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ABSTRACT 

 

Today’s energy market is facing large-scale changes that will affect all market 

players. Near the top of that list is the rapid deployment of residential solar photovoltaic 

(PV) systems. Yet that growing trend will be influenced multiple competing interests 

between various stakeholders, namely the utility, consumers and technology provides. This 

study provides a series of analyses—utility-side, consumer-side, and combined analyses—

to understand and evaluate the effect of increases in residential solar PV market 

penetration. Three urban regions have been selected as study locations—Chicago, Phoenix, 

Seattle—with simulated load data and solar insolation data at each locality. Various time-

of-use pricing schedules are investigated, and the effect of net metering is evaluated to 

determine the optimal capacity of solar PV and battery storage in a typical residential home. 

The net residential load profile is scaled to assess system-wide technical and economic 

figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and 

electricity sales with increasing solar PV penetration. The combined analysis evaluates the 

least-cost solar PV system for the consumer and models the associated system-wide effects 

on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV 

penetration increase, net metering on a monthly or annual basis improved the cost-

effectiveness of solar PV but not battery storage, the removal of net metering policy and 

usage of a improved the cost-effectiveness of battery storage and increases in solar PV 

penetration reduced the system load factor. As expected, Phoenix had the most favorable 

economic scenario for residential solar PV, primarily due to high solar insolation. The 

study location—solar insolation and load profile—was also found to   affect the time of 

year at which the largest net negative system load was realized.  
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Chapter 1. Introduction 

The objective of this thesis was to explore the effects of varying amounts of PV 

penetration on the net load of a utility for three separate locations across four months of 

the year. Chapter 2 provides a review of the underlying mathematical formulations used in 

the modeling software packages HOMER and BEopt. These software packages are 

implemented in chapter 3 to complete and analysis of the consumer side and utility side 

implications of high penetration solar PV. Chapter 3 is structured as a draft of a 

forthcoming journal article. 

Modeling approaches and stakeholder engagement efforts that represent and 

contrast, and perhaps integrate, the perspectives of various parties have proven useful in 

facilitating energy planning decisions (Loken 2007, Browne et al. 2010). Chapter 3 uses a 

similar approach to contrast the objectives and desired outcomes of residential ratepayers 

and an electric utility. A single modeling approach is employed using a common set of 

input data to generate results that include a collection of possible scenarios in low-, 

medium- and high-penetration solar PV markets. Rather than focusing on one study site, 

chapter 3 offers a comparative analysis between three urban regions using simulated load 

data and solar insolation data at each locality. Various time-of-use pricing schedules are 

investigated, and the effect of net metering is evaluated to determine the optimal capacity 

of solar PV and battery storage in a typical residential home. The residential load profile is 

scaled to assess system-wide technical and economic figures of merit for the utility. 
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Chapter 2.  Review of Energy System Modeling Techniques and Software 

 Models inform the engineering decision-making process by providing a simulated 

environment to explore and test design options quickly and at low cost. Energy system 

models are often used to inform capital acquisition decisions or set equipment operating 

schedules and limits based upon one or more metrics such as cost, reliability, and 

environmental impact. Mathematical representations of these metrics are more generally 

known as objective functions, and with the aid of modeling and simulation, engineers can 

quickly alter input parameters and evaluate the effect on the objective function to either 

maximize or minimize a quantity to create an optimal design or decision.  

Energy system modeling is a broad field with many specializations and technical 

focus areas based on the type of energy, scale of the system, and temporal nature of the 

design decision to be made. Some models focus on the entire electric grid, others on 

individual buildings, and yet others on smaller scale energy conversion processes such as 

air conditioners, lighting, and cooking. Many of these models are evaluated in isolation, 

yet the inputs and outputs of each model do affect systems at different spatial and temporal 

scales.  

2.1 Grid Modeling and Asset Planning 

 Electric utilities use models for capital expansion planning to inform generation, 

transmission, and distribution capacity decisions. Modeling the addition or upgrade of 

electricity generating equipment helps to ensure that the new system will be able to meet 

the load profile and be cost effective. The optimum capacity expansion plan should take 

into account capital allocation and equipment selection (Sherali et. al. 1984). The 
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expansion is an investment in time and money depends on how the equipment is installed 

in addition to the type of equipment. Commonly known as “soft costs,” the non-hardware 

costs of permitting, financing, installation labor, and legal work comprise a significant 

portion of the total cash outlay for capital expansion. Policy issues are also important to 

consider. New restrictions on emissions and rising fossil fuel prices are pressuring utilities 

to build more renewable generation. Generation expansion planning models renewables 

and the cost breakdown to better understand risk (Careri et. al. 2011). There are several 

software packages for expansion planning. Ventyx’s Strategist is a comprehensive analysis 

program which examines the costs and benefits of supply resources and their alternatives 

using real-time market data.  In addition, Strategist forecasts resource costs across different 

market areas using scenario analysis.  

The growing number of generation alternatives to coal power plants is increasing 

the importance of using a robust and comprehensive capital expansion planning software. 

Coupled with the rising cost of energy from convention sources, except natural gas, 

evaluating various generation types, technologies, and sizes is vital to making a sound 

technical and economic decision (Sadorsky 2010). Furthermore, operating assets 

efficiently has a significant impact on asset performance and life. Production cost modeling 

follows after capital expansion planning tools to evaluate shorter time horizons for 

determining how to dispatch existing assets to produce the least-cost power over days or 

days or weeks into the future. This can be improved by understanding the techno-economic 

factors associated to energy use and delivery to ensure that new equipment can adequately 

meet the user’s needs while integrating into the electric grid (Krause et. al. 2010).  
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Two production cost modeling software tailored specifically to renewables 

integration include the Hybrid Optimization Model for Electric Renewables (HOMER) 

authored by the U.S. National Renewable Energy Laboratory (NREL) and RETScreen 

authored by Natural Resources Canada. HOMER helps to answer questions about the cost 

effectiveness and supply/demand dynamics of hybrid—nonrenewable and renewable—

off-grid and grid power systems. HOMER is a program that takes user inputs, such as costs 

and components, to simulate and aid in the decision of the optimal mix of nonrenewable 

generation, renewable generation, and storage in a system. Solar data can be downloaded 

from the internet from the NREL or NASA database. The software also determine the 

installation and maintenance costs of a system for the duration of its usable life. RETScreen 

is an Excel based cost-benefit analysis tool that aids in selecting between different types of 

renewable energy and energy efficiency technologies.  In addition, this program comes 

with several databases including climate and hydrology. Both HOMER and RETScreen 

have free downloadable public versions. A similar tool developed by NREL is Renewable 

Energy Optimization tool (REOpt). REOpt incorporates photovoltaics, solar hot water, 

wind, biomass, and other renewable technologies into simultaneous models to simulate 

hourly interactions of multiple system options that go beyond renewables integration and 

include energy efficiency and various electrical and thermal load options. The System 

Advisor Model (SAM) is another program developed by NREL and is used to calculate the 

cost of energy on the client-side or the utility-side of the meter.  SAM uses information 

such as operating costs and system constraints defined by the user to make these cost 

prediction calculations. 
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Unit commitment and load dispatch decisions occur hours or days in advance to 

schedule what generation equipment to have online. Advanced unit commitment and 

dispatch analyses have been found to save an electric utility millions of dollars each year 

(Archana et. al. 2012). Deciding where to dispatch individual generating units requires an 

optimization algorithm, such as genetic algorithms, particle swarm optimization or others 

that can optimize across non-linear and non-convex spaces. ABB’s GridView is one 

example of such a software that provides energy market simulation and analysis for energy 

forecasting and management. Analysis methodology combines generation, transmission, 

loads, fuels and market economics into an integrated framework. Each of these variables 

is broken into individual optimization, assessment, management and analysis studies. At a 

smaller scale, the Hybrid Optimization by Genetic Algorithms (HOGA) software provides 

a simulation and optimization environment for evaluating dispatch options for hybrid 

renewable energy systems.  

Contingency analysis seeks to predict the outcome of a certain set of events, with 

the goal of planning a response to a failure or unplanned outage (Wong et. al. 2014). This 

is a useful analysis when paired with reliability analyses of electrical generating equipment. 

These analyses are often based on probability and are used to determine system robustness 

and reliability (Kile and Uhlen 2012). As a result, the computations are often data intensive, 

and require strong software support and computational resources. Siemens’ power 

transmission system planning (PSS/E) uses probabilistic analyses and advanced dynamics 

modeling to provide design and operation techniques for reliable networks. PSS/E is 

broken into modules that include dynamic simulation, geomagnetic induced currents, 

graphical model builder, eigenvalue and modal analysis, optimal power flow and short 



6 

circuit calculations. A similar program developed by General Electric’s is power systems 

load flow (PSLF). PSLF allows users to perform transient stability analysis as well as 

traditional voltage and thermal analyses. General Electric’s multi-area production 

simulation software (MAPS) provides detailed modeling for assessing the value of a 

portfolio of generation and transmission bottlenecks that constrain economic operation. 

