to achieve “one input change at a time” logical

condition when the move size constraints are ±1 (| ∆u(k) |≤ 1),

| u1(k) |+ | u2(k)+ | u3(k) | ≤ 1 (4.100)

∆u1(k)2 +∆u2(k)2 +∆u3(k)2 ≤ 1 (4.101)

Because the change in u3 is same as the change in u4, · · · ,u7, one only needs to put

this constraint on three inputs, although we have seven manipulated variables. Equation

(4.100), or the quadratic inequality (4.101) can both be expressed as linear inequalities

which shall have the same constraint effect on the MLD model as (4.100) and (4.101) do.

Hence, the following linear inequalities are considered,

∆u1(k)+∆u2(k) ≤ 1 (4.102)

∆u1(k)+∆u2(k) ≥ −1 (4.103)

∆u2(k)+∆u3(k) ≤ 1 (4.104)

∆u2(k)+∆u3(k) ≥ −1 (4.105)

∆u3(k)+∆u1(k) ≤ 1 (4.106)

∆u3(k)+∆u1(k) ≥ −1 (4.107)

Linear inequalities (4.102) - (4.107) are not mathematically equivalent to (4.100) or

(4.101). However, because the possibilities of dosage combinations for intervention com-

ponents in (4.99) are already limited, there is no chance for one component to be aug-

mented while the other to be reduced, which is exactly the exception that meets (4.102)
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- (4.107) but does not satisfy either (4.100) or (4.101). Therefore, the linear inequali-

ties above are equivalent with (4.100) or the quadratic inequality (4.101) when they are

implemented with the constraints in (4.99) and when the move size constraints are ±1

(| ∆u(k) |≤ 1).

4.4.4.3 Manipulating One Input Signal at a Time for Arbitrary Move Size

The previous section demonstrates how to address the logical specification associated

with manipulating one input at a time when move size is ±1. However, for an arbitrary

move size (as might also be the case in adaptive interventions) the constraints postulated in

(4.100) and (4.101) are inadequate to make sure that only one component incurs a dosage

change at each intervention decision. This section extends the HMPC formulation for

sequential behavioral interventions with arbitrary move sizes, and hence to make it more

generalizable.

In order to achieve this, an extension of the traditional MLD framework for HMPC is

presented. Additional binary variables φ and its associated logical specifications are in-

troduced to the MLD equation to generate corresponding constraints on the basis of the

sequence table in Table 4.2. They are converted into linear inequalities, and are imple-

mented by either appending them to (4.11) or by overwriting the move size constraints in

(4.53). The number of the additional binary variables corresponds to the number of the

manipulated inputs.

For example, in the GWG intervention illustrated above, three binary variables (φ1, φ2

and φ3) are used to augment the vector of binary variables δ in (4.11). The selection of one
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input change can be logically expressed as follows,

φ1(k) = 1⇔





| ∆u1(k) |> 0,

∆u2(k) = ∆u3(k) = 0
(4.108)

φ2(k) = 1⇔





| ∆u2(k) |> 0,

∆u1(k) = ∆u3(k) = 0
(4.109)

φ3(k) = 1⇔





| ∆u3(k) |> 0,

∆u1(k) = ∆u2(k) = 0
(4.110)

φ(k)�∆u(k)min ≤ ∆u(k)≤ φ(k)�∆u(k)max (4.111)

φ1(k)+φ2(k)+φ3(k)≤ 1 (4.112)

where φ(k) = [φ1(k) φ2(k) φ3(k)]T (4.113)

∆u(k) = [∆u1(k) ∆u2(k) ∆u3(k)]T (4.114)

∆u(k)max = [∆u1(k)max ∆u2(k)max ∆u3(k)max]
T (4.115)

∆u(k)min = [∆u1(k)min ∆u2(k)min ∆u3(k)min]
T (4.116)

and � is the Hadamard product, k is the sampling time. In (4.108), the selection of

φ1(k) means u1(k) will be altered, while the other components u2(k), · · · ,u7(k) remain

unchanged; (4.109) and (4.110) have the similar logical meaning. (4.111) redefines the

move size constraints at each decision point, and (4.112) makes sure that only one binary

variable from φ1(k), φ2(k) and φ3(k) will be selected if it is necessary. The logical spec-

ifications in (4.108) - (4.111) can be expressed as linear inequalities related with initial

control effort u0(k), u(k) over the m control horizon, and φ(k) over the p prediction hori-

zon; (4.112) is augmented after the linear inequalities of binary variables δ (k) in (4.11)

over the p prediction horizon. Please note that the move size constraints in (4.115) and
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(4.116) are defined as time-varying vectors in order to maintain generality; this can also

help address the fact that the decision to assign the dosage is made less frequent than the

daily sampling time of output measurement through self-monitoring process, (which has

been discussed in the switching time strategy in Section 4.4.3).

4.5 Simulation Studies

In this section, we consider three simulation scenarios taken from GWG intervention

with sequential decision polices. The first study focuses on the examination of how the

improved HMPC framework assigns the optimized dosages, the change of which follows

the proposed sequenced rules in Table 4.1. The extension of the traditional MLD frame-

work introduced in Section 4.4.4.3 will be used in this study, and the corresponding logical

specifications associated with clinical constraints and consideration discussed in the previ-

ous section are implemented to address the sequential decision policies. This study aims to

validate the optimal decision policies generated by HMPC framework when the move size

limits are arbitrary. The second case study intends to better understand why HMPC-based

adaptive intervention offers an appealing and valuable framework for optimized behavioral

intervention by the comparison with the adaptive intervention via “IF-THEN” decision

rules. The GWG sequential behavioral intervention with move size ±1 is used as an ex-

ample to illustrate this, and the HMPC framework relying on traditional MLD model with

constraints in Section 4.4.4.2 is implemented to generate the sequential decision policies

in Table 4.1. The objective of the third case study is to illustrate that the HMPC algorithm

developed in this section is not limited to the particular proposed dosage sequence in Ta-

ble 4.1. By proposing a new set of sequential decision policies in Table 4.4, the design

procedure of HMPC controller is analyzed and demonstrated, and the simulation results

help not only verify that the dosage assigned by HMPC controller follows the new se-

quenced rules, but also demonstrate again why HMPC-based intervention is a promising
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approach to design adaptive sequential interventions.

The simulations are based on a hypothetical 25-year-old female with 75 kg in pre-

gravid body mass, 160 cm in height, which classifies her as overweight (BMI=29.30).

Maternal age was selected using 2010 Data from the Center for Disease Control and Pre-

vention illustrating mean age of mother at first birth is 25.4 years [71]. The open-loop

model for GWG interventions is depicted in Figure 4.1. Two-degree-of-freedom (2 DoF)

Internal Model Control (IMC) is used to formulate self-regulation, as illustrated in Sec-

tion 3.2.3. For the sake of simplicity, we only focus on the effects that intervention com-

ponents and self-regulation play on the perceived behavioral control (PBC) inflow to the

Theory of Planned Behavior (TPB) models. In both the intervention and non-intervention

treatments, we assume the age of gestation at time of delivery to be 40 weeks. We claim

that the participant will have a ramp increase in her energy intake (EI) from day 35 to day

91. The participant is sedentary at the time of conception, and she potentially engages

in less physical activity (PA) from the second to third trimester as she gains more weight

in the absence of intervention. The intervention can help improve her physical activity

level (PAL) in the second trimester, and however she will still decrease her PA during her

latter stage of pregnancy, especially one or two months prior to delivery. These are two

PA disturbances for intervention and no intervention case, which will lower her energy

expenditure (EE) in the energy balance model.

4.5.1 Validation for the Proposed Dosage Sequence Formulation

The simulation in this section focuses on the evaluation of adaptive interventions ad-

ministered by HMPC controller with arbitrary move size, and the illustration of how the

optimized dosages featuring sequential decision rules in Table 4.2 are assigned by HMPC.

The scenario in the absence of intervention is also presented so as to illustrate how much

improvement the participant has made under the influence of HMPC-based adaptive inter-
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ventions. The participant will not engage in self-regulation when there is no intervention.

Table 4.3 summarizes the model parameters in this simulation study, including the be-

havioral parameters, time constants τi, time delay θi, gains assumed for the participant

in the TPB model and intervention delivery dynamics module, and filter parameters in

the internal model control design for self-regulation, respectively. All these parameter

values are hypothetical but have been selected such that the simulated responses mimic

those of an actual participant. The parameters for the HMPC are as follows: p = 30

and m = 28, Qy = 100, αr = 0.9, αd = 0, fa = 0.5, and sampling time Ts = 1 (the par-

ticipant measures her GWG and monitors dietary record daily), and the switching time

Tsw = 14 (intervention decisions are made every two weeks). The move size constraints

for the manipulated variables at the intervention decision are ∆u(k)max = [1 2 1]T , and

∆u(k)min = [−1 −2 −1]T to illustrate that this improved HMPC no longer limits the

move size to be ±1.

