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ABSTRACT 

A firewall is a necessary component for network security and just like any regular 

equipment it requires maintenance. To keep up with changing cyber security trends and 

threats, firewall rules are modified frequently. Over time such modifications increase the 

complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and 

modifying rule becomes a tedious task. This discourages network administrators to 

review the work done by previous administrators before and after applying any changes. 

As a result the quality and efficiency of the firewall goes down.   

 Modification and addition of rules without knowledge of previous rules creates 

anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the 

efficiency of the firewall but in some cases create a hole in the perimeter security. 

Detection of anomalies has been studied for a long time and some well established 

procedures have been implemented and tested. But they all have a common problem of 

visualizing the results. When it comes to visualization of firewall anomalies, the results 

do not fit in traditional matrix, tree or sunburst representations.  

 This research targets the anomaly detection and visualization problem. It analyzes 

and represents firewall rule anomalies in innovative ways such as hive plots and dynamic 

slices. Such graphical representations of rule anomalies are useful in understanding the 

state of a firewall. It also helps network administrators in finding and fixing the 

anomalous rules. 
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Chapter 1 

INTRODUCTION 

 

A firewall is an essential component of network security infrastructure. A firewall sits on 

the boundary between a network that needs to be protected and the network that is 

considered to be unsafe. A simple firewall configuration is shown in Figure 1. Hosts 

192.168.1.2 and 192.168.1.3 on the internal network are shielded by the firewall. We will 

use the term ‘internal network’ to represent network(s) that need to be protected. 

192.168.1.2

192.168.1.3

Firewall

External network Internal network  
Figure 1. Simple firewall configuration 

Depending on the type of data handled and inspected by the firewall, it can be classified 

in three generations. The first is a ‘packet based’ firewall. These firewalls do not consider 

if the packet being inspected is part of ongoing traffic. Every single packet is inspected 

against the firewall rule set. If the packet matches any rule, the respective action is taken, 

otherwise default action is applied to the packet. The second generation of firewall 

performs ‘state inspection’. These firewalls keep a history of ongoing connections. 
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Whenever a new packet comes in, the firewall examines if this is part of an ongoing 

connection or the start of a new one. Appropriate actions are taken if the packet matches 

a rule. The rules are similar to those of ‘state’ based firewalls but contain the connection 

state information. Little advanced from the first and second generation firewall is the 

‘application’ based firewall. This third generation firewall not only performs functions of 

the previous two generations but can also distinguish between packets belonging to the 

same set of source and destination IP addresses or port numbers. These firewalls work at 

the application layer of the OSI model.  

Firewalls are an active part of network security. There are several occasions when rule 

sets need to be changed. Whenever a new host is added to the internal network, a firewall 

rule needs to be added so that this new host can communicate with the external network. 

Sometimes internal services change which require modification to existing rules. 

Removal of a service/host requires removal of the corresponding rule from the firewall, 

although it is not necessary. Whenever the firewall is modified the network administrator 

must ensure that it is free from anomalies and does not contain redundant or overlapping 

rules. For a network of hundreds of hosts the firewalls can become very complex over 

time and this gives rise to anomalies. Over the years, firewall rules and the language in 

which they are specified have become very complex. Firewalls these days need a 

dedicated GUI for managing the rules. The complexity of the firewall specification 

language and vendor dependency has made it very difficult for network administrators to 

audit the firewall. This thesis targets the problem of firewall rule set analysis and presents 

visualizations that help in auditing of firewalls. We will describe rule anomalies in the 

next section. 
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Rule Set Anomalies 

Several rule set anomalies have been discussed in [6], [7], [19] and [20]. Anomalies can 

be intra firewall and inter firewall. This work targets five intra firewall anomalies. Before 

we describe and define the anomalies let us define some notations. A firewall rule is 

denoted by Ri where i is a positive integer denoting the rule number. Ri precedes Rj if i<j. 

Each rule has an action denoted by Action (Ri). We assume that a firewall rule has only 

one of the two actions: permit or deny. Each rule consists of protocol, source port, source 

address, destination port and destination address. We use the term PacketSpace (Ri) to 

denote the packet space of ports, addresses and protocol. This five dimensional space is 

all that is needed to identify a packet uniquely at layer 2 of the OSI stack. The firewall is 

also assumed to have default action of denying all packets which do not match any rule. 

This work deals with five types of anomalies. We will first give a formal definition and 

then explain each of them in detail with examples.  

1. Redundancy 

Rule Rj is redundant to Ri if Action (Ri) = Action (Rj) and PacketSpace (Rj) ⊆ 

PacketSpace (Ri), where i<j. Rule Rj is redundant because it deals with the same 

packet space that has been dealt by its preceding rule Ri. In this case rule Rj is 

never executed. It is important to note that execution of Rj is not critical because it 

has the same action as that of Ri. In table 1, rule 2 is redundant to rule 1.  

2. Shadowing 

 Rule Rj is shadow of Ri if Action (Rj) ≠ Action (Ri) and     PacketSpace (Rj) ⊆ 

PacketSpace (Ri), where i<j. Rule Rj is a shadow of Ri because Rj is never 

executed. Shadowing is similar to redundancy except that it is more severe to 
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network security. A different action for Rj shows a security policy conflict inside 

the firewall. In such case it is difficult to determine which rule should be removed 

in order to remove shadowing. 

3. Generalization 

Rule Rj is generalization of Ri if PacketSpace (Ri) ⊂ PacketSpace (Rj), where i<j. 

Generalization is an anomaly because rule Rj is executed for some packets not 

captured by Ri. Some packets are shared between Ri and Rj but their actions may 

or may not be different. If Action (Rj) ≠ Action (Ri) it is a security conflict for the 

shared space. It can be observed that the first rule takes care of some of the 

packets which were intended to be taken care of by the second rule.  

4. Correlation 

Rule Rj is correlated to Ri if Action (Rj) ≠ Action (Ri), and Rj overlaps Ri for i<j, 

i.e. PacketSpace (Rj) ⊈ PacketSpace (Ri), PacketSpace (Rj) ⊉ PacketSpace (Ri) 

and PacketSpace (Rj) ∩ PacketSpace(Ri) ≠ ∅. Rules Ri and Rj overlap and have a 

different action. 

5. Overlapping 

Rule Rj overlaps Ri if Action (Rj) = Action (Ri), and Rj overlaps Ri for i<j, i.e. 

PacketSpace (Rj) ⊈ PacketSpace (Ri), PacketSpace (Rj) ⊉ PacketSpace (Ri) and 

PacketSpace (Rj) ∩ PacketSpace (Ri) ≠  ∅. Rules Ri and Rj overlap in their packet 

space but their actions are the same. 

