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ABSTRACT  

   

Multi-touch tablets and smart phones are now widely used in both workplace and 

consumer settings. Interacting with these devices requires hand and arm movements 

that are potentially complex and poorly understood. Experimental studies have revealed 

differences in performance that could potentially be associated with injury risk. However, 

underlying causes for performance differences are often difficult to identify. For example, 

many patterns of muscle activity can potentially result in similar behavioral output. 

Muscle activity is one factor contributing to forces in tissues that could contribute to 

injury. However, experimental measurements of muscle activity and force for humans 

are extremely challenging. Models of the musculoskeletal system can be used to make 

specific estimates of neuromuscular coordination and musculoskeletal forces. However, 

existing models cannot easily be used to describe complex, multi-finger gestures such as 

those used for multi-touch human computer interaction (HCI) tasks. We therefore seek 

to develop a dynamic musculoskeletal simulation capable of estimating internal 

musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and 

use the simulation to better understand complex multi-touch and gestural movements, 

and potentially guide the design of technologies the reduce injury risk. To accomplish 

these, we focused on three specific tasks. First, we aimed at determining the optimal 

index finger muscle attachment points within the context of the established, validated 

OpenSim arm model using measured moment arm data taken from the literature. 

Second, we aimed at deriving moment arm values from experimentally-measured 

muscle attachments and using these values to determine muscle-tendon paths for both 

extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at 
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exploring differences in hand muscle activation patterns during zooming and rotating 

tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal 

hand model will help better address the neuromuscular coordination, safe gesture 

performance and internal loadings for multi-touch applications. 
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CHAPTER 1 

INTRODUCTION 

Multi-touch tablets and smart phones are now widely used in both workplace and 

consumer settings. Interacting with these devices requires hand and arm movements that are 

potentially complex and poorly understood (Cohe and Hachet, 2012; Trudeau et al., 2013; 

Wagner et al., 2012; Young et al., 2013). Experimental studies have revealed differences in 

performance that could potentially be associated with injury risk (Lozano et al., 2011; Trudeau 

et al., 2013). However, underlying causes for performance differences are often difficult to 

identify. For example, many patterns of muscle activity can potentially result in similar 

behavioral output (Valero-Cuevas et al., 1998). Muscle activity is one factor contributing to 

forces in tissues that could contribute to injury (Norman et al., 1998).  However, experimental 

measurements of muscle activity and force for humans are extremely challenging (Dennerlein et 

al., 1998, 1999).   

Models of the musculoskeletal system can be used to make specific estimates of 

neuromuscular coordination and musculoskeletal forces. Models of the hand have helped to 

quantify finger mechanics and motor control in several contexts (Armstrong and Chaffin, 1978; 

Harding et al., 1993; Dennerlein et al., 1998; Valero-Cuevas et al., 1998). Consequently, 

musculoskeletal model of the hand could represent an effective tool for understanding hand and 

arm dynamics and control during multi-touch tasks, and contribute to interface designs that 

reduce the risks of injuries associated with long-term, repetitive movements. 

 Existing models of the hand have focused on specific fingers (typically the index finger), 

and have been developed using custom or proprietary software platforms (Wu et al., 2009, 

2010). Therefore, existing models cannot easily be used to describe complex, multi-finger 
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gestures such as those used for multi-touch human computer interaction (HCI) tasks. 

Consequently, we seek to develop a dynamic musculoskeletal simulation capable of 

estimating internal musculoskeletal loading during multi-touch tasks involving 

many fingers, and use the simulation to better understand complex multi-touch and 

gestural movements, and potentially guide the design of technologies that reduce 

injury risk. 

I propose to create a multi-finger hand and arm model using the OpenSim platform 

(Delp et al., 2007; Holzbaur et al., 2005), and to use the model to predict movements that are 

likely to be preferred, high-performance, and minimize injury risk. The long term goal of this 

research is the development of a modeling framework that allows for predictions of 

musculoskeletal loading associated with multi-touch gestures.  The specific goal addressed in 

this dissertation is model development and validation. I hypothesized that the Simulated 

Annealing (Kirkpatrick et al., 1983) and Hooke-Jeeves (Kelley, 1999) methods could produce a 

set of muscle attachment points for extrinsic/intrinsic finger tendons and muscles within the 

context of the established, validated OpenSim arm model that results in moment arms that 

match experimentally-measured relationships (An et al., 1979, 1983; Armstrong and Chaffin, 

1978; Chao et al., 1989; Fowler et al., 2001; Greiner, 1991; Li et al., 2008). I also hypothesized 

that a “partial velocity” method (Delp and Loan, 1995; Kane and Levinson, 1985) could 

generate continuous and realistic moment arms arising from muscle attachment points reported 

by An et al. (1979, 1983) and could be suitable for use as reference moment arm values for 

middle, ring and little fingers in an OpenSim model. I last hypothesized that extrinsic muscle 

activations for zooming tasks would be higher than intrinsic muscle activations for them, while 
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intrinsic muscle activations for rotating tasks would be higher than extrinsic muscle activations 

for them.    

Towards this end, I propose to accomplish the following specific aims: 

1. Determine the optimal index finger muscle attachment points within the 

context of the established, validated OpenSim arm model using measured 

moment arm data taken from the literature.  

I used Simulated Annealing (Kirkpatrick et al., 1983) and Hooke-Jeeves (Kelley, 1999) to 

determine the muscle paths, a series of attachments that result in the best match of 

modeled muscle moment arms to experimentally-measured values (An et al., 1979, 

1983; Armstrong and Chaffin, 1978; Chao et al., 1989) in the index finger. 

 

2. Calculate moment arm values for the middle, ring and little fingers using the 

partial velocity method (Delp and Loan, 1995; Kane and Levinson, 1985), and 

use these values to determine muscle-tendon paths of attachment points for 

both extrinsic and intrinsic muscles.  

I used the partial velocity method to calculate moment arm curves from anatomically-

measured muscle origins and insertions that matched experimentally-measured moment 

arms, and used objective techniques to identify muscle attachments that resulted in 

accurate muscle function.  

 

3. Estimate hand muscle activity during two finger gestures: zoom in & out and 

rotate left & right on a tablet computer.  
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I tested the hypothesis that intrinsic muscle activity for rotate left and right gestures 

would be higher than extrinsic muscle activity because extrinsic muscles control crude 

movements while intrinsic muscles are responsible for the fine motor functions of the 

hand. 
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RESEARCH STRATEGY 

1. SIGNIFICANCE 

The design of computer interfaces is one factor associated with work-related 

musculoskeletal disorders (MSDs) (Bergqvist et al., 1995; Kumar, 2001; Malchaire et al., 1996). 

However, the emergence of devices using multi-touch or gestural interfaces could 

fundamentally change the movements required for use. The impact of these new interfaces on 

risks for MSDs is unclear. Little information about the biomechanics or motor control of multi-

touch or gestural device use is available, and devices are typically designed without considering 

the effect of interaction on the musculoskeletal system (Marcus et al., 2002; Rempel et al., 

1999; Sauter et al., 1991). 

Models of the musculoskeletal system can contribute to the study of neuromuscular 

coordination, motor performance, and be used to estimate musculoskeletal loads. Hand models 

have provided a basis for quantifying finger mechanics and motor control in diverse situations 

(Armstrong and Chaffin, 1978; Valero-Cuevas, 1998; Balakrishnan et al., 2006; Harding et al., 

1993; Leijnse, 1995). While analytical musculoskeletal models are often limited to static or 

quasi-static analysis, computer simulations can facilitate the understanding of complex 

musculoskeletal systems (Zajac, 2002). However, the use of unshared or proprietary software 

platforms has limited the impact of musculoskeletal models. For this reason, freely-accessible 

models have been developed. For example, OpenSim is open-source software that allows users 

to study the effects of musculoskeletal geometry, joint kinematics, and muscle-tendon 

properties on the forces and joint moments that the muscles can produce (Delp et al, 2007). A 

musculoskeletal model in OpenSim consists of rigid body segments connected by joints. Muscles 

span these joints and generate forces and movement. The OpenSim arm model has skeletal 
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elements for the arm, wrist, and hand. Currently, the musculature of the shoulder, elbow, wrist, 

and the extrinsic finger muscles have been accurately implemented (Holzbaur et al., 2005, 2007; 

Saul et al., 2003). However, the intrinsic muscles of the hand, finger ligaments, and finger 

extensor mechanisms have not been modeled on the OpenSim platform. Implementation of 

intrinsic hand muscles, coupled with the shoulder and elbow model, would result in a highly 

detailed and powerful model of the entire upper-extremity, which would provide unprecedented 

opportunities for research not only in the domain of multi-touch systems, but also create a 

broader impact in furthering basic scientific research on musculoskeletal systems.  

 

The discoveries resulting from the proposed study provide significant insights into 

how the musculoskeletal system of the human upper extremity produces multi-

touch gestures. 

  

A highly accurate musculoskeletal model of the hand could be dedicated to improve the existing 

biomechanical models of the hand and extend their functionality in ergonomics. In 

biomechanics, we could gain a deeper understanding of the causes and effects of many hand 

pathologies, could develop to help in medical planning and surgery for tendon transfers and 

could study the nervous stimulation required to restore the grasping ability for muscular 

dysfunction patients. In Ergonomics, the hand model could be used to simulate postures 

adopted while grasping hand-held devices with different postures such as the size and shape of 

them according to the anthropometry of the different people that have to interact. 

 

2. INNOVATION 



7 

 

Experiments outlined in this study employ a novel approach to developing a new human 

hand model that generates gestural movements, muscle activity and motor performance to 

multi-touch device interactions.  

Conceptual Approach. A major barrier to the study of musculoskeletal model of the hand is 

about how to determine muscle attachment points; many combinations of origins and insertions, 

or paths, could result in the same moment arm. I suggest a new approach to finding optimal 

muscle-tendon paths via data-driven optimization (Simulated Annealing and Hooke-Jeeves 

methods). Another challenge to the development of accurate hand model is regarding to 

reproduce moment arm values for middle, ring and little fingers. To date, no values of them 

have been reported yet. I seek to estimate these moment arms via the partial velocity method.  

Application Domain. My approach is innovative because of the specific movements studied. 

Very little is known about the biomechanics and control of multi-touch gestures, and my 

experimental and modeling efforts not only answer specific questions about motor performance 

during multi-touch device use, but provide a foundation for future experimental and modeling 

studies. 

 

3. APPROACH 

AIM 1 – Determine a set of muscle attachment points for the tendons and intrinsic 

muscles of the index finger. 

This Aim involves testing the working hypothesis that the Simulated Annealing (Kirkpatrick et al., 

1983) and Hooke-Jeeves (Kelley, 1999) methods could determine a set of muscle attachment 

points for extrinsic and intrinsic index finger muscles within the context of the established, 

validated OpenSim arm model that results in moment arms that match experimentally-
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measured relationships (An et al., 1979, 1983; Armstrong and Chaffin, 1978; Chao et al., 1989; 

Fowler et al., 2001; Greiner, 1991; Li et al., 2008). Successful matching was considered to be 

moment arms within one standard deviation of experimental measurements.  

Aim 1: Hypotheses 

I hypothesize that data-driven optimization method could find reasonable attachment sites for 

extrinsic tendons and intrinsic muscles, and predicted moment arms could be non-linear with 

change of joint angle. 

 Hypothesis 1.1 A Simulated Annealing algorithm could reasonably reproduce the 

optimized muscle-tendon paths on the index finger 

 Hypothesis 1.2 Moment arms at all joints were not constants but nonlinear as functions 

of joint movements 

 

AIM 2 – Reproduce realistic finger moment arms calculated by partial velocity 

approach derived from anatomical attachments reported by experiments (An et al., 

1979 and 1983), and determine muscle-tendon pathways for middle, ring and little 

fingers on the OpenSim platform. 

This Aim involves testing the working hypothesis that the partial velocity method (Delp and 

Loan, 1995; Kane and Levinson, 1985) could generate reasonable moment arms values for 

middle, ring and little fingers, and these values could be used to calculate muscle attachment 

points for the OpenSim hand and arm model. 

Aim 2: Hypotheses 

I hypothesize that the partial velocity method (Delp and Loan, 1995; Kane and Levinson, 1985) 

could reproduce moment arms for middle, ring and little fingers, and these estimated moment 
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arms could be used to reference values in an optimization method that is the process of 

improving OpenSim model fits to experimental data via root mean square error.  

 Hypothesis 2.1 Index finger moment arms by partial velocity estimation from 

experimental attachment points could be similar in shape and slope to its moment arms 

by direct measurements on hand specimens. The partial velocity method derived from 

anatomical measurements (An et al., 1979, 1983) could generate moment arm values 

for the middle, ring and little fingers. 

 Hypothesis 2.2 A Simulated Annealing algorithm (Kirkpatrick et al., 1983) could 

reproduce the optimized muscle-tendon paths of the middle, ring and little fingers for 

the OpenSim model. 

 

AIM 3 – Compare muscle activity during thumb and index finger gestures on a tablet.  

This Aim is to quantify the differences in the joint torque, muscle forces and muscle activity 

using the OpenSim platform while twelve subjects performe two finger gestures: zoom in & out 

and rotate left & right on the tablet computer. 

Aim 3: Hypotheses 

I hypothesize that extrinsic muscle muscles involve more flexion/extension motion while 

intrinsic muscles could contribute more abduction/adduction movement. 

 Hypothesis 3.1 Extrinsic muscle activations for zoom in & out gestures could be 

higher than those for rotate left & right gestures.  