Figure 4.6 shows the simulation result with a participant’s responses for maternal body

mass, EI, EE, the intervention component dosages, and the PBC inflows to the two TPB

models. The dosage of goal setting u3(k) is same as the other four dosages u4(k), · · · ,u7(k)

throughout the intervention, therefore, only u3(k) is plotted to represent these other four

dosages as well. The whole process can be divided into four stages. The first stage oc-

curs before the intervention begins. For both intervention and no-intervention case, the

participant has a ramp increase in her EI due to her pregnancy, and she remains sedentary

throughout the first trimester. The second stage starts at week 14 when the intervention is

initialized with the baseline program (u1(k) = u2(k) = u3(k) = 1) assigned to the partici-

pant. Although the participant’s weight gain is within the IOM guidelines at the beginning

of the intervention, her high EI increase in the first trimester soon leads her weight outside

the reference values (around day 125), and this indicates the necessity for a more intensive

intervention. As a result, u1(k) is the first to be augmented step by step at each interven-
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Figure 4.6: Simulation Responses in Section 4.5.1 for Maternal Body Mass, Energy Intake
(EI), Energy Expenditure (EE), the Intervention Component Dosages, and the Perceived
Behavioral Control (PBC) Inflows to the Theory of Planned Behavior (TPB) Models. Red
Dashed Lines Represent the 2009 IOM Guidelines in Table 2.4 Applied on a Daily Basis;
the Blue Solid Lines are the Case with Adaptive GWG Intervention Using HMPC Frame-
work Corresponding to the Dosage Sequence Table 4.2; and the Black Dashed-dotted Lines
are the Case in the Absence of the Interventions.
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Table 4.3: Model Parameters for the Simulation Studies in Section 4.5.1. Time Constants
(τi), Delays (θi), and Self-regulation Adjustable Parameters (λr, λd) are in Units of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 4 c1 2 2
τ1 1 30 γ11 1 0.7
τ2 1 30 γ22 1 0.5
τ3 1 10 γ33 1 0.7
τ4 1 20 β41 1 0.34
τ5 1 30 β42 1 0.27

θ1 . . . θ3 0 0 β43 1 0.13
θ4 . . . θ6 0 0 β53 0 0.08
θ7, θ8 0 0 β54 1 0.42

ku1 0.004 0 θu1 0 0
ku2 0 0.01 θu2 0 0
ku3 0.002 0.006 θu3 0 0
λr 70 100 λd 90 155

tion decision with move size constraint −1 ≤ ∆u1(k) ≤ 1. u2(k) will not get augmented

until two weeks after u1(k) reaches its maximum dose (u1(k)max = 3). This helps verify

that the HMPC controller will only allow one manipulated variable to incur the change

at each time. The move size constraint on u2(k) is ±2, and hence this component is first

augmented by two doses from its base value at week 20, followed by one dose augmenta-

tion at week 22 when u2(k) reaches its maximum doses (u2(k)max = 4). This stage mainly

involves the augmentation above the baseline program (un(k) ≥ 1,n ∈ {1,2,3}), and the

adaptation of the intervention between the week 14 and week 22 shows that it follows the

proposed sequential decision policies above the baseline. This full dosages of all these

components are assigned to the participant and sustained for five intervention decisions.

The third stage begins at day 220, the participant meets her GWG goal; HMPC controller

reduces the intervention by decreasing u2(k) by two doses, while still keeping u1(k) at its
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maximum dosage. The adapted intervention in this stage also indicates that it follows the

proposed reduction sequence above the baseline program in Table 4.1. The fourth stage

starts with the termination of the intervention at week 36. The previous effects of interven-

tion and self-regulation keep the participant engaging in a healthy diet and active exercise

life style. At the same time, the participant’s PA starts gradually reducing, due to the fact

that pregnant woman is reluctant to do PA at late third trimester, which leads to the de-

crease of EE. Despite of her reduced EE, the final EE is still above its initial value. At late

pregnancy, the participant is able to control her EI at a stable level, while controlling her

GWG within the IOM guideline.

4.5.2 HMPC versus Decision Rules

This section presents a hypothetical scenario focusing on the understanding of why

HMPC structure offers a potentially valuable framework for adaptive interventions by com-

parison with the intervention using “IF-THEN” decision rules for GWG problem.

Simple “IF-THEN” decision rules for time-varying GWG adaptive intervention are de-

picted in Figure 4.4. They act on the result of important outcomes of the intervention (also

known as tailoring variables [25]). In this GWG intervention, the decision rules evaluate

GWG every two weeks (same as Tsw = 14 in HMPC-based intervention) from week 14.

If a participant is within the IOM guidelines, the intervention dosage will be sustained for

two intervention decisions every time before it gets reduced. However, as soon as the par-

ticipant fails to meet the IOM guidelines at any intervention decision, her intervention gets

augmented to increase potency. The augmentation and reduction of the intervention com-

ponents also follows the corresponding sequenced rules described in Table 4.1, with the

dosage change taking place only one step at a time for all the components, which indicates

that move size constraints on all manipulated variables are ±1 in HMPC-based interven-

tion. Therefore, in this case study, the constraints for manipulating one input at a time in
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Section 4.4.4.2 will be used and examined.

In the simulation study, we assume the anticipated disturbance occurs in the late of

the participant’s second trimester, and continues until her delivery when there is no in-

tervention. The intervention will help the participant attenuate this EI increase. For the

sake of simplicity, the model parameters in Table 4.3 are used for this simulation study.

The parameters for the HMPC are also same as the ones used in Section 4.5.1, except

that fa = 1, αr = 0.9, and move size constraints are set to ∆u(k)max = [1 1 1]T , and

∆u(k)min = [−1 −1 −1]T at each intervention decision, in order to match the ones in

“IF-THEN” decision rules.

The simulation responses for maternal body mass, EI, EE, the intervention component

dosages, and the PBC inflows to Theory of Planned Behavior (TPB) models under differ-

ent scenarios (HMPC-based intervention, adaptive intervention using decision rules, and

no intervention) are shown in Figure 4.7. The scenario in the absence of the intervention

is presented in the simulation result in order to illustrate how the interventions play an im-

portant role on the participant’s improvement in behavior: EI and PA under the influences

of strong disturbance. From the EI profile without the intervention, we can see that the

participant will increase her EI not only in the first trimester before the intervention due

to her awareness of the pregnancy, but only in the late of the second trimester after the

intervention starts. At the beginning of the intervention, the participant’s weight is again

within the IOM guidelines, although her EI (3302 kcal/day) is already 100 kcal higher

than the EI reference values (3202 kcal/day) assumed for the third trimester. Therefore,

for both HMPC-based intervention and intervention using decision rules, the initial dosage

this participant receives is the baseline program.

In HMPC-based intervention, this participant’s weight is always within the IOM guide-

lines after the intervention starts. In order not to have this participant reduce too much

weight which might be even below the lower bound of IOM guidelines, the HMPC con-
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Figure 4.7: Simulation Results in Section 4.5.2 for the Participant’s Responses for Ma-
ternal Body Mass, Energy Intake (EI), Energy Expenditure (EE), the Intervention Com-
ponent Dosages, and the Perceived Behavioral Control (PBC) Inflows to the Theory of
Planned Behavior (TPB) Models for the HMPC-based Intervention, the Adaptive Interven-
tion Using Decision Rules, and no Intervention Case. The Red Dashed Lines Represent the
2009 IOM Guidelines in Table 2.4 Applied on a Daily Basis; the Blue Solid Lines are the
Case with HMPC-based Intervention Corresponding to the Dosage Sequence Table 4.2;
the Black Dashed-dotted Lines Represent the Case with Adaptive Intervention Using “IF-
THEN” Decision Rules in Sequenced Rules Table 4.1; and the Pink Dotted Lines are the
Case in the Absence of the Interventions.
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troller first reduces the intervention for this participant by setting dosage to zero for compo-

nent u2(k) at week 16. At this reduced intervention, the other two components at their base

doses can still maintain this participant within the IOM guidelines during the week 16-20

when there is no extra EI increase (disturbance). At week 20, HMPC controller augments

the intervention by adding this component u2(k), which makes the intervention restored to

the baseline program. The EI anticipated disturbance occurs at day 170, and therefore the

HMPC controller continues augmenting the intervention at week 22 (day 154) by increas-

ing the dose for u1(k), considering the prediction horizon m = 30. The component u2(k)

does not get augmented until week 26, which is two weeks after u1(k) = 3. The move

size constraint on u2(k) in this scenario is also ±1 in order to match the case using deci-

sion rules for the comparison. The intervention reaches the maximum dosages for all the

components at week 30, and the intervention remains unchanged until the end of the inter-

vention. This hypothetical participant with the HMPC-based intervention is able to keep

her weight within the IOM guidelines throughout her whole pregnancy, no matter whether

there exists an EI increase as disturbance. This participant also manages to control her EI

within the reference values in the mid-third trimester. The participant’s PBC inflows to the

TPB models increase faster when the intervention gets augmented, and more slowly when

the intervention gets reduced.

Examining the case of adaptive intervention using decision rules, this same participant

will receive the same baseline program at the entry of the intervention due to her weight is

within the IOM guideline. Because she is able to meet her GWG goal under the baseline

program for two intervention decisions (4 weeks), her intervention gets reduced by setting

the dosage of component u2(k) to zero at week 18 first. With this reduced intervention,

for the next four weeks, this participant’s weight gain continues staying inside the IOM

guidelines, and therefore, the dosage of component u1(k) gets reduced to zero at week

22 when only the component u3(k) with base dose is assigned to this participant. This
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participant still succeeds maintaining her weight gain within the IOM guidelines for the

next 4 weeks, and hence, at week 26, the dosage of u3(k) is also decreased to zero. The

EI increase occurs at day 170 (late second trimester). With this EI disturbance, her high EI

increase in the first trimester, and her reduced less intensive (or even no) intervention, her

weight gain starts to be outside the IOM guidelines around day 195 when her intervention

finally gets initialized again with component u3(k) added first at week 28, u1(k) second

at week 30, and u2(k) at week 32. At week 34, her intervention is augmented above

the baseline by increasing u1(k) to dose 2, and the intervention stops at week 36 with

no possibility for further augmentation to reduce her weight gain. Therefore, all these

augmented actions are not taken place in a timely manner before or immediately after EI

disturbance in the second trimester, even though this participant’s weight in within the

IOM guidelines for the first several intervention decisions. As a result, this participant’s

GWG is outside the IOM guidelines at her late pregnancy, and her EI is always above the

reference values throughout her pregnancy. The improvements in her PBC inflows to the

TPB models are only around half of those using HMPC-based intervention.