Having seen the formal definitions of anomalies, let us see example of each. Table 1 

shows an example of the redundancy anomaly. Rule2 is redundant to Rule1 because the 

source address of R2 is subset of R1. The same can be said about the destination port. 
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Because Rule2 is never executed, it is safe to remove it in order to get rid of the 

redundancy. 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.0/24 any 10.1.2.23 any 

2 permit tcp 192.168.1.2 any 10.1.2.23 80 

Table 1: Redundancy anomaly example. 

Table 2 gives an example of a shadowing anomaly. Rule2 is a subset of Rule1 and is 

therefore never executed. Because Rule2 and Rule3 have the same packet space as of 

Rule1, they are never executed. We can say that Rule1 shadows Rule2 and Rule3. 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.0/24 any 10.1.2.23 any 

2 deny tcp 192.168.1.2 any 10.1.2.23 80 

3 deny tcp 192.168.0/24 any 10.1.2.23 any 

Table 2: Shadowing anomaly example. 

Table 3 gives an example of a generalization anomaly. Unlike other anomalies, 

generalization arises because a preceding rule is found to be a subset of its descendants. 

Looking at Rule2, we see that it is a superset of Rule1 and has the same action. A situation 

like this is not a security issue; it is more about efficiency.  

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80 10.1.2.23 any 

2 permit tcp 192.168.1.2 any 10.1.2.0/24 any 

3 deny tcp 192.168.0/24 any 10.1.2.23 any 

Table 3: Generalization anomaly example. 
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With respect to Rule2, Rule1 is a duplicate. Considering Rule3, we notice that Rule1 is 

subset of Rule3 and they have conflicting actions. It is a common practice for network 

administrators to add such rules if they want a smaller portion of the traffic to be 

cleared/blocked from a larger set of traffic. 

Table 4 gives firewall rules involved in correlation. Both rules are similar except that 

they act on different source port ranges. Rule1 permits a source port ranging from 80 to 

90 (inclusive) and Rule2 denies source ports 85 to 100. Intuitively, source ports 85-90 are 

common in both rules but the action is conflicting. To resolve such conflicts we will 

describe a ‘split-n-merge’ in the Anomaly Resolution chapter. 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80-90 10.1.2.23 any 

2 deny tcp 192.168.1.2 85-100 10.1.2.23 any 

Table 4: Correlation anomaly example. 

Table 5 lists overlapping firewall rules. Rules involved in an overlapping anomaly have 

the same action. Such conflicts can be solved by merging the overlapping fields. For 

example, merging source ports for Rule1 and Rule2 will yield the following rule: 

permit tcp 192.168.1.2 80-100 10.1.2.23 any 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80-90 10.1.2.23 any 

2 permit tcp 192.168.1.2 85-100 10.1.2.23 any 

Table 5: Overlapping anomaly example. 

This is all the background knowledge needed. The ‘split-n-merge’ strategy for conflict 

detection is covered in the ‘Anomaly Resolution’ chapter. The next section covers the 

related work. 
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Related Work 

One of the early solutions targeting the firewall auditing problem was developed by 

Mayer et al. [1]. Their system ‘Fang’ was designed to collect and parse the firewall 

configuration files and create an internal representation of the network topology. Using 

this internal representation Fang can take queries from the user and reports back the 

portion of the query that manages to pass through the network, from source to 

destination. This allowed network administrators to audit the firewall for any security 

loopholes and against spoofing attacks. This is a useful feature but it does not help with 

rule set anomaly detection. Anomalies can be detected with certain queries but such an 

approach is not discussed in their work. Another drawback of this work is that it requires 

a user to the specify network topology using the Firmato MDL language [2]. 

Wool [3] improved Fang by adding new features and named the product Lumeta Firewall 

Analyzer (LFA). It supported automatic generation of queries rather than inherently 

depending upon the user. LFA does not rely on the manual entry of network topology. 

Instead it reads the routing table and constructs the connectivity file. Other improvements 

over Fang included batch processing of practically every possible packet and changing 

the output format to HTML pages. LFA is flexible with different vendors because it uses 

an intermediate firewall configuration language and converts different vendor specific 

formats to this intermediate representation.  

Lupu et al. [4] describes conflict analysis for management policies. The authors 

developed a tool to determine policy conflicts in a large-scale distributed system. It 

performs offline static analysis of policies and detects conflict. Fu et al. [5] present a 
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policy management system for IPSec in both the intra-domain and inter-domain 

environments. Eppstein et al. [6] deal with the packet classification and filter conflict 

detection problem. They use kD-tree [8] to check if any two filters acting on the same 

packet specify different actions. Hari et al. [7] describe a k-tuple filter for conflict 

detection. The conflict detection time of their algorithm in a 2-tuple mode is independent 

of the number of rules and conflict resolution is linear with the number of conflicts.  

Al-Shaer et al. in [18] and [19] present a very comprehensive study of firewall rule set 

anomalies and describe a tool named the Firewall Policy Advisor (FPA). It comprises 

algorithms for automatically detecting anomalies and also suggests possible good points 

for insertion of new rules. Apart from anomaly detection, FPA also performs translation 

of rules into a high-level language for easy understanding of complex firewall rules. FPA 

classifies four anomalies namely, correlation, generalization, redundancy and shadowing. 

Their policy translation to a textual description is simple but the way this information is 

presented to the user is not intuitive. The description is textual in nature and this makes it 

harder to comprehend a set of hundreds of rules. They target inter and intra firewall 

anomaly discovery. 

Yuan at al. [20] introduced a tool called FIREMAN that is capable of evaluating firewall 

misconfigurations as well as policy violations and inefficiencies. Their solution examines 

all paths between firewall interfaces but does not consider NAT or internal routing. An 

extension to FIREMAN was introduced as Prometheus [22]. This included support for 

NAT and internal routing but it does not handle change-impact across firewalls.  
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Govaerts et al. [21] explained a formal logic approach to firewall filter analysis. They use 

formal logic to detect anomalies such as non-existent hosts, action conflict among filters, 

and rules that may never receive traffic. Nelson et al. [23] describe a tool called Margrave 

that performs conflict detection and security compliance. It uses a query language and 

allows users to issue queries to check the effectiveness of the firewall. Hu et al. [24] and 

[25] described a Firewall Anomaly Management Environment (FAME) that uses a rule-

based segmentation approach to detect conflict among firewall rules. FAME visualizes 

the result through a grid diagram showing rules and segments as rows and columns 

respectively. However, their representation is not suitable for a large number of rules and 

segments.  

This thesis is about visualizing the rule set anomaly results, so it is important to see past 

research related to visualization of large datasets and firewall configurations in particular. 