 Hypothesis 3.2 Intrinsic muscle activations could be higher than extrinsic muscle 

activations for rotate left & right gestures.  
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CHAPTER 2  

EXTRINSIC AND INTRINSIC INDEX FINGER MUSCLE ATTACHMENTS IN AN OPENSIM UPPER-

EXTREMITY MODEL  

ABSTRACT 

Musculoskeletal models allow estimation of muscle function during complex tasks. We 

used objective methods to determine attachment locations for index finger muscles in an 

OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and 

Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal 

interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference 

between model-estimated and experimentally-measured moment arms. Estimated tendon 

attachments resulted in variance accounted for (VAF) between calculated moment arms and 

measured values of 77.6% for flex/extension and 81.0% for ab/adduction at the MCP joint. VAF 

averaged 73.3% at the PIP joint and 53.5% at the DIP joint. VAF values at PIP and DIP joints 

partially reflected the constant moment arms reported for muscles about these joints. However, 

all moment arm values found through optimization were non-linear and non-constant. Moment 

arm relationships were best described with quadratic equations for all tendons at PIP and DIP 

joints. Sensitivity analysis revealed that multiple sets of muscle attachments with similar 

optimized moment arms are possible. The presence of several functionally similar solutions is 

consistent with the anatomical variability observed in human hands, but requires additional 

assumptions or data to select a single set of values when constructing anatomically-based 

musculoskeletal models.  
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INTRODUCTION 

Multi-touch Human Computer Interfaces (HCIs), such as the touchscreens of many 

handheld devices, often involve complex multi-finger gestures or gesture sequences (Rekimoto, 

2002; Rubine, 1991; Wu et al., 2003). Although the forces involved in making individual 

gestures may be low, long-term and repetitive interactions with touchscreen computing devices 

present the potential for injury (Sjoggard et al., 1998). However, the biomechanics of 

coordinated finger movements for touchscreen interaction are not well understood. 

Consequently, better understanding of finger dynamics, joint forces, and control during multi-

touch tasks could lead to interface designs that reduce injury risks associated with repetitive 

finger movements. 

External hand and finger loadings do not directly correspond to internal musculoskeletal 

loading, which can be difficult to determine (Radwin et al., 1999). However, anatomically-based 

musculoskeletal models can predict musculoskeletal loading and can help design strategies to 

reduce injury and improve motor function (Delp et al., 1995; Fregly et al., 2012; Lloyd and 

Besier, 2003; McKay and Ting, 2012; Seth et al., 2011). Anatomical studies of the elbow and 

shoulder enabled development of detailed arm musculoskeletal models (Ettema et al, 1998; 

Gerbeaux et al., 1996; Pigeon et al., 1996). Arm models can estimate torques at the shoulder 

and elbow, e.g. for development and user training of neural prosthesis systems (Chadwick et al., 

2009; Gatti et al., 2009; Holzbaur et al., 2005; Soechting et al., 1997). Hand models have also 

been useful for understanding many aspects of function such as finger tapping on computer 

keyboards (Armstrong and Chaffin, 1978; An et al., 1979; Zajac and Gottlieb, 1989; Sancho-Bru 

et al., 2001; Roloff et al., 2006; Lee et al., 2009, Qin et al., 2010, 2011). Although hand models 

have been helpful in specific contexts, existing dynamic models of the hand often focus on 
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specific fingers and have not been used to understand complex, multi-finger gestures such as 

those used during multi-touch HCI tasks.  

We therefore seek to develop a dynamic musculoskeletal model capable of estimating 

internal loadings during multi-touch tasks. Because multi-touch and gestural movements involve 

not only the fingers, but also the entire kinematic chain of the hand and arm, we chose to build 

upon an existing arm model available on an open access platform OpenSim (2.3.2, Simbios, 

Stanford, CA; Delp et al, 2007; Seth et al., 2011). The model incorporates information for 

muscles at the shoulder and elbow, but it does not yet model intrinsic finger muscles. OpenSim 

is a homeomorphic model: parameters and values correspond directly to anatomical structure 

and function. Therefore, appropriate muscle attachment sites within the anatomy of the 

OpenSim model must be determined. Detailed measurements of muscle attachments have been 

made for the hand (Landsmeer et al., 1961; An et al., 1979). However, muscle attachment 

locations are specific to the anatomical model within which they are expressed, and cannot be 

directly transformed to a different model such as OpenSim. For example, the model of An et al. 

(1979) is normalized only to the middle phalanx in a 2 dimensional (2D) sagittal plane, and 

scaling its attachment locations in a 3D Cartesian space (c.f. Li et al., 2008; Greiner, 1991) does 

not result in continuous moment arms that match experimentally-measured values (Kociolek 

and Kier, 2011). This poor correspondence could result from a lack of important information 

such as joint thickness, position and orientation of rotational axes, skeletal structure, and 

changes associated with transforming from 2 to 3 dimensions among other factors.   

To create the most functionally useful model possible, we chose to use moment arm 

data for the index finger measured in vivo (Oh et al., 2007; Yoshii et al., 2009; Lopes et al., 

2011) and in situ (Armstrong and Chaffin, 1978; An et al., 1983; Chao et al., 1989; Brand and 
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Hollister, 1993; Franko et al., 2011). However, measurements of moment arms alone cannot be 

directly used to develop homeomorphic models because moment arms are indeterminate: many 

combinations of origins and insertions, or paths could result in the same moment arm. The 

purpose of this study was therefore to determine a set of muscle attachment points for the 

tendons and intrinsic muscles of the index finger. We focused on the question: can data-driven 

optimization find reasonable attachment sites for extrinsic tendons and intrinsic muscles? We 

hypothesized that Simulated Annealing (Kirkpatrick et al., 1983) could find muscle attachment 

points for extrinsic and intrinsic finger tendons and muscles, resulting in moment arms that 

match experimentally measured relationships (An et al., 1979, 1983; Armstrong and Chaffin, 

1978; Chao et al., 1989; Fowler et al., 2001; Greiner, 1991; Li et al., 2008). Successful 

matching was considered to be moment arms within one standard deviation (SD) of 

experimental measurements (An et al., 1983; Max. SD = 2.5 mm).  
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MATERIALS AND METHODS 

We used the Holzbaur et al. (2005) upper extremity model on the OpenSim platform 

(2.3.2, Simbios, Stanford, CA; Delp et al, 2007; Seth et al., 2011). This model includes 15 

degrees of freedom representing the shoulder, elbow, forearm, wrist, thumb, and index finger 

with 50 muscle compartments crossing these joints. Metacarpal and phalanx geometry and 

approximated positions and orientations of finger joint axes are scaled to a 50th percentile male, 

and axes of rotation were determined by fitting long axes of cylinders to the articular surfaces 

of the metacarpal and phalangeal bones (Holzbaur et al., 2005). 

Musculoskeletal Model 

We sought to add the following muscles or muscle groups to the index finger of 

OpenSim model: terminal extensor (TE), extensor slip (ES), radial band (RB), ulnar band (UB), 

first dorsal interosseous or radial interosseous (RI), lumbricals (LU), first palmar interosseous or 

ulnar interosseous (UI), flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS) 

and extensor digitorum communis (EDC). The index finger was modeled to have four degrees 

of freedom: ab/adduction and flex/extension at the MCP joint, and flex/extension at PIP and 

DIP joints. Based on experiment measurements available for comparison, we considered the 

following range of motion (RoM) at the MCP joint: 0° to 90° (flexion: +) as well as 0° to 30° 

(abduction:+). Similarly, for PIP and DIP joints we considered 0° to 90° (flexion: +) and 50° 

(flexion: +) respectively (An et al., 1983; Chao et al., 1989). Because specific data on muscle 

wrapping are not available, the wrap object set was removed from the DIP, PIP and MCP joints 

in the OpenSim model (Garner and Pandy, 2000).     
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Moment Arms 

 Experimentally-measured values were used as reference moment arm relationships (An 

et al., 1979, 1983; Armstrong and Chaffin, 1978; Chao et al., 1989). For the MCP joint, we 

extracted data from published relationships (An et al., 1983; Chao et al., 1989) using the 

GRABIT function (Matlab 2010b, Mathworks, Natick, MA), and recreated moment arm curves 

using Polynomial Curve Fitting function (polyfit;     degree polynomial) in Matlab. For PIP and 

DIP joints, moment arm curves have not been reported. Therefore, constant moment arms 

(averaged through the RoM of 0  to 90  and 50 ) were used (An et al., 1983).  

To normalize for differences among data sets and reproduce finger skin surface from the 

bony segments in the OpenSim model, we assumed all linear dimensions scaled isometrically, 

as found for the ratio among the length of phalanx, the width and thickness of each joint 

(Fowler et al., 2001; Greiner, 1991; Li et al., 2008). We scaled measured anthropometric data 

to OpenSim model dimensions to describe muscle-tendon paths within the OpenSim model 

(Table 1), then normalized moment arms to the length of the middle phalanx (An et al., 1979).  

Muscle Attachment Determination 

 A computational optimization method was used to determine muscle paths of moment 

arms matching experimentally-measured relationships. The objective function,    ⃗   was defined 

as the root mean square (RMS) error between the experimentally-derived moment arms,     ⃗    

and the modeled-estimate moment arms,  ̂   ⃗    ⃗   as follows:   

Minimize        √∑
[    ⃗     ̂   ⃗       ]

 

 
 
       

Subject to            



16 

 

     ⃗        

Where,   was each individual muscle (    ), and   ⃗  was 6× 1 vector (described as x, y, z origin 

points on the proximal side and x, y, z insertion points on the distal side) to be optimized.     

was the joint angle with a resolution ( ) of 100 increments ( ) covering RoM of measured 

values (An et al.,1983): the 0°~90° (flexion) and 0°~30° (abduction), 0°~90° (flexion), and 

0°~50° (flexion) for the MCP, PIP and DIP joints, respectively. Boundary conditions (       

   ) constrained the path of muscle from violating the feasible region, expanded from bony 

segment (as a lower bound:    , Holzbaur et al., 2005) to finger skin surface (as an upper 

bound:    , Fowler et al., 2001; Greiner, 1991; Li et al., 2008).  

 Attachment points must result in moment arms appropriate for both flex/extension and 

ab/adduction. However, measurements for flex/extension and ab/adduction did not have equal 

reliability, reflected in different reported standard deviations that could reflect either 

measurement uncertainty or anatomical variability (An et al., 1979, 1983; Armstrong and 

Chaffin, 1998; Chao et al., 1989). Moreover, ab/adduction moment arm values depend on 

finger postures, i.e. flexion of MCP, PIP and DIP joints (Kamper et al., 2006). The specific 

postures used for measured ab/adduction moment arm values were not reported, contributing 

to uncertainty. Therefore, we did not consider both flex/extension and ab/adduction moment 

arm values as a same weight in the objective function. We did not have a criterion for assigning 

specific differential weightings for flex/extension and ab/adduction, so we used an inequality 

constraint (        ) to weight flex/extension and ab/adduction for the objective function. The 

inequality constraint resulted in punishment if the RMS error of ab/adduction moment arm 

during flex/extension (    ⃗  ) exceeded the bounds of the maximum standard deviation of 

experimental moment arms   . Specifically, min.    ⃗                ⃗  .    ⃗     if     ⃗      
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and    ⃗       if     ⃗       where       .    was 2.5 mm for extrinsic tendons and 1.7 mm 

for intrinsic muscles (An et al., 1983). Because extrinsic muscle ab/adduction moment arms had 

higher uncertainty than for intrinsic muscles, attachment points were less influenced by the 

ab/adduction moment arms for extrinsic muscles than for intrinsic muscles. 

 PIP and DIP joints are modeled to move only in flex/extension. Therefore, the inequality 

constraint for PIP and DIP joints favored attachments that optimized moment arms while 

maintaining tendon excursions within measured variance.    was therefore set to the measured 

standard deviation (0.72~3.97 mm) of tendon excursions (An et al., 1983; Armstrong and 

Chaffin, 1978; Chao et al., 1989).  

 The objective function for each individual muscle ( ) was computed for each set of 

parameters, then iterated by updating muscle attachment locations until an optimal set was 

found. We used a Simulated Annealing algorithm (Kirkpatrick et al., 1983) and Hooke-Jeeves 

algorithm (Kelley, 1999) for muscle path optimization because the former is suitable for discrete 

optimization in a global search space, and the latter is appropriate for smooth, unconstrained 

non-linear optimization without gradients. The Simulated Annealing algorithm used a cooling 

schedule with initial temperature of 1, and iterated until the average change in value of the 

objective function was less than 0.0001 and the maximum time limit was infinite. The maximum 

number of evaluations of the objective function was 18,000 (3,000 ×  6 variables). 

Sensitivity Analysis 

Optimizations in complex search spaces can be influenced by initial parameter selection 

(Ackland et al., 2012; Valero-Cuevas et al., 2003). Therefore, to test the robustness of the 

finger model response (   ) to input (   ), we performed sensitivity analysis for all attachments 
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(   ) by selecting starting points (   ) from 26 sets of random muscle attachments including the 

Holzbaur et al. (2005) OpenSim model attachments and An et al. (1979) tendon locations. 

Because the middle phalanx is ~25 mm (An et al., 1983), 26 increments can cover the length of 

the middle phalanx at 1 mm resolution. Consequently, 78,000 simulations (26 trials   3,000 

objective function evolutions) were performed for each muscle at each joint on a 3.00-GHz Intel 

Core2 Due with 3.25 GB of RAM.  

The sensitivity analyses showed that minimizing RMS error alone resulted in multiple 

possible muscle paths, some of which involved sharp changes to tendon direction (Figure 2). 