This case study illustrates that the feedforward control action in HMPC controller is

very useful in addressing anticipated disturbances which may be a priori or can be mea-

sured / predicted in the course of the intervention, while the feedback control action can re-

sponse to unmeasured disturbance. HMPC controller will assign the future dosages based

on not only the participant’s past and current dosages, but also the predicted measured

outcomes over the prediction horizon, while the decision rules adapt the intervention only

based on the participant’s current and past responses. Hence, when the anticipated distur-

bance is available, HMPC-based intervention can better predict the future responses of the

participant, and make the dosage adjustment earlier than the intervention using decision

rules which may or may not provide the augmentation in time.
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4.5.3 Alternate Sequenced Rules

In this section, another set of sequenced rule for GWG interventions is proposed to

demonstrate how the HMPC algorithm developed earlier can be applied to the design of

different sequential decision policies. The alternate sequenced rules conform to the ones

in real-life GWG interventions designed by Penn State collaborators. The goal of the

simulation in this section is to illustrate that the HMPC algorithm is not only useful for one

particular set of the sequenced rules in Table 4.1 for the GWG interventions, it can also

serve as a basic framework of designing other sequential decision policies.

The adaptation rules used in this simulation are described in Table 4.4. This new set of

sequenced rules states that:

1. The intervention starts at week 14, and is adapted every four weeks, which means

switching time Tsw = 28.

2. The baseline program is make up of five components (HE/PA education, HE/PA

weekly plan, and goal setting), and will be sustained throughout the intervention,

while the other two components (HE component and PA component) are not offered

during the baseline program.

3. Among all the seven components, there are two components (HE component u1 and

PA component u2) which will be augmented from the baseline program. They are

delivered in pre-determined discrete doses, with HE component (u1) in {0, 1, 2, 3},

PA (u2) component in {0, 1, 2}.

4. The augmentation of each component can only occur one step at a time, and there is

no reduction of the components for the sake of cost saving (move size constraints:

0≤ ∆u≤ 1).
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Table 4.4: Summary of Dosage Augmentations per the IF-THEN Decision Rules for GWG
Adaptive Interventions [7] for the Simulation in Section 4.5.3.

Options Adaptation
Baseline Intervention Education, Goal setting, plans, and self-monitoring

Step up 1 Baseline + HE componenta

Step up 2 Baseline + 1 + PA componentb

Step up 3 Baseline + 1+ 2 + HE component
Step up 4 Baseline + 1 + 2 + 3 + PA component
Step up 5 Baseline + 1 + 2 + 3 + 4 + HE component

aaugmentation of healthy eating (HE) active learning.
baugmentation of physical activity (PA) active learning.

5. The adaptation of the intervention has to follow a certain pre-defined dosage se-

quence described in Table 4.4, which incrementally increases the HE and PA com-

ponents in an alternating pattern.

Consequently, the discrete values of the components as system’s manipulated variables

(u1, u2) can be expressed as follows,

δi(k) = 1⇔ zi(k) = i; i ∈ {0, 1, 2, 3} (4.117)

u1(k) =
3

∑
i=0

zi(k)
3

∑
i=0

δi(k) = 1 (4.118)

δ j(k) = 1⇔ z j(k) = j−4; j ∈ {4, 5, 6} (4.119)

u2(k) =
6

∑
j=4

z j(k)
6

∑
j=4

δ j(k) = 1 (4.120)

δ`(k) = 1⇔ z`(k) = `−6; `= 7 (4.121)

un(k) =
7

∑
`=7

z`(k)
7

∑
`=7

δ`(k) = 1; n ∈ {3,4,5,6,7} (4.122)

where (4.117) and (4.118) specify that one of four possible levels (0, 1, 2, 3) of HE active

learning component (u1) must be assigned for each participant; (4.119) and (4.120) state

that one of three levels (0, 1, 2) of PA active learning component (u2) are available to be

assigned to the participants, as indicated in Table 4.4; (4.121) and (4.122) represent the
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dosages of the five components included in the baseline program. Meanwhile, according

to the sequenced rules in Table 4.4, the sequence table can be generated, and they are listed

in Table 4.5.

Again, with the information provided in Table 4.5, the propositional logic can be used

to generate the following logical conditions which will be embedded into the dynamical

model, and this can be guarantee that only the dosage combinations in Table 4.5 are se-

lected.

Ω = (δ0∧δ4∧δ7)⊕ (δ1∧δ4∧δ7)⊕ (δ1∧δ5∧δ7)⊕

(δ2∧δ5∧δ7)⊕ (δ2∧δ6∧δ7)⊕ (δ3∧δ6∧δ7) (4.123)

where (δ0∧δ4∧δ7) is the dosage assigned to the participant in the baseline program (u1 =

u2 = 0, u3 = · · ·= u7 = 1), in which δ0 = 1 means u1 = 0 is selected, δ4 = 1 means u2 = 0,

δ7 = 1 means u3 = · · ·= u7 = 1; (δ1∧δ4∧δ7) represents dosage sequence 1 in Table 4.5;

(δ1∧δ5∧δ7) represents dosage sequence 2 in Table 4.5; and the like. The six combinations

in (4.123) are the six dosage sequences in Table 4.5. Ω in (4.123) can be expressed in the

linear inequalities in (4.11). This limits the possibilities of the dosage combinations to six

instead of a possible
(4

1

)
×
(3

1

)
= 12 combinations.

Table 4.6 summarizes the model parameters in this simulation study. The parameters

for the HMPC are as follows: the prediction horizon p = 60, the control horizon m = 30,

the penalty weight on the control error Qy = 10; the 3-DoF tuning parameters: αr = 0,

αd = 0, and fa = 1. The sampling time for the participant to measure her GWG and

monitor dietary record is Ts = 1 day, and the intervention decision (assessment cycle) is

made every four weeks (Tsw = 28 days).

Figure 4.8 shows the simulation comparison of the participant’s responses for the case

with HMPC-based intervention (blue lines) and the case with adaptive intervention via de-

cision rules (black lines). For the sake of better illustrating how the interventions have
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Figure 4.8: Simulation Responses in Section 4.5.3 for the PBC Inflows to the Two TPB
Models, Maternal Body Mass, Energy Intake, PAL Change, Energy Expenditure, and the
Dosages of Two Augmented Intervention Components. Red Line Represent the 2009 IOM
Guidelines Applied on a Daily Basis; the Blue Solid Lines Represent the Case with Opti-
mized Adaptive Interventions Using HMPC Corresponding to the Dosage Sequence Table
in Table 4.5, the Black Dash Lines are Adaptive Interventions via “IF-THEN” Decision
Rules in Sequenced Rules Table 4.4, and the Pink Dash-dot Line is the Energy Intake
Profile with no Interventions.
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Table 4.6: Model Parameters for the Simulation Study in Section 4.5.3. Time Constants
(τi) are in Units of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 4 c1 2 2
τ1 1 30 γ11 1 0.7
τ2 1 30 γ22 1 0.5
τ3 1 30 γ33 0.95 0.9
τ4 1 30 β41 1 0.34
τ5 1 36 β42 1 0.27

θ1 . . . θ3 0 0 β43 1 0.18
θ4 . . . θ6 0 0 β53 0 0.12
θ7, θ8 0 0 β54 1 0.42

ku1 0.005 0 θu1 0 0
ku2 0 0.01 θu2 0 0
ku3 0.001 0.005 θu3 0 0
λr 80 100 λd 90 155

an effect on the participant’s improvement in her energy intake, the energy intake pro-

file in the absence of intervention (pink dotted-dash line) is presented as well. First, the

simulation result for the dosages of augmented intervention components can help validate

if the HMPC controller assigns the optimized dosages based on the sequenced rules that

were mentioned earlier. When the intervention starts, the baseline program is offered to

the participant because her weight is within the IOM guidelines. HMPC controller aug-

ments HE active learning and PA active learning incrementally in an alternating pattern,

as required in the sequenced rules. In this particular intervention, there is no reduction

for cost saving purposes, as discussed earlier. This figure also illustrates why HMPC con-

troller serves an appealing framework for adaptive intervention in contrast with the case

using decision rules. As mentioned previously in Section 4.5.2, when the anticipated or

measured disturbance is available, HMPC-based intervention can take action to make the

dosage adjustment in a timely manner according to the model dynamics and prediction
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over the receding horizon, compared with the intervention via decision rules which may or

may not provide the augmentation in time.

4.6 Chapter Summary

This chapter has presented the formulation and the application of HMPC to the design

of adaptive sequential behavioral interventions. Because the GWG problem is an excel-

lent example of a sequential intervention, the open-loop model developed in Chapter 2 and

Chapter 3 serves as the basis to implement HMPC algorithms acting as decision frame-

work in an GWG intervention. The behavioral health setting defines the difference in this

problem from the conventional control engineering applications, and it requires us to take

into account the clinical and resource considerations when the control system is designed.

Specifically, the HMPC framework is formulated to address the discrete-valued nature of

the manipulated variables, the difference in the frequency between an intervention decision

and the sampling interval, and the patient-friendly dosage assignment which follows the

pre-defined dosage sequence, thus creating the functionality needed by the control algo-

rithm to make sequential decisions within a receding horizon framework.