Becker et al. [27] introduced a system called SeeNet that uses a static display with 

dynamic parameters to visualize the data associated with a network. They reason that 

spatial and matrix layouts become confusing for large networks. To solve this problem of 

cluttered information, they incorporate dynamic parameters when it comes to information 

visualization. Some of these parameters include the size of symbol, level of aggregation, 

time-interval and display threshold. Bertini et al. [28] present SpiralView, a visualization 

tool for assessing network security policies. It provides a comprehensive view of alarms 

generated in the network over a period of time and ties this information with network 

resources. Foresti et al. [30] present a system VisAlert that facilitates situational 

awareness through information visualization. Time based Network traffic Visualizer 

(TNV) was presented by Goodall et al. [31]. It uses a matrix representation of hosts and 
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network packet timestamps. Radial hierarchical frequent pattern visualization was 

presented in [32]. Similar to Sunburst [42] and Interring technique [29], their 

representation focuses on showing frequent item sets. Stasko et al. [42] explains a 

knowledge representation based approach to visualize network traffic. It allows users to 

store analysis results as a logical model, which can then be used later in future analysis. 

A survey of visualizations for network security is presented in [38]. SnortView [33] is a 

visualization system for NIDS logs. Every log entry from Snort is visualized with sorted 

host IP addresses along the y-axis and time along x-axis. Visual Firewall [34] employs 

separate views for showing network security related information such as packet flow, 

throughput and suspicious network activity. Mansmann et al. [35] proposed hierarchical 

network maps where each child node is placed inside a parent node and number if 

children determine the size of the parent node. Another tool PortVis [36], visualizes 

network activity at three different levels: timeline, hour, port. Morrissey et al. [37] 

presented a concept of ‘created void’. They visualize overlapping rule sets that prevent a 

packet from reaching an accept rule because it has been denied previously by another 

rule. Their representation can be best understood in three dimensional space, but the 

image itself doesn’t convey much information. Also, they limit their analysis to two 

protocols TCP and UDP, which is far from comprehensive set of protocols used in 

industrial firewalls. PolicyVis [39] visualizes firewall rules to facilitate conflict detection 

and policy semantic discovery.  
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Research Outline 

We have provided an introduction to firewall and rule set anomalies. In the following 

sections we will describe the concepts and algorithms used in my research. Chapter 2 

starts with introduction to data structures we have used. It explains how the firewall rule 

entities like port and addresses can be converted to BDD and stitched together to create a 

binary expression representing the filter.  

Chapter 3 on Anomaly Detection describes the algorithms and concepts behind anomaly 

detection. It explains segmentation and rule set analysis and provides background for 

understanding figures and visualizations. In Chapter 4 we will explain anomaly resolution 

strategies. 

Chapter 5 presents a set of visualizations such as segment table, along with newer 

representations such as rule table and hive plot. We will see why some of the visual 

methods are not appropriate for the results generated. System’s performance is evaluated 

in Chapter 6. There is always room for improvement with every research project. Some 

areas where my work can be extended is provided in Chapter 7. 
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Chapter 2 

DATA STRUCTURES 

 

Firewall rule set anomaly detection requires a data structure capable of handling set 

operations at high speeds. In [9] researchers have used Ordered Binary Decision 

Diagrams for packet classification. Srinivasan et al. [10] introduced Tuple Space Search 

algorithm that maintains each tuple as a hash table but is designed for 2-tuple filters. Woo 

[11] combines heuristic tree search with filter buckets to solve packet classification 

problem. Several other algorithms and data structures have been proposed in 

[13][14][15][16] but they are complex for firewall rule set anomaly detection. This work 

uses Binary Decision Diagram (BDD) to detect conflicts. The next section gives a brief 

idea of BDDs and explains how firewall rules are converted to a BDD. 

Binary Decision Diagram 

A Binary Decision Diagram (BDD) is a graph like data structure for representing a 

Boolean expression. A BDD is a rooted directed acyclic graph with two terminal nodes 

representing values 1 and 0 (true and false respectively). Every non-terminal node 

represents a Boolean variable. A path from the root to a terminal node is therefore a 

Boolean expression. Figure 2 shows some common Boolean expressions and their BDD 

representations. Every two non-terminal nodes are connected by two different arrows. A 

solid arrow represents a ‘true/1’ value and a dotted arrow represents a ‘false/0’. BDDs 

can be very large and complex, and they can also contain redundancy. Minimization of 
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BDDs is discussed in [40]. We will use the term BDD for Reduced Ordered BDD 

(ROBDD) throughout this report. 

v1

v2

0 1

v1 ˄ v2

v1

v2

0 1

v1 ˅  v2

v1

0 1

~v1

v1

0 1

v1
 

Figure 2. Common BDD expressions 

Converting a Firewall Rule to a BDD 

We have seen how Boolean expressions are converted to BDDs. To convert a firewall 

rule into a BDD, we first need to convert it to a Boolean expression. Let us see how to 

convert port numbers and IP addresses to Boolean expressions. 

v1 v2 v3 v4 v5

v6

v7

v8

v9

v10v11v12v13v14

v15

v16

0

1

 

Figure 3. BDD for port number 443 
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Port Conversion 

Port numbers can be specified as a fixed value or a range of values. If a port number is 

fixed, a simple conversion to binary number and then to a BDD can be done. The IP 

header allocates 16 bits for port numbers. Each of these bits can be thought of as a 

Boolean variable and the port number as a conjunction of these 16 variables. For example 

port number 80 can be first translated to binary number 0000 0000 0101 0000. Starting 

from the Most Significant Bit (MSB) the Boolean expression can be formed as follows: 

~v1 ^ ~v2 ^ ~v3 ^ … ^ ~v9 ^ v10 ^ ~v11 ^ v12 ^ ~v13 ^ … ^ ~v16 

Figure 3 shows a BDD for port number 443. Port numbers can also be specified by 

inequality relations. For example 'less than 80', 'greater than 80'. Algorithm 1 describes a 

recursive method for generating BDDs. It generates BDDs from a binary string and an 

array of BDD variables. Creating a BDD for expressions such as 'greater than 80' is a 

matter of using the result of expression 'less than 80' and negating it. 

Input: Port number, Array of BDD variables

Output: BDD expression that accepts all port numbers less than the input number.

s      binary translation of input port number 

i      0

return RecurseBdd(s, i);

RecurseBdd (s, i)

   if (s.length<1)

      return true;

   if (s.substring(0,1)=0)

      return NOT(varArray[i]) AND RecurseBdd(s.substring(1), i+1)

   if (s.substring(0,1)=1)

       return varArray[i] OR (NOT(varArray[i]) AND RecurseBdd (s.substring(1), i+1))
 

Algorithm 1: Recursive function for generating BDD for port numbers 



15 

 

IP Address Conversion 

CIDR notation of an IP address consists of four octets. Representing an IP address as a 

BDD is a simple operation of joining a BDD for each octet in the IP address. Figure 4 

shows a BDD for IP address 192.168.1.2. 