The potential for multiple muscle attachments and paths necessitated the selection of a single 

set of attachment points. We therefore assumed that the most smooth muscle path was the 

most anatomically reasonable. We calculated curvature from three successive attachments, i.e., 

origin, via and insertion points and identified the attachment set with the largest curvature at 

each joint. We selected the path with the largest curvature for analysis and presentation.  

Consequently, our procedure accomplished two objectives. The most important objective 

was to discover muscle attachment points that resulted in moment arms that matched 

experimentally-measured values in both flex/extension and ab/adduction. From the set of 

optimized attachment points, a single set of points was selected to satisfy the secondary 

objective of path smoothness. This two-step procedure ensured that the primary, functional 

objective of discovering the most experimentally-reasonable moment arms was not overly-

influenced by the assumption that smooth muscle paths were most anatomically reasonable. 

Polynomial Fitting 
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 Finally, we determined the order and parameters of polynomial fits that could be used 

as simplified descriptions of calculated moment arms. We used a polynomial fitting function to 

regress the coefficients of a polynomial of degree   that had the fit to simulated moment arms. 

We tested polynomials of less than fourth degree because polynomials of order greater than 

four can overfit to the data and even perform worse than polynomial regressions of lower 

orders (Kurse et al., 2012; Murray et al., 1995).  

 Optimizations and data analysis were implemented in Matlab using the OpenSim 

Application Programming Interface (API; OpenSim 2.0 Doxygen), to compute muscle moment 

arms. They were performed on a 3.00-GHz Intel Core2 Due with 3.25GB of RAM. 
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RESULTS 

Optimization Found Multiple Sets of Muscle Attachments  

The optimization procedure found multiple muscle attachments (Figure 1). For some 

muscles, attachment points were constrained to a narrow region. For example, the standard 

deviation for FDS at the MCP joint was 0.6 mm (Figure 1). For other muscles, attachment points 

could be located in a broad region. For example, the ES at the PIP joint had a standard 

deviation of 1.71 mm. Still other muscles exhibited distinct alternative attachment regions. For 

example, RI at the MCP joint showed two alternative attachment regions, resulting in a bimodal 

distribution and large standard deviation of 9.03 mm. Although multiple sets of muscle 

attachments were possible, the different muscle attachments resulted in consistent moment 

arm curves. Compared to each other, the average VAF among optimized curves was of 93.7% 

across all attachment sets and muscles.  

Optimized Moment Arms Matched Experimentally-Measured Values 

The smoothest muscle paths chosen to represent the most anatomically-reasonable set 

of muscle attachments had moment arms that matched experimental measurements and were 

representative of the set of optimized moment arms (Table 2; Figure 3 A, B). At the MCP joint, 

all modeled moment arms, including those from the smoothest path, lay within one standard 

deviation of experimental measurements (max. RMS = 2.4 mm < max. experimental SD = 2.5 

mm; An et al., 1983). For both flex/extension and ab/adduction motions, VAF between 

experimentally-measured values and smoothest-path modeled moment arms averaged 77.6% 

(flex/extension) and 81.0% (ab/adduction), and ranged from 48.1% to 99.5%. For most 
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muscles, the smoothest-path moment arms were within one standard deviation of the average 

calculated moment arms (Figure 3). For the EDC muscle in flex/extension, the smoothest-path 

moment arm differed from the average (VAF = 48.1%) but was closer to the experimentally-

measured moment arm (RMS error = 0.7 mm < experiment SD = 1.6 mm).  

At the PIP and DIP joints, only average moment arms have been reported. VAF between 

calculated and reported moment arms averaged 73.3% and 53.5% for PIP and DIP joints. 

Modeled moment arms from the smoothest path were located within one standard deviation of 

measured values (max. RMS = 0.78 mm < max. experimental SD = 2.2 mm; Figure 3).  

Calculated Moment Arms at the PIP and DIP Joints Were Not Constant 

Although experimental moment arms for the PIP and DIP joints were considered to be 

near constants (An et al., 1983), optimization did not discover constant moment arms for any 

muscle at the PIP and DIP joints. For example, at the PIP joint, experimentally-measured 

moment arms of extrinsic tendons were reported as:         ,          and          mm 

(An et al., 1983). 

Calculated moment arms were non-constant and non-linear functions dependent on joint 

angle (0≤q≤2.09 rad.; Figure 3). VAF of constants fitted to calculated moment arms averaged 

83.2% whereas fitting calculated moment arms with a linear function resulted in average VAF of 

93.1%, quadratic of 98.6% and cubic of 99.9%. Because quadratic fits were substantially 

(5.5%) better than linear fits, but had only 1.3% less VAF than cubic function, we considered 

quadratic functions to be the lowest-degree functions that adequately fit the moment arms. 

Quadratic functions for the PIP were:                        ,                    

     and                      . Similar reasoning led to fitted curves for intrinsic muscles 
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around the PIP joint of:                      ,                      , and muscles 

about the DIP joint of:                        and                      . 
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DISCUSSION 

The primary goal of this study was to use a data-driven optimization method to 

determine muscle-tendon paths for a musculoskeletal model of the index finger. Simulated 

Annealing and Hooke-Jeeves algorithms successfully found optimized muscle-tendon pathways, 

resulting in moment arms that matched experimentally-measured relationships. Optimization 

also suggested that moment arms at the PIP and DIP joints are primarily non-linear and non-

constant. 

Limitations 

Several limitations of our approach should be considered when evaluating these 

conclusions. First, we chose not to implement complex wrapping surfaces but represented 

tendon paths as linear connections between via points. To our knowledge, quantitative 

measurements of wrapping surfaces are not generally available for finger muscles. Although 

including wrapping surfaces into the optimization could potentially improve modeled moment 

arm fits, validating the wrapping surfaces would not have been possible. Second, we modeled 

muscle attachment sites as single points. Muscles attach to bones and tendons with contact 

areas of varying size. However, point contacts can be considered equivalent systems that 

replace distributed loads with a simplified representation (Hibbeler, 2013), and have been 

successfully used in several contexts (Garner et al., 1999; Murray et al., 2002). Hand specimens 

used for experimental measurements are variable in size, and none precisely match the 

hypothetical 50th percentile male of the OpenSim model. We tried to minimize potential errors 

by not only normalizing by middle phalanx length, but also by MCP thickness for flex/extension 

moment arms and MCP width for ab/adduction values. Consequently, our model’s 
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anthropometric dimensions lie within one standard deviation of the mean for experimental 

specimens (An et al., 1983; Table 1).  

Moment Arms Are Reasonable Approximations of Experimentally-measured Values 

Modeled moment arms fitted experimentally-measured values, lying within experimental 

standard deviation for joints where variances were available. These findings therefore support 

our hypothesis that data-driven optimization can be used to determine moment arms for 

musculoskeletal models.  

Multiple Attachments Produced the Same Moment Arm Values 

 Optimization found multiple attachment points (   ) that resulted in similar moment arms. 

These multiple attachment sets could be related to anatomical variability among individuals 

commonly observed in hand and finger muscle attachments. For example, lumbrical (LU) 

muscles show deviations in the origins and insertions (Basu et al., 1960; Wang et al., 2014). 

Single tendons of extensor pollicis longus (EPL) were observed in 67.4% of hands, whereas the 

duplicated ones were detected in 8.3% ~ 32.6% (Abdel-Hamid et al., 2013; Caetano et al. 

2004). Moment arm determines the change in musculotendon length and musculotendon 

velocity during joint movement (An et al., 1984; Delp and Loan 1995) and muscle contributions 

to joint stiffness (Hogan, 1990). Therefore, although function (i.e. moment arms) may be 

constrained, several anatomical configurations may be available to achieve equivalent function. 

Optimization based on functional objectives could therefore represent another strategy for the 

important goal of being able to adapt musculoskeletal models to individual differences (Arnold 

et al., 2000). 



25 

 

Modeled Moment Arms Are Non-linear and Non-constant 

 Experimentally-measured moment arms were reported to be nearly-constant values in 

flex/extension for muscles at PIP and DIP joints (An et al., 1983; Chao et al., 1989). Constant 

moment arms occur when the line connecting distal insertion points and proximal origin points 

is parallel to joint segments in a fully-extended posture.  Moment arms calculated using 

Landsmeer's model are constants. However, muscle attachment points are not anatomically 

parallel to phalanx bones (An et al., 1979, 1983; Zatsiorsky, 1998). Consequently, moment 

arms of other models vary as a function of joint angle (Wu et al. 2010). The approximation of 

constant moment arms could have resulted from the projection of muscle attachment locations 

in the Cartesian space (3D) onto the sagittal plane (2D) during experimental measurements. 

The moment arms discovered by optimization were non-constants that depended on joint angle 

at PIP and DIP joints. Non-linear (non-constant) moment arms are consistent with simulation 

(Wu et al., 2010), in vitro (Franko et al., 2011), and in vivo (Fowler et al., 2001) studies at the 

PIP and DIP joints. Moreover, moment arms at other hand joints are also non-linear curves (An 

et al., 1983; Brand et al., 1975; Burford et al., 2005; Franko et al., 2011; Ketchum et al., 1978; 

Kociolek et al., 2011). Our findings that quadratic functions provide reasonable expressions for 

moment arms are consistent with studies of flexor tendons of the hand, which can be expressed 

with quadratic fits (Franko et al. 2011). Although we found quadratic fits to be sufficient to 

represent the moment arms of index fingers, more sophisticated strategies may be necessary to 

describe musculotendon lengths and moment arms for time-limited computational models 

(Rankin and Neptune 2012).  

 In conclusion, using optimization resulted in three primary discoveries. First, moment 

arm values calculated from optimization solutions match experimental values, demonstrating 
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that data-driven optimization approaches can be used to generate musculoskeletal models while 

reducing subjective judgments or estimations. Second, multiple sets of muscles attachments 

with similar optimized moment arms are possible, consistent with the anatomical variability 

observed in human hands. Third, moment arms for muscles around the PIP and DIP joints are 

not constant, but can be modeled with quadratic functions consistent with other muscles. 

Including anatomical data for finger musculature into the OpenSim arm model will result in a 

more complete musculoskeletal model that can be useful in many areas, including quantitative 

analysis of internal loading during multi-touch and HCI tasks. 
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Table 1. Anthropometric finger dimensions of cadaveric specimens An (1983) and OpenSim 

model (mm). Symbol ( ) indicates standard deviation in interspecimen variation. Lengths of the 

phalanges in OpenSim model are calculated by the distance between the origins of two 

coordinate systems in 3 dimensional (3D) Cartesian space, e.g., the center of rotation at MCP 

and the center of rotation at PIP. Parentheses ( ) in OpenSim bony dimensions express 

difference between model dimension and specimen dimension. Skin surface set is scaled in 3D 

to preserve the anatomical proportions of Fowler et al. (2001), Greiner (1991) and Li et al. 

(2008). These skin surface set (external dimensions) function as upper boundary constraints 

during optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 Specimens 

bony 

dimensions 

OpenSim bony 

dimensions 

Skin surface 

scaled  

Distal phalanx length 

Middle phalanx 

length 

Proximal phalanx 

length 

19.67 1.03 

24.67 1.37 

43.57 0.98 

19.10 ( 0.57) 

25.10 ( 0.43) 

42.60 ( 0.97) 

30.65 

27.22 

50.86 

DIP joint thickness 

PIP joint thickness 

MCP joint thickness 

5.58 0.92 

7.57 0.45 

15.57 0.84 

4.95 ( 0.63) 

7.31 ( 0.26) 

17.08 ( 1.51) 

14.38 

18.86 

27.80 
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Table 3. Muscle-tendon locations (mm) in the index finger, expressed in OpenSim frame. The 

coordinate system of the OpenSim model is attached to metacarpal (secondmc), proximal 

(proxph2), middle (midph2) and distal (distph2) phalanges respectively. x, y and z components 

indicate radioulnar (+ points out, perpendicular to the palm plan), axial (+ points from distal to 

proximal side) and dorsolar (+ points up, from palm to hand side) respectively. x, y and z 

values represent smoothest muscle paths, and parentheses () values of x, y and z represent 

minimum root mean square (RMS) difference muscle paths. 