The greatest challenge described in this chapter is to design the linear inequalities to

meet the logical conditions associated with dosage sequence. Propositional logic can en-

force constraints between variables only at the current sampling time, however the dosage

sequence requires the constraints between manipulated variables in a time-varying man-

ner. In this chapter, for the sake of simplicity, we first assume the move size constraints

of all the manipulated variables are ±1, the process constraints and extra constraints are

embedded into the MLD framework to address this logical specification associated with

the dosage sequence. Later, we present an extension of the traditional MLD-based HMPC

scheme which can address a more generalized case with arbitrary move size. Relying on

the additional binary variables introduced to the MLD structure, and the user-specified
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sequence table, the logical specifications associated with the sequential decision policies

in adaptive interventions can be easily generated, and embedded into HMPC formulation

using MLD structure with constraints.

Three simulation studies were presented, focusing on the assessment of how adaptive

intervention with sequential decision policies using HMPC framework assigns the opti-

mized dosages with its change following the proposed dosage sequence, the illustration

of how HMPC-based intervention is able to adjust the dosages of the intervention com-

ponents “just-in-time” through the comparison with adaptive intervention using decision

rules, and the exemplification of how to generate different sequential decision policies us-

ing the proposed HMPC algorithm. This offers a “proof-of-concept” demonstration of

the potential that HMPC-based interventions can provide in improving the participant’s

response, increasing the effectiveness of the intervention, and enabling less waste of re-

sources by relying on a dynamical model, measured outcomes, and predicted measured

disturbance (if available).

This work is proof of concept as well focusing on the application of control-oriented

approaches in the field of behavioral health and medicine. The HMPC algorithm proposed

in this chapter was illustrated on an intervention for managing weight gain during preg-

nancy; however, as we can see in Section 4.5.3, it can be applied to any other adaptive

behavioral intervention problem featuring multiple intervention components which also

require a pre-defined dosage sequence.
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Chapter 5

ENHANCEMENTS TO THE GWG ADAPTIVE INTERVENTION
5.1 Overview

In earlier chapters, a dynamical systems model for the behavioral interventions to pre-

vent excessive GWG was presented, which was used to formulate the controllers for self-

regulation, and decision policies that generate optimized discrete dosages with pre-defined

dosage sequence, respectively. This dissertation addresses the application of control theory

in the field of psychology and behavioral health, and has provided valuable insights for the

demonstration of how to use dynamical systems and control-oriented methods to design,

implement and optimize the adaptive sequential behavioral interventions.

This chapter extends the prior simulation work to allow us to examine some real-life

scenarios, that will ultimately be important in pilot testing and clinical trials of this re-

search. We focus on two enhancements to the existing application in this dissertation: one

is the linear time-varying system for GWG adaptive intervention using gain-scheduling

parameter varying control as an initial approach; and the other is filter design for multi-

rate digital control that addresses the difference in the frequency of measurement of the

self-monitoring components. The latter can be achieved by introducing an additional filter

for the slow measurements, which together with the one in 3 DoF tuning approach consti-

tute the cascade filters for dual-rate system, as described in [14]. Numerical examples are

shown using GWG adaptive intervention as discussed in the previous chapters for these

two enhancements.

The rest of the chapter is organized as follows. Section 5.2 describes the algorithm for

how to implement gain-scheduling parameter varying control under HMPC framework.

Section 5.3 presents the design procedure of cascade filter for multi-rate control system.

Section 5.4 gives the summary of this chapter.
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5.2 Gain-Scheduling Parameter Varying Control for GWG Intervention

The behavioral model - Theory of Planned Behavior (TPB) introduced in Section 2.3

is generated by the use of the principle of conservation of mass based on the relationship

between fluid analogies and path diagrams from structural equation modeling. For reasons

of simplicity, we earlier assume it was a first-order linear time-invariant model. However,

the variations of participant’s attitude and behavior during pregnancy indicate the potential

parameter changes in the model in real life, leading to the linear time-varying model,

τ1(t)
dη1

dt
= γ11(t)ξ1(t−θ1(t))−η1(t)+ζ1(t) (5.1)

τ2(t)
dη2

dt
= γ22(t)ξ2(t−θ2(t))−η2(t)+ζ2(t) (5.2)

τ3(t)
dη3

dt
= γ33(t)ξ3(t−θ3(t))−η3(t)+ζ3(t) (5.3)

τ4(t)
dη4

dt
= β41(t)η1(t−θ4(t))+β42(t)η2(t−θ5(t))+β43(t)η3(t−θ6(t))

−η4(t)+ζ4(t) (5.4)

τ5(t)
dη5

dt
= β54(t)η4(t−θ7(t))+β53(t)η3(t−θ8(t))−η5(t)+ζ5(t) (5.5)

where the time constants τi, gains βi j, γi j and time delay θi will be changing with time in

this time-varying system model. For example, the time constants can have several different

values during the intervention or pregnancy. We can address these problems using gain

scheduling parameter varying control, which will help better improve the prediction of

controlled variables over the receding horizon using an HMPC strategy.

Gain scheduling is perhaps one of the most popular nonlinear control design approaches

which have been widely and successfully applied in various fields, ranging from aerospace

to process control. Gain scheduling design typically employs a “divide and conquer” ap-

proach whereby the nonlinear design task is decomposed into a number of linear sub-tasks.

Such a decomposition depends on establishing a relationship between a nonlinear system

and a family of linear systems. One or more observable variables are used to determine
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Figure 5.1: Illustration of the Gain Scheduling Strategy for a GWG Intervention Devel-
oped in this Chapter

what operating region the system is currently in and to enable the appropriate linear con-

troller [89].

In this work, we assume that there are several different linear models to describe a par-

ticipant’s behavioral change during the intervention, and the gain scheduling will switch the

model according to preset times (also called scheduling signals, or scheduling variables).

For example, there are three linear models as illustrated in Figure 5.1. The intervention

will be adapted at each decision point. For the first decision, there is no model change over

the prediction horizon p, and therefore, the MPC will schedule linear model 1 which will

predict the future values of controlled variables. At the second decision point, the predic-

tion horizon spans between the model scheduling time for linear model 1 and linear model

2. Hence, at the time to make the intervention decision, it is very important for the HMPC

controller to understand that linear model 2 will be used tMS1 days after the intervention

decision is made. One can reach a similar conclusion when the third intervention decision

is made: HMPC should switch from linear model 2 to linear model 3 tMS2 days after the

new dosage is assigned. If each scheduling model is very close to our real process, then the

predicted values of the controlled variables from HMPC will be more accurate, compared

with using only one fixed linear model (e.g., linear model 1). The difference between the

model scheduling time and the switching time that is illustrated in Section 4.4.3 is that
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model scheduling time tMS is changing at every decision point, while the switching time

refers to the frequency when the participant visits the clinics, and it is usually a constant.

In order to implement this gain scheduling strategy for GWG intervention in Figure 5.1,

we have to introduce additional variable (model scheduling time tMS) to our HMPC al-

gorithm every time when the intervention is adapted during the model scheduling time.

Therefore, the p step ahead prediction equations of MPC have to be updated, especially

the matrices related with the state space model parameters, to show this model scheduling

strategy. For the convenience, we re-state the process model, the disturbance model, and

the differenced forms of the disturbance and system models that were previously described

in Chapter 4. The MLD-based model framework is expressed as follows,

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)+Bdd(k) (5.6)

y(k) = Cx(k)+d′(k)+ν(k) (5.7)

E2δ (k)+E3z(k) ≤ E5 +E4y(k)+E1u(k)−Edd(k) (5.8)

Here, the stochastic disturbance model for unmeasured disturbance d′ that we consider

is,

xw(k) = Awxw(k−1)+Bww(k−1) (5.9)

d′(k) = Cwxw(k) (5.10)

The differenced forms of the disturbance and system models are as follows,

∆x(k) = A∆x(k−1)+B1∆u(k−1)+B2∆δ (k−1)+B3∆z(k−1)

+ Bd∆d(k−1) (5.11)

∆xw(k) = Aw∆xw(k−1)+Bw∆w(k−1) (5.12)

The following equations can be obtained if propagating equations (5.7), (5.11), and

(5.12),
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X(k) = ÃX(k−1)+ B̃1∆u(k−1)+ B̃2∆δ (k−1)+ B̃3∆z(k−1)

+ B̃d∆d(k−1)+ B̃w∆w(k−1) (5.13)

y(k) = C̃X(k)+ν(k) (5.14)

where

X(k) = [∆xT (k) ∆xT
w(k) yT (k)]T

Ã =




A 0 0

0 Aw 0

CA Aw I




; B̃i =




Bi

0

CBi



, i = 1,d;

B̃w =




0

I

I




; C̃ = [0 0 I]

Here ∆∗ (k) = ∗(k)−∗(k−1) and ∆w(k) is a white noise sequence.

Therefore, when different linear model is scheduled according to preset time, the ma-

trices in (5.13) and (5.14) are different, and this will impact the p step ahead prediction

below, which is also shown in (4.23) - (4.24).