Network Address Conversion 

To convert a network address with a given prefix into a BDD, first translate the network 

address to a binary representation and apply the network prefix to it. The resulting binary 

value can then be used to create a BDD. Figure 5 shows the conversion of network the 

address 192.168.5.64/26 to a BDD. 

v1 v2 v3 v4 v5 v6 v7 v8 v9

v10

v11

v12

v13

v14

v15

v16v17v18v19v20v21v22v23v24v25

v26

v27

v28

v29

v30

v31

v32

0

1

 

Figure 4. BDD for accepting IP address 192.168.1.2 
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Filter Rule Conversion 

We have seen conversion of port numbers and IP/network addresses to BDDs. 

Conversion of a BDD from a firewall rule simply involves conversion of a BDD for each 

of the source and destination port numbers and also the IP addresses. These separate 

BDDs can then be combined as conjunctive statements to get a BDD that represents the 

firewall rule. 

v1 v2 v3 v4 v5 v6 v7 v8 v9

v10

v11

v12

v13

v14

v15

v16v17v18v19v20v21v22v23v24v25

v26

01

 

Figure 5. BDD for network address 192.168.5.64/26 

  



17 

 

Chapter 3 

ANOMALY DETECTION 

 

To detect firewall rule set anomalies, we used a segmentation based approach as 

described in [24]. Algorithm 2 is the segment generation algorithm. It is very similar to 

[24, Algorithm 1] but we have added annotations which make it easier to understand. 

Input: A set of rules R.

Output: A set of segments S.

S       empty set;

for Rule r   R do

    A       PacketSpace (r);

    skip       false;

    for Segment s   S

        B       PacketSpace (s);

        if (A=B)

            skip       true;

            break;

        AnegateB       A ^ ~ B;

        BnegateA       B ^ ~ A;

        if (AnegateB = 0)

            S.add (BnegateA);

            s.packetSpace       A;

            skip       true;

            break;

        AandB       A ^ B;

        if (BnegateA=0)

            A       AnegateB;

        else if (AandB != 0)

            S.add (BnegateA);

            A       AnegateB;

    if (skip = false)

         S.add (A);

return S;     

  

Algorithm 2: Segment generation algorithm 
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Segment Based Approach 

Algorithm 2 begins with two sets, an empty set of segments and a set of rules belonging 

to a firewall. For each rule in the input rule set, it is compared with segments from the 

input segment set. If the segment set is empty a segment is created from the current rule 

in process and is stored in the segment set. A segment is a five dimensional entity: source 

address and port, destination address and port, and a protocol. Segments are different 

from the packet space in that they cannot overlap. Figure 6 gives a graphical explanation 

of how segments are created from packet space. A segment for rule Ri is denoted by Si. In 

Figure 6(a), a packet space of two distinct rules R1 and R2 generates two segments, one 

for each. Figure 6(b) presents an example of rules having the same packet space. Keep in 

mind that segments do not consider rule action. That’s why there is one segment 

representing both the rules. 

R1 R2

Packet Space Segment

S2S1

R1 R2 S1, S2

R1 R2

R1 R2

S2 - S1S1 - S2

S1   S2S1 - S2

S1   S2

(a)

(b)

(c)

(d)

 
Figure 6. Segment generation example. 

Figure 6(c) is a case of overlapping rules. Creating segments from a set of overlapped 

rules requires some set computation. In this particular case, three segments need to be 
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generated. The first segment is created by set subtraction of segments of R1 and R2. This 

segment is represented by S1-S2. Second segment denotes the packet space common 

between R1 and R2; therefore this segment can be generated by set intersection of S1 and 

S2. Finally, the third segment is obtained by set subtraction of S1 from S2. Figure 6(d) is 

an example of subset rules. Two segments are created in this scenario, one from 

removing packet space of R2 from R1 and another from performing set intersection of S1 

and S2. 

Following from [25], once segments are generated, we classify them into two categories: 

overlapping and non-overlapping. Non-overlapping segments are not our concern 

because they represent distinct set of rules. However, overlapping segments denote the 

existence of an anomaly. Overlapping segments are further divided into conflicting and 

non-conflicting segments as defined in [25]. If any two overlapping segments have a 

different action, they are deemed conflicting. If all overlapping segments have the same 

action (accept or deny), then they are called non-conflicting segments. Overlapping 

segments pose a risk to the firewall in terms of efficiency, but conflicting overlapping 

segments are more risky. This is because such segments denote conflicting actions for the 

same packet, which then raises questions about the network administrator’s intent. 

Results from segment classification are used to generate a visualization called the 

‘Segment Table’. We will see them in the coming Chapter 5 on Data Visualization. 
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Rule Based Approach 

Anomaly detection can also be performed without segmentation. In order to do this, 

perform set operations between every rule pair in the rule set, checking if the rules are 

distinct, overlap or contained. 

Input: A set of rules R.

Output: A set of rule anomalies annotated as follows:

A1: redundant rules

A2: shadow rules

A3: overlapping rules

A4: generalized rules

A5: correlated rules

for Rule x   R do

    for Rule y   R do

        if (x.bdd = y.bdd)

           if (x.action = y.action)

               A1.add (x, y);

   continue;

           else

               A2.add (x, y);

   continue;

        xNegatey       x.bdd ^ ~ y.bdd;

        yNegatex       y.bdd ^ ~ x.bdd;

        xAndy       x ^ y;

        if (yNegatex = 0)

            if (x.action = y.action)

                A1.add (x, y);

            else

    A2.add (x, y);

        else if (xNegatey = 0)

            if (x.action = y.action)

      A1.add (x, y);

else

    A4.add (x, y);

        else if (xAndy != 0)

if (x.action = y.action)

    A3.add (x, y)

else

    A5.add (x, y);
 

Algorithm 3: Anomaly detection without segmentation. 
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Algorithm 3 describes how to detect anomalies without using segmentation. The worst 

case performance of this algorithm is O(n2), where n is the number of rules, because it 

performs comparison between every pair of rule in the rule set. For each rule, algorithm 3 

performs a set operation checking if this rule is a subset, superset or overlaps another 

rule. Then depending on whether the rule actions match or not, rules are added to five 

sets, one for each anomaly discussed in the first chapter. Similar approaches have been 

mentioned in [18] and [19] but this algorithm is different from those in that it considers 

five anomalies and uses a BDD for efficiency. Results from algorithm 3 are visualized as 

a ‘Rule Table’.  
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Chapter 4 

ANOMALY RESOLUTION 

 

There has been much work around anomaly detection in firewall rule sets but not much 

has been done in resolving the anomalies. In the past [18] and [24] have made good 

attempts to help resolve anomalies. Al-Shaer et al. [18] present an idea to assist network 

administrators in injecting new rules in the firewall and placing them appropriately so as 

to avoid redundancy and shadowing. Hu et al. [24] describe a resolution approach that 

considers network security assessment data from Nessus [43] and using manual support 

from the user decides upon ideal placement of rules. Their method [24, Figure 5] 

describes ‘resolution strategy selection’ as a process that makes decision based on risk 

level of conflicts, strategy repository and rule conflict information. Their solution is about 

changing the order of rules so that certain action constraints can be specified.  