Joint Muscles x y z x y z 

MCP 

 proximal point (secondmc) distal point (proxph2) 

FDP 5.006 

(9.106) 

-16.539 

(-15.997) 

-3.605 

(-4.211) 

2.140 

(-0.341) 

-26.241 

(-19.695) 

4.272 

(-5.031) 

FDS 

 

RI 

 

LU 

 

UI 

 

EDC 

5.861 

(5.861) 

-8.032 

(-8.032) 

10.174 

(10.186) 

-3.323 

(-5.096) 

3.045 

(3.045) 

-13.773 

(-13.773) 

-16.511 

(-16.511) 

-26.472 

(-27.822) 

-29.390 

(-30.000) 

-29.509 

(-29.509) 

-0.659 

(-0.659) 

-12.322 

(-12.322) 

-0.014 

(-0.335) 

-0.124 

(-0.254) 

12.430 

(12.430) 

1.324 

(2.088) 

0.125 

(0.125) 

8.380 

(10.238) 

-4.312 

(-2.998) 

3.308 

(3.308) 

-20.959 

(-8.414) 

-9.033 

(-9.033) 

-8.291 

(-9.747) 

-15.931 

(-16.573) 

-7.107 

(-7.107) 

-1.646 

(-12.006) 

-4.359 

(-4.359) 

0.043 

(9.870) 

2.413 

(-8.133) 

11.640 

(11.640) 

PIP 

 proximal point (proxph2) distal point (midph2) 

FDP -1.841 

(1.512) 

-9.839 

(-36.501) 

-2.703 

(1.273) 

2.742 

(-3.071) 

-36.501 

(-9.839) 

1.273 

(-2.703) 

LU (RB) 13.631 

(14.994) 

-41.970 

(-39.924) 

8.282 

(8.360) 

-1.060 

(1.347) 

-8.963 

(-2.200) 

4.482 

(5.649) 

UI (UB) 2.740 

(-0.139) 

-38.531 

(-31.688) 

9.732 

(9.955) 

3.712 

(2.779) 

-9.020 

(-2.025) 

4.413 

(5.884) 

FDS 6.345 

(3.345) 

-36.775 

(-36.775) 

2.315 

(2.315) 

1.312 

(1.312) 

-9.041 

(-9.041) 

-3.399 

(-3.399) 

EDC 

(ES) 

6.342 

 (6.881) 

-24.241 

(-38.717) 

12.191 

(9.949) 

1.861 

(1.861) 

0.102  

(-0.096) 

5.414 

(5.414) 

DIP 

 proximal point (midph2) distal point (distph2) 

FDP 1.324 

(0.173) 

-20.959 

(-24.350) 

-1.646 

(3.054) 

1.564 

(1.564) 

-10.193 

(-10.193) 

-2.916 

(-2.916) 

TE 2.620 

(0.173) 

-8.070 

(-24.350) 

1.630 

(3.054) 

3.910 

(2.630) 

-16.534 

(-8.070) 

4.132 

(1.630) 
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FIGURE LEGENDS 

 

Figure 1. All muscle attachment points at the MCP, PIP and DIP joint. Red circles indicate 

proximal points, and blue squares indicate distal points.  

 

Figure 2. Musculoskeletal hand model. Sagittal and transverse view. Upper two pictures 

represent smoothest muscle paths, and lower two pictures represent most minimum RMS error 

muscle paths. The x-axis (flexion-extension) is projected radially for the left hand and ulnarly 

for the right hand: flex(+)/extension(-), the y-axis is projected along the phalangeal or the 

metacarpal shaft passing from the distal to proximal side: ulnar twist(+)/radial twist(-) and the 

z-axis (radioulnar) is projected dorsally: ab(+)/adduction(-). The coordinate system in the 

OpenSim model is right-handed using homogeneous transforms. 

 

Figure 3. Moment arms for smoothest muscle paths compared to experimental values. Solid 

lines represent average experimentally-measured (n=7) moment arms, with standard deviations 

indicated by error bars (An et al., 1983). Dotted lines represent modeled moment arms of the 

smoothest muscle paths. Grey bands represent one standard deviation above and below 

average modeled moment arms from all calculated sets of muscle attachments. Average 

calculated moment arms are in the center of the gray bands, but are not shown for clarity. 
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FIGURE 1  
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FIGURE 2 
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FIGURE 3 
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CHAPTER 3 

AN OBJECTIVE PROCEDURE CAN ESTIMATE ATTACHMENT LOCATIONS FOR HAND MUSCLES 

IN OPENSIM UPPER-EXTREMITY MODEL 

Abstract 

The purpose of this study was to develop objective, quantitative techniques to determine 

muscle attachment points for a musculoskeletal model, and to apply the techniques to 

determine muscle attachment points for a non-proprietary musculoskeletal model, the OpenSim 

upper extremity model. The OpenSim upper extremity model includes extensive data of 

shoulder and elbow musculature, but does not include intrinsic muscles for most fingers of the 

hand. Although muscle attachments have been measured for hand muscles, the model differs in 

size, joint kinematics and coordinate system from source specimens. Moment arms or tendon 

excursions can be used for some muscles, but experimental values are not available for all 

intrinsic hand muscles. Therefore, we proposed a method for scaling and translating muscle 

attachments from one experimental or model environment to another. Our method consists of 

two steps. First, we sought to estimate muscle function by calculating moment arm values for 

all intrinsic/extrinsic muscles using the partial velocity method. We validated the technique by 

comparing estimated moment arms to experimentally-measured relationships where available. 

Second, we used an optimization method to find new attachment locations that preserved 

muscle function within the new model environment. Simulated Annealing and Hooke-Jeeves 

algorithms were used to determine muscle-tendon paths that minimized the root mean square 

(RMS) differences between experimentally-derived and optimally-modeled moment arms. 

Application of this method resulted in variance accounted for (VAF) between modeled and 

measured values of 80.6% on average (range from 70.1% to 94.3%) for muscles where 
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measured moment arm data were available. Validation of both steps of the technique, allowed 

for estimation of muscle attachment points for intrinsic/extrinsic muscles whose moment arms 

have not been measured. The resulting non-proprietary musculoskeletal model of the human 

hand and arm will be useful for many applications, including estimating internal musculoskeletal 

loading, associated with using multi-touch devices.  
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INTRODUCTION  

Dexterous manipulation often involves complex movements of several fingers. For example, 

grasping or pinching can involve the coordinated activations of many hand muscles (Brochier et 

al., 2004). Movements similar to pinching and grasping are commonly employed by human-

computer interfaces (HCIs) such as smart phones and tablet computers. The “multi-touch” 

interfaces of these devices often require complex, multi-finger gestures or gesture sequences 

on the touch screen (Rekimoto, 2002; Rubine, 1991; Wu et al., 2003). However, we have little 

understanding of whether the cumulative effects of long-term exposures can lead to injuries 

such as musculoskeletal disorders (MSDs). One way to identify exposure to potentially 

damaging forces is to estimate muscle and tendon forces during repetitive activities. However, 

individual muscle tension or stress is difficult to measure in vivo (Dennerlein et al., 1998, 1999).  

Biomechanical models can help estimate internal musculoskeletal loading during movement 

(Cholewicki et al., 1994). Several biomechanical models of the arm or hand have been 

developed (An et al., 1979; Biggs and Horch, 1999; Brook et al., 1995; Li et al., 2008; Leijnse, 

1995; Holzbaur et al., 2007; Valero-Cuevas et al., 1998, 2003; Tsang et al., 2005; Albrecht et 

al., 2003). Models have helped identify the function of the intrinsic muscles (Spoor and 

Landsmeer, 1976; Leijnse, 1995), movement coordination of the interphalangeal joints (Lee and 

Rim, 1990; Buchner et al., 1988), muscle loading during grasping (Sancho-Bru et al., 2001, 

2003), and the dynamics of the index finger (Brook et al., 1995). However, existing models 

have four primary limitations. First, many models were developed with proprietary or 

commercial software, and are not generally available for use in new tasks. Second, many 

models are two-dimensional (2D), whereas arm movements are often three-dimensional (3D) 

space. Third, many models do not model the entire upper extremity, but instead focus on 
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specific joints or sets of joints. Finally, even models that include all of the major skeletal 

segments of the hand and arm do not currently include all of the muscles potentially involved in 

actuating complex motions. 

To address these concerns, we seek to use a non-proprietary, 3D musculoskeletal model of 

the hand and arm that includes the intrinsic finger muscles potentially necessary for the 

complex finger movements associated with HCIs. We therefore chose to focus on an existing 

upper extremity model (2.3.2, Simbios, Stanford, CA; Holzbaur et al., 2005) on the OpenSim 

platform, designed to be widely-accessible (Delp et al., 2007; Seth et al., 2011). The OpenSim 

upper-extremity model includes detailed models of muscles at the shoulder and elbow. However, 

not all muscles of the hand and fingers have been included. Therefore, our specific objective is 

to add intrinsic muscles for the fingers of the hand and to determine intrinsic/extrinsic muscles' 

origins and insertions. 

Muscle attachment points have been reported for both intrinsic and extrinsic muscles of the 

hand (An et al., 1979). However, published attachments cannot be directly used in the OpenSim 

model. Specimens used for experimental measurements were different from the 50th percentile 

male used for the OpenSim model in several respects, including differences in segment size, 

proportion, joint center location, axis of rotation and anatomical coordinate systems. Directly 

adding experimentally-measured muscle attachments to the OpenSim model results in very 

different moment arms than those experimentally-measured for the same muscles. Muscle 

moment arm is an important functional measure because it determines the joint torques that 

result from muscle forces. Therefore, to create a musculoskeletal model capable of evaluating 

muscle and limb function, it is necessary to determine sets of muscle attachments that result in 

moment arms that are representative of human subjects.  
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Several studies have measured moment arm in vivo (Lopes et al., 2011; Oh et al., 2007; 

Yoshii et al., 2009) and in situ (An et al., 1983; Armstrong and Chaffin, 1978; Brand et al., 1993; 

Chao et al., 1989; Franko et al., 2011). However, to our knowledge moment arms for the 

middle, ring and little fingers have not been reported. Moreover, even when moment arms are 

known, the specific muscle attachments are unknown and indeterminate: many potential 

muscle attachments can result in similar moment arms (Delp et al., 2007; Seth et al., 2011). 

Therefore, we sought to identify the muscle attachments for intrinsic/extrinsic hand muscles 

within the OpenSim arm model that resulted in the functionally important characteristic of 

matching experimentally-measured moment arms. Furthermore, we sought to develop an 

objective, data-driven procedure that can be employed to functionally transpose 

musculoskeletal models.  

Our procedure involved two steps. First, we aimed to determine muscle function (moment 

arms) from experimentally-measured tendon locations (An et al., 1979). We hypothesized that 

partial velocity calculation (Delp and Loan, 1995; Kane and Levinson, 1985) could reproduce 

anatomical moment arms from experimentally-measured muscle attachment points (An et al., 

1979). Successful prediction was considered to be calculated moment arms within one standard 

deviation ( ) of experimental measurements (      mm; An et al., 1983; Biggs and Horch, 

1999). Second, given this functional moment arm information, we aimed to identify muscle-

tendon paths via an optimization technique. We hypothesized that data-driven optimizations: 

Simulated Annealing (Kirkpatrick et al., 1983) and Hooke-Jeeves (Kelley, 1999) could find 

origins and insertions of intrinsic/extrinsic hand muscles, resulting in optimized moment arms 

that fit experimentally-derived relationships (An et al., 1979, 1983; Chao et al., 1989). 

Successful approximation was considered to be optimized moment arms within 10% of 
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experimentally-derived values (Arnold et al., 2000; Rankin et al., 2012). This procedure would 

not only result in objectively-determined muscle attachment points for intrinsic and extrinsic 

muscles of each finger, but would present an objective method for customizing musculoskeletal 

models.  
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MATERIALS AND METHODS 

We used an existing upper-extremity musculoskeletal model on the OpenSim platform 

(2.3.2, Simbios, Stanford, CA; Holzbaur et al. 2005). This model is composed of 33 segments 

and 15 degrees of freedom (DOFs) allowing shoulder, elbow, forearm, wrist, thumb and index 

finger movements in 3D. The existing model is actuated by 50 muscle compartments, including 

flexors and extensors of the index, middle, ring and little fingers. The rotational axes and 

centers for the thumb joints are based on measured values (Hollister et al., 1992, 1995), and 

those for the index finger joints are determined as the long axis of cylinders fit to the articular 

surfaces of the metacarpal and phalangeal bones. Hill-type muscle models are used (Schutte et 

al., 1993; Thelen et al, 2003; Zajac and Cottlieb, 1989).  

Musculoskeletal Model 

We appended custom joints to middle, ring and little fingers because only index finger and 

thumb have active joints in the existing model. Each finger was modeled to have four DOFs 

linking three successive phalanges: distal, middle and proximal to metacarpal bones. These four 

phalanges were linked with three joints: distal interphalangeal (DIP), proximal interphalangeal 

(PIP) and metacarpophalangeal (MCP). The DIP and PIP joints functioned in flex/extension like 

a hinge (1 DOF), while the MCP joint functioned flex/extension and ab/adduction like a 

universal joint (2 DOFs). To ensure the musculoskeletal model reflecting a physiological range 

of excursion, we considered the range of motion (RoM) of each joint based on experimental 

measurements (An et al., 1983; Chao et al., 1989). The DIP and PIP joints were modeled with a 

RoM of    to 5   (flexion: +) and     (flexion: +), respectively. The MCP joints also were 
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modeled with a RoM of    (extension: -) to     (flexion: +) as well as 0  (adduction: -) to 30  

(abduction: +).  

For all fingers, we modeled the following muscles: terminal extensor (TE), extensor slip (ES), 

radial band (RB), ulnar band (UB), dorsal interosseous or radial interosseous (RI), lumbricals 

(LU), palmar interosseous or ulnar interosseous (UI), flexor digitorum profundus (FDP), flexor 

digitorum superficialis (FDS) and extensor digitorum communis (EDC). Because data are not 

available on specific wrapping of these muscles, we removed the wrap object sets from all 

joints (Garner and Pandy, 2000). 

Reproducing Moment Arms from Experimentally-measured Attachments  

Because experimental moment arms are available only for the index finger, it was necessary 

to calculate their values from measured muscle attachment points for middle, ring and little 

fingers. We calculated moment arms from An et al. (1979)'s normative model tendon locations 

using the “partial velocity” method (Delp et al., 1995; Kane et al., 1985). The partial velocity 

method provides a consistent technique to compute the moment arms of muscles crossing all 

types of joints (Delp and Loan, 1995).  

Muscle Attachment Determination 

A data-driven optimization approach was used to identify muscle attachment sites that 

resulted in moment arms that most closely matched the experimentally derived relationships. 

Muscle attachments were expressed as distal and proximal points,       
       

       
     

  
    

   
    

   
    

  .  
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An objective function was defined as the root mean square (RMS) error between the 

experimentally-derived moment arms,     ⃗    and the modeled-estimate moment arms,  ̂   ⃗    ⃗  . 