Sub-second simulations can be used to describe the transient dynamics the grid 

system and power electronics. They can be used to determine the effects of various power 

grid disturbances such as faults, equipment switching, and routine maintenance. Power 

systems change more frequently than ever before due to market dynamics, random 

disturbances, increasing grid complexity, and the intermittency of renewables 

(Fernandopulle and Alden 2005). Simulating transient dynamics helps in determining 

power system stability. Siemens’ PSSNETOMAC facilitates access to and manages 

information on dynamic power system performance. Some of the methods this tool offers 

are simulation of transient phenomena, steady-state load flow, frequency analysis, 

eigenvalue analysis, vibration systems, optimization and others. A similar open-source tool 

is Open Distribution System Simulator (OpenDSS) offered by the U.S. Department of 

Energy. It supports distributed resource integration and grid modernization efforts. 

OpenDSS is a comprehensive electric power system simulation tool designed to meet 

future needs relating to smart grids, modernization and renewable energy research. These 

tools can be extended using Spirae’s BlueFin software to provide real-time controls 

analyses that maintain power flow and stability in micro-grids with high-penetration 

renewables. BlueFin can be installed to operate power systems in real-time using 

distributed control strategies. 
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2.2 Modeling Hybrid Power Systems with HOMER 

 Hybrid power systems incorporate renewable energy sources with non-renewables. 

Adding renewables to traditional energy generation is done primarily for reducing 

emissions and reducing delivered energy cost. Hybrid energy systems are popular because 

they provide many of the benefits of renewable energy while providing dependable 

operating reserve to manage the intermittency of renewable energy sources (Gupta et. al. 

2010). Economic analysis has shown hybrid systems to be more viable than pure renewable 

or non-renewable energy systems, particularly for off-grid systems (Turkay and Telli 

2010). Hybrid systems can be simulated many ways, including genetic algorithms, particle 

swarm optimization, simulated annealing and others (Erdinc and Uzunoglu 2012). There 

are also a number of software packages that can simulate hybrid energy systems for 

viability discussed previously in this text. Hybrid power system modeling and optimization 

can provide useful information in the early design phase of renewable energy planning. 

 This thesis uses HOMER for modeling higher renewable penetration scenarios and 

evaluating the technical and economic impacts during production cost modeling. This is a 

useful tool during early phases of engineering design. Through three principle tasks 

(simulation, optimization, and sensitivity analysis), users work with a graphical interface 

to examine system elements based on technical and economic factors. 

 Simulation is used to chronologically calculate power output and energy balances 

hourly for a one-year period. The program seeks to meet electric and thermal 

demand to supply at each hour with the least cost combination of energy sources. 

Renewable power generated in each time step is used before nonrenewable power 

because renewable generators are modeled as sunk costs with no-cost utilization. 
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The program will establish if the desired system can meet the electric demands 

while also examining the overall installation and operation cost of the system. A 

simulation is completed for each combination of equipment and sizes.  

 Optimization sorts the simulation results by net present cost (NPC)—which is less 

subject to interpretation than the levelized cost of energy (LCOE). This allows users 

to quickly review solutions for economic feasibility after HOMER has evaluated 

solutions on technical feasibility,  

 Sensitivity analysis is completed by simulating various input values that are outside 

the engineer’s control (e.g., wind speed, interest rate, equipment costs). HOMER 

then repeats the optimization step for each combination of sensitivity variables.  

Further information regarding HOMER algorithms and functionality can be found in 

(Lambert 2006). The following sections review the underlying mathematics of the 

computational model.  

2.2.1 Relevant Technical Features 

 Solar photovoltaic (PV). HOMER simulates PV power output based on a variety of 

user-inputs such as panel slope and azimuth, a derating factor to account for losses in the 

installed system, temperature effects and other parameters. The power output of a PV array 

can be calculated with temperature effects (Eq. 2.1) or without temperature effects (Eq. 

2.2).  

 
,

,

( )[1 (T T )]
T

P c c STC
T STC

G
P Yf

G
     (2.1) 

 
,

( )
T

T STC

G
P Yf

G
   (2.2) 
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P = power output (kW) 

Y = rated capacity under standard test conditions (kW) 

f = PV derating factor (%) 

TG = solar radiation incident on the PV array (kW/m2) 

,T STCG = incident radiation at standard test conditions (1 kW/m2) 

P = temperature coefficient of power (%/°C) 

Tc = PV cell temperature (°C) 

,Tc STC = PV cell temperature under standard test conditions (°C) 

The effect of temperature on a PV array uses an energy balance equation (Eq. 2.3) that 

accounts for temperature rises in the panel due to absorption of incident solar (Duffie and 

Beckman 1991). The energy balance equation can be solved for cell temperature (Eq. 

2.4). 

 G ( )T c T L c aG U T T     (2.3) 

 T
c

= T
a

+ G
T
(
ta

U
L

)(1-
h

c

ta
)  (2.4) 

 = solar transmittance (%) 

 = solar absorptance (%) 

GT = solar radiation striking the PV array (kW/m2) 

c = electrical conversion efficiency (%) 

LU = coefficient of heat transfer to the surroundings (kW/m2°C) 

cT = PV cell temperature (°C) 
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aT = ambient temperature (°C) 

 Manufacturers typically report the nominal operating cell temperature (NOCT), 

defined at an incident radiation of 0.8 kW/m, ambient temperature of 20 °C, and no load. 

This temperature is used in calculating (Eq. 2.5). HOMER assumes the array is operating 

at its maximum power point (Eq. 2.6) when calculating the cell temperature (Eq. 2.7).  

 
, ,

,

c NOCT a NOCT

L T NOCT

T T

U G

 
  (2.5) 

 c mp   (2.6) 

 , ,

,

( )( )(1 )
mpT

c a c NOCT a NOCT

T NOCT

G
T T T T

G




     (2.7) 

,c NOCTT = nominal operating cell temperature (°C) 

,a NOCTT = ambient temperature at which the NOCT is defined (20 °C) 

,T NOCTG = solar radiation at which the NOCT is defined (0.8 kW/m2) 

mp = PV efficiency at maximum power point (%) 

 Efficiency is assumed to vary linearly with temperature according to (Eq. 2.8). PV 

efficiency decreases with increasing temperature so long as the temperature coefficient of 

power is negative (Eq. 2.9). Cell efficiency under standard test conditions is defined in (Eq. 

2.10). 
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,

,

mp STC

T STC

Y

AG
   (2.10) 

,mp STC = maximum power point efficiency under standard test conditions (%) 

P = temperature coefficient of power (%/°C) 

T
c,STC

= cell temperature under standard test conditions (25°C) 

A = surface area of PV module (m2) 

,T STCG = radiation under standard test conditions (1 kW/m2) 

 Lead acid battery. HOMER uses the Kinetic Battery Model (KiBaM) to determine 

battery energy and charge/discharge limits in each time step for a lead acid battery. KiBaM 

simulates battery electrochemical kinetics by separating the battery into two internal forms 

of storage—available energy and bound energy (Eq. 2.11)—as a characterization of lead 

acid battery discharge curves that indicate the total cycle discharged energy decreases with 

increasing discharge rate (Manwell 1993). HOMER first calculates the maximum charge 

power (Eq. 2.12) and maximum discharge power (Eq. 2.13) allowed in the time step to 

serve as a bound on the actual charge power or discharge power determined during 

economic dispatch. The actual power is then used to determine the total remaining battery 

energy—sum of available energy (Eq. 2.14) and bound energy (Eq. 2.15)—at the end of 

each time step. Battery charge and discharge efficiencies are equal to the square root of the 

battery round trip efficiency. 

 
t

av bndE E E   (2.11) 
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1 ( 1 )
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 
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 (2.12) 
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 
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      (2.15) 

 

tE = total energy (kWh) 

avE = available energy (kWh) 

bndE = bound energy (kWh) 

t

cmaxP = maximum charging power (kWh) 

k = battery rate constant (hr-1) 

t = change in time (hr) 

c = battery capacity (-) 

dmaxP = maximum discharging power (kW) 

maxE = maximum battery energy (kWh) 

tP = (kW) 

 The cost of obtaining energy from the battery is the summation of the cost of energy 

in the battery and the battery wear cost (Eq. 2.16). Battery wear cost accounts for the cost 

of degradation and replacement of a battery due to cycling (Eq. 2.17). The battery is 

replaced when cycling through the total lifetime throughput (Eq. 2.18). 

 , ,e o bw e iC C C    (2.16) 
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,rep batt

bw

batt lifetime rt

C
C

N Q 
   (2.17) 

 ( )
1000 /

max nom
lifetime

q V
Q fd

W kW
   (2.18) 

,rep battC = battery replacement cost ($) 

battN = number of batteries in bank (-) 

rt = battery roundtrip efficiency (%) 

,e iC = cost of energy put into battery ($) 

f = number of cycles to failure (-) 

d = depth of discharge (%) 

maxq = maximum battery capacity (Ah) 

nomV = nominal battery voltage (V) 

 Converter. A system containing alternating current (A/C) and direct current (D/C) 

uses a converter to translate AC-to-DC and/or DC-to-AC. The converter in HOMER can 

be uni-directional or bi-directional with a constant efficiency specified in either direction. 