Here we present a novel approach to conflict resolution. The idea is to modify the rule 

itself to resolve the anomaly. To understand how this works, let’s go back a little and try 

to understand how a rule is created. To create a rule we need specific data which includes 

action, ports and addresses. These are the minimal requirements for creating but some 

extra information may be required depending on the firewall vendor. For the analysis 

here, this information is not directly available. When performing the BDD set operations, 

some of the information is lost because the BDDs are reduced. This information loss is a 

result of fast BDD operations. Let us see how we can convert a BDD expression back to 

its Boolean expression.  
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Reverse Engineering BDD 

Reversing a BDD to get the Boolean expression is about tracing all paths from the root to 

the decision nodes. What is obtained after such a process is a series of binary expressions 

that can then be converted to appropriate information depending on the requirements. For 

example, consider the BDD in figure 7. Tracing a path from the root to leaf node ‘1’ 

generates ~v1 ^ v2 ^ v3 ^ ~v4 ^ v5. Substituting 0 for false and 1 for true, we get 01101. If v1 

is the MSB then binary 01101 translates to 13 in decimal.  

v1

v2

v3

v4

v5

0 1
 

Figure 7. Reversing a BDD 

Let us now see a more complex example of reverse engineering a BDD. A path to node 

‘1’ in figure 8 (a) translates to ~v1 ^ v2 ^ v5. We are missing variables v3 and v4 here. So 

how does this translate to binary form? Every missing variable denotes a ‘don’t care’ 

condition, and we denote it by a ‘-’ (hyphen) in the binary form. The binary 

representation of Figure 8 is 01- -1. Now, substitute 0 and 1 in place of the dash in all 
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possible ways to get 01001, 01011, 01101 and 01111. The decimal representation is 9, 

11, 13 and 15 respectively. 

 

v1

v2

v5

0 1
   

v1

v2

v3

0 1
 

    (a)           (b) 

Figure 8. BDD with missing variables. 

BDDs like the one shown in figure 8(a) can be used to denote non-consecutive integers, 

such as port numbers. Figure 8(b) shows a BDD denoting a range of consecutive integers. 

The path from root to ‘1’ node generates ~v1 ^ v2 ^ v3. A binary expression involving five 

Boolean variables is 011- -, which gives us 01100, 01101, 01110 and 01111. These are 

the integers 12 to 15, therefore it represents the condition <=15. In a similar fashion it is 

possible to decode BDDs that represent greater than and not equal to conditions. This is 

all that is needed to decode BDDs and translate them back to firewall rule. Next section 

describes ‘split-n-merge’, a strategy used to remove anomalies in the firewall rule set.  
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Split-n-Merge 

The split-n-merge strategy works by splitting rules, removing anomalous ones and then 

merging the result. Splitting is carried out during various set operations in Algorithm 2. 

Instead of discarding the results, we can use them to create anomaly free rules. There are 

various stages where splitting occurs. The first stage is where algorithm 2 performs set 

subtraction. The result of this stage can be used to remove generalization, correlation and 

overlapping anomalies. Let us see an example of each. 

Resolving Generalization 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80 10.1.2.23 any 

2 permit tcp 192.168.1.2 any 10.1.2.23 any 

Table 6: Resolving non-conflicting generalization anomaly. 

In table 6, rule 1 is generalization of rule 2. Because the first two rules have the same 

action and R1 is subset of R2, it is safe to remove R1. R2 alone takes care of packets 

belonging to R1 and therefore removing R1 from the firewall rule set preserves its 

behavior. Now consider a different case of conflicting rules as shown in table 7. 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80 10.1.2.23 any 

2 deny tcp 192.168.1.2 any 10.1.2.23 any 

Table 7: Resolving conflicting generalization anomaly. 

Resolving generalization in table 7 depends on the default behavior of the firewall. If the 

firewall default is ‘deny’ then R2 can be removed in order to get rid of the anomaly. 

However if the firewall does not default to ‘deny’ then we have to consider splitting R2. 
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Subtracting the packet space of R1 from R2 gives two source port ranges: 0-79 and 81-

65535. The rule set size now increases to 3 but it is free from anomaly. The side effect is 

that an increase in rule set size affects the efficiency of the firewall. It depends on the 

administrator to decide which option they want. Do they need an anomaly free firewall 

with more rules or can they compromise on the anomaly with fewer rules that are perhaps 

easier to understand.  

Resolving Correlation 

A correlation anomaly can also be resolved by the split-n-merge strategy. Consider the 

rules in table 8. R1 is correlated with R2 because they overlap on source ports 85-90 

(inclusive). To resolve this anomaly, we first perform a split. Using a BDD, perform the 

intersection between R1 and R2. Result of this operation gives a BDD that translates to: 

R1 ∩ R2 = tcp    192.168.1.2    85-90    10.1.2.23    any 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80-90 10.1.2.23 any 

2 deny tcp 192.168.1.2 85-100 10.1.2.23 any 

Table 8: Correlation Anomaly Resolution 

This is a conflicting segment. We resolve the conflicting action based on rule priority. 

Because R1 takes precedence over R2, R1 ∩ R2 has the action from R1. This gives firewall 

rule: 

R1 ∩ R2 = permit    tcp    192.168.1.2    85-90    10.1.2.23    any 

We now perform two more set operations. The first operation is of subtracting R2 from 

R1, which yields:  

R1 - R2 = permit    tcp    192.168.1.2    80-84    10.1.2.23   any 
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Next we perform subtraction of R1 from R2 which gives: 

R2 - R1 = deny    tcp    192.168.1.2    91-100    10.1.2.23   any 

The final step is merging. Since source ports between (R1 ∩ R2) and (R1 – R2) are 

consecutive and both have same action, merging can be performed.  