The optimization searched for the minimum values of RMS error (     ) over the domain of 

attachment points (  ) and joint angle (  ) that satisfy both flex/extension and ab/adduction 

moment arm relationships (     ).  

Minimize        √∑
[    ⃗     ̂   ⃗       ]

 

 
 
        

Subject to            

                                   

Optimization parameters and variables were defined as below: 

   Muscle attachment points at the distal and proximal sides ( ⃗    ) 

 ⃗   Joint angle with a resolution ( ) of 100 increments (m) covering RoM  

    ⃗    Experimentally-derived moment arms 

 ̂   ⃗    ⃗  Modeled-estimate moment arms functioned of joint angle and muscle 

attachments 

  Joint motions such as flex/extension or ab/adduction 

  Individual muscles (    ) 

    A lower bound, bony segment (internal dimension) 

    An upper bound, hand skin surface (external dimension)  

   Maximum standard deviation of experimental moment arms 

      RMS moment arm error of ab/adduction during flexion/extension movements 
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The boundary constraints enforced that muscle attachments were between bony 

segments (as a lower bound,    ; Holzbaure et al., 2005) and hand skin surface (as an upper 

bound,    ; Alexander, 2010; Fowler et al., 2001; Greiner 1991; Li et al. 2008). 

Muscle-tendon paths must simultaneously satisfy moment arms for both flex/extension 

and ab/adduction at the MCP joint. However, measured ab/adduction moment arm values are 

less reliable than those for flex/extension. Ab/adduction moment arm values depend on finger 

postures, i.e., flexion of MCP, PIP and DIP joints (Kamper et al., 2006). However, the specific 

postures used for measured ab/adduction moment arm values were not reported. Ab/adduction 

moment arms also have substantially higher standard deviations than flex/extension, reflecting 

either measurement error or anatomical variability (An et al., 1979, 1983; Armstrong and 

Chaffin, 1998; Chao et al., 1989). Therefore, we did not consider it appropriate for both 

flex/extension and ab/adduction moment arm values to have the same weight in the objective 

function. We do not have an objective criterion for assigning specific differential weightings for 

bidirectional moment arms. Therefore, we chose an inequality constraint (        ) to encourage 

the discovery of solutions that maintain ab/adduction close to reported values, taking into 

account the measurement uncertainty. The inequality constraint resulted in punishment if the 

RMS error for a muscle's ab/adduction moment arm (    ⃗  ) exceeded the bounds of the 

maximum standard deviation of experimentally-measured ab/adduction moment arms   . For 

example, minimize (min.)    ⃗                ⃗  .    ⃗     if     ⃗      and    ⃗       if 

    ⃗       where       . Specifically,    was 2.5 mm for extrinsic tendons and 1.7 mm for 

intrinsic muscles. Because extrinsic muscle ab/adduction moment arms had higher uncertainty 

than for intrinsic muscles, attachment points were less influenced by the ab/adduction moment 

arms for extrinsic muscles than for intrinsic muscles. 
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Global Optimization 

 We used Simulated Annealing (Kirkpatrick et al., 1983) and Hooke-Jeeves algorithms 

(Kelley, 1999). These algorithms were suitable for discrete system that do not require the 

gradient ( ) of the problem to be optimized, e.g., objective function (   ⃗  ) did not have its 

partial derivatives with respect to muscle attachment points (  ) i.e.,     ⃗       ⃗     ⃗ . The 

Simulated Annealing algorithm was used with the following attributes: 1) the initial temperature 

was 1, 2) the algorithm iterated until the average change in value of the objective function was 

less than 0.0001, 3) the max. number of evaluations of the objective function was  3,000   6 

variables and 4) the max. time limit was infinite. 

Sensitivity Analysis 

 To determine how robust the optimization procedure was in finding attachments ( ⃗  ) 

despite potential variability in initial conditions ( ⃗  ), we performed optimizations using 26 

different points that included the Holzbauer et al. (2005) and An et al. (1979) attachment points, 

and 24 points selected to span the approximate, observed anthropometric variations (~5 mm; 

An et al., 1983). Sensitivity analysis was based on distribution sensitivity because determining 

starting points ( ⃗  ) was a discrete stochastic processes. Because the biggest phalanx is ~46 

mm on the simulation (Grein, 1991; Alexander et al., 2010), 26 increments (1 trial = 2 

mm/increment) can cover the length of biggest phalanx.  

 Preliminary experiments revealed that multiple sets of muscle attachments could yield 

similar moment arms that matched experimentally-measured values (Lee et al., 2014). The 

multiple solutions necessitated the selection of a criterion to select a single set of attachment 

points. We assumed the most smooth muscle path was most anatomically-reasonable. 
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Smoothness was determined as the largest curvature determined from three successive 

attachments, e.g., origin, via and insertion points.  

Consequently, our procedure accomplished three objectives. The most important 

objective was to generate model parameters (i.e., muscle attachments) that best represented 

muscle function. The primary aspect of muscle function that we focused on was muscle 

moment arms, because moment arms determine the joint torques and movements that result 

from muscle forces. Towards this end, we estimated moment arms based on published 

anatomical data using the partial velocity method. We then performed optimization to discover 

muscle attachment points in a different modeling environment (the non-proprietary OpenSim 

model) that resulted in moment arms that matched experimentally-measured values in both 

flex/extension and ab/adduction. From the set of optimized attachment points, a single set of 

points was selected to satisfy the secondary objective of path smoothness that was assumed to 

best represent anatomy.  

 Optimizations were implemented in Matlab (2010b, Mathworks, Natic, MA), using the 

OpenSim Application Programming Interface (API; OpenSim 2.0 Doxygen), to compute moment 

arms. Simulations were performed on a 3.00-GHz Intel Core2 Duo with 3.25 GB of RAM. 
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RESULTS 

 The partial velocity calculation reproduced experimentally-measured moment arm values 

from anatomical muscle attachment points (An et al., 1979). Data-driven optimizations found 

muscle-tendon paths resulting in moment arms that closely matched experimental moment 

arms deriving from anatomical attachments. 

Moment Arms Calculated From Muscle Attachments Fitted Experimentally-measured Values 

 To validate the partial velocity approach, we compared experimentally-measured 

moment arms of the index finger (An et al., 1983) with computationally-derived moment arms 

from anatomical muscle attachment points (An et al., 1979). Because experimentally-measured 

moment arms as a function of joint angle are only available for the MCP joint of the index finger, 

our analysis was limited to the index finger MCP joint.  

 Moment arms calculated using the partial velocity method fitted those measured at the 

MCP joint of the index finger (Figure 1; Table 1). Calculated moment arms derived from 

anatomical muscle attachments (An et al., 1979) lie within one standard deviation of moment 

arms measured by An et al. (1983). Variance accounted for (VAF) averaged 75.5% across all 

index finger muscles, ranging from min. 48.2% (UI) to max. 99.5% (FDS). VAF for the UI was 

low because of the small value for the moment arms of this muscle. However, RMS error for UI 

as within one standard deviation ( ) of experimental moment arms (RMS = 0.4 mm <   = 2.1 

mm) implying that the calculated moment arm is reasonable. VAF were 96.5% for extrinsic 

tendons and 58.7% for intrinsic muscles. Extrinsic tendons matched closer than intrinsic 

muscles. Standard deviations of extrinsic tendons were bigger than those of intrinsic muscles 
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(An et al., 1983). Overall, these results suggested that partial velocity approach is able to 

reproduce the moment arm values. 

Calculated Moment Arms Were Reasonable for All Intrinsic/Extrinsic Finger Muscles  

 Moment arms calculated for muscles where no direct measured moment arm data exist 

were reasonable. For example, all calculated moment arms had the same ordering of magnitude 

as the finger dimensions, i.e., moment arms for the middle finger largest, ring/index second 

and little smallest (Figure 2, 3, 4). Joint thickness or phalanx lengths influenced moment arms, 

e.g., moment arm magnitudes increased with phalanx lengths (An et al., 1983; Armstrong and 

Chaffin, 1978; Kocioleck et al., 2011). Greiner (1991) and Alexander (2010) reported 

proportions of hand segments, e.g., proximal phalanx length (mean   standard deviation; mm): 

middle (          ) > ring (          ) > index (39        ) > little (          ) finger. 

Therefore, partial velocity calculation predicted moment arm curves consistent with phalanx 

sizes. 

 Calculated moment arms were similar in shape and in trend (Figure 2, 3, 4). Moment 

arms varied with joint angle. Flexors were predicted to have increasing moment arms with 

flexion of the joint, extensors were predicted to have moment arms that increased with 

extension. Experimental data indicated that moment arms for extensors (EI/EC) decreased with 

flexion, while these for flexors (FDP/FDS) and intrinsic muscles (RI/UI/LU) increased with 

flexion for the index, middle, ring and little fingers (An et al., 1979, 1983; Biggs and Horch, 

1999; Chao 1989; Fowler et al., 2001; Franko et al., 2011). Moreover, many studies showed 

that moment arms varied with MCP joint angle (Armstrong and Chaffin, 1978; Kocioleck et al., 
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2011; Kurse et al., 2012; Landsmeer, 1961; Wu et al., 2010). Therefore, the partial velocity 

method predicted moment arm values agreeing in trend with the experimental data. 

Optimized Moment Arms Matched Calculated Values Derived from Anatomical Attachments  

 Model-optimized moment arms generally agreed with experimentally-derived values for 

index, middle, ring and little fingers at the MCP joint (Finger 5, 6, 7, 8). VAF averaged 75.5, 

80.7, 74.5 and 70.9% for index, middle, ring and little finger respectively (Table 1, 2, 3, 4). At 

the little finger (min. VAF = 70.9%), RMS error ranged from min. 0.1 mm (FDP) to max. 6.5 

mm (LU). Because measured moment arms for the little finger have not been reported, 

experimental standard deviations are not available. Max. RMS error (6.5 mm for LU) between 

optimized and experimentally-derived moment arm values differed with 66.0% error but within 

1.0% of peak experimentally-derived value (An et al., 1979). Because LU experimental moment 

arm value was small (3 mm), error was big (66.0%): error = 

                       
          ⁄ .  

Model-optimized moment arm curves for all muscles (i.e., FDP, FDS, RI, LU, UI and EDC) 

were continuous and nonlinear in response to the MCP flexion/extension movements, while they 

were linear in accordance with ab/adduction motions. A polynomial fitting function (polyfit, 

Matlab 2010b) was used to classify into linear (    ; two degree) and nonlinear (        ; 

three degree). For example, we considered nonlinear function if moment arms were fitted to a 

polynomial of degree three with VAF over 99%, or linear function if they were fitted to a 

polynomial of degree two with VAF over 99%. 
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 For the PIP joints, model-optimized moment arms reasonably matched experimentally-

derived data. VAF averaged 75.1, 73.7, 85.7 and 95.8% for index, middle, ring and little finger 

respectively. At the middle finger (min. VAF = 73.7%), RMS error ranged from min. 0.3 mm 

(FDP) to max. 2.6 mm (ES). Max. difference (RMS error =2.6 mm for ES) was 26.4%  of 

experimentally-derived moment arm value (An et al., 1979). Because ES moment arm averaged 

-0.25 mm over RoM, error was bigger than 10.0%. Overall errors of all PIP joints were within 

10.0% of experimentally-derived moment arm values (An et al., 1979). 

 For the DIP joints, model-optimized moment arms reasonably fitted experimentally-

derived values. VAF averaged 78.5, 78.5, 84.2 and 90.8% across all muscles for index, middle, 

ring and little finger respectively. At the index finger (min. VAF=78.5%), RMS error ranged from 

min. 0.5 mm (FDP) to max. 0.8 mm (TE). Because experimentally-derived moment arm of TE 

was close to zero, its error was big (76.8% of experimental value).  

 

 

 

 

 

 

 

 

 

 

 



55 

 

DISCUSSION 

 The primary goal of this study was to develop an objective, quantitative method for 

transforming experimentally-measured muscle attachments to a 3D musculoskeletal model 

while faithfully modeling muscle function. The method we developed involved 1) deriving 

moment arm curves from experimentally-measured muscle attachments, and 2) using a data-

driven optimization to identify muscle-tendon paths in the 3D musculoskeletal model. Muscle 

moment arms are important functional targets because they relate muscle forces to joint 

moments (Murray et al., 1995). We used the method to estimate moment arms and muscle 

attachments of middle, ring and little fingers in an OpenSim arm model. Moment arms 

calculated from muscle attachments were validated by comparison to available experimental 

measurements. 

Limitations 

Our approach had several limitations. First, we did not model muscle-wrapping. Muscle-

wrapping, potentially over multiple surfaces, can result in high accurate muscle paths (Starness 

et al., 2012). However, to our knowledge quantitative, experimental data for wrapping surfaces 

are not available. Therefore, muscles were connected to single points at each joint, consistent 

with published data (An et al., 1979). Second, compiling data drawn from different reference 

frame and sources into a common model could introduce errors. We attempted to mitigate 

these potential sources of error by not only normalizing by middle phalanx length for 

flex/extension moment arms at the PIP and DIP joints, but also normalizing by MCP thickness 

for flex/extension moment arms and MCP width for ab/adduction values. Our model's 
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anthropometric dimensions lie within one standard deviation of the mean for experimental 

specimens (Table 5).  

Calculated Moment Arms Derived from Anatomic Attachments are Reasonable Approximations 

of Experimentally-measured Values of the Index Finger. 