In reality, converters are much less efficient at low loads. 

 

2.2.2 Relevant Economic and Policy Features 

 Grid rate structures. HOMER allows a user to input a grid rate structure using the 

purchased power price, sellback price and demand rate for any block of time in hours. 

Multiple rates can be entered depending on the monthly of year, weekday or weekend and 

time of day to reflect peak and shoulder rates. Monthly and net metering are additional 
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options to take into account extra energy produced that is sold back to the grid at the end 

of the net metering period. Total annual energy charges are calculated using (Eq. 2.19) for 

net metering or (Eq. 2.20) without net metering. Annual grid demand charges are calculated 

using (Eq. 2.21). 

 C
grid ,energy

= E
gridpurchases,i , j

C
power ,i

-
j

12

åi

rates

å E
gridsales,i , j

C
sellback ,ij

12
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å  (2.19) 
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C
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E
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C
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³ 0
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ì

í
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îï

ü

ý
ï

þï
i

rates

å  (2.20) 

 C
grid ,demand

= P
grid ,peak,i , j

C
demand,ij

12

åi

rates

å  (2.21) 

, ,gridpurchases i jE = energy purchased from the grid in month j at the rate i (kWh) 

,power iC = grid power price for rate i ($/kWh) 

, ,gridsales i jE = energy sold to the grid in month j at the rate i (kWh) 

,sellback iC = sellback rate for rate i ($/kWh) 

,netgridpurchases iE = annual net grid purchases at the rate i (kWh)  

,peak, ,grid i jP = peak hourly grid demand in month j at the rate i (kWh) 

demand,iC = grid demand rate for rate i ($/kW/month) 

 Component pricing. Users can input three cost parameters for a component—initial 

capital cost, replacement cost, and operating and maintenance cost—that is based on a 

single unit or the unit’s capacity. These costs are scaled for larger systems (e.g., twice the 

cost if you install a two wind turbines). HOMER also allows you to input further cost 

information for multiple units or larger capacity systems to model economies of scale. No 
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default cost data is provided because costs are highly variable based on time, location and 

currency.  

 Cost of energy. HOMER calculates the levelized cost of energy (LCOE) using (Eq. 

2.22). Although an important quantity for comparison, HOMER sorts simulation results 

based on the net present cost (NPC) because the LCOE can be calculated in a variety of 

ways by different researchers.  

 
,

, , ,

ann tot boiler thermal

prim AC prim DC def grid sales

C c E
LCOE

E E E E




  
 (2.22) 

,ann totC = total annualized cost of the system ($/yr) 

boilerc = boiler marginal cost ($/kWh) 

thermalE = total thermal load served (kWh/yr) 

,prim ACE = AC primary load served (kWh/yr) 

,prim DCE = DC primary load served (kWh/yr) 

defE = deferrable load served (kWh/yr) 

,grid salesE = total grid sales (kWh/yr) 

 Net present cost. The user inputs an annual real interest rate to convert between 

annual and up-front costs (Eq. 2.23). HOMER assumes that the rate of inflation is the same 

for all costs. This is used in calculating the total net present cost (Eq. 2.24), a quantity 

which describes the total up-front cost of all costs incurred over the project lifetime. 

Annualized capital cost (Eq. 2.25) helps to determine the annual cost of capital investment 

by dividing the total cost over the project lifetime. Another important metric is the 
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annualized replacement cost (Eq. 2.26), or what it would cost to replace a component 

through the project lifetime, less the salvage value (Eq. 2.27).  
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R
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i = real interest rate (%) 

'i = nominal interest rate (%) 

f = annual inflation rate (%) 

,ann totC = total annualized cost ($/yr) 

capC = initial capital cost ($) 
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Crep = replacement cost of the component ($) 

CRF = capital recovery factor (-) 

i = interest rate (%) 

N = number of years (-) 

projR = project lifetime (yr) 

compR = lifetime of the component (yr) 

repR = replacement cost duration (yr) 

remR = remaining life of the component at the end of the project lifetime (y) 

INT = integer function (-) 

SFF = sinking fund factor (-) 

2.2.3 Relevant environmental features 

 Solar insolation and incident solar. HOMER can download monthly solar insolation 

averages from the NREL or NASA database for the typical meteorological year (TMY) 

using latitude and longitude data input by the user. TMY data represents a typical year of 

solar insolation based upon historical averages. HOMER uses the monthly solar insolation 

data to generate synthetic daily solar insolation data, and then takes the synthetic daily solar 

insolation data to synthetic hourly solar insolation data. These high-resolution synthetic 

data are generated using algorithms that based upon low-resolution data—monthly data—

on clearness index (Graham 1990). Clearness index is a dimensionless number that ranges 

from zero to one and indicates the fraction of extraterrestrial solar radiation that strikes the 

earth’s surface. The user may also input their own clearness index or solar insolation data 

on an hourly basis.  
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Incident radiation on a photovoltaic (PV) array is determined based on the slope 

and azimuth of the array and a series of equations that describes the sun’s daily trajectory 

as given in (Duffie and Beckman 1991). This trajectory is described by the solar declination 

(Eq. 2.32)—the latitude where the sun’s rays are perpendicular to the earth at noon—and 

hour angle (Eq. 2.33)—description of solar time based on hour in day. The hour angle is 

calculated based on the solar time as given in (Eq. 2.34), with the solar time being 

calculated from the time zone, civil time, longitude and an eccentricity effect as calculated 

by (Eq. 2.35) and (Eq. 2.36) due to the non-circular movement of the earth around the sun.   
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n = day of the year (1-365) 

 = longitude (°) 

t
s
= solar time (hr) 

 
t

c
= civil (local) time (hr) 

cZ = time zone in hours east of GMT (hr) 

E= eccentricity effect (hr) 
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The zenith angle (Eq. 2.37) is used in several calculations for calculating solar 

radiation hitting the earth’s surface a titled surface (e.g., PV array).  

 cos cos cos cos sin sinz       (2.37) 

 = latitude (°) 

 = solar declination (°) 

 = hour angle (°) 

z = zenith angle (°) 

 Extraterrestrial normal radiation (Eq. 2.38) is the amount of solar radiation striking 

the earth’s upper atmosphere, whereas extraterrestrial horizontal radiation (Eq. 2.39) is the 

amount of solar radiation striking a horizontal surface at the top of the atmosphere (Sen 

70). HOMER averages the extraterrestrial horizontal radiation over one time step (Eq. 2.40) 

for use in hourly calculations. Clearness index (Eq. 2.41) is defined as a ratio of the average 

global horizontal radiation and the average extraterrestrial horizontal radiation. The 

calculated extraterrestrial horizontal radiation and the synthetic clearness index from 

Graham’s algorithms is used to calculate the global horizontal radiation.  
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Gon = extraterrestrial normal radiation (kW/m2) 



20 

scG = solar constant (1.367 kW/m2) 

n = day of the year (-) 

oG = extraterrestrial horizontal radiation (kW/m2) 

G= average global horizontal radiation (kW/m2) 

oG = average extraterrestrial horizontal radiation (kW/m2) 

1 = hour angle at the beginning of the time step (°) 

2 = hour angle at the end of the time step (°) 

kT = clearness index (-) 

 The total global horizontal insolation (or global horizontal radiation) is a 

summation of beam radiation and diffuse radiation from the sun (Eq. 2.42); diffuse 

radiation is bent by the atmosphere while beam radiation is not. HOMER splits the total 

horizontal radiation into the beam and diffuse components using the diffuse fraction (Eq. 

2.43) as a function of the clearness index (Erbs et. al. 1981). 

 b dG G G   (2.42) 

 2 3 4
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0.9511 0.1604k 4.388 16.638 12.336 for 0.22 k 0.80
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 

      
  

 (2.43) 

bG = beam radiation (kW/m2) 

dG = diffuse radiation (kW/m2) 

 The beam and diffuse radiation components on the horizontal surface can then be 

used to calculate the total incident solar on a tilted surface (e.g., PV array) using another 

series calculations (Eq. 2.44−2.48). The amount of circumsolar diffuse radiation is 
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determined by the anisotropy index (Eq. 2.46). Horizon brightening (Eq. 2.47) describes 

how the sun is brightest when at the horizon. The slope and azimuth of the panel are used 

in the final calculation of total incident solar on the tilted surface (Eq. 2.48).  
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 = angle of incidence (°) 

 = slope of the surface (°) 

 = azimuth of the surface (°) 

g = ground reflectance (%) 

2.3 Building Energy System Modeling 

 Building energy system modeling focuses on determining energy consumption and 

life cycle costs as a function of building design, occupancy, thermal conditioning, water 

and energy use. Whole-systems building design uses these and other inputs to provide the 

user with a great amount of flexibility for modeling different scenarios. Yet in noting that 

the quality of results depends on the quality of inputs, the input conditions must be 

researched and well-defined.  