Y (k+1) = ΦX(k)+H1U(k)+H2δ̄ (k)+H3Z(k)+HdD(k)−H11u(k−1)

− H21δ (k−1)−H31z(k−1)−Hd1d f lt(k−1) (5.15)

Ē5 ≥ Ē2δ̄ (k)+ Ē3Z(k)+ Ē4Y (k)+ Ē1U(k)+ ĒdD(k) (5.16)

In order to derive the expressions of new matrices in (5.15) and (5.16), let us assume

that tMS = 4 as an example first. The second model is expressed as,
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X(k) = ÂX(k−1)+ B̂1∆u(k−1)+ B̂2∆δ (k−1)+ B̂3∆z(k−1)

+ B̂d∆d(k−1)+ B̂w∆w(k−1) (5.17)

y(k) = ĈX(k)+ν(k) (5.18)

If the prediction horizon of the MPC model is p, the moving horizon is m, the future

value of output y(k+1) is

y(k+1) = C̃X(k+1)

= C̃ÃX(k)+C̃B̃1∆u(k)+C̃B̃2∆δ (k)+C̃B̃3∆z(k)+C̃B̃d∆d f lt(k)

= C̃ÃX(k)+C̃B̃1u(k)+C̃B̃2δ (k)+C̃B̃3z(k)+C̃B̃dd f lt(k)

− C̃[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)] (5.19)

The future value of output y(k+2)

y(k+2) = C̃Ã2X(k)+ [(C̃ÃB̃1−C̃B̃1)u(k)+C̃B̃1u(k+1)]

+ [(C̃ÃB̃2−C̃B̃2)δ (k)+C̃B̃2δ (k+1)]+ [(C̃ÃB̃3−C̃B̃3)z(k)

+ C̃B̃3z(k+1)]+ [(C̃ÃB̃d−C̃B̃d)d f lt(k)+C̃B̃dd f lt(k+1)]

− C̃Ã[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)]

(5.20)

Similarly, the future value of output y(k+3)
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y(k+3) = C̃Ã3X(k)

+ [(C̃Ã2B̃1−C̃ÃB̃1)u(k)+(C̃ÃB̃1−C̃B̃1)u(k+1)+C̃B̃1u(k+2)]

+ [(C̃Ã2B̃2−C̃ÃB̃2)δ (k)+(C̃ÃB̃2−C̃B̃2)δ (k+1)+C̃B̃2δ (k+2)]

+ [(C̃Ã2B̃3−C̃ÃB̃3)z(k)+(C̃ÃB̃3−C̃B̃3)z(k+1)+C̃B̃3z(k+2)]

+ [(C̃Ã2B̃d−C̃ÃB̃d)d f lt(k)+(C̃ÃB̃d−C̃B̃d)d f lt(k+1)+C̃B̃dd f lt(k+2)]

− C̃Ã2[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)] (5.21)

The future value of output y(k+ 4) will involve the second model (5.17) - (5.18), be-

cause we assume tMS = 4,

y(k+4) = ĈX(k+4)

= ĈÂX(k+3)+ĈB̂1∆u(k+3)+ĈB̂2∆δ (k+3)

+ ĈB̂3∆z(k+3)+ĈB̂d∆d f lt(k+3)

= ĈÂÃ3X(k)+ [ĈÂ(Ã2B̃1− ÃB̃1)u(k)+ĈÂ(ÃB̃1− B̃1)u(k+1)

+ Ĉ(ÂB̃1− B̂1)u(k+2)+ĈB̂1u(k+3)]

+ [ĈÂ(Ã2B̃2− ÃB̃2)δ (k)+ĈÂ(ÃB̃2− B̃2)δ (k+1)

+ Ĉ(ÂB̃2− B̂2)δ (k+2)+ĈB̂2δ (k+3)]

+ [ĈÂ(Ã2B̃3− ÃB̃3)z(k)+ĈÂ(ÃB̃3− B̃3)z(k+1)

+ Ĉ(ÂB̃3− B̂3)z(k+2)+ĈB̂3z(k+3)]

+ [ĈÂ(Ã2B̃d− ÃB̃d)d f lt(k)+ĈÂ(ÃB̃d− B̃d)d f lt(k+1)

+ Ĉ(ÂB̃d− B̂d)d f lt(k+2)+ĈB̂dd f lt(k+3)]

− ĈÂÃ2[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)]

(5.22)
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Similarly, the future value of output y(k+ 5) will also involve the second model, and

can be expressed as,

y(k+5) = ĈÂ2Ã3X(k)

+ [ĈÂ2(Ã2B̃1− ÃB̃1)u(k)+ĈÂ2(ÃB̃1− B̃1)u(k+1)

+ ĈÂ(ÂB̃1− B̂1)u(k+2)+Ĉ(ÂB̂1− B̂1)u(k+3)+ĈB̂1u(k+4)]

+ [ĈÂ2(Ã2B̃2− ÃB̃2)δ (k)+ĈÂ2(ÃB̃2− B̃2)δ (k+1)

+ ĈÂ(ÂB̃2− B̂2)δ (k+2)+Ĉ(ÂB̂2− B̂2)δ (k+3)+ĈB̂2δ (k+4)]

+ [ĈÂ2(Ã2B̃3− ÃB̃3)z(k)+ĈÂ2(ÃB̃3− B̃3)z(k+1)

+ ĈÂ(ÂB̃3− B̂3)z(k+2)+Ĉ(ÂB̂3− B̂3)z(k+3)+ĈB̂3z(k+4)]

+ [ĈÂ2(Ã2B̃d− ÃB̃d)d f lt(k)+ĈÂ2(ÃB̃d− B̃d)d f lt(k+1)

+ ĈÂ(ÂB̃d− B̂d)d f lt(k+2)+Ĉ(ÂB̂d− B̂d)d f lt(k+3)+ĈB̂dd f lt(k+4)]

− ĈÂ2Ã2[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)]

(5.23)

Under the assumption that ∆u(k+ i) = 0, i > m− 1, the future value of output y(k+

m+1) is as follows,
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y(k+m+1) = ĈÂm−2Ã3X(k)

+ [ĈÂm−2(Ã2B̃1− ÃB̃1)u(k)+ĈÂm−2(ÃB̃1− B̃1)u(k+1)

+ ĈÂm−3(ÂB̃1− B̂1)u(k+2)+ĈÂm−4(ÂB̂1− B̂1)u(k+3)

+ ĈÂm−5(ÂB̂1− B̂1)u(k+4)+ · · ·+ĈÂB̂1u(k+m−1)]

+ [ĈÂm−2(Ã2B̃2− ÃB̃2)δ (k)+ĈÂm−2(ÃB̃2− B̃2)δ (k+1)

+ ĈÂm−3(ÂB̃2− B̂2)δ (k+2)+ĈÂm−4(ÂB̂2− B̂2)δ (k+3)

+ ĈÂm−5(ÂB̂2− B̂2)δ (k+4)+ · · ·

+ ĈÂB̂2δ (k+m−1)+ĈB̂2δ (k+m)]

+ [ĈÂm−2(Ã2B̃3− ÃB̃3)z(k)+ĈÂm−2(ÃB̃3− B̃3)z(k+1)

+ ĈÂm−3(ÂB̃3− B̂3)z(k+2)+ĈÂm−4(ÂB̂3− B̂3)z(k+3)

+ ĈÂm−5(ÂB̂3− B̂3)z(k+4)+ · · ·

+ ĈÂB̂3z(k+m−1)+ĈB̂3z(k+m)]

+ [ĈÂm−2(Ã2B̃d− ÃB̃3)d f lt(k)+ĈÂm−2(ÃB̃d− B̃d)d f lt(k+1)

+ ĈÂm−3(ÂB̃d− B̂d)d f lt(k+2)+ĈÂm−4(ÂB̂d− B̂d)d f lt(k+3)

+ ĈÂm−5(ÂB̂d− B̂d)d f lt(k+4)+ · · ·

+ ĈÂB̂dd f lt(k+m−1)+ĈB̂dd f lt(k+m)]

− ĈÂm−2Ã2[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)]

(5.24)
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The future value of output y(k+ p) is

y(k+ p) = ĈÂp−3Ã3X(k)

+ [ĈÂp−3(Ã2B̃1− ÃB̃1)u(k)+ĈÂp−3(ÃB̃1− B̃1)u(k+1)

+ ĈÂp−4(ÂB̃1− B̂1)u(k+2)+ĈÂp−5(ÂB̂1− B̂1)u(k+3)

+ ĈÂp−6(ÂB̂1− B̂1)u(k+4)+ · · ·+ĈÂB̂1u(k+m−1)]

+ [ĈÂp−3(Ã2B̃2− ÃB̃2)δ (k)+ĈÂp−3(ÃB̃2− B̃2)δ (k+1)

+ ĈÂp−4(ÂB̃2− B̂2)δ (k+2)+ĈÂp−5(ÂB̂2− B̂2)δ (k+3)

+ ĈÂp−6(ÂB̂2− B̂2)δ (k+4)+ · · ·

+ ĈÂB̂2δ (k+m−1)+ĈB̂2δ (k+m)]

+ [ĈÂp−3(Ã2B̃3− ÃB̃3)z(k)+ĈÂp−3(ÃB̃3− B̃3)z(k+1)

+ ĈÂp−4(ÂB̃3− B̂3)z(k+2)+ĈÂp−5(ÂB̂3− B̂3)z(k+3)

+ ĈÂp−6(ÂB̂3− B̂3)z(k+4)+ · · ·

+ ĈÂB̂3z(k+m−1)+ĈB̂3z(k+m)]

+ [ĈÂp−3(Ã2B̃d− ÃB̃3)d f lt(k)+ĈÂp−3(ÃB̃d− B̃d)d f lt(k+1)

+ ĈÂp−4(ÂB̃d− B̂d)d f lt(k+2)+ĈÂp−5(ÂB̂d− B̂d)d f lt(k+3)

+ ĈÂp−6(ÂB̂d− B̂d)d f lt(k+4)+ · · ·

+ ĈÂB̂dd f lt(k+m−1)+ĈB̂dd f lt(k+m)]

− ĈÂp−3Ã2[B̃1u(k−1)+ B̃2δ (k−1)+ B̃3z(k−1)+ B̃dd f lt(k−1)]

(5.25)

Therefore, the appropriate coefficients matrices Φ, H∗∗, and H∗ in the p step ahead

prediction equations of MPC in (5.15) and (5.16) can be generated from the equations
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(5.8), (5.19) - (5.25) above. They are given below,

Φ =




C̃Ã

C̃Ã2

...