 This study tested whether the partial velocity method could calculate moment arm 

curves from anatomically-measured muscle origins and insertions that matched experimentally-

measured moment arms. Calculated moment arms, derived from muscle attachment locations 

of An et al. (1979) agreed with experimental values measured by An et al. (1983). For most 

muscle, RMS errors were substantially less than the experimental standard deviation for MCP 

joint. The partial velocity method may provide a consistent technique to compute the moment 

arms of muscles crossing many types of joints. The same algorithm could potentially be used to 

calculate the moment arm of muscles about the knee, hip, elbow and shoulder, even though 

the mechanics of these joints differ considerably (Delp and Loan, 1995).  

Optimization Found Muscle Attachments That Maintained Muscle Function 

 We hypothesized that objective techniques, Simulated Annealing and Hook-Jeeves 

optimization, could find muscle attachments that resulted in accurate muscle function. 

Optimized moment arms matched experimentally-derived values within 10% error of 

experimental values (RMS errors = 0.07~6.88 mm) supporting the hypothesis. Although 

previous studies have compared moment arms with experimental data, similarity is often not 

quantitatively assessed (Wu et al., 2010; Biggs and Horch 1999). The optimization technique 
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allows for modeling of both intrinsic and extrinsic muscles for index, middle, ring, and little 

fingers 

This procedure helps translate data from one musculoskeletal model to another 

This procedure, deriving moment arm values from anatomical attachments and using a 

data-driven optimization to identify muscle-tendon paths, is capable of helping translate data 

from one musculoskeletal model to another. Scaling is typically performed based on body 

segment lengths or limb circumferences. For example, An et al. (1979) scaled hand muscle 

attachment measured in 10 hand specimens by normalizing middle phalanx length. An et al. 

(1981) scaled elbow muscle moment arms by the cross-sectional area of the dissected forearm. 

Murray et al. (2002) scaled peak moment arms of elbow muscles with the shorter distance 

between the elbow flexion axis and a muscle’s origin and insertion. However, previous 

approaches have limitations to apply for hand muscles. Intrinsic hand muscles have not 

reported yet, moment arms at PIP and DIP joints reported not continuous values but average 

constant values (An et al., 1983), and to represent endpoint forces we need accurate axes of 

rotation but do not have their orientations (Wohlman et al., 2013). To translate functional and 

anatomical data, previous studies need continuous moment arm values, muscle attachment 

points and coordinate system including Euler angle describing the orientation of segments and 

the axes of rotation. Our approach enables anatomical data to be translated to another 

musculoskeletal model without measured data: moment arm curves and joint kinematics.  

 In conclusion, partial velocity method successfully derived moment arms from anatomic 

muscle/tendon attachments measured by An et al. (1979), and our data-driven optimizations 

discovered muscle-tendon paths for the highly accurate musculoskeletal model of the human 
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hand that resulted in moment arms that fitted experimental values estimated from anatomic 

muscle/tendon locations. Moment arms derived anatomic muscle attachments were non-

constants that changed with angle in a non-linear fashion. This complete musculoskeletal model 

of the hand can be dedicated to more accurate analysis of internal musculoskeletal loading 

during multi-touch tasks involving many fingers, and use the simulation to better understand 

complex multi-touch and gestural movements, and potentially guide the design of technologies 

that reduce injury risk.   
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Table 5. Anthropometric index finger dimensions of cadaveric specimens An (1983) and 

OpenSim model (mm). Symbol ( ) indicates standard deviation in interspecimen variation. 

Lengths of the phalanges in OpenSim model are calculated by the distance between the origins 

of two coordinate systems in three-dimensional (3D) Cartesian space, e.g., the center of 

rotation at MCP and the center of rotation at PIP. Parentheses ( ) in OpenSim bony dimensions 

express difference between model dimension and specimen dimension. Skin surface set is 

scaled in three-dimensions to preserve the anatomical proportions of Fowler et al. (2001), 

Greiner (1991) and Li et al. (2008). These skin surface (external dimensions) function as upper 

boundary constraints during optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Specimens bony 

dimensions 

OpenSim bony 

dimensions 

Skin 

surface 

scaled  

Distal phalanx length 

Middle phalanx 

length 

Proximal phalanx 

length 

19.67 1.03 

24.67 0.98 

43.57 0.98 

19.10 ( 0.57) 

25.10 ( 0.43) 

42.60 ( 0.97) 

30.65 

27.22 

50.86 

DIP joint thickness 

PIP joint thickness 

MCP joint thickness 

5.58 0.92 

7.57 0.45 

15.57 0.84 

4.95 ( 0.63) 

7.31 ( 0.26) 

17.08 ( 1.51) 

14.38 

18.86 

27.80 
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Table 6. Index finger muscle-tendon locations, expressed in OpenSim frame (mm). The 

coordinate system of the OpenSim model is attached to metacarpal (secondmc), proximal 

(proxph2), middle (midph2) and distal (distph2) phalanges. x, y and z components indicate 

radioulnar (+ points out, perpendicular to the palm plan), axial (+ points from distal to proximal 

side) and dorsolar (+ points up, from palm to hand side) respectively. 

Joint Muscles x y z x y z 

MCP2 

 proximal point (secondmc)  distal point (proxph2)  

FDP 5.006 -16.539 -3.605 2.144 -26.237 -4.267 

FDS 

RI 

LU 

UI 

EDC 

5.861 

9.556 

10.174 

-3.323 

3.045 

-13.773 

-19.964 

-26.472 

-29.390 

-29.509 

-0.659 

-4.924 

-0.014 

-0.124 

12.430 

2.088 

8.517 

8.380 

-4.312 

3.308 

-8.414 

-7.082 

-8.291 

-15.931 

-7.107 

-12.006 

0.193 

0.043 

2.413 

11.640 

PIP2 

 proximal point (proxph2)  distal point (midph2) 

FDP 2.742 -36.501 1.273 -1.841 -9.839 -2.703 

LU (RB) 13.074 -33.051 11.192 2.001 -6.120 4.701 

UI (UB) 1.053 -35.973 7.612 2.921 -7.730 4.621 

FDS 6.345 -36.775 2.315 1.312 -9.041 -3.399 

EDC (ES) 6.342 -24.241 12.191 1.861 -0.102 5.414 

DIP2 

 proximal point (midph2) distal point (distph2) 

TE 3.910 -16.534 4.132 2.620 -8.070 1.630 

FDP 1.324 -20.959 -1.646 1.564 -10.193 -2.916 
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Table 7. Middle finger muscle-tendon locations, expressed in OpenSim frame (mm).  

Joint Muscles x y z x y z 

MCP3 

 proximal point (thirdmc)  distal point (proxph3)  

FDP -0.973 -8.368  -6.185 1.545 -15.019 -7.646 

FDS 

RI 

LU 

UI 

EDC 

2.236 

9.094 

10.252 

-6.721 

0.858 

-10.874 

-4.311 

-23.168 

-24.631 

-35.104 

-13.446 

1.481 

-0.825 

-2.008 

14.174 

2.437 

7.988 

6.840 

-6.164 

1.738 

-19.191 

-2.016 

-21.962 

-23.125 

-14.787 

-8.006 

-8.019 

7.261 

8.369 

7.915 

PIP3 

 proximal point (proxph3)  distal point (midph3) 

FDP -0.746 -37.000 2.350 -3.638 -6.369 -7.129 

LU (RB) 3.002 -39.747 10.070 2.511 -5.104 6.554 

UI (UB) -0.400 -39.940 10.535 -1.100 -9.913 7.009 

FDS 2.551 -39.274 0.581 0.532 -12.210 -1.923 

EDC (ES) -2.116 -36.999 2.917 1.994 -14.148 11.986 

DIP3 

 proximal point (midph3) distal point (distph3) 

TE 0.735 -20.531 7.520 1.865 -11.051 3.480 

FDP -1.000 -19.568 -0.998 0.122 -13.402 -1.352 
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Table 8. Ring finger muscle-tendon locations, expressed in OpenSim frame (mm).  

Joint Muscles x y z x y z 

MCP4 

 proximal point (fourthmc)  distal point (proxph4)  

FDP -0.470 -10.548 -8.319 1.794 -19.902 -4.000 

FDS 

RI 

LU 

UI 

EDC 

-0.541 

7.876 

6.012 

-5.096 

-1.264 

-10.446 

-14.419 

-5.433 

-22.187 

-19.347 

-8.941 

0.313 

-6.720 

-4.160 

8.177 

1.925 

3.129 

4.941 

2.998 

-0.480 

-19.967 

-24.336 

-10.520 

-16.573 

-9.395 

-4.937 

0.110 

5.294 

-7.492 

14.182 

PIP4 

 proximal point (proxph4)  distal point (midph4) 

FDP -2.926 -33.255 -5.816 1.178 -8.730 -6.849 

LU (RB) 1.711 -30.448 5.939 0.466 -4.916 4.801 

UI (UB) -8.570 -40.061 4.472 -2.204 -6.159 2.273 

FDS 1.143 -33.076 -6.319 -0.875 -14.713 -2.067 

EDC (ES) -4.742 -42.431 8.620 1.822 -14.258 9.945 

DIP4 

 proximal point (midph4) distal point (distph4) 

TE -4.150 -22.180 5.650 -1.950 -7.800 2.750 

FDP -1.921 -18.052 -3.237 0.180 -13.954 -2.164 
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Table 9. Little finger muscle-tendon locations, expressed in OpenSim frame (mm).  

Joint Muscles x y z x y z 

MCP5 

 proximal point (fifthmc)  distal point (proxph5)  

FDP 2.607 -0.022 -3.540 -0.005 -14.639 -5.003 

FDS 

RI 

LU 

UI 

EDC 

4.451 

9.017 

8.512 

0.512 

-0.044 

-0.952 

-16.218 

-0.091 

7.871 

-18.404 

-4.962 

-4.985 

-0.923 

-2.212 

5.227 

1.823 

8.052 

6.690 

-9.492 

-2.683 

-14.312 

-37.892 

-18.142 

-11.443 

-19.037 

-5.462 

0.202 

0.471 

0.712 

4.025 

PIP5 

 proximal point (proxph5)  distal point (midph5) 

FDP -3.06 -25.941 -9.280 0.095 -8.958 -6.143 

LU (RB) -4.944 -33.359 0.265 -3.059 -8.338 4.124 

UI (UB) -8.452 -34.267 -1.186 -6.429 -8.501 4.996 

FDS 1.103 -26.254 -12.262 1.109 -18.248 -4.588 

EDC (ES) -7.601 -34.002 1.304 -3.234 -10.233 2.193 

DIP5 

 proximal point (midph5) distal point (distph5) 

TE -3.603 -19.040 0.220 -2.071 -7.242 0.210 

FDP -2.355 -15.238 -4.663 -0.028 -13.925 -4.752 
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Figure 1. Measured and derived moment arms (mm) with flexion (+)/ extension (-) at the MCP 

joint of the index finger. Dotted moment arm values are derived from experimental muscle 

attachments (An et al., 1979), and solid moment arm values are those directly-measured by An 

et al., 1983 (n=7 specimens with mean and standard deviation (error bar)). Positive values 

indicate flexion moment arms, negative values indicate extension moment arms, and 0° flexion 

is full extension.  
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Figure 2. Moment arms (mm) with flexion (+)/ extension (-) at the MCP joint of the all fingers. 

Dotted moment arm values are derived from experimentally-measured muscle attachments (An 

et al., 1979), and solid moment arm values are those directly measured by An et al., 1983 (n=7 

specimens with mean and standard deviation). Positive values indicate flexion moment arms, 

negative values indicate extension moment arms, and 0° flexion is full extension.  
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Figure 3. Moment arms (mm) with adduction (+)/ abduction (-) at the MCP joint of the all 

fingers  
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Figure 4. Moment arms (mm) with flexion (+)/ extension (-) at the PIP and DIP joint of the all 

fingers  
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Figure 5. Index finger moment arm values (in millimeters). Solid moment arms are calculated 

values using partial velocity method, and dotted moment arms are optimized values using a 

data-driven method. Positive values indicate flexion moment arms, negative values indicate 

extension moment arms, and 0° flexion is full extension.  
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Figure 6. Middle finger moment arm values (mm). 
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Figure 7. Ring finger moment arm values (mm). 
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Figure 8. Little finger moment arm values (mm). 
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CHAPTER 4 

ANALYSIS OF INDEX FINGER MUSCLE ACTIVITY DURING TWO FINGER 

GESTURES ON A TABLET COMPUTER  

Abstract 

Predicting neuromuscular activations during multi-touch interacting with a tablet computer is 

still challenging questions. Estimates of musculoskeletal loading, i.e., joint torque, muscle force 

and activity help understand the cumulative effects of long-term exposures that can lead to 

injuries. The objective of this study was to compare joint torque, muscle force and activity of 

the index finger during gestural tasks: zoom in & out, and rotate left & right on the tablet 

computer. We hypothesized that zooming motion could arouse greater extrinsic muscle 

activations, whereas rotating motion could arouse greater intrinsic muscle activations because 

extrinsic muscles control crude movements along with the sagittal (vertical) plane, while 

intrinsic muscles are responsible for the fine motor functions on the transverse (horizontal) 

plane.  A three-dimensional musculoskeletal model of the upper extremity was used to calculate 

intrinsic/extrinsic muscle force and activity of twelve subjects while they performed two finger 

gestures: thumb and index finger for zooming and rotating with interacting multi-touch tablet 

technology. On the OpenSim platform, we used Computed Muscle Control (CMC) to evaluate a 

set of muscle excitations (or, more generally, actuator controls) that drive a dynamic 

musculoskeletal model to track a set of subjects desired kinematics in the presence of two 

finger gestures. We observed that extrinsic muscle activations of zoom in & out were higher 

than those of rotate left & right, and intrinsic muscle activations were higher than extrinsic ones 

for rotate left & right. This study suggests that gestural tablet interaction can alter muscle 

activation: intrinsic muscles get more involved in rotate gestures on the tablet. 
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INTRODUCTION 

With the advent of multi-touch technology, we often use handheld devices such as 

tablets and smart phones in our daily life. There is no hardware keyboard or mouse. Instead, 

we communicate with these devices through some hand gestures, e.g., tapping, scrolling, 

panning, rotating and zooming (Wang et al., 2012). Technology has tried to provide a concise 

set of touch interactions that are used throughout a touch-screen surface. During interactions 

with multi-touch devices, people often touch with more than one finger as an input device 

(Develop Center – Windows, 2014). Although many researchers constantly strive for successful 

user inputs, interaction with these handheld devices controlled by fingers and thumb has little 

understood. 