22 

Optimizing a building energy system goes beyond the selection of power 

generation, storage or consumption devices in the building. For example, the placement of 

windows and building orientation can effect power consumption—e.g., large southward 

facing windows can reduce the use of heating systems because more sunlight enters and 

warms the building. Some software packages allow users to evaluate and contrast the 

effects of building design decisions and equipment decisions on technical, environmental 

and economic metrics. Examples include free-access simulation tools such as EnergyPlus, 

eQUEST and BEopt.  

EnergyPlus is a text-based building energy simulation program designed to model 

power, thermal and water usage. EnergyPlus is supported by add-ons, such as OpenStudio, 

which provide various graphical user interfaces (GUIs) or additional computational 

support. Another command line simulation engine is DOE-2. The makers of DOE-2 also 

supply the Quick Energy Simulation Tool (eQUEST), which provides a GUI to access the 

DOE-2 simulation engine. Yet another tool is Building Energy Optimization (BEopt), 

which is commonly used to evaluate options for whole-building energy savings in existing 

and new construction projects. BEopt was created to assist in pursuit of net zero energy 

buildings. It provides detailed analysis based on building size, occupancy, location and 

build structure. BEopt provides a GUI and requires a simulation engine such as EnergyPlus 

to run. Integrating various modeling programs that serve different functions facilitate 

whole-building energy savings. Such a solution has been described as the interoperability 

workbench (Augenbroe et. al. 2004). A workbench integrates different file formats for the 

purpose of combining the design and analysis phase. Integrating various computational 

models for whole-systems building design and analysis can be useful in assessing all 
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factors that affect engineering designs, but some researchers suggest caution because 

model data translation errors and model misuse can lead to spurious conclusions (Nall and 

Crawley 2011).  

Building emulators couple computer-based simulations with actual building 

hardware to analyze control system performance (Dexter and Havest 1993). Control system 

efficacy is an important marker of energy consumption. A control system must be able to 

operate efficiently and effectively to properly modulate energy consumption—e.g., use 

controllable loads such as a pool pump when excess renewable generation is available or 

when the grid power price is low. However, some researchers contest that today’s buildings 

emulators (and their users) create a poor representation of reality by relying on a large 

number of assumptions to reduce unknowns (Bushby et. al. 2010).  

2.4 Building Energy Modeling with BEopt 

 This thesis uses BEopt for modeling hourly home energy use and solar insolation 

across an entire year. BEopt was created to help engineers and policy makers reach the 

goal of zero net energy (ZNE) buildings (Christensen 2010). ZNE buildings produce as 

much electricity as they consume. BEopt uses a basic building geometry—and a series of 

simulation options—to calculate hourly and total energy usage over a year. Design options 

include the type of lighting, location and size of windows, HVAC designs, building 

materials and many more features. In analysis mode, BEopt analyzes design conditions to 

provide hourly energy use, temperature, humidity, ambient conditions and cooling loads. 

Output is provided in easy to read tables and graphs that compare energy costs with savings 

as well as a breakdown of energy use by appliance. BEopt requires a simulation engine, 

such as DOE-2 or EnergyPlus, to run. The building geometry can include multiple levels, 
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a garage and other major features of a household. Design options can be left at default 

values as described in (Hendron and Engebrecht 2010) or set to custom values by the user. 

Location must also be input to access appropriate weather and solar data—a few weather 

files are preinstalled, though many more may be downloaded from all over the world.  

BEopt may be run in optimization mode in addition to analysis mode. Its 

optimization feature has been widely used as a modeling tool for costs and benefits of 

renewable energy options for new homes (Anderson and Christensen 2006). Additionally, 

it has been used as a tool for finding the optimal solar capacity for ZNE buildings (Horowitz 

et. al. 2008). To optimize a given building, BEopt analyzes various ways to reduce the 

energy consumption down to ZNE by changing appliances, insulation and construction 

materials, building composition, and heating/cooling capacities. Once several ways are 

determined, the least cost option is selected as the optimal solution. BEopt is capable of 

customization of economic features as well. Some of these include utility rates, mortgage 

information, photovoltaic compensation, project lifetime, inflation, discount rate and 

others. 
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Chapter 3. Reconciling Consumer and Utility Objectives 

In the Residential Solar PV Market 

A paper to be submitted to Applied Energy 

Michael R. Arnold, Nathan G. Johnson 

Abstract 

Today’s energy market is facing large-scale changes that will affect all market 

players. Near the top of that list is the rapid deployment of residential solar photovoltaic 

(PV) systems. Yet that growing trend will be influenced multiple competing interests 

between various stakeholders, namely the utility, consumers and technology provides. This 

study provides a series of analyses—utility-side, consumer-side, and combined analyses—

to understand and evaluate the effect of increases in residential solar PV market 

penetration. Three urban regions have been selected as study locations—Chicago, Phoenix, 

Seattle—with simulated load data and solar insolation data at each locality. Various time-

of-use pricing schedules are investigated, and the effect of net metering is evaluated to 

determine the optimal capacity of solar PV and battery storage in a typical residential home. 

The net residential load profile is scaled to assess system-wide technical and economic 

figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and 

electricity sales with increasing solar PV penetration. The combined analysis evaluates the 

least-cost solar PV system for the consumer and models the associated system-wide effects 

on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV 

penetration increase, net metering on a monthly or annual basis improved the cost-

effectiveness of solar PV but not battery storage, the removal of net metering policy and 

usage of an improved the cost-effectiveness of battery storage and increases in solar PV 
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penetration reduced the system load factor. As expected, Phoenix had the most favorable 

economic scenario for residential solar PV, primarily due to high solar insolation. The 

study location—solar insolation and load profile—was also found to   affect the time of 

year at which the largest net negative system load was realized.   

Keywords: energy economics, residential solar, solar photovoltaic, net metering, 

electricity rates, techno-economic optimization 

3.1 Introduction 

Addressing the societal demand for low-carbon energy is an ongoing challenge that 

will persist for several decades. It has been suggested that a zero-carbon economy can be 

realized in the United States by 2050 through a combined approach of changes in 

technology, policy, economics, business models and consumer behavior (Lovins 2013). 

Yet that year is far away, and there is much ground to cover. The growing amount of 

research and industry practice to reduce carbon emissions, however, hints at a trend 

towards smaller carbon footprints that may one day lead to a zero-carbon society.  

This long-term vision has been paralleled with more near-term research 

emphasizing innovation in renewables design and integration (Nemet et al. 2012, Purohit 

and Purohit 2010), improving grid stability at high-penetration renewables (Carrasco  et al. 

2006, Kempton and Tomic 2005, Lund 2005), developing software for integrated building 

design and building energy systems analysis (Nguyen et al. 2014, Wang et al. 2011), 

improving energy efficiency in end-use devices (Abramson 1990, Negrão 2011), using 

thermal energy storage to offset air conditioning loads (Ruddell et al. in review) and 

evaluating the social, political and economic implications of the low-carbon energy 

transition (Laird 2013, Miller and Richter 2014, Yun and Steemers 2011). The diversity of 
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these studies illustrates the many options and complex factors affecting decisions 

throughout the electric grid from the individual circuit to the larger utility grid.  

Household solar photovoltaic (PV) systems are an increasingly common way to 

offset grid purchases with on-site renewable power generation. For a single residence, 

rooftop solar PV systems can be sized to generate sufficient energy to fully displace grid 

purchases on a net basis over a year. Household PV systems commonly produce excess 

energy that is sent to the grid during sunny periods of the day to compensate for evening 

hours when no sun is shining and electricity must be used from the grid. The technical and 

economic effects of rooftop solar are minimal to the grid at low market penetration levels, 

but are expected to cause grid instability and disrupt utility business models at high 

penetration levels (Denholm 2007). One of the main concerns is managing the significant 

drop in the system net load that occurs during high-production hours of the day. Commonly 

known as the “Duck Curve,” the reduction in net system load during the daytime hours 

creates a significant ramping request from dispatchable generation at sunset (California 

ISO 2013). The intermittency in renewables also requires that sufficient dispatchable 

generation remain online during the day as backup for cloud disruptions in solar PV output. 

These issues will become more prevalent as distributed generation capacity increases over 

time.  

3.2 Background 

Energy system modeling is a broad field with many specializations and technical 

focus areas based on the type of energy, scale of the system and temporal nature of the 

design decision to be made. Some models focus on the entire electric grid, others on 

individual buildings, and yet others on smaller scale energy conversion processes such as 
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air conditioners, lighting, and cooking. Many of these models are evaluated in isolation, 

yet the inputs and outputs of each model do affect systems at different spatial and temporal 

scales.  