Rmerged =  permit    tcp    192.168.1.2   80-90   10.1.2.23   any 

After replacing R1 and R2 we get: 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

merged permit tcp 192.168.1.2 80-90 10.1.2.23 any 

R2-R1 deny tcp 192.168.1.2 91-100 10.1.2.23 any 

These rules preserve firewall behavior and are free from any anomaly. Again, the benefit 

of applying this solution depends on the type of firewall. If every accept and deny action 

has to be specified explicitly by the user, this is a good solution. But if the firewall 

defaults to ‘deny’ then only R2 in table 8 must be deleted. 

Resolving Overlapping 

An overlapping anomaly occurs between two rules when they have same action on an 

overlapped packet space. Resolving overlapping is easier than dealing with conflicting 

rules. Consider a simple example from table 9. To get rid of overlapping between rules 1 

and 2, merge continuous/overlapping segments together. R1 and R2 overlap on source 

port and merging them together gives: permit   tcp   192.168.1.2   80-100   10.1.2.23   any 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

1 permit tcp 192.168.1.2 80-90 10.1.2.23 any 

2 permit tcp 192.168.1.2 85-100 10.1.2.23 any 

Table 9: Resolving Overlapping Anomaly. 
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Both shadowing and redundancy anomalies can always be resolved by removing the rule 

with lower precedence. Because in both cases the lower precedence rule is never 

executed, removing it from the rule set does not affect the traffic. Techniques described 

to remove anomalies can be applied through algorithm 4. 

Input: Firewall rule set F, set of anomalies R,S,G,C,O denoting 

redundancy, shadowing, generalization, correlation and overlapping.

Output: Modified firewall F without anomalous rules.

for (Rule r: F)

    F.remove (r.redundantRules);

    F.remove (r.shadowRules);

    for ( Rule g: r.generalizedRules)

        if (r.action = permit && g.action = deny)

            F.remove(g);

        else if (r.action = g.action)

            F.remove (r);

        else

            notify user and resolve manually;

    for (Rule o: r.overlappingRules)

        r       merge(r, o);

        F.remove(o);

    for (Rule c: correlatedRules)

        r1       createRule (action(r), segment (r-c));

        r2       createRule (action(r), segment (r   c));

        r3       createRule (action(c), segment (c-r));

        r       r1;

        c       r3;

        F.add (r2);

return F;
 

Algorithm 4: Anomaly removal. 

Algorithm 4 begins with a set of anomalous rules as the input. An anomaly set consists of 

rule identifiers that point to a firewall rule. For example if firewall F has rules {r1, r2, r3} 

such that r2 is shadow of r1 then the shadow anomaly set of r1 can be found by calling 

function shadowRule. In this case r1.shadowRule returns the set {r2}. Getter functions are 
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defined for other anomalies in a similar fashion. Removal of redundant and shadow rules 

is straightforward. Once again, this algorithm is assumed to work on a firewall that has a 

default policy of dropping a packet when no rule applies to it. Since redundant and 

shadow rules are never executed, removing them does not change the firewall’s behavior. 

Overlapping rules can be merged together and this operation can benefit from BDD 

subtraction and intersection operations. Resolving generalization is easier if rules are 

non-conflicting, however conflicting rules may require manual intervention. Correlated 

rules are resolved by creating three new rules r1, r2 and r3. Rules r1 and r2 can be used to 

modify existing firewall rules and r3 is inserted.  

We have presented various situations that give rise to anomalies and have explained how 

to tackle each of them. In the next chapter we will present results of our visualization 

techniques. 
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Chapter 5 

DATA VISUALIZATION 

 

It is well said that “a picture is worth a thousand words”. Huge data sets, no matter how 

simplified, are sometimes hard to comprehend. It becomes a challenging task to extract 

meaningful information in a short period of time. This is where descriptive statistics 

come to the rescue. According to [44] “[Data visualization] involves the creation and 

study of visual representation of data”. Visualization began with simple graphs and pie 

charts but with the advent of computer graphics and programming it has become more 

complex and is now capable of representing multidimensional data. The results obtained 

from our algorithms are complex and do not fit into the traditional matrix and tree based 

representations such as sunburst. In this chapter we present some new pictorial 

representations of a firewall rule set anomaly data. We will also cite some very 

interesting visualizations that have been presented by researchers earlier and we will 

reason about why they are not sufficient in conveying the right information to the target 

audience.  

Previous Visualizations 

One of the early visualization tools for showing firewall rules was ‘Fang’, developed by 

Mayer et al. [1]. Their user interface was very simple, and void of any graphics. Fang 

makes it easier for an administrator to view the rules but they are shown in a simple text 

format. In this form, the analysis of large rule sets is very difficult. The Lumeta firewall 

analyzer [3] was an improvement over Fang. It uses HTML pages to show evaluation 



31 

 

results and makes use of some graphics to represent certain information such as the action 

of a rule, type of source and destination address (host/network/any). The web page report 

tables heavily rely on a text description of the rule and therefore this tool too shares the 

same drawbacks of Fang. 

A closely related work in visualizing firewall rule set anomalies is the Firewall Policy 

Advisor Tools [18]. Al-Shaer and Hamed developed a tool to display simplified versions 

of complex firewall rules. Their tool is capable of showing anomaly information in a 

tabular format. This tool also lacks use of data visualization techniques and displays rules 

in text format. 

PolicyVis [39] was designed to facilitate rule anomaly analysis. Tran et al. developed a 

novel visualization technique that uses a row-column overlapping bars to represent the 

type of anomaly. Bars are color coded, green for an accept rule and red for deny. Partially 

overlapping bars represent a correlation anomaly, and a complete overlap represents 

shadowing or redundancy. Generalization is represented by placing a small bar inside 

another shaded bar. PolicyVis provides several options for administrators to zoom into 

the details of a rule. It allows a change of scope based on ports and addresses. However, 

the anomalies can be viewed only when a certain scope is defined.  

Another recent work in visualizing firewall anomalies is by Hu et al. [24] [25] with the 

tool FAME. They used a matrix table to show conflicting and non-conflicting segments. 

A segment table is a novel way to represent anomalies but such a matrix representation is 

not sufficient to display exactly the fields where these rules overlap with each other. A 

segment table approach also fails to scale with a larger set of firewall rules. For example, 
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a firewall with over 200 rules and 500 segments creates 200x500 sized table which is 

hard to comprehend. The segment table is also not a good representation for showing 

different anomalies such as generalization and correlation. 

Mansmann et al. [45] used a sunburst visualization to represent firewall rules. Their 

objective is not to display anomaly information but only to visualize the rule set. The 

sunburst visualization technique basically a radial representation of a tree and it is 

therefore not suitable for plotting anomalies which can resemble a graph. Sunburst can 

only represent a subset or superset data but cannot represent overlapping fields which are 

the essence of firewall rule anomalies.  