Gestural interface, i.e., particularly zoom in & out and rotate left & right on the tablet, is 

a significant part of handheld devices. While these zoom and rotation tasks, the index finger 

and thumb are involved with various postures, finger forces and muscle activities. Long-term 

and repetitive exposures to these conditions, e.g., awkward postures, finger forces and muscle 

activities may lead to musculoskeletal disorders (MSDs; Gerr et al., 2002). To avoid causing 

these side effects, several studies were performed to improve the ergonomic design of 

keyboard and determine optimal upper limb posture.   

Experimental studies have explored the effect of computer keyboard keyswitch design 

on force-travel curves, keyswitch design guidelines, biomechanical outcomes, single keyswitch 

tapping, tactile and auditory feedback and motor control strategies. Typing on keyboards with 

higher activation forces (or make force) were associated with larger typing forces (Armstrong et 

al., 1994; Gerard et al., 1999; Rempel et al., 1997), hand and forearm muscle activities (Gerard 

et al., 1999; Rempel et al., 1997), muscle fatigue (Gerard et al., 1996; Radwin and Ruffalo, 
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1999), and a greater risk of hand/arm musculoskeletal symptoms and disorders for keyboards 

with key activation forces greater than 0.47N (Marcus et al., 2002). Key travel (or displacement) 

also affects applied fingertip force in that longer key travel designs are associated with smaller 

applied key forces (Radwin and Jeng, 1997; Radwin and Ruffalo, 1999). However, these studies 

have been limited to generalize the effect on tablet computers; the force-displacement 

characteristics are greatly different between each physical keyboard and touch screen that 

many are now using.  

Electromyography (EMG) studies are used to evaluate muscle activity because 

measuring exact muscle force and excitation during performing tasks is not currently possible 

(Zajac and Gordon, 1989). For example, Gerard et al. (1999) have examined EMG activity to 

access the effects of typing force and keypad stiffness on musculoskeletal disorders (MSDs). 

Woods and Babski-Reeves (2005) analyzed the EMG of the hand-arm to identify the effects of 

posture on MSDs. The relationships among tendon force, contact force at the fingertip, and 

finger posture have been studied by using a force transduces mounted directly onto the flexor 

digitorum superficialis (FDS) and flexor digitorum profundus (FDP) tendons of the fingers 

(Schuind et al., 1992; Dennerlein et al., 1999; Kursa et al., 2005). Dennerlein et al. (1998) 

compared the experimentally measured tendon force with that calculated using an inverse 

dynamic approach and found that the measured tendon force is consistently greater than that 

predicted by the model with the muscle in an isometric contraction. The dynamic force 

distribution in the finger muscles during multi-touch gestures has not been investigated either 

experimentally or theoretically (Wu et al., 2008). 

Although previous researches have contributed to reveal important information, we are 

still facing a lack of knowledge concerning the mechanisms of pathologic conditions associated 
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with multi-touch interactions. For example, how the fingers’ muscle forces coordinate flexor 

muscles including both extrinsic and intrinsic muscles on the touch screen surface because it is 

not required to high forces (over 350 N) such as power grip (Monsabert et al., 2012; Vigouroux 

et al., 2011). Why extensor muscles are highly activated during power grip task; it is not 

extension but flexion task (Monsabert et al., 2012). Then, how about multi-touch tasks on the 

tablet? The activation of extensor as well as flexor muscles for the multi-touch tasks should be 

studied.  

However, conducting experiments: joint torque, hand muscle tension, and muscle 

excitation pattern on the tablet is confronted with two major challenges. First, the 

measurements of the external forces exerted at the fingertip on the tablet are experimentally 

difficult because on-screen keys are activated even if fingers slightly contact or swipe a button 

on the screen (Lai et al., 2012; OSK-Windows, 2014). Second, the repartition of internal muscle 

tension and joint torque from external force is extremely challenging because direct 

measurement of hand joint forces in vivo is ethically infeasible (Zajac and Gordon, 1989). 

Individual muscle forces evaluated from experimental motions analysis may be useful in 

mathematical simulation, but require additional musculoskeletal and mathematical modeling 

(Blazkiewicz, 2013). 

We therefore use OpenSim, an open access software package enabling to model 

musculoskeletal structures and dynamic simulation of movement (2.3.2, Simbios, Stanford, CA; 

Delp et al., 2007; Holzbaur et al., 2005; Seth et al., 2011). The developed optimization method 

calculates optimal forces during multi-touch tasks, given a specific performance criterion, using 

kinematics and kinetics from multi-touch analysis together with muscle architectural data 

(Blazkiewicz 2013). Because multi-touch and gestural movements involve not only the fingers, 
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but also the entire kinematic chain of the hand and arm, we chose to build upon ax existing 

upper extremity model (Holzbaur et al., 2005). 

The purpose of this study was to compare muscle activity during zooming and rotating 

tasks on the tablet computer in twelve subjects. We hypothesized that extrinsic muscle 

activations for zooming tasks would be higher than intrinsic muscle activations for them, while 

intrinsic muscle activations for rotating tasks would be higher than extrinsic muscle activations 

for them. This is possibly because extrinsic muscles act as primary mover along with 

flex/extension movements, and intrinsic muscles act as stabilizer along with ab/adduction 

movements (Chao et al., 1976; Clavero et al., 2003; Darling et al., 1994; Long et al., 1970). 

Specifically, we conducted a series of two finger gestures experiments to test these hypotheses 

and estimated dynamic joint torques, muscle tensions and activations using the OpenSim model. 

All measurements and calculations were performed in the 27 DOFs (shoulder, elbow, wrist and 

multi-digit of the hand) in 3D Cartesian space. Our results show how intrinsic/extrinsic hand 

muscles involve in neuromuscular activation to generate finger gestures on the tablet computer. 

This study could provide a better understanding of hand muscle activity and its connection to 

finger and thumb movements on the handheld environments. 
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MATERIALS AND METHODS 

Twelve healthy volunteers (6 males and 6 females, ages 20-30) participated in the 

experiments. All subjects were right-handed and free of upper extremity musculoskeletal 

disorders (MSDs). They have experience of a tablet computer with mean self-estimated usage 

times more than 40 hours per a week, which eliminated gesture/interaction familiarization time. 

The consent forms and procedures were approved by the Institutional Review Board of Arizona 

State University and were in accordance with the declaration of Helsinki.  

Experimental procedure 

Subjects repeated two-finger right-handed gestures on an iPad for 20 second (s) trials, 

while the right arm was not supported. The two-finger (thumb and index) gestures were: 

rotating to the right and left, zooming in and out. All gestures were performed on 2 contextual 

scenarios (non-contextual, when device was off; contextual, when device was on and subjects 

interacted with the Google Earth Globe) and 2 device position (exocentric, fixed at     in front 

of the subject while non-dominant hand was resting on the side; egocentric, held by the subject 

with non-supported non-dominant hand). Subjects were instructed on perform gestures on the 

center of the device, while looking at it and as if it was on.  Each condition was presented 3 

times for a total of 48 trials (4 gestures   2 contexts   2 device conditions   3 replicates). The 

order of the gestures was randomized within set and the order of the device conditions 

(contextual/device position) among participants were presented in a complete counterbalance 

for immediate sequential effects order. We included rests between trials (20s), set of trials (5 

min.) and changes of device conditions (at least 5 min.) to minimize mental/physical fatigue. 
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Data acquisitions 

A wireless CyberGlove (CyberGlove  , CyberGlove Systems LLC, San Jose, CA) was used 

for collecting joint angles of the all joint: metacarpohpalangeal (MCP), proximal interphalangeal 

(PIP) and distal interphalangeal (DIP) joints of the index finger, and carpometacarpal (CMC), 

metacarpophalangeal (MCP), and interphalangeal (IP) of the thumb. These joint angles were 

transformed to describe the index finger and thumb movements for Computed Muscle Control 

estimation on the OpenSim platform. Continuous recordings of finger motions for each 

experimental trial included: 5s of rest followed by 20 s of the gesture repetition.  

Musculoskeletal model of the upper extremity  

The Holzbaur et al. (2005) upper extremity model and Lee et al. (2014) hand model were used 

on the OpenSim (2.3.2, Simbios, Stanford, CA) platform because many muscles of the upper 

extremity crossed over multiple finger joints. This model incorporated 33 segments and 11 

joints which enabled shoulder, elbow, forearm, wrist, thumb and index finger to movements in 

3 dimensional (3D) Cartesian spaces. It had 15 DOFs and was actuated by 37 muscle 

compartments. We added intrinsic muscle on the index finger and ensured intrinsic and 

extrinsic hand muscles resulted in moment arm values to be matched with experimental data 

(Lee et al., 2014 in progress). We added mass properties and segment inertia values based on 

the full body model and publications (Bundhoo et al., 2005; Hamner et al., 2010; Kuo et al., 

2006; Lee and Yoon, 2014; Leva, 1996; Saul et al., 2014; Wu et al., 2008). We used The Scale 

Tool on OpenSim to alter the anthropometry of a model so that it matches a particular subject 

as closely as possible. Scaling is performed based on a comparison of experimental kinematic 

data with virtual makers placed on a upper extremity model. 
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Hill type muscle model and parameters 

Hill-type musculotendon model (Zajac, 1989; Winters, 1990) was implemented in 

OpenSim model. The force producing properties of muscle are complex, highly nonlinear and 

can have substantial effects on movement (McMaho, 1984). So, Hill type muscle model, 

lumped-parameter dimensionless muscle model capable of representing a range of muscles with 

different architectures, is commonly used in the dynamics simulation of movement (Zajac, 

1989). The magnitude of the muscle force depends on its activation level and its force-

generation properties: passive and active force–length, series elasticity, force–activation, force–

velocity, maximum isometric muscle force, optimal muscle fiber length, tendon slack length and 

pennation angle. We adapted these physiological parameters from Holzbaure et al., (2005), Hu 

et al., (2011), Wu et al. (2008). 

The maximum isometric muscle force is considered to proportional to the physiologic 

cross-section area (PCSA), i.e.,             with           (Epstein and Herzog, 1998). 

The PCSA and the optimal fiber length of the muscles are adopted from the experimental data 

reported by Brand and Hollister (1999) and the pennation angle of the muscles is taken from 

the experimental data by Lieber et al. (1990, 1992), Jacobson et al. (1992) and Wang et al. 

(2014) (Table 1). A tendon slack length was calculated from musculotendon excursion (Garner 

and Pandy, 2003; Vilimek, 2005). The ratio of fast to slow muscle fibers is considered to be 1:4 

for all muscles (We et al., 2008). 

Computed muscle control 
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Computed Muscle Control (CMC) tool on the OpenSim was used to compute a set of 

muscle excitations that drive a dynamic musculoskeletal model to track a set of desired 

kinematics measured from CyberGlove. CMC tool combined proportional-derivative (PD) control 

and static optimization (Thelen et al., 2006). For stable fingertip control (critically damped 

fashion: no over-shooting or over-damping), the velocity gains were selected using the 

following relation:  ⃗    √ ⃗  , where   ⃗      and   ⃗      . Static optimization performed on 

distributing the load across synergistic muscle excitations. 

The activation dynamics of muscle was modeled with a first-order differential equation. 

This equation relates the rate of change of muscle activation (i.e., the concentration of calcium 

ions within the muscle) to the muscle excitation (i.e., the firing of motor units):   
  ⁄  

   
      ⁄ . Where u and a are the excitation and activation signals, respectively. In the 

model, activation is allowed to vary continuously between 0 (no contraction) and 1 (full 

contraction). In the body, the activation of a muscle is a function of the number of motor units 

recruited and the firing frequency of these motor units. Some models of excitation–contraction 

coupling distinguish these two control mechanisms (Hatze, 1976), but it is often not 

computationally feasible to use such models when conducting complex dynamic simulations. In 

a simulation, the muscle excitation signal is assumed to represent the net effect of both motor 

neuron recruitment and firing frequency. Like muscle activation, the excitation signal is also 

allowed to vary continuously between 0 (no excitation) and 1 (full excitation). The activation 

and deactivation time constants can be assumed to be 10 and 40 ms, respectively (Zajac, 1989; 

Winters, 1990). 
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RESULTS 

Finger joint torques, muscle forces and activities for the index finger were predicted in 

the OpenSim platform while twelve subjects performed two finger gestures on the tablet 

computer. Joint torques, muscle forces and activities differ in tasks: zoom in & out and rotate 

left & right as shown in Figure 1- 10. Positive values of the joint angle correspond to flexion or 

abduction of the index finger. Flexor excursions decrease during the finger flexion, while 

extensor excursions increase. Muscle activation was represented between 0 (no excitation) and 

1 (full excitation). 

Extrinsic muscle activity for zooming was greater than intrinsic one for it. 