Models of the electric grid, for example, include data and sub-system models about 

the transmission and distribution network, renewable and nonrenewable generation assets, 

resource availability, load profile forecasts and economic forecasts. These models are used 

to inform capital expansion decisions and specify operational schedules based on metrics 

such as cost, reliability, and environmental impact. Mathematical representations that 

describe these metrics are classified as objective functions, and with the aid of modeling 

and simulation, engineers can quickly alter input parameters and evaluate the objective 

function to determine the values of inputs that maximize or minimize a quantity to yield an 

optimal design or decision. Many modeling techniques and software packages are 

publically or commercially available. No one model is the same, and as a consequent, 

different models may yield different results or suggested decisions. That should be 

expected. Even the same mathematical model can result in multiple competing conclusions 

if different figures of merit or objective functions are selected for optimization (Ostergaard 

2009). The challenge of reconciling results pertains directly to studies of transitions in the 

residential market energy that are influenced by multiple stakeholders, often with 

competing objectives and models.  

Previous studies have examined the costs associated with solar PV installation. 

There are many costs associated with a PV installation, which are commonly differentiated 

as initial investment cost and reoccurring annual costs. The initial investment includes the 

module cost, which accounts for up to 60% of the total cost (IEA 2008), supporting 
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equipment costs, land cost and a variety of soft costs (Ardani 2014). Annual costs include 

operation and maintenance and insurance costs. The cash outlay of a PV system to the end-

user depends highly on region, largely due to local incentives and government deductions 

(Reichelstein & Yorston 2012). Past studies have used an installed cost of $4.00 per watt 

as of 2010 (Hernández-Moro & Martínez-Duart 2012), which have since fallen further. 

Leasing a system may also be more cost effective for some buyers. While leasing costs 

vary by region, they typically have more attractive pricing due to the inclusion of regular 

maintenance and replacement of key components (Liu et al. 2014). 

There is growing body of research that explores the technical and economic 

implications of solar PV penetration and net metering for consumers and utilities (Mondol 

et al. 2009). This research has revealed that cost efficiency is necessary for increasing solar 

PV penetration. Further, the extent of PV penetration and grid rate structure is undoubtedly 

related (Cai et al. 2013). It has been surmised that the most important factor on utility 

revenue is the number of solar PV consumers (Pillai et al. 2014). In urban settings, solar 

PV is not typically viable without tax incentives, rebates and grid rate structures that benefit 

electricity generation such as net metering. Based on its economic merits, net metering has 

been shown to be a main cause of the growing solar PV market (Darghouth et al. 2011). 

Due to such incentives, solar adoption has been growing in recent years, leading many to 

question its widespread effects at high penetration rates. Studies exploring the challenges 

of large scale solar PV integration have recognized the need for more research in high 

penetration scenarios (Katiraei & Aguero 2011). 

Modeling approaches and stakeholder engagement efforts that represent and 

contrast, and perhaps integrate, the perspectives of various parties have proven useful in 
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facilitating energy planning decisions (Loken 2007, Browne et al. 2010). This article uses 

a similar approach to contrast the objectives and desired outcomes of residential ratepayers 

and an electric utility. A single modeling approach is employed using a common set of 

input data to generate results that include a collection of possible scenarios in low-, 

medium- and high-penetration solar PV markets. Rather than focusing on one study site, 

this article offers a comparative analysis between three urban regions using simulated load 

data and solar insolation data at each locality. Various time-of-use pricing schedules are 

investigated, and the effect of net metering is evaluated to determine the optimal capacity 

of solar PV and battery storage in a typical residential home. The residential load profile is 

scaled to assess system-wide technical and economic figures of merit for the utility.  

3.3 Methodological Approach 

Electric grid modeling includes expansion planning and production cost modeling 

for informing mid-term and long-term decisions. Electric utilities use models for capital 

expansion planning to inform generation, transmission, and distribution capacity decisions. 

Modeling the addition or upgrade of electricity generation requires well-defined load 

profile and cost information to inform capital expansion. Production cost modeling 

complements capital expansion planning assessments to determine how to dispatch 

available assets to produce the least-cost power. Production cost models are improved by 

including the techno-economic factors associated to energy use and delivery, in addition to 

generation, to ensure that equipment can adequately meet the user’s needs through the 

electric grid (Krause et. al. 2010). These two forms of modeling—capital expansion 

planning and production cost modeling—allow a utility and associated decision makers to 
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more effectively plan system expansion and operation to address technical, economic, 

policy and environmental constraints.  

Building energy system modeling focuses on determining energy consumption and 

life cycle costs as a function of building design, occupancy, thermal conditioning, water 

and energy use. Whole-systems building design uses these and other inputs to provide the 

user with a great amount of flexibility for modeling different scenarios. Yet in noting that 

the quality of results depends on the quality of inputs, the input conditions must be 

researched and well-defined. Optimizing a building energy system goes beyond the 

selection of power generation, storage or consumption devices in the building. For 

example, the placement of windows and building orientation can affect power 

consumption—e.g., large southward facing windows can reduce the use of heating systems 

because more sunlight enters and warms the building. Some software packages allow users 

to evaluate and contrast the effects of building design decisions and equipment decisions 

on technical, environmental and economic metrics.  

3.3.1 Household Electric Load Profile Creation 

This article utilizes the Building Energy Optimization (BEopt) tool to simulate and 

generate load and solar resource profiles.  BEopt was created to assist in the design of zero 

net energy (ZNE) buildings (Christensen 2010). ZNE buildings are defined as those which 

produce as much electricity as they consume. To this end, BEopt provides mechanisms to 

evaluate whole-building energy savings based on building size and orientation, a suite of 

energy use devices, occupancy data, location and building materials composition and 

structure. Although BEopt can be used for new and existing construction, it is commonly 

employed as modeling tool to describe the costs and benefits of renewable energy options 
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for new residential construction (Anderson and Christensen 2006, Horowitz et. al. 2008). 

BEopt reports total and hourly energy usage within an intuitive graphical user interface 

(GUI) that uses an underlying simulation engine, such as EnergyPlus, for building energy 

calculations.  

Building options in BEopt are set to default industry values as listed in the Building 

America house simulation protocols (Hendron and Engebrecht 2010), with a few areas of 

note or deviation: the house has a gas water heater and gas cooking range, an electric 

clothes dryer and is spaced 20 feet apart from neighboring households.  

 

Figure 3.1. Household Visualization in BEopt. 

The house for simulation is a two story, square home with 38 ft. by 38 ft. dimensions that 

equates to a total of 2388 ft2 after subtracting the garage space of 25 ft. by 20 ft. on the first 

floor (Figure 3.1). According to the U.S. Census Bureau, this square footage is near the 

national average of 2,392 (2010). 

A BEopt model is run for three separate locations: Chicago (41° 59’ N, 87° 54’ W), 

Phoenix (33° 26’ N, 112° 1’ W) and Seattle (47° 32’ N, 122° 18’ W) using BEopt’s 

predefined locational data. These three locations are chosen due to their difference in solar 
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insolation, climate, precipitation and latitude. While Seattle and Chicago have similar 

amounts of solar insolation through most months of the year, it is thought that Seattle’s 

rainy season will have an interesting effect on solar insolation during several months, 

providing implications regarding utility operating reserve. Hourly time series outputs taken 

from BEopt and input into HOMER include the hourly residential load (kW) and solar 

global horizontal insolation (kW/m2). HOMER includes algorithms to generate synthetic 

solar data, and these had to be overridden using the hourly data from BEopt to maintain 

data consistency across the two modeling packages.  

 Figure 3.2 summarizes the annual solar profile for each study location using a heat 

map to visualize the solar insolation in all 8760 hours over a one-year period. The solar 

insolation profiles of Chicago and Seattle are fairly similar, with high yet intermittent solar 

radiation during the summer months and low solar radiation during the winter months. 

Seattle, however, experiences a much larger drop in solar radiation during November, 

December and January. Phoenix receives solar radiation for more hours of the day during 

the winter due to its low latitude, and has a stronger and more consistent daily solar profile 

over the summer and winter months when compared to Chicago or Seattle profiles.  
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Figure 3.2. Hourly Global Horizontal Solar Radiation at Study Locations. 

There are several distinct differences in the household energy usage modeled for 

each study location (Table 3.1). Phoenix has a high average and peak power demand, as 

compared to Chicago and Seattle, due to the increased need for air conditioning in the warm 

climate. Households in Chicago and Seattle have a similar total energy usage but Chicago 

experiences a higher peak. The minimum load is similar across all locations, which is an 

artifact of using the same BEopt model input parameters for each study location, and noting 

that low demand of cooling systems in the winter months.  

Table 3.1. Household Energy Usage Summary. 