C̃ÃtMS−1

ĈÂÃ
tMS−1

ĈÂ2Ã
tMS−1

...

ĈÂp−tMS+1Ã
tMS−1




(5.26)

Hi1 =




C̃B̃i

C̃ÃB̃i

...

C̃ÃtMS−3B̃i

ĈÂÃtMS−2B̃i

ĈÂ2ÃtMS−2B̃i

...

ĈÂp−tMS+1ÃtMS−2B̃i




i = 1, 2, 3, d (5.27)

The remaining coefficients matrices are expressed in the same way described in (4.35)

- (4.44), with the new matrices derived in (5.26) - (5.29).

This model scheduling strategy for HMPC control algorithm can be demonstrated with

an example of the GWG intervention which is shown in Figure 5.2. For the sake of sim-

plicity, we assume there are only two components (HE and PA active learning (u1 and u2,

respectively)) involved in the intervention adaptation. The simulation aims to compare the

intervention effectiveness between the scenario using model scheduling strategy depicted

in Figure 5.1 and the one using single linear model. Because the model scheduling strat-
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Â

B̂
1

. . .
. . .

. . .
. . .

. . .
Ĉ
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Ĉ
B̂

i

                 

i=
2,

3,
d

(5
.2

9)

201



0 50 100 150 200 250 300
2

2.5

3

3.5

P
B

C
 in

 E
I−

T
P

B

0 50 100 150 200 250 300

6

7

8

9

10

11

P
B

C
 in

 P
A

−T
P

B

0 50 100 150 200 250 300
75

80

85

90

95

P
ar

tic
ip

an
t

W
ei

gh
t (

kg
)

 

 

0 50 100 150 200 250 300

2900

3000

3100

3200

3300
E

ne
rg

y
In

ta
ke

 (
kc

al
)

0 50 100 150 200 250 300
0

1

2

3

H
ea

lth
y 

E
at

in
g

A
ct

iv
e 

Le
ar

ni
ng

 u
1

t (days)
0 50 100 150 200 250 300

0

1

2

3

4

P
hy

si
ca

l A
ct

iv
ity

A
ct

iv
e 

Le
ar

ni
ng

 u
2

t (days)

Setpoint
Gain Scheduling
Single Model−based
control
No Intervention

Figure 5.2: Example of Simulation Responses Using Gain-scheduling Parameter Vary-
ing Control in Figure 5.1 and the Single-model Based Control Strategy. Red Dash Lines
Represent Setpoint Applied on a Daily Basis; Blue Solid Lines Represent the Participant’s
Response Using Model Scheduling Strategy; Black Dash-dot Lines Represents the Partici-
pant’s Response Using Single Model-based Control, and the Pink Dash Lines are the Case
with no Intervention.
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Table 5.1: Model Parameters for the Simulation Studies in Section 5.2. Time Constants (τi j

where j Refers to the j-th Model), Delays (θi), and Self-regulation Adjustable Parameters
(λr, λd) are in Units of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 2 c1 2 2
τ11 1 30 τ12 1 30
τ21 1 30 τ22 1 30
τ31 1 10 τ32 10 60
τ41 1 20 τ42 10 70
τ51 1 30 τ52 10 80
τ13 1 30 γ11 1 0.7
τ23 1 30 γ22 1 0.5
τ33 50 160 γ33 1 0.7
τ43 50 170 β41 1 0.34
τ53 50 180 β42 1 0.27

θ1 . . . θ3 0 0 β43 1 0.13
θ4 . . . θ6 0 0 β53 0 0.08
θ7, θ8 0 0 β54 1 0.42

ku1 0.006 0 θu1 0 0
ku2 0 0.06 θu2 0 0
λr 80 100 λd 80 110

egy will switch the model based on preset time, the predicted controlled variables over the

receding horizon can be obtained more accurate than the ones using single linear model.

Specifically, in this simulation example, three linear models are preset to describe the par-

ticipant’s behavioral response for three time frames during the intervention. The parame-

ters of the model are listed in Table 5.1. The changes of the time constants in TPB models

occur at day 130 and day 180, respectively, to make the participant’s response in behavioral

change more slowly. The change of the PBC inflows to the two TPB models indicate these

parameter varying phenomenon. In this example, the scenario using gain-scheduling strat-

egy understands and predicts that the participant’s behavioral improvement is deteriorated
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during the intervention due to the increase of the time constants in the TPB model, and that

is why the controller using model scheduling strategy assigns the dosages of the interven-

tion components more aggressive compared with the one using single model-based control

strategy after the baseline program. As a result of the difference in dosage assignment, the

PBC inflows to both TPB models increase faster in the scenario using gain scheduling strat-

egy than the one using single model-based control, and the participant shows less weight

increase and energy intake increase in the first scenario. At late pregnancy, the same par-

ticipant is able to manage her weight gain and energy intake to be within the upper bound

of IOM guidelines and EI reference values, respectively, with this more intensive interven-

tion; while she can not achieve either her GWG goal or EI goal if she receives the dosage

assigned by single model-based MPC controller. This gain-scheduling strategy is very

useful for the future implementation of the GWG intervention, once more information and

data is available through the pilot study and clinical trials to inform us of the nonlinearity

within this GWG model.

5.3 Multi-Rate Digital Control

The filter design for multi-rate digital control is inspired by the fact that the measure-

ment of energy intake might take place once a week, while other self-monitoring compo-

nents, such as weight gain and PAL, are still measured daily. This has been pointed out to

us by the behavioral scientists in this R01 funded research group who are currently imple-

menting the pilot study and designing the clinical trial for the GWG adaptive behavioral

intervention. The difference of the frequency in the measurement of self-monitoring com-

ponents indicates the existence of noise and other inaccuracies. Thus, this section focuses

on how to estimate these unknown variables or missing measurement data by the use of

the filter design for this multi-rate sampled-data system.

Multi-rate systems are encountered when some signals of interest are sampled at a
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Figure 5.3: Cascade Structure of the Multi-rate Filter [14], where ŷ f and ŷs Refer to the
Controlled Variables Measured at Faster Sampling and Slower Sampling, respectively; ȳ f
and ȳs Represent the Estimations of Controlled Variables Sampled at Higher and Lower
Frequency, respectively.

different rate than others. This situation is likely to occur when it is impossible for us to

sample all the physical variables of a system at a single rate. It is expected that multi-rate

controllers would give better performance than single-rate controllers, because of the extra

degrees of freedom they allow in manipulating control variables [90].

The formulation of multi-rate sampled data system using MPC is developed based on

the one described in [14], and however some changes are necessary in order to fit our

existing 3 DoF HMPC algorithm in behavioral intervention problem settings. Figure 5.3

shows the cascade filtering strategy for the multi-rate system. We assume that ŷ f is the

measurement with faster sampling (i.e., in this case, GWG daily measurements); and ŷs

is the measurements with slow frequency (i.e., in this case, EI weekly measurements).

The main principle in this cascade structure for multi-rate filter is that we use the faster

measurement to estimate all the state variables, while the slower measurement will be used

to do the adjustment on that particular output variable with slow sampling.
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Let us assume that the following equations are used to describe the model,

x(k, j) = Ax(k, j−1)+Buu(k, j−1)+Bdd(k, j−1) (5.30)

y f (k, j) = C f x(k, j)+w(k, j−1) (5.31)

ys(k, j) = Csx(k, j) (5.32)

where y f is the controlled variable with fast sampling, ys is the controlled variable with

slow sampling, u is the manipulated variable, d is the disturbance variable, w is the output

disturbance, respectively. We declare that τ f is the sampling time of measurements for y f ,

τs is the sampling time of measurements for ys. Therefore, for each sampling of ys, N = τs
τ f

measurements of y f will be available. k notates the k-th time measurement of variable ys,

and j denotes the j-th time measurement of variable y f , where j ∈ 0,1, · · · ,N−1. When

j = 0, it indicates that the measurements of both y f and ys are available.

The available measurements are described as follows:

ŷ f (k, j) = C f x(k, j)+w(k, j−1)+υ f (k, j) (5.33)

ŷs(k, j) = Csx(k, j)+υs(k, j) (5.34)

where ŷ f and ŷs represent the measurements for fast sampling and slow sampling, respec-

tively. υ f (k, j) and υs(k, j) are the measurement noises.

For convenience of notation, we use the differenced form of the disturbance and system

models that are similar to (5.13) and 5.14, which are described as follows,

X(k, j) = ÃX(k, j−1)+ B̃u∆u(k, j−1)+ B̃d∆d(k, j−1) (5.35)

Ŷ (k, j) = C̃X(k, j)+V (k, j) (5.36)
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where

X(k, j) = [∆xT (k, j) yT
s (k, j) yT

f (k, j)]T

Ŷ (k, j) = [yT
s (k, j) yT

f (k, j)]T

V (k, j) = [υT
s (k, j) υ

T
f (k, j)]T

Ã =




A 0 0

CsA 0 0

C f A 0 0




; B̃i =




Bi

CsBi

C f Bi



, i = u,d;

C̃ =




0 I 0

0 0 I


 ;

Here ∆∗ (k) = ∗(k)−∗(k−1).

The multirate system shown in Figure 5.3 features cascade structure. It can be written

in the following standard form.