Extrinsic muscle activations for zoom in & out were higher than those of rotate left & 

right (Figure 1, 3, 4). For zooming motions, activity of extrinsic muscles: flexor digitorum 

superficialis (FDS), flexor digitorum profundus (FDP) and extensor digitorum communis (EDC) 

averaged 0.4281 ranged from 0.3605 (FDS for zoom in) to 0.5506 (EDC for zoom in). For 

rotating movements, activity of extrinsic muscles averaged 0.2359 ranged from 0.2051 (FDS for 

rotate right) to 0.2955 (EDC for rotate right). Extrinsic muscle activity for zooming was 19.22% 

(0.1922) bigger than that for rotating.  

Intrinsic muscle activations were higher than extrinsic muscle activations for rotate left & 

right (Figure 2, 3, 4). For rotate left & right gestures, activity of intrinsic muscles: lumbricals 

(LU), ulnar interosseous (UI) and radial interosseous (RI) averaged 0.5107 ranged from 0.2765 

(UI for rotate right) to 0.6099 (LU for rotate right). Intrinsic muscle activity was 27.48% 

(0.2748) bigger than extrinsic muscle activity. Moreover, coupled activities between the intrinsic 

muscles and the extrinsic tendons were repeatedly observed among all simulations. 
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Joint torque was not proportional to range of joint angles. 

Joint torque was not proportional to range of joint angles. Range of joint angles for PIP 

joint was bigger than range of joint angle for other joints, but joint torque for MCP joint was 

bigger than joint torques for other joints. Peak range of joint angles was 69.9, 88.5 and 19.8° 

for MCP, PIP and DIP joints respectively (Figure 5, 6). Peak joint torque was 0.0220, 0.0138 

and 0.0027 N-m for MCP, PIP and DIP joints (Table 2; Figure 7, 8).  

Joint torques for rotate left and right bigger than those for zoom in and out.  Max. joint 

torque was 0.0904 N-m for rotate left at MCP add joint (Table 2). 

FDP muscle operated with greatest active force for two finger gestures. 

FDP forces were greater than other tendons’ forces for all simulations (Figure 9, 10). 

Muscle tensions averaged 1.0404 N of range of motion (RoM), ranged from 0.6047 N for EDC 

(rotate left) to 1.5160 N for FDP (zoom in). Across all tasks, FDP tensions were higher than FDS 

tensions. 

PIP joint had max. flexion angle, while DIP joint had min. flexion angle during gestures. 

Proximal interphalangeal (PIP) joints were highly flexed. Among all gestural tasks, peak 

flexion angles were 69, 8.8, 88 and 20° for metacarpophalangeal (MCP), MCP add, PIP and DIP 

joints. Distal interphalangeal (DIP) joint range of joint angle for zoom out was lower its for 

zoom in (Figure 5, 6). Maximum (max.) joint angles of DIP joint flexed 19.8 and 2.3° for zoom 

in and zoom out interactions. 
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DISCUSSION 

An increasing number of devices: smart phones, tablets, laptops or desktop computers 

features functions triggered by multi-touch gestures (LogiGEAR MAGAZINE, 2014). During 

multi-touch gestures, forces that hand muscles produce act directly on the bone segments. 

These forces influence movement, as ground reactions cause the effects of muscle force to be 

transmitted to segments remotely from the muscular contraction (Blazkewicz, 2013). However, 

this complex mechanism interacting with multi-touch technology remains unclear.  

The main goal of this study was to quantify the difference in the joint torque, muscle 

force and muscle activity patterns during two finger gestures: zoom in & out, and rotate left & 

right on the tablet computer using an OpenSim upper limb model. Our results showed that high 

extrinsic muscle activations were associated with zooming motions, whereas high intrinsic 

muscle activations were associated with rotating motions. We also found that max. joint torque 

occurred at the metacarpophalangeal (MCP) joint, Flexor digitorum profundus (FDP) muscle 

operated with greatest active force, and range of joint angle for the proximal interphalangeal 

(PIP) joint was higher than that for the MCP joint. While this study did not compare through the 

EMG activities, these findings give us fascinating insights, i.e., neuromuscular activation 

patterns have been predicted in order to better understand underlying motor control during 

multi-touch gestures. 

Limitations 

Drawing a conclusion from these results is limited by several factors. First, our model 

parameters were taken from the literature, and not matched to our subjects. Compiling data 
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from diverse sources into a common model could introduce measure errors. Moreover, hand 

kinematics used for experimental measurements are variable in size, and none precisely match 

the hypothetical 50th percentile male on which the OpenSim model is based. We accounted for 

these potential sources of error by the Scaling function that is performed based on a 

combination of measured distances between x-y-z marker locations and manually-specified 

scale factors. The dimensions of each segment in the model are scaled so that the distances 

between the virtual markers match the distances between the experimental markers. Second, 

we did not compare simulation results with experimental data such as electromyography (EMG). 

To our knowledge, evaluating and recording the muscle activity are not available during hand 

gestures on the tablet computer because it is not feasible to measure fingertip force and 

intrinsic muscle activity on the tablet. Consequently, predicted peak values, i.e., joint torque, 

muscle force and activity may be greater or smaller than what directly measures. However, 

these predicted value patterns may be retained between computational simulations and direct 

measurements. Drawing a conclusion from these results is limited by several factors. First, our 

model parameters were taken from the literature, and not matched to our subjects. Compiling 

data from diverse sources into a common model could introduce measure errors. Moreover, 

hand kinematics used for experimental measurements are variable in size, and none precisely 

match the hypothetical 50th percentile male on which the OpenSim model is based. We 

accounted for these potential sources of error by the Scaling function that is performed based 

on a combination of measured distances between x-y-z marker locations and manually-specified 

scale factors. The dimensions of each segment in the model are scaled so that the distances 

between the virtual markers match the distances between the experimental markers.  
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Second, we did not compare simulation results with experimental data such as 

electromyography (EMG). To our knowledge, evaluating and recording the muscle activity are 

not available during hand gestures on the tablet computer because it is not feasible to measure 

fingertip force and intrinsic muscle activity on the tablet. Consequently, predicted peak values, 

i.e., joint torque, muscle force and activity may be greater or smaller than what directly 

measures. However, these predicted value patterns may be retained between computational 

simulations and direct measurements due to a residual elimination algorithm (REA) in OpenSim 

package (Thelen et al., 2006). 

Third, thumb model does not include intrinsic muscles. Intrinsic muscles are normally 

independent (Hager-Ross et al., 2000; Tubiana, 1981). The thumb moves differently from the 

other fingers due to its unique bone structure and dedicated set of muscles (Shultz, 2014). 

These muscles enable to use out thumb independently and make it able to oppose the position 

of the fingers (Shultz, 2014). This exercises minor influence on the muscle activation patterns 

that we predicted for the index finger.  

Finally, the finger extensor mechanism in the OpenSim model has not modelled yet. 

Passive tissues, e.g., the extensor hood, affect the translation of muscle forces to the finger 

(Lee et al., 2008). Lee et al. (2008) demonstrated two different types of tendon force 

transmission: the tendon force distribution into two tendon slips with in the extensor apparatus, 

and the dissipation of tendon force into surrounding structure through the connective tissues. 

The force distribution ratio between two tendon slips was found to remain relatively constant 

across different postures within each specimen (Lee et al., 2008). Wu et al. (2010) found that 

simplified modeling of the extensor mechanism in an index finger had difference in muscle 

forces and tendon excursions within 10~20% range. Moreover, the effects of the extensor 
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mechanism on the flexors are relatively small when the location of force application is distal to 

the PIP joint (Li et al., 2001). Although the detailed assessments with extensor mechanism 

leave for the next step, the neuromuscular activation patterns maintain consistency with force 

distribution ratio between two tendon slips in the extensor apparatus. 

Zooming movements led to high extrinsic muscle activities, while rotating ones led to high 

intrinsic muscle activities 

Extrinsic muscle activations for zoom in & out were higher than those of rotate left & 

right. This is because each extrinsic muscle crossing over the wrist produces movement in the 

sagittal plane, i.e., extrinsic muscle flexes the fingers at each joint. Higher flexion (range of 

joint angle at all joints) for zoom in & out compared with rotate left & right observed in subjects 

performing tasks. Previous works also have shown that EMG increased as joint angle increased 

in the shoulder (Sigholm et al., 1984; Valero-Cuevas et al., 1998; Mathiassen and Winkel, 1990; 

Jarvholm et al., 1991). 

Intrinsic muscle activations were higher than extrinsic ones for rotate left & right. 

Extrinsic muscles flex the fingers at each joint, while intrinsic muscles adduct the fingers at the 

MCP joint. So, intrinsic muscles were involved in rotate left & right gestures. Lower range of 

ab/adduction (0° ~ 8.8°) than range of flex/extension (-4.8° ~ 69.9°) at the MCP joints was 

observed in subjects during rotate left & right tasks. Although MCP ab/adduction had short 

range of joint angle, the high intrinsic muscle activation in rotate left & right tasks was observed 

due to intrinsic muscles linking the extensors and flexors. Intrinsic muscles: radial interosseous 

(RI) and ulnar interosseous (UI) predominantly adduct/abduct the MCP joint and also extend 

the distal interphalangeal (DIP) joint when the interphalangeal (IP) joints are extended (Kamper 
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et al., 2006). These findings support our hypothesis that zooming motion cause extrinsic 

muscles greater activations, whereas rotating motion cause intrinsic muscles greater activations. 

Max. joint torque occurred at the MCP joint 

Although peak flexion angle observed at the PIP joint, joint torques at the MCP joint was 

greater than that at the PIP joint. During both zooming and rotating motions, PIP range of joint 

angle is higher than MCP flex/extension and ab/adduction range of joint angle. However, for 

zooming MCP flex/extension joint torque was greater than PIP flex/extension joint torque, and 

for rotating MCP ab/adduction joint torque was also greater than PIP one. Joint torque was 

proportional to more moment arm than range of joint angle. When the point of force application 

was on the distal phalanx, the moment arm of the load increased from the DIP joint to the PIP 

joint, and to the MCP joint (Li et al., 2000). Multi-touch gestures on the tablet seem to be free 

movements without consideration for resistance or reaction force with the touch screen surface. 

However, our result was consistent with other studies, i.e., tapping on the physical keyboard. 

Joint torque exerted an more influence on DIP, MCP add, PIP and MCP for zooming motion, and 

DIP, PIP, MCP and MCP add for rotating motion in consecutive order. 

In conclusion, index finger interactions on the tablet was characterized in terms of joint 

torque, muscle force and muscle activation. Our results demonstrate the influence of external 

factors such as finger posture, finger loading and dynamic exertion on hand muscle activity. 

This study provides insight into the relationship between internal (i.e., muscle activity) and 

external (i.e., finger posture, fingertip force or joint torque) loadings of the finger joint on the 

multi-touch technology, and into information concerning muscle activity patterns in the index 

finger muscles, which are used by subjects to perform a number of daily multi-touch activities. 
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Table 1. Muscle modeling parameters 

Muscle PCSA (   ) Max. 

isometric 

Force (N) 

Optimal fiber 

length (cm) 

Tendon slack 

length (cm) 

Pennation 

(degree) 

FDP 1.5 68.3 7.5 29.4 7 

FDS 1.4 61.2 8.4 27.5 6 

RI 1.5 68.6 3.2 29.6 9.2 

UI 0.8 36.6 2.5 24.9 6.3 

LU 0.1 4.6 5.5 22.8 1.2 

EDC 0.4 18.3 7.0 32.2 3 
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Table 2. Joint Torque at all joint (N-m) 

 MCP MCP add PIP DIP 

Zoom In 0.0220 0.0056 0.0138 0.0027 

Zoom Out 0.0221 0.0050 0.0139 0.0018 

Rotate Left 0.0608 0.0904 0.0099 0.0031 

Rotate Right 0.0771 0.0814 0.0105 0.0018 
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Figure 1. Extrinsic muscle activation. X components represent extrinsic muscles, and y 

components represent activation level. 
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Figure 2. Muscle activity of rotate left and right. X components represent extrinsic & intrinsic 

muscles, and y components represent activation level. 
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Figure 3. Muscle activation of an index finger during zoom in (top) and zoom out (bottom). x 

component indicates scaled time histories (not real time), and y component indicates muscle 

activation. 

 

 

 



108 

 

Figure 4. Muscle activation of an index finger during rotate left (top) and rotate right (bottom). 

x component indicates scaled time histories (not real time), and y component indicates muscle 

activation. 
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Figure 5. Joint angle of an index finger during zoom in (top) and zoom out (bottom). x 

component indicates scaled time histories (not real time), and y component indicates joint angle 

(degree). 
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Figure 6. Joint angle of an index finger during rotate left (top) and rotate right (bottom). x 

component indicates scaled time histories (not real time), and y component indicates joint angle 

(degree). 
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Figure 7. Joint Torque of an index finger during zoom in (top) and zoom out (bottom). x 

component indicates scaled time histories (not real time), and y component indicates joint 

torque (N-m). 
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Figure 8. Joint Torque of an index finger during rotate left (top) and rotate right (bottom). x 

component indicates scaled time histories (not real time), and y component indicates joint 

torque (N-m). 
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Figure 9. Extrinsic muscle force of an index finger during zoom in (top) and zoom out (bottom). 

x component indicates scaled time histories (not real time), and y component indicates joint 

torque (N). 
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Figure 10. Extrinsic muscle force of an index finger during rotate left (top) and rotate right 

(bottom). x component indicates scaled time histories (not real time), and y component 

indicates joint torque (N). 

 
 

 