Location Average (kW) Peak (kW) Min (kW) Total (kWh) 

Chicago                  1.00             2.84             0.41                    8,765  

Phoenix                  1.57             5.29             0.44                  13,750  

Seattle                  0.90             2.09             0.41                    7,887  

Chicago

Phoenix

Seattle
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3.3.2 Household Solar PV System Sizing and Aggregate Utility Effects 

This paper uses the Hybrid Optimization Model for Electric Renewables 

(HOMER®) to compare power system configurations for systems topology selection and 

system sizing. HOMER models the physical behavior of a power system and quantifies the 

total cost of installing and operating the system over its lifespan. Its graphical user interface 

allows users to interactively compare design options on their technical and economic 

merits. HOMER performs three principle tasks: simulation, optimization, and sensitivity 

analysis. Chronological simulations are completed over a one-year period for the range of 

micro-grid systems specified by the user. HOMER then identifies the optimal system size 

and control strategy with the lowest net present cost. Sensitivity analysis is used to test the 

effect of model assumptions and input parameters on system robustness. HOMER has been 

used in selecting optimum components for hybrid energy systems (Fulzele & Dutt 2012). 

It has also been used in conjunction with optimization algorithms, such as particle swarm 

optimization to find the optimal amount of solar to install (Hafez & Bhattacharya 2012). 

Although HOMER was developed primarily for use in planning off-grid micro-grid power 

systems, it can be used to simulate residential-scale grid-connected systems and model a 

simplified representation of the electric grid as a single electric circuit to calculate load and 

economic statistics (Johnson et al. 2011). A more detailed discussion of HOMER 

algorithms and functionality is found in (Lambert 2006). 

HOMER is first used to create the household net load profile for the minimum and 

maximum amount of solar PV capacity. The maximum allowed PV system size is 

determined using (Eq. 3.1). The capacity factor is taken from HOMER and annual total 

energy usage is taken from the annual load data created in BEopt and used in HOMER. 
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The scaling factor of 120% is commonly used by utilities to define the limit on PV system 

size under which net metering is permitted. The maximum permitted residential PV array 

capacities are equated as 8.64 kW for Chicago, 9.06 kW for Phoenix and 8.76 kW for 

Seattle. The capacities are similar because the greater total energy use in Phoenix is offset 

by a greater capacity factor, meaning that a solar PV panel installed in Phoenix will output 

more energy annually than the same panel installed in Chicago or Seattle.  

 ,(120% )max tot yPV CF E  (3.1) 

CF = capacity factor (%) 

 

,tot yE = total annual energy usage (kWh) 

 

 Residential load profile simulations and energy expenditures are completed for 

each study location using the following model input parameters:  

 Solar PV array—The rooftop array is mounted at a slope equivalent to the latitude 

in each study site to achieve maximum energy output over the year. Shading affects 

and temperature effects are not considered. A derating factor of 80% is selected to 

account for soiling losses and other discrepancies between the rated power output 

and installed power output. Rooftop array capacities are evaluated at 0%, 25%, 50%, 

75%, and 100% of the maximum capacity permitted in each study site.  

 Inverter—The DC-to-AC conversion efficiency is assumed to be a constant 90%. 

Inverter sizes are evaluated at capacities equivalent to the rooftop array in each study 

site.  
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 Battery—A Surrette 4KS25P battery is used with a nominal 4V and 1,900 Ah 

capacity. Initial costs are assumed at $1,200, replacement costs at $800, and 

operation and maintenance costs at $40 / battery / yr.  

 System costs—System costs are modeled as single scalable quantity based upon the 

PV array size. Cost assumptions include an installed system capital cost of $3.00 per 

W after rebates and incentives, and an annual operating and maintenance cost 

equated at 1% of the installed system capital cost. The system lifetime is modeled at 

20 years with inverter replacement at 10 years that is included in the system capital 

cost.  

 Grid electric price—A grid connection fee of $15 is charged each month. Table 3.1 

provides a summary of three time-of-use (TOU) cases simulated using peak power 

pricing between 1pm and 7pm. Case 1 has no TOU increase, Case 2 has a 50% 

increase and Case 3 has a 100% increase in the cost of electricity. The rates in Table 

3.2 include all taxes and fees.  

 Net metering—Net metering was evaluated in three ways: no net metering, net 

metering calculated monthly and net metering calculated annually. A flat sellback 

rate of $0.03/kWh was specified across all models to reflect the sale of any net 

excess generation from the household PV array.  

 Price escalation—Although HOMER cannot evaluate grid price escalation over the 

project lifetime, increases in grid cost can be modeled implicitly using a negative 

annual real interest rate and compensating for the effect when selecting equipment 

replacement costs that will be encumbered over the system lifetime. A grid price 

escalation of 3% per annum is used.  
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Table 3.2. Grid Rate Structures ($/kWh). 

Rate 

period 

No TOU TOU 

Case 1 Case 2 Case 3 

Non-

summer 
0.12 0.12 0.12 

Summer 

off-peak 
0.16 0.16 0.16 

Summer 

peak 
0.16 0.24 0.32 

 

The utility-scale effects of residential solar PV penetration are calculated by scaling 

the individual residential load profile by 500,000 in each simulation (Eq. 3.2).  

 (1 )utility res h pen net h penP P N PV P N PV        (3.2) 

utilityP = utility side power draw (kW) 

resP = residential power use (kW) 

hN = number of households (unit less) 

penPV = PV penetration (%) 

netP = consumer side net power draw with 100% PV capacity (kW) 

Utility-scale effects are explored by assuming that homes installing solar PV use 

the maximum allowed capacity as calculated by Eq. 3.1. The hourly system load profile 

and economic metrics are evaluated for residential PV adoption rates of 0%, 5%, 10%, 

15%, 20% and 25%. January, April, July and October are selected to demonstrate the 

effects on the system load profile over various parts of the year.  

A combined analysis follows the residential analysis and utility analysis by relaxing 

the assumption that consumers install maximum PV capacity. Rather, consumers are 

modeled as rational agents that seek to minimize their energy expenditures by selecting the 
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least-cost combination of solar PV capacity and batteries, or installing no solar PV or 

batteries. Analysis is again completed for each grid rate structure and net metering policy.  

3.4 Results and Analysis 

3.4.1 Utility Implications 

The average hourly net load data described by Figure 3.3 exhibits the “Duck Curve” 

behavior at higher PV penetration, as expected. The load profiles shown in each month are 

equated as an average of the hourly load profile of each day in a month. Net load profile 

curves overlap in the early and late hours of the day due to a lack of sunlight. Phoenix 

displays no negative net load in July—peak solar insolation in all study sides—due to the 

high usage of electrically power central air conditioning units. Chicago and Seattle, on the 

other hand sees their biggest peak in January due to additional lighting loads not needed in 

other months with more daylight. There is a minimal system-wide effect of residential PV 

in Seattle during the month of January due to the largely overcast sky. Chicago and Seattle 

have their lowest minimum net load in July. By contrast, Phoenix has its minimum in April 

due to the high solar insolation and relatively minimal cooling load as compared to July in 

the same location. The maximum ramp rate that the utility must meet for each case may be 

inferred from Figure 3.3 where the slope of the line is greatest. These ramp rates occur at 

either 4:00 pm or 5:00 pm for all cases. Duck charts such as the ones in Figure 3.3 show 

how ramp rates drastically change solar PV penetration increases, potentially causing 

scheduling and loading issues for the utility generation fleet. 
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Figure 3.3. System Net Load Curves at Selected Solar PV Market Penetration Levels. 

Massive amounts of excess generation from residential solar PV systems can 

overload and congest the distribution grid. Table 3.3 provides the level of market 
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penetration at which residential solar causes a negative load for the residential portion of 

the system load in various months of the year. This was equated from the average daily 

load profile in each month as described earlier. Negative system loads occur at lower PV 

penetration rates in locations and times of year with high solar insolation and low cooling 

loads—as seen in January and April in Phoenix, or July in Chicago and Seattle. In Seattle, 

January is the month of the year least likely to experience negative system loads due to 

persistent overcast skies in that month. But in Phoenix, July is the month of the year least 

likely to experience negative system loads due to the high demand for air conditioning. The 

difference between months in a location such as Phoenix display how seasonal changes 

greatly affect the energy dispatch schedule of a utility. Those regions which more easily 

reach a negative net load need more robust infrastructure to deal with excess power 

generation. 

Table 3.3. Residential Market PV Penetration that Produces Negative System Load. 

Location January April July October 

Chicago 29% 18% 14% 28% 

Phoenix 15% 15% 49% 27% 

Seattle 61% 18% 14% 28% 

 

The effects of PV penetration on average power, peak power, minimum power, 

total energy and load factor are summarized in Table 3.4. Rooftop solar penetration was 

seen to have a negligible effect on the peak system load in Seattle, but was seen to decrease 

the peak in Chicago and Phoenix (Figure 3.4). PV penetration changed the load factor 

similarly for all locations in this study. In summary, changes in PV penetration affected all 

metrics—expect the peak power—similarly across the study locations.  
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Table 3.4. System Effects of Solar PV Market Penetration.  