X̄(k, j|k, j−1) = ÃX̄(k, j−1|k, j−1)+ B̃u∆u(k, j−1)+ B̃d∆d(k, j−1)

(5.37)

X̄(k, j|k, j) = X̄(k, j|k, j−1)+Kcas( j){Ŷ (k, j)−C̃X̄(k, j|k, j−1)}

(5.38)

where

Kcas( j) = K f =




K f x

K f ys

K f y f




for j = 1,2, · · · ,N−1 (5.39)

Kcas(0) =




0 K f x

Ks (I−Ks)K f ys

0 K f y f




; (5.40)
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Table 5.2: Model Parameters for the Simulation Studies in Section 5.3. Time Constants
(τi), Delays (θi), and Self-regulation Adjustable Parameters (λr, λd) are in Units of Days.

Parameter EI-TPB PA-TPB Parameter EI-TPB PA-TPB
b1 3 1 e1 6 4
n1 2 7 m1 3 8
p1 1 2 c1 2 2
τ1 1 30 γ11 1 0.7
τ2 1 30 γ22 1 0.5
τ3 1 10 γ33 1 0.7
τ4 1 10 β41 1 0.34
τ5 1 20 β42 1 0.27

θ1 . . . θ3 0 0 β43 1 0.13
θ4 . . . θ6 0 0 β53 0 0.08
θ7, θ8 0 0 β54 1 0.42

ku1 0.003 0 θu1 0 0
ku2 0 0.015 θu2 0 0
ku3 0.001 0.005 θu3 0 0
λr 80 100 λd 100 155

Ks can be tuned between the values 0 and 1. The greater Ks is, the secondary state estimator

relies more on the measurements of ys, and this also means the controller will be more

aggressive. When the measurements of y f and ys are both available, (5.40) can be used to

estimate the state variables and the controlled variables. However, if the measurements of

ys are not accurate or not obtained, which means Ks = 0, (5.40) reduces to (5.39) without

approximation. In this case, only the fast sampling measurements y f will be used for the

state estimation. The details of how to derive the formulation of estimators can also be

found in [14].

This cascade filter design for the dual-rate control system can be demonstrated using

the GWG example considered earlier. The simulation uses the same controller design for

the sequential decision policies that described in Section 4.4.4 with move size constraints

| ∆u(k) |≤ 1. All simulations are using parameters listed in Table 5.2. The parameters for
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the HMPC are as follows: p = 25, m = 22, Qy = [1; 50], αr = [0; 0], αd = 0, and fa = 1.

Figure 5.4 shows the case for slow tuning of secondary estimator with Ks = 0.3, while

Figure 5.5 shows the case for fast tuning with Ks = 0.8. From the comparison of both cases,

we can see that the smaller Ks is, the less aggressive the controller will be. In Figure 5.4,

u1 is reduced from base dose to zero at the beginning of the intervention, even though the

participant’s EI and weight are outside the setpoints, respectively. The intervention does

not get augmented back to the baseline until week 18, and stays the course for another

four weeks. In order to make sure the participant will achieve her GWG goal, both u1 and

u2 are augmented above the baseline program step by step at each intervention decision

starting from week 22, and then u2 gets reduced at week 34 when the controller predicts

that the participant will be able to achieve her GWG goals very soon. This simulation helps

verify again that the augmentations and reductions of the intervention components follow

the sequential decision policies described in Section 4.4.4. For the scenario with Ks = 0.8

in Figure 5.5, the controller is a little more aggressive compared with the one in Figure 5.4.

Because the controller does not reduce the intervention components at the beginning of the

intervention, this participant is able to manage her GWG within the IOM guidelines, and

control her EI within the reference values, earlier than the scenario depicted in Figure 5.4,

respectively. Meanwhile, the intervention starts to get reduced around week 30 in order to

avoid the overdose scenario for this particular participant.

Figure 5.6 shows the simulation responses using single-rate control system. This can

be achieved by setting Ks = 0. In this example, only GWG measurement is available to

estimate both the state variables and the controlled variables. This simulation result illus-

trates that this participant is still able to achieve the goal with adaptive intervention, and

however, the result is not as satisfactory as the ones in Figure 5.4 and Figure 5.5. Specif-

ically, this participant was not able to achieve her GWG goal even before the intervention

stops. Meanwhile, the missing EI measurements makes the estimation of EI not accurate
209
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Figure 5.4: Example of Simulation Responses Using Cascade Structure of the Multi-rate
Filter per Figure 5.3 with Ks = 0.3 for Slow Tuning of the Secondary Estimator. Red
Dash Lines Represent Setpoint applied on a Daily Basis; Blue Solid Lines Represent the
Participant’s Response for Maternal Body Mass, Energy Intake (EI), Physical Activity
Level (PAL), and the Intervention Component Dosages; Black Dash-dot Lines Represents
the Case with no Intervention.
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Figure 5.5: Example of Simulation Responses Using Cascade Structure of the Multi-
rate Filter per Figure 5.3 with Ks = 0.8 for Fast Tuning of the Secondary Estimator. Red
Dash Lines Represent Setpoint applied on a Daily Basis; Blue Solid Lines Represent the
Participant’s Response for Maternal Body Mass, Energy Intake (EI), Physical Activity
Level (PAL), and the Intervention Component Dosages; Black Dash-dot Lines Represents
the Case with no Intervention.
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Figure 5.6: Example of Simulation Responses Using Single-rate Control System with
Ks = 0. Red Dash Lines Represent Setpoint Applied on a Daily Basis; Blue Solid Lines
Represent the Participant’s Response for Maternal Body Mass, Energy Intake (EI), Physi-
cal Activity Level (PAL), and the Intervention Component Dosages; Black Dash-dot Lines
Represents the Case with no Intervention.
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enough, compared with the two scenarios using dual-rate control system illustrated in Fig-

ure 5.4 and Figure 5.5, which is the reason why the intervention is still less aggressive,

even though the participant’s initial condition is not promising.

The simulation examples in this section demonstrate the tuning rules of the cascade

structure of the multi-rate filter depicted in Figure 5.3. In contrast to the simulation result

using single-rate control system, it is easy to conclude that the cascade filter design for

the dual-rate control system developed in this chapter offers extra degree of freedom, and

usually leads to better and more effective intervention results in this GWG intervention.

Furthermore, when the EI measurements are available and accurate, one can rely more

on those measurements, get more accurate estimation of the controlled variables, and thus

take more appropriate control action.

5.4 Summary

In summary, this chapter has introduced two specific enhancements to the simulation

to address real-life scenarios in the GWG intervention using: gain-scheduling parameter

varying control, and the cascade filter design for multi-rate control system. Both improve-

ments are proposed on the basis of hybrid model predictive control (HMPC) framework

implemented with 3 DoF tuning rules. For the gain-scheduling parameter varying control

scenario, the simulation example is presented to show that the model scheduling strategy

is able to provide more accurate prediction of controlled variables over the prediction hori-

zon, and thus take more appropriate and earlier actions to assign the dosage when compared

with the scenario using single linear model. The simulation examples using cascade struc-

ture of the multi-rate filter not only demonstrate how the secondary estimator works with

the primary estimator using fast sampling measurements to better estimate the controlled

variables sampled at low frequency, but also illustrate how the secondary estimator can be

tuned to influence the control system, and particularly why this multi-rate control system
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is preferable to the single-rate control system for GWG problem.

The two improvements presented in this chapter aim to address the real-life scenarios in

the GWG intervention. Whether and how to integrate these strategies will largely depend

on the implementation of the pilot studies, the clinical trials and their corresponding results

obtained by our Penn State collaborators.
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Chapter 6

SUMMARY AND CONCLUSIONS
6.1 Conclusions

This dissertation has demonstrated how dynamical systems modeling and control en-

gineering methods can be useful for better understanding, designing, and ultimately op-

timizing the performance of sequential behavioral interventions through a time-varying

adaptive framework, with the goal of increasing intervention effectiveness and improving

participant response. Excessive gestational weight gain is a very serious public health con-

cern in the USA, and is a perfect representative example involving multiple intervention

components and featuring pre-defined sequential decision policies; therefore it is used to

exemplify the design procedure for sequential behavioral interventions in this dissertation.

The comprehensive dynamical systems model for a behavioral intervention to manage

GWG and regulate fetal weight gain developed in this dissertation relies on a mechanistic

energy balance model and the dynamical behavioral models which incorporate some well-

accepted concepts in psychology and behavioral science, such as the Theory of Planned

Behavior (TPB), self-regulation theory, intervention delivery dynamics and hypothetical

“IF-THEN” decision rules recommended by behavioral scientists. The fluid analogy for

the TPB inspires to conceptualize and establish the overall schematic representation for

the adaptive intervention in terms of a network of production inventory systems in supply

chain management which is a classical problem in enterprise systems that has application

in many problem arenas. This conceptualization allows us to build a bridge between tra-

ditional process control problem settings with this unconventional one, and facilitates the

application of classical control engineering and modern control engineering approaches

to design the intervention. Self-regulation is postulated as a feedback controller to re-

flect the capacity of individuals to alter the behavior, and it is initially parametrized as
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derivative-only controller to show that the improvements of the outcome during the inter-

vention strengthen individual’s confidence in aiming to achieve the intervention goal. The

overall dynamical model illustrates the preliminary design and theoretical implementation

of an adaptive behavioral intervention based on a set of hypothetical decision rules. It can

play a useful role in the evaluation of decision policies, and the corresponding simulations

can aid the intervention scientists to test and select the decision rules.