We have seen that results from rule set analysis are complex and inter-dependent and 

therefore traditional data representations such as a matrix table, tree diagrams and 

sunbursts are not appropriate to show the summary such analysis. We will now describe 

some data visualization approaches that are suitable for showing rule anomalies.  

Segment Table 

Figure 9 shows a segment table which is a matrix representation of rules and segments. 

Each row represents a rule and every column denotes a segment. Segments and rules are 

color coded for better understanding. If an input data set of n rules generates m segments, 

then the segment table has dimensions n x m. Each shaded block for nth row and mth 

column denotes that nth rule belongs to segment at position m. Blocks are shaded green if 

the rule has a permit action and red if it is a deny action. The column headers show the 

segment index. A segment header can have three colors, each denoting if this is a 

conflicting segment, non-conflicting segment or a non-overlapping segment. The 
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segment table that we have described is very similar to the one mentioned in [24]. The 

design has been changed to accommodate more number of rules in a small space. 

Increasing the density of rows and columns gives a unified feel and makes it easier to 

understand.  

 

Figure 9. Segment table. 

One drawback of a segment table based approach is that it does not scale well. For a large 

data set with many anomalies, the size of segment table becomes huge and understanding 

it becomes a tedious task.  

A good solution for this problem is to partition the segment table into a set of smaller 

tables. The table canoe be partitioned from any point. The partition has to preserve the 

anomaly relationship between the rules so that no rule appears in more than one segment 

table and every rule is taken into account. Hu et al. [25] have defined a ‘correlation 

group’ as a group of segments where a rule belongs to exactly one correlation group. 

Here a new approach is presented to generate these correlation groups and for the sake of 

simplicity and distinctiveness, it is called a ‘community’. Algorithm 5 presents details of 

how communities are built. Each community can be presented in its own segment table.  
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Implementing the community generation algorithm 3 gives a set of smaller segment 

tables but then another problem arises. Some segments tables are too small. Consider for 

example, segment table shown in figure 10. Running algorithm 5 on this segment table 

generates 3 small segment tables, which by themselves are very small and many of these 

smaller tables clutter the visualization. These smaller segment tables are called a “micro 

community”.  

Input: set of segments S

Output: set of communities

G       new set of communities;

for (Segment s   S)

    flag       false;

    c       new Community;

    R       set of rules belonging to s;

    if (G is empty)

        G.add (new Community with segment s );

    else

        for (Community g   G)

            R2       set of rules belonging to g;

            R3      R\R2;

            if (R3 is not empty)

                 if (flag is not set)

                     g.add (s);

                     c       g;

                     flag       true;

                 else

                     for (Segment x   g)

                         c.add (x);

                     G.remove(g);

            else if (g is last element in G)

                G.add (new Community with segment s);

                break;

return G;  

Algorithm 5. Community generation from segment set. 
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Figure 10. Community generation from segment table. 

 

Figure 11. Micro-communities. 

Micro communities are an unwanted byproduct of the community generation algorithm. 

There is a way to correct this problem. If small communities are merged together, a good 

sized community is created. Micro community removal is described in Algorithm 6. The 

algorithm requires an input threshold value denoting the desired size of community. An 

example of running the micro-community removal algorithm is shown in Figure 12. 

Merging is performed with a threshold value 3. Segments s3, s4 and s1 are merged 

together to conform to the threshold size.  
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Input: set of communities G

Output: set of communities with merged micro-communities

Sort G in ascending order of community size;

G        new set of communities;

for (i = 0; i < G.size; i++)

    if (G[i].size   t)

        add G[i] and remaining elements to G ;

        return G ;

    if (i = G.size-1)

        add G[i] to last element in G ;

        return G ;

    merge G[i] with G[i+1];

    i       i+1;

    g       G[i];

    n       g.size;

    while (n < t)

        if (i < G.size)

            g        G[++i];

            merge g with g ;

            g       g ;

            n       g .size;

        else

             G .add(G[i]);

             return G ;

    G.add(g);

    i       i+1;

return G ;

 
Algorithm 6: Micro-community removal. 

 

Figure 12. Merging micro-communities 

We have seen how to deal with large segment tables, and partition them into smaller, 

more manageable data sets. Segment tables are important in understanding the overall 
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state of firewall however they miss something: one cannot tell exactly which portion of 

packet space of a rule is conflicting with another rule. All that is observed is the presence 

of a conflict but it does not give a clear idea of how the conflict is actually happening.  To 

view this information, a new visualization called ‘Rule table’ is presented in the next 

section. 

Rule Table 

The benefits of segment table have been explained as well as some side effects of the 

segment table partitioning algorithm. The segment table is a good approach to convey 

high level information about firewall anomalies. However, it misses lower level 

information such as details of firewall fields. To represent this low level information, a 

new visualization called Rule Table is designed as given in Figure 13. The same input set 

from [25, Table1] is used and shown in Table 10. Each row represents a firewall rule and 

columns denote different fields of the rule. 

Rule# Action Protocol Src Address Src Port Dst Address Dst Port 

0 deny udp 10.1.2.0/24 any 173.32.1.0/24 53 

1 deny udp 10.1.0.0/24 any 173.32.1.0/24 53 

2 permit tcp 10.1.0.0/24 any 192.168.0.0/24 25 

3 deny tcp 10.1.1.0/24 any 192.168.1.0/24 25 

4 permit any 10.1.1.0/24 any any any 

Table 10. Sample firewall rule set 

The rule table helps in zooming into details of each rule. The overlapping of rules is very 

easily detected through this representation. The table looks simple and minimal although 

it conveys detailed information. We now go into the dynamics of creating rule table and 

how to decode it visually to extract information. When designing the rule table, the 
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objective was to present more information with fewer numbers, to help network 

administrators.  

A rule table consists of five columns, showing the protocol, source address/port and 

destination address/port. Each shaded box inside the table is used to denote the range on 

the input dataset that this particular firewall rule acts upon. Consider for example rule5 

from table 10. Because the protocol is ‘any’ the corresponding box in the table is shaded 

completely. Similarly, the protocol box for rule 1 is partially shaded because UDP is only 

one part of the protocol spectrum. 

 

Figure 13. Rule table. 

The bar size of each field is dynamically generated and depends on diversity of the input 

data set. For example, the protocol field size for the input data set is 3 because there are 

three distinct values any, tcp and udp. It makes more sense to allocated one third of the 

available box space. There are more than a hundred protocols and allocating space for 

each of them even if it is not mentioned in the rule is a waste of box space and introduces 

too many voids. 