Location   
Solar PV Market Penetration 

0% 5% 10% 15% 20% 25% 

Chicago 

Average (MW) 500 470 440 410 380 350 

Peak (MW) 1,420 1,395 1,371 1,346 1,323 1,321 

Min (MW) 206 44 -121 -287 -452 -617 

Total (MWh) 4,382,698 4,119,481 3,856,264 3,593,047 3,329,830 3,066,613 

Load Factor 0.35 0.34 0.32 0.3 0.29 0.27 

Phoenix 

Average (MW) 785 742 700 657 615 572 

Peak (MW) 2,644 2,600 2,556 2,548 2,543 2,538 

Min (MW) 221 123 -37 -199 -381 -563 

Total (MWh) 6,874,944 6,502,892 6,130,841 5,758,790 5,386,739 5,014,688 

Load Factor 0.3 0.29 0.27 0.26 0.24 0.23 

Seattle 

Average (MW) 450 426 401 377 353 328 

Peak (MW) 1,046 1,045 1,045 1,045 1,045 1,045 

Min (MW) 206 56 -98 -252 -406 -560 

Total (MWh) 3,943,261 3,729,914 3,516,567 3,303,221 3,089,874 2,876,528 

Load Factor 0.43 0.41 0.38 0.36 0.34 0.31 

 

 

Figure 3.4. Relative Effects of Solar PV on Electric Grid at 25% Penetration.   

The data in Table 3.5 describes the annual revenue for a utility under the previously 

simulated conditions. Data in the table was selected for simulations of net metering on a 

monthly basis, which is the common time period for residential net metering agreements. 
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As expected, increased PV penetration decreases utility revenue, and increases in on-peak 

power price increased utility revenue. It is worth noting, however, that raising the on-peak 

price does not mitigate the effects of increased PV penetration. The average difference in 

revenue for Chicago, Phoenix and Seattle from 0% to 25% PV penetration is 32%, 26% 

and 31%, respectively. This means that on average, the utility revenue dropped 1.2% for 

every percent PV penetration increase. Also, the monthly connection fee of $15 per resident 

contributed 12% of total revenue at 0% penetration and 16% of revenue at 25% penetration. 

Thus, for every 5% increase in PV penetration, the connection fee contributes 1% more to 

annual revenue. 

Table 3.5. Utility Annual Revenue as Percentage of Solar PV Adoption at Max Capacity.  

Location On-Peak Price 

($/kWh) 

Utility Revenue ($ 000,000) 

0% 5% 10% 15% 20% 25% 

Chicago 

                0.16            671             635            510             564             528             492  

                0.24             706             669             536             587             547             507  

                0.32             740             702             563 610            566            523  

Phoenix 

               0.16          1,028          1,008             958             908             858             808  

               0.24          1,157          1,011          1,046             990             935             879  

                0.32         1,256         1,105         1,134          1,072          1,011            950  

Seattle 

                0.16             608             488             548             539             489             459  

               0.24             630             507             564             531             498             464  

               0.32             653             526             580            543            506            470  

 

3.4.2 Household Implications 

 The optimal PV system sizes were determined for each location with net metering 

(monthly/annually) and without net metering at the three on-peak grid prices (Table 3.6). 

The optimal size is the least-cost option for the consumer, and may include no solar PV. 

Of all the capacities evaluated, the largest systems are in Phoenix due to the excellent solar 

insolation resource. Without net metering, PV is not a viable option in Seattle due to the 
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low amount of solar insolation. However, with net metering, using a small amount of solar 

PV can be cost effective in places such as Seattle. This illustrates how net metering has the 

capability of greatly increasing the viability of PV because it credits excess generation in 

a one-to-one trade for use later when PV generation cannot meet the household load. 

Higher on peak prices also contributed to cost effective PV. This is due to highest solar 

insolation and energy prices typically occurring at the same time. 

Table 3.6. Optimal PV Capacities for the Consumer. 

Location Peak Price 

($/kWh) 

Optimal PV Capacity 

No Net Metering Net Metering (Monthly/Annually) 

Chicago 

0.16 10% 50% 

0.24 15% 55% 

0.32 20% 60% 

Phoenix 

0.16 35% 80% 

0.24 40% 85% 

0.32 45% 90% 

Seattle 

0.16 5% 10% 

0.24 10% 30% 

0.32 15% 35% 

 

The levelized cost of energy (LCOE) (Eq. 3.3) paid by the consumer is given in 

Figure 3.5 for the 20-year simulation of each grid rate structure, net metering policy and 

solar PV capacity. A larger data marker is used to show the least-cost PV capacity for each 

case. Monthly and annual net metering had a negligible difference in the consumer-side 

economics due to the limitation on system size and low sellback rate of $0.03/kWh.  

 
,

,

ann tot

ann tot

C
LCOE

E
   (3.3) 

,ann totC = total annual cost of energy ($/kWh) 

,ann totE = total annual energy (kWh) 
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Without net metering, the optimal system size in Chicago and Seattle was below 

20% of max because of limited energy usage during peak hours and a low sellback that 

indicates there is no economic justification for the consumer to install solar panels that 

produce any excess generation. The optimal capacity was higher in Phoenix than Chicago 

and Seattle due to higher loads and solar insolation levels. With net metering, the cost-

effectiveness of solar PV increases in all scenarios—as seen in the reduction in LCOE 

values on the graphed curves with net metering. Optimal capacities increased in nearly all 

cases, with the largest size PV array being in Phoenix. The levelized cost of energy has an 

inverse relationship with the solar insolation, and yields the lowest LCOE in Phoenix, 

followed by Chicago and then Seattle. Higher peak prices also contributed to a slight 

increase in optimal PV array size to ensure that on peak electricity loads are met without 

utility purchases. In most of the cases, the pricing curves converge at higher PV capacities. 

This indicates that energy pricing has less influence on LCOE at high install capacities 

because solar PV costs contribute a larger portion of total invested cost relative to hourly 

energy pricing. 

It is interesting to note that, even without net metering, there is little difference in 

the LCOE between installed arrays at 0% and 100% of max capacity. This indicates that 

residents living in the Phoenix area could make a choice to install solar PV systems for 

personal or environmental reasons and experience little, if any, impact on their average 

cost of energy. With the option of net metering in Seattle, the LCOE does not increase at 

the rate it does without net metering. The difference in optimal PV capacity between using 

net metering and not for Seattle is much smaller than Chicago or Phoenix due to the small 
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amount of solar insolation. Thus, higher insolation translates into net metering having a 

larger effect on optimal PV capacities. 

 

Figure 3.5. Levelized Cost of Energy for Grid Rate Structures and PV System Sizes. 

The household analysis was extended by modeling the use of batteries in the home, 

with or without a PV array. HOMER simulations were completed with battery costs 

ranging from 0% to 100% of the component’s assumed cost. Figure 3.6 provides a 
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graphical representation of the optimal system type—set of power system components with 

least cost energy—for each study location. Batteries were only cost-effective in cases 

without net metering, at a high on-peak grid price and at a greatly reduced battery cost. Yet 

even if the battery is free, it may not be cost effective since the efficiency losses increase 

the cost of energy cycled through the battery (Eq. 3.4). In scenarios with higher on-peak 

grid prices, however, a battery can be useful for storing low-cost energy from off-peak 

times and discharge it during higher on-peak times, if the battery capital cost is sufficiently 

low to warrant acquisition. Batteries were never a cost-effective option in any case using 

monthly or annual net metering. Under net metering policy, consumers can use the grid as 

a “lossless zero-cost battery” and have no economic justification to install storage, although 

ancillary benefits such as backup power may be desired. Batteries had the most favorable 

business case in Phoenix because solar PV could not fully meet electric loads during 

summer peak hours.  

 
,

,

e i

e o

bat inv rec

C
C

  
  (3.4) 

,e oC = cost of energy taken out of the battery ($/kWh) 

,e iC = cost of energy put into the battery ($/kWh) 

bat = battery efficiency (%) 

inv = inverter efficiency (%) 

rec = rectifier efficiency (%) 
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Figure 3.6. Optimal Power System Configuration Considering Batteries. 

3.4.3 Combined Analysis 

The combined analysis is predicated on the assumptions that the decision to install 

PV and batteries lies solely in the hands of the consumer, the consumer makes a decision 

based on their own economic interests to reduce expenditures on energy and energy 

Phoenix

Seattle

Chicago
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technologies, all consumers can financially and legally install any amount of PV and 

batteries and all consumers make the same decision to select the least cost option for their 

locality. Monthly net metering is used for the analysis. For Seattle, there is a negligible 

difference in the consumer’s LCOE between 0% and 25% solar capacity, and so the curves 

generated in Figure 3.7 for Seattle have been calculated using 25% solar capacity for easier 

visualization. The curves were calculated for Chicago using 50% solar capacity and 

Phoenix using 75% solar capacity. 

The decrease in revenue for the utility, on average, is 1.1% for every percent of 

system-wide PV solar capacity that is installed in the combined analysis (Table 3.7), which 

is very similar to the 1.2% drop in revenue for every percent of residential PV consumers 

that adopted solar at max capacity in the utility implications analysis (Table 3.5). Table 3.7 

includes the monthly connection fee. A utility in the Chicago area would experience a drop 

of 57% in revenue if solar PV was installed at 50% of max capacity, Phoenix a drop of 

74% in revenue for 75% of max solar PV capacity and Seattle a drop of 30% in revenue 

for 25% of max solar PV. As expected, utility revenue drops with increasing amounts of 

residential solar PV, but dropped at a greater rate when higher peak prices were simulated. 