From the control engineering perspective, a comprehensive dynamical systems model

can facilitate the understanding of the intervention “process” dynamics, and therefore, the

formulation of the controller can be achieved on the basis of the nominal model of this

intervention. Self-regulation in adaptive interventions is the first feedback control process

that catches our attention. In Chapter 3, the manner in which self-regulation is modeled

in the system was revisited and reevaluated. The advanced controller formulations used

in Chapter 3 are model-based control involving two-degree-of-freedom (2 DoF) Internal

Model Control (IMC), the cascade control relying on IMC strategy, and the weighted cas-

cade control. The controller design through these formulations allows significant flexibil-

ity in depicting a participant’s self-regulatory behavior by tuning the controller adjustable

parameters, and represents a substantial improvement to using a classical feedback con-

trol approach. The comparison of these algorithms was made based on the analysis of

the advantages and disadvantages these controllers showed in the design procedures and

simulation examples. The simulation studies demonstrate how adaptive interventions of-

fer greater degrees of efficacy according to a participant’s changing needs and responses,

indicate why fixed interventions may have limited success among overweight and obese

pregnant women in the prevention of excessive GWG, and illustrate how intra-individual

variabilities and inter-individual variabilities play an important role in the intervention out-

comes.

With the integration of the improved formulation of self-regulation developed in Chap-
216



ter 3 into the dynamical systems model, the “open-loop” model that serves as the ba-

sis for the design of optimized adaptive sequential behavioral intervention was obtained.

Chapter 4 presented a novel intervention paradigm using Hybrid Model Predictive Control

(HMPC) algorithm to systematically tailor treatment policies over time. The HMPC algo-

rithm relied on the use of an MLD structure with constraints. Due to the unique resource

considerations and clinical constraints, such as sequential decision making, the patient-

friendly intervention and discrete-valued nature of the intervention components, the user-

specified dosage sequence tables were proposed, the algorithm enforcing the manipulation

of one input at a time was developed, and the switching time strategy to assign the dosages

at time intervals less frequent than the measurement sampling intervals was introduced.

The mixed-integer linear constraints were utilized to account for all these new improve-

ments which can then be incorporated into the HMPC framework. The design procedure

of HMPC controller was illustrated on a GWG problem involving multiple components

with different sets of clinically proposed dosage sequence. The potential usefulness of

such an intervention framework was demonstrated through case studies, and the compar-

ison between HMPC-based intervention and adaptive intervention relying on “IF-THEN”

rules was made to prove the benefits of hybrid predictive control for optimized adaptive

interventions. Although the HMPC controller design is based on the adaptive sequential

behavioral interventions to prevent excessive GWG, it is also applicable to other simi-

lar adaptive behavioral intervention programs featuring multiple intervention components

with sequential decision policies.

This dissertation also extended the simulation work for the GWG intervention to ad-

dress scenarios which may potentially be necessary in a real-life clinical trial. The gain

scheduling parameter control algorithm featuring the model scheduling strategy was de-

veloped to address the nonlinearities in the model; this was readily embedded into the

HMPC framework. The cascade filter for dual-rate control system was introduced in order
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to address the differences in frequency for measurements. Numerical examples illustrated

the basic working of these two enhancements.

6.2 Future Research Directions

As this dissertation presents an initial demonstration of the potential for real-world

applications of adaptive sequential behavioral interventions and provides a plausible “proof

of concept” of the approach, there are several interesting directions for future work.

6.2.1 System Identification Modeling

The original work was funded by a roadmap R21 grant (R21 DA024266) and K25

grant (K25 DA021173) from the National Institute on Drug Abuse (NIDA) and the Office

of Behavioral and Social Sciences Research (OBSSR). This research has now been funded

to examine this topic in particular with an R01 grant (R01 HL119245) from the National

Heart, Lung, and Blood Institute (NHLBI).

As a result of this R01, various aspects of this work are being piloted during 2014,

and a novel design of clinical trial will be implemented in the year 2015. The data from

the pilot study and the clinical trial will allow us to perform system identification of the

TPB and self-regulation models, and the evaluation of the GWG energy balance model.

With the experimental validation of the model, the future evaluation of decision rules is

enabled by examining the effectiveness of the intervention framework. Furthermore, the

pilot testing and clinical trials are expected to inform the refinement of some structural

aspects of the simulation model, such as the proper structure of the self-regulation problem

as described in Section 3.3.3, and how additional measurements (e.g., physical activity)

can influence the problem. The ultimate goal is to better use control systems engineering

approach to optimize the adaptive sequential behavioral interventions by developing a real-

life implementation of the HMPC-based intervention.
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6.2.2 Experimental Validation of the Control Scheme

As this work presents a novel intervention paradigm using a control-oriented approach,

it is important to validate the HMPC control scheme. Notably, variability between the

participants and in dose-response dynamics pose a major challenge for widespread use of

such an intervention framework. Consequently, with the clinical trials implemented and

model obtained from system identification, it is critical to examine and enhance robust-

ness to plant-model mismatch. Meanwhile, including the features of gain-scheduling MPC

strategy as discussed in Section 5.2 in an intervention will better personalize the decision

policies, especially for the intra-individual variability case. However, more information

regarding the scheduling variables will be obtained from the clinical trials and it needs

further experimental validation as well.

6.2.3 Incorporating Infrequent Measurements in Kalman Filter

In Section 5.3, the cascade filter for dual-rate control system was introduced in order

to address the differences in frequency for measurements. The real-life GWG clinical tri-

als inform us that there may exist some infrequent but accurate measurements for energy

intake or other variables which are sampled at irregular intervals instead of daily or even

weekly. Therefore, future work on designing kalman filter to incorporate such infrequent

measurements so that the control system can fully make use of these data in decision mak-

ing is very important.

6.2.4 Hybrid Model Predictive Control with Temporal Logic

In Chapter 4, propositional logic was used to generate the linear inequalities associ-

ated with pre-defined dosage sequence, which can be embedded into the Mixed Logical

Dynamical (MLD) systems for the hybrid systems. However, propositional logic can not

specify the following situations between variables, such as “proposition P will eventually
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be true at some future time”, “proposition P will always be true throughout the future”,

“P will hold to be true until Q becomes true” or “P must be true unless”. That is why

additional linear inequalities or the introduction of additional binary variables to the tradi-

tional MLD model is necessary to enforce the constraints associated with the time-varying

sequential decision policies.

Linear temporal logic (LTL) is a popular formalism for the specification and verifica-

tion of concurrent and reactive systems [91], and it is an extension of classical propositional

logic which extends classical operators such as “NOT”, “AND”, “OR”, “IMPLICATION”

with “EVENTUALLY”, “ALWAYS”, “UNTIL” AND “UNLESS”. Most approaches that

use LTL adopt a discrete model of time, where a run of a system produces a sequence of

observation.

The other most widely known extension of propositional logic is metric temporal logic

(MTL) in which the modalities of LTL are augmented with timing constraints [92]. It

extends all the temporal operators with real intervals.

The main reason to consider the use of temporal logic in the future is that it can address

the ordering of the event, which indicates its capability to handle more complex sequential

decision policies in behavioral health. For example, the augmentation rule that the increase

of physical activity active learning can occur only one assessment cycle after healthy eat-

ing active learning reaches its full augmentation, can be easily expressed with “UNTIL”

operator in temporal logic. Therefore, the formulation of LTL or MTL associated with the

dosage sequence in behavioral intervention, and its integration into the traditional MLD

system represent a promising approach and an interesting research direction for complex

sequential decision policies in behavioral interventions.
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6.2.5 Adaptive Intervention for Infant Birth Weight

In Section 2.8, we expanded our work to discuss how the intervention can not only man-

age GWG for the mother, but also alter the obesogenic fetus environment to regulate infant

birth weight. Based on the adaptive GWG intervention model, an intergenerational fetal

energy balance model was included to examine the effects of creating a healthy maternal-

fetus eating and physical activity environment on infant birth weight. In this exploratory

simulation work, the result is generated and obtained based on the energy balance model

and artificial parameters. Therefore, just like the GWG intervention, an observational trial

is necessary to fully validate this model and observe its true usefulness. This fetal birth

weight model, together with the GWG intervention model can enable controller design

which achieves the automated dosages using Hybrid Model Predictive Control algorithm,

with the ultimate goal as to test the effectiveness of a real-life implementation of our inter-

vention on both GWG and infant birth weight (i.e., short term effects). Further, the fetal

birth weight model could be expanded to examine the long-term sustainable effects of in-

dividually tailored adaptive interventions on the eating and physical activity environments

of mothers and their offspring. Specifically, future extensions of the model might include

the impact of changes in percent breastfeeding and use of controlling feeding practices on

post-partum weight retention and child weight [7].

6.2.6 Metabolic Model for Gestational Diabetes

As mentioned in earlier chapter, excessive GWG is a strong predictor of the develop-

ment of obesity and diabetes for both childbearing women and their offspring. Gestational

diabetes (or gestational diabetes mellitus, GDM) is a condition in which women without

previously diagnosed diabetes exhibit high blood glucose levels during pregnancy (espe-

cially during their third trimester). It has long been known that women with a history of

GDM are at increased risk of developing type 2 diabetes mellitus (type 2 DM) later in life,
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and this was originally the purpose of identifying GDM.

As with diabetes mellitus in pregnancy in general, babies born to mothers with un-

treated gestational diabetes are typically at increased risk of problems such as being large

for gestational age (LGA), low blood sugar, and jaundice [93, 94]. If untreated, it can also

cause seizures. Gestational diabetes is a treatable condition and women who have adequate

control of glucose levels can effectively decrease these risks. The food plan is often the first

recommended target for strategic management of GDM. Generally, the treatment of ges-

tational diabetes includes regular monitoring of blood sugar levels and eating a carefully

controlled diet prescribed by a health care professional. It also includes regular exercise

appropriate to pregnancy as prescribed.

Therefore, the treatment of GDM is very close to the behavioral interventions to pre-

vent GWG; both of them rely on healthy eating habits and proper physical activity. If it

is possible to establish a metabolic model for gestational diabetes, the dynamical systems

model framework can also play a significant role in helping manage and treat the gesta-

tional diabetes during women’s pregnancy.
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