The IP/network address field follows the same approach. The source address set contains 

three distinctive addresses, 10.1.2.*, 10.1.*.* and 10.1.1.*. Since 10.1.1.* is the superset 

of all other source addresses, it occupies the entire box space. One third of the space is 
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occupied by 10.1.2.* network and other one third by the 10.1.1.* network. Source address 

bars are positioned based on how they are related to other rules. Since the 10.1.1.* 

network comes before the 10.1.2.* network, its address bar is positioned to the left of 

10.1.2.*.  

Representing the port numbers follows a slightly different approach. Because the port 

numbers can be specified as a range (<80, 22-80) and also as a fixed value (=443), and 

the fact that this range extends from 0 to 65535, the visualization results using the 

previously defined approach don’t fit properly into the small space.  

As a solution, the density of ports in the box is varied. Since most service ports fall in the 

range 1 to 300, 90% of the available box space is utilized to represent values from this 

range. The remaining 10% of the box space packs port numbers greater than 300. By 

varying the data density, the visualization results look good.  

As with the segment table, rule tables also suffer from the scalability issue. With more 

than a thousand rules, the table has the same number of rows. To solve this problem, the 

community generation approach can be applied to the rule table. Generate the segment 

tables and then draw a rule table for all the rules in each segment table.  

Hive Plot 

Both the segment table and the rule table are not sufficient to understand the anomaly 

relationship between firewall rules. The segment table gives an idea of how good or bad 

the firewall is, and rule table helps understand the overlapping of the packet space. To 

view the relationship between rules with respect to the five anomalies defined previously, 

the results are visualized with a ‘Hive Plot’ as show in figure 14. Krzywinski et al. [46] 



40 

 

describe a novel approach to visualize networks and their visualization is extended to 

show anomalies. 

Each axis in the plot represents a firewall rule. Figure 14 mentions five rules rule0-rule4 

and the results are derived from table 10. Starting from the top central axis and moving in 

clockwise direction, are rule0 through rule4. The anomalies are represented as nodes on 

every axis. From inside to outside, every node represents an anomaly in the order 

shadow, generalization, correlation, redundancy and overlapping. A link between two 

nodes shows an anomaly between the rules that these linked nodes belong to. For 

example, rule4 is a generalization of rule3. This information is shown by drawing a link 

from the second node of rule3 axis to the second node on axis representing rule4. 

 

Figure 14. Hive plot. 
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A hive plot representation is very helpful in viewing how many anomalies exist in the 

firewall and what rules are involved. The distribution of axis in the hive plot is dynamic 

and the density increases with increase in the number of rules in the input rule set. 

Therefore, this approach does not scale well. When the number of rules exceeds 50, the 

hive plot becomes very dense and it is hard to understand the anomaly relationship. An 

example of densely populated hive plot is show in figure 15. 

 

Figure 15. Densely populated hive plot. 
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Using Visualizations 

We have seen three visualizations, a segment table, a rule table, and a hive plot. In order 

to make the most out of these graphical representations, this section describes some 

helpful tips.  

For the segment table, the best way to tell if your firewall is efficient is by taking a look 

at the segment headers and looking for red colored segments. If all segment headers are 

blue, it means there are no overlapping rules in the firewall and therefore no anomalies. If 

a red colored segment exists it means conflicting overlapping rules exist and it is time to 

check the rule table.  

Examine the hive plot and watch for any links. A link denotes involvement of two rules 

in an anomaly. Make a list of rules that have any outgoing and incoming links. Given this 

information the anomaly the rule is generating is known but the reason is not known. If 

there are no links, good news! No anomaly exists in the firewall. 

In order to find the answer to ‘why this anomaly?’ The rule table must be interpreted. 

Take the list of rules prepared previously from the hive plot and compare the rule fields 

in the rule table. It is easy to find if two rules are overlapping and where they are 

overlapping.  
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Chapter 6 

PEFORMANCE EVALUATION 

 

This section evaluates performance of the tool against several rule sets. The firewall 

configuration data was collected from real world sources of varying size, from a small 

computer lab (less than 10 hosts) to a big corporation (more than 1000 hosts). Anomaly 

detection and visualization generation tests were carried out on computer with 2.4GHz 

Intel i5 CPU and 4GB memory and the data set belonged to Cisco ASA firewall. 

Figures 16 and 17 show performance of our tool for preparing initial data and anomaly 

detection respectively. X-axis represents the number of rules that were parsed from the 

firewall configuration file. Time (in milliseconds) is represented on the y-axis. After rules 

are parsed, they are converted to BDD and tool’s performance is shown with a green bar. 

 

Figure 16. Parser and BDD generation performance. 
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In Figure 17, x-axis represents two values in the format A/B. A is the number of rules and 

B is the number of segments generated. Y-axis shows the time (in ms) it took for 

computing anomalies between all rules in the set. Interestingly, the processing time for 

882 segments is lower than 320 segments. This is because anomalies are independent of 

the size of segment table. A smaller segment table can have multiple anomalies and a 

huge segment table can be completely void of anomalies. Segmentation takes almost no 

time if no anomalies are present in the rule set. The processing time increases with a rise 

in the number of segments. 

 

Figure 17. Segmentation and Anomaly detection performance 

The data required to visualize the results is translated to JSON format and the 

performance is linear. Visualizations are created using a set of JavaScript files and an 

open source library d3js [47]. The program for firewall analysis is written in Java using 

Eclipse IDE. HTML, CSS3 and JavaScript are used for generating graphics. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

 

Firewall rule set analysis and its visualization is an important research area. Although 

much research has been done on the analysis of firewalls, there is much less on how to 

visualize such results in the most effective manner. This thesis describes strategy for 

anomaly detection and classifies anomalies into five categories. Various visual 

representations such as a segment table, a rule table, and a hive plot are used. Such 

pictorial representations are helpful in understanding of firewall rule sets and support 

revision of previous rules. They also help network administrators in determining where 

new rules can be inserted and which rules contribute to efficiency.  

This research can be extended in different directions. One direction is to apply the 

anomaly analysis for Software Defined Networks (SDN). SDN primarily works on 

OpenFlow protocol and the syntax of rules and their behavior is different from traditional 

network firewalls. One can also extend this work by improving visualizations and 

designing new techniques for better representation of the data. 

This research can also be extended towards resolution of anomalies. The existing 

algorithms on anomaly resolution work on re-ordering of rules and are not efficient. In 

place modification of rules needs to be studied. Also, appropriate tools to verify the 

firewall behavior need to be developed so that any modifications to the rules can be 

verified against proper functioning of the firewall. The anomaly analysis can also be 

extended to distributed firewalls.  
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