Simulations with higher peak prices created a greater percentile drop in utility revenue 

because the utility would be selling less energy during high price hours as residential 

consumers installed more solar PV. 
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Table 3.7. Utility Annual Revenue as Percentage of System-wide Solar PV Capacity. 

Location 
On-Peak 

Price ($/kWh) 

Utility Revenue ($ 000,000) 

0% 100% 

Chicago 

               0.16         671                  352  

               0.24                  706                 355  

              0.32                  740                  357  

Phoenix 

               0.16               1,058                  348  

               0.24               1,157                  363  

               0.32               1,256                  378  

Seattle 

               0.16                  608                  459  

               0.24                  630                  464  

               0.32                  653                  469  

 

The effect of installing various amounts of PV capacity (25%, 50%, and 75%) on 

utility net load is illustrated in Figure 3.7. As expected, there is a greater effect on net load 

in areas with higher installed capacity—i.e., Phoenix. The cooling load demand seen during 

the morning and midday hours in Phoenix in July is largely offset but is minimally affected 

at peak load hours between 2pm and 4pm. Based on Figure 3.7, the amount of negative net 

load on the grid would be extreme for such an installed capacity. The net loads are lowest 

in Phoenix during April and October, when the cooling load is low and solar insolation is 

still high. The difference in net loads for Seattle further illustrates the highly variant levels 

of solar insolation received between the winter and summer months. It is worth noting that 

even Seattle, the location shown to have the lowest amount of solar insolation, and having 

the lowest installed PV capacity (25%), still caused a negative net load on the grid for two 

of the four months portrayed in the illustrations. Chicago has the most regular net load 

profile across the year, with very little difference in its peak and minimum loads. Ramp 

rates—in absolute or relative metrics—may be inferred from Figure 3.7. Locations with 

high solar insolation are likely to have more technical issues regarding grid overloading 
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because more consumers are likely to install PV. Conversely, locations with low solar 

insolation such as Seattle have a much less chance of having technical issues because 

consumers would install small solar PV arrays. The monthly connection fee contributed 

13% of annual revenue at 0% installed capacity but contributed 30% of revenue at 100% 

capacity, noting that increasing the connection fee may be a mechanism to recoup lost 

revenue. 
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Figure 3.7. System Net Load Curves at Optimal Rooftop Capacity for Residences. 
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3.5 Discussion and Conclusions 

This study examined the implications of installing high penetration solar PV across 

several locations with different load and solar insolation profiles. Simulated hourly load 

and solar insolation data was used in a comparative analysis of different levels of solar PV 

penetration and grid rate structures on technical and economic merits. Optimal scenarios 

were identified and evaluated for the consumer, the utility and a combined analysis that 

considered objectives of both stakeholders. Differences in system-wide net load effects for 

each study location imply that solar PV penetration will affect the separate regions 

differently. From this it can be inferred that the technical, economic and policy components 

of integrated resource planning need to be evaluated within the context of local climate, 

weather patterns, energy usage behaviors, load profile and grid rate structures. Some 

examples are summarized below:  

 The optimal residential power system configuration—solar PV and/or battery 

storage—and component capacities differed for each location.  

 High electric loads required to cool buildings in Phoenix lead to larger peak 

demands and greater price-performance for solar PV during the warmer midday 

hours.  

 A solar only system was more cost-effective than a solar-battery system in nearly 

all scenarios investigated. The cost-effectiveness of battery storage increased as 

battery prices dropped by 65% to 100% and TOU peak prices increased. Phoenix 

had the most favorable economic conditions for battery storage due to significant 

summer cooling loads, whereas Seattle and Chicago had similar market 

opportunities with almost no market advantage for battery storage.   



54 

 The largest net negative system loads occurred in April for Phoenix but in July for 

Chicago and Seattle.  

 Overcast days in Phoenix may lead to large swings in the net load that would require 

utility generation fleet with sufficient operating reserve and ramp rate capacity to 

address sudden drops in residential solar PV output. Ramp rate requirements are 

less in Chicago and least in Seattle.  

The amount of PV penetration that would cause a negative net load on the grid was 

highly dependent on location. Simulating and forecasting how solar PV penetration rates 

may affect intraday and intrahour net load profiles can help utilities plan for inherent 

problems associated to renewable intermittency. Further, simulating the effects of PV 

penetration on average power, peak power, minimum power, total energy and load factor 

is also a useful way for utilities to plan for future effects of solar PV at an aggregate level. 

These effects are again largely dependent on the solar insolation and energy usage 

dynamics of a specific region. In all locations, a solar PV penetration of 25% was found to 

create a negative residential net system, suggesting that utilities may be experience dispatch 

and operating reserve challenges, or congestion challenges at the feeder or substation level 

in subdivisions of a city with higher penetration renewables.  

This study also provides insight into how PV penetration affects utility revenue. 

Losses in revenue due to increases in solar PV capacity are beginning to cause disruptions 

in utility business models. The primary tactics to compensate for a drop in revenue is to 

raise prices—increase electricity prices ($/kWh)—or add new revenue streams—tariff for 

having rooftop solar or an increase in the connection fee. Another option is to change the 

shape of the market, such as by altering net metering policy. The removal of net metering—



55 

monthly or annual—was found to have the most significant impact on the cost-effective of 

solar PV and, therefore, on the capacity installed by the consumer and the effect on the 

utility’s revenue. Yet, the country-wide shift towards advanced metering infrastructure 

(AMI) or smart meters is an enabler of net metering, and the significant economic and 

human resource allocation for this effort may lead stakeholders to other courses of action, 

particularly since AMI technologies allow real time communication between consumer and 

utility, thereby improving demand response capabilities and more real-time 

communication of pricing. Additionally, utility companies could recoup lost revenue by 

implementing a monthly tariff to the consumer or rooftop PV leasing agency, or by 

instating a demand charge. 

Some additional general findings are summarized:  

 Results in this study showed little difference between monthly and annual net 

metering. This was largely due to the low sellback price. 

 Solar PV penetration had little effect on peak power draw. Therefore a utility’s 

generation fleet must be maintained and online to provide peak power requirements 

despite a reduction in capacity factor due to operating at lower loads as net load 

drops.  

 Demand response capabilities may serve a greater role in the residential energy 

market as system-wide operating reserve capacity requirements increase with 

increases in renewable penetration.  

 Net metering was shown to decrease the cost-effectiveness of batteries due in part 

to their efficiency losses and those associated with a converter. For a grid-connected 

system, the grid can be effectively characterized as a “no cost lossless battery.” 
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 Reaching a zero-carbon emission economy is a challenge that will require 

innovative technology and techniques to address energy consumption. Our society is 

trending towards smaller carbon footprints, causing a change in policy, economics, 

business models and consumer behavior. This study works toward that goal by 

emphasizing the design and integration of renewables, providing insight on grid stability 

at high-penetration renewables, exploring software for production cost modeling and 

expansion planning, and discussing the implications of a low-carbon energy transition. 

With PV systems becoming a more popular way to offset grid purchases, sizing equipment 

based on the optimal choice is more important than ever to ensure economic efficiency in 

the short-term and grid stability in the long term. This study has attempted to analyze both 

dynamics to help inform future economic and policy decisions, as these issues become 

more prevalent over time. 

 There are a few limitations of this study that are common to all modeling and 

simulation approaches. As with all modeling studies, it is important to remember that 

models are but one representation of what might happen, not what will actually happen. 

This is the primary reason for studying multiple locations across multiple scenarios. The 

models used in this study used as much real world data as was feasible, making the fewest 

assumptions possible to ensure reliable results. The low energy sellback resulted in no 

significant difference between annual and monthly net metering. This may not necessarily 

be the case for all situations, as pricing structures vary highly depending on location. Each 

component had its pricing and efficiencies implied based on current technology and 

availability, which will change over time and across locations. This is important to take 

into consideration when reviewing some of the conclusions. Additionally, it was assumed 
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that all consumers would make a decision to choose the least cost option for solar PV 

installments and that everyone could do so. Of course this is not the case, but it is important 

to understand the effects of PV installations and how net energy load is affected by different 

amounts of PV penetration. 

Areas of future work include analyzing the utility-side effect of high-penetration 

rooftop solar on utility emissions and economics from running nonrenewable generation at 

low loads due to operating reserve requirements, evaluating the techno-economic 

performance of other battery chemistries, developing load management scenarios to 

smooth residential load profiles and provide system-wide operating reserve at reduced cost 

to consumers and utilities, expanding the analysis to include more case study locations and 

evaluating the consumer-side and utility-side effects of additional grid rate structures such 

as daily or hourly net metering.  
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